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CHAPTER 1. Introduction

In keeping with the effort to upgrade the CSL computer system in software, a need
was recognized in the summer of 1967 for some type of list structure manipulation language
which could be implemented on the CDC 1604 and integrated into the naw CSL computer
operaiing system ILLSYS.

During the summer of 1967, the author was introduced to L6 (Bell Laboratories
Low-Level Linked List Language) which was developed at Bell Labs by K. C. Knowlton. We
reproduce some of the introductory comments by Mr. Knowlton from his articles: describing

the L6 system.l

Bell Telephore Laboratories Low-Level Linked List Language (La,
pronounced “L-six") cortains many of the facilities which underlie such
list processors as IPLZ, LISP3, COHIT4 and SNOBOLS, but it permits the
user to get much closer to machine code in order to write faster~running
programs, to use storage more efficiently and to build a wider variety of

linked data structures....

«.sImporcant features of L6 are+ the availability of several sizes
of storage blocks, a fiexible weans of specifying within them fields con-
taining data or pointers to other biocks, a wide range of logical and
arithmetic operations on field contents, and an instruction format in which
remote data is referenced by concatenating the names of fields containing

the succession of pointers leading to this data....

....L6 data structures are made by fetching from a storage allocator blocks
of many sizes, and linking them by pointers which are planted in fields which
the programmer himself defines....Relative sizes of blocks go as powers of 2;
thus the storage allocator can 2asily split large blocks of I{ree storage

into smaller ones and, conversely, can easily fit pieces back together to

reconstitute large blocks if and when their parts are simultaneously free....

++e.In general, L~ is useful where storage allocation is microscopic
and Jdynamic or vhere the programmer wants the pattern of pointers among data
items to correspond closely to the physical or logical structure of the

objects with which his program deals {electronic circuits, comrunication
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networks, strings of text, parsed sentences and formulas, search trees) as in
simulation, game playing, symbol manipulation, information retrieval and graph
manipulation., It can also serve as the means for implementing quickly, and
in a relatively machine-independent way, higher-level list languages which

contain more powerful oparations for specific problem areas.

The CSLx (x = 6,7) system is the result of implemcnting the basic concepts of the
L6 language on the CDC 1404 computer system under the control of the Illar System (ILLSYS)
developed by the Computer Group at USL. The CSLx language is a superset cf the origirnal
L6 language and includes the following features:

~= two methods of storage allocation
-~ direct coupling to FORTRAN system functions and subroutines

-- contains facility for embedding machine language statements
(ILLAR language)

-- floating point arithmetic

-~ user defined pushdown-popup stacks

-- generalized format I/ statements

-- computed control rransfer statements
-~ pseudo-subscripted field declarations

-- DO operations with arguments

The organization of this manual i{s somewhat like the structure of a tree. The
entire work requires a good foundation of knowledge of the basic precepts of linked-list
storage systems. Chapter 2 gives a brief initial development of strings. storage blocks
and pointers. Chapter 3 discusses the basic syntax of the language and gives the fcrmats

of the statements, operations and programs in the language.

The trunk of the tree is made up of the operations of the CSLx language. These
include storage control (Chapter 4), data manipulation (Chapters 5 - 6).

Extending from the trunk of the tree are the branches which correspond to
operaticns statements of the CSLx language. These inciude conrtrol of program flew
(Chapters 7 - 8) and decision-making statements {Chapter 9). Programmer controlled push-
pop data stacks and basic 1/0 statements complete the manual (Chapters 10 - 11) followed
by some sample programs (Chapter 12).

This manual is a compromise between an outline and a textbook. It is assumed that
programming experience has been acquired ty the reader, not necessarily with list-structures.
We make no attempt to treat list-structurcs themselves beyond a brief look at linked lists
since CSLx is a general blocked-storage system. If the reader needs further information
about the ILLSYS operating system on the CSL 167% computer, he should coasult with members
of the Computer Group.

"~
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CHAPTER 2. List Structures, Blocks, Fields, Bugs and ?2ointers

Section 2.1 Overview of Data Storage Elements

The general method of data storage used in computer memories for mathema*ical programs
is the array structure. JAn array is a block of conriguous memory locations (words) where the
lowest word is labeled with the rame of the array and individual elements of the array are
cbtained by specifying a subscript (index) which when appended to the array name uniquely
designates the desired element. As an example, assume an array ALPHA exists. The tenth

element of ALPHA would be specified bv ALPHA(9) where the array begins at ALPHA(#}.

Relationships between elements in an array are specified by operations on the indices

of the elements. Suppose ALPHA contains x,y pairs of cartesian coordinates of some curve.
An x coordinate lies in element ALPHA(1) and the y coordinate lies in element ALPHA(I+1).
Thus, giver the index I of some » cocrdinate in ALPHA, the index for the associated y
coordinate is I+1. Furthermore, given the index I of the X coordinate of some point on the

curve, the index of the x coordinate of the next point is I+2.

Many cases of data storage arise where the relstionships between cata elements or
blocks of data elements are not conveniently specified in terms of operations on indices ¢

linear arrays. To satisfy this need for a more general data linking, list-structures (strings)
were developed.

The key defining feature of list-structures is an element called the link. Relation-
ships between blocks of data are specified in the manner in which the blocks are linked
together. What is a link? An illustration if we may.

Suppose we have three (3) sets of cartesian coordinates, X)¥0 X5¥,, and X3¥q-

Each coordinate is contained in one computer word and the y coordinste lies in word mti

where the x coordinate lies in word m.

Let us append one more computer word to each coordinate oair to form a block of
three (3) words. This extra word wiil be used to hold a iink for use in "stringing" the

blocks together into a list-structure.

Assume that the coordinate pairs lie in computer word blocks beginning at locations
P!, PZ and P3 (called the base addresses of the blocks). Let us define a pointer as the

contents of a computer word which contains the computer representation of the base address of
some coordinate block.

Now let us place a pointer in the third word of each block as follows:




X% block third word holds P2
x,¥, tlock third word holds P3
b block third woxrd holds Pl

373

We now can state that the third word of the xlyl block contaius a pointer to the XY, block,
etc. We pictorially represent out data in the figure below. By knowing which block we
are looking at in any instant in time, we can search the third word of the block for a pointer

to another tlock. This concept states the link between the two blocks.

Block P3
Y Y3
P, P
Block Pl
Xz
Y2
Py —
Block P2 n-1090

Linked List of Three Blocks
Pigure 2.1

Note that the three coordinate blocks mey lie in non-contiguous sections of the com-
puter memory. This is the inherent power of the list structure when combined with the ability
of using the linksi to specify relationships between data blocks in storage analogously to the
relationships in the actual conceptial data.

The actual representation of a pointer in a computer system with 32,768 words of
mewmory would be a 15-bit binary address of the base address of some block of words. Typically,
the same computer will have a word size of N bits where N > 15. Thus, we are wasting N-15 bits
of the third word of each cocrdinate tlock in the abcve example. We can solve the problea of

wasted space by a concept of subdivision of a word into elements called fields.

Fieids are usually defined in a global manner reiative to biock base addresses. They

are also specified as all bits in a computer word delimited by a left-most bit and a right-most
bit. For instance, suppose we define field POINT as the tnird word o. any block, and

4




consisting of the (n-16)th bit through the (N-l)St bit in the word. Thus, the pointer in
the Pl block would be found in element P1(POINT).

Note that the form of the descriptor of the desired element is analgous to the

array subscript notation. Because pointer search routines actually trace the pointers in
SEYAY SUDSCript pointer y polnters

the description to reach the desired data elewent, trere is no reason why successive pointer

"strings"” cannot be used., By starting at block Pl, the pointer in plock P2 can be addressed

by the descriptor PL(POINT(POINT)). The search starts at block Pl and its field POINT.

Because P1(POINT) is not the end of the "string", the field P1(POINT) is accessed for the
pointer P2 and the search continues at block P2,

At this point the original descriptor has in effect been reduced to P2(POINT) and
since this terminates the “string," the field POINT is accessed for a data element, the
pointer to P3., We are now free to define the reamining (N-15) bits of word 3 as some other
data or pointer field if we desire.

A quick example of a conceptual data structure that is easily stored in a computer

R memory in list-structure form is a family tree. Using a block and field structure:

Parent™ Name

Chiid #1 | Child #2

Child #3 | Child #4

DR-31492

Block with Five (5) Fields
Figure 2.2

we might arrive at the structure in Figure 2.3,

Each pair of parents is indicated by a block in the structure.

The first word of
the block holds the name of the parents.

Each field CHILD #x holcs a pointer to the resulting

block defined for that chi ld.
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We will nct discuss the basic cheory or operations on list-structures any further

at this point, Examples of their usage will be given later with particular emphasis on how

they may be handled using the CSLx language.

We begin at this point to elaborate on the CSlx system, its syntax and usage.

y
J. M_ALLEN

'

Chorles Jim

Roy | Betty

P

Charles Allen

Ray Allen Bill and Betty Dunn

Jim Ailer

Peggy Sue Jehn

Crog

Rolph

Family Tree Structure
Figure 2.3




Section 2.2 Storage Biocks

The basic element of storage in the CSLx system is the block. A block may contain 2N
words in the CSL6 system (N = §-7) and 1-32 words in the CSL7 system. The words in a block are
numbered contiguously from zero (@) to N-1 for a block of N words. For purposes cf discussion,
we will adopt the notation N-block when we discuss a block where N is the number of words in
the block.”

The global storage area (GSA} is defined at program loading time as the "free storage"
area bounded at the low end by the system lecation MEMEND and at the upper end by location
COMNBEG. MEMEND is the first location above the end of the user's program and subroutines.
COMNBEG is the lowest location of COMMON as defined in the user's program and subroutines.

Control of the use of the GSA is performed by two system routines: L6STORAG or
L7STORAG. The GSA is partitioned into blocks and strunmg together in lists called the unused
N-blocks lists (L'BLN). The user must initially instruct the storage allocator (SA) (either
LESTORAG or L7STORAG) as to the maximum size block which will be needed by his program. Storage
is then partitioned into as many maximum size blocks as is possible. Then the remsining stovage

is partitioned into the next smaller size of block. This continues until all of GSA is parti-
tioned into blocks.

All of tie 1-blocks are then strung together in the unused 1-block list (UBLI). All
of the 2-blocks are placed in the UBLZ. This proceszs continues up to the M-blocks where M is
the maximum size block to be needed.

During the execution of the user's program, requests are made to the storage allocator

(SA) for blocks from the GSA. 1f such a block is available, the program receives from the SA a
pointer which enables it to work with the requested blcck. Pointers are 15-bit quantities
and therefore,require that fields where they are held are large enough to hold at least 15-bits

of infermation. Further discussion of pointers must await a description of fields and bugs
which are described later in this chapter.

What happens i{f no block of the requested size is immediately available from the GSA?
For this occurrence, separate actions are taken in the CSL6 and CSL7 systems. We discuss the
CSL6 system operation first.

Suppose the program requested an N-block from storage. Since the UBLN is empty, the
SA searches the higher lml.1 for the next UBI.1 which i{s not empty. If UBLk contains a K-block,
the following occurs,

*
Original notation in Bell Labs uport.l
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Suppose N = 2j and K = 2i. Then the K-block is divided into two L-blocks where
L= 21-1‘\ These L-blocks are placed in UBLL. If N # L, then X i{s set equal to L and the
division process is repeated with one of the blecks from UBLL.

When N = L, a block of the requested sfze is now available and the SA completes its

operation by passing the pointer of the requested bluck to the program. The remaining half of
the divided block is left in L‘BLN.

The possibility exists that no UBLi above Ul!l.N contains a block. In other words,
there are no other unused blacks in the GSA that are larger than the requested size block.
When this condition occurs, the SA performs a ''garbage collection' operaticn. "Garbage col-
lection" consists of recombining smaller blocks into larger blocks until all possible pairs have
been recombined. A complete recom::ination is performed on all blocks smaller than the requested
size starting with l-blocks and working up. If, after "garbage collecting" is complete, there
is still no block of the requested size, then 2 system error message results informing the user
that no more unused blocks of the requested size exist 2nd a return is made to the system
monitor (CSIMCS).

In the CSL7 system, the same procedure of dividing larger blocks into smaller blocks
is used to produce a block of the required size. Suppose the program is requesting an N-block.
The SA finds that it has no N-block but it does have a h-block (K = 4 for purposes of dis-
cussion). The SA will simply divide tha K-block into an N-block and a 4-block. The 4-block will
be added tc UBL, and the pointer for the g-block will be returned to the program.

No recombination is allowed in the CSL7 system. The reason for this will be explained
later. Because of no recosbinarion, the SA must declare no more unused blecks if it cannot find
some uaz.i higher than UBI.'; with at least one i-block available.
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Section 2.3 Fields

The basic elerent of storage for data and pointers is the field. Fields fall into
two (2) catcgories: Fullword Fields (FWF) and Varicble Length Fields (VLF). A fullwozd
field (FWF) is one 1604 word, i.e., 48-bits in length. Veriable length fields (VLF) may be any

1

length from ! to 48 bits long and may reside in any portion of a 1604 word.

VLF are designated internal to storage blocks while FWF are separately defined in the
user program or his subroutines. Literals are FWF and are defined in each user program or
subroutine. Literals may be read from but not written into during program execution. FWF
defined internal to a given program or subrcutine for use as a data storage location are called
internal fields (IF). FWF used in a program or subroutine for data storage but defined ex-
ternally in some other program or subroutine are called external fields (EF). The various

weans by which FWF are designated in a program or subroutine will be detailed in a later section.

Let us turn our attention for the present to a discussion of variable length fields
(VLF). The VLF and the block structure are the basic attributes of CSL6 and CSL7 that give the
languages their power and utility.

Recall that a block is a contiguous set of 1604 words and pointed to by a pointer.
Figure 2.4 shows the schematic of a 4-block. The divisions within the block are called VLF.

They may lie anywhere within the block, they may overlap one snother, snd they may even coincide
in some cases.

Two different arrangements are shown: one for a CSL6 block and one for a CSL7 block.
Two areas in the C. 5 block@and one area in the CSL7 block@are crossed out,
These areas are:

@ Word ¢ Bits @- 8
Word § Bits 24+26
@ Word ¢ Bits @- 5

CS5Lx system information is kept in these areas and therefore, the user is not z2llowed to assign
VLF covering these areas.

A VLF is defined by specifying three (3) parameters:
1. Word bias

2. Left bit boundary

3. Right bit boundary

A listing of the parameters of the VIF in Figure 2.4 will best illustrate their meanings. The
VLF letter name (which may be A-Z, #-9) is shown in the upper right hand corner of each VLF area

P ~
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Word

Word

33 47
B8 C A

E F M D

o '
NC
H
CSL6 Block

g # 69 24 27 33 47
B C A

E F M D

g ' —

NG

H

CSL7 Block s

A 4=jlock in CSL6 and CSL?
Pigure 2.4
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Word Left Right
Field Number Bit Bit

A ] 33 47
B ] 9 23
c ¢ 27 32
D 1 33 47
E 1 9 73
F 1 24 32
G 2 ¢ 47
H 3 ¢ 47
M 1 24 47
N 2 47

Note that VLF G and N coincide and VLF M overlaps F and D.

"The user must remerber the following rule concerning VLF specifications: every VLF
specification applies to every block in use by the user program or subroutine. The word bias
paramcter is relative to the beginning of any block and when taken together with the pointer

to a block, the result is a unique address in the 1604 memory.
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Section 2.4 'Bugs"

An electronic computer is usually designed with one or more full word registers where
data manipulation may occur. In the CSLx systems, 26 registers, referred to as "bugs," have
been set aside for use as data registers or pointer registers. Thesc registers, hereafter

referred simply to as "bugs," are actual 1604 memory locations, not hardware regisiers, but the
use {s the same.

