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ABSTRACT

Certain jobs in large projects do not have a unique
"location" in the critical path network; they may be moved
into certain slack intervals, for example, or may even be
divisible into smaller subtasks, and "tucked in" at several
locations. An example is the painting activity during air-
craft maintenance and overhaul which may logically be
performed at several points during the overhaul cycle.

In a previous paper {4], an analysis was given of a model in
which a single job can be divided up in any manner among an
arbitrary number of locations; the resulting algorithm was
of the optimal network flow type, which can be simply and
efficiently solved using available computer codes. 1In the
first part of the present paper, this model is extended to
multiple jobs of divisible type. The general approach is
via the decomposition method of linear programming; however,
the resulting algorithm is again fairly simple. Optimal
cost-time solutions, possibly infinite, (or optimal network
flow solutions, possibly infeasible) are generated by known
algorithms. The resulting schedules or cutg are then
combined in a simple, special-structure linear program whose
dimensionality is equal to the number of divisible groups.
Bounds on the nonintegrality of the final allocations can
also be determined.

When these special jobs can only be moved about the network
in their entirety, or in certain indivisihle mndules, the
problem takes on the form of an integer program. In the
second part of the paper, a branch-and--bound procedure will
be given for the problem of movable activities, together with
efficient heuristics for arbitrating and bounding these
locations, using only the ordinary critical-path algorithm.

Examples are given for both models.




DIVISIBLE AND MOVABLE ACTIVITIES IN CRITICAL PATH ANALYSIS
by

William S. Jewell

0. INTRODUCTION

Certain jobé in large projects do not have a unique '"location" in the
critical path network; they may be moved into certain slack intervals, for example,
or may even be divisible into smaller subtasks, and "tucked in" at several
locations. An example is the painting activity during aircraft maintenance and
overhaul which may logically be performed at several points during the overhaul
cycle,

In a previous paper [4), an analysis was given of a model in which a single
job can be divided up in any manner among an arbitrary number of locations; the
resulting algorithm was of the optimal network flow type, which can be simply and
efficiently solved using available computer codes. In the first part of the
present paper, this model is extended to multiple jobs of divisible type giving a
decowposition algorithm with special structure in both the master and subprograms.

Another possibility is that such a task cannot be subdivided as finely as
desired, but can only be moved around in certain modules, or in its entirety. In
the second part of this paper, a branch~and-bound algorithm is developed which

uses the ordinary critical path algorithm in an efficient manner.




1. FORMULATION

Assume that a project network of A arcs (activitieg) and N nodes
(events) is given. Arc 1j represents activity beginning at node i and
ending at node j , nodes 1 and N represent Start and Finish of the project,

respectively. Activity durations {T,,} are given for each arc, and the problem

ij
is to select potentials (event epochs) {vi} for each node which minimize the

total project duraivion, F = v, - vy e As usual, we assume all T

N finite,

i}

that no directed cycle exists with positive sum of T , and at least one

ij

directed path exists from node 1 to N .
Additionally, we assume there are D dJdivisible activities which require

duration T (d = 1,2, ..., D) . These durations may be divided up in

d’
arbitrary amounts and carried out at any or all of a certain number of "locations"
in the network, specified in advance for each such activity. For simplicity in
notation, artificial arcs are added, if necessary, so that an arc is either

a location for a single divisible task, or for none. In other words, partition
the class of all arcs, A, into D + 1 exclusive subsets, Ao . Al’ ees AD .
and read “ij ¢ Ad" as "activity ij belongs to divisible class d'; conversely,

'"d € Aﬁl(ij)" reads "d is the (unique) class to which 1j belongs." Let Ad

be the number of arcs in class d , so that Ao + Al + ...+ AD = A .

Finally, define tij as the additional duration expended on divisible work

at location 1j ; the initial primal problem is then:

(1a) Min F = W V1
(1b) VgVt tij > 'rij
v 13 A
(1c) tyy 20
(1d) ) by " Ty de1,2, ..., D.

ijsAd




It is immaterial whether we set T° = 0 , or drop the t from arcs in Ao .
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The constraint matrix for the example of Section 8 is shown in Figure 1. The upper
part of the matrix is the same as that of a cost-time critical path (CPM) problem

{3], [4] where the objective 1is, typically:

] = - - + .
(1a") Min F Q(vN vl) Z Cijtij fixed terms
1j€A
Here Cij is a unit savings gotten by "lengthening”" 1j by an amount tij above
the "crash" duration T,, ; usually there is an upper bound on ¢t to limit paid

ij 1]

lengthening to some ''normal' duration. Q 1s a Lagrange multiplier varied during
the course of the cost-time algorithm, which has a dual interpretation of
exogenous flow.

The constraints (ld), on the other hand, are like the '"bundle constraints"
of multi-commodity flow problems [3], [6], [9], except that here they are adjoined
to the transpose of the usual Kirchoff flow matriz,

The ducl initial problem is:

D
(2a) Max L = Z T, ,x,, + Z T,y
1A M 4 dd

5 {-1 1=1
(2b) (x,, - x,,) =<+1 i=N

3 i 1] 0 otherwise
(2¢) x1j >0

11 € A

(2d) X

>y-
S I N ET))

which is the usual dual longest-mute problem, except for a possible profit for
simutaneously increasing several lower bounds, rather like an optimal capacity

contraction problem,
It is the confluence of these different, but special models that r-kes the
analy<is of (1) interesting from a pedagogical point of view, providing we can

retain the computational simplicity of these special structures.




