
V9 C.

AD 699 928

CSLx (x--6,7) A PROGRAMMER'S MANUAL TO THE USE
AND UNDERSTANDING OF A LOW-LEVEL LINKED LIST
STRUCTURE LANGUAGE

W. Jack Bouknight

Illinois University
Urbana, Illinois

30 November 1969

0*

Distributud ~.. to foster, serve

and promote the nation's
economic development

and technological
advancement.'

CLEARINGHOUSE
FOR FEDERAL ScIENTIMI AND TECHNICAL INFORMATION

00:0.

0:0

0@

*0
00:0

000.3 0

This document has been approved for public release and Sale.

CSL-
(x = 6, 7)

A PROGRAMMER'S MANUAL TO THE USE AND UNDERSTANDING
OF A LO14-LEVEL LINKED LIST STRUCTURE LANGUAGE

by

W. Jack Bouknight

This work was supported in whole by the Joint Services Electronics

Program (U.S. Army, U.S. Navy, and U.S. Air Force) under Contract DAAB

07-67-C-0199.

Reproduction in whole or in part is permitted for any purpose of

the United States Government.

This document has been approved for public release and sale; its

distribution is unlimited.

Io

CSLX

(x - 6, 7)

A PROGRAMMR'S MA!UAL To THE USE AND UNDERSTANDIM

CF A LOW-LEVEL LINKED LIST STRUCTURE IANGUAGE

by

W. Jack Bouknight

November 30, 1969

I

:I

AC1QOWLEDGEMNTS

Special thanks goes to Sandra Bowles who typed the final draft oi this manual. Were

it not for her knowledge of publication preparation, the result would surely have been less

satisfactory.

As it is, time was not available to completely perfect the presentation and the reader

will have to bear with us as best he can. In fact, a special vote of appreciation must go

to those hardy pioneering souls who have been using the CSLx system for lo these many years with

nothing to guide them but direct communication with the author. Were it not for their helpful

suggestions and criticism, this language and this manual for its use might never have come to

pass.

Jack Bcuknight
November 30, 1969

I.

I
1

STABLE- OF CONTFXTS

Chapter

1. Introduction

2. List StruLtures, Blocks, Fields, Bugs and Pointers 3

2.1 Overview of Data Storage Elements .. 3

2.2 Storage Blocks ... 7

2.3 Fields ... 9

? 4 " ... 12

3. The Basic Syntax and Format of Statements and Programs in the CSLx System 13

3.1 Overview 13

3.2 Basic Data Descriptions...14

3.2.1 Internal and External Full Word Fialds 14

3.2.1.1 Internal and External Full Word Fiel.s 14

3.2.1.2 Variablu Length Fields and Field Strings 14

3.2.1.3 Pseudo-Subscripting of Internal and External FWF 17

3.2.1.4 Literals 17

3.3 Basic Operation Unit .. L9

3.4 Test Unit 20

3.5 "goto" Elements .. 21

3.6 Program Statement Elements ... 22

3.7 Test Statements 24

3.8 Source Language Formats in CSLx Programs 26

3.8.1 Commert Source Records .. 26

3.8.2 CSLx Source Records 26

3.8.3 ILIAR Source Records 28

3.9 Program Descriptions 29

4. Storage Allocation, Field Definition and Manipulation 31

4.1 Overview 31

4.2 Storage Allocation 32

I 4.2.1 Storage Allocation Setup Unit ... 33

4.3 Definition of Fields ... 34

4.3.1 Definition of Full Word Fields (FUF) 34

4.3.2 Definition of Variable Length Fields (VLF) 35

4.4 Block and Field Manipulation Operations o.................... 39

4.4.1 Block Manipulation Operations .. 39

4.4.2 Field Manipulation Operations .. 41

4.5 Special Debugging Aids - STATE and DUN 44

5. Logical Operations on Data .. 45

5.1 Overview ... 45

5.2 The Complement Operation .. 46

SL~ii

T

I

5.3 Logical OR Operation 47

5.4 Excluaive OR Data Operation ... 48

S5.5 The Logical AND Data Operation ... 49

5.6 Logical Substitution Operation ... 50

5.7 Logical Left Shift Operation ... 51

S5.8 Logical Right Shift Operation ... 52

5.9 Bit Counting ... 53

* 5.10 Bit Position Detection Operation ... 51

6. Mathematical Operations 55

6.1 Overview ... 55

F 6.2 Addition Operation ... 56

- 6.3 Subtraction Operation .. 57

6.4 Multiplication Operation ... 58

6.5 Division Operation ... 59

" 6.6 Data Format Conversion .. 60

6.7 Absolute Value Function .. 61

7. Subprograms, Subroutine and Functions .. 62

7.1 Overview .. t2

7.2 SUBPROGkA.I Oper itions .. 63

7.3 Fortran type Subroutine Operations ... 66

7.4 Fortran type Functions ... 68

8. Control Transfer Operations 69

S8.1 Overview ... 69

8.2 "Assigned" TRANSFER Operation .. 70

8.3 '"Computed" Transfer Operations ... 71

V 9. Relational Test Operations .. 73

9.1 Overview ... 73

9.2 Pointer Equality Test .. 74

9.3 Block Size Test .. 75

9.4 Data Equality Test ... 76

9.5 Data inequality Test ... 77

9.6 Greater Than Test. .. 78

9.7 Less Thin or Equal Test .. 79

L 9.8 Ones Pattern Test.. 80

9.9 Zeros Pattern Test ... 81

10. User Pushdown-Popup Data Stacks ... 8?

1 10.1 Overview ... 82

10.2 Definition of a User Stack ... 83

10.3 Pushdown Operation on a User Stack............ I............................... 4

10.4 Popup Operations on a User Stack ... 85

Ii iv

I
1
!

11. Input/Output of BCD Information with Format Conversion 86

11.1 Overview 86

11.2 Initialization of Input/Output Operations................................... 87

11.3 Data Fetch and Store in An I/0 Operation 89

11.3.1 Data Storage During An Input Operation 89

11.3.2 Fetching Data During An Output Operation 90

11.4 I/O Area Termination 91

T12. Sample Programs ... 92

12.1 Overview .. s 92

12.2 Sample Program •o Sort A String of Integers 96

12.3 Sample Program to Read BCD Records and Determine Frequency of
Character Usage and Average Length of Word 103

APPENDIX A Ercor Messoges106

A.1 Statement Breakdown ... 106

A.2 Field Designations .. 106

A.3 Operation Block Processing ... 106

A.4 Unknown Data at End of Statements .. 107

A.5 IF and XOT Statements .. 107

A.6 OUTPLT Stetement ... 107

A.7 INPUT Statement 107

"A.8 TRANSFER Statement ... 107

A.9 SWITCH Statement.. 108

A.10 GL0BAL Statement... .108

A.I1 POPUP Statement.. 108

A.12 PUSHDOWN Statement ... 108

A.13 DEFINE Statement.. 108

A.14 CALL Statement.. 1.... 108

A.15 ENTRY Statement .. 109

A.16 DO ENTRY Statement..109

A.17 CALL ENTRY Statement ... 109

A.18 DETEILR4AL Statement .. I...........109

A.19 DEYSTACK Statement ... o10n

A.20 STACKL Statement .. 109

A.21 UNSTACK Statement110

A.22 Hollerith Literals .. 110

A.23 Blcck Duplication Operation 110

A.24 Field Contents and Field Definition Stack Operation 110

A.25 FEED Operation .. 110

A.26 TAKE Operation ... 111

-VV

[• A.?7 Storage Setup ... Ill

I-

r-

1..28 Substitution Operation 111

A.29 Compilation of Argument Lists for CALL and Doarg Statements Ill

A.30 Header Card ... 111

A.31 FORMAT Statement .. ill

APPENDIX B Proper Formats for Driving FORTRAN Language Function Subroutines 112

iv

I

E v

I*

I
I

CHAPTER 1. Introduction

In keeping with the effort to upgrade the CSL computer system in software, a need

was recognized in the summer of 1967 for some type of list structure manipulation language

which could be implemented on the CDC 1604 and integrated into the new CSL computer

f operating system ILLSYS.

During the sunmer of 1967, the author was introduced to L6 (Bell Laboratories

Low-Level Linked List Language) which was developed at Bell Labs by K. C. Knowlton. We

reproduce some of the introductory comments by Mr. Knowlton from his article describing

the L system.1

Bell Telephone Laboratories Low-Level Linked List Language (L6,

pronounced "L-six") cortains many of the facilities which underlie such

list processors as IPL, LISP', COMIT4 and SNOBOL 5, but it permits the

user to get much closer to machine code in order to write faster-running

programs, to use storage more efficiently ant to build a wider variety of

linked data structures....

.... Impnrtant features of L6 are- the availability of several sizes

of storage blocks, a flexible maeans of specifying within them fields con-

taining data or pointers to other blocks, a wide range of logical and

arithmetic operations on field contents, and an instruction format in which

remote data is referenced by concatenating the names of fields containing

the succession of pointers leading to this data....

L .. 6.L data structures are made by fetching from a storage allocator blocks

of many sizes, and linking them by pointers which are planted in fields which

I the programmer himself defines... Relative sizes of blocks go as powers of 2;

thus the storage allocator can -,asily split large blocks of free storage

into srmller ones and, conversely, c~n easily fit pieces back together to

I reconstitute large blocks if :nd when their parts are simultaneously free

6
.... In general, L is useful where storage allocation is microscopic

and dynamic or where the programmer wants the pattern of pointers among data

items to correspond closely to the physical or logical structure of the

objects with which his program deals (electronIc circuits, corunicatiorn

II

ii

networks, strings of text, parsed sentences and formulas, search trees) as in

simulation, game playing, symbol manipulation, information retrieval and graph

manipulation. It can also serve as the means for implementing quickly, and

in a relatively machine-independent way, higher-level list languages which

contain more powerful op2rations for specific problem areas.

The CSLx (x = 6,7) system is the result of implem•mnting the basic concepts of theI 6 language on the CDC lO• computer system under the control of the Illar System (ILLSYS)

developed by the Computer Group at CSL. The CSLx language is a superset of the original

L6 language and includes the following features:

4
-- two methods of storage allocation

S-- direct coupling to FORTRAN system functions and subroutines

-- contains facility for embedding machine language statement-
(ILLAR language)

-- floating point arithmetic

-- user defined pushdown-popup stacks

-- generalized format I/O statements

-- computed control transfer statements

-- pseudo-subscripted field declarations

-- DO operations with arguments

The organization of this manual is somewhat like the structure of a tree. The

entire work requires a good foundation of knowledge of the basic precepts of linked-list

storage systems. Ch4pter 2 gives a brief initial development of strings, storage blocks
and pointers. Chapter 3 discusses the basic syntax of the language and gives the formats

of the statements, operations and programs in the language,

"The trunk of the tree is made up of the operations of the CSLx language. These

include storage control (Chapter 4), data manipulation (Chapters 5 - 6).

Extending from the trunk of the tree are the branches which correspond tor •operations statements of the CSLx language. These include control of program flow

(Chapters 7 - 8) and decision-making statements (Chapter 9). Programmer controlled push-

pop data stacks and basic I/0 statements complete the manual (Chapters 10 - 11) followed

by some sample programs (Chapter 12).

This manual is a compromise between an outline and a textbook. It is assumed that
programming experience has been acquired by the reader, not necessarily with list-structures.

We make no attempt to treat list-structures thamselves beyond a brief look at linked lists

since CSLx is a general blocked-storage syste-i. If the reader needs further information

about the ILLSYS operating system on the CSL 161A computer, he should consult with members

of the Computer Group.

CHAPTER 2. List Structures. Blocks. Fields, Bugs and Pointersl
Section 2.1 Overview of Data Storage Elements

The general method of data storage used in computer memories for mathema.ical programs

is the array structure. An array is a block of contiguous memory locations (words) where the

I lowest word is labeled with the name of the array and individual elements of the array are

obtained by specifying a subscript (index) which when appended to the array name uniquely

designates the desired element. As an example, assume an array ALPHA exists. The tenth

element of ALPHA would be specified bv ALPHA(9) where the array begins at ALPHA(0).

Relationships between elements in an array are specified by operations on the indices

of the elements, Suppose ALPHA contains x,y pairs of cartesian coordinates of some curve.

An x coordinate lies in element ALPHA(1) and the y coordinate lies in element ALPHA(I+l).

Thus, given the index I of some % coordinate in ALPHA, the index for the associated y

coordinate is I+1. Furthermore, given the index I of the x coordinate of some point on the

curve, the index of the x coordinate of the next point is 1+2.

1 Many cases of data storage arise where the relationships between data elements or

blocks of data elemEnts are not conveniently specified in terms of operations on indices c

linear arrays. To satisfy this need for a more general data linking, list-structures (strings)
were deve loped.,

The key defininS feature of list-structures is an element called the link. Relation-

ships between blocks of data are specified in the manner in which the blocks are linked

together. What is a link? An illustration if we may.

Suppose we have three (3) sets of cartesian coordinates, xlYl, x 2 y 2 , and x 3 y 3 .

Each coordinate is contained in one computer word and the Z coordinate li~esin word-•-1

where the x coordinate lies in word m.

Let us append one more computer word to each coordinate *air to form a block of

three (3) words. This extra word will be used to hold a link for use in "stringing" the

blocks together into a list-structure.

I Assume that the coordinate pairs lie in cmputer word blocks beginning at locations

Pl, P2 and P3 (called the base addresses of the blocks). Let us define a pointer as the

contents of a computer wor~d which contains the computer representation of time base address of

some coordinate block.

Now let us place a pointer in the third word of each block sks follows:

i3

e

xlY1 block third word holds P2

Sx2 Y2 block third word holds P3

x 3 Y3 block third word holds P1

We now can state that the third word of the x ly. block contaii.s a pointer to the x2 Y2 bl.ck,

etc, We pictoTially represent out data in the figure below. By knowing which block we

are looking at in any instant in time, we can sear--h the third word of the block for a pointer

to another block. This concept states the link between the two blocks.

Block P3
X, X3

!.YJ Y3

Block P1

TX2

V Block P2

SLiked List of Three Blocks
Figure 2.1

Note that the three coordinate blocks may lie in non-contiguous sections of the com-

-.puter memory. This is the inherent power of the list strutture vi•n combined with the ability

of using the links to specify relationships between data blocks in storage analogously to the

relationships in the actual conceptial data.

The actual representation of a pointer in a computer system with 32,768 words of

1• memory would be a 15-bit binary address of the base address of some block of words, Typically,

the same computer will have a word size of N bits wheze N > 15. Thus, we are wasting N-15 bits

of the third word of each coordinate block in the above example. We can solve the problem of

, wasted space by a concept of subdivision of a word into elements called fields

Fields are usually defined in a global manner relative to block base addresses. They

are also specified as all b.ts in a computer word delimited by a left-most bit and a right-most

bit. For instance, suppose we define field POINT as the tnird wort' o, any block, and

4

consisting of the (n-16) bit through the (N-i)st bit in the word.. Thus, the pointer in

the Pl block would be found in element PI(POINT).

Note that the form of the descriptor of the desired element is analgous to the

array subscript notation. Because pointer search routines actually trace the pointers in

the description to reach the desired data el"ment, t,,ere is no reason why successive pointer
"!,strings" cannot be used. By starting at block Pl, the pointer in Dlock P2 can be addressed

by the descriptor PI(POINT(POINT)). The search starts at block PI and its field POINT.

Because PI(POINT) is not the end of the "string", the field Pl(POINT) is accessed for the

pointer P2 and the search continues at block P2.

At this point the original descriptor has in effect been reduced to P2(POINT) and

since this terminates the "string," the field POINT is accesspd for a data element, the

pointer to P3. We are now free to define the reamining (N-15) bits of word 3 as some other

data or pointer field if we desire.

A quick example of a conceptual data structure that is easily stored in a computer

memory in list-structure form is a family tree. Using a block and field structure:

Parent'- Name

Child #1 Child #2

Child #3 Child #4

oR-i4si

Block with Five (5) Fields
Figure 2.2

we might arrive at the structure in Figure 2.3.

Each pair of parents is indicated by a block in the structure. The first word of

the block holds the name of the parents. Each field CHILD #x hol•s a pointer to the resulting

block defined for that child.

5

We will nat discuss the basic cheory or operations on list-structures any further

at this point. Examples of their usage will be given later with particular emphasis on hov

they my be handled using the CSLx language.

We begin at this point to elaborate on the CSLx system, its syntax and usage.

