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ABSTRACT

Certain jobs in large projects do not have a unique
"location" in the critical path network; they may be moved

into certain slack intervals, for example, or may even be
divisible into smaller subtasks, and "tucked in" at several
locations. An example is the painting activity during air-
craft maintenance and overhaul which may logically be
performed at several points during the overhaul cycle.

In a previous paper [4], an analysis was given of a model in
which a single job can be divided up in any manner among an
arbitrary number of locations; the resulting algorithm was
of the optimal network flow type, which can be simply and
efficiently solved using available computer codes. In the
first part of the present paper, this model is extended to
multiple jobs of divisible type. The general approach is
via the decomposition method of linear programming; however,
the resulting algorithm is again fairly simple. Optimal
cost-time solutions, possibly infinite, (or optimal network
flow solutions, possibly infeasible) are generated by known
algorithms. The resulting schedules or cuts are then
combined in a simple, special-structure linear program whose
dimensionality is equal to the number of divisible groups.
Bounds on the nonintegrality of the final allocations can
also be determined.

When these special jobs can only be moved about the network
in their entirety, or in certain indivinihle mndules, the
problem takes on the form of an integer program. In the
second part of the paper, a branch-and--bound procedure will
be given for the problem of movable activities, together with
efficient heuristics for arbitrating and bounding these
locations, using only the ozdinary critical-path algorithm.

Examples are given for both models.



DIVISIBLE AND MOVABLE ACTIVITIES IN CRITICAL PATH ANALYSIS

by

William S. Jewell

0. INTRODUCTION

Certain jobs in large projects do not have a unique "location" in the

critical path network; they may be moved into certain slack intervals, for example,

or may even be divisible into smaller subtasks, and "tucked in" at several

locations. An example is the painting activity during aircraft maintenance and

overhaul which may logically be performed at several points during the overhaul

cycle.

In a previous paper [4], an analysis was given of a model in which a single

job can be divided up in any manner among an arbitrary number of locations; the

resulting algorithm was of the optimal network flow type, which can be simply and

efficiently solved using available computer codes. In the first part of the

present paper, this model is extended to multiple jobs of divisible type giving a

decomposition algorithm with special structure in both the master and subprograms.

Another possibility is that such a task cannot be subdivided as finely as

desired, but can only be moved around in certain modules, or in its entirety. In

the second part of this paper, a branch-and-bound algorithm is developed which

uses the ordinary critical path algorithm in an efficient manner.



2

1. FORNULATION

Assume that a project network of A arcs (activities) and N nodes

(events) is given. Arc ij represents activity beginning at node i and

ending at node j , nodes 1 and N represent Start and Finish of the project,

respectively. Activity durations [T ij are given for each arc, and the problem

is to select potentials (event epochs) {v i for each node which minimize the

total project dura&Lon, F - vN - v1 . As usual, we assume all Tij finite,

that no directed cycle exists with positive sum of Tij , and at least one

directed path exists from node 1 to N .

Additionally, we assume there are D divisible activities which require

duration Td , (d = 1,2, ... , D) . These durations may be divided up in

arbitrary amounts and carried out at any or all of a certain number of "locations"

in the network, specified in advance for each such activity. For simplicity in

notation, artificial arcs are added, if necessary, so that an arc is either

a location for a single divisible task, or for none. In other words, partition

the class of all arcs, A , into D + 1 exclusive subsets, Ao , All .... AD '

and read "ij c A d" as "activity ij belongs to divisible class d"; conversely,

"d e A-l(ij)" reads "d is the (unique) class to which ij belongs." Let Ad

be the number of arcs in class d , so that A + A1 + ... + A- A .

Finally, define tij as the additional duration expended on divisible work

at location ij ; the initial primal problem is then:

(la) Min F - vN N I

(ib) v - v -t tij T ij

v ij c A
(lc) tij > 0

(id) tij Td d - 1,2, ... , D
ijcAd
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It is immaterial whether we set T 0 0 , or drop the tij from arcs in A

The constraint matrix for the example of Section 8 is shown in Figure 1. The upper

part of the matrix is the same as that of a cost-time critical path (CPM) problem

[3], [4] where the objective is, typically:

(la') Min F = Q(vN - v) I eA CijtlJ + fixed terms

Here Cij is a unit savings gotten by "lengthening" ij by an amount t j above

the "crash" duration Tij ; usually there is an upper bound on t j to limit paid

lengthening to some "normal" duration. Q is a Lagrange multiplier varied during

the course of the cost-time algorithm, which has a dual interpretation of

exog2nous flow.

The constraints (ld), on the other hand, are like the "bundle constraints"

of multi-conumodity flow problems [3], (6], (9], except that here they are adjoined

to the transpose of the usual Kirchoff flow matrix.

The dual initial problem is:

D
(2a) Max L i - Tijxij + d TdYdijrA d=l

(2b) • (x -xi i + N
1_ otherwise

(2c) Xij > 0

ij e A
(2d) xii > YA~l

which is the usual dual longest-zvute problem, except for a possible profit for

simutaneously increasing several lower bounds, rather like an optimal capacity

contraction problem.