2. DECOMPQSITION

We rhall solve (1) by using the decomposition method (see [2] or [10,
Chapter 10]), with (ld) as the master problem and (1b), (lc) as the subproblem.
The master will be solved by the simplex method (with some simplifications), and
the sutproblem will be solved by special CPM or optimal flow algorithms. For
convenience, we review the principles of this method in our notation.

The set of all solutions to (1b), (lc) is a convex polytope with both

finite and unbounded regions; in fact, the unbounded region usually turns out

k k
17%4

be the set of all extremal solutions to the finite region (a polyhedron) and

to be important in the application of the algorithm. Let {v } (k= 1,2, ..., K)

{W:;uij} (v = 1,2, ..., L} be the extremal rays bounding the infinite part of the

solution space (a convex polyhedral cone). From a well-known theorem of convex

sets [10}, any feasible set of solutions (v } to (1b), (le) can be represented

1384y

as follows:

k % k 2
(3a) v, =] av. + Z 6w, ; t,, = Z At,, + Z 8. u
S N S TR 2 TR * B e S B S A £
(3b) Zxksl;xk>0(k=1,...,x);e >0 (2 =1,2, ..., L) .
k ~ g - )

Define new constants for each extremal point and ray as follows:

(4) Fk = v: - v? ; Gl = w; - wi 5 T: » Z t?j ; U: - Z uij .
13¢A, 13¢A

We find the new form of the master problem in the mixing variables {Ak,el} :




5

(5a) Min F =) Fkxk + 7 c“el

k 3
(5b) I -1

£
(5¢) § 1, + T ute =T, (d=1,2 D)

d"k d’s d 269 enes

k 3

(5d) A 20 (k=1,2, ..., K) 58,20 (2=1,2, ..., L) .

Thus, the problem is changed to one with D + 1 constraints but many variables.

The new form of the duval master is:

(6a) Max L =0 + Z T4y
d

(6b) o+ T:ﬂd < F¥ (k= 1,2, ..., K)
d

(6c) ) uénd < gt (@ =1,2, ..., L)
d

(6d) o, my unrestricted (d=1.2, ..., D)

¢ and the {nd) will always be nonnegative in any case of interest, since weakening
(5b), (5¢) to inequali*ies will not change any optimal soclution.

As is usual in decomposition, one does not need all extremal solutions and
rays, to start with, but only the D + 1 necessary to form an initial feasible
basis to (5). New candidates will be generated as needed by solving the subproblem
and added during the course of the algorithm. At any stage, if the current optimal

dual variables are {oo,ng} , a finite candidate solution k = * to the subproblem

can be checked by testing dual constraint (6b). Thus, if:

* *
(7 Fo- ] mgr, <o




LR
1.'1‘2, .

the basis of the master, and a new optimum found by using the simplex method.

*
. T

%
then the values {F ;1T D

} should be adjoined as a new column to

The search for such candidates is carried out by attempting to maximize
the form (7) in the constraints (1b), (lc). 1In the original notation this
leads to the associated subproblem:

(8a) Min Esv,_ -v, - ce
N~ V1 1325A 14514

(8b) vj -V - tij > T1j
Vv 1 ¢ A
(8¢c) tij >0,
with dual assveiated subproblem:
(9a) Max K= ] T, X
ijeA 1313
) {-1 1i=1
(9b) (x,, - x,,) = {+1 i=N
3 i 13 0 otherwise
. o
(92) Xgq 2 C1j >0 VieA.
Here C:j is the current unit savings for lengthening 1ij , taken from (7) as:
o
LA 14 eA-A
. A l(ij) o
(10) Cij =
0 ij ¢ Ao .

In other words, c®, 1s the current dual price associated with a divisible activities

13
cohort, and is nonnegative, by a previous remark.

*
The reason for optimizing (8a) is that if Min E = E , and one tests:

(7") E <o

T [T AL - - F—




x %
then this optimal extremal solution {xij’tij} is clearly a candidate for the
master. But if the minimal solution does not satisfy (7'), then no new candidates

exist, and the current master must be optimal. Note that any unbounded optimal

solution to (8) will always satisfy (7').




3. THE NATURE OF UNBOUNDED SOLUTIONS

The associated subproblem (8), (9) is in cost-time problem form, except
there is no limit on the savings possible for extending activities with large
Cij » 1.2., the optimal value of E may be unbounded. In dual terms, the

exogenous flow Q = 1 may be insufficient to "cover" several large lower bounds

C on flow in arcs which are in a parallel configuration, i.e., (9) may be

i3
infeasible.

Figure 2 clarifies the nature of unbounded solutions. Suppose the set of
all nodes, N , is partitioned into a subset X containing node 1 , and the
complementary set N - X containing node N ; the set of all arcs with one
extremity in X , the other in N - X , is called a cut. In Figure 2, we have

an oriented cut X , which all arcs 1j are in (X,N - X) , i.e., they pass

"from left to right." Most of the cuts in actual critical path networks are so

oriented.
Let {vg,t:j} be an (8) feasible solution to Figure 2. Then it is clear
that:
[
vy vy {ieX
v =v2+o0 1eN-X
i i
(11)
1 - o -
‘1j tij + 8 i3 ¢ (X,N - X)
t!, =t therwise
i 14 othe

is also feasible for all 0 < 8 <= . Thus, an oriented cut represents a
possible unbounded solution to (8). One can easily show that no other possible
infinite rays exists, assuming that the usual ambiguity in the (vi} is resolved

by, say, setting vy = 0 . For example, reversing a single arc in Figure 2

leads immediately to an upper bound on 8 .




