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ABSTRACT 

Two classes of closed form solutions of one-dimensional, nonlinear waves 

of a rate-sensitive, elastoplastic material are reported.    One class of these 

solutions is self-similar and the other class consists of constant speed 

propagations.     Applications of these solutions to unsteady motions behind 

propagating discontinuities are also considered. 
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I.  INTRODUCTION 

The purpose of this report is to discuss two interesting classes of closed 

form solutions of one-dimensional, unsteady motion of a rate-sensitive, elasto- 

plastic material. One class of these solutions is self-similar and is deduced 

from the invariant theorems of continuous groups of transformations. This 

class of unsteady motion is governed by a single, first-order, nonlinear, 

ordinary differential equation of the Riccati type and closed form solutions 

in terms of elementary functions are obtained under special circumstances.  If 

the material in consideration possesses the additional property of instantaneous 

linear elasticity [1] under "high rate" of straining, it may be demonstrated 

that one of these self-similar solutions can be used to describe the dispersed 

nonlinear wave motion behind a propagating shockfront into an initially quies- 

cent region. 

The second class of solutions is obtained by searching for one-dimensional 

wave motions with constant speeds of propagation. These solutions are express- 

ible as simple quadratures and closed form expressions can be obtained for 

specific constitutive relations.  Such solutions represent non-characteristic 

propagations, i.e., they are not propagations of weak discontinuities or accele- 

ration waves. It may be demonstrated, using the Poincare-Bendixon theorem, that 

these solutions, in general, are not periodic. Assuming a sub-elastic, constant- 

speed, propagating discontinuity preceded by an elastic precurser with an un- 

loading , relaxation zone, or a constant stress region, the nonlinear wave solu- 

tion with a constant propagation speed equal to that of the discontinuity can be 



t 
used to describe the "unsteady" motion behind the discontinuity. 

One-dimensional rectilinear motion, in the strict sense, involves not just 

one spatial coordinate but also only one component of stress, strain, and parti- 

cle velocity.  Such a type of motion is typical of the propagation of longitu- 

dinal stress waves in thin straight rods when the lateral inertia effects of 

the rods can be neglected. For such a type of motion, only a one-dimensional 

stress-strain or constitutive relation is required. Various rate-sensitive, 

constitutive equations have been proposed in the literature and a comprehensive 

review of this subject can be found in Cristescu [2]. The solutions described 

in this report are obtained based on a model first proposed by Sokolovskii [3,4]. 

This model cannot, in general, be used to describe the structure or generation 

of shock waves [5,6].  In applying the solutions given in this report to the un- 

steady motions behind propagating shock layers or relaxation zones, additional 

material properties may have to be assumed within these regions. 

II. MATHEMATICAL FORMULATION 

One-dimensional motion may be described by a scalar deformation field, 

x = x (X, t)  , (2.1) 

where x is the instantaneous position coordinate at time t of a generic 

t 
Such an "unsteady" motion, of course, becomes essentially steady for a 

moving observer following the propagating discontinuity. 



particle whose position coordinate at t = 0 was X.    The Lagrangian equation of 

motion and kinematic compatibility condition for rectilinear, one-dimensional 

motion are 

p Su/at = aö/ax  , (2.2) 

3e/9t = 9u/3X   , (2.3) 

where a is the longitudinal stress, and 

u = 3x/3t  , (2.14) 

e = 3x/3X - 1  , (2.5) 

are the particle velocity and Lagrangian strain, respectively. The material 

is assumed to be initially unstressed and unstrained with a constant density p. 

In this analysis, the material under consideration will be assumed to 

follow the special constitutive relation for a rate-sensitive, elastoplastic 

material generalized from a model suggested by Sokolovskii [3,4], 

3e/3t = 9u/3X = E"1 3Ö/3t + yf  (Ö/o - 1) 1  (ö/o - 1)   ,    (2.6) 

where fO) is a dimensionless C1 function with f(n) > 0 for n > 0, 1 (•) is 

the Heaviside function, E is the modulus of elasticity which is assumed to be a 

t 
See, e.g., Courant & Friedrichs, [7]. 



constant, o is th« static yield »trsss, «nJ t is « iMtsrisl oonstsnt. Thus, 

th« Mtsrisl is sssuasd to hsvs «n slsstic rsags with « a*nstsnt ■odu.us. In 

th« plsstic rsngt, ths dyr.ssic yisld s'.ross is rsts-sonsitiv«. Strsin- 

hsrdsning offsets srs not inciudod. Cqustioo (?.6) includos ths woll-known 

■odsls suggsstsd by Cow^or 4 Syoonds [•], sod Rortyns [9], «a spo^isl cssos. 