It is the confluence of these different, but special models that r'ket th0

analy=is ot (I) interesting from a pedagogical point of view, providing we can

retain the computational simplicity of these special structures.
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2. DECOMPOSITION

We Phall solve (1) by using the decomposition method (see [2) or [10,

Chapter 10]), with (id) as the master problem and (lb), (ic) as the subproblem.

The master will be solved by the simplex method (with some simplifications), and

the su~problem will be solved by special CPK or optimal flow algorithms. For

convenience, we review the principles of this method in our notation.

The set of all solutions to (lb), (1c) is a convex polytope with both

finite and unbounded regions; in fact, the unbounded region usually turns out

to be important in the application of the algorithm. Let {vk;t k} (k - 1,2, ... , K)

be the set of all extremal soZutions to the finite region (a polyhedron) and

{wvi;uj} (Z - 1,2, ... , L) be the extremal rays bounding the infinite part of the

solution space (a convex polyhedral cone). From a well-known theorem of convex

sets [10], any feasible set of solutions {vi;tLj} to (lb), (Ic) can be represented

as follows:

(3a) v~ AV k k + 6 3 w X ; t ~ - k ~ + I 83 ul
k k L

(3b) I X k - i X kk > 0 (k 1 , ... , K) ; 86 k 0 (z - 1,2, ... , L)

k

Define new constants for each extremal point and ray as follows:

(4) Fk ,k _k ;G 2. k . z k t. E 2.

N I ;G wN w Td jeA d j ; -d jA duij

We find the new form of the master problem in the mixing variables {JX ek z

, , - ... ' •.. .. ! I I ' l 2
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(5a) Min F = k FXk + G
k 2

(Sb) -1
k

(5c) I T k X + - Td (d - 1,2, , D)

k Tdk z d Z d

(5d) Ak > 0 (k = 1,2, .... K) ; 0> 0 (Z = 1,2, .... L)

Thus, the problem is changed to one with D + 1 constraints but many variables.

The new form of the dual master is:

(6a) Max L =-o + Td rd
d

(6b) a + I Tk Tr < Fk (k - 1,2, K)Td d d (k=12...K
d

(6c) U z 1 G ( ,, L
d d d (•-12 .,L

d

(6d) Y , lfd unrestricted (d = 1,2, ... , D)

d and the [vd} will always be nonnegative in any case of interest, since weakening

(Sb), (5c) to inequalities will not change any optimal solution.

As is usual in decomposition, one does not need aiZ extremal solutions and

rays, to start with, but only the D + 1 necessary to form an initial feasible

basis to (5). New candidates will be generated as needed by solving the subproblem

and added during the course of the algorithm. At any stage, if the current optimal

dual variables are aO0, dT , a finite candidate solution k = * to the subproblen

can be checked by testing dual constraint (6b). Thus, if:

(7) F - T *dTd <0



then the values F;l;TT should be adjoined as a new column to

the basis of the master, and a new optimum found by using the simplex method.

The search for such candidates is carried out by attempting to maximize

the form (7) in the constraints (lb), (1c). In the original notation this

leads to the associated subproblem:

(8a) Min E vN - v i c ijtij

(8b) v - vi - t j > Tij

v ij A
(8c) t _> >0,

with dual associated subproblem:

(9a) Max K I T ijxij
ijecA

(9b) • (xji - x ij)) + i N
S0 otherwise

(9c) xj > C0  > 0 V ij A
j ii

Here C is the current unit savings for lengthening ij , taken from (7) as:
ij

W-1j c A - A

( 1 ) 
( i j )

(O ij 0 ij c A 0

In other words, C is the current dual price associated with a divisible activities
ii

cohort, and is nonnegative, by a previous remark.

The reason for optimizing (8a) is that if Min E - E , and one tests:

* o(7') E • a
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then this optimal extremal solution xit, is clearly a candidate for the

master. But if the minimal solution does not satisfy (7'), then no new candidates

exist, and the current master must be optimal. Note that any unbounded optimal

solution to (8) will always satisfy (7').
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3. THE NATURE OF UNBOUNDED SOLUTIONS

The associated subproblem (8), (9) is in cost-time problem form, except

there is no limit on the savings possible for extending activities with large

Cij , i.e., the optimal value of E may be unbounded. In dual terms, the

I' exogenous flow Q 1 1 may be insufficient to "cover" several large lower bounds

Cij on flow in arcs which are in a parallel configuration, i.e., (9) may be

infeasible.

Figure 2 clarifies the nature of unbounded solutions. Suppose the set of

all nodes, N , is partitioned into a subset X containing node 1 , and the

complementary set N - X containing node N ; the set of all arcs with one

extremity in X , the other in N - X , is called a cut. In Figure 2, we have

an or-iented cut X , which all arcs iJ are in (X,N - X) , i.e., they pass

"from left to right." Most of the cuts in actual critical path networks are so

oriented.