1 2 3 4 5 12 13 14 23 24 35 45
-1 ] +1 -1
-1 +1 -1
-1 +1 -1
-1 | 41 -1
-1 +1 -1
-1 ] +1
-1 +1 -1
-1 #1 -1
111
1 1 1 1
FIGURE 1: CONSTRAINT MATRIX AND REQUIREMENTS VECTOR FOR EXAMPLE

OF SECTION 8

tv

LTZJ
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ad(X) arcs in group d ,d =1,2, ..., D

FIGURE 2: ORIENTED CUT OBTAINED FOR UNBOUNDED SOLUTIONS TC SUBPROBLEM




Let ad(X) be the number of arcs of divisible class d across oriented cut X .
Unbounded solutions to (8) can be found by looking for infeasible solutions to
(9b), (9c). For example, we could set the exogenous flow equal to Q , and solve
a minimum flow problem; if Q* = Min Q > 1 , then (9b), (9¢c) is infeasible.
However, by using the min flow = max cut theorem, it follows that an oriented

cut X represents an unbounded solution to (8) 1ff:

(12) Z ad(X)rr: >1 .,

d
An economic interpretation of (12) is that unbounded solutions arise when the
total unit profitability for expanding an oriented cut is greater than the

resulting 'cost" of increasing the project duration by one time unit.

11
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4. THE MASTER PROBLEM

The master problem needs at least D + 1 independent solutions to begin.
For example, if an extremal solution k to (1b), (lc) (or even just a feasible
solution) is known then the associated column in (5) is, transposed:

k .k
(13) [r:";l;'rl.rz, ees T:;] )

(the first position is for the objective function). An efficient bounded starting
solution is given in Section 5.

However, in many problems, the rays associated with unbounded soclutions play
an important role. From the above discussion, the candidate column associated with

an oriented cut X will be, transposed:

(14) [l;O;al(X),az(X), ooy aD(X)] .

Since these oriented cuts and their assoclated coefficients can be easily
generated by various simple algorithms, it 1s advantageous to use as many of them
as necessary in the initial basis; indeed, the optimal basis often consists of

D rays and one finite solution. For small problems, one can even enumerate all
oriented cuts and start with the "best" ones (largest sums [ ad(X)).

The resulting master program is solved by the simplex methcd, and then
resolved as new columns are generated by the subproblem until finally a finite
soirution is generated which fails test (7')., It 1s advantageous to carry along
an adjoined unit matrix, so that the current inverse of the basis can be used to
update encering columns. Columns dropped from the basis tend not to reappear,

but there 1s no guarantee of this.
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5. AN EFFICIENT BOUNDED STARTING SOLUTION

It is {a1efficient to use the ordinary critical path solution to (1)

(with all T, = 0) as a starting solution, since even if v - vy is maintained

d N

at its minimal duration, F° , there is almost always enough slack (float)

off the critical path to "tuck in" some divisible time "for free." The following
procedure is suggested as a good solution to use as the k = 1 column in the master.
(It is assumed that the critical path problem can be solved repeatedly in an

efficient manner, and that a ranked list of currently unallocated Td is kept,

and continuously updated.)

(15) (a) Set all Td = 0 , and solve (1) for its minimal solution
{Fo;vg;tzj = 0} , with earliest possible event times. The resulting
tight activities constitute an early tree with a trunk (critical path)

from node 1 to N , and branches to all other nodes. For all nodes

on the trunk, vi = vg . (Fl = Fo) , and for all arcs on the critical
path tij =0 .
(b) If 1ij 1is a cotree arc belonging to a currently unallocated class
-1 o o o o
= <= - - - .
A “(13) d , let tij Min EH vy Tij tij ; currently unallocated

Td] . (Arcs may be taken in any order.)

Keeping thec tzj of (b) fixed, resolve for the late tree (latest possible

event times). Repeat (b) for any cotree arcs in a currently unallocated

”~
(]
St

cohort.

i}
{vi} event times from two passes of the critical path algorithm. For

(d) FKeeping the current t° fixed, find the earliest {vi} and latest

each currently unallocated class d , rank the arcs 1ij ¢ Ad on the

basis of largest available slack

- vE _ vL -° -7
83 " Vi T Vy T by 7 tyyo
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(e) Select the class d with currentl largest unallocated T, and
positive slack in some arc. For the 1j ¢ Ad with largest 854 »

let <= Min [s,, ; currently unallocated Td].

t;’.j i *
(£) Repeat (d) finding the new event times until either:
(1) A1l {Td} are allocated; the solution is trivial.
or,

(1i) There exist unallocated divisible classes, and all arcs

in these classes have zero slack, i.e., there are multiple

critical paths of tight arcs. Set tij = t:j » and the
v1 to either of the values obtained during the last pass

i

(d) - (f) during which no allocations occurred.

There are, of course, many other good heuristic procedures which can be used.
The advantage of the above method is that it requires only two critical path
solutions for (a) and (b), which often takes care of much of the '"tuckable'
tlj » &and then only two solutions plus some ranking per pass (d) - (f£). Since (e)
either increases the number of tight arcs, or completes the allocation of some
class, the procedure is finite.