The notation "bug" comes from the original 3ell Laboratory L6 Reportl. Linked-list
structures can be likened to beads on a string. Since "bugs" hold pointers to blocks which may

reside on the string, thc blocks are referenced through the "bug" depending on where the "bug'"
points, or for the analogy, where the '"bug" sits. Moving pointers up and down the list corre-
sponds to the 'bug” crawling up and down the string,

As a general descriptive conventiom, a "bug" is indicated pointing tc a block as shown
in Figure 2.5. "Bug" B holds the pointer to block X.

Any one of the 26 "bugs" may also be used for data manipulation. A "bug" is 48ebits
in iength and therefore, falls into the FWF category. They are referenced in the CSLx program
with a field string field descriptor which will be described in Section 3.2,1,2.

"Bugs" are automatically set up by the CSLx compilers in the user's MAIN program.
Each "bug" is also made as an entry point. Therefore, all subroutines reference "bugs" as
external symbols and allow a single set of system "bugs"” to suffice for all the user's
program and subroutines. Obviously, this means that not more than one MAIN program may b=>
loaded into memory at a given time.

"bug" B
)

Block X% "»uey

A 2-Block Pointed to by a "Bug"
Figure 2.5
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CHAPTER 3. The Basic Syntax and Format of Statements and Programs in the

CSLx System

Section 3.1 Overview

Syntax descriptions of the hasic elements of the CSlx 1a
order of business (Sec. 3.2 - 3.5).

ngusge are our first
The discussion wil] then advance to combinations of
the basic elements into che various statement forms (Sec. 3.6 - 3.7). Finslly, we describe
the form of the programs end subroutines (Sec. 3.8 - 3.9).

13
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Section 3.2 Basic Data Descriptions

Two classes of syntax elements describe data. The deta descriptor is the
notation for describing some field in core storage whether it be a full word field (FWF) or

a variable length field (VLF). Literals describe explicit forms of data such as numbers or
hollerith character strings.

Section 3.2.1 bata Descriptors

There are three (3) types of data descriptors: internal full word fields (1F),
external full word fields (EF) and field strings which reference VLF.

Section 3.2.1.1 1Internal and Externa: Full Word Fieids

Internal full word fields (IF) are used for reference to FWF which are defined
internally to the program or subroutine where the reference is made. Any FWF is labeled
with up to eight (8) BCD characters under the label conventioa of the ILLAR 1anguage;7
The data descriptor has the form:

JRXAX

vhere XXX is the label attached to the FWF. A form of pseudc-subscripting is allowed on
IF's. A pseudo-subscripted IF has the fo. 1

/XXXX+(exp)

where (exp) is an arithmetic expression made up of the operators + and/or =~ and literals

and/or other data descriptors. Section 3.2.1.3 discusses pseudo-subscripting further,

External full word fields (C7) follow the same conventions a. for IF except that
the referenced FWF s defined in a program or subrcutine other than the one in whick the
reference is made. The form of the data descriptor is-

*YYY

Pseudo-subscripting is also allowed in the same manner ac< for IF,

Section 3.2.1.2 Variable Length Fizlds and Field Strings

A variable length field (VIF) is referenced through a field string data descriptor.
A field string describes a string of pvinters which eventually point to the destination field
where the desired data is to be found or stored. Recall that a pointer denotes the &t. word

of some n-block in memory. The nctation for discussion is shown in Figure 3.1. The basic




format for a VLr field string is as follows:

BIT...TR

Each of B, T and R are single characters. B de.ignates one of the 26 "bugs" (A-Z). T and
R designate field names (A-Z, ¢-3).

The "bug" B and eact T designate where pointers are to be found. R is a field
to be referenced, either for fetching or storing of data or a printer. To get to R, a

“"trace" is made in the following manner:

The "bug" contains a pointer to some block. If there are no T in the
iield string, then R lies in the block "pointed to" by the “bug.” 1If
there are one or more T in the field string, then the first T field

—  wewegd eomm) weeid wvnd Wy owd

lies in the block pointed to by the "bug' and contains a new pointer
to a block. Each successive T field lies in the block pointed to pre-

viously and contains a poiirter to a block. The R {ield lies in the

et )

block "pointed to" by the last T field and can be referenced from there,

—

A special case of the VLF field string cccurs when only one alphabetic character appears in
the string. There are, therefore, no T's and no R. Thus, the indicated "bug" is to be

¥ refererced directly for fetching or storing.
.
Let us illustrate using Figure 3,1, There are three (3) VLF singled out and
- numbered as @@and @ VLF @my be referenced in one of the following ways.
} v
. BCM (n
BCBM {2)
) CBM (3)
- BDCBM %)
¢ .
Let's look at field string (1). "Bug" B "points" to block 1 whose C field "roints" to
- block 2 whose M field is the desired field for reference. (2) states that "bug" B
"points" to block 1 whose C field "points" to bicck 4 whose B field "points" to block 3
which contains the ¥ field. The reader should now be able to follow the "trace" to arrive
r o at the desired M field by any of the indiccted paths. For VLF@ only one path can be
taken:

15
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O
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N
i
A
Block 3 e B ® 4o

I Block 4

A Typical Linked-List Structure
Figure 3.1
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While for VLF@ the following paths may be taken:

BCA
CA
EDCA

The reader is encouraged to plot the paths from either of the "bugs" B and C to any of the

VLF's for further practice and understanding of the VLF referencing algerithm.

Section 3.2.1.3 Pseudc-Subscripting of Internal and External FWF

In order to allow completely general compatibility between the CSlx list-structure
system and the more common array-structured systems, FORTRAN and ILLAR, some form of sub-

scripting in linear arrays is necessary.

In the CSLx system, an IF or EF may be treated as a linear array and indexed in a

pseudo-subscriptive manner by use of a data descriptor of the following form:

/field indexl

+ index2 +......+ indexXk
7field + indexl

pa
+ index2 +......+ index\

field is the label assigned to the referenced EF or IF which becomes the zeroth element of
the array field.

The string of indexI elements separated by + or - forms an grithmetic expression
which when evaluated provides the bias used to index the srray field. The elements indexl

may be any form of data descriptor or decimal/octal litersls.

Some examples will further illustrate:

/BUFFER+108B internal field - octal literal index

/BUF+25 interral field - decimgl literal index
/UIST~/INDEXCT internal field - internal field index
/STRING ~BAD internal field - string index (field)
/BUFR+*EXTINDEX internal field - external field index
*BUFA+34 5B external field - octal literal index

*BUFB-~21 external field - dec’mal literal index
*3UFC-/TINDEX external field ~ internal field index
*BUFRA+DART external field -~ string index (field)
*BUFL~BUFEXT external field - external field index

3.2.1.4  Literals

Literal data descriptors explicitly define data during an operazion. There are

17
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four types of literal elements allowed in CSLx programs:

l. octal
2, decimal

3. floating point
4. hollerich

We choose not to discuss each type of data in detail because the literal conventions for
CSLx prograums are identical to the conventions of the ILLAR language system. The ILLAR

system manual way be referred to by the resder to clarify his questions.

The type of literal allowed in a given situstion varies greatly and s best ex-

plained vhen necessary.

1
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Section 3.3 Basic Operation Unit

For compatibility reasons, the same form for the basic operation unit as used in

L6 is maintained in the CSLx systems. The format is as follows:

(a,op,b,c,d)

op is a series of characters denoting some available operation in CSLx and perhaps one of its
modes of operation. As an example, the operation code A0 denotes the Addition operation with
the operands assumed to be Octal integers.

a, b, c sad 4, some of vhich may not be present, dasignate tields where operands msy
be fetched or i1esults stored during the course of the operation. A complete description of
the arrangements for all of the possible operations will be made in the appropriate section
dealing with each operation. We present here for illustration several BOU's simply to show
form as they might appear in a CSLx program:

(AE,1)
(/TIME A, 1/CLOCK)

(*DATE,A , -6, /BUFFER+INDEX)

In the CSLx system. spaces are ignored except internal to BOU's. There they are counted
necessarily because of the possible finclusior in a hollerith literal.

19
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Section 3.4 Test Unit

The test unit (TU) is a specisl operation unit which mekes a test between two items
and produces a "vote" of yes or no for a result, Test units are allowed only as part of a

test statement (Section 3.7).

The format of the TU is:
(a,t,b)

a and b are data descriptors or literals. t is some relationship (e.g., 2, >, #, etc.). The

TU determines if atb is true, yes or no. The yes or no "vote" is used to make a test state-

went decision during the execution of the CSLx program.

Further discussion of the :elational test operators will be made in Chapter 9.

20
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Section 3.5 'goto" Elements

The nost basic for— of control transfer allowed in the CSLx language is the "goto."
A "goto" is simply the label of the statement to which contrel is to be transferred. This
operstion is the equivalent of the GO TO statement in FORTRAN. However, only the label of

the destination ststement is needed.

There are several CSLx systen ''goto' elements which are reserved for special pur-

poses and therefore, the user mav not use them as statement labels:

EXIT
DONE (Section 7.2}
FAIL (Section 7.2)

The DONE and FAIL "goto" elements are connected with subroutine calling operations and sre
explained in the indicated sections. The EXIT "goto” will cavse a transfer of contrel to

the END statement of the program for a subsequent exit to the calling program.

|
| 21
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Section 3.6 Program Statement Elements

In a CSLx progran, there are two classes of statements: declarative and executable.
The declarative statement performs non-executable operations such as starage space definition,
global space linkage, program definitiom, ctc. All other statements are called executable

statements because they compile operations which are executed only at run time.

For purposes of outline, we choose to list the types of statements at this time

but we defer any elaboration until the appropriate section. The declarative statements are:

GLOBAL (Section 4.3.2)
DEFINE (Section 4.3.1)
ENTRY (Section 4.3.1)
DO ENTRY (Section 7.2)
CALL ENTRY (Section 7.3)
EXTERNAL (Section 4.3.1)

Under the heading of executable statements, we have three classes: composite, test,
and primary statements. We will discuss in detail the makeup of the composite statement in
a moment. The test statement discussion is reserved until Section 3.7. For now, we simply
list the members of the primary statement class and give the definition of the class as those
statements whose formats are specifically related to their individual functions:

INPUT (Section 11.2)
OUTPUT (Section 11.2)
ENDIO {Section 11.4)
‘TRANSFER (Section 8.2)
SWITCH (Section 8.2)
POPUP (Section 4.4)
PUSHDOWY (Section 4.4)
CALL (Section 7.3)
DEFSTACK (Section 19.2)
STACK (Section 10.3)
UNSTACK (Section 10.%)

The statement most used in a CSLx program is the camposite statement., The name
of the class is derived from the fact that the statement is mede up of a composite of basic

operation units (BOU), "goto,"” and sometimes ended with a primary statement used as a unit,

The arrangement or presenc2 of any or all of the three types of urits in a composite
statement is governed by the following rules:

1. A composite statement ends after a “goto" or primary statement unit.

22
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2. A composite statement may contain as many BOU elements as desired.

3. Only one "goro" or primary statement unit may appear in a composite stalement.

After the reader has read iater secticns and srudied the sample programs, the form
of permissible composite statements will te more apparent.
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Section 3.7 Test Statements

Test statements are provided for conditional transfer of control in a CSLx program
during the execution run. One or more test units (TU) are executed and their "votes' tallied.

Acticn is then taken based on the '"vote” according to the type of test statement.

There are four (4) basic test statements covering the four (4) possible outcomes of
"voting” tabulatiocns:

IFALL
IFNONE
IFANY
IFNALL

Two shorthand test statements:

IF
NOT

are allowed. IF functions as IFALL and NOT functions as IFNONE with the restriction that

only one (1) test unit be used in either case.

The generai format of the test statement consists of four (3) parts:

1. 1ABEL

2. TYPE

3. TIF computation

4. Result computation

The IABEL is a standz:d statement label. TYPE is one of the six (6) memonics specified

sbove. The IF computation is a string of one or more TU's (except for IF and NOT). The re-
sult computation may be of twn forms,

1. a "goto"

2. a composite statement proceeded by the key word THEN

As we give a brief explanation of the four basic test statements, we will alsec
illustrate to clarify the actual source record form.

IFALL (A,L,3) (B,G,Z) THEN (a,.,B) EXIT
IFALL (K,E,3) (J,N,3) BITE

The IFALL statement transfers to the next consecutive statement if any TU 'votes™

ro.

24
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IFNONE (A,G,1) (A,1,8) BADTAPE

The IFNONE statement transfers control to the next consecutive statement if any TU

"“votes' yes.
IFANY (A,L,2) (B,L,3) THEN (A,E,B)

The IFANY statement transfers control to the next consecutive statewent if all TU's

"'vote" no.
IFNALL (G,G,H) (4,G6,1) THEN (I,E,G) OUT

The IFNALL statement transfers control to the next consecutive statement {f all

TU's "vote" jes.

Note that we have essentially stated the action taken by these test statements in
the reverse manner. This is intended to require the reader to do some thinking about the
operation of test statements. A good fundamental understanding reduces programming errors

and reversed decision-making is among the most comnon ones.

25
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Section 3.8 Source Language Formats in CSLx Programs

There are three types of source language records in a CSLx program:
1. Comment
2. CSLx source
—— 3. ILLAR source

Alil three classes of records are ten (10) words long in BCD format.

Section 3.8.1 Comment Source Records

The comment source record class contains just three records:

1. Comment record
2. CSL6 switch record
3. ILIAR switch record

Comment records contain an asterisk (*) in col. 1 with colums 2-80 available for

user typed material, Comment records are not compiled but are listed on both the CSLx

source listing and when requested, the subsequent ILLAR listing of the compiled program.

The CSLx system nas the facility for programmer selection of either CSLx language

or ILIAR machine language internal to any (SLx program. To accomplish a switch, either of

the switch records:

--ILLAR col. 1-7
--CSL6 col. 1-6

is placed in the program. All following records up %o tne next switch record or tne end of

the program will be treated as of the type of language seiected. Even though the length of

records in either language is the same,note that comment records assume the tab information

of the language selected.

Section 3.8.2 CSLx Source Records

These are four fields in the CSLx Source Record:

1. LABEL col. 1-8

2, CHAIN cvol. 9
STATEMENT col, 10-72

4. USER col. 73-80

26
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Tab information is present in the ILLSYS system to allow tab operations to cclum

.fr 10 and 73. Moving to column 9 requires eight (8) spaces.
t
. The LABEL ficld serves two purposes: 1) to provide a means for statement refer-
' encing during FDIT operations on the CSlx program and 2) to provide symholic references for
' transfers of control inside or out of the CSLx program. The convention for statemerc labels

is that established for the ILLAR assembly language and we repeat the convention briefly
I for completeness,
T Labels must be left-justified in the field and are reatricted to eight (8) BCD
; characters or lest; All of the alphabet and numeric characters may be used in labels subject

to some restrictions described below. In addition, two special characters, the period "."
v and asterisk "*" may be used with the following restrictions: an asterisk may end a label

but should rot appear within it. A pericd may not begin a lakel but may appear within it or
. at the end.

The following restrictions on symbols beginning with numeric characters are
. necessary to avoid conflicts with the convention on literals:
3
!
¢ 1. A single digit nuwber may not be followed immedietely by one of the
¢ letters £, p or h.
i 2. Any combination of numeric characters may not be followed immediately
by one of the letters b, d, or e.
1
i For illustration, we list here some of the acceptable and not-acceptable forms of labels.
Acceptable Not Acceptable
{ & (2)
al *abe
I abcdefgh read*a
231m a+b
) read* 1b

{ a.b .a
e a..c . .twofive

4

The STATEMENT field holds all CSLx statements. Although the field is only 63 char-

v acters long, extra long statements can be placed in the STATEMENT fields of successive source

- records by placing a non-blank character in the CHAIN field of all records in the "chain”
but the first. Note that a chain is broken by the next source record with a blank CHAIN

-~

field or a comment class record. Labels placed on “chained" records (col. 9 non-blank) will

be ignored.
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The USER field is simply an eight (8) character field which is reproduced on the
CSLx source listing only and can be used in any way desired.