Let v',tio be an (8) feasible solution to Figure 2. Then it is clear

that:

ii

v' v0 +8 i N - X
(i1)

tij - toj + 8 J (X,N -X)

t -t0

tj ij otherwise

is also feasible for all 0 <8 < . Thus, an oriented cut represents a

possible unbounded solution to (8). One can easily show that no other possible

infinite rays exists, assuming that the usual ambiguity in the (v i} is resolved

by, say, setting vI . 0 . For example, reversing a single arc in Figure 2

leads immediately to an upper bound on 0



vI V2  V3 V4 V5 t12 t13 t14 t23 t24 t35 t45

x1 2  1- +1 -1

x1 3  -1 +1 -1 1

x14 -1 +1 -1 2

X23 -1 +1 -1 2

x24 -1 +1 -i1

x34 -1 +1 2

x 3 5  -1 +1 -1 6

'45 -1 +i -1 3

Y11 111 T

Y2 [IT2-J

FIGURE 1: CONSTRAINT MATRIX AND REQUIREMENTS VECTOR FOR EXAMPLE
OF SECTION 8
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START e NodNodein in DON
X N, - X DN

ad(X) arcs in group d , d = 1,2, .. , D

FIGURE 2: ORIENTED CUT OBTAINED FOR UNBOUNDED SOLUTIONS TC SUBPROBLEM



Let a d (X) be the number of arcs of divisible class d across oriented cut Y%

Unbounded solutions to (8) can be found by looking for infeasible solutions to

(9b), (9c). For example, we could set the exogenous flow equal to Q , and solve

a minimum flow problem; if Q . Min Q > I , then (9b), (9c) is infeasible.

However, by using the min flow = max cut theorem, it follows that an oriented

cut X represents an unbounded solution to (8) iff:

(12) 1 a (X) Yro >
d d d

An economic interpretation of (12) is that unbounded solutions arise when the

total unit profitability for expanding an oriented cut is greater than the

resulting "cost" of increasing the project duration by one time unit.
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4. THE MASTER PROBLEM

The master problem needs at least D + 1 independent solutions to begin.

For example, if an extremal solution k to (lb), (lc) (or even just a feasible

solution) is known then the associated column in (5) is, transposed:

(13) [Ek;l;T kT k, ... , Tk]

(the first position is for the objective function). An efficient bounded starting

solution is given in Section 5.

However, in many problems, the rays associated with unbounded solutions play

an important role. From the above discussion, the candidate column associated with

an oriented cut X will be, transposed:

(14) [1;O;al(X),a2(X), ... , aD(X)]

Since these oriented cuts and their associated coefficients can be easily

generated by various simple algorithms, it is advantageous to use as many of them

as necessary in the initial basis; indeed, the optimal basis often consists of

D rays and one finite solution. For small problems, one can even enumerate all

oriented cuts and start with the "best" ones (largest sums I ad(X))"

The resulting master program is solved by the simplex method, and then

resolved as new columns are generated by the subproblem until finally a finite

soiution is generated which fails test (7'). It is advantageous to carry along

an adjoined unit matrix, so that the current inverse of the basis can be used to

update entering columns. Columns dropped from the basis tend not to reappear,

but there is no guarantee of this.
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5. AN EFFICIENT BOUNDED STARTING SOLUTION

It is i:iefficient to use the ordinary critical path solution to (1)

(with all Td a 0) as a starting solution, since even if vN - v1  is maintained

at its minimal duration, F , there is almost always enough slack (float)

off the critical path to "tuck in" some divisible time "for free." The following

procedure is suggested as a good solution to use as the k - I column in the master.

(It is assumed that the critical path problem can be solved repeatedly in an

efficient manner, and that a ranked list of currently unallocated Td is kept,

and continuously updated.)

(15) (a) Set all Td f 0 , and solve (1) for its minimal solution

F 0;v0;tij 0 0 , with earliest possible event times. The resulting

tight activities constitute an early tree with a trunk (critical path)

from node 1 to N , and branches to all other nodes. For all nodes

on the trunk, v F. F 1 ) , and for all arcs on the critical

iiipath t ij . 0.

(b) If ij is a cotree arc belonging to a currently unallocated class

A-l(ij) - d , let to <- Min [ - v - Tij - t ; currently unallocated

Td] . (Arcs may be taken in any order.)

(c) Keeping thc to0 of (b) fixed, resolve for the 7.ate tree (latest possible
ij

event times). Repeat (b) for any cotree arcs in a currently unallocated

cohort.
o.

(d) Keeping the current tol fixed, find the earliest VEJ and latest

SvL) event times from two passes of the critical path algorithm. For

each currently unallocated class d , rank the arcs iJ c Ad on the

basis of largest available slack

E L -to -T
i j i iji
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(e) Select the class d with currently" largest unallocated Td and

positive slack in some arc. For the iJ e Ad with largest

let to <= Min [s ; currently unallocated T

(f) Repeat (d) finding the new event times until either:

(i) All {Td} are allocated; the solution is trivial.

or,

(ii) There exist unallocated divisible classes, and all arcs

in these classes have zero slack, i.e., there are multiple

critical paths of tight arcs. Set ti I ti , and the
ij

vi to either of the values obtained during the last pass

(d) - (f) during which no allocations occurred.

There are, of course, many other good heuristic procedures which can be used.

The advantage of the above method is that it requires only two critical path

solutions for (a) and (b), which often takes care of much of the "tuckable"

tij , and then only two solutions plus some ranking per pass (d) - (f). Since (e)

either increases the number of tight arcs, or completes the allocation of some

class, the procedure is finite.

We believe this process gives a reasonably good starting solution. However,

noticc that it need not be Llear the final optimal allocation (which may require

large allocations on one arc), nor is it optimal in the sense of allocating the

maximal possible sum of all t ij , since fractional solutions are not allowed.