We believe this process gives a reasonably good starting solution. However,
notice that it need not be near the final optimal allocation (which may require
large allocations on one arc), nor is it optimal in the sense of allocating the
maximal possible sum of all tij , since fractional solutions are not allowed.

Once the partial network of tight arcs obtained in this solution has been

identified, it is trivial to devige algorithms to generate the D oriented cuts

needed for the rest of the initial basis.
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6. SOLVING THE SUBPROBLEM

Some remarks on solving (8), (9) are in order. If a cost-time (CPM)

computer code [3], [7] is available, then (8) could be solved with functional

(8a') Min E = Q(vy - v;) - 1§eA Ciyteg » ;
and

(15) (crash duration)ij = '1‘ij ,

(16) (normal duration)ij = Tij + Mij .

where Mij is some large but finite number, say Mij =M for all arcs. To

find infinite rays, it would be best if M were set larger than any number to

which it were compared during the course of calculation; and it was possible to

run the algorithm backwards, i.e., with decreasing Q . An infeasible solution would
be detected at the breakpoint where Q attained unity, and the cut would be the

set of arcs with t =M.

1]

An alternative method which uses the CPM code in the usual manner is to set:

(17) M,, =T

Vg A-A .
Howten 7%

This will give only finite solutions to the master problem. If there are an
infinite number of optimal solutions to Q = 1 (i.e., there are two breakpoints
Q=a and Q=8 , with a < 1 < 8), then both extreme solutions should be
furnished to the master for optimal mixing.

Another possibility is to work with the dual (9), using an out-of-kilter
cude [3). Figure 3 shows the complementary slackness diagram which is appropriate

to the dual flow problem, assuming the code is of minimizing type. All other
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things being equal, it is desirable to have tij as large as possible, so that a

feasible solution xi.1 = Cij should be interpreted as being a cormer solution
(i.e., the relation (8b) is tight). If the dual is infeasible, the labelling
subroutine of the out-of-kilter method will stop with some nodes labelled, and
the remainder not; these labels then define the desired oriented cut X .

Alternatively, one can place two arcs in parallel, with zero lower flow

bounds, and use parameters:

Unit Cost Upper Flow Bound
Are (i)' | - T _ c
(18) At 1
Arc (ij)" - Tij o

giving the composite complementary slackness diagram shown by the "staircase"
dotted lines in Figure 3. This procedure gives only finite solutions to the
master. Again, if solutions on the "riser'" of Figure 3 are obtained, both

endpoints should be given to the master.

Most computer codes require integer C » whereas ours may be fractional.

ij

However, there always exists some large integer J such that Cij = JCij is
integer for all ij . Hence, an equivalent problem can be run with integer Cij ,
and flow and breakpoint Q = J . The resulting flows and functionals will 21l

be too large by the same factor; however, the new plan or cut will still be the same.
Section 9 discusses a choice of J which need not be changed at every pass of

the subproblen.




*Vj -Vi
Cyy
5 } > ¥4
|
|
|
|
|
|
-T j S B,
Atap I
|
|

Infeasible Solutions l'c..sihle

——————

= =+ = = Feasible Solutions Only

FIGURE 3: COMPLEMENTARY SLACKNESS DIAGRAM FOR SOLVING SUBPROBLEM
WITH MINIMAL COST OUT-OF-KILTER ALGORITHM

17



18

7. THE DIVISIBLE ACTIVITIES ALGORITHM

Figure 4 summarizes, in flow chart form, the final decomposition algorithm

proposed for solving the divisible activities problem. Here t 1is the index

of iterations, t = 0,1,2, ... ©Notice that the problem is always feasible

(assuming the ordinary critical path problem is) and bounded.




Find initial finite solution and D infinite
rays; and set up master problem.

Solve for critical basis, multipliers {x;;e;,...,eg} .

and dual prices {oo;ﬂ:} , t =0 .

Let C: = nt_l v ij e A - A ., Solve associated
I atan °
subproblem (8), (9) for new finite plan {Et;vz;tij}

or unbounded oriented cut X .

Solution Finite | Solution Unbounded
Is Et < ot ?
No ] Yes 1
[
Add column to igf_ Add column to __}__
master in _1 master in _0
updated form t updated form Ja Xy
Td d

Solve for new optimal basis, multipliers

(At+l-et+1} , and dual prices

k 't

(ot+1;n§+1} , t <= t+1.,

FIGURE 4: FLOW DIAGRAM ur DIVISIBLE ACTIVITIES ALGORITHM
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8. EXAMPLES OF DIVISIBLE ACTIVITY ALLOCATION

Figure 5 shows the network corresponding tc the matrix of Figure 1.
The numbers on the nodes are the node indices; the numbers on the arcs represent

the {T,.,} . Figure 6 shows the early tree solution when T, = T, = 0 and

ij 17 %2

corresponding event times on the noaes, the late solution also has F = 8 |

but vL =5,

4
Henceforth, the node numbers will represent the {vi} , and the arc numbers
will be the {tij} . Tight arcs will be solid and slack arcs dotted. Figure 7

shows the initial b.unded solution obtained when

and the algorithm in (15) is used. All arcs are tight.

I. For the first example, suppose T1 4 and T3 = 3 , and choose as cuts

xt <1y X2

{1,2,3,4}

The initial form of the master tableau is:

ST T

8| 1| 1|oflo 00
o | 1l o] ofl1]100
ol 3| 3] o400
| 2| o] 2[3]0 01

where the top row is the functional F , and a unit matrix has been adjoined to
provide the basis inverse.