J. M. ALLEN•-~~ ~ A •°"LLEN
Charles Jim

t"t

Charles Allen Roy Allen BDill and Betty Dunn Jim Aller'

Peg eJohn JCraig Ralph

1.

L

Family Tree Structure
Figure 2.3

L6

Section 2.2 Storage Blocks

The basic element of storage in the CSI.x system is the block. A block may contain 2 N

words in the CSL6 system (N 0 0-7) and 1-32 words in the CSL7 system. The words in a block are

numbered contiguously from zero (0) to N-i for a block of N words. For purposes of discussion,

we will adopt the notation N-block when we discuss a block where N is the number of words in

the block.*

The global storage area (GSA) is defined at program loading time as the "free storage"

area bounded at the low end by the system location .*NEND and at the upper end by location

Co,21BEG. MEMENID is the first location above the end of the user's program and subroutines.

CO24BEG is the lowest location of COM4MON as defined in the user's program and subroutines.

Control of the use of the GSA is performed by two system routines: L6STORAG or

LSTORAG. The GSA is partitioned into blocks and strung together in lists called the unused

\-blocks lists (LBLN). The user must initially instruct the storage allocator (SA) (either

L6STORAG or L7STORAG) as to the maxiru:' size block which will be needed by his program. Storage

is then partitioned into as many maximum size blocks as is possible. Then the remaining storage

is partitioned into the next smaller size of block. This continues until all of GSA is parti-

tioned into blocks.

All of tte I-blocks are then strung together in the unused 1-block list (UHLI). All

of the 2-blocks are placed in the UBL2. This process continues up to the M-blocks where M is

the maximum size block to be needed.

During the execution of the user's program, requests are made to the storage allocator

(SA) for blocks from the GSA. If such a block is available, the program receives from the SA a

•ointer which enables it to worn with the requested block. Pointers are 15-bit quantities

and therefore, require that fields where they are held are large enough to hold at least 15-bits

of information. Further discussion of pointers must await a description of fields and buss

which are described later in this chapter.

What happens if no block of the requested size is imdiately available from the SA?

For this occurrence, separate actions are taken in the CSL6 and CSL7 systems. WQ discuss the

CSL6 system operation first,

Suppose the program requested an N-block from storage. Since the UBL, is empty, the

SA searches the higher UBLi for the next UHL which is not empty. If UBLk contains a K-block,

the following occurs.

* OaI

Original notation in Bell Labs report.

7

Suppose N = 2J and K = 2'. Then the K-block is divided into two L-blocks where

L = 2 These L-blocks are placed in UBLL. If N 0 L, then K is set equal to L and the

division process is repeated with one of the blocks from UBLL.

When N = L, a block of the requested size is now available and the SA completes its

operation by passing the pointer of the requested block to the program. The remaining half of

the divided block is left in UBLN.

The possibility exists that no UBI i above UBLN contains a block., In other words,

there are no other unused blcks in the GSA that are larger than the requested size block.

When this condition occurs, the SA performs a "garbage collection" operation. "Garbage col-

lection` consists of recombining smaller blocks into larger blocks until all possible pairs have

been recombined., A complete recombination is performed on all blocks smaller than the requested

size starting with 1-blocks and working up. If, after "garbage collecting" is complete, there

is still no block of the requested size, then a system error message results informing the user

that no more unused blocks of the requested size exist and a return is made to the system

monitor (CSLNCS).

In the CSL7 system, the same procedure of dividing larger blocks into smaller blocks

is used to produce a block of the required size. Suppose the ?rogram is requesting an N-block.

The SA finds that it has no N-block but it does have a K-block (K - ?1'4 for purposes of dis-

cussLon). The SA will simply divide th- K-block into an N-block and a 4-blocko The 4-block will

be added tz bBL 4 and the pointer for the O-block will he returned to the program.

No recombination is allowed in the CSL7 system. The reason for this will be explained

later. Because of no recombination, the SA must declare no more unused blocks if it cannot find

some UBL 1 higher than UBL,. with at least one i-block available.

1.

I8

II

Section 2.3 Fields

I The basic element of storage for data and pointers is the field. Fields fall into

two (2) categories: Fullword Fields (FWF) and Variable Length Fields (VLF). A fullword

field (FWF) is one 1604 word, i.e., 48-bits in length. Variable length fields (VLF) may be any

length from l to 48 bits long and ray reside in any portion of a 1604 word.

VLF are designated internal to storage blocks while FWF are separately defined in the

user program or his subroutines. Litcrals are F1TF and are defined in each user program or

"subroutine. Literals may be read from but not written into during program execution. FWF

defined internal to a given program or subrrutine for use as a data storage location are called

internal fields (IF). FeF used in a program or subroutine for data storage but defined ex-

ternally in some other program or subroutine are called external fields (EF). The various

means by which FWF are designated in a program or subroutine will be detailed in a later section.

Let us turn our attention for the present to a discussion of variable length fields

"-. (VLF). The VLF and the block structure are the basic attributes of CSL6 and CSL7 that give the

languages their power and utility.

Recall that a block is a contiguous set of 1604 words and pointed to by a pointer.

Figure 2.4 shows the schematic of a 4-block. The divisions within the block are called VLF.

They may lie anywhere within the block, they may overlap one another, and they may even coincide

in some cases.

Two different arrangements are shown: one for a CSL6 block and one for a CSL7 block.

Two areas in the C, ,6 blockTand one area in the CSL7 block)are crossed out.

"-. These areas are:

(Word 0 Bits 0- 8
Word 0 Bits 24-26

-. •) Word 0 Bits 0- 5

CSLx system information is kept in these areas and therefore, the user is not allowed to assign

"VLF covering these areas.

A VLF is defined by specifying three (3) parameters:

"1. Word bias

2. Left bit boundary

3. Right bit boundary

S-- A itsting of the parameters of the VIN in Figure 2.4 will best illustrate their meanings. The

VLF letter name (which may be A-Z, 0-9) is shown in the upper right hand corner of each VLF area.

*9

Word 9 24 27 33 47

a C A

0

E F M DIt
1=

NG
2

H

3

CSL6 Block

Word 0 9 24 27 33 47
SB C A

EF M D

2t p

3
NG

H
4

t.

CSL7 Block O-,46,

A 4-1m in CSL6 aad CSL7
irege 2.4

10

Word Left Right
Field Number Bit Bit

A 0 33 47

B 0 9 23

c 0 27 32

D 1 33 47

E 1 9 13

F 1 24 32

C 2 ¢ 47

i1 3 0 47

M 1 24 47

N 2 0 47

Note that \LF G and N coinci*e and VLF M overlaps F and D.

"The user must reme.'ber the following rule concerning VLF specificationse every VLF

specification applies to every block in use by the user program or subroutine. The word bias

parar*ter is relative to the beginning of any block and when taken together with the pointer

to a block, the result is a -nique address in the 16M4 memory.

II

Section 2.4 "Bugs"
t An ele2tronic computer is usually designed with one or more full word registers where

data manipulation may occur. In the CSLx systems, 26 registers, referred to as "bugs," haveIT been set aside for use as data registers or pointer registers. Thebe registers, hereafter

referred simply to as "bugs," are actual 1604 memory locations, not hardware registers, but the

use is the same.

The notation "bug" comes from the original Bell Laboratory L6 Report . Linked-list

structures can be likened to beads on a string. Since "bugs" hold pointers to blocks which may

reside on the string, the blocks are referenced through the "bug" depending on where the "bug"

points, or for the analogy, where the "bug" sits. Moving pointers up and down the list corre-

sponds to the "bug" crawling up and down the string.

As a general descriptive convention, a "bug" is indicated pointing to a block as shown

in Figure 2.5. "Bug" B holds the pointer to block X.

Any one of the 26 "bugs" may also be used for data manipulation. A "bug" is 48-bits

7- in length and therefore, falls into the FWF category, They are referenced in the CSLx program

I- with a field string field descriptor which will be described in Section 3.2.1.2.

"Bugs" are automatically set up by the CSLx compilers in the user's MAIN program.

Each "bug" is also made as an entry point. Therefore. all subroutines reference "bugs" as

external syubols and allow a single set of system "bugs" to suffice for a1l the user's

program and subroutines. Obviously, this means that not more than one MAIN program may b-!

loaded into memory at a given time.

1.

I (:)*.-bug" B

-B Al

1 |.Block X

I-

A 2-Block Pointed to by a "Bug"
Figure 2.5

1" 12

U

IT!

I CHAPTER 3. The Basic SYntax and Format of Statements and Pro rams in the CSLx S stem

Section 3.1 Overvie,

Syntax descriptions of the ;,asic elements of the CSLx language are our firstorder of business (Sec. 3.2 - 3.5). The discussion will then advance to combinations of
the basic elements into :he various statement forms (See. 3.6 - 3.7). Finally, we describethe form of the programs end subroutines (Sec. 3.8 -3.9).

1I

I

-I.i

* 1.

Is

I

-a
13

Section 3.2 Basic Data Descriptions

Two classes of syntax elements describe data. The deta descriptor is the

notation for describing some field in core storage whether it be a full word field (FWF) or

a variable length field (VLF). Literals describe explicit forms of data such as numbers or

hollerith character strings.

Section 3.2.1 Data Descriptors

There are three (3) types of data descriptors: internal full word fields (IF),

external full word fields (EF) and field strings which reference VLF.

Section 3.2.1.1 Internal and External Full Word Fields

Internal full word fields (IF) are used for reference to FWF whizh are defined

internally to the program or subroutine where the reference is made. Any FWF is labeled

with up to eight (8) BCD characters under the label convention of the ILLAR language,]7

The data descriptor has the for.,:

where XXXX is the label attached to the FWF. A form of pseud&-subscripting is allowed on

IF's. A pseudo-subscripted IF has the io. n:

/XXXX+(exp)

where (exp) is an arithmetic expression made up of the operators + and/or - and literals

and/or other data descriptors. Section 3.2.1.3 discusses pseudo-subscripting further.

External full word fields (E-) follow the bame conventions a- for IF except that

the referenced FWF :s defined in a program or subroutine other than the one in which the

reference is made. The form of the data descriptor is-

*YYYY

Pseudo-subscripting is also allowed in the same manner ac for IF.

Section 3.2.1.2 Variable Length Fields and Field Strings

A variable length field (V!Y) is referenced through a field string data descriptor.

A field string describes a string of p#.inters which eventually point to the destinatiorn field

where the desired data is to be found or stored. Recall that a pointer denotes the Ot. word

of some n-block in memory. The notation for discussion is shown in Figure 3.1. The basic

14

format for a VLF field string is as follows:

I BTT...TR

Each of B, T and R are single characters. B deLignates one of the 26 "bugs" (A-Z). T and

R designate field name3 (A-Z, 0-9).

f The "bug" 13 and eaci T designate where pointers are to be found. R is a field

to be referenced, either for fetching or storing of data or a Llinter. To get to R, a

"trace" is made in the following manner:

The "bug" contains a pointer to some block. If there are no T in the

field string, then R lies in the block "pointed to" by the "bug." If

there are one or more T in the field string, then the first T field

lies in the block pointed to by the "bug" and contains a new pointer

to a block. Each successive T field lies in the block pointed to pre-

viously and contains a poii.ter to a block. The R field lies in the

block "pointed to" by the last T field and can be referenced from there.

SA special case of the VLF field string eccurs when only one alphabetic character appears in

the stzing. There ate, therefore, no T's and no R. Thus, the indicated "bug" is to be

refererced directly for fetching or storing.

Let us illustrate using Figure 3.1. There are three (3) VLF singled out and

numbered as ®O and Q VLFQDmay be referenced in one of the following ways.

3CM (1)

BCBM (2)

CBM (3)

BDCBM (4)

Let's look at field string (1). "Bug" B "points" to block 1 whose C field "roints" to

"block 2 whose M field is the desired field for reference. (2) states that "bug" B

"points" to block 1 whose C field "points" to block 4 whose B field "points" to block 3

which contains the M field. The reader should now be able to follow the "trace" to arrive

at the desired M field by any of the indicrted paths. For VLFO only one path can be

taken:

BAD

15

I

Block 1 Block 2

5 A

D
C

0-

N4

8ioxck 3 BIQ A

Block 4

A Typical Linked-List Structure
Figure 3.1

16

While for VLF) the following paths may be taken:

BCA
CA
EDCA

The reader is encouraged Lo plot the paths from either of the "bugs" B and C to any of the

VLF's for further practice and understanding of the VLF referencing algorithm.

Section 3.2.1.3 Pseudc-Subscripting of Internal and External FW

In order to allow completely general compatibility between the CStx list-structure

system and the more common array-structured systems, FORTRAN and ILIAR, some form of sub-

scripting in linear arrays is necessary.

In the CSLx system, an IF or EF may be treated as a linear array and indexed in a

pseudo-subscriptive manner by use of a data descriptor of the following form:

/field + index 1 + index2 + indexN

*field + indexl + index2 + indexN

field is the label assigned to the referenced EF or IF which becomes the zeroth element of

the array field.

The string of indexl elements separated by + or - forms an arithmetic expression

which when evaluated provides the bias used to index the array field. The elements indexl

may be any form of data descriptor or decimal/octal literals.

Some examples will further illustrate:

/BUFFER+IOB internal field - octal literal index

/BUF+25 internal field - decimal literal index

/LIST-/INDEXCT internal field - internal field index

/STRIG-BAD internal field - string index (field)

/BUFR+*EXTINDEX internal field - external field index

*BUFA+345B external field - octal literal index

*BLFB-21 external field - dec'til literal index

*BUFC-/TI•f)EX external field - internal field index

*BUFRA+flART external field - string index (field)

*BUFL-BUFEXT external field - external field index

3.2.1.4 Literals

Literal data descriptors explicitly define data during an operation. There are

17
i

four types of literal elements allowed in CSLx programs:

1. octal

2. decimal

3. floating point

4. hollerith

We choose not to discuss each type of data in detail because the literal conventions for

CSLx prograes are identical to the conventions of the ILMAR language system. The ILLAR

system manual may be referred to by the reader to clarify his questions.

The type of literal allowed in a given situation varies greatly and s best ex-

plained when necessary.

IIL

Ii

ii

Section 3.3 Basic Operation Unit

For compatibility reasons, the same form for the basic operation unit as used in

L6 is maintained in the CSLx systems. The format is as follows:

(as,op,b,c,d)

op is a series of characters denoting some available operation in CSLx and perhaps one of its

modes of operation. As an example, the operation code AO denotes the Addition operation with

the operands assumed to be Octal integers.

a, b, c and d, some of which may not be present, designate tields uhere operands may

be fetched or iesults stored during the course of the operation. A complete description of

the arrangements for all of the possible operations will be made in the appropriate section

dealing with each operation. We present here for illustration several BOU's simply to show

form as they might appear in a CSLx program:

(A,E,l)

(/TDiE ,A, I/CLOCK)

(*DATE ,A, -6. /BUFFER+DMEX)

In the CSLx system. spaces are ignored except internal to BOU's. There they are counted
necessarily because of the possible inclusioc in a hollerith literal.

1

19

I,.
'Ir

Section 3.4 Test Unit

The test unit (TO) is a special operation unit which makes a test between two items

and produces a "Vote" of yes or no for a result. Test units are allowed only as part of a

F" test statement (Section 3.7).

The format of the TU is:

(a,tb)

a and b are data descriptors or literals. t is some relationship (e.g., >, >, 0, etc.). The

TU determines if atb is true, yes or no. The yes or no "vote" is used to make a test state-

men.t decision during the execution of the CSLx program.

Further discussion of the Lelational test operators will be made in Chapter 9.

120

1"
!a

Ii

1:.
!2

Section 3.5 "goto" Elements

The rost basic for- of control transfer allowed in the CSLx language is the "goto."

A "goto" is simply the label of the statement to which control is to be transferred. This

oper&tion is the equivalent of the CO TO statement in FORTRAN., However, only the label of

the destination statement is needed.

There are several CSLx syste.i "goto" elements which are reserved for special pur-

poses and therefore, the user may not use them as statement labels:

EXIT

DONE (Section 7.2)

FAIL (Section 7.2)

The DONE and FAIL "goto" elements are connected with subroutine calling operations and are

explained in the indicated sections. The EXIT "goto" will cause a transfer of contrel to

the END statement of the program for a subsequent exit to the calling program.

21

Section 3.6 Program Statement Elements

In a CSLx prograra, there are two classes of statements: declarative and executable.

The declarative statement performs non-executable operations such as st.rage space definition,

global space linkage, program definition, etc. All other statements are called executable

statements because they compile operations which ate executed only at run time.