It is s spocisl for« of s aoro g9t»r*l  ooostitutivo oquatloo suggsstsd by 

Mslvsrn [10]. 

Equations (2.2) snd (2.6) ar« tha basic squatioos dsscribing ths functions, 

u(X, t), ö(X, t), [snd e(X, tfl, charactarixli« tha ooa-diMosiooal notions tc 

be consldsrad in this report. Thass aqustioos nsy bs oonbinod into on« singls, 

sscoixl-ordsr, nonlinear, hyperbolic, partisl differsotial equstion of the 

evolution type in diaensionless fore ss follows: 

eO20/)x2 - »2o/»t2) • [l^fo) df(o)/de * 4(o) f(0)) lo/>t  ,  (2.7) 

where 

e(x, t) i  ö/o - 1  , (2.8) 
o 

Is the dinensionless overstress, 

* J o*      , (2.9) 

t l act      , (2.10) 

c t JziZ     , (2.11) 

• S SY^C/0O ,                                                 (2.12) 



6(') is the Dirac delta functional, and ß > 0 is a dimensionless constant 

included here in the definition of o for convenience. 

Materials described by the constitutive relation given in (2.6) probably 

cannot support shock layers or explain the generation of shockfrents. If a 

shock layer is dissipative, then generalized viscoelastic theories and constitu- 

tive relations such as those considered by Varley 6 Rogers [6], Coleman & 

Gurtin [11], Dunwoody 6 Dunwoody [12], and Pipkin [5], or further generaliza- 

tions of these models,should be used to describe it. For a thin straight rod, 

t 
the shock layer may be dispersive due to latera deformation instead of due to 

any dissipative mechanism.  Such a shock transition may be described in terms of 

a low frequency, large rate of straining expansion of a three-dimensional 

deformation field similar to that considered by Parker £ Varley [13].  In apply- 

ing one of the self-similar motions described in this report to a nonlinear wave 

motion behind a propagating shockfront, it will be assumed that the rate of 

straining in the shock layer is high enough to allow the material to exhibit 

instantaneous linear elasticity [1]. Thus, across such a shock layer, it will 

be assumed that 

The authors are indebted to Professor E. Varley for a discussion pertaining 
to this point. 

tt .... 
The range of rate of straining within which materials exhibit instantaneous 

elasticity varies from one material to another. There is usually an upper 
(and ]ower) cutoff point in rate of straining above (and below) which a material 
may have to be considered viscoelastic. The authors are indebted to Professor 
R. S. Rivlin for pointing this out to them. 



Co] = E [e]  , (2.13) 

where [x] denotes the jump in value of x across the shock layer, and the value 

of E will be assumed to be a constant and have the same value as the modulus 

of the elastic range of the constitutive relation given by (2.6). 

From the Lagrangian equation of motion (2.2) and the kinematic compati- 

bility condition (2.3), two additional jump conditions relating [u], and [e], 

can be deduced formally following a technique suggested by Courant 6 

Friedrichs [7]. The results are: 

PU [u] + [5] = 0  , (2.14) 

U [e] + [u] = 0  , (2.15) 

where U is the propagation speed of the shockfront. Equations (2.14) and 

(2.15) can also be deduced from physical arguments directly. The jump condi- 

tions, (2.13)-(2.15), indicate that the speed of propagation of a shock layer 

of a material exhibiting instantaneous elasticity is 

|U| = ./ETP"  , (2.16) 

which is, in fact, the same as the elastic speed of propagation of small 

disturbances. 

In applying the constant speed solutions to the "unsteady" motion behind 

a propagating discontinuity which moves at a constant sub-elastic speed, it 

will be assumed that there is an elastic precurser and an unloading, relaxation 



- 

zone, or a constant stress region, ahead of the discontinuity. The details of 

the unsteady motion of a relaxation zone ahead of such a discontinuity may be 

very complicated and will not be considered in this report. 

III.  A CLASS OF SELF-SIMILAR SOLUTIONS 

Cowper 6 Symonds [8] proposed, in 1957, a power law, 

f(a) = a6  , (3.1) 

where 6 > 0 is a dimensionless material constant, to describe the rate- 

sensitivity of perfectly plastic materials. This law seems to be quite ade- 

quate in approximating the dynamic responses of certain metallic alloys [1^,15] 

under moderately high rates of straining. Recent investigators [16-20] have 

applied this model to impulsively loaded beams, rods, and plates. The class of 

self-similar solutions described in this report is based on the constitutive 

relation (2.6) and the special form of f(o) given by (3.1). Under these con- 

stitutive assumptions, Eq. (2.7) may be expressed as follows: 

* ^xx' att' 'V a; x> ^ = 0 > (3-2) 

where 

* 5 axx " 0tt " aS"1 at 1
+
(0)  ' (3-3) 

and subscripts denote partial differentiation. The constant ß which appeared 

in the definition of a  in (2.12) has been replaced by the material constant 6. 