The usual reduction methods give the reduced tableau:




START ()

FIGURE 7:

A, ={(3,4)}
Al = {(1,2),(1,3),(1,4)}

(5) DONE A2 = {(2,3),(2,4),(3,5), (4,5))
Node numbers - indices

Arc numbers - T

1)

FIGURE 5: ORIGINAL NETWORK EXAMPLE

Node numbers - vi

Tight arcs - solid

FIGURE 6: EARLY TREE CRITICAL PATH SOLUTION

INITIAL BOUNDED SOLUTION

WITH UNALLOCATED Tl > T2

T, > T

1 =3

T2 > T

Arc numbers - t

ij

= 2

N

(Al) FOR FIRST EXAMPLE,

21
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M8 8,

5 11
o 0 0]-82]|-6 5 -
1 0 ofl 1] 1 0o o

6 1 0} 1/3) -1 1/3

o

0 0o 1(1/2}|-1 0 1/2

from which we conclude Al =1, el =1/3 , 62 2

and F = 8 5/6 . The resulting allocation after the first iteration is shown

=1/2 ; o= 6 , n. =1/3 , 7, =1/2

1

in Figure 8.

Next a flow subproblem with Ci =1/3 (ij ¢ Al) and Ci = 1/2 (ij € AZ)

3 ]
is attempted, and an infeasible solution obtained. A flow Q =1 2/3 will

"covor" all the arcs, but attempts to reduce Q to 1 lead to a max cut

3

X" = {1,2} . Consequently, a column 63 is added to the master with values
[1,0,2,2]transPose , after updating in the usual way. el drops from the basis
and the new optimal solution is kl =1, 02 = 0+ R 63 =1/2 ; 0 =17, = o,

T, = 1/2 and F = 8 1/2 . The second allocation is shown in Figure 9.

When the flow subproblem is solved, a finite flow solution is obtained, with

X1p T Xp3 = 1, X3, = X35 = X4 = 1/2 and K =7 1/2 . The corresponding primal
would be t12 =0, c13 =1, t14 =2, t23 =0, t24 =1, t35 =0 , tas =1+ 6
(0 < 8 < ®) | byt we know already from duality that E = 7 1/2 (¥ 2) , test (7')

fails, and this is not a candidate solution. Hence, Figure 9 is the optimal

allocation to the first example.

IT. As a second example, take Tl = 5 and T2 = 3 . The same sequence of

tableaux is obtained except that 93 displaces 62 , and Al

1 - 1/2 , T, = 6 (Figure 10). The optimal flow dual

-1)81=1/3|
93 =1/2 ; o=62/3 , 7

subproblem has X35 = X4q = 1/2 and K =6 1/3 . Since test (7') is satisfied,




23

P

I
cuts currently

{ in use

{
4+~

| i

(

|

{

FIGURE 8: INITIAL MASTER SOLUTION FOR FIRST EXAMPLE, WITH ALL
DIVISIBLE TIME ALLOCATED

FIGURE 9: SECOND (AND OPTIMAL) SOLUTION TO FIRST
EXAMPLE

FIGURE 10: SECOND MASTER SOLUTION TO SECOND EXAMPLE
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we must find the new finite primal subproblem (Az) , which is shown in Figure 11.
Note that fractional extremal solutions to subproblems can arise (with fractional

cij) , and that (3,4) 1is slack for the first time. A new column

(8 l/2;l;5,3]tran5p°se, is added to the master after updating, and k2 drives out

(say) Al » leaving el = 93 at zero level in the basis. ¢ = 6 1/3 , and

Lo 1/3 , T, = 1/6 as before, and this time the test fails as an equality. In

oth2r words, the bounded extremal solution A, = 1 1is by itself the optimal

2

solution (another example of this occurs in the example given in [4], where

D = 1) . The additional unit of ‘I‘1 is handled without increasing the project

duration.

III. As the third example, let Tl = 4 and T2 = 2 , By inspection of Al

see that all T2 is taken care of, and the cheapest way to handle the remaining

we

unit of Tl is to put as much of it in parallel as possible, i.e., to divide it

into thirds. The optimal solution is shown in Figure 12, where Al =1,
+

81 =1/3 ,6,=0 ; o0=2¢62/3, L3 /3 , n

3 = 1/6 .

2
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FIGURE 11: NEW FINITE EXTREMAL SOLUTION ()\2)
FOR SECOND EXAMPLE (ALSO OPTIMAL)

FIGURE 12: OPTIMAL SOLUTION TO THIRD EXAMPLE
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9. SOLUTION MODULARITY

The reason that fractional solutions arise is because, when ay parallel
critical arcs are available for allocation, it is optimal to divide each hour of
unallocated time into the fractions l/ad , and spread the work uniformly over the
critical paths. Following the arguments advanced in [3], we see that if D =1 ,
then only solutions in multiples of 1/1,1/2, ..., 1/A, could be obtained. With

1
D>1, it follows that, if

(19) A, = max Ad .
d=1,2,...,D
then multiplication of the original duration data by (A,)! must lead to a
solution in integers. In the terminology of [6], the problem is A, -modular.
This result is primarily of theoretical interest; however, it does indicate

that J = (A)! 1s a suitable choice when using an integer code as described in

Section 6.
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10. MOVABLE ACTIVITIES

A different type of problem arises when the constraints (lc) (1d) are

replaced by

t,, =T d=1,2, ..., D

(20)
t,. =0 or T vV i) .

i -1, ..