For purposes of outline, we choose to list the types of statements at this time

but we defer any elaboration until the appropriate section. The declarative statements are:

GLOBAL (Section 4.3.2)

DEFINE (Section 4.3.1)

ENTRY (Section 4.3.1)

DO ENTRY (Section 7.2)

CALL ENTRY (Section 7.3)

EXTERNAL (Section 4.3.1)

Under the heading of executable statements, we have three classes, composite, test,

and primary statements. We will discuss in detail the makeup of the composite statement in

a moment. The test statement discussion is reserved until Section 3.7. F)r now, we simply

list the members of the primary statement class and give the definition of the class as those

statements whose formats are specifically related to their individual functions:

INPUT (Section 11.2)

OUTPUT (Section 11.2)

ENDIO (Section 11.4)

TRANSFER (Section 8.2)

SWITfCH (Section 8.2)

POPUP (Section 4.4)

SPUSHDOW% (Sect ion 4.4)

CALL (Section 7.3)

DEFSTACK (Section 10.2)

STACK (Section 10.3)

UNSTACK (Section 10.4)

The statement most used in a CSLx program is the canposite statement. The name

of the class is derived from the fact that the statement is made up of a composite of basic

operation units (BOU), "goto," and sometimes ended with a primary statement used as a unit.

The arrangement or presence of any or all of the three types of urits in a comosite

statement is governed by the following rules:

1. A composite statement ends after a "'goto" or prinary statement unit.

22

I.

'~I

2, A composite statervent may contain as many BOU elements as desired.j 3. Only one "goto" or primary statement unit may appear in a composite statement.

After the reader has read later sections and -rudied the sample programs, thl form

of permissible composite statements will he more apparent.

I
I
I
I
I
I
I

1

*

I

!

I

I
I

! 23

Section 3.7 Test Statements

Test statements are provided for conditional transfer of control in a CSLx program

during the execution run. One or more test units (TU) are execetted and their "votes" tallied.

Action is then taken based on the "vote" according to the type of test statement.

There are four (4) basic test statements covering the four (4) possible outcomes of
"voting" tabulations:

IFALL

IFNONE

IFANY

IFNALL

Two shorthand test statements:

IF

NOT

are allowed. IF functions as IFALL and NOT functions as IFNONE with the restriction that

only one (1) test unit be used in either case.

The general format of the test statement consists of four (4) parts:

1. IABEL

2. TYPE

3. IF computation

4. Result computation

The LABEL is a standa:d statement label. TYPE is one of the six (6) ueiemonics specified

above. The IF computation is a string of one or more TU's (except for IF and NOT)., The re-

sult computation may be of twn forms.

I. a "goto"

2. a composite statement proceeded by the key word THEVN

As we give a brief explanation of the four basic test statements, we will also

illustrate to clarify the actual source record form.

WALL (A,L,3) (BGZ) THEN (A,.,B) EXIT

IFALL (K,E,3) (J,N,4) BITE

The IFALL statement transfers to the next consecutive statement if any TU "votes"

n.o.

24

IFNONE (A,G,I) (A,I,8) BADTAPE

The IFNONE statement transfers control to the next consecutive statement if any TU

"votes" yes.

IFANY (A,L,2) (B,L,3) HEN (A,E,B)

The IFANY statement transfers control to the rnext consecutive statement if all TJ's

"vote" no.

IF "LL (G,G,H) (H,G,I) THEN (I,E,G) OUT

The IFNALL statement transfers control to the next consecutive statement if all

TU's "vote")es.

Note that we have essentially stated the action taken by these test statements in

the reverse manner. This is intended to require the reader to do some thinking about the

operation of test statements. A good fundamental understanding reduces programmiung errors

and reversed decision-making is among the most comnon ones.

25

.25

Section 3.8 Source Language Formats in CSLx Programs

There are three types of source language records in a CSLx program:

1. Comment

2. CSLx source

3. ILIAR source

All three classes of records are ton (10) words long in BCD format.

Section 3.8.1 Comment Source Records

The comment source record class contains just three records:

1. Comment record
2. CSL6 switch record

3. ILIAR switch record

Comment records contain an asterisk (*) in col. t iith columns 2-80 available for

user typed material. Comment records are not compiled but are listed on both the CSLx

source listing and when requested, the subsequent WLLAR listing of the compiled program,.

The CSLx system has the facility for programmer selection of either CSLx language

or ILLAR machine language internal to any CSLx program. To accomplish a switch, either of

the switch records:

-- ILIAR col. 1-7

-- CSL6 col. 1-6

is placed in the program. All following records up Io tne next switch record or tne end of

the program will be treated as of the type of language selected, Even though the length of

records in either language is the same,note that comment records assume the tab information

of the language selected.

Section 3.8.2 CSLx Source Records

These are four fields in the CSLx Source Record:

1. LABEL col. 1-8

2. CHAIN col, 9

3. STATEMENT col. 10-72

4. USER col. 73-80

26

I

Tab information is present in the ILLSYS system to allow tab operations to colurm-

T 10 and 73. Moving to column 9 requires eight (8) spaces,

The LABEL field Serveb two purposes: 1) to provide a means for statement refer-

encing during FDIT operations on the CSlx program and 2) to provide symbolic references for
S

transfersof control inside or out of the CSLx program, The convention for statemer. labels

is that established for the ILIAR assembly language and we repeat the convention briefly

for completeness.

ScLabels must be left-justified in the field and are reatricted to eight (8) BCD

*characters or less.E All of the alphabet and numeric characters may be used in labels subject

to some restrictions described below. In addition, two special characters, the period "."

and asterisk "'" may be used with the following restrictions: an asterisk may end a label

but should not appear within it. A period my not begin a label but may appear within it or

at the end.

The following restrictions on symbols beginning with numeric characters are

necessary to avoid conflicts with the convention on laterals:
I

1, A single digit number may not be followed imnedietely by one of the

letters f, p or h.

2. Any combination of numeric characters may not be followed immediately&

by one of the letters b, d, or e.

I
For illustration, we list here some of the acceptable and not-acceptable forms of labels.

SAcceptable Not Acceptable

I (a)
al *abc

abcdefgh read*a

231nm a+b

read* lb

T a.b a

P..c .. twofive

The STATEMENT field holds all CSLx statements. Although the field is only 63 char-

acters long, extra long statements can be placed in the STATEMENT fields of successive source

records by placing a non-blank character in the CHAIN field of all records in the "chain"

but the first. Note that a chain is broken by the next source record with a blank CHAIN

field or a comment class record. Labels placed on "chained" records (col. 9 non-blank) will

be ignored.

1 27

The USER field is simply an eight (8) character field which is reproduced on the

CSLx source listing only and can be used in any way desired.

Section 3.8.3 ILMAR Source Records

The conventions of the iLLA.R system are well wItten up in the ILLAR manual.. For

further details, the reader should contact the syste- librarian.,

IF8
i ?"

'I
or

12

Section 3.9 Program Descriptions

A program written in the CSLx (x = 6,7) language system may take one of three

f orns•

1. Msin program

2. Subprogram'

3. Subroutine

Each progra-. begins with a header record and ends with the END record. The END record con-

tains E.N in columns 10-12 and blanks in the remaining coluims. The END card way be labeled

if the user wishes.

Each of the three program classes is identified by a unique header record:

1. Main prcgrams - PROGRAM

2. Subprograms - SUBPROGRAM

3. Subroutine - SUBROUTI:.E

The descriptive word begins in column 10 of the neader record. The descriptive word is

followed by a space and then the program name, up to eight (8) BCD characters.

If arguments are present for the program, they are listed by label on the header

recorO following the name, enclosed in parentheses. and separated by commas. The following

are some examples of header records:

PROGRAM TEST

SUBPROGRAM TESTER(A ,TIME)

SUBROUTrINE CLOCK(ARG)

To initialize the ILLSYS system to read CSLx format records, a CSL6 language dir-

ective should be placed just prior to the header record. The language directive is a record

containing -- CSL6 in columns 1-6 of the record followed by blanks in the remaining coluums.

A program set is a collection of programs which are pl3ced in consecutive order on

t some input medium to be read and compiled in contiguous order. A program set begins with the

first header record read from the medium and ends with a FINIS record. The FINIS record

contains t NIS in columns 10-14 with blanks in the remaining columns. In accordance with

ILLSYS conventions, two (2) end-of-file records are written after the FINIS record on the

med ium.

A program set may contain any number and arrangement of programs from the three (3)

classes of CSLx programs with the following single exception:

29

I

THERE MAY BE ONLY ONE (1) MAIN PROGRAM IN A PROGRAM SET.

Further flexibility in programming is provided by allowing the intermixing of CSLx system

programs and ILLAR system programs in the same po _ra _ set. The user may also store his

source records in SQUOZE BCD format which allows a condensing factor of 5 or 6 in the length

of the pfogram set on the input medium.

r The following is an illustration of a representative program set.

S--CSL6

PROGRAM M IN

f

END

-- CSLb

SUBPROGRAM ROUTINE I(ARGL ,ARG2)

END

-- END

-- ILIAR
SIDENT ILLAR6

END

-- END
-- CSL6

7- SUBROUTINE SUBI

---END

30

I#

CHAPTFR 4. Storage Allocation, Field Definicion and Manipulation

Section 4.1 Overview

The first operatiotl which must be performed when a CSIx program is executed is to

set up available storage -n a block structure format, The next operation usually performed

is to define the fields which will be used in the blocks. The narm of the rest of the game

is manipulation of data stored in the fields of various blocks.

The first two topics of this chapter will be presented in detail. The third will

be only a beginning since manipulation covers many areas (later chapters). The types of

manipulation which will be discussed in this chapter are data - independent such as pushdCwn-

popup in stacks, field interchange, etc.

Since we begin in this chapter to show exact formats of statements and operation

uOits, we will also begin the practice of giving an example in detail for each new disclosure.

31

I Section 4.2 Storage Allocation

In Chapter 2. we explained the two methods of storage allocation available to the

use of the CSLx system.

The method used in CSL6 is the fast storage 1l1ocation developed ly K. C. Knowlton.

This method of storage allocation allows for complete recombination of smaller "free" blocks

if possible and therefore, allows greatest flex-ble usage of storage. The penalty paid is

in the power of 2 size of blocks.

In the CSL7 system, the flexibility of variable size is allowed at the expense of

recombination which somewhat reduces flexibility of storage, The main reason for developing

the CSL7 type of storage allocation was due, however, to a need on the part of some users to

cut down on the amount of permanent system information attached to each block.
I

In the CSL6 system, three types of system tags are attached to each and every block

obtained from the storage allocator routine (L6STORAG)- lhe first tag is the FREE/IMUSE flag

6 and occupies bit 0 of word 0 in every block:

set to 0 if FREE

"set to I if INUSE

This flag is used by the 3ystem debugging routines (Section 4.5) during dump operations.

The second tag attached to each block is the size of the block specified as a power

1. of 2.. This tag is placed in bits 24-26 of word 0. The system uses this tag to identify

block size and an operation has been provided for the user which enables him to also read

this tag (Section 4.4.1),

The third tag, located in bits 1-8 or word 0, is storage allocator information.

This tag is used during recombination.

In developing the CSL7 storage allccati n and block scheme, the third tag is eli-i-

nated and the second tag expanded to hold five (5) bits of information, i.e., the actual

number of words in the block. The FREE/INUSE flag still lies in bit 0 of word 0 while the

count tag has been move-d to bits 1-5 of word 0. Thus, onl¢ six (6) bits of system informatio-I. are used in the CSL7 system as opposed to twelve (12) in the CSL6 system.,

The CSLx user is protected from violating the system areas of word 0 as long as he

1. stays in the CSLx language. As soon as he moves into ILIAR, it becomes his responsibility

to protect against violations. During the first year of usage of the CS1U system, this haý

T
not becone a problem.

-A" 32

Section 4-.2.1 Storage Allocation Setup Unit

I The first execution statemzent in a CSLx MAIN prograr- should contain a storage

allocation sELUP BOI. This requirement applies only Lo the MAIT program in a program set.

(SS,d) The Storage Setup operation unit initializes the storage

allocation routine and causes all available storage to be

dismembered into blocks, the largest of which is specified

by d, a positive decimal integer.

In the CSL6 system, d is taken to be either a power of

2 with a maximum of 128(2 7) and minimum of 4. In the CSL7

I system, d is any integer from 4 to 32.

The (SS.d) BO1 also causes all field defiliitions to be

cleared out and all stacks to be cleared. Thus, this opera-

tion effectively initializes the user's program and the CSLx

system.

Fxa-ple: (SS,4)

This BO" initializes the storage allocator to partition

all available storage into N-bicoks with a maxin'm value of

N =

II

I
I

'-
S~33

|

Section 4.3 DefLaijion of Fields

Recall that there are two (2) classes of f!telds in tht, CSLx sv,t.,m" ful I word

fields (FWF) and variable length fields (VIL). rTe 'iethods of definition of lithse two (2)

classes of fields are completely different and as such, will be explained in separate sec-

tions.

Section 4.3.1 Definition of Full Word Fields ,(F¶F)

Since a I'WF is of fixed length (48 bits), the user must simply define the label to

be attached and whether the field is internal or external. The sii'plest of these is the

external field (EF) and therefore, we will discuss it first.

Briefly stated, the use of an EF data descriptor:

*X.NZ'

is sufficient to cause the necessary information to be compiled stating that XXXX is a FWF

external to the cjrrvnt program.

Situations sometimes arise where the user desires to explicitly declare som. labels

for EF. The EXTERNAL declarative statement provides this ability:

EXTER.NAL,•ABELI, IABELX

The EXTERNAL statement may appear any place in the CSLx program. Pefining the .F may also

occur in an ILIAR section of code. Since this is a departure from compiler control, the

user assumes all risks.

Example: EXTERNAL, CSIXCS, TAPBINOT

T1he FWF CSLMCS and TAPtdNOT are defined as Cxternal to the current CSLx program.

Defining the internal field (IF) is a bit more precise as follows: each IF must be

explicitly defined. The definition process is handled through the DEFINE declarative statement:

DEFINE, LABLEI, LABEL2,...,IABELN

An expansien of the capability exists to allow the labels to define drrays by specifying the

size of the array in enclosing parentheses:

DEFINE, ALPHA (20)

34

The DEFINE statement may appear at any poitht in a CSLx program.

Example: DEFINE, ALPHA, LONG, TWO (20)

FSF labeled ALPHA and LONG will be set aside in the program. A twenty (20) word

array labeled TWO will also be set aside.

The ENTRY declarative statement is provided to allow a user to flag selected FWF

in one CSIx progran to be referenced as EF in another program:

ENTRY,LABELI, .. . ,LABELN

The labels of the ENTRY statement may refer to arrays in which case, no size parameter is

used and the zeroth location of the array is the actual globa& entry point.

Example.- ENTRY. ALFHA, LONG, TWO

Assume that this statement appears in the =ame progra- as the pretious example., 1hus,

programs outside this CSLx progra,- -ay refer to the FVF ALPHA and LOWG and also to the

array TWO.

Section 4.3.2 Definition of Variable Length Fields (VLF)

The definition of VLF in the CSLx system is a dynamic operation wht-ich occurs during

execution of the prograr'. A definition. may occur at any place and time in any p- rm.,

There are three (3) attributes in a field definition:

Word position in a block. Counting begins at zero (0).
2. Leftmost bit position of the word.

3. Rightmost bit position of the word.

Fields may not overlap word boundaries., Fields may overlap or coincide with other fields.

A field definiti:,n must occur prior to the first use of that field in a CSLx program. Other-

wise, acompiler diagnostic will occur.

Bit positions in the word are numbered 0 to 47 moving from left to right, Due to

the organization of the 1604 computer, three fields compile operations which are faster than

the general field definitions:

1. bits 0 to 47 - full word field

35

2. bits 9 to 23 - upper address of 1604 word

3. bits 33 to 47 - lower address of 1604 word

It is to the user's advantage if he can use these arrangements where possible.

Example I: Field Word Left Bit Right ,it

Word A B A 9 23

1 C B 33 47

2 D C 1 0 47

3 E D 2 0 47

E 3 0 47

Example II- Word A B Field Word Left Bit Right Bit

1 01234 617 A 0 9 23

B 0 33 47

C 1 0 47

0 0 5

1 1 6 1l

2 1 12 17

3 1 18 23

4 1 24 29

5 1 30 35

6 1 36 41

7 1 42 47

Fields are defined by using the following BOU:

(wDf,l.r) This 8OU causes a definition of field f to be made

at this point in the prograti during execution. f is a

single letter, A-Z or 0-9.