„       . . .. 

Consider a one-parameter continuous group of transformations defined by 

(X, T, Z)  = (bx, bmt, bna)  , (3.4) 

aXX' ETT' V = (b  axx' b   0tt' b  at)   ' (3-5) 

where b is the parameter, and m,n are constants. It can be shown that for 

the special case ofm = 1, n = 1/(1 - 6), 

* (axx' att' at' a' X' t) = 

1-26 

= b1"6 *  (l^,  ZTT> ZT, Z; X, T)  , (3.6) 

where it is assumed that 6^1. For 6=1, Eq. (3.2) is linear and the 

analytical solution has been discussed in detail by Malvern [10]. Thus, $ 

is a constant conformal invariant under the group defined by Eqs. (3.4) and 

(3.5) with m = 1, and n = 1/(1 - 6).  According to a theorem proven by 

Morgan [21], the solution to Eq. (3.2) may be expressed in terms of a function 

F(C) of an absolute invariant C of the transformation group defined by 

(X, T) = (bx, bt)  . (3.7) 

The function F(0 is an absolute invariant of the transformation group defined 

by 

1 

(X, T, E) = (bx, bt, b1"6 a)  . (3.8) 



It will be straightforward to verify that 

4 = t/x  , (3.9) 

1 

FU) = x6"1 o(x, t)   , (3.10) 

are absolute invariants of the groups defined by Eqs. (3.7) and (3.8), 

respectively. Thus, there exists a class of self-similar solutions to 

Eq. (3.2) of the form 

1 

o = x1'6 F(0   , (3.11) 

where £; is given by (3.9). 

Substituting Eq. (3.11) into Eq. (3.2) and using Eq. (3.3), a nonlinear, 

second-order ordinary differential equation results. For a > 0, this equation 

is expressible as follows: 

U2 - 1)F" - {[26/(1-6)] 5 + F6"1^' + [6/(l-6)2]F = 0   ,    (3.12) 

where prime denotes differentiation. 

For the special case of 6 = 2, Eq. (3.12) is immediately integrable to 

the following Riccati equation: 

2U2 - 1)F' + ^ F - F2 = K  , (3.13) 

where K is an arbitrary constant. This equation may be converted into a 

linear, second-order, ordinary differential equation by the following 

transformation: 



(C2 - l)r V(z) = Exp r |- f ^77-^ d«']   . <3-^> 

2z = C + 1  . (3.15) 

The result is; 

z(l - 2)7" + 2(1 + r) (1 - 22)7' - (2r - K)V = 0  ,     (3.16) 

where r satisfies the quadratic equation, 

i+r2 + ^r + K = 0  . (3.17) 

Equation (3.16) has three regular singular points at z = 0, 1, and ". 

The solutions to this equation are expressible in terms of hypergeometrir 

functions. For £ > 1, the appropriate general solution to (3.16) is, in the 

usual notation, 

V(z) = Cz"2r"3 2F1 [2r + 3, 2, >»{ 1/z]  , (3.18) 

where C is an arbitrary constant. Thus, from Eq. O.iu), the corresponding 

expression for F(C) is 

FU) = eu - 1) - 4r 

(C - 1) 9F [2r ♦ 4, 3, 5; 2/(5 + 1)] 
+ 2(2r + 3)  S-i   . (3.19) 

U  + 1) 2F [2r + 3, 2, 4; 2/(i  ♦ 1)] 

10 



The expression (3.rJ) for F(0 assumes some particularly simple forms in 

terms of elementary functions for special values of K. As examples, typical 

expressions for FU) and o(x, t) for two different values of K are listed 

below: 

K ■ 0, (i.e., r = 0, or - 1) 

FU) = 8 (25 t U2 - 1) tn  [U - D/U t 1)] + Aj U2 - I)}"'  . (3.20) 

o(x, t) = 8x {2xt t (t2 - x2) tn  [(t - x)/(l ♦ x)J ♦ Aj (t2 - x2)} 

K = -3. (i.e. . r = 1/2 or - 3/2) 

2 _ „2^1-1 

(3.21) 

F(C) = b (1 t A2 C ♦ C2)/(A2 t H  - C2)   , (3.22) 

o(x, t) = 6 (x2 ♦ A2xt + t2)/(A2x
2 t 3x2t - t3)  .      (3.23) 

In these expressions, A , A , and A are arbitrary constants. 