] At ()
In this case, we consider that the work of type d is not divisible, but is
only movzble, i.e., it may be performed only at one of several possible locations
in the project network. This problem is one of bincry prograrmivg, since one can

introduce binary variables, ¢ , With

1]

21 tij = 61j.TA-1(1j) .

Similar formulations arise if we consider that the job content consists of

indivisible rmodules of work, {le,sz, ey Tde} , such that

M

d
) Tym = T4 d=1,2, ..., D) .
n=1

Conceptually, one separates arcs in group d into Md arcs in series, and treats

each module as a separate movable group. A special example of interest {s when
these modules are of the same length, say one unit of time; this would be the
problem of livisible activities with integer solutions.

There are also mixed-integer formulationms possible, but these will be secn to
be a special case of the following approach. They arc alsu of less practical

[~

interest.
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11. SEPARATION IN A BRANCH-AND-BOUND METHOD

The method proposed to solve the problem of movable activities is a branch-
and-bound procedure, modified to take account of the special structure of the
problem. Readers not familiar with thisapproach are referred to Lawler and
Wood [8], or Bertier and Roy [1].

The first element to be considered is the branching (arbitration), i.e., the
separation of the solution space into subspaces where certain of the binary
variables are fixed once and for all. This separatidn is conveniently represented
by an arborescence, where each node represents a possible partition of the solution
space, and each arc shows the branching between a given arbitration and the further
possible partitions.

The natural integer programming separation would come about by considering
some (possibly adaptive) ordering (iljl,izjz,i3j3, ++e) of the Gij , and making
the arbitration on whether dij =0 or 1. This leads to the arborescence shown
in Figure 13. However, this method tends to postpone the labor involved in making

and evaluating the decision as to where the work T, should be performed, since

d

the bound used for &6, = 0 always leads to further exploration of that "branch,"

ij

until some 6 =1 1is selected.

i3

A more compact representation is the task-oriented arbitration shown in
Figure 14, in which a (possibly adaptive) ordering of the movable tasks is made,

and each separation represents a definite allocation of Td to one of Ad

locations.
We call an arbitration of order k a problem in which exactly k c¢f the
61j have been fixed at 0 or 1 . The result can be considered a new problem

with

T,,+ T _ i] arbitrated and § ,6 =1
ij A l(ij) ij
' =
(22) 'L‘i_1

T otherwise;

1}
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No decisions made
t §,.T
ij 13 A-l(ij)
Arc (iljl)
=]
s =0 i,]
1,3, 272
Arcs (iljl) (3]
5 etc,
and (1232)
decided
FIGURE 13: ARC-ORIENTED SEPARATION OF MOVABLE ACTIVITY SOLUTION SPACE
No decisions made
A jA in Ad

decided

etc.

FIGURE 14: TASK-ORIENTED >EPARATION OF MOVABLE ACTIVITY SOLUTION SPACE
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the tiJ are then eliminated from the arbitrated arcs, giving a reduced problem
in A - Ao -~ k free t1j .
If we use the task oriented separation of Figure 4, we see that the arbitration

jumps from order 0 to order Ad from the first to the second level, leav.ng a

new problem with one group of t eliminated, and only D - 1 more levels to go.

1]
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12. EVALUATION IN A BRANCH-AND-BOUND METHOD

The other element needed in the algorithm is an efficient method of bounding
the optimal value of the fﬁnctional, F , from below in any partially arbitrated
problem, Thus, for any arbitration a 1in the arborescence of Figure 14
(a=0,1, ..., A-Ao) , we know that there will be a best value for F(a) = F*(a)
in the reduced problem governed by (22) for the already arbitrated values of 61j .
What we seek is an evaluation, E(a) , of this optimum satisfying

(23) E(a) :_F*(a) < E(a) ,

one which can be found without calculating all of complete solutions (terminal

nodes) which are descendants of node a . (It also turns out to be easy and

worthwhile to find an upper bound, E(a) , at the same time,as indicated.) These
bounds are then used to gutde the exploration of the arborescence in an efficient
manner, thus avoiding an exhaustive check of all possible ZA.AO solutions to the
primitive problem (20).

For example, at the parent node a = 0 of Figure 14, we have the original
movable activities problem, Call F# the optimal value of F for the
corresponding divisible activities problem (1), and Fo the critical path solution
of (1) with all tij =0 ; it follows that

D
(24) E(0) = g _<_r*(0) _<_F0 + 1T

d=1

4 ~ EO)
are good evaluators in the sense that there are networks for which one (or both)
*
of the evaluators will be attained by F .
Similarly, define F#(a) and Fo(a) as the optimal values of the divisible
activities and ordinary critical-path functionals, respectively, of the problem of

arbitration, reduced by applying (22). Then
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(25) E@) ~Fl(a) < F(a) <)+ [T - £
unarbitrated
groups d

are also good evaluators, in the same sense. (25) also has the desirable property
that at a terminal node of Figure 14 (all arcs arbitrated), the bounds coincide,
and _§=F*=E.

Unfortunately, using the divisible-activities algorithm is very inefficient.
Not only may several simplex iterations be necessary to solve for a single F#(a)
but columns obtained in this solution cannot be used for another evaluation
F#(a') , since they may not be feasible in the new subproblem of different
arbitration.