Once the partial network of tight arcs obtained in this solution has been

identified, it is trivial to devise algorithms to generate the D oriented cuts

needed for the rest of the initial basis.
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6. SOLVING THE SUBPROBLEM

Some remarks on solving (8), (9) are in order. If a cost-time (CPM)

computer code [3], (7] is available, then (8) could be solved with functional

(8a') Min E = Q(vN - vI) I eA Cijtij ,

and

(15) (crash duration)ij = Tij

(16) (normal duration)ij - lij + Mij ,

where M ij is some large but finite number, say Mij - M for all arcs. To

find infinite rays, it would be best if M were set larger than any number to

which it were compared during the course of calculation; and it was possible to

run the algorithm backwards, i.e., with decreasing Q . An infeasible solution would

be detected at the breakpoint where Q attained unity, and the cut would be the

set of arcs with t j = M .

An alternative method which uses the CPM code in the usual manner is to set:

(17) M j - Tj A - A .= A- (4 j)0

This will give only finite solutions to the master problem. If there are an

infinite number of optimal solutions to Q = I (i.e., there are two breakpoints

Q - a and Q - 8 , with a < I < B), then both extreme solutions should be

furnished to the master for optimal mixing.

Another possibility is to work with the dual (9), using an out-of-kilter

code [3j. Figure 3 shows the complementary slackness diagram which is appropriate

to the dudl flow problem, assuming the code is of minimizing type. All other
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things being equal, it is desirable to have tij as large as possible, so that a

feasible solution x - Cij should be interpreted as being a corner solution

(i.e., the relation (8b) is tight). If the dual is infeasible, the labelling

subroutine of the out-of-kilter method will stop with some nodes labelled, and

the remainder not, these labels then define the desired oriented cut X .

Alternatively, one can place two arcs in parallel, with zero lower flow

bounds, and use parameters:

Unit Cost Upper Flow Bound

Arc (ij)' - TAI-lCi

(18) A (ij)

Arc (ij)" - Tij

giving the composite complementary slackness diagram shown by the "staircase"

dotted lines in Figure 3. This procedure gives only finite solutions to the

master. Again, if solutions on the "riser" of Figure 3 are obtained, both

endpoints should be given to the master.

Most computer codes require integer Cij , whereas ours may be fractional.

However, there always exists some large integer J such that C' JC is
ii ii

integer for all ij . Hence, an equivalent problem can be run with integer Ciji

and flow and breakpoint Q - J . The resulting flnurs and functionals will all

be too large by the same factor; however, the new plan or cut will still be the same.

Section 9 discusses a choice of J which need not be changed at every pass of

the subproblen.
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v -v

Cii

II
I

- T Ij

TA-1 (ij) I -

Infeasible Solutions l' 4-le

Feasible Solutions Only

FIGURE 3: COMPLEN1ENTARY SLACKYNESS DIAGRAM FOR SOLVING SUBPROBLEM

WITH MINIMAL COST OUT-OF-KILTER ALGORITIDI
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7. THE DIVISIBLE ACTIVITIES ALGORITH.M

Figure 4 summarizes, in flow chart form, the final decomposition algorithm

proposed for solving the divisible activities problem. Here t is the index

of iterations, t = 0,1,2, ... Notice that the problem is always feasible

(assuming the ordinary critical path problem is) and bounded.
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START

Find initial finite solution and D infinite
rays; and set up master problem.

tt

Solve for critical basis, multipliers {x°1,., 0}
0 0,O

and dual prices (a ;Trd• I t -0.

Let C -iA V iJ c A- A . Solve associated
' Al(ij) o

subproblem (8), (9) for new finite plan (Et ;v;tij}

or unbounded oriented cut X
Solution Finite I Solution Unbounded

DONE IsEt < t
0ptimal Ns Ie s
olution N e

Add column to E Add column to r1
master in master in
updated form Tt updatedIfor

Solve for new optimal basis, multipliers
t+l t+l

{(k ;t+3 ; , and dual prices

{t+l t+l,
;(a d , t <= t + I

FIGLRE 4: FLOW DIAGRAM uiF DIVISIBLE ACTIVITIES ALGORITHM
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8. E.AIPLES OF DIVISIBLE ACTIVITY ALLOCATION

Figure 5 shows the network corresponding to the matrix of Figure 1.

The numbers on the nodes are the node indices; the numbers on the arcs represent

the {T ij . Figure 6 shows the early tree solution when T1 W T2 - 0 and

corresponding event times on the noaes, the late solution also has F - 8

but vL 4 5

Henceforth, the node numbers will represent the (vii , and the arc numbers

will be the (t ij . Tight arcs will be solid and slack arcs dotted. Figure 7

shows the initial b unded solution obtained when

1

TT > TI =
1- 12-2

and the algorithm in (15) is used. All arcs are tight.

1. For the first example, suppose TI = 4 and T 3 3 and choose as cuts

X {1} ; 2 = {1,2,3,41

The initial form of the master tableau is:

x1 e 82
1 1 62

8 1 1 0 0 0 0

1 1 0 0 1 1 0 0

7I 3 3 0 4 0 1 0

72 2 0 2 3 0 0 1

where the top row is the functional F , and a unit matrix has been adjoined to

provide the basis inverse.