The fieids w, 1, and r may be either positive integers

or du.ta descript-.rs of fields where a positive iiteger can

be foundý w 4s the word position of field f in all blocks.

I is the leftmost bi. position of f and r is the rightrost

bit position of f

Erro- messeges occur for illegal values of w, 1, and r and if f is not a legal

field character narv. To aid in debugging, legal values are assumed for w. I and r where

necessary as follows:

36

error assump on

w > 127 w =0

1 > 47 1 47

r <0 r 0

r > 47 r 47

I > r I. r= 47

In CSL6, if f covers bits 0-8 and/or 24-26 and w = 0, w is set to 1.

In CSL7, if f covers bits 0-5 and w = 0, w is set- to 1.

For examples of the field definition BOll's, we list the BOU's for previous

examples I and II below:

Example I:

/
1. (0,DA,9,23)

2. (0,DB,33,47)

3. (1,DC,0,47)

4. (2,DD,0,47)
5. (3,DE,0,47)

Example II:

1. (0,DA,9,23)

2. (0,DB,33,47)

3. (1.DC,0,47)

4. (1,Y)0,0.5)

6. (1,D2,12,17)

7. (1,D3,18,23)

8. (l,D.,24,39)

9. (1,D5,30,35)

10. (1,D6,36,41)

11. (1,D7,42,47)

Provision is mode to allow the field definitions rode in one program of a program

set to be used in other programs of the set. The fields are specified in the GLOBAL declara-

tive statement:

GLOBAL a,b.. z

37

The a, b,... ,z are single letters, A-Z.

There are 3 cases concerning the occurrence of the GLOBAL statement in a program.

Case 1. Fieid definition - no GLOBAL statement.

Th, defined field is internal to the a;sociated program and

cannot be referenced from the outside.

Case 2. No field defir.ition - GLOBAL statement.

The referenced field is defined in the associated program

with external labels so that all field processing routines

for that field are located outside the program and linkages

are made by the ILLSYS load-r.

Case 3. Field definition - GLOBAL statement.,

The referenced field iz defined in the associated program

and each field processcr iou:ine for the referenced field

is assigned as an ENTRY point. This allows both internal

and external routines to reference a given set of tield

processor routines.

The importance of these cases is that only one definition point for a given field

may be allowed to be GLOBAL in nature. Otherwise, there will be more than one set of field

processing routines for some field and the system will be unable to handle this ambiguous

loading situation.,

Incorporated into the CSIx auxiliary systems are pushdown stacks wlich retain

entries containing all nec-ssary information for the definition of soint field at a later

date with a previous field definition. Field definitions mzy also be passed to and fron

subroutines by this means.

(S,FD,f) The user Saves (pushdown) the current dcfinition of field f

(R,FD,g) and Redefines (popup) iLeld & with the last entrv pushed into

the pushdown stack. f and & are fielid nazoes, A-Z. Fntrics

are placed in a stack on a last-in-first-out ,asis.

38

Section 4.4 Block and Field Manipulation Operations

I We begiu at this point to discuss manipulation operations in the CSLx system. Our

concern In this section is with the data-independent operations (we stnetch the point a

little when we deal with pointers) which we divide into two (2) classes:

1. Block operations

j 2. Field operations

Section 4.4.1 Block Manipula ion Operations!
The first two (2) BOU's we discuss are concerned with !'o=inication with one or the

other of the CSLX storage allocator roubines (L6STORAG or L7STORAG).

(a,GT,b) Blocks of storage are obtained from the storage allocator

(a,GT,hc) with this operation.

In the CSL6 system, b is either a positive integer denot-

ing the number of words in the desired block or a data descrip-

tor of a field where such an integer resides. b should be a

power of 2 but if it is not, the next higher power of 2 will

be assumed up to a maximum of 128 words.

In the CSL? system, b is the same as in the CSL6 systemj Iexcept that values run from 1 to 32 and no assumptions are

made, in either system, b < 0 causes an error return to the

system (ILLSYS).

Upon completion of the call to the storage allocator,

the pointer to the requeated block is pIsced in field a. If

E is present, the contents of field a prior to the storage

allocator rall are placed in field c. New blocks, when

obtained from the storage allocator, are completely cleared

to zeros.

I Example: (A,GT,4)

When complete, '"ug" A will hold the pointer to some

I 4-block which is initialized to all zeros.

Example: (A,GT,4,AB)

I Assume field B is fifteen (15) bits long and also that

"bug" A holds a pointer to block N. After the operation IsI 39

!I

conplete, "bug" A will point to a ncw 4-block and field B

of the new block will hold a pointer to block N.

(a,FR,O) Blocks of storage are "freed" or returned to the storage

(a,FR,b) allocator by this BOU when they are no longer in use.

a is a field which points to the block of storage to he

"freed." If b is present (not 0), then when the block freeing

operation is completed, the contents of field b are placed in

field a.

Example: (A,FR,AB)

Assume "bug" A points to block M and field AB holds a

pointer to block N. After completion of this operation,

block M will be placed in some UBL in free storage and "bug"

A will hold a pointer to block N.

"The facility for duplicating blocks exists in the next BOU.

(a,DP,b) Field b points to a block in storage. A new block of

storage of the same nu-mber of words is obtained from the

storage allocator and the contents of the 'irst block are

copied into the new block. A pointer to the new block is

placed in field a.

Example: (A,DP,C)

Assume that "bug" C holds a pointer to some N-block M.

After the operation is complete, a new N-block K will be

present containing the exact same contents as block , and

"bug" A will hold a pointer to block K.

In order to maximize the amount of inforr-ation stored in a block, the user is

allowed to zccess the size .ag fo: a alock.

(a,BS,b) This operation allows the user to monitor the sizes of

blocks that he is working with. L_ is a data descriptor of

a field which holds a p.o:nter to sone block of storage. Thit

BOU obtains the size of that block of storage and places it

in field a.

Example: (A,BS,C)

40

9

I0

Assume "b-jg" C holds a pointer to a K-block. After

completion of the operation, "bug" A will hold the integer K.

Section 4.4.2 Field Manipulation Operations

We begin our discussions of field manipulation operations with the point-er

copying BOU.

(a,P,b) This BOU causes the pointer contained in the field

designated by b to be copied into the field designated by a.

All fields which will contain pointers must be at least

fifteen (15) bits wide.

Example: (A,P,AB)

Assume field AB to hold a pointer to block K. After

completion of the operation, "bug" A will hold a pointer to

block K. The field AB will be undisturbed.

We inherited the following shorthand notation for the pointer copying BOU from

the original L6 language.

(a,b) A special 2-element form exists to aid in scanning down

strings. The 2-elemer.t form produces the same operation as

if the second data descriptor were a concatenation of a and

b.

Example: (A,B)

This DrU produces the same resu't as the previous

example: (A P,AB).

For copying of all other forms of field contents, the field copy BOU is used.

(a,E,b) b may be either a signed decimal integer or a data

descriptor. The contents of field b are copied into the field

designated by a.

":xample: (A,F, -23)

After completion of the opexation, "bug" A will contain

-2310-

41

(aEO,c) E may be either a signed oct(,l littla or a data

descriptor. The contents ,,t field v are copid into fitld a.

r, Exar-ple: (B,0,77)

After completion of the operat ro , "hug" B will conwtin
r77 8.

(a,EH,d) d is a string of up to 8 ECD characters,, right ,urtified,

r zeros left with spaces counted, which will be copied into

I field a.

Example: (1!,Eli,1O0LLRI7l1)

After complerion of the operation, "•ug" !! will contain

the BCD string HOLLRITH.

(a,EF,e) e may be either a floating point literal conforming to

ILIAR language specifications or a data descriptor. The

- •contents of field e will be copied into field a.

Example : (C0,FF,22.3EIO)

After completion of the operation, "bug" C will contain
10

22.3 x 10

The CSLx system provides a BOU for exchanging the contents of two fields.

(a,IC,b) The contents of the field designated b a are Inter-

Changed with the contents of the field designated by b.

Example: (AC,IC,AB,)

Assume field AC = 1010 and field AB = 24lO. After

completion of the operation, field AC will contain 2 10 and
I"0

field AB will contain 100.

Incorporated into the CSLx auxiliary systems is a puqhdown stack which will hold

the contents of specified fields in the user's program. An example of such usage would Ie

saving and restoring the contents of a "bug" during execution of a subroutine.

I- (SjC,a) The user may Save (pushdown) the contents of field a or

(R,RC,b) he may Restore (popup) the contents of field I..

1
L

9
0

I

Example: (S,FC,A)

(R,FC,B)

Assume "bug" A holds the number 62 10 The f. 3t BOU

"pushes" the 6210 into the stack. The contents of "bug" A

wiip•be undisturbed.

The second BOU will "pop" the 6210 out of the stack and

store it in "bug" B.

Two statements are provided to aid the CSL6 system programmer in providing multiple

pushdown and popup operations on the system field contents stack. The format of the PUSHDOWN

primary statement is:

PUSIHDOW.,ABC,CD, 10,77b, -O.0

The elements of the statement are separated by commas "," and may be either data descriptors

or literals (octal, decimal, or floating point, but not hollerith).

The format of the POPI?? primary statement is:

POPUP,D,EF,GI,Z

The elements of the statement are also separated by coams"," but they may be data descrip-

tors only. Note that the order in uhich field contents are "popped" out of the stack is the

reverse of the order in which they were "pushed" into the stack.

Example: PUSHDOWN,A,L,C,

POPUP ,BC ,A

After both statements are executed, "bugs" A, E, and C will contain their original

contents.

The CSLx system also provides the facility for allowing the user to define and

operate his own pushdown-popup data stacks. These operations will be discussed in Chapter 10.

43

I

I

Section 4.5 Special Debugging Aids - STATE and DUMP

Because the storage design of the CSLx system is so different from the standard

memory array, two BOU elements have been provided which will dump required information about

the status of the user's CSLx program.

(DO,STATE) The (DO,STATE) operation unit causes the following

information to be output on the line printer.

1. Name of program and record number of "do" operation

unit.

2. Time since execution of program began.

3. All current field definitions.

4. Contents of field contents pushdown stack.

5. Contents of subroutine calls pushdown stack.

6. Count of blocks in free storage by size.

7. Contents of all bugs.

(DO,DULW) The (DO,DUV.) operation unit causas the following infor-

mation to be output on the line printer:

1. All information provided by the (DO,STATE) operation

unit.

2. Memory contents.

a. Pointers of strings of free storage by block size.

b. Contents of all occupied storage blocks in octal.

Neither dump will affect the interval clock.

Both options output a message to the console typewriter requesting the user to type

a carriage return (CR) to allew the computer to continue execution. !When control is returned

from either BOU, execution will begin on the next executable statement or unit followirg the

BOU.

44

I

Chapter 5. Logical Operations on Data

Section 5.1 Overview

Logical data operations fall into three classes:

1. Bit manipulation

2. Shifts

3. Count and position detection

The first class includes the comcplement operation (Section 5.2), OR (5.3), Exclusive OR

(5.4), AND (5.5) and field substitution (5.6). The second class contains the left (5.7)

and right (5.8) shifts. The third class contains the bit counting (5.9) and the bit-

locating (5.10) operations.

45

a.

Section 5.2 The Complement Operation

The bit complement BOU fetches the contents of a field or literal, complements by

bit, and stores the result in a second field. Because of the ones-complement integer arith-

metic and the biased exponent floating point arithmetic of the 1604 computer, the complement

operation also may serve as the negation operation.

(a:C,b) b may ,.e either a signed octal integer or a data
descriptor. The contents of field b are complemented

on the way co being placed in firld a.

Example: (ABC,C,53)

Suppose that field C is a 6-bit field. Then the octal

integer 538 would be complemented to 248 and stored in VLF

ABC.

(a,CD,b) This form is the same as above except that b may be a

signed decimal integer or a data descriptor.

Example: (/TIME ,CD,460)

The decimal integer 4 6 010 is negated to -46010 and

stored in field /rlME

(a,CH,b) b is interpreted to be a string of up to 8 BCD charac-

ters, ri.3ht-justified, zeros left with spaces counted. All

other considerations apply as with the preceding two forms.

Example: (*EXH,CH,J B)

The hollerith literal J B(4120628) is complemented

to E <(365715R) and stored in field *FYH.

(aCFb) 1This form is the same as the first two except that b

a•y be either a floating point literal conforming to the

"MAILLR language specificaticns or a iata descriptor. All

other considerations are the same as with the preceding

"three forms.

" Example: (ABF,CF, -10.23)

10.23 will be stored in field ABF.-

46

ii

Section 5.3 Logical OR Operation

The logical OR data operation operates in a bit-wise manner according to the

following truth table:

a b result

0 1 1

1 0 1

1 1 1

(a,O,b) b may be either a signed octal integer or a data

(a,O,b,c) descriptor. The contents of field b are logically Ored with

the contents of field a. The result is copied into field c

if it is present. Otherwise, the result returns to fielo a.

Example: (ABE,O,40B)

Assume field ABE contains 3208. After completion of

the operation, field kBE will contain 3608.

Example: (ABE,O,40B,C)

Assume field ABE = 320 8. After completion of the

operation, "bug C" will contain 3608. Field ABE will be

unaffec ted.

(aOH,b) In this format, b is interpreted to be a string of up

(a,OH,b,c) to 8 BCD characters, right justified, zeros left with spaces

-ounted. All other considerations are the same as for the

preceding form.

Example: (D,OH, - I ----- -)

Assume "bug" D holds the octal constant 20200020624646428.

This is the hollerith literal - - ; - BOOK. After completion,

"bug" D will contain - - I - BOOK.

47

r

Section 5.4 Exclusive OR Data Operation

The Exclusive OR operation handles data in a bit-wise manner according to the

following truth table:

a b result

000

(a,X,b) b may be either a signed octal integer or a data

(&,X,b,c) descriptor. The contents of field b are exclusively Ored

with the contents of field a. The result is copied into

field c if it is present. Otherwise, the result returns

to field a.

Example: (ACE,X, 170B)

Assume field ACE to contain 3408. After the operation

is complete, field ACE will contain 2308.

(aXH,b) In this format, b is interpreted to be a string of up

(a,XH,b,c) to 8 BCD characters, right justified, zeros left with spaces

counted. All other considerations are the same as for the

preceding form.

Example: (/TEST,XH,FREE)

If field /TEST contains the 'ýollerith cor.stant FREE,

then after completion of the operation, field /TFST will

be zerc.

1.
• 48

Is

II

I
Section 5.5 The Logical AND Data Operation

I The logical AND operation handles data in a bit-wise manner according to the

following truth table:

a b result

0 0

1 0
S1 1 1

(a,N,b) b may be either a signed octal integer or a data

(a,N,b,c) descriptor. The content.s of field b are logically *Nded

with the contents of field a. The result is copied into

field c if it is present. Otherwise, the result returns

I to field a.

Exemple: (IRES,N,777B)

Assume field !RES holds 374778* After completion,

field /RES will contain 4778.

(a,NH,L) In this format, b is interpreted to be a string of up

(a,Ml,b,c) to 8 BCD characters, right justified, zeros left with spacesI counted. All other considerations are the same as for the

preceding form.

Example: (NA,. ,NH,TWO)

Assume field *.AME hold.- 477,. After completion,

field *NAMF will hold 2 3 0 0 468. (YWO = 2326468).

49

Section 5.6 Logical Substitution Operation

The logical substitution operation operates upon data in a bit-wise marner according

to the following truth table:

a b m result

x y 0 x

x y 1 y

(a,U,bm) This operation unit allows selective substitution

(a,U,b,mc) (insertion) of any portion of a field with another field.

a is a data description whose contents will be s.bstitu-

ted for. m is either a signer1 octal integer or data descrip-

tor which provides a mask through which the sabstitution

will be made. Each I-bit in the mask means that the corres-

.-. ,ding bit in field a will be substituted for. m Is right

justified with zeros left.

b is aither a signed octal integer or a data descriptor

which provides the data to bt substituted into a. If c is

present, the new field contents after substitution will be

placed in field c. Otherwise, the result will be returned

to field a.

Example: (A,U,77B,CBA)

Asstrme "bug" A holds the holleritb literal FIELD=

* • Asstme ficld CBA holds the BCD number 6. After completion

of the substitution operatiot., "bug" A will contain FIELD= 6.

(al,UHb,m) This formi is also the same as the first form except

(aPU,b,Im,c) that b is interpreted to be a string of up to 8 BCD characters

righ. justifiei, zeros left with spaces counted.

Example: (A, U11, 77b,6)

This example is the same as the one above except that

the BCD character 6 is explicitly stated as a hollerith

litcral.