However, we note that repeated computation of the ordinary critical path
solution can be easily done for any arbitration, finding not only Fo , but both

the early {VE} and late {vi} event times for all nodes. This observation leads

to a weaker, but much rapid determination of a bound, E(a) .
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13. AN EFFICIENT LOWER BOUND

As in the algorithm of Section 5, define the slack of 13 for any ordinary

critical path solution to be

(26) s - vf - vg -7

14 i

Now suppose that there was only one group, Al , of arcs left to arbitrate.
Defining

(27) S, = max (s,,) ,
d 11eh, 1

we see that an exazt solution of the one group problem is
0 *
(28) E=F + max (O,Tl - Sl) =F ;

in other words, the remaining task is allocated to the largest slack location (or
possibiy to one of several locations, if Sl > Tl) .
When there is more than one group to be arbitrated, the best possible

0

situation is to pick that group first which gives the largest increase in F
this increase must be absorbed in any case, and it might then be possible to tuck
in the --maining tasks in parallel gaps.

In other words, at arbitration a , solve for the two critical path solutions

{v?(a% , {vf(a% and the associated duration Fo(a) = vg(a) - vi(a) =

vL(a) - vL(a) , using the appropriate T . Then
N 1 14
(29) E(a) = Fo(a) + max [O , max (T, - S5 ,(a))
d d
unarbitrated
groups d

is an appropriate evaluator.
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Note that if Sd(a) > T, for all remaining groups, we cannot necessarily

d

conclude that the problem is over, since the largest slacks for each group may not

be simultaneously available.
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14. IMPROVING THE UPPER BOUND

The upper evaluator, E(a) , given in (25) can easily be improved by, say,

completing the arbitration a in any arbitrary manner, and taking the resulting

terminal Fo .

A simpler method, which does not require a third critical path solution, is to

use the Sd found in (27). Suppose we pick the group to allocate next which gives

the smallest increase Td - Sd . Then, in the worst case, all of remaining slacks

might have decreased to value zero, and all remaining unarbitrated jobs would have

to be added in series to the critical path. Since we can pick this first group

Jjudiciously

(30) E(@) = FO(a) + ] T - max win [s,(a),T,] .
unarbitrated unarbitrated
groups d groups d

One can improve this bound by looking ahead several steps, but it is probably not

worth the extra effort,
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15. SELECTING THE ARBITRATION

As is usual in branch-and-bound algorithms where the bounding procedure does
not lose efficiency when skipping among the different candidates in the
arborescence, we recommend that the arbitration with smallest E(a) be separated
next during the algorithm.

1f, at any stage, we discover E?;IT < E(az) for two candidate arbitrations,
we can truncate the arborescence at node az—j—zj;., discontinue further
exploration in descendant nodes. This illustrates possible value of carrying upper
bounds.

Selecting the next movable task to be arbitrated should be done adaptively,
and not in a fixed, predetermined order. Limited computational experience suggests

that the following rule is quite efficient:

<
Select as the next movable task to be separated from

arbitration a that unarbitrated task d which maximizes
(31)
Td - Sd(a) . If there is a tie (or if all Td - Sd(a) are

zero), select the task d with largest Td .

In other words, it seems efficient to decide early where to put the jobs with the
most excess duration; or, if there is a tie, to decide the job with largest
duration.

Furthermore, we note when the separation occurs, we actually know in advance

what the values of Fo(a + 1) will be, from the value of Td of the {sij}

belonging to this group. It is then efficient to carry out the evaluation ot this

separation In order of decreasing S (i) ¢ Ad) . Often the upper bound fronm one

13

placement of T in a large slack location will truncate the further exploration

d
of the arborescence from another location with small slack, thus saving some
computation. This observation is particularly true towards the bottom of the

arborescen:e, when the spread between upper and lowe- evaluators is small.




37

16. THE MOVABLE ACTIVITIES ALGORITHM

Figure 15 shows the flow chart of the final algorithm. Several explanatory
comments are perhaps in order.

At each stage of the algorithm, a candidate list, 1’ , of arbitrations (nodes)
is kept; these are merely partially arbitrated solutions which have not been
further explored. If one candidate is completely dominated by another, then it is
eliminated from £ , and the arborescence is truncated, as described above.

Since the next arbitration in ‘{ to be elaborated further is the one of
current smallest E , the procedure may jump between nodes of different order, and
the resulting sequence will not follow the prior numbering of the nodes. This rule
requires more computer storage than other methods, such as "backtracking," but it
does enable one to deduce that an optimal solution has been found, whenever an
arbitration of maximal order is reached [1], [8] (assuming all ties in selecting
E have been resolved).

Various other heuristics, perhaps utilizing the upper evaluator and/or the

level of arbitration, are of course possible.
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)

a =0 {is the parent node. Let .(- {0} , and find E(0) and E(0) .

*
Select a = min (E{(a)) for separation.
ae ’

*
Is a of maximal order?

Yes N;

*
Select next task d which maximizes positive

I

Repeat 1if ties in

*
_ . *
terms Td sd(a ) among current unarbitrated selecting a

*
tasks in a , and create new nodes
81535 +eey 3, . If tie exists, or no terms

*
d
positive, pick task with largest T, . )\ 5
*
f«f—{a}‘k{al,az, ...,aA*}. Y
d

t

For the unevaluated candidate a in X with

Y

largest slack, determine E(a) and E(a) .
epeat for

L]
|
11 candidates
in X . If E(al) < E(az) for some a, and a, inf

1
] r*f-{az}

L .