The usual reduction methods give the reduced tableau:
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4A -{(3,4)

AI = ((1,2),(1,3),(1,4)}
START 

53 DONE A2 = [(2,3),(2,4),(3,5)9(4,5)}

6 .Node numbers - indices
Arc numbers - T

FIGURE 5: ORIGINAL NETWORK EXAMPLE

- -- a-Node numtbers -v

Tight arcs - solid

-2

FIGURE 6: EARLY TREE CRITICAL PATH SOLUTION

1 1 T 1 > T 3

2 
2

Arc numbers 
- tj

FIGURE 7: INITIAL BOUNDED SOLUTION (X FOR FIRST EXAMPLE,

WITH UNALLOCATED TI , T2
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1 01 e2 _ _ _ _

0 0 0 1& 1 1
6 6 3 -2

1 0 0 1 1 0 0

0 1 0 1/3 -1 113 0

0 0 1 1/2 -1 0 1/2

from which we conclude X A 1  , I -k 1/3 , 82 = 1/2 ; a 6, fI 1/3 , i 2 = 1/2

and F = 8 5/6 . The resulting allocation after the first iteration is shown

in Figure 8.

Next a flow subproblem with Cij = 1/3 (iJ E A ) and C = 1/2 (ij t A2 )

is attempted, and an infeasible solution obtained. A flow Q - 1 2/3 will

"covrr" all the arcs, but attempts to reduce Q to 1 lead to a max cut

X = [1,2} . Consequently, a column 03 is added to the master with values

[1,0,2,2] transpose , after updating in the usual way. 81 drops from the basis

and the new optimal solution is X1 = 1, 82 = 0+ , 83 = 1/2 ; o = 7 ,.7 1 - 0,

iT2 = 1/2 and F = 8 1/2 . The second allocation is shown in Figure 9.

When the flow subproblem is solved, a finite flow solution is obtained, with

x 1 2  X 23 = I , x 3 4 = x 3 5 = x 4 5 = 1/2 and K = 7 1/2 . The corresponding primal

would be t 1 2 = 0 , t 1 3 = 1 , t 1 4 = 2 ; t 2 3 = 0 , t 2 4 = 1 , t 3 5 = 8 , t 4 5 = 1 + 8

(0 < R < -) , but we know alre•Ay from dualty that E =7 1/2 (V e) , teat (7')

fails, and this is not a candidate solution. Hence, Figure 9 is the optimal

allocation to the first example.

II. As a second example, take T, = 5 and T2 = 3 . The same sequence of

tableaux is obtained except that 03 displaces 82 , and A1 - 1 , 81 . 1/3

83 = 1/2 ; a = 6 2/3, 7I = 1/2 , r2 - 6 (Figure 10). The optimal flow dual

subproblem has x 3 5 = x4 5 = 1/2 and K - 6 1/3 . Since test (7') is satisfied,
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0 1/3 cuts currently

0 in use

FIGURE 8: INITIAL MASTER SOLUTION FOR FIRST EXAIPLE, WITH ALL

DIVISIBLE TIME ALLOCATED

I2 1

FIGURE 9: SECOND (AND OPTIMAL) SOLUTION TO FIRST

EXAMPLE

I 11

FIGURE 10: SECOND ýLASTER SOLUTION TO SECON'D EX\IPLE
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we must find the new finite primal subproblem (A2 ) , which is shown in Figure 11.

Note that fractional extremal solutions to subproblems can arise (with fractional

Ci) , and that (3,4) is slack for the first time. A new column

[8 1 / 2 ; 1 ; 5 ,3 1 transpse, is added to the master after updating, and X2 drives out

(say) A1 , leaving 61 . 83 at zero level in the basis. a - 6 1/3 , and

7I = 1/3 n 2 = 1/6 as before, and this time the test fails as an equality. In

other words, the bounded extremal solution A2 - 1 is by itself the optimal

solution (another example of this occurs in the example given in [4], where

D - 1) . The additional unit of TI is handled without increasing the project

duration.

III. As the third example, let T1 = 4 and T2 = 2 . By inspection of XI we

see that all T2  is taken care of, and the cheapest way to handle the remaining

unit of T1  is to put as much of it in parallel as possible, i.e., to divide it

into thirds. The optimal solution is shown in Figure 12, where A1 = 1

S1/3 33 =0+/6
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9. SOLUTION MODULARITY

The reason that fractional solutions arise is because, when ad parallel

critical arcs are available for allocation, it is optimal to divide each hour of

unallocated time into the fractions 1/ad , and spread the work uniformly over the

critical paths. Following the arguments advanced in [3], we see that if D - 1 ,

then only solutions in multiples of 1/1,1/2, ... , 1/A1  could be obtained. With

D > 1 , it follows that, if

(19) A* - max Ad
d=l,2,...,D

then multiplication of the original duration data by (Ad)! must lead to a

solution in integers. In the terminology of [6], the problem is A* -modular.