It is interesting to note that the solution given by (3.21) is invariant 

under the translation defined by (x*, t') = (x + a, t ♦ a), where a is an 

arbitrary constant. This property will be utilized in Section V to derive a 

closed form solution of a self-similar, unsteady, dispersed, nonlinear wave 

motion behind a constant "elastic-speed" shockfront propagating into an 

initially quiescent regxon. 

11 



IV.  NONLINEAR WAVES WITH CONSTANT SPEEDS 

Equation (2.7) is a nonlinear, hyperbolic differential equation of the 

evolution type.  The characteristic speeds related to this equation are given 

by, 

D±X/Dt = ± c   , (4.1) 

or, 

D±x/Dt = ± 1  , (4.2) 

where D (O/Dt and D±(«)/Dt denote differentiation along the characteristics. 

Due to the presence of the evolution or dissipative term, 

[l+(o) df(o)/da + 6(a) f(0)] 3a/St, in Eq. (2.7), it is expected that, in the 

plastic range, the material can also support dissipative, dispersive waves in 

addition to the characteristic propagations of discontinuities given by 

Eq. (4.1) or (4.2), To demonstrate the existence of non-characteristic propa- 

gations, a class of constant speed solutions to Eq. (2.7) is considered in 

this section. This class of solutions is obtained by searching for expressions 

of the form: 

a(x, t) = g(s)  , (4.3) 

where, 

S H ct - X   , (4.4) 

and c = constant determines the speed c ? propagation. 

12 



Substituting Eq. (4.3) into Eq. (2.7), a nonlinear, second-order, ordinary 

differential equation results: 

_2 
0(1 - c )g" = c [l+(g) f(g) + 6(g) f(0)]g'   ,        (4.5) 

where primes denote differentiation.  This equation can be integrated once 

immediately to yield, 

_2 
0(1 - c )g' = c l+(g) f(g) + A   , (4,6) 

where A is an arbitrary constant.  Actually, the fact that Eq. (4.5) can be 

integrated once in closed form is not due to the special choice of the consti- 

tutive equation, (2.6), since, by assuming solutions of constant speeds of 

propagation, Eq. (2.2) can be integrated at once without making any additional 

assumptions.  By comparing the expression (4.6) with the basic equations, 

(2.2) and (2.6), it is easily demonstrated that A = 0.  Thus, 

id - c )g' = E i+(g) f(g)  , (4.7) 

for constant speeds of propagation. 

If g < 0, then Eq. (4.7) becomes. 

(1 - c )g' (4.8) 

Except for the trivial case of g = constant, Eq. (4.8) requires that c = ±i, 

which of course is the elastic speed of propagation.  For g > 0, Eq. (4.7) 

requires that 

13 



(i)  c < 1,  for (g'/c) > 0 (4.9) 

(ii)  c > 1,  for (g'/c) < 0 (4.10) 

Thus, for the physically more meaningful case of c < 1, the overstress may 

increase or decrease with s depending on whether c > 0 or < 0. 

Equations (4.9) and (4.10) also indicate that if solutions for g > 0 exist, 

the waves represented by these solutions are not characteristic propagations. 

On setting h = g', Eq. (4.5) for g > 0 may be written as 

h' 

g' 
 ^-f'tg) 
6(1 - c ) 

(4.11) 

Since f(g) is a C1 function, Eq. (4.11) does not have any singular points. 

Thus, according to Poincare-Bendixon theorem, it may be concluded that 

Eq. (4.11), in general, does not possess periodic solutions. 

For g > 0, Eq. (4.7) may be integrated, in general, by quadrature as 

follows : 

g 
[3(1 - c )/c]  I    f"JU) dC t C (4.12) 

where C is an arbitrary constant. 

Perzyna [9] in 1963, suggested two interesting expressions for fit,). 

In slightly generalized forms, these expressions are given as follows: 

d)  fU) =  I a„ ^ 
1=0 

(4.13) 

14 



(ii) f(c) = b + ^ b„ (Exp C - 1) 
0 1=1    *■ 

(4.14) 

where a„, b« are constants.  Expression (i) or Eq. (4.13) includes the model 

f(C) = ? suggested by Cowper 6 Symonds [8] as a special case.  For F(c) = ? , 

and fi 5< 1, Eq. (4.12) becomes, 

6(1 - c ) . 1-5    1-6, 
s, =  — (g   " g,   )  . 