50

Ir

Section 5.7 Logical Left Shift Operation

The logical left shift operation allows information from. one field to be shifted

in the left direction inco another field.

(a,L,b) b may be either a positive decimal integer or a data

descriptor. The content of field b is the number of bit

positions which field & is shifted to the left. This

3-element form specifies that zeros are shifted in from

the right. The result is placed back in fi.Id a.

Exrmple: (A,L,2)

Assume "bug" A to hold the number 15. After cowpletion

of the shift, 'bug" A will hold 601.. .f we express the

numbers in octal, 178 becomes 748.

(a,L,b,-) b again specifies w.ere the shift count is found. c may

(a,L,b,c,d) be a signed octal integer or a datr. descriptor. The field

or literal specified by c is positioned prior to the

shifting operation such that the left edge of c is next to

the right edge of field a. The result after shifting is

placed in field d if it is present. Otherwise the result is

returned to field a.

Example: (AL,6,ACD)

Asasum fieLd A'X: to be six (6) bits long. Assume also that

field ADC holds the BCD character + and "bug" A holds the

string ALPHA. After the shift, "bug" A will hold the string

ALPHA+. Field ADC is undisturbed.

(al.9,b,c) c is interpreted to be a st-ing of up to 8 BCD characters,

(aLH,b,c,J) right-justified, 7.eros left with spaces counted. All other

considerations are the Rame as the previous form.

Example: (A,LH,6,+

This example produces the same result as the example
above for the second case where "bug" A contains the string

"ALPHA.

51

Section 5.8 Logical Right Shift operation

The logical right shift operation allows information from one field to be shifted

in the ripht direction into another field.

(a,R,b) b ray be either a positive decirml integer or a data
descriptor. The content of field _ is the number of bit

positions which field a is shifted to tvP rii'.t. This

3-element form specifies that zero' jrP shifteo in from the

left. The result is placed back in field a.

rxample: (A ,A)

Assume "boug" A hoids the .•b'er 10240(2W 8). After

the shift is completed, '"bug A wi:l hold 641i(100h81.

(s,Rb,c) L again specifies where the shift count is found. c may
(a,R,b~c,cI) be a signed octal anteger or a data descriptor. The field

or literal specified by c is positioned prior to the shifting
operation such the. the iight edge of c is next to the left

.dge of field a. The field ,idch of literals is assumed to

be the same as field a. The result after shifting is placed

iit field d if it is present. Otherwise, the result is

returned to field a.

J Example: (AC,R,6,A)

Assume field AC is six (6) bits wide. Assume "bug" A

holds the string ALPHA+. After the shift, fie'd AC will

contain the character +. "bug" A will a.o be disturbed.

(a,RH,b c) c is interpre, 3 to be a string of up to F BCD char-

"(a,RHI,b,cd) acters, right-justified, zeros left with spaces counted., All

other considerations are the same as the previous form.

Exampel: (AC,Ra,6,+)
1-

This operation unit produces the same resa lt as the

I2 example above.

I"
52

I.

Section 5.9 Bit Counting

(a,OS,b) The field designated by b has its one bits counted and

the count is placed in the field designated by a. If no bits

of the ty.e required are present, the count is set to zarc (0).

Example: (AOS,BC)

Assume iield BC holds the octal number 103463 . After8
completion of the bit count, "bug" A will hold 810.

(a,ZS,b) The field designated by b has its zero bits counted and

the count is placed in the field designated by a. If no bits

of the type required are present, the count is set to zero(O).

Example: (AZS,BC)

Assume field BC is eighteen (18) bits wide and contains

the octal number 1034638. After completion of bit counting,

"bug" A will hold the count of 101..

I

53

Section 5.10 Bir Position Detection Operation

The bit-position detection operation units determine the position of the leftmost

or rightmost zero or one bit in the field designated by b. Positions are counted as the Ith

position in the tield, not the w:ord in which the field resides. Positions number from I up,

left and right. If no bit of the type designated exists in the field, the position informa-

tion is set to zero (0). When the operation is completed, the position count will be placed

in the field designated by a. In the following ?xamples, assume that field PC is twenty-

four (24) bite wide and contains the nutber 140613758.

(aLO,b) This operation detects the position of the leftr3ost one

bit in field b. The position count is placed in field a.

Example: (A,LO,BC)

When complete, "bug" A will contain 310.

(a,IZb) This operation detects the position of the leftmost zero

bit in field b. The position count is placed in field a.

Example: (A,LZ,BC)

"When complete, "bug" will ccntain Ii.

(a,RO,b) This operation detects the position of the rightmest one

bit in field b. The position count is left in field a.

Example: (A,RO,BC)

When complete, "bug" A will contain 110.

(a,RZ,b) This operation detects the position of the rightmost zero

bit in field b. The position count is left in field a.I.
Example: (A,RZ,BC)

W;hen complete "bug" A will contain 210.

t
Ii
V 5

Chapter 6. Mathematical Operations

Section 6.1 Overview

The CSLx system p'ovide. the standard set of mathematical operations usually found

in computer languages with the exceptiun of exponentiation. They are:

1. Addition (6.2)

2. Subtraction (6.3)

3. Miultiplication (6.4)

4. Division (6.5)

In addition, conversion from fixed-point to floating-point and vice versa is provided,(6"6)

An absolute value function is provided for either type.(6.
7)

The type of mathematical operation, fixed or floating-point, is stated by the

postfix on the opcode. Floating-point operations always have the postfix letter F attached.

Because the 1604 computer werd is forty-eight (48) bits long, arithmetic operations

on VLF require that the [ield be expanded to forty-eight (48) bits. This is accomplished by

extendtig the leftmost bit in the field to the left until forty-eight (48) bits are achieved.

Thus, thy leftmost bit in a field holding an arithmetic quantity is treated as the sign bit

of the field.

Note that sign extension dictates that integers in fields live in the rurgt (-2 s1)

to (2N-1) - ere the width of the field is N bits. This sign extension feature does not apply

anywhere eise in the CSLx system.

I

I1

[

Section 6.2 Addition Ooeration

r (a,A,b) b may be either a signed decimal integer or a data

(aA,b,c) descriptor. The contents of tields b ana a are added as

integers, The result is copied into field c if it is.

present. Otherwise, the result is returned to field a.

Is Example: (/SLMr,A, 10)

Assume /SLWT a 2010. After addition, /SLOT = 3010..

f (a,AO,bi The operations are tte same as the above form except

(a,AO.b,c) that h may be either a signed octal integer or a data

diescr iptor.

SExample: (iSLOT,AO 12)

Assume ISLuT = 248. After addition, /SLOT - 368.

(a,AF,b) b may be either a floating-point literal conforming to

(a,AFb.c) the ILLAR language specifications or a data descriptor. The

contents of field b are added to field a in floating-point

format. The result is copied into field c if it is presetit.

Otherwise the result is returned to field a.

Example: (/SLOT,AF,10.O0)

1* Assutv /SLOT 20.0. After floating-point addition,

/SLOT - 30.0.

7.

1"

I.

_I.

!.

1 -6

Section 6.3 Subtraction Operation

(a,Sb) b may be either a signed decimal integer or a data

(a,S,bc) descriptor. The contents of field b are subtracted from

field a, The result is copied into field c if it is present.

Otherwise, the r'.sult is returned to field a,

I Example: (/SLOTS,10)

I Assume /SLOT 2010. After subtraction, /SLOT = 1010.

(a,SO,b) The operations are the same as the above form except

(a,SO,b,c) that b may be either a signed octal integer or a data

descriptor,

IExample: (/SLOT,SO,12)

Assume /SLOT = 24 After subtractici, /SIMYr = 128.

(a,SF,b) b may te either a floating-point literal conforming

(a,SF,b,c) to the ILLAR language specifications or a data descriptor.

rhe contents of field b are subtracted from field a in

floating-point format. The rusult is copied into field c

if it is present. Otherwise the result is returned to

field a.

Example: (iSLOT,SF, 10.0)

Assume /SIOT 20-.0. After floating-point subtraction,

/SLOT- 10.0.

57

IF
Section 6.4 Multiplication Ojeration

(a,M,b) b may be zither a signed decimal integer or a data

(as,Mb,c) descriptor. The contents ot fie)ds b and a are multiplid

as integers. The :esult is copied into field c if it is

present. Otherwise, the result is returned to fi(Id a.

T Example: (/SLOT ,M, 10)

Assume /SLOT - 20,,. After multiplication, /SLOT =

20010.

(aMO,b) The operations are the same as the above form except

(a,14O,bc) that b may be either a signed octal integer or a data

descriptor,

SExample: (/SLOT,MO,12)

Assume /SLOT - 248' A-cer multiplication. /SLOT = 3108.

(a,Wb) b may be either a floating-point literal coaforming to

r (aHF,b,c) the ILIAR language specifications or a data descriptor., The

L. contents of field b are multiplied with field a in floating-

point format. The result is copied into field c if it is

- p'~resent. Otherwise the result is returned to fi.id a.

1.
Example: (/SLO'A ,M, 10.0)

T"

L- Assume /SLOT = 20.0. After floating-point multiplica-

tion, !SLOT = 200.0.

15

1.

58

Section 6.5 Division Operation

In all cases of divide operations, the CSLx system will compile a check foý a divisoi

of zero. When an attempt to divide by zeto occurs during the execution of the program, an error

message will appear and control will be transferred to the operating system (ILLSYS).

(a,V,b) b may be either a signed decimal integer or a data

(aV,o,c) descriptor. The contents of tield aare dfvidcd by field

as integers. T'.e result is copied into field c if it is

present. Otherwise, the result is returned to field a,

Example: (/SLOT,V, 10)

Assume /SLOT - 201i. After division, /SLOT - 210.

(a,VO.b) The operations are tne same as the above form except

(a,VO,b,c) that b m-y be either a signed octal integer or c data

descriptor,

Exampl.e: (/SLOT,VO,.2)

Assume /SLOT - 24.. '(ter division, /ELOT = 2.

(d,VF,b) b may be (ether a floating-point literal conforming

(a,Vl',h.c) to the ILLAR language specifications or a data descriptor,

The contents of field a are d-ided by field b in floating-

point format. The result is copied into field c if it is

present. Otherwise the result is returned to fielu a.

Example: (iSLOT,VF.1O.0)

Assume /SLOT 20.0. 'fter floating-pcint division,

/SLOT = 2,0.

59

I

Section 6.6 Data Format Conversion

O a,FX,b) b is a data descriptor of a field assumed to hold a

floating-point formt data word. The BOU converts the

Sfloating-point word to fixed-point fortat and places the

i-sult in the field Jesignated by a.

Example: (AC,FX,B)

Assume field AC to be six (6) btts in length. Assume

also that "bug" B contains the number 24.65. After con-

pletion of the operation, field AC will contain 2410.

(a,FL,b) This operation is complementary to the above for,,.

The contents of field b are assumed to be in fixed-point

format. The BOU converts the fixed-point word to floating-

point format and elaces the result in the field designated

by a.

Example: (AD ,FL,AC)

Assume field AD to be forty-eight (48) bits in length

and field AC to be eight (8) bits in length. Assume field

AC to contain the number -171,. After the operation is

complete, field AD will contain the number -17.00.

*1

60

Section 6.7 Absolute Value Function

(a,ABSV,b) The absolute value of the contents of field b is

placed in field a. a and b are both data descriptors.

If field b is a %IF, sign 'extension will be perforw'd

before taking the absolute value.

Example: (A,ABSV,A)

Assume "bug" A to hold -24.6. After completion of the

operation, "bug" & will hold +24.4.

i

61

Chapter 7. Subprograms, Subroutines and Functions

r Section 7.1 Overview

In the ILISYS system, calling sequen:es in the ILIAR and FORTRAN language systems

obey what we will call the FORTRAN' type calling sequence:

1. A return jump (1604 code) instruction is made to the entry point
of the subroutine or function.

2. Only one call may be made to a given subroutine or function at a time.

3. Argtment transfers are made by passing the address of the argument

instead of the argument.

'In the CSLx system, a new type of subroutine calling sequence called the DO type

entry is provided:

1. A direct transfer is male to the entry point.

2. Calls to routines are recursive, that is, the return addresses are kept
in a last-in-first-out pushdown stack.

3. Argument transfers follow the FORTRAN convention.

4. Two types of exit from the called routine are provided:
standard and error exit.

The consequences of the first rule are that any statement or group of statements in

a CSLx program may be treated as a subroutine. The second rule increases the flexibility of a

subroutine by allowing it to call itself. File four provides for exits based on unusual

conditions.

In this chapter, we discuss both the Do type calling sequence (Section 7.2) and the

FORTRAN type ca ling sequence (7.3). A special form of the FORTRAN type calling sequence, the

FUNCTION subroutine call is treated in Section 7.4.

r -

'.2

I.

ii
I

S;ection 7.2 SUBPROGRAM Operations

The BOU used to drive DO type subroutines in the CSLx system is, of course, the

DO BOU.

(DO,label) label is the name of the subroutine to be executed.

(f,DO,lbel) This i. a program label which may appear at any place in a

CSLx program. The 0OU causes an internal label pointer to

the next BOU or statement after the DO BOU to be pushed down

into the system subroutine call stack. This entry in the

stack may be executed by a DONE "goto" as will be explained

later.
1r

* If f is present, it is interpreted as a label to which

a return from the subroutine may be made by a FAIL "goto" as

will be explained later.

The action of the DO DOt" after pushdown is to transfer

control in the CSLx program to the "called" routine.

Either label or f may be treated as external to the

CSLx program where the DO BOU is present by prefixing the

label with an astrisk (*).

Example: (DO,COUNT)

After the proper return address is pushed down into the

subroutine call stack, control will be transferred directly

to the routine COUNT. No "fail" exit will be allowed from

COUK.

a Example: (-CSMCS ,DO,DRIVE)

After the proper return address and the external "fail"

label CSI.'CS have been pushed down in the subroutine call

stck, control will be transferred to the routine IDIVE.

This form of the DO BOU does not allow for argument transfers. A special care

called the DOARG BOU is provided for this purpose.

(DoARG,label,ls•c) label and f are the same type of labels as described

above for DO BOU's. The distinction is made by the use of

DOARG instead of DO as the opcode.

63

The arguments are specified in the list. The list is

made up of data descriptors or literals separated by commas

"," and terminated 6'y the ")" of the operation unit. No

hollerith literas. may be placed in the list.

Example: (DOARG,TIME,47B)

The routine TIME is driven with the argument 4 8.

Example: (ENDFILE ,DOARG ,READTAPE,32032B,/BUTFER,10)

The routine READrAAPr is driven with the arguments

320328, BUFFER and 10 O. The !ail" exit label ENDFILE

is also provided.

Two system defined "Zoto" elements provide tOe means of recurn from DO type sub-

routines.

DONE The encountering of a DONE "goto" causes essentially a

subroutine type return transEer of program control. The

transfer point is obtained by a popup of one element from

the subroutine call stack. If no element exists, an error

return will be made to ILLSYS.

A DONE "goto" terminates the statement in which it

occurs. The "goto" also compiles an end to any input/output

(I/O) operation area that may be in force at that p~oint

(Chapter 11). This V/O end operation is executed before

the trarsfer of the "goto."

FAIL The encountering of a FAIL "goto" causes an error

return transfer from a suoroutine. The transfer point is

obtained by a popup of one element from the subroutine call

stack. If no element exists, an error return is made to

ILLSYS. An error message and return to ILLSYS will be made

if no FAIL entry is found in the element popped from the

stack.

I i~ Note that each element from the subroutine call stack

may contain both DONE and FAIL t--nsfer points.

A FAIL "goto" terminates the statement in which it occurs.

The "goto" also compiles an end to any I/O operation area

[64

II

that may be in force at that point (chapter 11). This 1/O

end operation will be executed before the transfer of the

"goto. "

Examples of usage will be made in Chapter 12 where we intend to give CSLx programming

examples.

Facility for entering a program or subroutine at some entry point other than at the

hmader card by use of a DO or DOARG BOU is provided by the DO ENTRY declarative statement.

The statement format is as follows:

label DO ENTRY

label DO ENTRY,NOPREABLE

A DO ENTRY point may be declared in either a PROGRAM, SUBROUTINE or SUBPROGRAM at any point

desired. The first form will cause parameter setting operations when entered if there are

arguments specified in the header record. The second form will cause parameter setting opera-

tions to be ignored for that entry point.

The label attached to a DO ENTRY statement will be tagged as a global entry point

which can be accessed from programs outside the program where the entry point is defined.