Section 3.8.3 ILLAR Source Records

The conventions of the ILLAR system are well wr{tten up in the ILLAR manual. For

further details, the reader should contact the syste~ librarian.

28
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Scction 3.9 Program Descriptions

A program written in the CSLx (x = 6,7) language syster may take one of three
forms:

1. Main program
2. Subprogram

3. Subroutine
Fach program begins with a2 header record and ends with the END record. The END record con-

tains END in columns 10-12 and blanks in the remaining columns. The END card may be labeled

if the user wishes.

Each of the three program classes is identified by a unique header record:
1. Main prcgrams - PROGRAM
2. Subprograms - SUBPROGRAM

3. Subroutine - SUBROUTIIE

The descriptive word begins in colum 10 of the neader record. The descriptive word is

followed by a2 space and then the program name, up to eight (8) BCD characters.

If srguments are present for the program, they are listed by label on the header
record foliowing the name, enclosed in parentheses. and separated by commas. The following
are some examples of header records:

PROGRAM TEST
SUBPROGRAM TESTER(A,TIME)
SUBROUTINE CLOCK(ARG)

To initialize the ILLSYS system to read CSLx formet records, a CSL6 language dir-
ective should be placed just prior to the header record. The language directive is a record

containing --CSL6 in colums 1-6 of the record followed bv blanks in the remaining columns.

A program set is a collection of programs which are placed in consecutive order on
some input medium to be read and compiled in contiguous order. A program set begins with the
first header record read from the medium and ends with a FINIS record. The FINIS record
contains ¢ INIS in colums 10-14 with blanks in the remaining columns. 1In accordance with
ILLSYS conventions, two (2) end-of-file records are written after the FINIS record on the
med ium.

A program set may contain any number and arrangement cf programs frowm the three (3)
classes of CSLx programs with the following single excep:iion:
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; --CSL6
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f' --END
: --CSLb
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-<END
" -~ILLAR
1
i --END
e -~CSL6
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--END
--ILLAR
-<END
--END
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THERE MAY BE ONLY ONE (1) MAIN PROGRAM IN A PROGRAM SET.

Further flexibility in programming is provided by allowing the intermixing of CSlx system

programs and ILLAR system programs in the same program set. The user may also store lis

source records in SQUOZE BCD format which allows a condensing factor of 5 or 6 in the length
of the program set on the input medium.

The following is an illustration of a representative program set.

PROGRAM MAIN

END

SUBPROGRAM ROUTINE1(ARGL,ARG2)

.

END

IDENT ILLARG

END

SUBROUTINE SUB1

.
-

END

FINIS
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CHAPTFR %, Storage Allocation, Field Definicion and Manipulation

Section 4.1 Overview

The first operatiou which must be performed when a CSLx program is executed is to
set up available storage :n a block structure format. The next operation usually performed
is to define the fields which will be used in the blocks. The name of the rest of the game

1s manipulation of data stored in the fields of various blocks.

The first two topics of this chapter will be presented in detail. The third will
be only a beginning since manipulation covers many areas (later chapters). The types of
manipulation which will be discussed in this chapter are data - independent such as pushdcwn-

- popup in stacks, field interchange, etc.

Since we begin in this chapter to show exact formats of statements and operation

- units, we will also begin the practice of giving an example in detail for each new disclosure.
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Section 4.2 Storage Allocation

In Chapter 2, we explained the two rethods of storage allocarion availsble to the

use of the CSLx system.

The method used in CSL6 is the fast storage ~1llocation developed ty k. C. Knowltonf
This method of storage allocation allows for complete recombination of smaller "free" blocks
if possible and therefore, allows greatest flex:ble usage of storage. The penalty paid is
in the power of 2 size of blocks.

In the CSL7 system, the flexibility of variable size is allowed at the expense of

recombination which somewhat reduces flexibility of storage. The main reason for developing

the CSL7 type of storage allocation was due, however, to a need on the part of some users to

cut down on the amount of permanent system information attached to each block.

In the CSL6 system, three types of system tags are attached to each and everv block

obtained from the storage allocator routine (LASTORAG). The first tag is the FREE/INUSE flag
and occupies bit @ of word ¢ in every block:

set to @ if FREE
set to 1 if INUSE

This flag is used by the 3ystem debugging routines (Section 4.5) during dump operations.

The second tag atfached to each block is the size of the block specified as a power

of 2. This tag is placed in bits 24-26 of word @. The system uses this tag to identify

block size and an operation has been provided for the user which enables him to also read
this tag (Section 4.4.1).

The third tag, located in bits 1-8 or word @, is storage allocator information.
This tag is used during recombination.

In developing the CSL7 storage allccatim and block scheme, the third tag is eli~i-
nated and the second tag expanded to hold five (5) bits of information. i.e., the actual
number of words in the block. The FREE/INUSE flag still lies in bit @ of word @ while the

count tag has been moved to bits 1-5 of word @. Thus, only six (6) bits of system information

are used in the CSL7? system as opposed to twelve (12) in the CSLE system.

The CSLx user is protected from violating the system areas of word § as long as he
stays in the CSLx language. As soon as he moves into ILLAR, it becomes his responsibility

to protect against violatijons. During the first year of usage of the CSLx system, this has
not become a problem.
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Section 4.2.1 Storage Allocation Setup Unit

The rirst execution statement in s CSLx MAIN prograr should contain a storage

allocation s¢tup BOU. This requirement applies only to the MAIN program in a program set.

(55,9) The Storage Setup operation unit initializes the storage
allocation routine and causes all available storage to be
dismerbered into blocks, the largest of which is specified
by d, a positive decimal integer.

In the CSL6 system, d is taken to be either a power of
2 with a maximum of 128(27) and minimem of 4. In the CSL7

system, d is any integer from & to 32.

The (5S,d) BOU also causes all field definitions to be
cieared out and all stacks to be clesred. Thus, this opera~

tion ¢ifectively initislizes the user's program and the CSLx

svstem.

—r et gy owmd o ownd oot o

Exa~ple: (55,4)

This BOU 1initializes the storage allocator to partition

all available storage into Ne<bicoks with a maximrum value of
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Section 4.3 Defiaition of Fields

Recall that there arc two (2) classes of fields i1n the CSLx svetem:  full word

frelds (FWF) and variable length fields (VLF). The methods of definition of thise twe (2)

classes of fields are completely different and as such, will be explained in separate sec-

tions.

Section 4.3.1 Definition of Full Word Fields (FWF)

Since a FWF is of fixed length (48 bits), the user rust simply define the label to

be attached and whether the field is internal or external, The siiplest of these is the

external field (EF) and therefore, we will discuss it first.
Briefly stated, the use of an EF data descriptor:
#XXXX

is sufficient to cause the necessary information to be compiled stating that XXXX is a FWF

external to the current program.

Situations sometimes arise where the user desires to explicitly declare some labels
? a2els

for EF. The EXTERNAL declarative statement provides this ability:

EXTERNAL,LABELL, ... .LABELX
The EXTERNAL statement may appear anv place in the CSLx program. TDefining the EF may also
occur in an ILLAR section of code. Since this is a departure from cormpiler control, the
user assumes all risks.
Example: EXTERNAL, CSLMCS, TAPBINOT

The FWF CSLMCS and TAPSINOT are defined as cxternal to the current CSLx program,

pDefining the internai field (IF) is a bit more precise as follows: each IF must be

explicitly defined, The definition process is handled through the DEFINE deciarative statement:

DEFINE, LABLEL, LABEL2,,...,LABELN

An expansien of the capability exists to allow the labels to define arrays by specifying the

size of the array in enclosing parentheses:

DEFINE, ALPHA (20)
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The DEFINE statement wmay appear at any poiut in a CSLx program.
Example: DEFINE, ALPHA, LONG, TWO (208)

FWF labeled ALPHA and LONG will be set aside in the program. A twenty (2¢) word

array .abeied TWO will also be set aside.

The ENTRY deciarative statement is provided to allow a user to flag selected FWF

in one CSLx progra=™ to be referenced as EF in another program:
ENTRY,LABELL, ... ,LABELX

The labels of the EXTRY stzatement may refer to arravs in which case, no size paraweter is

used and the zeroth location of the array is the actual globa: entry point.

Example: ENTRY, ALFHA, LONG, TWO

Assume that this staterment appears in the -ame progra~— ac the preiious example. Thus,
programs outside this CSLx program —ay refer to the FWF ALPHA and LONG and also to the

array TWO.

Section 4.3.2 Definition of Varijable Length Fields (VLF)

The definition of VLF in the CSLx svstem is a dynamic operation which occurs during

execution of the pregrar. A definition may occur at any place and time in any pr ram.
There are three {3) attributes in a field definition:
1. Word posgition in a block. Counting begins at zerc (@).
2. Lleftmost bit position of the word.
3. Rightmost bit position of the word.
Fields may not overiap word boundaries., Fields mav overlap or coincide with other fields.

A field definition must occur prior to the first use of that field in a CSLx pregram. Other-
wise, anmpiler diagnostic will occur.

Bit positions in the word are numbered @ to 47 moving from left to right. Due te
the organization of the 1604 computer, three fields compile operations which are faster than
the general field definitions:

1. bits @ to 47 - full word field
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2, bits 9 to Z3 - upper address of 1604 word

(¥

bite 33 to 47 -~ lower address of 1604 word

It is to the user's advantage if he can use these arrangements vhere possible.

Example I: - Field Word Left Bit Right nit
Word ¢ A l B A ¢ 9 23
1 C B @ 13 47
2 C 1 47
3 E n 2 ¢ 47
E 3 47
Example TI: Word ¢ A B Field Word Left Bit Right Bit
110j142]13)4 51617 A ¢ 9 23
B ¢ 33 47
Cc 1 47
@ 1 5
1 1 11
2 1 12 17
3 i 18 23
4 1 24 29
5 1 30 3s
6 1 36 41
7 1 42 47
Fields are defined by using the following BOU:
(w,bf,l,r) This BOU causes a definition of field f to be made

at this point in the program during execution. f is a

single letter, A-Z or 9-9.

The fie!ds w, 1, and r may be either positive integers

or duta descriptars of fieids where & positive iuteger can

be found. w ‘s the word position of field f in all blocks.
1 is the leftmost bi. position of f and r is the rightmost

bit position of £
Error messages occur for illegal values of w, 1, and r and if f is not a legal

field character namwe. °To 3id in debugging, legal values sre assumed for w, 1 ard 1 where

necessary as follows:

EL)




error assump on

w<4y w=@
w > 127 w=4@
1= 1=9
1> 47 1 =47
r<¢ r=9
r > 47 L = 47
1>r 1=¢, =247

In CSL6, if £ covers bits §-8 and/or 24-26 and w = @, w is set to 1.

In CSL?, if £ covers bits @-5 and w = @, w is se: to 1.

For examples of the field definition BO!N's, we list the BOU's for previous
exarples I and II below:

Example I:
d 1. (@#,pA,9,23)
2. (9,DB,33,47)
3. (1,nC,¥,47)
4. (2,bp,0,47)
5. (3,DE,8,47)

Example II:

1. (®,DA,9,23)
2. (@,DB,33,47)
3. (1.5€,0,47)
4. (1,00,0,5)

5. (1,D1,6,11)

5. (1,b2,12,17)
7. (1,02,18,23)
8. (1,Ds,24,39)
9, (1,B5,30,35)
10.  (1,D6,26,41)
il. (1,D7,42,47)

Provision is mede to allow the field definitions made in one program of a program

set to be used in other programs of the set. The fields are specified in the GLOBAL declara-

tive statement:

GLOBAL .a,b,...,2z
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The a, b,...,2 are single letters, A-Z.

There are 3 cases concerning the occurrence of the GLOBAL statement in a program.

Case 1. Field definition ~ no GLOBAL statement.

The defined field is internal to the associated program and

cannot be referenced from the outside.

Case 2. No field defirition - GLOBAL statement.
The referenced i:eld is defined in rhe associated program
with external labels so that all field processing routines
for that field are located outside the program and linkages
are made by the ILLSYS load=r.

Case 3. Field definition - GLOBAL statement.

The referenced field i» defined in the associated program
and each field processct ioutine for the referenced field
is assigned as an ENTRY point. This allows both internal
and external routines to reference a given set of tield

processor routines,

The importance of these cases is that only one definition point for a given field
may be allowed to be GLOBAL in nature. Otherwise, there will be more than one set of fieid
processing routines for some field and the system will be unable to handle this ambiguous

loading situation.

Incorporatred into the CSIx auxiliary systems are pushdown stacks which retain
entries containing all nec.ssary information for the definition of som field at a later
date with a previous field definition. Fi3eld definitions mgy also be passed to and from

subroutines by this means.

(5,¥D,f) The user Saves (vpushdown) the current dcfinition of field f

(R,FD,g) and Redefines (popup) field g with the last entrv pushed into
the pushdown stack. f and g are {iecld nawes, A-Z. Fntries

are placed in a stack on a last-in-first-out trasas,
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Section 4.4 Block and Field Manjipulation Operations

We begin at this point to discuss manipulation operations in the CSLx system. Our
concern fn this section is with the data-independent operations (we stretch the point a

little when we deal with pointers) which we divide into two (2) classes:

1. Block operations

2. Field operations

’

Section 4.,4.1 Block Manipula ion Operaticns

The first two {2) BOU's we discuss are concerned with rommnication with one or the

other of the CSLx storage sllocator roucines (L6STORAG or L7STORAG).

(a,GT,b) Blocks of storage are obtained from the storage allocator
{(a,CT,b,c) with this operation.

In cthe CSL6 system, b is either s positive integer denot-

ing the number of words in the desired block or a data descrip-

tor of a field where such an integer resides., b should be a
pover of 2 but if it is not, the next higher power of 2 will
be assumed up to a maximum of 128 words.

In the CSL7 system, b is the same as in the CSL6 systen
except that values run from 1 to 3Z and no assumptions are
made, 1In either system, b < ¢ causes an error return to the
system (ILLSYS).

Upon completion of the call to the storage allocator,
the pointer to the requested blnck is plsced in field a. If
c is present, the contents of field a prior to the storage
allocator rall are placed in field c. New blocks, when
obtained from the storage allocator, are completeiy cleared

te zeros.
Example: (A,GT,4)

When complete, 'bug" A will hold the pointer to some
4-block which is initialized tc all zeros.

Example: (A,GT,%,AB)
Assume field B is fifteen (15) bits long and aiso that

"bug"” A holds a pointer to block N. After the operation is
39




complete, "bug" & will point to a new 4-block and field B

of the new block will hold a pointer to block N,

(a,FR,d) Blocks of storage are "freed" or returned to the storage
(a,FR,b) allocator by this BOU when they are no longer in use,

. a is a field vhich points to the block of storage to be
“freed." 1If b is present (not @), then when the block freeing
operation is completed, the contents of field b are placed in

.- field a.
Example: (A,FR,AB)

Assume "bug" A points to block M and field AB holds a

pointer to block N. After completion of this operation,

block M will be placed in some UBL in free storage and “bug"
A will hold a pointer to block N.

e

The facility for duplicating blocks exists in the next BOU.