FIGURE 15: FLOW DIAGRAM OF MOVALLE ACTIVITIES ALGORITHM
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17, EXAMPLE
Consider Figure 16, which shows the Tij for each arc, Suppose there are
four meovable groups:
AL = ((1,2),(1,3),(1,6),(5,8),(6,8),(7,8)) 5 T =5
A, = ((2,3),(3,4),(5,6),(7,6)} i T, =6
A3 = {(2,5),(3,6),(4,7)} H T3 = 4
E Td = 23
From the ordinary critical path solution, Figure 17, we find that the slacks are
{same order as above).
Ta = 54
{sij I ij e Al} = {0,0,2,-’3,0,1} 1
' . - 71
{sij | i € Az} {0,1,2,4) 2
{sij | 15 ¢ Aj) = 12,0,1} 2
T = {
{sij | 13 A} = (5,3]) 3
Thus {ur iLhe parent node, a = § , we conclude
*
26 + 3 =29 <T <26+ 23 -5 =44,
Since T, - S is largest for group ¢ , we arbitrate this first, a = 1 selects

d d

(3,5) , a =2 selects (4,6) . Note that we have immediately the pre l0-size.

estimates E(1) = 29 , E(2) = 31 . Following cur previous rule, we evaluate

node 2 first, cttaining

E(2) = 31 , E(2) = 2v + 15 - 6 = 33
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Node numbers are
indices

Arc numbers are {Tij}

FIGURE 16: MOVABLE ACTIVITIES EXAMPLE

Node numbers are {vi,v?}

(Single number if identical)

Critical path is heavy line

FIGURE 17: ORDINARY CRITICAL PATH SOLUTION

Double-fléche arcs are
movable allocations

FIGURE 18: OPTIMAL SOLUTION
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from the slacks {0,3,1,9,0,6} , {(0,0,7,7} , and {7,5,6} of groups numbers ome,
two, and three respectively.

For node 1 , we obtain slacks {0,3,5,2,0,4} , {0,4,0,5} , and {(5,3,4} for
the same slacks, giving evaluations

E(1) =29+ 1=30, E(1) = 29 + 15 - 5 = 39 .

Since node 1 has the lowest E , we arbitrate that node on group 2 , for
which Td - Sd(l) is largest, equal to 1 . This creates new nodes 3 , 4 , 5,
6 corresponding to se.ecting (2,3) , (3,4) , (5,6) , or (7,6) , respectively,
We can get estimates of E =35, 31 , 35, 30 for each of these nodes from the
last step, and so we carry out the evaluations in the order a =6 , 4 , 3, 5 or
a=6,4,5,3,

For a = 6 , the slacks are {0,3,1,3,0,5} and {6,4,0} for the remaining
groups numbers one and three, so that

——

E(6) = 30 and E(6) =30+ 9 -5 = 34 .

From this upper bound, we can immediately truncate nodes 3 and 5 and not
evaluate them.

For a = 4 , the slacks are {0,3,7,4,1,0} and {7,5,0} , giving

E(4) = 31 and E(4) =31 49 -5 =135 .

The list X of the algorithm now contains nodes 2 , 4 , and 6 of the
arborescence. We arbitrate node 6 as the most promising, choosing group number
one since it has largest Td (no terms Td - Sd positive). The result is the

creation of nodes 7 , 8 , 9, 10 , 11 , 12 corresponding to choosing arcs
(1,2) , (1,3 , (1,4) , (5,8 , (6,8) , and (7,8) , respectively. The preliminary

estimates of E are 35, 32, 34 , 32 , 35, and 30 , so that the evaluations

™

- oo
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are to be made in the order a =12 ,8 , 10,9, 7, 11 .
For a = 12 , the slacks in the reamining group number three are {6,4,0} ,
so that there are two locations (2,5) , (3,6) in which the four units of work

could go. Hence,

E(12) = E(12) = 30 .

And we are done, because of the look-ahead property of our evaluators, and the
fact that no remaining E(a) , a € Jr, has value 30 .
Thus, after six (earliest and latest) critical path solutions, we have the

optimal arbitrations

{(3,5),(7,6),(7,8),(2,5)} or {(3,5),(7,6),(7,8),(3,6)} .

.
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18. EXTENSIONS

One obvious remark is that, if a movable activities algorithm is available,
then one can use it (with integer modules) to give a good starting solution to the
completely divisible activities problem. However, as mentioned previously, it
does not seem efficient to use the decomposition algorithm as an evaluator routine
for the movable activities problem.

Another straightforward extension is to a cost-time (CPM) divisible model.
The usual CPM algorithm traces out the project cost versus duration by means of a
parametric change in dual flow. This method is too laborious when divisible
activities are added; however, since decomposition is being used, one could
minimize total project cost, adding a constraint of fixed duration to the master
problem (or vice-versa).

Other desirable extensions would be to include costs in a model with movable
activities. For example, the movable tasks could be of fixed duration, but there
would be cost-time tradeoffs available on ordinary activities; a CPM computation
would be used for the evaluators on total project cost, and certain nodes of the
arborescence would probably be truncated due to infeasibility with respect to
project duration. In another direction, one could assign certain costs to placing
a movable activity between a certain pair of nodes, or between a dummy pair; the
resulting opciral inserrion model could be used to solve cost-time critical path
problems with piecewise-~linear, but discontinuous ard nonconvex costs. The

essential difficulty here is to construct efficient evaluator functions.
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