This result is primarily of theoretical interest; however, it does indicate

that J = (A*): is a suitable choice when using an integer code as described in

Section 6.
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10. MOVABLE ACTIVITIES

A different type of problem arises when the constraints (ic) (id) are

replaced by

j tl = Td d - 1,2, ... , D

(20) d

tij -0 or T 1 A IjA(ij)

In this case, we consider that the work of type d is not divisible, but is

only mn:2zbc, i.e., it may be performed only at one of several possible locations

in the project network. This problem is one of bincry progrr-ming, since one can

introduce binary variables, 6 , with

( 2 1 ) t i j - 6 Tij .T A -1( 11)

Similar formaulations arise if we consider that the job content consists of

indivisible mzodules of work, {Tdl'Td 2 ' .... TdMd} , such that

Md

Srdm - Td (d = 1,2, ... , D)

Conceptually, one separates arcs in group d into M d arcs in series, and treats

each module as a separate movable group. A special example of interest is when

these modules zre of the same length, say one unit of time; this would be the

problem of .'aibia aai!;Zties w:th integer sol:.ttcos.

There are also mixed-integer formulations possible, but these will be seen to

be a special case of the following approach. They arc aISO of les-. Drac t i -

interest.
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11. SEPARATION IN A BRANCH-AND-BOUND METHOD

The method proposed to solve the problem of movable activities is a branch-

and-bound procedure, modified to take account of the special structure of the

problem. Readers not familiar with thisapproach are referred to Lawler and

Wood [8], or Bertier and Roy [1].

The first element to be considered is the branching (arbitration), i.e., the

separation of the solution space into subspaces where certain of the binary

variables are fixed once and for all. This separation is conveniently represented

by an arborescence, where each node represents a possible partition of the solution

space, and each arc shows the branching between a given arbitration and the further

possible partitions.

The natural integer programming separation would come about by considering

some (possibly adaptive) ordering (iil 1 )i 2 i 2 )i 3 ' 3 , ... ) of the 6ij , and making

the arbitration on whether 6ij = 0 or 1 . This leads to the arborescence shown

in Figure 13. However, this method tends to postpone the labor involved in making

and evaluating the decision as to where the work Td should be performed, since

the bound used for 6ij = 0 always leads to further exploration of that "branch,"

until some 6 = 1 is selected.

A more compact representation is the task-oriented arbitration shown in

Figure 14, in which a (possibly adaptive) ordering of the movable tasks is made,

and each separation represents a definite allocation of Td to one of Ad

locations.

We call an arbitration of order k a problem in which exactly k cf the

61j have been fixed at 0 or 1 . The result can be considered a new problem

with

fTij + T l iJ arbitrated and 6ij - 1

(22) TA j j

I T~j otherwise;



29

No decisions made

6 11 06 t ij 6,JTA_1 (ij)

Arc (Cijl) decided 1

Arcs 
(0 

lljI)

and (i 2j 2 ) etc.

decided

FIGURE 13: ARC-ORIENTED SEPARATION OF MOVABLE ACTIVITY SOLUTION SPACE

No decisions made
all ilJli2J2, ... , dJAd in Ad

6 ij 1i6 Ad J Ad

Alothers iS

Group d I group zero 2 22

decided

etc.

FIGURE 14: TASK-ORIENTED bEPARATION OF MOVABLE ACTIVITY SOLUTION SPACE



30

the t i are then eliminated from the arbitrated arcs, giving a reduced problem

in A - A0 - k free t j

If we use the task oriented separation of Figure 4, we see that the arbitration

jumps from order 0 to order Ad from the first to the second level, leaving a

new problem with one group of ti• eliminated, and only D - 1 more levels to go.

I
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12. EVALUATION IN A BRANCH-AND-BOUND METHOD

The other element needed in the algorithm is an efficient method of bounding

the optimal value of the functional, F , from below in any partially arbitrated

problem. Thus, for any arbitration a in the arborescence of Figure 14

(a - 0,1, ... , A-Ao) , we know that there will be a best value for F(a) - F (a)

in the reduced problem governed by (22) for the already arbitrated values of aij

What we seek is an evaZuation, E(a) , of this optimum satisfying

(23) E•a) i F (a) < E(a)

one which can be found without calculating all of complete solutions (terminal

nodes) which are descendants of node a (It also turns out to be easy and

worthwhile to find an upper bound, E(a) , at the same time, as indicated.) These

bounds are then used to guide the exploration of the arborescence in an efficient
A-A

manner, thus avoiding an exhaustive check of all possible 2 0 solutions to the

primitive problem (20).

For example, at the parent node a - 0 of Figure 14, we have the original

movable activities problem. Call F# the optimal value of F for the

corresponding divisible activities problem (1), and F0 the critical path solution

of (1) with all t j - 0; it follows that

(24) E(O) F < F (0) < F + I Td a E(O)
d-l

are good evaluators in the sense that there are networks for which one (or both)

of the evaluators will be attained by F

Similarly, define F# (a) and F (a) as the optimal values of the divisible

activities and ordinary critical-path functionals, respectively, of the problem of

arbitration, reduced by applying (22). Then
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(25) E(a)* F#(a) < F (a) < FO(a) + T d =Z-)
unarbitrated

groups d

are also good evaluators, in the same sense. (25) also has the desirable property

that at a terminal node of Figure 14 (all arcs arbitrated), the bounds coincide,

and E F - E

Unfortunately, using the divisible-activities algorithm is very inefficient.