(a,DP,b) Field b points to a block in storage. A new block of
l storage of the same nuther of words is obtained from the

storage allocator and the contents of the {irst block are

copied into the new block. A pointer to the new block is

placed in field a.
Example: (A,DP,C)

Assume that "bug" C holds a pointer to some N-block M.
After the operation ic complete, a new N-block K will be
present containing the exact same contents as plock M and

"bug”" A will hold a pointer to block K.

In order to maximize the amount of information stored in a block, the user is

allowed to zccess the size rag fo: a slock.

(a,BS,b) This operation allows the user to monitor the sizes of
blocks that he is working with. L is a data descriptor of
a field wvhich holds a po'nter to some block of sturage. The
BOU obtains the size of that biock of sterage and places it

in field a.

Example: (A,BS,C)




Assume '"biag" C holds a pointer to a K-block. After
completion of the operation, '"bug" A will hold the integ-r K,

Section 4.5.2 Field Manipulation Operations

We begin our discussions of field manipulation operations with the pointer
copying BOU.

(a,P,b) This BOU causes the pointer contained in the field
designated by b to be copied into the field designated by a.
All fieids which will contain pointers must be at least
fifteen (15) bits wide.

Example: (A,P,AB)

Assume field AB to hold a pointer to block K. After

completion of the operaticn, bug" A will hold a pointer to
block K. The field AB will be undisturbed.

We inherited the following shorthand notation for the pointer copying BOU from
. 6
the original L~ language.

(a,b) A special 2-element form exists to aid in scanning down
strings. The 2-element form produces the same operation as
if the second data descriptor were a concatenation of a and
b.

Exawple: (A,B)

This BNU produces the same resu’t as the previous

exawple: (A,P,AB).
For copying of all other forms of field contents, the field copy BOU is used.

{a,E,b) b may be eijther a signed decimal integer or a data

descriptor. The contents of field b are copied into the field

designated by a.

Uxauple: (A,F,-23)

After completion of the operation, "bug"™ A will contain

-2313.
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(a,£0,¢) ¢ may be e:ther a signed octal lateial or a data

'-—‘l——*

descriptor. The contents ot field ¢ are copicd nto field a.

Exarple: (B,*0,77)

&-‘

After completion of the operation, "bug" B will contain

r 778.
(a,EH,d) d is a string of up to 8 ECD characters, right >ustified,
r 2eros left with spaces counted, which will be copied intc
} field a.
-
§ Example: (H,EH,HOLLRITH)
H
After complerion of the operation, "bug"” # will contain
-~
r i the BCD string HOLLRITH.
.. (a,EF,e) e may be either a floating point literal conforming to

ILLAR language specifications or a data descriptor. The

contents of field e will be copied into field a.

Example: (¢,FF,22.3E10)

After completion of the operation, "bug"” G will contain

22.3 x 10'°,

The CSLx system provides a BOU for exchanging the contents of two fields.

(a,IC,b) The contents of the field designated b s cere Inter-

Changed with the coatents of the field designated by b.
Fxample: (AC,IC,AR)

Assume field AC = 1010 and field AB = 24 After

10°
completion of the operation, field AC will contain 2’410 and
field AB will cuntain 1010.

Incorporated into the CSLx auxiliary systems is a pushdown stack which will hold
the contents of spec:ified iields in the user's program. An example of such usage would te

saving and restoring the contents of a "bug" during execution of a subroutine.

(S,kC,3) The user may Save (puskdown) the contents of field a or

(R,RC,b) he may Restore (popup) the contents of field L.,

e~
1~
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Exampie: (S,FC,A)
(R,FC,B)

Assume "bug" A holds the nuober 6210. The f. st BOU

"pushes" the 6210 into the stack. The cnntents of "bug" A
wilbiw undisturbed,

¢ The second BOU will "pop'" the 62
store it in "bug' B.

10 out of the stack and

Two statements are provided to aid the CSL6 system programmer in providing wmultiple
pushdown and popup operations on the system field contents stack. The format of the PUSHDOWN
primary statement is:

PUSHDOWN ,ABC,CD,14,77b,~10.0

The elements of the statement are separated by commas "," and may be either data descriptors
or literals (octal, decimal, or floating point, but not hollerith).

The format of the POPI'P primary statement is:
PCPUP,B,EF ,GH,Z
The elements of the statement are also separated by commas”,” but they may be data descrip-
tors only. Note that the order in which field contents are "popped" out of the stack is the

reverse of the order in which they were "pushed" into the stack.

Example: PUSHDOWN ,A,E,C,
POPUP.C,B A

After both statements are executed, "bugs" A, B, and € will contain their original

concents.

The CSLx system also provides the facility for allowing the user to define and
operate his cwn pushdown-popup data stacks. These operations will be discussed in Chapter 10.
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Section 4.5 Special Debugging Aids - STATE and DUMP

Because the storage design of the CSLx system is so different from tne standard
memory array, two BOU elements have been provided which will dump required information about
the status of the user's CSLx program,

(DO,STATE) The (DO,STATE) operation unit causes the following

informatiun to be output cn the line printer.

1. Name of program and record number of "do" operation
unit.
« Time since execution of program began.

All current field definitions.

Contents of field contents pushdown stack.

Contents of subroutine calls pushdown stack.

Count of blocks in free storage by size.

~N v WwN
.

. Contents of all bugs.

(p0,DLMP) The (DO,DUMP) operation unit causzs the following infor-

mation to be ocutput on the line printer:

1, A!l information provided by the (DO,STATE) operation
unit.

2. Memory contents.
a. Pointers of strings of free storage by block size.
b. Contents of all occupied storage blocks in octal.

Neither dump will affect the interval clock.

Both cptions output a message to the console typewriter requesting the user to tvpe
a carriage return (CR) to allcw the computer to continue execution. When control is returned
from either BOU, executioun will begin on the next executable statement or unit followirg the
BOU.
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Chapter 5. Logical Operations on Data

Section 5.1 Overview

Logical data operations fall into three classes:

1. Bit manipulation
2. Shifts

3. Count and position detection

The first class includes the complement operation (Section 5.2), OR (5.3), Exclusive OR
(5.4), AND (5.5) and field substitution (5.6). The second class contains the left (5.7)
and right (5.8) shifts, The third class contains the bit counting (5.9) and the bit-
locating (5.10) operations.




Section 5.2 The Complement Operation

The bit complement BOU fetches the contents of a field or literal, complements by

bit, and stores the result in a second field. Because of the ones-complement integer arith-
metic and the biased exponent floating point arithmetic of the 1604 computer, the complement

operation also may serve as the negation operation.

(a.C,b) b may e either a signed octal integer or a data
descriptor. The contents of field b are compleme:ted

on the way co being placed in firld a.

Example: (ABC,C,53)

Suppose that field C is a 6-bit field. Then the octal
integeyr 538 would be complemented to 24
ABC,

8 and stored in VLF

(a,Ch,b) This form is the same as above except that b may be a

signed decimal integer or a data descriptor.
Example: {/TIME,CD,460)

The decimal integer -’06010 is negated to -f.6010 and

stored in field /TIME

(a,CH,b) b is interpreted to be a string of up to 8 BCD charac-
ters, rizht-justified, zeros left with spaces counted. All

other considerations apply as with the preceding two forms.
Example: (*EXH,CH,J B)

The hollerith literal J 8(5120625) is complemented
to = £(365715,) and stored in field *FYH.

(a,CF,b) This form is the same as the first two except that b

wey be either a floating point literal conforming to the

Fomn o
‘

ILIAR language specificaticns or a Jata descriptor. All
other considerations are the same as with the preceding

three forums.

[ R Y
.

3 Example: (ABY,CF,~-10.23)

10.23 will be stored in field ABF.
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Section 5.

3 Logical OR Operation

following

(a,0,b)

(a’o’b’c)

(a,0H,b)
(a,0H,b,c)

The logical OR data operation operates in a bit-wise manner according to the
truth table:

a b | result
¢ ¢ g

g 1

1 ¢ 1

1 1 1

b may be either a signed octal integer or a data
descriptor. The contents of field b are logically Ored with
the contents of field a. The result is copied into field ¢

if 1t {s present. Otherwise, tha result returns to ficla a.
Example: (ABZ,0,49B)

Agssume field ABE contains 3208. After completion of
the operation, field ABE will contain 3608.

Example: (ABE,0,4¢B,C)

Assume fileld ABE = 3298. After completion of the
operation, "bug C" will contain 36“8. Field ABE will be
unaffected.

In this format, b is interpreted to be a string of up
to 8 BCD characters, right justified, zeros left with spaces
‘ounted. All other considerations are the same as for the

preceding form,
Example: (D,0H, ~ 1 -~ = ~ - - )
Assume 'bug" D holds the octal constant 2020002062&6&6&28.

This is the hollerith literal - - ; - BOOK. After compietion,
"bug" b will contain - - 1 -~ BOOK.
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Section 5.4 Exclusive OR Dats Operation

The Exclusive OR operation handles data in a bit-wise manner according to the

following truth tavle:

(2,X,b)
(s,X,b,c)

(a,XH,b)
(. ,x“,b,c)

a b result
] ¢ @
¢ 1 1
1 @ 1
1 1 [

b may be either a signed cctal integer or a data
descriptor. The contents of field b are exclusively Ored
with the contents of field a. The result is copied into

field ¢ if it 1s present. Otherwise, the result returus
to field a.

Example: (ACE,X, 17¢B)

Assume field ACE to contain 34@8. After the operation
is complete, field ACE will contain 2368.

In this format, b is interpreted to be a string of up
to 8 BCD characters, right justified, zeros left with spaces
counted. All other considerations are the same as for the

preceding form.
Example: (/TEST,XH,FREE)

1f field /TEST contains the “0llerith constant FREE,

then after completion of the operation, field /TFST will
be zerc.

48




oung o e

—

Section 5.5 The Logical AND Data Operation

The logical AND operation handles data in & bit-wise manner according to the
following truth table:

a b result
¢ ¢ @
¢ 1 ¢
1 ¢ ¢
1 1 1
(a,N,b) b may be either 8 signed octal integer or a dats
(a,N,b,c) descriptor. The contents of field b are logically aNded

with the contents of field a. The result is copied into
field ¢ if it is present. Otherwise, the result returns
to field a.

Exsmple: (/RES,N,777B)

Assume field /RES holds 37/4778. After completion,
field /RES will contuin 4774.

(a,NH, L) In this format, b is interpreted to be a8 string of up

(a,Nii,b,c) to 8 BCD characters, right justified, zeros left with spaces
counted. All other considerations are the same as for the
preceding form.

Example: (NAME ,NH, TWQ)

Assume field *NAME hold: 40778. After completion,
field *NAMF will hold 235@’468. (WO = 2326468).
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Section 5.6 Logical Substitution Operation

The Logical substitution operation operates upon data in a bit-wise msrner according
to the following truth table:

a b m I result

x y ¢ %

x y 1 y
(a,U,b,m) This operation unit allows selective substitution
(a,U,b,m,c) (insertion) of any portion of a field with another field.

a is a data description whose contents will be substitu-

ted for. m is either a signed octal integer or data descrip-
tor which provides a mask through which the cabsticution
will be made. Each 1-bit in the mask means that the corres-
rading bit in field a will be substituted for. m Is right
justified with zeros left.

b is =zither a signed octal integer or a data descriptor

which provides the data to be substituted into a. 1f ¢ is
present, the new field contents after substitution will be
placed in field ¢. Otherwise, the result will be returned
to field a.

Example: (A,U,77B,CBA)
Assuae "bug" A holds the liollerith literal FIELD= .
Assume ficld CBA holds the BCD number 6. After completion
of the substituticn operatior., "bug” A will contairn FIELD= 6,
(a,UH,b,m) This form is alsc the same as the first form except
(a,U8,5,2,c) that b is interpreted to be a string of up to 8 BCD characters
right justified, zeros left with spaces counted.
Example: (A,Ul1,77b,6)
This example is the same as the one above except that

the BCD character 6 is explicitly stated as a hollerith
litcral.
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Section 5.7

Logical Left Shift Operation

(a,L,b)

(.)L’b’:)
(.II"b'c’d)

(a,14,b <)
(I,I.H,b,c,.l)

The logical left shift operation allows information fror one field to be shifted
in the left direction invo snother field.

b may be either a positive decimal integer or a data
descriptor. The content of field b is the number of bit
positions which field & is shifted to the left. This
3-element form specifies that zeros are shifted in from
the right. The result is placad back in firld a.

Exemple: (A,L,2)

Assume "bug" A to hold the number 15,4- After coupletion
of the shifs, "bug" A will hold 60“. .f we express the
numbers in octal, 1.78 becomes 7148.

b again specifies where the shift count is found. ¢ may
be a signed octal integer or a datn descriptor. The field
or literal specified by ¢ is positioned prior to the
shifting operation suck that the left edge of c is next to
the right edge of field a. The result aftar shifting is
placed in faield d if it is present. Otherwise the result is

returned to field a.

Example: (A,L,6,ACD)

Assume fie.d A™C to be six (6) hits long, Assume also that
field ADC holds the BCD character + and “bug” A holds the
string ALPHA. After the shift, "bug" A will hold the string
ALPHA+. Field ADC is undisturbed.

¢ is interpreted to be a st-ing of up to 8 BCD charscters,
right-justified, zeros left with spaces counted. All other
considerations are the same as the previous form.
Exampfe: (A,LH,6,+ )

This example produces the same result as the example

above for the second case where "bug" A contains the string
ALPHA,
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Section 5.8
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Logical Right Shift (peration

The logical right shift operation allows informatijon from one field to be shifted
in the right direction into another field.

(a,R,b)

{a,R,b,c)
(a,R,b,c ,(‘)

(a,RYH,b ¢}
(‘)RH ,b,c -d)

b may be either a positive decirm! integer or a data
descriptor. The content of field : is the nuwber of bit
positions which field a is shifted to the rizit. Tnis
3-element form specifies that zercue sre shiftec in from the

left. The result is placed back in ficld a.
Fxample: {A,R,%)

Assume "bug" A hoiés the .mber 162416(26(108). After
the shift is completce, "bug A wiil hold Gﬁla(wﬂa}.

L again specifies where the shift count is found. ¢ may
be a signed octal .nteger or a data descriptor. The field
or literal specified by ¢ is positioned prior te the shifting
operation such tha. the 1ight edge of ¢ is next to the left
zdge of field a. The fiecld ~idch of literals is assumed to
be the same as field a. The result after shifting is placed
in field d if it is present. Otherwise, the resuit is

returned to field a.
Exarple: {AC,R,6,A)

Assume fleld AC is six (£) birs wide. Assume "bug" A
holds the strfng ALPHA+. After the shift, fie'd AC will
contain the character +. ‘'hug" A will ro. be disturbed.

¢ is interpre. 3 to be a string of up te £ BCD cnar-
acters, right-justified, zeros left with spaces counted. All
other considerations are the same as the previous forn.

Exempel : (AC,RH,6,4)

This operation unit produces the came result as the

example above.
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Section 5.9

Bit Counting

(a,08,b)

(a,Z8,b)

-a

The field designated by b has its one bits counted and
the count is placed in the field designated by a. If no bits

of the tyve required arc present, the count is set to zerc ({).
Example: (4,0S,BC)

Assume field BC holds the octal number 1634638. After
completion of the bit count, "bug" A will held 810.

The field designated by b has its zerc bits counted snd
the count is placed in the field designated by a. If no bits
of the type required are present, the count is set to zero(#).
Example: (A,2S,BC)

Assume field BC is eighteen (18) bits wide and contains

the octal number 1034638. After completion of bit counting,
"bug" A will hold the count of 1'10'
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Section 5.1f Bir Position Detection Operatior

The bit-position detection operation units determine the position of the leftmost
or rightmost zero or one bit in the field designated by k., Positions are counted as the 1th
position in the field, not the word in which the ficvld resides. Positions number from 1 up,
left and right. If no bit of the type designated exists in the field, the position informa-
tion is set to zero {@#). When the operation is completed, the position ccunt will be placed
in the field designated by a. 1In the following examples, assume that field BC is twenty-

four (24) bits wide and contains the number 11&613758.