The DO ENTRY point may only be accessed by either a DO or a DOARG BOU operation. Exit from

the section of code headed by the DO ENTRY statement must be performed by either the DONE

or FAIL "goto" operations. This requirement is also met by the END statement of a .MYIRPOGRAN

program.

65

-.

Section 7.3 Fortran type Subroutine Operations

The calling sequence for a FORTRAN type subroutine is specified by -he CALL primary

statement The :ormat of the CALL primary stateme:.t is as follows:F
CALL, NAME(list)

F NAM itA the name of the rcutire to be called. NAM is always an external program la.el

(no '%" required).

7--

The "," must be present to separate CA'1 from AAME. The "list" may or may not be

present. The format of the "list" is simply a string of data descriptorz, literals (no

hollerith) or prosram labels. Two-way transfers of information via any one element ef the "list"

is possible for all element forms except field strings. The user must be responsible for not

destroying literal arguments through return transfer usage.

If the list is present. it must be enclosed by "(' and ")". if only the "(" and "

are present, the calling sequence will establish that the last `'list" used in a CALL to routine

ME is used for this CALL.
1.

We remind the user that only one type of return is allowed from FORTRAN type

F sui'ruutine. Control will be returned to the next CSLx statement after the CALL statement.

E.ampe: CALL,TIME

-.This is the simple form with no arguments. The rou.tine TINE is ezecuted and control

returned to the next CSLx statement.

Example: CALL,VNAE I(A,ABC, /BC,•TIE, 10,77b, lO.4)

CALL,NAOEI()

The first CALL to NANEI aslo carries with it the arguments:

1. "bug" A

2. field ABC

s4J. Intern*! FWF BC

4. External FW TIM

5. .nteger number 10

L. 6. octrt nuaker 77

7. floating-point number .0.4

~Ii 66V

I
I

The second CALL to NA.'El causts the qame arguments of the first CALL statement to be

used as ,N.MEl il. executed. This form 2xocuteE a little faster as no argument address planting

needs to be performed.

e Examples of usage will a given in Chanter 12 where we intend to give CSLx programming

examples.

SFacility for enteri'.g a program cr subroutine at some entry point other than at the

head,.: card b> use of a FOPIRAN type calling sequence is provided by the CALL ENTRY declarative

itate-ment. The statement foxmat is as follows:

label CALL ENTRY

I label CALL ENTRY,\OPREAMBLE

A CALL E7TRY point may be diclared in either a PROGRAM or SUBRU!TINE at any point. CALL ENTRY

statements may t-ot be used in SIUBPROGRAM programs. The first form of the statement will cause

parameter setting operations when entered if there are arguments specified in the header record.

The second form will cause pazameter setting oterations to be i pnored for that entry point.

The label attached to a CAU.L FNTRY statement will be tagged as a tlobal entry point

which can be accessed from programs outside the program where the entry point is defined.

The CALL ENTRY point may only be accessed by a FORTRAN type calling sequence, Exit from th',

program entered at the ULL ENTRY statement must be through the END statema.st of the associated

program or subroutine.

67

V

'I
Section 7.4 Fortran typ, Functions

A special version of the FORTRAN type calling sequence routine exists and Is called

a IUNCTION routine. The calling sequence is the same as a FORTKAN type subroutine but the

return of the result of execution is made b: leaving the one (I) word result in the 1604

computer main arithmetic register.

r The CSL system provide; the FUNC BOU u:hich allows the calling of a FUNCTION routine

and placement of the execution result in so--e field for further processing by the CSLx program.

' (a,FUNC,name,lUst) The name of the FUNCTION routine is name and will always

te defined as an external label (no "*" needed).

f a is a data descriptor where the result of the FUNCTION

will be placed upon completiot, of its operations. list is an

argumencs list constructed in the same rmanner as in theSDOARC BOU. The argum.ents are determined by the FUNCTION

routine' s requirements.

Example: (A,FtUNC,SQR ,4.0)

S

f The SQRT of 4.0 is computed and returned to "bug" A

upon completion of the operation.

SF Appendix B contains the necessary forms to allow usage of all the standard FORTRAN

system funct ions.

I •

Ii
[

SI b8

L,

14

Chapter 8. Control Transfer Operatione

Section 8.1 Overview

We previously discussed the "goto" in Section 3.5 for use in effecting unconditional

transfers of control between segments of CSLx programs.

Section 8.2 discusses the "assigned" TRANSFER primary statement and Section 8.3

discusses the "computed" TRANSFER primary statem.nt. These two statements are analogous to

the "assigned" and "computed" GO TO statements in the FORTRAN language system. Both statements

provide dynsmic control transfers during execution of a CSLx program.

I .'

[69

LI

Lr

Section 8.2 "Assigned" TRANSFER Operation

The format of the "assigned" TRANSFER primary stattment is as follows:

r TRANSFER (asa)

aa is the up to eight (8) BCD character statement label attached to a transfer "Roto" variable.

This label must not be used for any other purpose in the CSLx program where it occurs.

Since aa is in effect a special type of data word, we use a special primary statement

F to change the value of aa:

F SWITCH, as, bb

The SWITCH primary statement sets the contents of transfer "goto" variable aa to the statement

label bb. When the TRANSFER (as) statement is executed, program flow is tran-ferred to the

CSLx pr-gram statement labeled bb. An error return is made to ILLSYS if no assignment has

been made to as.

External program labels may be used provided they are prefixed by an asterisk (*) orF. declared as external FWF.

Example: SWITCH ,ALPHA,END I

T.. TRANSFER(ALPHA)

When execution of the TRANSFER statement occurs, control will be transferred to the

tsatement labeled ENDI.

I7tI"

I.

t+ 70

II

Section 8.3 "Computed" Transfer Operations

The "computed" TRANSFER primary statement achieves dynamic transfer control by sampling

the value of some designateO integer field. The general format is:

TRANSFE., (LI, L2,... ,Ln) index

The list 1I, L2,...,Ln is made up of statement labels, each of which may be internal or external

to the current CSLx program. External 1,sbels mist either be declared as external FWF or be

prefixed wich an asterisk (*).

Index is a data descriptor for some field where an integer number in the range of - w

to N-1 where there are N iabels in the list. I the contents of index are negative, the

TRANSFER statement is not executed. Program execution continues at the next rrogram statement,

If the contents of index are >N, then an error will be declared and control transferred to

the TLLSYS monitor CSL'CS. Otherwise, control will be Zransferred to statement Iindex*

Example: TRANSFFR(UP ,DON,OUT)I

If "bug" I = 0, control transfers to the statement labeled UP. If "bug" I - 1,

control goes to statement DOWN. No transfer occurs in "bug" I containr a negative number.

There is a short form of the "computed" TRANSFER statement that allows a binary choice

of control transfer;

TRANSFEER(label) inda

If field index contains a positive number, control will go to statement labeled label.

Example: TRANSFER(SI)I

TRANSFER(BETA)J

ATI:A

31 TRANSFER (A.LPHA J

BE'TA

71

I

The above sequence of statements solve# the following truth table:j
I J Transfer

to statement

S - ALPHA

F - + BET&
S+ - BETA

+ + ALPHA

7

I-

Ii

L .

I _ _ _ _ _ __.... . I I M

Chapter 9. Relational Test Operations

1 Section 9.1 Overview

In this chapter, we will discuss the relational test opezation units (TU) •hich are

1 used in decision statements (Section 3.7). The first .-U discussed is the pointer equality

TU (Section 9.2). The secoud TU allows checking of block size (9.3).

Next to be discussed are four (4) mathematical reletimship TU's:

1. Equality (Section 9.4)

2. Inequali:y (Section 9.5)

3. Greater Than (Section 9.6)

4. Less than or equal (Section 9.7)

The last two TVJ's are logical in nature and test for pattefrns of ones (9.8) or zeros (9.9).

The reader will note that the opcode fields of the TU usy be the saue as those of

some BOU's. The distinction is made simply upon the condition that the TU wust appear ii a

-y decision statement after the statement mnemonic.

T

S

IJ

Ir
Section 9.2 Pointer Equality Test

SA special test unit (TU) is provided for checking equality bttween point,-s. This

lends itself to clarification of the language when being read and also protects agai:;..

f possible error due to the design of the 1604 computer (some pointers might not appear uqual

even though in fact they were).

T (aPb) a and b vast be data descriptors. The fields contain

pointers which are compared and if equal, the TU registers

a "yes" vote. Otherwise, the TU says "no."
1

Example: (A,P,BC)

I Assume "bug" A and field BC hold pointers. If the

pointer in "bug" A points to the same block as the pointer

in field BC, a "yes" vote will be recorded.

474

1.o

I74

Ii

Section 9.3 Block Size Test

(a,BS,b)o. a is a data descriptor of a field that contains a

pointer. The size of the block which the pointer references

is compared to the contents of field b and if equal, a "yes"

vote is recorded. Otherwise, a "no" vote is taken by the

h may be either a positive decimal integer or a data

descriptor. Successful values of the contents of field b

are powers of 2 (max 128) in CSL6 and I to 32 in CSL7.

Examp le: (AT,BS,8) (CSL6)

(AT,BS,13) (CSL7)

Assume field AT holds a pointer to 16-block K. Both

TU's will register "no" votes. -

75

I

Section 9.4 Data Equality Test

I This TU compiles a vote on the mathematical equality of two (2) data items.

7 (a,E,b) a is a data descrJptor. b may be a signed decimal

integer or a data descriptor. The contents of field a are

compared to the contents of field b and if equal, the TV

votes "yes." Otherwise, the TU votes "no."

Example: (/ACT,E,-22)

Assume field ACT = -2 . The TU will vote "no."

1. (aEO,b) b may be either a signed octal integer or a data

descriptor. All other considerations are the same as the

previous form.

Example: (/ACT,EO,-24)

Assume fel..d /ACT - -2010 The TU will vote "yes."

(a,EH,b) l is interpreted to be a string of up to 8 BCD char-

acters, right-justifie.d, zeros jeft with spaces counted.

All other considerations are the same as for the two previous

forms:

r]Example: (A,EH,TIME)

Assume "bug" A holds the string CLOCK. The TU will

vote "no".

(aEFb) b may be either a floating point literal conforming

to the ILLAR language specifications or a data descriptor.

All other considerations are the same as for the three

previous forms.

Ii Example: (D,EF,26.145)

Assume "bug" D holds the number 26.1451, The TU will

vote "no".

I..

"1 76

1!

Section 9.5 Data Inequality Test

This TV compiles a vote on the mathematical inequality between two (2) data items.

(a,Nb) a is a data descriptor. b may be a signed decimAl

integer or a data descriptor, The contents of field 4 are

compared to the contents of field b and if not equal, the TV

votcs "yes." Otherwise, the TU votes "no."

Example: (/ACT,N,-22)

Assume field /ACT - -2••. The TU will vote "yes."

Ia,NO,b) b may be either a signed octal integer or a data

descriptor. All other considerations are the same as the

previous fotm.

Example: (/ACT,NO,-24)

Assume field /ACT - -2010. The TU will vote "no."

(a,NHb) b is interpreted to be a string of up to 8 BCD char-

acters, right-Justified, zeros left with spaces counted.

All other considerations are the same as for the two

previous forms.

Example: (A, %NH,TIME)

Assume "bug" A holds the string CLOCK. The TV will

vote "yes".

(a,NF.b) b may be eWt.'er a floating point literal conforming to

the ILIAR language specifications or a data descriptor. All

other considerations are the same as for the three previous

forms.

Example: (D,NF,26.145)

Assume "bug" D holds the number 26.1451. The TV will

vote "yes".

77

I

Section 9.6 Greater Than Test

This TU compiles a vote on whether one data item is nmthematically greater than

another data item.

(aG,b) a is a data descriptor. b may be a signed decimal

integer or a data descriptor. The contents of field a are

compared to the contents of field b and if a > b, the TU

votes "yes." Otherwise,the TU votes "no."

Example: (/ACT,G,-22)

Assume field /ACT a -201.. The TU will vote "yes".

(a,GO,b) b may be either a signed octal integer or a data

descriptor. All other considerations are the same as the

previous form.

C Example: (/ACT,GO,-24)

Assum2 field /ACT = -200. The TU will vote "no."

(a.GH,b) b is interpreted to be a string of up to 8 BCD char-

acters, right-justified, zeros left with spaces counted.

All other considerations are the same as for the two previous

forms.

") Example: (A,GH,TIDM)

Assume "bug" A holds the string CLOCK. The TU will

vote "yes".

(a,GFb) b may be either a floating point literal conforming to

Ij the ILIAR language specifications or a data descriptor. All

other considerations are the same as for the three previous

ii: formm.

Example: (D,GF,26.145)

Assume "bug" D holds the number 26.1451. The TU will

vote "yes".

78

Section 9.7 Less Than or Equal Test

This TU compiles a vote on whether one data item is mathematically less than or equal

to another data item.

(&,L,b) a is a data descriptor. b may be a signed decimal

integer or a data descriptor, The contents of field a are

compared to the contents of field b and if a < b, then T1T

votes "yes." Otherwise, the TU1 votes "no."

Example: (/ACT,L,-22)

Assume field /ACT - -20is. The TV will vote "no."

(aLO,b) b may be either a signed octal integer or a data

description. All other considerations are the same as the

previous form.

Example: (/ACT,LO,-24)

4kssump field /ACT - -20ii. The TV will vote "yes".

(aLH,b) b is Interpreted to be a string of up to 8 BCD char-

acters, right-justified, zeros left with spaces counted.

All other considerations are the same as for the two

previous forms.

Example: (A,LH,TLME)

Assume "bug" A holds the string ClOCK. The TU will

vote "no",

(aLFb) b may be either a floating point literal conforming to

the ILLAR language -pecifications or a data descriptor. All

other considerations are the same as for the three previous

formm.

Example: (D,LF,26.145)

Assume "bug" D holds the number 23.1451. The TU will

vote "no".

79

Section 9.8 Ones Pattern Test

This TLV compiles a vote o0 whether the pattern of one-bits in one data item is

included in another data item.

(a,O,b) a is a data descriptor. b may be a signed octal

integer or a data descriptor. A "yes" vote is registered by

the T1 if a has one bits in all of the positions that b has

one bits. Otherwise, a "no" vote is recorded.

Example: (B,0,146)

Assume "bug" B holds the number 340146 . The TV will

vote "yes".,

(a,Olb) b is interpreted to be a string of up to 8 BCD char-

acters, right-justified, zeros left with spaces counted.

All other considerations are the same as the previous form.

Example: (H,OH,ED)

"Assume "bug" H holds the string TRIED. The TV will

vote "yes."

80

f

Section 9.9 Zeros Pattern Test

This TV compiles a votý on whether the pattern of zero-bits in one data item is

inlded in another data item.

(a,Z,b) a is a data descriptor. b may be a signed octal

integer or a data designation. A "yes" vote is registerad

by the T' if field a has zero bits in all of the positions

that b has zero bits, Otherwise, a "no" vote is recorded.

Example: (K,Z,401)

Assume "bug" K holds the number 16736l. The TV will

vote "no".

(a,ZH,b) b is interpreted to be a string of up to 8 BCD char-

acters, rLght-justified, zeros left with spaces counted.

All other considerations are the same as the previous form.

Example: (P,ZH,TRIED)

Assume "bug" P holds the string ED. The TU will vote

"yes"

81

II
Chaptur 10, User Pushdown-Popup Dots, Stacks

Section 10.1 Overview

SThe CSIL systcm provides automatically one (1) data pushdown-popup stack where data

my be temporarily stored. Further capability for this type of operation is provided in the

T user defined stack system.

The user perform three operations concerning his ow. defined stacks:

1. definition by labelling (Section 10.2)

2. pushdown operations (Section 10.3)

3. popup operations (Section 10.4)

A mwxiunkn of fift y (5d) user stacks may be defined.

The lengths of the stacks are bounded only by the limits of unused memory and the

17 nnmber of "free" blocks available from the storage allocator.

F

Ii

Ii
I.

1.

} 82

Section 19.2 Definition of a User Stack

The CSLx user "defines" a user stack by assigning a label as follows with the

DEFSTACK primary statement:

DEFSTACK, stackl, stack2 , stackIN

stackl, stackN! are BCD program labels of up to 8 characters by which the stacks will be

referenced. All user stacks will be open-ended to the limit of available core storage. That

is, as a otack needs to be extended, it will be by adding ore 1ore block of storage. As stacks

are emptied, their "freed" sections (storage blocks) will be returned Lo the storage allocator

for use elsewhtere.