Not only may several simplex iterations be necessary to solve for a single F #(a)

but columns obtained in this solution cannot be used for another evaluation

F# (a') , since they may not be feasible in the new subproblem of different

arbitration.

However, we note that repeated computation of the ordinary critical path

0solution can be easily done for any arbitration, finding not only F , but both

the early {vj and late {vL} event times for all nodes. This observation leads

to a weaker, but much rapid determination of a bound, E(a)
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13. AN EFFICIENT LOWER BOUND

As in the algorithm of Section 5, define the stack of ij for any ordinary

critical path solution to be

(26) E L -Tij j - ij

Now suppose that there was only one group, A. , of arcs left to arbitrate.

Defining

(27) Sd - max (sn)
ijEAd

we see that an exact solution of the one group problem is

(28) E = F0 + max (0,T1  SI) = F*

in other words, the remaining task is allocated to the largest slack location (or

possibly to one of several locations, if S1 > T1 ) .

When there is more than one group to be arbitrated, the best possible

situation is to pick that group first which gives the largest increase in F0

this increase must be absorbed in any case, and it might then be possible to tuck

in the :tmaining tasks in parallel gaps.

In other words, at arbitration a , solve for the two critical path solutions

E (a) , vi(a) and the associated duration F 0(a) = v (a) - vE(a)

VL(a) - vL(a) , using the appropriate T . Then

(29) E(a) - F0(a) + max r0 nemax (Td - Sd(a))

s p eunarbitrated
I groups d

is an appropriate evaluator.
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Note that if Sd(a) > Td for all remaining groups, we cannot necessarily

conclude that the problem is over, since the largest slacks for each group may not

be simultaneously available.
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14. IMPROVING THE UPPER BOUND

The upper evaluator, E(a) , given in (25) can easily be improved by, say,

completing the arbitration a in any arbitrary manner, and taking the resulting

0terminal F

A simpler method, which does not require a third critical path solution, is to

use the Sd found in (27). Suppose we pick the group to allocate next which gives

the smallest increase Td - Sd . Then, in the worst case, all of remaining slacks

might have decreased to value zero, and all remaining unarbitrated jobs would have

to be added in series to the critical path. Since we can pick this first group

judiciously

(30) E(a) = F (a) + • Td - max mrin [Sd(a),Td]

unarbitrated unarbitrated
groups d groups d

One can improve this bound by looking ahead several steps, but it is probably not

worth the extra effort.



36

15. SELECTING THE ARBITRATION

As is usual in branch-and-bound algorithms where the bounding procedure does

not lose efficiency when skipping among the different candidates in the

arborescence, we recommend that the arbitration with smallest E(a) be separated

next during the algorithm.

If, at any stage, we discover E(a 1 ) < E(a 2 ) for two candidate arbitrations,

we can truncate the arborescence at node a 2 , i.e., discontinue further

exploration in descendant nodes. This illustrates possible value of carrying upper

bounds.

Selecting the next movable task to be arbitrated should be done adaptively,

and not in a fixed, predetermined order. Limited computational experience suggests

that the following rule is quite efficient:

Select as the next movable task to be separated from

arbitration a that unarbitrated task d which maximizes
(31)

Td - Sd(a) . If there is a tie (or if all Td - Sd(a) are

zero), select the task d with largest Td *

In other words, it seems efficient to decide early where to put the jobs with the

most excess duration; or, if there is a tie, to decide the job with largest

duration.

Furthermore, we note when the separation occurs, we actually know in advance

what the values of F (a + 1) will be, from the value of Td of the (sij)

belonging to this group. It is then efficient to carry out the evaluation of this

separation in order of decreasing S i (ij c Ad) . Often the upper bound fro:,• one

placement of Td in a large slack location will truncate the further exploration

of the arborescence from another location with small slack, thus saving some

computation. This observation is particularly true towirds the bottom of the

arborescen-e, when the spread between upper and lowe" evaluators is small.
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16. THE MOVABLE ACTIVITIES ALGORITHM

Figure 15 shows the flow chart of the final algorithm. Several explanatory

comments are perhaps in order.

At each stage of the algorithm, a candidate list, X , of arbitrations (nodes)

is kept; these are merely partially arbitrated solutions which have not been

further explored. If one candidate is completely dominated by another, then it is

eliminated from e , and the arborescence is truncated, as described above.

Since the next arbitration in t to be elaborated further is the one of

current smallest E , the procedure may jump between nodes of different order, and

the resulting sequence will not follow the prior numbering of the nodes. This rule

requires more computer storage than other methods, such as "backtracking," but it

does enable one to deduce that an optimal solution has been found, whenever an

arbitration of maximal order is reached (1], (8] (assuming all ties in selecting

E have been resolved).

Various other heuristics, perhaps utilizing the upper evaluator and/or the

level of arbitration, are of course possible.
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a a 0 is the parent node. Let e- (O• , and find ECO) and F"-O)

Select a -min (E(a)) for separation.

Is a of maximal order?