(a,10,b) This operation detects the position of the leitmost one
bit in field b. The position count is placed in field a.

Example: (A,LO,BC)
When complete, '"bug" A will contain 3w.

(a,l2,b) This operation detects the position of the leftmost zero

bit in field b. The position couat is placed in field a.
Example: (A,LZ,8BC)
When complete, "bug' will centain lw.

(a,RO,b) This operation detects the position of the rightmost one

bit in field b. The position count is left in field a.
Example: (~,R0,BC)
When complete, "bug' A will contain 110'

(a,RZ,b) This operation detects the position of the rightmost zero
bit in field b, The position count is left in fieid a.

Example: {A,RZ,BC)

When complete "bug" A will contain ZW'




Chapter 6, Mathematicai Operations

Section 6.1 Overview

The CSlx system provide. the standard set of mathematical operations usually found

in computer languages with the exceptiun of exponentiation. They are:

1. Addition (6.2)
2. Subtraction (6.3)
3. Hultiplication (6.4)
4. Divasion (6.5)

In addition, conversion from fixed-point to floating-point and vice versa is providedn(6'6)

An absolute value function is provided for either type.(6'7)

The tvpe of mathematical operation, fixed or floating-point, is stated by the

postfix on the opcode. Floating-point operations always have the postfir letter F attached.

Becauase the 1604 computer werd is forty-eight (48) bits long, asrithmetic operations
on VLF require that the “ield be expanded to forty-eight (48) bits. This is accomplished by
extending the leftmost bit in the field to the left until forty-eight (48) bits are achieved.

Thus, the leftmost bit in a field holding an arithmetic quantity is treated as the sign bit
of the field.

N~
Note that sign extension dictates that integers in fields live in the runge (-2 1)
N-1
to (2‘ -1) where the width of the field is N bits. This sign extension feature does not apply
anywhere eise in the CSLx system.
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Section 6.2 Addition Overation

(a,A,b)
(a,A,b,c)

(2,A0,b)
(a,A0,b,c)

(a,AF,b)
(a,AF ;b,c)

b may be either a signed decimul integer or a data
descriptor. The contents of rields b aaa a are added as
integers. The result {s copied into fieid c if it is

present. Otherwise, the result is returned to field a.
Example: (/SLOT,A,19)
Assume /SIOT = ZDw. After addition, /SLOT = 3010..

The operations are tle same as the above form except
that b mav be either a signed octal integer or a data
descriptor.

Cxample: (/SLOT,A0 12)

Assume /SLUT = 268. After addition, /SLOT > 36

g
b may be either a floating-point literal conforming to
the ILLAR language specifications or a data descriptor. The
contents of field b are added tc field a in floating-point
format. The result is copied into field ¢ if it is preseut.

Otherwise the result is returned to field a.
Example: (/SLOT ,AF,12.9)

Assuve /SLOT = 20.0. After floating-point addition,
/SLoT = 38.8.

&
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Section 6.3 Subtraction Operation

(a,S,b)
(a,S,b,c)

(a,50,b)
(a,30,b,c)

(a,SF,b)
(a,SF,b,c)

b may be either a signed decimal integer or a dats
descriptor. The contents of field b are subtracted from
field a. The result is copied into field ¢ 1f it is present.

Otherwise, the rcsult is returnred to field a-
Example: (/SLoT,S,19)
Assume /SLOT = Zﬂlﬂ‘ After subtraction, /SLOT = 1010-

The operations are the same as the above form except
that b may be either a2 signed octal integer cor s data
descriptor.

Example: (/SL0T,S0,12)

Assume /SLOT = 2&8. After subtractica, /SIOT = 128.
b may te either a2 floating-point literal conforming
te the ILLAR language specifications or a data descripror.
The contents of field b are subtracted from field a in
floating-point format. The result is copied into field ¢

if it is present. Otherwise the result is returned to

field a.

Example: (/SLOT,SF,19.8)

Assume /SIOT = 2@.9. After flcating-point subtraction,
/SLOT = 19.9.
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Section 6.4 MNultiplication Operation

(a,M,b) b may be zither a signed decimal integer or a data

(a,M,b,c) descriptor. The contents ot fields b and a are multipliad
as integers. The result is copied into field c if it is

| Il‘;; gy

present. Otherwvise, the result is returned to fictd a.
Fxample: (/SLOT, M, 10)

Assume /SLOT = ZOw. After multiplication, /SLOT =

.n-'hq

20016.
- (a,M0,b) The operations are the same as the above form except
g {a,40,b,c) that b may be either a signed octal integer or a data
* descriptor.
I- Example: (/SLOT MO, 12)
T Assume /SLOT = 2&8. A.cer multiplication, /SLOT = 31D8-
(a,}F,b) b may be either a floating-point literal coaforming to
’ k]
r (a,M¥,b,c) the ILLAR language specifications or a data descriptor. The
L contents of field b are multiplied with field a in floating-
point format. The result is copied into field c if it is
'{‘ present. Ctherwise the result is returned tc fi:ld a.
F
Example: (/SLO.,MF,10.0)
i.
i.

Assume /SLOT = 29.0. After floating-point muitiplica-
tion, /SLOT = 20.9.




Section 6.5 Division Operation

In all cases of divide operations, the CSLx system will compile a check foi a divisoi

of zero. When an attempt to divide by zero occurs during the execution of the program, an error

message will appear and control will be transferred to the operating system (ILLSYS).

(a,¥,b)

(a,V,0,c)

(a,v0,b)
(eyvo:bnc)

(4,VF,b)
(a,VF,b.¢)

b may be either a signed decimal integer or a datd
descriptor. The contents of tield aare divided by field b
as integers. The result is copied into field c if it is

present. Otherwise, the result is retutned to field a.
Example: (/sLOT,V,18)
Assume /SLOT = 201¢. After division, /SLOT = 210.

The operations are tne same as the above form except

that b ==y be either a signed octal integer or & data

descriptor.
Example: (/SLOT,V0,.2)

Assume /SLOT = 268. tfter division, /SLOT = 2,

b may be ( “ther a floating-point literal coaforming
to the ILLAR language specifications or a data descriptor.
The contents of field a are d..ided by field b in floating-
point format. The result is copied into field ¢ if it is
present. Otherwise the result is returned to fielu a.

Example: (/SLO0T,vr.10.0)

Assume /SLOT = 29.@. ‘fter floating-pcint division,
/SLOT = 2.9.
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Section 6.6 Data Format Conversion

Su Sumyg

’a,Fx,b) b is a data descriptor of a field assumed to hold a

floating-point format date werd., The BOU converts the

r floating-point word to fixed-point format and places the
f, tesult in the field Jesignated by a.
-
i Example: (AC,FX,B)
3

Assume field AC to be six (6) bits in length., Assume
also that "bug" B contains the number 24.65. After com-

oS—— ‘

pletion of the operation, field AC will contain 2410.

f % (a,FL,b) This operation is complementary to the above form,
The contents of field b are assumed to be in fixed-point
- format., The BOU converts the fixed-point word to floating-
; point format and places the result in the field designated
’ by a.
Example: (AD,FL,AC)
. Assume field AD to be forty-eight (48) bits in length
5 and field AC to be eight (8) bits in length. Assume field ‘
. AC to contain the number -171¢. After the operation is
: complete, field AD will contain the number -17.30.
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Section 6.7 Absolute Value Function

(a,ABSV,h) The absolute value of the contents of field b is
placed in field a. a snd b are both data descriptors.
If field b is a VLF, sign extension will be performrd

before taking the absolute value,

Example: (A,ABSV,A)

Assume ''bug" A to held -24.6. After completion of the
operation, "bug" A will hold +24.45.
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Chapter 7. Subprograms, Subroutines and Functions

Section 7.1 Overview

In the ILLSYS system, calling sequen:es in the ILLAR and FORTRAN language systems
obey what we will csall the FORTRAN type calling sequence:

1. A return jump (1604 code) instruction is made to the entry point
of the subroutine or function,

>y

2. Only one call may be made tc a given subroutine or function at a time,

T 3. Argument transfers are made by passing the address of the argument
! instead of the argument,
Y - In the CSLx system, a new type of subroutine calling sequence called the DO type
‘i entry is provided:
r 1. A direct rranafer is made to tae entry point.
) 2, Calls to routiues are recursive, that is, the return addresses are kept
in a last-in-first-out pushdown stack.
- 3. Argument transfers follow the FORTRAN convention.
) 4. Two types of exit from the called routine are provided:
stardard and error exit.
’ The consequences of the first rule are that any statement or group of statements in
a CSLx program may be treated as a subroutine. The second rule increases the flexibility of a
i subroutine by allowing it to call itself. Fule four provides for exits based on unusual
' conditions.

In this chapter, we discuss both the DO type calling sequence (Section 7.2) and the
FORTRAN type calling sequence (7.3). A special form of the FORTRAN type calling sequence, the
FUNCTION subroutine call is treated in Section 7.4.
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Section 7.2 SUBPROGRAM Operations

The BOU used to drive DO
DO BOU.

(D0, label)
(f,D0,label)

type subroutines in the CSLx system is, of course, the

label is the name of the subroutine to be executed.
This is a program label which may sppear at any place in s
CSLx program. The 30U causes an internal label pointer to
the next BOU or statement after the DO BOU to be pushed down
into the system subroutine call stack. This entry in the

stack may be executed by a DONE ‘''goto” as will be expiained
later.

1f £ is present, it ie interprctad as a label to which
a return from the subroutine may be made by a FAIL "goto" as
will be explained liater.

The action of the DO BOU after pushdown is to transfer
control in the CSLx program to the *called" routine,

Either labtel or { may be treated as external to the
CSLx program where the DO BOU is present by prefixing the
label with an astrisk (*).

Example: (DO, COUNT)

After the proper return address is pushed down into the
subroutine call stack, control will be transferred directly
to the routine COUNT. No "fail” exit will be allowed from
COUNT .

Example: (*CSLMCS ,DO,DRIVE)
After the proper return address and “he external "fail"

label CSLMCS have been pushed down in the subroutine call

st.ck, controi will ba transferred to the routine DRIVE,

This form of the DO BOU does not slliow for argument transfers. A specisl cate
called the DOARG BOU is provided for this purpose.

(DOARG, l1abel,1lis¢)

label and f are the same type of labels as described
sbove for DO BOU's, The distinction is made by the use of
DOARG instead of DO as the opcode.
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routines.

DONE

FAIL

The arguments are specified in the list. The list is

made up of data descriptors or iiterals separated by commas
" n
’

and terminated Ly the ")" of the operation unit. No

hollerith literels may be placed in the list,
Example: (DOARG,TIME,478)

The routine TIME 1s driven with the argument 478.

Example: (ENDFILE ,DOARG ,READTAPE , 32328, /BUFFER, 19)

The routine READTAF: is driven with the arguments
320328, BUFFER and 1010. The 'Yail" exit label ENDFILE
is also provided,

Two aystem defined "zoto" elements provide the means of vecurn from DO type sub-

The encountering of a DONE "goto" causes essentiallv a
subroutine type return transfer of program control. The
transfer point is obtained by a popup of one element from
the subroutine call stack. If no element exisvs, an error

return will be wade to ILLSYS.

A DONE "goto" terminates the statement in which it
occurs. The "goto" also compiies an end to any input/output
{1/0) operation area that mey be in force at that point
(Chapter 11). This I/0 end operation is executed before
vhe trarsfer of the "goto."

The encountering of a FAIL "goto" causes an error
return transfer from a suorcutine. The transfer pcint is
obtained by a popup of one element from the subroutine call
stack. If no element exists, an ervor returc is made to
JLLSYS. An error message and return to ILLSYS will be made
if no FAIL entry is found in the element popped irom the
stack.

Note that each element from the subroutine call stack
may contain both DONE and FAIL ti1ansfer points.

A FAIL "goto" terminates the statement in whicih it occurs.

The "goto" also cowpiles an end to any 1/0 operstion srea
[ 4
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that may be in force at that point (Chapter 11). This I/0
end operation will te executed before the traansfer of the
‘goto."

Examples of ussge will be made in Chapter 12 where we intend to give CSLx programming
examples.

Facility for entering a program or subroutine at some entry point other than at the
k=ader card by use of a DO or DOARG BOU is provided by the DO ENTRY declarative statement.
The statement format is as follows:

label DO ENTRY
label DO ENTRY ,NOFREAMBLE

A DO ENTRY point may be declared in either a PROGRAM, SUBROUTINE or SUBPROGRAM at aay point
desired. The first form will cause parameter setting operations when entered if there are

arguments specified in the header record. The second form will cause parameter setting opera-
tions to be ignored for that entry point.

The label attached to a DO ENTRY statement will be tagged as a giobal entry point
which can be accessed from programs outside the program where the entry point is defined.
The DO ENTRY point may only be accessed by eithexr a DO or a DOARG BOU operation. Exit from
the section of code headed by the DO ENTRY statement must be performed by either the DONE

or FAIL "goto" operations. This requirement is also met by the END statement of a SUBPROGRAM
program.
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Section 7.3 Fortran type Subroutine Operations

The calling sequence for a FORTRAN type subroutine is specified by the CALL primary

statement The _ormat of the CALL primary stateme.t is as follows:

CALL, NAME(1ist)

NAME is the name of the rcutire to be called, NAME {s always an external program latel
(nv "*" required).

The "," must be present to separate CALL from NAME. The "1list" may or may not be
present. The format of the "list" is simply a string of data descriptors, literals (no

el s Mg

hollerith) or program labels. Two-way transfers of information via any one element of the "list”

is possible for all element forms except field strings. The user must be responsible for not

destroying literal arguments through return transfer usage.

1f the liet is present. it must be enclosed by "{*" and "}". 1f only the "(" and ")"

are preseat, the calling sequence will establish that the last “list" used in a CALL to routine

NAME {is used for this CALL,

We remind the user that only one type of return is allowed from FORTKAN type

sucroutine, Control wiil be returned to the next CSLx statement after the CALL statement.

E-.ample: CALL, TIME

This is the simple form with nc arguments. The routine TIME is erecuted and control

returned to the next CSLx statement.

Example: CALL,NAME1(A ,ABC, /EC,*TDE, 10,775,10.4)
CALL,NAME1()

The first CALL to NAMELl also carries with it the arguments:

1. "bug" A
2, field ABC
.eﬂ. Interns! FWF BC
wl«. External FWF TIME
5. integer number 10
6. octal nueter 77

7. floating-point number .0.4
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The second CALL to NAMELl causcs the same arguments of the first CALL statement to be
used as NEMEL ic executed, This form 2xecutee a little faster as no argument address pianting
needs to be performed,.

Examples of usage will t2 given in Chapter 12 where we intend to give CSLx programming

examples.

Facility for enterisg a prozram cr subroutine at some entry point other than at the
head..: card by use of a FORIRAN type calling sequence is provided by the CALL ENTRY declarative

statement. The statement foimat is as follows:

label CALL ENTRY
label CALL FENTRY,NOPREAMBLE

A CALL ENTRY point may be d2clarved in either a2 PROGRAM or SUBRUUTINE at any point. CALL ENTRY
statements may Lot be used in SUBPROGRAM programs. The first form of the statement will cause
parameter setting operations when entered {f there are arguments specified in the header record.

The second form will cause parameter se«ting otverations to be iemored for that entry peint.