User stack "defisition" is n.t global in nature. This dictates that the sane

"definition" for a giver. user stack must be given i!t every program of a program set where that

user stack will be ased. Du.fing execution of a program set, all "definitions" of a given

user stack will refer to the exact same stack in eumory.

Example: DEFSTACK, ALPHA, BETA

User stacks ALPHA and BETA may now be referenced.

Note: in order for proper initial setup of the user stack system to occur, at least

one (1) stack must be defined in the PROGRAM of e program set.

83

Section 1j.3 Pushdow. Operation on a User Stack

If Data may be pushed down into a user stack by using the STACK primary statement:

If STACK, stakname, list

stakname is a label previously attached to one of the user stacks. A compiler error will result

if the stack has not been "defined"., list is a list of data descriptors or literals (no

hollerith) similar to the lists for the PUSHDOWN statement. The elements of the list specify

fields which the user desires to pushdown in the indicated stack.

I Example: STACK, BETA, 1, 77B, 10.83, A, /TIME

If The top five (5) items in user stack BETA will be, in order:

1. contents of field /TIME

2. contents of "bug" A

3. literal 10.83

4. literal 778

5. literal I

1.

I_

;t

Section 10.4 Popup Operations on a User Stack

Data is popped up out of a user stack by using the UNSTACK primary statement:

I NLSTACK, stakname, emptyext, list

staknam• is the name of a previously "defined" user stack from ui*ch the user desires to remove

datd (popup). If the stack has not been previously defined, a compiler error will result. If

the stack is empty, control of the user program will be transferred to emptyext which must be

a statement labe'. The user ray find out how many elements cf the list were filled prior to

the e!Mtyext by accessing the filled count in either external fields L6STKCT (CSL6) or

L7STKCT (CSL7). list is a list of data descriptors where the user desires the data being

popped ap from the stack to be stored.

The emptyext transfer point and the filled count locations make the user stacks

I somewhat more flexible than the system supplied data stack. This advantage is offset by the

fact that user stack operations are slower than system stack operations.

Example: UNSTACK, BETA, ERROR, A, B, C, D, E

Assume user stack BETA was loaded by the STACK statement in Section 10.3. Then, when

all operations are complete:

1. "bug" A holds the contents of field /TDI.7

2. "bug" B holds the former contents of "bug" A

3. "bug" C holds 10.83

4. "bug" D hclds 77

5. "bug" E holds 1

85

46

ChaPter• "I -/Output of AC¢[Information with Format Conversion

Section 11.1 Overview

The CSLx system provides staterients for format controlled I/O operations only. All

other forms of input/output may be used by appropriate CALL statements to the ILLSYS input/

output routines.

The use of the i/O statements is broken down into three phases:

1. Initialization

2. Data fetch or storage

3. Termination

7he three (3) phases all apply to either input or output.

The statements for initialization are described in Section 11.2 followed by the data

fetch and store BOU's (11.3). Section 11.4 ends the discussion by describing the

termination phase.

rhe CSLx user should familiarize hirself with the FORTRAN language system FOR.MAT

statement. The FORMAT statement for the CSLx system is identical and therefore, the user is

directed to the FORTRAN -nanual for detailed information.

86

Section 11.2 Initialization of Input/Output Operations

If the readeT is familiar with the FORTRAN language, he will remember that I/O occurs

within single statement where all data items and the controlling format are tied together in

a comnon specification. In the CSLx system, a great deal more flexibility is achieved by

sep.,rately specifying format and data items.

Each ard every FORMAT statement controls what we will call an input/output area

(I/O area). The VO greg begins with either an INPUT or an OUTPUT primary statement and ends

uhen properly terminated (Section 11.4). Also asscmiated with each I/O area is mn input or

output medium.

The formats of tha INPUT and OUTPUT Lrlmrv statements are as follows:

I,??UT, Imediuw, format, endaI

OUTPUT, Omedium, format endAO

All three arg ments: Imedium(Omedium), format and endhl(end#O) are statement label in form.

format refers to the controlling FORMAT statement.

Imedimn jOcedium) may represent one of two ways for specifying an input(output)

medium. The first way is an explicit ctatement of the type of input(output) unit.

For input:

I. PAPER TAPE F paper tape reader

PT (flexowriters)

2. TYPEWRITER T console typewriter

3. Y'-.G TAPE x x magnetic tape (BCD mode)

(x = 2, 3. 8)

4. TELETYPE Y paper tape reader

TrY (teletype)

For output:

1. PAPER TAPE F paper tape punch

PT (flexowriter)

2. TYPEWRITER T console typewriter

3. MAG TAPE x x magnetic. tape (BCD mode)

4. PRINTER P ?rinter-format control

PRIN%`TER Q Q no format control

PRINTER 0 0 no line count

5. TELETYPE Y paper tape punch

TTY (teletype)

87

The second way in which Imedium (Omedium) may be specified is as a data descriptor of

a field which contains the single character logical unit code as indicated in the center

column above. The code is right-justified with zeros left in the field. This second specifi-

cation is assumed by the CSLx compiler if Imedium (Omediuml is not one of the above labels.

The endlI (end#O) parameter is used for termination of the I/O area and will be

discussed in Section 11.4.

The CSLx program~er imust remember that an input I/O area may not overlap an

output I/O area. A compiler diagnostic will occur if this happens. A.ny errors occurring in a

FORMAT statement will in all probability not be found until execution time.

8

88

Section 11.3 Data Fetch and Store In An I/O Operation

Data is transmitted to and from the 1/0 medium in units corresponding to the areas in

memory where ýhe data items were found or will be stored. Since the area of storage in the CSLx

system is the field (or literal), we move data in or out in terms of the fields from which they

were fetched or to where they will be stored.

Section 11.3.1 Data Storage During An Input Operation

A special BOU called the TAKE 8OU is used during an input operation.

(TAKE, a a is only a data descriptor. One unit of data is taken

from the input medium and stored in field a. The format of

the data item is determined by the FOIRMAT statement control-

ling the I/O area where the BOU is found.

Inside the 1/0 area, almost any CSLx operations may be performed. The user must not

attempt certain operations as follows:

1. No transfers into an I/O area except to the ThM statement.

2. No transfers out of the I/O area vithout properly terminating I/O operations

(see Section 11.4)

Let us present a short example of an input I/O area in a CSLx program.

READ INPUT, PT, FORMIN, END1

(TAKE,A) (TAKEB)

ENDl (CE,,) (TAKE,D) E1,0O

FORMIN FOPR.%T (12, F7.4, R4)

Assume the following data record is read from the paper tape reader in Flexowriter Code:

1229.6873CSL6

After completion of the input operation, the "bugs" have the following contents:

"bug" A = 12 1

"bug" B - 29.6873

"bug" C = 0
"bug" D - CSL6

89

i |

Section 11.3.2 Fetching Data During An Output Operation

A special BOU called the FEED BOU is used during an output operation.

r (FEED, a) I may be either a data descriptor or a literal (no
Hollerith). One unit of data is taken from field a and

delivered to the output medium. The format of the data

item is determined by the FCMT statement controlling the
I/O area where the BOU is found.Jr

Inside the I/0 area, any CSLx operations may be performed subject to the same restrict-

ions as for the input I/O area.
r

We present here a short example of an output I/O area from a CSLx program.

I 1WRITE OUTPUT, PRINTER, FORMIUT, ENDN
(FEED.A) (FEEDB)

END2 (FEED,C) ENDIO

FORMIUT FORMAT (IX, 12, 2X, II, 2X: F7.4)

Assuming that "bugs" A, B, and C were set up by the input I/O area in the example of

Section 11.3.1, the following line will appear on the printer when the output is complete:

12 0 29.6873

.9

I.

•, 90

T
i

Section 11.4 I/O Area Termination

I The CSLx user has two (2) types of I/O area termination to be aware of: compiler and

zxecut on. Compiler termination of an I/O area deliniates the end of the CSLx source records

to be read by the compiler and included in a specific I/O area. Execution termination must
occur at all points where control will be transferred out of an I/O area.

Compiler termination of an I/O area occurs at the end of the CSLx atatement labeled

end#I (for input) or end#O (for output). end#I and end*O are the last arguments of the INPUT

and OLTPL'T primary statements.

Execution termination of an I/O area occurs when the ENDIO primary statement is

encountered. The ENDIO statement consists only of the character string ENDIO. Additionally,

the DONE, FAIL and EXIT system "goto" units will create execution termination operations just

prior to control transfer.

i

* For examples of the usage of the ETIO statement, see both of the examples of

Sections 11.3.1 and 11.3.2.

T

I

I

I

19

Chapter 12. Sample Programs

Section 12.1 Overv-ew

I We present in this chapter two (2) sample programs written in the CSL6 ls-guage which

illustrate some of the basic operations performed in the CSLx system. Either program will run

in the CSL7 system without any modifications.

Each program is presented first in its complete listing format as it appetred on the line

printer followed by a discussion of how *.he program operates step-by-step. For reference, each
line of the program is numbered sequentially and referred to as line 23 for example.

I9

t9

- -~c~r- ~ ~' '~ 4 $."~ - cc. ''jc 4 '.4 U c4 en n O-Q -n en en. m~ Scco

C4t4

5 U2

22

;.44

cc~~ P-4c9 I
cc zz 4 u C4

02: 4

A~c A-. C)

Wo-4 4-44-

93.

In 'IL

Ln~I LM In tA IALr

IL

CA,
u'0

W z0

to 1-4

z L4ý 04

10

0 01

0 N94

r -2 0

LI

00 f'0

raU3W

N9

r Section 12.2 Sample Program to Sort A String of Integers

Program SORTNUhS reads a file of records from paper tape, each record containing an

integer number. Each integer is placed in a block in core, and all blocks are linked together

on a string with both forward and backward pointers.

j When input is completed, the blocks of the string are arranged irk ascending order of

their integer contents. The final result is listed along with the input data.

f The output as shown for program SORTNUHS is exactly as it would appear on the 1604 line

printer. Had there been any error messages during compilation, they would have occurred

imediately following the record in error.

•Tie program is begun on lines 1-6 where storage is set up with a maximum block size of
"4. Fields A, B and N are defined on lines 7-9.

"Bug" L will be loaucc. ;ýL,, pv.ater to tht .rst block in the string containing the

input data. Thus, in line 13, we get one 2-block, point to it with "bug" A and set the same

pointer in "bug" L.

Line 18 begins the input 1/0 acea where the integer data string will be read in. The

input medium is PT (flexcode paper tape) and the fornat is specified in statement INFORM

(line '9). The I/O area will end on statement ENDI (line 20). Each time lines 18-20 a-0 exe-

cuted, one integer value is read in and placed in "bug" N. The end of I/O operations is sig-

nalled by ENDIO on line 21.

Each new entry to the string is processed in lines 24-26. First, a 2-block is obtained

and linked back to the last block on the string. Then, the last block is linked forward to the

new block. Finally, the integer read in is placed in field N of the new block (line 24). If

the integer read in is negative, this signals the end of the input data. Control will transfer

to the initial print loop PRINTI (line 25). Otherwise, we return for a new read operation

(line 26).

Printout begins by setting "bug" A to point to the first block in the string which con-

tains data. Note that the actual first block on the string is a dummy block used to initialize

the string (line 30). Then we start an output I/O area for the PRINTER (line printer) controlled

by format statement OUTFORM (lines 31-32). The end of the I/O area occurs on statement ENDO

(:ine 33).

Each time through lines 31-33, one item of data, taken from field AN, is printed.

"Bug" A is th- advanced to the next block (line 34). At this point, we make a test on whether

we have reached the end of the string or not.

96

I

I@

Two tests could be made. We could test the next field AN in the string to see if it is

negative. We could also test the forward pointer of the next block to see if it is zero (0).

Remember that all blocks obtained from the storage allocator are zeroed in all fields. Thus,

the last block on the string will have zero (0) in its A field (forward pointer).

We test the end of the string via the second test described above (line 35). If field

AA is not zero (0), control returns to PRINT11 to print another value.

When the list is printed, sorting begins as the list pointer is initialized in "bug" A

(line 39). Next comes the test for end of the string (line 40) where control will advance to

the second print routine PRINT2 when sorting is complete.

Line 41 determines if the integer in the current block (pointed to by "bug" A) is equal

to the value in the previous block. If so, the current block is dropped from the string by

linking the previous block to the next block on either side of tbe current block. Then the

current block is returned to storage with "bug" A set to point to the next block on the string.

Control then returns to the end test.

Line 42 now tests the relationship between the value in the current block and the value

in the previous block. If the current value is less than or equal to the previous value, the

values of the two blocks are interchanged. Then "bug" A is moved back to the previous block.

This enables push back of smallest values before larger ones. Control then returns to the

equality test SRT2. If no interchange is needed, "bug" A is moved down the string (line 43)

and the end test performed again.

After sorting, the printe: is spaced (line 48-49) and the list is output in the format

(line 47. 50-54)ý

ENTrRY N = Value

When the printing is complete, the program ends and control returns to ILLSYS.

On page L-4 the actual listing of the output from SORTNUMS is shown. The time of exe-

cution was 2.4 seconds. The entire listing of compilation and execution is shown exactly as it

would appear on the line printer.

97

:i[

C4 en If D- F-0 7 0 Ne z nDr D0 SwC% C l ,wo

Ien

04--

IF0
U C

o 0

0 -n
n w-

z La Q z
C4 Cc 0 Z.9

:4L 01
0 U 0 rs

z~ ~ 9:1 _

0~ n ý cn L) w x
05 w. = 5t

Go~ t.<~ 0 C.) a
U; lz&~ z S. .

z w

rnA. U

'0

U)

98

II

10

ZI? z
P44

94 - : - '0"

it. -t
u 02

cu 0 olt
10 0 0

r44

W U .c'

o -~ . *U

U) L~ -4 *** ~ U) U~99

T a.

~~0

tn V~ X

U 0 a

sx S. cc a-z : !
0al 00 ---2

Wo w

,a VA-a o ~
cz- fm "- N. L.

!9- 0 w ow0-

1.4.4-

0' 0~C3

-it0

000

U

0'

I.-

c-

U

'14

z • .• • t. p,,• ,. i,• v .L_ ~ , -,• v € *p ',,.•• l

101

II

I

L o3

100

: ~ ~ z~zz

1

Section 12.3 Sample Program to Read BCD Records and Determine Frequency of Character Jsage
and Average Length of Word

Program CHARCT drives subroutine READCHAR to break down data on BCD source file records

in order to find the crequency of character usage, determine the length of words on the records,

and to calculate the average length of words in the file. This routine uses no linked storage

but does contain pseudo-subscr.pting and extensive input-output operations.

The output as shown is exactly as it would appear on the 1604 line printer. Had there

been any error nessages during compilation, they would have occurred immediately following the

record in error.

The operation begins in lines 7 - 10. Storage is initialized because the system push-

down stacks will require linked blocks even though they are not used in the program. Two

arrays, COUM and SIZE, are Lleared to zero (0) counts. The initial values of average length

AVG and total number of words counted WORDCT are also cleared to zero (0).

In line 14, an initial call is made to RLADCHAA to cause the first look-ahead read-in

of a BCD source file record. The input file is always assumed to be on logical wait 4. We

will leave the discussion of READCHAR until later in order to not interrupt the flow of the

program listing.

The read-in of each character is performed on lint, 17. READCHAR produces one character

j in "bug" C. When the end of the input file is reached, an early exit is made to statement

ENDREAD (line 33). Normally, the count ;or the input character is incremented by one (line

17). Additionally, the character is checked for being a space (20B). if it is not a space,

WORDCT is incrementud (line 18) to count the number of characters for the current word and the

loop is repeated.

If a space character is read, then a word Loundary has been reached (line 23). The

size of word is limited t.) 30 characters maximum to prevent spill-over in memory (line 23).

The appropriate word size counter is incremented (line 24) and the characters per word counter

is reset to zero (0) (line 24). Control then returns to read a new character.

When the input tile is exhausted, the character usage counts are listed. Output is

initialized (lines 33-35) by labelling the printout. The count lines for the printout are

started at line 36. An index for the printout is kept in "bug" A. Note that the printout for

the character space (20B) is skipped on line 39. For all other characters up to 6010 (74B),

first the index and then the count are fed to the output atatement (line 40). The index is

checked, and if the end is reached, the output loop is left. Otherwise, the next count is

processed (lines 41-43).

103

I

The second part of the printout is initialized with a heading (lines 47-49) and an

index in "bug" A is set to one (1). Again, a feed output loop is set up in line 50 and the

loop entered at line 52. The index of the word size count is output, followed by the total

count for that size. When all counts have been printed (lines 52-54), the third part of the

printout is prepared.