CDN Ye s No

Select next task d which maximizes positive Repeat if ties in

terms Td - Sd(a among current unarbitrated selecting a

tasks in a , and create new nodes
al,a2, ... , aA If tie exists, or no terms

d
positive, pick task with largest Td
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Repeat for I
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inlIf E(a 1) < E(a 2  for sone 1 and a2  in A

2 2)

FIGURE 15: FLOW DIAGRAM OF MOVALLE ACTIVITIES ALGORITILM
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17. EXAMPLE

Consider Figure 16, which shows the Tij for each arc. Suppose there are

four movable groups:

A1  = {(1,2),(1,3),(1,4),(5,8),(6,8),(7,8)1 ; T 5

A2 = [(2,3),(3,4),(5,6),(7,6)1 ; 2 - 6

A3 = {(2,5),(3,6),(4,7)} ; 3 = 4

A4 = {(3,5),(4,6) ; T4 = 8

iTd 7; 23

From the ordinary critical path solution, Figure 17, we find that the slacks are

(same order as above).

Td - Sd

{Sij ij E A1 } = f0,0,2,4,0,1; 1

(sij ij E A2 } = {0,1,2,41 2

(sijj i E A3) -- {2,0,11 2

{Sij ij c A4) = {5,3} 3

Ti,u- fur LIIc parent node, a = 0 , we conclude

26 + 3 =29 < T < 26 + 23 - 5 = 44

Since T - Sd is largest for group ,' , we arbitrate this first, a = 1 selects

(3,5) , a = 2 selects (4,6) . Note that we ha'c imr-ediately the '

estimates EM = 29 , E(2) = 31 . Following cur previous rule, we evalua.te

node 2 fir-t, c• t ining

Ei2) = 31 , E(2) - 21j + I-) - 6 = 33



40

Node numbers are
2 5 indices

6 34 5 Arc numbers are [T I
5ij

FIGURE 16: MOVABLE ACTIVITIES EXAMLE
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from the slacks {0,3,1,9,0,61 , (0,0,7,7} , and {7,5,6} of groups numbers one,

two, and three respectively.

For node 1 , we obtain slacks (0,3,5,2,0,4) , (0,4,0,5} , and (5,3,4} for

the same slacks, giving evaluations

E(1) = 29 + 1 - 30 , E(l) = 29 + 15 - 5 - 39

Since node 1 has the lowest E , we arbitrate that node on group 2 , for

which Td - Sd(1) is largest, equal to 1 . This creates new nodes 3 , 4 , 5

6 corresponding to selecting (2,3) , (3,4) , (5,6) , or (7,6) , respectively.

We can get estimates of E = 35 , 31 , 35 , 30 for each of these nodes from the

last step, and so we carry out the evaluations in the order a = 6 , 4 , 3 , 5 or

a=6 , 4 , 5 , 3 .

For a = 6 , the slacks are (0,3,1,3,0,51 and {6,4,01 for the remaining

groups numbers one and three, so that

E(6) = 30 and E(6) = 30 + 9 - 5 = 34.

From this upper bound, we can immediately truncate nodes 3 and 5 and not

evaluate them.

For a = 4 . the slacks are (0,3,7,4,1,01 and {7,5,0} , giving

E(4) = 31 and E(4) 31 + 9 - 5 - 35 .

The list X of the algorithm now contains nodes 2 , 4 , and 6 of the

arborescence. We arbitrate node 6 as the most promising, choosing group number

one since it has largest Td (no terms T d - Sd positive). The result is the

creation of nodes 7 , 8 , 9 , 10 , 11 , 12 corresponding to choosing arcs

(1,2) , (1,3) , (1,4) , (5,8) , (6,8) , and (7,8) , respectively. The preliminary

estimates of E are 35 , 32 , 34 , 32 , 35 , and 30 , so that the evaluations
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are to be made in the order a = 12 , 8 , 10 ,9 ,7 , 11

For a - 12 , the slacks in the reamining group number three are {6,4,0}

so that there are two locations (2,5) , (3,6) in which the four units of work

could go. Hence,

E(12) - E(12) = 30

And we are done, because of the look-ahead property of our evaluators, and the

fact that no remaining E•a) , a c 4, has value 30

Thus, after six (earliest and latest) critical path solutions, we have the

optimal arbitrations

{(3,5),(7,6),(7,8),(2,5)} or {(3,5),(7,6),(7,8),(3,6))
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18. EXTENSIONS

One obvious remark is that, if a movable activities algorithm is available,

then one can use it (with integer modules) to give a good starting solution to the

completely divisible activities problem. However, as mentioned previously, it

does not seem efficient to use the decomposition algorithm as an evaluator routine

for the movable activities problem.

Another straightforward extension is to a cost-time (CPM) divisible model.

The usual CPM algorithm traces out the project cost versus duration by means of a

parametric change in dual flow. This method is too laborious when divisible

activities are added; however, since decomposition is being used, one could

minimize total project cost, adding a constraint of fixed duration to the master

problem (or vice-versa).

Other desirable extensions would be to include costs in a model with movable

activities. For example, the movable tasks could be of fixed duration, but there

would be cost-time tradeoffs available on ordinary activities; a CPM computation

would be used for the evaluators on total project cost, and certain nodes of the

arborescence would probably be truncated due to infeasibility with respect to

project duration. In another direction, one could assign certain costs to placing

a movable activity between a certain pair of nodes, or between a dummy pair; the

resulting opririai insertion model couid be used to solve cost-time critical path

problems with piecewise-linear, but discontinuous ar. nonconvex costs. The

essential difficulty here is to construct efficient evaluator functions.
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