The lahel attached to a CALL FNIRY statement will be tsgged as a globtal entry point
wnich can be accessed from programs outside the program where the entry point is defined,
The CALL ENTRY point may oniy be accessed by a FORTRAN type calling sequence, Exit from th~
program entered at the C#LL ENTRY statement must be through the END stateme.t of the associatred

program or subroutine.
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Section 7.% Fortran type Functions

A special version of the FORTRAN tvpe calling sequence routine exists and is called
a FUNCTION routine, The calling sequence is the same as a FORTKRAN tvpe subroutine but the
return of the result of execution is made b: leaving the one (1) word result in the 1604

computer main arithmetic register.

The CSL system provides the FUNC BOU which allows the calling of a FUNCTION routine

and placement of the execution resuit 1n some field for further processing by the CSLx program,

(s,FURC ,name, 12st) The name of the FUNCTION routine is name and will always

te defined as an external label (no "'*" needed).

a is a data descriptor where the result of the FUNCTION
will be placed upon completior of its operations., list is an
argumencs list constructed in the same manner as in the
DOARG BOU, The arguments are determined by the FUNCTION

routine's requirements.
Example: (A,FUNC,SQRT,4.0)

The SQRT of %.0 is computed and returned to "bug™ A

upon completion of chie operation.

Appendix B contains the necessary forms to allow usage of all the standard FORTRAN
systen functions.
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Chapter 8. Control Transfer Operations

Section 8.1 Overview

We previously discussed the "goto" in Section 3,5 for use in effecting unconditional

transfers of control between segments of CSLx programs.

Section 8.2 discusses the "assigned" TRANSFER primary statement and Section 8.3
discusses the '"computed” TRANSFER primary statemnt. These two statements are analcgous to
the “assigned” and 'computed” GO TO statements in the FORTRAN language system. Both statements

provide dynsmic control transfers during execution of a CSLx program,
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Section 8.2 '"Assigned'' TRANSFER Operation

The format of the "assigned' TRANSFER primary statement is as follows:

TRANSFER (2a)

aa is the up to eight (8) BUD character statement label attached to a transfer "goto" variable.

This label must not be used for any other purpose in the CSLx program where it occurs.

Since aa is in effect a special type of data word, we use a special primary statement

to change the value of aa:
SWITCH, aa, bb

The SWIICH primary statement sets the contents of transfer “goto" variable aa to the statement
label bb. When the TRANSFER (aa) statement is executed, program f£low is tran<ferred to the

CSLx pr~gram statement labeled bb, An error return is made to ILLSYS if no assignment has
been made to aa.

External program labels may be used provided they are prefixed by an asterisk (*) or
declared as external FWF.

Example:  SWITCH,ALPHA,ENDI
TRANSFER(ALPHA)

when execution of the TRANSFER statement occurs, control will be transferred to the
statemeat labeled ENDI.
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Section 8.3 ''Computed'" Transfer Operations

The "computed" TRANSFER primary statement achieves dynamic transfer control by sampling
the value of some designated integer field. The general format is:

TRANSFE.. (41, i2,...,4n) inéex

The list £1, £2,...,4n is made up of statement labels, each of which may be internal or externsl
to the current CSLx program. External lsbels must either be declered as external FWF or be
prefixed wich an asterisk (*).

Index is a deta descriptor for some field where an integer number in the range of - =
to N-1 vhere there are N 1abels in the list, Il the contents of index are negative, the

TRANSFER statement is not executed. Program execution continues st the next rrogram statement,
1f the contents of irdex are >N, then an error will be declared and control transferred to

the TLLSYS monitor CSLMCS. Otherwise, control will be ransferred to statement ‘mdex‘

Example:  TRANSFFR(UP,DOWN,OUT)I

1f "bug" I = @, control transfers to the statement labeled UP. 1If "bug" I =1,

control goes to statement DOWN. No transfer occurs in "bug" I contains a negative number,

There is a short form of the “computed" TRANSFER statement that allows a binary choice
of control traasfer;

TRANSFER(label) index

If field index contains a positive number, control will go to statement labeled label.

Example: TRANSFER(S1)1
TRANSFER(BETA)J
ALPYA ....

31 TRANSFER(ALPHAYJ
BETA +ene

sese
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r The above sequence of statements golves the foliowing truth tsble:
!
1 J Transfer
- to statement
:
i
i
- - ALPHA
r - + BETA
i + - BETA
+ + ALPHA
R ad
}
i
1{
':,‘
l
!
i
7
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Chapter 9, Relational fest Operations

Section 8.1 Overview

In this chapter, we will discuss the relational test operation units (TU) which are

used in decision statements (Section 3.7). The first TU discussed is the pointer equality

TU (Scction 9.2)., The second TU allows checking of block size (9.3).

Next to be discussed are four (4) mathematical relaticaship TU's:

1. Equality (Section 9.4)
2. Inequali:cy {Section 9.5)
3. Grester Than (Section 9.5)
4. Less than or equal (Section 9.7)

The last two TU's are logical in nature and test for patterns of ones (9.8) or zeros (9.9).

The reader will note that the opcode fields of the TU may be the seme as those of
some BOU's., The distinction is made simply upon the condition that the TU must appear in a

decision statement after the statement mnemonic.
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Section 9.2 Pointer Equality Test

A special test unit (TU) is provided for chiecking equality between point(-s., This
lends itself to clarifjication of the language vhen being read and also protects agains:

possible error due to the design of the 1604 computer (some pointers might not appear cqual
even though in fact they were).

(a,P,b) a and b must be data descriptors. The fields contain
peinters vhich are compared and if equal, the TU registers
Pes a "yes" vote. Otherwise, the TU ssys "no.”
Exauple: (A,P,BC)
™
J Assume "bug" A and field BC hold poicters. If the
’ pointer in "bug" A points to the same block as the pointer
? in field BC, a "“yes" vote will be recorded.
i
1
i
i!
‘-
1
;-
i~
i
i.
g
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Section 9.3 Block Size Test

(2,BS,b)e. a is a data descriptor of a field that contains a

: pointer., The size of the block which the pointer references
is compared to the contents of field b and if equal, & "yes"
vote is recorded. Otherwise, a "no" vote is taken by the
TU.

— el emed owmd @

b may be either a positive decimal integer or a data
descriptor. Successful values of the contents of field b
are powers of 2 (max 128) in CSL6 and 1 to 32 in CSL7.

——

Exsample: (AT,BS,8) (C5L6)
(AT,BS,13) (CSL7)

Assume field AT holds a pointer to 16-block K. Both

TU's will register "no" votes. -
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Section 9.4 Data Equality Test

This TU compiles a vote on the mathematical equality of two (2) data items.

(a,E,b)

(a,E0,b)

(a,EH,b)

(a,EF,b)

a is a data descriptor. b may be a signed decimal
integer or a data descriptor. The contents of field a are
compared to the contents of field b and if equal, the TU

votes "yes." Otherwise, the TU votes '"no."

Exaaple: (/ACT,E,-22)
Assume field /ACT = -wa. The TU will vote "no."
b may be either a signed octal integer or a data

descriptor. All other considerations are the same as the
previous form.

Example: (/ACT,EO,-24)
Assume field /ACT = -2010. The TU will vote "yes.”
h is interpreted to be a string of up to 8 BCD char-

acters, right-justified, zeros ieft with spaces counted.

All other considerations are the same as for the two previous
forms:

Example: (A,EH,TIME)

Assume "bug" A holds the string CLOCK. The TU will
vote "no".

b may be either a floating point literal conforming

to the ILLAR language specifications or a data descriptor.
All other coasiderations are the same as for the three

previous forms.
Example: (D,EF,26.145)

Assume "bug” D holds the number 26.1451. The TU will
vote "no".
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Section 9.5 Data Inequality Test

(a,N,b)

‘a,NO,b)

(a,NH,b)

(a,NF.b)

This TU compiles a vote on the mathematical inequality between two (2) data items.

a is a data descriptor. b may be a signed decimal
integer or a data descriptor. The contents of field s are
compared to the contents of field b and if not equal, the TU
votcs ''yes." Otherwise, the TU votes "no."

Example: (/ACT,N,-22)
Assume field /ACT = -2‘1‘. The TU will vote "yes."

b may be either a signed octal integer or a data
descriptor. All other considerations are the same as the

previous fo:m.
Example: (/ACT,NO,-24)

Assune field /ACT = -20 The TU will vote "no."”

10°

b is interpreted to be a string of up to 8 BCD char-
acters, right-jusrified, zeros left with spaces counted.
All other considerations are the same as for the two

previous forms.
Example: (A,NH, TIME)

Aesume "bug" A holds the string CLOCK, The TU will

vote "yes'.

b may be eitter a floating point literal conforming to
the ILIAR langvage specifications or a data descriptor. All
other considerations are the same as for the three previous

forms.
Example: (D,NF,26.145)

Assume "bug" D holds the number 26.1451. The TU will

vote 'yes".
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Section 9.6 Creater Than Test

f This TU compiles a vote on whether one data item is mathematically greater than
another data item.

I (a,G,b) & is a data descriptor. ) may be 2 signed decimal
integer or a data descriptor. The contents of field a are
compared tc the contents of field b and if a > b, the TU
votes "yes." Otherwise,the TU votes '"no."

Example: (/ACT,G,-22)

- Assume field /ACT = -201'. The TU will vote "yes".

(a,G0,b) b may be either a signed octal integer or a data
f degcriptor. Ali other considerations are the same as the

i previous form.

Example: (/ACT,GO,-24)

po— ey

Assume field /ACT = -20“. The TU will vote "no."

[ (a.GH,b) b is interpreted to be a string of up to 8 BCD char-
acters, right-justified, zercs left with spaces counted.

All other considerations are the same as for the two previous

———y

forms.

Example: (A,GR,TDME)

Assume "bug" A holds the string CLOCK. The TU will

vote "yes".

- (a,GF,b) b may be either a floating point literal conforming to
the ILLAR language specificationz or a data descriptor. All
other consideraticns are the same as for the three previous

forms.

Example: (D,GF,26.145)

Assume "bug" D holds the number 26.1451. The TU will

vote "yes".
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Section 9.7 Less Than or Equal Test

This TU compiies a vote on whether one data item {s mathematically less than or equal

to another data item.

(a,.,b) a is a data descriptor. b may be a signed decimal
integer or a data descriptor. The contents cf field a are
compared to the contents of field b aud if a < b, then TU

votes "yes.” Otherwise, the TU votes "no."
Example: (/ACT,L,-22)
Assume field /ACT = -2!“. The TU will vote "no."
(a,LO,b) b may be either a signed octal integer or a data
description. All other considerations are the same as the
previous form.
Example: (/ACT,L0,-24)
Assume field /ACT = -ZGN. The TU will vote "yes".
(a,LH,b) b is interpreted to be a string of up to 8 BCD char-
acters, right-justified, zeros left with spaces counted.

All other considerations are the same as for the two

previous forms.
Example: (A,LH,TDE)

Assume "bug" A hoids the string CLOCK., The TU will

vote "ro".

(a,LF,b) b may be either a floating point literal conforming to
the ILLAR langusge specifications or a data descriptor. All
other considerations are the same as for the three previous

forms.
Example: (D,LF,26.145)

Assume "bug" D holds the number 23.1451. The TU wili

vote "no".

‘
.
§
}
3
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Section 9.8 Ones Pattern Test

This TU compiles a vote o1 whether the pattern of one-bits in one data item is

included in another data item.

{s,0,b) a is a data descriptor. b may be a signed octal
integer or a dats descriptor. A 'yes" vote is registered by
the 10 if a hag one bits in all of the positions that b has
one bits. Othervise, a "no" vote is recorded.

Example: (B,0,146)
Assume “bug" B holds the number 34Q11068. The TU will
vote ‘yes".

{a,0H,b) b is interpreted to be a sizing of up to 8 BCD char-

I —_

acters, right-justified, zeros left with spaces counted.

All other considerations are the same as the previous form.

Example: (H,CH,ED)

Assume “bug”" H holds the string TRIED. The TU will

vo*e "yes.”
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Section 9.9

Zeros Pattern Test

(a,2,b)

(a,ZH,b)

This TU compiles a vot:
ipcluded in another data item.

on whether the pattern of zero-bits in one data item is

a is a data descriptor. b may be a signed octal

integer or a data designation. A 'yes" vote is registerzd

by the TU if field a has zero bits in all of the positions

that b has zero bits. Otherwise, a "no" vote is recorded.

Example: (K,Z,401)

Assume "bug" K holds the number 167361, The TU will

vote '"no".

b is interpreted to be a string of up to & BCD char-
acters, right-justified, zeros left with spaces counted.
All other considerations are the same as the previous form.

Example: (P,ZH,TRIED)

Assume "bug" P holds the string ED. The TU will vote

yes
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Chaptur 1@, User Pushdown-Popup Data Stacks

Section 16.1 Overview

The CSLx systcem provides automatically one (1) data pushdown-popup stack vhere data
may be temporarily stored.

Further capability for this type of operation is provided in the
user Jdefined stack system.

The user performs three operations concerning his own defined stacks:
1, Adefinition by labelling (Section 14.2)
2. pushdown operations (Section 14.3)

3. popup operations (Section 19.4)

A maximra of fifty (5@) user stacks may be defined.

The lengths of the stacks are bounded only by the limits of unused wemory and the
nusber of "free" blocks available from the storage allocator.
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Section 19.2 Definition of a LUser Stack

The CSLx user "defines" a user stack by assigning a label as follows with the
DEFSTACK primary statement:

DEFSTACK, stackl, stack2,.c.ceee0es, stackd

stackl, ... , stackd are BCD program labels of up to 8 characters by which the stacke will be
referenced. All user stacks will be open-ended to tne limit of available core ntorage. That
is, as a stack needs to be extended, it will be by adding ore more block of storage. As stacks
are emptied, their "freed" sections (storage blocks) will Le returned to the storage al)ocator

for use elsewbere.

User_stack "definition" is n.t global in nature. This dictates that the sane
"derinition" for a given user stack must be given in every program of a program set where that

user stack will be used. During execution of a program set, all "definitions" of a given
user stack will refer to the exact same stack in i1emory,

Example: DEFSTACK, ALPHA, BETA

User stacks ALPHA and BETA may now be referenced.

Note: 1In order for proper initial setup of the user stack system to occur, at least

one (1) stack wmust be defined in the PROGRAM of e program set.
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Section 16.3 Pushdowa Operation on a User Stack

Data may pe pushed down into a user stack by using the STACK primary statement:

STACK, stakname, list

stakname is a label previously attached to one of the user stacks.

A compiler error will result
if the stack has not been 'defined”. list is a list of data descriptors or litergls (no

hollerith) similar to the lists for the PUSHDOWN statement.

The elements of the list specify
fields which the user desires to pushdown in the indicated stack.

Example: STACK, BETA, 1, 77B, 1§.83, A, /TIME
The top five (5) items in user stack BETA will bte, in order:

1. contents of field /TIME
contents ot "bug" A
literal 19.83

4. literal 77

5. literal 1
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Section 1§.4 Popup Operations on a User Stack

Data is popped up out of a user stack by using the UNSTACK primary statement:
UNSTACK, stakname, emptyext, list

stakname is the name of a previously "defined" user stack from which the user desires to remove
data (popup). If the stack has not been previously defined, a compiler error will result. 1If
the stack is empty, control of the user program will be transferred to ewptyext which mus® be
a statement labe’. The user may find out how many elements cf the list were filled prior to
the emptyext by accessing the filled count in either exterral fields L6STKCT (CSL6) or

L7STKCT (CSL7). 1list is a list of data descriptors where the user desires the data being

popped up from the stack to be stored.

The emptyext traasfer point and the filled count locations make the user stacks
somevhat more {lexible than the system supplied data stack. This advantage is offset by the
fact that user stack operations are slower than system stack operstions.