Line 58 initializes an index in "bug" A to one (1) and a summing register, "bug" C,

to zero (0). The list of word sizes will now be summed for total size and total words. The

loop starts in line 59 where the total count for the current index is rimItiplied by the curre-t

size and summed in AVG. The total count of words is summed in "bug" C. Then the index is

advanced.

When the loop is complete, the average size or word is computed (line 61). Lines 65-67

output a statement and the calculated average. Control returns to the calling routine at this

point (line 68).

A small section of code resides in lines 72-71 where an error message will result if

the input data file contains no data. Note alsc in line 78 that the two arrays, SIZE and

COUNT, and two variables, AVG and WORDCT, are explicitly defined.

The second part of the program is the SUBPROGRAM READCHAR which has two entry points.

INITREAD provides an initializing step to read in the first record from the source data file

and set up the character unpacking routines for operation. READCHAR causes one character to

be read from the current source record. If the record is empty, a new record is read. when

th- end of the file is reached, the special "fail" exit is taken.

Character unpacking operations begin at REDO (line 9) where the current character index

is incremented. If the index is less than 81, then the next character is taken from the se-

quential characters LIST (line 10). Otherwise, a new record is called for (line II) and control

returned for the first character in that record (line 9). The "fail" exit will be taken by

the REREAD section of code at the end of the file.

The next record from ti.e input file is obtained beginning at REREAD (lin-? 15). A 1-

word BCD record is read into BUFFER. If the first eight (8) characters of the next record

are -- END , then the end of the input file has been reached. Thus, the "fail" exit will

be taken (line 16).

The breakdown of the input recorO is acco'plished by use of the system DECODE routine

which is initialized in line 17 to decode 80 characters in RI format from BUFFER. 80 characters

are planted in LIST in lines 18-21. The DECODE input operation is terminated and the current

c•a.racter index set to zero (0) in line 22. Control then returns to the calling section of code.

10O.

Lines 27-29 contain the initializing code. The REREAD section is called in order toset up the first record or detect an evVty input file. The program ends witt, a def.,nition ofvariable INDEX and the two arrays, BUFFER and LIST.

105

APPENDIX A

Error Messages

In this appendix we list the various error messages produced by the CSLx compiler.

Each message is listed as it will be printed and may be followed by a clartfication statement

if necessary.

A.1 Statement Breakdo.m

ILLEGAL USE IF

ILLEGAL USE OF)

Generated by misplaced commas and right parentheses.

A.2 Field Designations

x FIRST CHAR NOT BUG

x is not A-Z for "bug"

a(oo) IS AN ILLEGAL FIELD CHARACTER

a is not 0-9, A-Z. oo is octal value.

FIELD a UNDEFINED

INTERNAL FIELD SHORT

Only "'" appears as field designation.,

EXTERNAL FIELD SHORT

Only "*" appears as field designation.

A.3 Operatien Block Processing

SINGLE OPERATION BLOCK

NO FIKLD AFTER (

First field in block is missing. Also may mean space after ,,'.

ILLEGAL SEPARATOR

Only "," is legal separator.

MISSING 2nd FIELD

MISSING 3rd FIELD
M 4

MISSING 4th FIELD
NISSIX;G 5th FIELD

Field missing between ",." and ")"

OPERATION BLOCK TOO LONG

Block has more than 5 fields

INCOMPLETE STATEMENT

")" probably missing in last operation block of statement.

106

TEST BLOCK NOT 3 FIELDS

ILLEGAL FIELD OPERATO)R aa (oooo)

Not allowed operaticn. aa is field operator and oooo is octal equivalent.

ILLEGAL OPERATION IN IF COMPUTATION aa(0000)

Not allowed test operation, aa is operation code and oooo is the octal equivalent.

A.4 LnIcnown Data-at End of Statements

U`NKNOWN' DATA AT END OF xxxxxxxx STATEMENT

UýNKNOWN DATA AFTER .xxxxxxxx

xxxxxxxx operations m~ust be at end of the statement they occur in.

xxxxxxxx is one of

1. j2XlT

2. FAIL

3. DONE

4. a "goto"

5. ENDI()

6. INPUT

7, 0CTPt T

8, TRANSFER

9. SWITC~i

A.5 ir and N01 Statemvnj:ts

ONLY -1. TIEST ATAL01%'ED I.% IF STATEMENT

ONLY ONE TE 'T AL.LOWE1D !%N\OT STA:EMENT

A.6 OI1PtT qtattrlent

IL!YC.\1. FOIR AT FOR 01 TPUT STATEMENT

I.'CC-':PJ.LTI: 01 1 P'l STATE%:ENT

ATTF:PThI lP WI- oITPt T cTATh
M
VENT INSIDE INPI T STATF'IENT AREA

ATTE"!PTUl!) 74' ý,':AJ ý'[IPLI StAl -' INSIDE oITPIUT STATEMENT AREA

A. 7 1:,I'T Stat,,crit

1!LLL(.A1, FORMAT 10K PO'XI 7TATE''E:.T

INCO-1`111 I .i'l I 7T'T

ATTEMPITID 1(>IA-ý! 1'.P1T 'STAIT-L',1 i'SIDE OITPUT STATEMENT AREA

ATTYPPTIED 10 > ,,1V- 1.P! 1 iTAi`V:2:-1'T INSIDE. INPUI1 STATEMENT AREA

8~ THA~si LR > -ater, ntiI ILLE(.AT. TIIA%'M t,, ",1A-1 -I ERMAT

-,O 1*~ i IRA s 1, 1 All 'I :,I

1%l);:-, ;I: If TV W. TKA%.Sfl-R STAITEMETT

IG

A.9 SWITCH Statement

ILLEGAL FORM'AT FOR SWITCH STATEMENT

INCOMPLETE SWITCH STATEMENT

A.10 GLOBAL Statement

INCOMPLETE GLOBAL STATEMENT

"Bug" name misbing after last 'o,

ILLEGAL SEPARATOR IN GLOBAL STATEMENT

Only "," is legal separator

ILLEGAL BUG NAME IN GLOBAL STA'EMENT a

"a is not P "bug" A-Z

NON SINGLE CHAR FIELD IN GLOBAL STATEMENT a

"a contains more than I character

"A.11 POPUP Statement

INCOMPLETE POPUP STATEMENT

Missing field after last ","

ILLEGAL SEPARATOR IN POPL'P STATEMENT

Only "," is legal separator

ILLEGAL FIELD IN POPUP STATEMENT

Not a legal field designation or may be a literal

A. 2 PUSHDOWN Statement

INCOMPLETF PUSHDOWN STATEMENT

Missing field after last

ILLE(\L SEPARATOR IN PUSHDOWN STATEMENT

Only "," is legal separator

ILLEGAL FIELD IN PUSHDOWN STATEMENT

Not a legal field desigration

A.13 DEFINE Statement

INCOMPLETE DEFINE STATEMENT

Missing label after last ",'

ILLTEGAL SEPARATOR IN DEFINE STATEMENT

Only "." is legal separator

ILLEGAL LABEL IN DEFINE STATEM•ENT

Label does not conform to ILLAR label conventions

A. 14 CALL Statement

INCOMP.LETE CALL STATEMENT

Probable missing argument in call list and/or missinb ")"

ILLEGAL SEPARATOR IN CALL STATEMENT

Comma .nust separate CALL from subroutine name

108

ILLEGAL FORMAT OF CALL OBJECT NAME

Subroutine name does not follov ILIAR program name convention.

A.15 ENTRY Statement

INCOMlPLETE ENTRY STATEMENT

Missing label after last ","

ILLEGAL SEPARATOR IN ENTRY STATEMENT

Only "," is legal separator

ILLEGAL LABEL FORMAT IN ENTRY STATEMENT

Label does not conform to ILIAR label convention

A.16 DO ENTRY Statement

NO LABEL FOR ENTRY POINT

A.17 CALL ENTRY Statement

NO LABEL FOR ENTRY POINT

NO CALL ENTRY ALLOWED IN SUBPROGRAMS

A. 18 EXTERIAL Statement

INCOMPLETE EXTERNAL STATEMENT

Missing label after last ",

ILLEGAL SEPARATOR IN EXTERNAL STATEMENT

Only "," is legal separator

ILLEGAL LABEL IN EXTEi.NAL STATEMENT

Label does not conform to ILIAR label conventior

A. 19 DEFSTAC" Statement

INCOMPLETE DEFSTACK STATEEMENT

missini name after last ","

ILLEGAL SEPARATOR IN DEFSTACK STATEMENT

Only "," is legal separator

ILLEGAL NAME IX DErSTACK STATEMENT

Names must conform to ILLAR label convention

STACK SAME x TOO LONe,

Name x contains more than 8 characters

50 STACKS USED UP

Only 50 iser stacks may be defined

STACK a IS DOUBLY DEFINED

A.2# STACK Statement

INCOMPLETE STACK STATEMENT

Premature end of statement after STACK or missing field designation after last ","

ILLEGAL SEPARATOR IN STACK STATEMENT

Only "," is legal separator

109

I

a

MISSING STACK NAME

Missing stack name or name doea not conform to ILLAR label convention

STACK NAME TOO LONC7 Stack name contains more that. 8 charactersT NDEFINED USER STACK

ILLEGAL FIELD IN STACK LISTr Some field position contains an illegal field designation

SA.21 LNSTACK Statement

INCOMPLETE UNSTACK STA".EMENT

Statement e.ads prematurely after LNSTACK or missing field after last ",

'FILLEGAL SEPARATOR IN UNSTACK STATEMENT

Only "," is legal separator

MISSING FAILEXIT IN UNSTACK STATEMENT

Missing FAILEXIT label or label does not con•form to ILLAR label convention

4 FAILEXIT LABEL TOO LONG

FAILEXIT label contains more than 8 characters

UNDEFINED USER STACK

MISSING STACK NAME-

Missing stack name or name does not conform to ILLAP label convention

STACK NAME TOO LONG

Stack name contains mor- than 8 charact-rs

ILLEGAL FIELD IN STACK LIST

Some field position .-ontains an illegal field designation

A.22 Hlollerith Literals

HOLLERITH LITERAL OVER 8 CHARACT.RS

A.2 3 Block Duplication Operation

ATTEMPTING TO DUPLICATE INTERNAL FIELD

ATTEYPTING TO DUPLICATE EXTERNAL FIELD

A.24 Field Contents and Field Definition Stack Operation

ILLEGAL fIELD DEFINITION OPERATION

First field in operation block is not j or R

ILLEGAL FIELD CONT/ENTS OPERATION

First field in operation block is not S or R

"A.25 FEED .peration

FEED NOT ALLOWED IN IF COMPUTATION

FEED NUV PRIMED rst Ot'TPVT STATE.E'.T

110
14

la

I

o Are a'et1on

IA<F V •' d A7 I,,ND IF COYPUTATION

i•. \,: PRK'1T' :•, I'.PUT STATEMENT

, Storage Setup

tSA."E'•.N STORAGE SETHP

£,CNi. LC SIZE ARGL.ET

Argurent must ')e positive integer literal

SA.2S Sobstitution operation

S.•STI't!TION OPERATION HAS ONLY 3 FIEVDS

I A.29 Co-pilation of Argument Lists for CALL and DOARG Statements

INM'PLETE LIST

' .missing field after l&st ","

ILLEACL FIELD IN LIST

Some field position contains an illegal field designation

ILLECAL SEPARATOR IN LIST

Only "," is legal separator

ILLEGAL BUG CHAR IN LIST

',ingle character field io not A-Z or literal

A.3d Header Card

ARGUMENTS ERROR

Premature end on PROGRAM, SUBROUTINE, SUBPROGRAM cards with arguments before ")

found

A.31 FOPMIAT Statement

-'1SSINC) FOR FORM!AT

MISSING (FOR FORMAT

APPENMIX B

Proper Fomats for Driving FORTRAN Language Function Subroutines

In order to maintain good compatability between language systems in the ILMAR syste-

(ILLSYS), several special operation codes or statements have been included in each language to

allow driving of function subroutines peculiar to the other system languages. In the CSLx

language system, the FUNC BOU is provided to enable the use of FORTRAN language implicit

function subroutines. The function subroutines are peculiar tn that their result (always a

single result) is returneo to the calling program in the main accumulator of the 1604 computer.

The FL.NC BOU allows these subroutines to be called and then to place their result in some

designated field.

Below we have listed proper forms of BOU's for driving most of the standard FORTRAN

function subroutines. Field A. any type of field designator, is the field where the returned

result will be placed. Arguments X, Xl, and X2 may be any field descriptor or literal (no

hollerith) as required by the function subroutine. For further descriptions and details about

any particular subroutine, the reader is advised to see the ILIAR system librarian.

BOU Format Operation of Function Subroutine

(A,FUNC,ABSF,X) Absolute value of X in floating-point

(A,FUNC.INTF,X) Truncation of integer part in floating-point

(AFtNC,!DDFXI,X2) X1 taken modulo X2 in floating-point

(A,FUNCXMDDFXI,X2) Xl taken modulo X2 in fixed-point

(A,FUNCSIN-,X) Sine of X radians

(AFUNC,COSF,X) Cosine of X radians

(AFLNCTANFX) Tangent of X radians

(AFtNC:ASINFX) Arcsine of X in radians

(A,FMACOSFX) Arccosine of X in radians

(A,FUIC,,ATNFX) Arc tangent of X in ridians

(AFUNC,TANHF,X) Hyperbolic tangent of X radians

(A,FU*CSQRTF,X) Square root of X in floating-point

(A,FUNC,LOGF,X) Natural log of X in floating-point

(AFUNCEEXPFX) e to the X power in floating-point

(A,FUNC,SIGNF,.%I,X2) Sign of Xl times X2 in floating-point

(A,FL-'NC,XSIGNFXI,X2) Sign of X1 times X2 in fixed-point

(A,FUNC,PWRRR,XI,X2) X1X 2 in floating-point

(AFUNC,PWRI,%l,X2) XlX2 in fixed-point

(AFUNCPWRRIXI,X2) XlX2, XI in floating-point, X2 in fixed-point

(A,FUNCPWRIR,XI,X2) XlX 2 , X1 in fixed-point. X2 in floating-point

(A,FUNC,RANF,X) Random number gercrator, X +, then result is
fixed-point; x = -, then result is floating-
point

112

#a

I
S1e iion DOCUMENT CONTROL DATA- R & D
: 'Ircutiry lieas ,,tO aon oI title, bodY of .*hfrarr And indeanIn &n notr,,lIn -,u.I be entered Ahen the oeorall Itrepor . cc.saitoed)

I u~a:t'~AC11~ 1fif Itt dr1~ L.fEORT SECUn, Tv CL ASSIFICAT TION0 S

Coordinated Science Laboratory 2GOuP
Urbana, Illinois 61801 O

3 REPORT TItLE

CSLx (x=6,7) A PROGRAMMER'S MANUAL TO THE USE AND UNDERSTANDING OF A LOW.-LEVEL
LINKED LIST STRUCTURE LANGUAGE

4 DESCRIPTIVE NOTES (7Type of repott and inclusive aies)

15 A f, OR.So (First nase,. middle initial, last rlaae)

>0- -1IGHT, W. Jack

6 REPORT DATE IAl. TOTAL NO OF PAGLS I6b. NO OF REFS

November, 1969 112 I -
aCONTRACT OR GRANT NO *. ORIGINASTOR*S REPORT NUIMEER[4ISI

DAAB-07-67-C-0199
6 PROJECT NO R-446

Ob OTHER REPORT NOISI (Any other namberseat may be asstined
this report)iw

I IC DISTRIBUTION STATEMAENT

this document has been approved for public release and sale; its distribution is
unlimited.

.S.*PPLEMENTARY NOTES 1TZ SPONSORING MIL| 7 ARY ACTIVITY

Joint Services Electronics Program
thru U. S. Army Electronics Command

_ ____ ____ Fort Monmouth, New Jersey 07703

This report is a programmer's manual for usage and understanding of a low-level

I Linked list processing language operating on the Control Data 1604 computer. The

asis for the language is L 6, a language developed at Bell Laboratories by K. C.

[noton.

The manual describes all of the operation codes, statements and procedures for

[sing the language. In addition, a brief discussion is given on linked-list storage
chemes and how they are handled.

I

I

IDD -NOV 0.1473
Secunt" Classification

Securtt'. C|%ih fcalton
LINK A LINK 9 LINK C

List-processing

Computer Language

Programmning

Linked-list Storage Scheme

NI

scittliy CIAmftacatlon