Exampie:  UNSTACK, BETA, ERROR, A, B, C, D, E

Assume user stack BETA was loaded by the STACK statement in Section 1¢.3. Then, vhen
all operations are complete:

Pt

. "bug" A holds the contents of field /TIME
"bug" B holds the former conternts of "bug" A
. "bug" C holds 19.83

"bug" D hclds 77
5. "bug" E holds 1

w N
.

i~
.

8
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Chapter 1lly * __t/output of BCP Information with Format Conversion

Section 11,1 Overview

The CSLx system provides statements for format contreclled I/0 operations only. All

other forms of input/output may be used by appropriate CALL statements to the ILLSYS input/

output routines.
The use of the I/0 statements is broken down into three phases:
1. Inaitialization
2. Data fetch or storage
3. Termination
The three (3) phases all apply to either input or output.

The statements for initialization are described in Section 11.2 followed by the data
fetch and store BOU's (11.3). Section 11,4 ends the discussion by describing the
termination phase,

The CSLx user should familiarize himself with the FORTRAN language system FORMAT

statement. The FORMAT statement for the CSLx svstem is identical and therefore, the user is
directed to the FORTRAN manual for detailed information.
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Section 11.2 Initialization of Input/Output Operations

If the reader is familiar with the FORTRAN language, he will remember that I/O occurs
within single statement where all dats items and the controlling format are tied together in
a comnon specification. In the CSLx system, a great deal more flexibility is achieved by
sep.rately specifying format and data items,

Each ard every FORMAT statement contrnls what we will call an input/output area
(1/0 area). The [/O sres begins with either an INPUT or an OUTPUT primary statement &nd ends
vhen properly terminated {Section 11.4). Also asscuiated with each 1/0 area is an input or
output medium.

The formats of the INPUT and OUTPUT prim ry statements sre as follows:

IN?UT, Imedium, format, end»I
OUTPUT, Omedjium, format end#0

All three arguments: Imedium(Omwediuz), format and end”*I(end#0) are statement label in form.
format refers to the controlling FORMAT statement.

Imedium (Omedium) mzy represent one of two ways for specifying an input(output)

medium. The first way is an explicit ctatement of the type of input(output) unit.

For input:

1. PAPER TAPE F paper tape reader
PT (flexowriters)

2, TYPEWRITER T console typewriter

3. M2G TAPE x x magnetic tape (BCD mcde)
(x=2,3, ..., 8)

4. TELETYPE Y paper tape reader
TTY (teletype)

For output:

1. PAPER TAPE F paper tape punch
PT (flexowriter)
2. TYPEWRITER T console typewriter
3. MAG TAPE x x megnetic tape (BCD mode)
4, PRINTER P asrinter-format control
PRINTER Q Q no format control
PRINTER O 0 no line count
5. TELETYPE Y paper tape punch
TTY (teletype)
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The second way in which Imedium (Omedium) may be specified 1s as a data descriptor of
a field which contains the single character logical unit code as indicated in the center

column above. The code is right-justified with zerus left in the field. This second specifi-
cation is assumed by the CSLx compiler if Imedium (Omedjum) is not one of the above labels.

The end#] (end#0) parameter is used for termination of the I/0 area and will be
discussed in Section 11.4.

The CSLx programmer must remember that an input 1/0 area may not overlap an
- output 1/0 area. A compiler diagnostic will occur if this happens. Any errors occurring in a
FORMAT statement will in all probability not be found until execution time.

-
e

e e
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Section 11.3 Data Fetch snd Store In An 1/0 Operation

Data is transmitted to and from the 1/0 medium in units corresponding to the arcas in
memory where *he data items were found or will be stored. Since the area of storage in the CSLx

system is the field (or literal), we move data in or out in terms of the fields from which they
were fetched or to vhere they will be stored.

Section 11.3.1 Data Storage During An Input Operation

A special BOU cslled the TAKE BOU is used during an input operation.

(TAKE, ») a it only a dats descriptor. One unit of data is taken
fron the input medium and stored in field a, The formet of
the dats item is determined by the FORMAT statement control-
ling the I/0 area vhere the BOU is found,

Inside the I/0 area, slmost uny CSLx operations may be performed. The user must not
attempt certain operations as follows:

1. No transfers into an 1/0 area except to the INPUT statement.

2. Yo transfers out of the 1/0 area without properly terminating I/0 operstions
(see Section 11.4)

Let us present a short example of an input I1/0 ares in a CSLx prograr.

READ INPUT, PT, FORMIN, END1
(TAKE,A) (TAKE,B)
END1 (c,E,0) (TAKE,D) ENDIO

FORMIN FORMAT (12, F7.4, R4)

Assume the following data record is read from the paper tape reader in Flexowriter Code:

1229.6873CSL6

After completion of the iaput operation, the "bugs" have the following contents:

"bug" A = 121 é
"bug" B = 29,6873
"bug”" C = P
"bug" D = CSL6
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Section 11.3.2 Fetching Data During An Qutput Operation

A special BOU called the FEED BOU is used during an output operation.

(FEED, a) a2 may be either a data descriptur or a literal (no

Hollerith). One uait of data is taken from field a and

delivered to the output medium. The format of the data
iten is determined by the FCRMAT statement controlling the
1/0 area where the BOU is found.

Inside the I/0 area, any CSLx operations may be perforuwed subject to the same restrict-

ions as for the input I/0 area.

Ve present here a short example of an output 1/0 area from a CSLx program.

WRITE OUTPUT, PRINTER, FORMOUT, END2
(FEED,A) (FEED,B)
END2 (FEED,C) ENDIO

FORMOUT FORMAT {1X, 12, 2X, I1, 2X; F7.4)

Assuming that "bugs' A, B, and C were set up by the input I/O area in the example of
Section 11.3.1, the following line will appear on the printer when the output is complete:

12 ¢ 29.6873

90




Section 11.4 1/0 Area Termination

execution. Compiler termination of an 1/0 area deliniates the end of the CSLx source records

to be read by the compiler and included in a2 specific 1/0 area. Execution termination must

occur at all points where control will be transferred out of an 1/0 area.

Compiler termination of an 1/0 area occurs at the end of the CSLx statement labeled

end#1 (for input) or end#0 (for output). endi#] and end#0 are the last argusents of the INPUT
- and OUTPUT primary statements.

Execution termination of an 1/0 area occurs when the ENDIO primary statemeat is

encountered. The ENDIC statement consists only of the character string ENDIO. Additionally,

the DONE, FAIL and EXIT system "goto" units will create execution termination operations just

prior to control transfer.

—

. For examples of the usage of the ENDIO statement, see both of the examples of

|

E

|

E

} The CSLx user has two (2) types of 1/0 area termination to be aware of: compiler and
E

|

|

]

E

|

]

!

!

i

]

k

|

l Sections 11.3.1 and 11.3.2.
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Chapter 12. Sample Programs

Section 12.1 Overv._szw

Ve present in this chapter two (2) sample programs written in the CSL6 larguage whichk
illustrate scme of the basic operations performed in the CSLx system.

Either program will run
in the CSL7 system without any modifications.

Each program is presented first in its complete listing format as it appeicred on the line
printer followed by a discussion of how ‘he program operates step-by-step.

For reference, each
line of the program is numbered sequentially and referred to as line 23 for example.




) |84 10868 (VW 44 V) (4V' d*viV) NIML (NEV'3°NV) a1 1408

M4 TINTud (@‘3*wv) 41 118C5
6€ (vi‘a‘v) 1403
8f »
Le dNAL M 97 TYNIOTHO WOMd NINVL 3ANILNOW L¥eS -~ ISIT L¥US *
1% »
St TIININE (gN°VY) AT
v (v'v)
e oTana (nvaidd) OaN3
€ (v 1 %1)1vWH0d WYO4LNO
1€ OaNA*WHO4LN0  HAININA 1NALNO  T1ANINd
gc (VI‘4*V) TINTHL
62 x
82 QIALHDAY WIGHO NI ISIT 40 SINIINOD TYILIND INIHd *
x4 *
74 a001avay
52 118144 (1-°1°N) 41
4 (NS FENV) (Vi acvav)(ay z 1o° V) RANGAV
€2 ¥
zz 1SI1 Ol ¥ITWAN MIN Gav *
12 x
24 0IaN3 (N€TAVL) TUN3
s (v D IvWyod WYO4NI
81 TANI‘WYOINI‘1dLNANI  J0O0TAV3IH
0 *
91 JOOLLNT §d ¥
St AVILINI OF dINS ‘34ViddV YIOULNI IFATLVOIN N3HM - 4007 avay ¥
91 x
€1 (vt a‘1)(z1o*v) 1IN
¢l ¥
11 INAWT1IZ 1SIT 0¥3Z HIIM 1SIT FZITVILINIL ™
A8 »
6 (v 8°Na 1) NOT31 3
8 »nn.m.nn.sw aqTad
L (v eceva‘s va13rd
9 (y°ss)
I »
k4 *SINALNOD IHL LSIT »
€ NFLL ANV *SILVOITANG 3LVNIWIIA OGNV ONIYLIS JHL 1¥OS ¥
2 SONINLS V NI SY4O4INI 40 ISIT ¥V WYOd OL WVEDOUd T1IRVS »
1 »
SHANINOS WVHOOHd
9180--
1 39vd 69/92/9% 11Vd NO1IVIIZLOD 971S2 69/¢2/S 40 9180

e

. Y et o ol G [




94

114 ana
%S ZTINI¥E (PN°WY) 41
£€¢ (v'v)
4 OIGNZ (NV*'a33d)(0°qa3a)(1°v*o) »aN3
1s (51° = HC4HI°AULNIHO XT)IVWHOd 14100
z d9vd 69/92/% 41vVa ROILVIINOD SWANINOS 6€9/92/¢ 40 9180
19 2ANA* 1IN HAINIHA“INLNO  ZZININ¥d
6% { H1)Iwniod 74100
8% €ANA* ZALNO YALINI ™A “1NALNO AN
Ly (P“3°0)(v1‘a‘v) ZINTHZ
9y *
Sy A9VMOLS 3FYA O SNO0TH NMNLIY ANV YIQUO 4II¥OS NI LSIT INTud »
Y9 %
11 1808 (V'V)
rds ZI80S (d°VY(NEV OI*NV) NIHIL (NAVT‘NV) 41

_I I I ’ I r ’}!}h ﬂ.:l.!dv w. !t...xn ﬂiﬁ.tu n bt ..u ":5110 "233.{* I z TC-&N uz.ﬂtﬁ» "sa..i!h




1L q3sdviz
AY¥IN3
AYINT
AYINT
AUINZ
AYIN3
AUINZ
AYING
ALING

35

7' 9

—
@
Ilﬂl!lllﬁ

"'Nﬁﬂll\ycl\w

8y
I
4
9
449
43
91
18
4
SINIZ
avIII--
aN3--

1 3ovd 69/92/¢ 31va NOLIVIIQNOD 9780 69/92/¢ Jd0 9180




B RO — e

it

gy WNQ OO

o

—

ba—»i h—i

.-

PR

Section 12.2 Sample Program to Sort A Strirng of Integers

Program SORTNUMS reads a file of records from paper tape, each record containing an
integer number., Each integer is placed in a bleck in core, and all blocks are linked together

on a string with both forward and backward pointers.

When input is completed, the Llocks of the string are arranged in ascending order of

their integer contents. The final result is listed along with the input data.

The output as shown for program SORTNUMS is exactly as it would appear on the 1604 line
printer. Had there been any error messages cduring compilation, they would have occurred

immediately following the recoerd in error.

The program is begun on lines 1-6 where storage {8 set up with a maximum block size of
4, Fields A, B and N are defined on lines 7-9.

"Bug"” L will be loaded 4atu « pusater to the ..rst block 1n the string containing the
input data. Thus, in line 13, we get one 2-block, point to it with "bug" A and set the same

pointer in "bug" L.

Line 18 begins the input I/0 area where the integer data string will be read in. The
tnput medium is PT (flexcode paper tape) and the format is specified in statement INFORM
(line “9). The I/0 area will end on statement ENDI (line 2). Each time lines 18-20 are exe-
cuted, one integer value is read in and placed in "bug" N. The end of I/O operations is sig-
nalled by ENDIC on line 24.

Each new entry to the string is processed in lines 24-26. First, a 2-block is obtained
and linked back to the last block on the string. Then, the last block is linked forward to the
new block. Finally, the integer read in is placed in field N of the new block (line 24), If
the integer read in is negative, this signails the end of the input data. Control will transfer
to the initial print loop PRINTL (line 25), Otherwise, we return for a new read operaticn
(line 26).

Printout begins by setting "bug” A to point tc the first block in the string which con-
tains data. Note that the actual first block on the string is a dummy block used to initialize
the string (line 3¢). Then we start an output I1/0 area for the PRINTER (line printer) controlled
by format statement OUTFORM (lines 31-32). The end of the 1/0 area occurs on statement ENDO
/line 33).

Each time through lines 31-33, one item of data, taken from field AN, is printed.

"Bug” A is th~~ advanced to the next block (line 34)., At this point, we make a test on whether
wve have reached the end of the string or not.
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Two tests could be made., We could test the next field AN in the string to see if it is
negative. We could also test the forward pointer of the next block to see if it is zero ().
Remember that all blocks obtained from the storage allocator are zerved in all fields. Thus,
the last block on the string will have zero (@) in its A field (forward pointer).

We test the end of the string via the second test described above (line 35). If field

AA is not zero (@), control returas to PRINT1I1 to print another value.

when the list is printed, sorting begins as the list pointer is initialized in '"bug" A
(line 39). Next comes the test for end of the string (line 4¢) where control will advance to
the second print routine PRINT2 when sorting is complete.

Line 41 determines if the integer in the current block (pointed to by "bug" A) is equal
to the value in the previous block. If so, the current block is dropped from the string by
linking the previous block to the next block on either side of thie current block. Then the
current block is returned to storage with "bug" A set to point to the next block on the string.

Control then returns to the end test,

Line 42 now tests the relationship between the value in the current bleck and the value
in the previous block. If the current value is less than or equal to the previous value, the
values of the two blocks are interchanged. Then "bug" A is moved back to the previvus block.
This enables push back of smallest values before larger ones. Control then returns to the
equality test SORT2, 1f no interchange is needed, "bug" A is moved down the string (line &3)

and the end test performed again.

After sorting, the printe. is spaced (line 48-49) and the list is output in the format
(line 47, 5¢9-34):

ENTRY N = Value
When the printing is complete, the program ends and control returns to JLLSYS.
On page l:-4 the actual listing of the output from SORTNUMS is shown. The time of exe-

cution was 2.4 seconds. Thz entire listing of compilation and cxecution is shown exactly as it
would appear on the line printer.
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ection 12.3 Sample Program to Read BCD Records and Determine Frequency of Character Jsage
and Average Length of Word

Program CHARCT drives subroutine RFADCHAR to break down data on BCD source file records
in order tv find the frequency of character usage, determine the length of words on the records,
and to calculate the average length of words in the file. This routine uses no linked storage

but does contain pseudo-subscripting and extensive input-output operaticns.

The output as shown 15 exactly as it would appear on the 1504 line printer. Had there

been any error nessages during compilation, they would have occurred immediately following the

record in error.

The operation begins in lines 7 - 1§, Storage is initialized because the system push-
down stacks will require linked blocks even though they are not used in the program. Two
arrays, COUNT and SIZE, are cleared to zero (#) counts. The initial values of average length

AVG and total number of words counted WORDCT are also cleared to zero (¢.

In line 14, an initial call is made to READCHAR to cause the £f£irst look-ahead read-in
of a BCD scurce file record. The input file is always assumed to be on logical uait 4. We
will leave the discussion of READCHAR until later in order to not interrupt the flow of the

progran listirg.

The read-in of each character is performed on line 17. READCHAR produces one character
in "bug"” C. When the end of the input file is reached, an early exit is made to statement
ENDREAD (line 33). Yormally, the count Jor the input character is incremented by one (line
17). Additionally, the character is checked for being a space (2¢B). 1If it is not a space,
WORDCT is incrementued (line 18) to count the number of characters for the current word and the

loop is repeated.

If a space character is read, then a word toundary has been reached (line 23)., The
size of word is limited t> 3@ characters maximum to prevent spill-over in memory (line 23).
The appropriate word size counter is incremented (line 24) and the characters per word counter

is reset to zero (#) (line 24). Control then returns to read a new character.

When the input tile is exhausted, the character usage counts are listed. Output is
iritiatized (lines 33-35) by labelling the printout. The count lines for the printout arte
started at line 36. An index for the printout is kept in "bug" A. Note that the printout for
the character space (2¢¥B) is skipped on line 32, For all other characters up to 6010 (74B),
first the index and then the count are fed to the cutput statement (line 4¢). The index is
checked, and if the end is reached, the output loop is ieft. Otherwise, the next count is

processed (lines 41-43).
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The second part of the printout is initialized with a heading (lines 47-49) and an
index in "bug" A is set to one (1). Again, a feed output loop is set up in line 5¢ and the
loop entered at line 52. The index of the word size count is output, followed by the total
count for that size. When all counts have been printed (lines 52-54), the third part of the
printout is prepared.

Line 58 initializes an index in '"bug" A to one (1) and a summing register, '"bug" C,
to zero (#). The list of word sizes will now be summed for total size and total words. The
loop starts in line 59 where the total count for the current index is owltiplied by the curreat
size and summed in AVG. The total count of words is summed in “bug" C. Then the index is

advanced.

When the loop is ccmplete, the average size or word is computed (line 61). Lines 65-67
output a statement and the calculated average. Ccntrol returns to the calling routine at this
point (line 68).

A small section of code resides in lines 72-74 where an error message will result if
the input data file contains no data. Note alsc in line 78 that the two arrays, SIZE and
COUNT, and two variables, AVG and WORDCT, are explicitly defined.

The second part of the program is the SUBPROGRAM READCHAR which has two entry peints,
INITREAD provides an initializing step to read in the first record from the source data file
and set up the character unpacking routines for operation. READCHAR caus.s one character to
be read from the current source record. If the record is empty, a new record is read. When

tho end of the file is reached, the special "fail" exit is taken.

Character unpacking operations begin at REDO (line 9) where the current character index
is incremented, If the index is less than 81, then the next character is taken from the se-
quential characters LIST (line 1¢). Otherwise, a new record is called for (line 11) and control
returned for the first character in that record (line 9). The "fail" exit will be taken by

the REREAD section of code at the end of the file.

The next record frow tue input file is obtained beginning at REREAD (line 15). A 1¢-
word BCD record is read into BUFFER. If the first eight (8) characters of the next record
are =-<END , then the end of the input file has been reached. Thus, the "fail" exit will
be taken (line 16).

The breakdown of the input recor.! is accomplished by use of the system DECODE routine
which is initialized in line 17 to decode 8¢ characters in Rl format from BUFFER. 8¢ characters
are planted in LIST in lines 18-21. The DECODE input operation is terminated and the curreat

ckeracter index set to zero (@) in line 22, Control then returns to the calling section of code
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Lines 27-29 contain the inltializing code, The REREAD section is called in order to

set up the first record or detect an empty input file,
variable INDEX and the two arrays, BUFFER and LIST,

105

The program ends with a def:nition of




APPENDIX A

Error Messages
In this appendix we list the various error messages produced by the CSLx compiler.

Each message is listed as it will be printed and may be followed by a clarification scatement
if necessary.

A.l Statement Breakdowm

ILLEGAL USE F ,

ILLEGAL USE OF )
Generated by misplaced commas end right parentheses.

A.2 Field Designations

x FIRST CHAR NOT BUG

x is not A-Z for "bug”
a(oo) 1S AN ILLEGAL FIELD CHARACTER

a2 is not 0-9, A-Z. o0 is octal value.
FIELD a UNDEFINED
INTERNAL FIELD SHORT

Only "/" appears as field designation.
' EXTERNAL FIELD SHORT

Oniy "*" appears as field designation.

A.3 Operaticn Block Processing
SINGLE OPERATION BLOCK
NO FIELD AFTER (
First {ield in block is wissing. Also may mean space after "/",
ILLEGAL SEPARATOR

Only “,” is legal separator.

l MISSING 2rd FIELD
. MISSING 3rd FIELD
| MISSING 4th FIELD
i

MISSL.G 5th FIEWD
Field missing between ",” and ")"
OPERATION BLOCK TOO LONG
Block has more than 5 fields
INCOMPLETE STATEMENT
")" probably missing in last operstion block of statement.
106




TEST BLOCK NOT 3 TFIELDS
ILLEGAL FIELD CPERATOR  aa(oo000)

Not allowed operaticn. aa is field operator and ooon is octal equivalent.
ILLEGAL OPERATION IN IF COMPUTATION aa(co0c0)

Not allowed test operation. 2aa is operation code and 0000 is the octal equivalert.

A.4 Unknown Data at 7Find of Statements
UNKNOWN DATA AT END OF xxxxxxxx STATEMERT
UWKNOWN DATA AFTER <XXXXX¥X

Xxxxxxxx opevations must be at end of the statement they occur in.

XXXXXXXX 1s one of

1 eXIT

2. FAIL

3 DOXNE

4. a "goto"
5. EXNDIO

6. INPUT

7o OUTPLT
8. TRANSFER
9. SWITCH

A.5 Ir and NOT Statements

ONLY ONE TEST ALLOWED 1 IF STATEMENT
ONLY ONE TE'T ALLOWED IN NOT STAEMENT

A.6 OUIPLT Staterent

ILLECAL FOR'AT FOR OLTPUT STATEMENT

INCOMPLLTE OUTPUT STATEMENT

ATTEIPTED 10 $TART OUTPLT STATEVENT INSIDE INPUT STATF'ENT AREA
ATTEYPTED Te START CUTPUT SEATL 7 INSIDE OUTPUT STATEMENT AREA

A7 IMPIT State-ent

TLLLGAL FORMAT PoR INPLT STATEYELT

INCOYPLETE INPUT STATELLT

ATTEMPTFD T STAR: ISPUT STATE'RSD INSIDE OLTPUT STATEMENT AREA
ATTEVYPTED 10 NTART INPLT GTATETENT INSIDE INPUT STATEMENT AREA

6. 83 TRANSELR staterant

ILLEGAL TRANSEL® STATETET T FORYAT
INCOMtE T8 TRALSE. R STATT TR N
CISSING INDEN B HETD oh TRANSEER STATEMENT

LIFCAL INPw EIEeD FORY
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A.9 SWITCH Statement
ILLEGAL FORMAT FOR SWITCH STATEMENT
INCOMPLETE SWITCH STATEMENT

A.1f GLOBAL Statement
INCOMPLETE GLOBAL STATEMENT

"Bug'" name missing a2fter last ","
ILLEGAL SEPARATOR IN GLOBAL STATEMENT

Only "," is legal separator
ILLEGAL BUG NAME IN GLCBAL STATEMENT a

& is not 2 "bug” A-Z
NON SINGLE CHAR FIELD IN GLOBAL STATEMENT a

a contains more than 1 character

A.11 POPUP Statement
INCOMPLETE POPUP STATEMENT

Missing field after last ","
ILLEGAL SEPARATOR IN POPUP STATEMENT

Oonly "," is legal separator
ILLEGAL FIELD IN POPUP STATEMENT

Not a legai field designation or may be a literal

A. 2 PUSHDOWN Stutement
INCOMPLETF PUSHDOWS STATEMENT
Missing field after last *,"
TLLEC AL SEPARATOR IN PUSHDOWN STATEMENT
Only "," is legal separator
ILLEGAL FIELD IN PUSHDOWN STATEMENT

Not a legal field desigration

A.13 DEFINE Statement
INCOMPLETE DEFINE STATEMENT

Missing label after last ",”
ILIEGAL SEPARATOR iN DEFINE STATEMENT

Only "." is legal separator
ILLEGAL LABEL IN DEFINE STATEMENT

Label does not conform to ILLAR label conventions

A.i4 CALL Statement
INCOMPLETE CALL STATEMENT

Probatle missing argument in call list and/or missingy ")"
ILLEGAL SEPARATOR iN CALL STATEMENT

Comne ™ust separate CALL frow subroutine name
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ILLEGAL FORMAT OF CALL OBJECT NAME

Subroutine name does not follow ILILAR program name convention.

A.15 ENTRY Statement
INCOMPLETE ENTRY STATEMENT
Missing label after last ",”
ILLEGAL SEPARATOR IN ENTRY STATEMENT
Only "," is legel separator
ILLEGAL LABEL FORMAT IN ENTRY STATEMENT
Label does not conform to ILLAR label convention

A.16 DO ENTRY Statement
NO LABEL FOR ENTRY POINT

A.17 CALL ENIRY Statement
NO LABEL FOR ENTRY POINT
NO CALL ENTRY ALLOWED IX SUBPROGRAMS

A.18 EXTERNAL Statement

INCOMPLETE EXTERNAL STATEMENT
Missing label after last " "
ILLEGAL 3EPARATOR IN EXTERNAL STATEMENT
only "," is legal separator
ILLEGAL LABEL IN EXTERNAL STATEMENT

Label does not conform to ILLAR label convention

A.19 DEFSTACK Statement

INCOMPLETE DEFSTACK STATEMENT

vissing name after last ","
ILLEGAL SEPARATOR IN DEFSTACK STATEMENT

tnly "," is legal separator
ILLEGAL RAME IX DEFSTACK STATEMENT

Names must conform to ILLAR label convention
STACK NAME x TOC LONG

Name x contains more than 8 characters
50 STACKS USED UP

Only 50 iser stacks may be defined
STACK a IS DOUBLY DEFINED

A.2f STACK Statement

INCOMPLETE STACK STATEMENT
Premature end of statement after STACK or missing field designation after last ","
ILLEGAL SEPARATOR IN STACK STATEMENT
only "," is legal separator
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MISSING STACK NAME
Missing stack name or name does not conform to ILLAR label convention
STACK NAME TQO LONC
Stack name contains more thar 8 characters
UNDEFINED USER STACK
ILLEGAL FIELD IN STACK LIST
Some field position contains an illegal field designation

A.2]1 UNSTACK Statement
INCOMPLETE UNSTACK STAEMENT

Statement eads prematurely after UNSTACK or missing field after last ", "
ILLEGAL SEPARATOR 1IN UNSTACK STATEMENT

Only ",” is legal separator
MISSING FAILEX1T IN UNSTACK STATEMENT

Missing FAILEXIT label or label does not conform to ILLAR label coavention
FAILEXIT LABEL TOO LONG

FAILEXIT label contains more than 8 characters
UNDEFINED USER STACK
MISSING STACK NAME

Missing stack name or name does not conform to ILLAR label convention
STACK NAME TOO LONG

Stack name contains more than 8 characters
ILLEGAL FIELD IN STACK LIST

Some tield position ~ontains an illegal field designation

A.2Z Holierith Literals
HOLLERITH LITERAL OVER 8 CHARACTFRS

A,23 Block Duplication Cperation
ATTEMPTING TO DUPLICATE iINTERNAL FIELD
ATTENPTING TO DUPLICATE EXTERNAL FIELD

A.24 TField Contents and Field Definition Stack Operation
TLLEGAL rIELD DEFINITION OPERATION

First field in operation block is not L or R
ILLEGAL FIELD CONTENTS OPERATION

First field in operation block is not S or R

A.25 FEED  peration
FEED NOT ALLOWED IN IF COMPUTATION
FEED Nul PRIMED BY OUTPUT STATEMENT
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ALt YA Ope.ation
TACT ACT AT 0D IN IF COMPUTATION
Tis. \NOT PRITED sy INPUT STATEMENT

4,.. 7 ftorage setup
I STATEVENT STORAGE SETLP
T bJSh ALOCK SIZE ARGUMENT

Argurent must Ye positive integer literal

A28 Substitution Uperation
SURSTITLTION OPERATION HAS ONLY 3 FIELDS

A,29 Corpilation of Argument Lists for CALL and DOARG Statements
INCOUPLETE LIST

Missing field after last "."
ILIEGAL FIELD IN LIST

Some field positien contains an illegal field designation
ILLECAL SEPARATOR IN LIST

Cnly “," is legal separator
ILiEGAL BUG CHAR IN LIST

5ingle character field i not A-Z or literal

A.3f leader Card
ARGLMENTS EKROR
Premature end on PROGRAM, SUBROUTINE, SUBPROGRAM cards with arguments before ")"

found

A,31 FORMAT Statement

MISSING ) FOR FORMAT
MISSING ( FOR FORMAT
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APPENDIX B

Proper Fo.mats for Driving FORTRAN Language Function Subroutines

In order to maintain good compatability between language systems in the ILLAR syste~
(ILLSYS), several special operation codes or statements have been included in each language o
allow driving of function subroutines peculiar to the other system languages. In che CSLx
language system, the FUNC BOU is provided to enable the use of FORTRAN language implicit
function subroutines. The function subrcutines are peculiar in that their result (always a
single result) is returnea to the calling program in the main accumulator of the 1604 computer .
The FUNC BOU allows these subroutines to be called and then to place their result in some
designated field.

Below we have listed proper forms o¢f BOU's for driving most of the standard FORTRAN
function subroutines, Fie¢ld A, any type of field designator, is the field where the returned
result will be placed. Arguments X, X1, and X2 may be any field descriptor or literal (2o

hollerith) as required by the function subroutine. For further descriptions and details about

any particular subroutine, the reader is advised to sce the ILLAR system librarian.

BOU Format

Operation of Function Subroutine

(A ,FUNC ,ABSF ,X) Absolute value of X in floating-point
(A,FUNC, INTF ,X) Truncation of integer part in floating-point
(A ,FUNC ,MODF ,X1,X2) X1 taken modulo X2 in floating-point

(A, FUNC,XMODF , X1 ,X2) X1 taken modulo X2 in fixed-point

(A ,FUNC, SINT ,X) Sine of X radians

(A ,FUNC,COSF ,X) Cosine of X radians

(A ,FUNC ,TANF ,X) Tangent of X radians

(A ,FUNC .ASINF,X) Arcsine of X in radians

(A ,FUNC,ACOSF ,X) Arccosine of X in radians

(A ,FUNC,ATANF ,X) Arc tangent of X in ridians

A ,FUNC, TANHF ,X) Hyperbolic tangent of X radians

(A ,FUNC, SQRTF ,X) Square root of X in floating-point

(A,FUNC, LOGF ,X) Natural log of X in floating-point

(A ,FINC , EXPF ,X) e to the Xth power in floating-point
(A,FUNC,SIGNF,\1,X2) Sign of X1 times X2 in floating-point

(A,FUNC ,XSIGNF,X1,X2) Sign of X1 times X2 in Sixed-point

(A,FUNC ,PWRRR,X1,X2) x1%2 in floating-point

(A,FUNC,PWRLI,X1,X2) %1%2 in Fixed-point

(A ,FUNC,PWRRI X1,X2) Xlxz, X1l in floating-point, X2 in fixed-point
(A ,FUNC,PWRIR,X1,X2) Xlxz, X1 in fixed-point, X2 in floating-point
(A ,FUNC ,RANF ,X) Random number gerecrator, X = 4, then result is

fixed-point; x = -, then result is floating-
point
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