1  (1 - 6)c 1 
(4.15) 

where g = g(s ), s, is a constant, and ß has been chosen as b,. 61  e' 1 '  1 1 

Another simple result is obtained for the constitutive relation (ii) or 

Eq. (4.14) with L = 1.  The integrated expression is 

s = 
(1 - c ) 

(g1 - g) f & 
eg - 1 

gi 
(4.15) 

where, again, g = g(s ), s is a constant, and ß has been chosen as b . 

It is of interest to note that for the constitutive relation (i) or 

Eq. (4.13), the integral in Eq. (4.12) can always be evaluated in closed form. 

It is known that any real polynomial can be expressed as a product of factors, 

of which typical terms are (a c t a ) and iß c,2  + 2ß £ + ß3)
?, where 

a , a , ß , ß , 3 are real constants, ß 2 < ß ß and k,p are real positive 

integers. Thus, f (O may be expressed in the form: 

m 
f' U) = I    ck (cx^ + a2)" + I     (d c + e^)(3,C2 + 2ß^ + ßj -P 

k=l p=l P  1 
(4.17) 

where c, , d , and e are real constants, 
k' p     p 

15 



The integrals fror the first suMution «r« of th« typ«: 

/ (a,; ♦ a2)"k dc  . (4.18) 

which gives, 

aj"1 (l  - k)'1 UjC ♦ a2),"k ,  (k ^ i)  . 

-. a, ' In  IOJC ♦ «jl  .  (k • I) 

(•♦.19) 

The integrals fron the second suaaation are of th« type: 

/ (d c ♦ e ) (BjC2 ♦ 2B2C ♦ 8,)"P dt 
P   P 

« (d /Bj) / (BjC ♦ B2) (B,^ ♦ 2t^ *  B,)^ d4 («♦.20) 

♦ (ep - Vo78^ ^ (8IC2 * 2B2C * •l)'P dC 

The first integral In Eq. I*.20)  gives: 

2"1 (1 - p)-1 (BjC2 ♦ 2B2C ♦ fij)1"* .  (p ^ 1)  . 

2"1 6» IB,;2 ♦ 2B2C ♦ 8,1  ,  (p ■ 1)  . 

(«..21) 

The second integral can be reduced as follows: 

Lf 



/ (0^2 + 2ß2; t ß3)"
p dC = ßP"1 (ßiß3 - 32

2)1/2"P / (y2 + 1)"P dy  , 

(U.22) 

and the integral, 

I = / (y2 + l)"p dy  , (4.23) 

can be evaluated from the recursion relation: 

2(p - 1) I  - (2p - 3) I ^ = y(y2 + 1)1_P   , (4.24) 

with  I    = tan    y.     The  entire  integral in Eq.   (4.12)  can,  therefore,  be 

evaluated in closed  form  in terms of elementary functions. 

V.     NONLINEAR WAVE MOTION BEHIND  PROPAGATING DISCONTINUITIES 

5.1.     Self-similar  solution behind a constant-speed shockfront. 

Consider a one-dimensional shockfront  propagating at some speed U(>0) 

into an initially quiescent  one-dimensional region  (x i 0),     As  it had been 

remarked earlier,  if the range of the rate of straining within the shock 

layer renders the material to exhibit  instantaneous linear elasticity,  then 

the shockfront will  propagate  at a constant  speed, 

U =  /ETP"       , (5.1) 

where E is the instantaneous modulus of elasticity.  If the value of E is 

chosen to be the same as the modulus of the elastic range of the constitutive 

equation, (2.5), then the shock speed has the same value as the characteristic 

17 



speed D X/Dt given by Eq. (4.1).  Under such an assumption, the values of u 

and o immediately behind the shock layer must satisfy the characteristic 

compatibility condition [10]: 

do - pcdu = - Eyfiä/a    -  1)1 (a/a - 1) dt   , (5.2) o +o 

where  c  =  U  =  /E/p     . 

The values of u, o,  and  e,  immediately behind the  shock layer must  also 

satisfy the  jump conditions given by Eqs.   (2.13)  to   (2.15).     Since u, a  =  0 

in the  quiescent  region in front of the shock layer,  Eq.   (2.14) requires that, 

a  =  -  pUu =  - pcu       , (5.3) 

immediately behind the shock layer.  Combining Eqs. (5.2) and (5.3), the 

following differential equation results: 

23da = - f(a)l+(a) dt   , (5.4) 

where  as before,  o  =  (a/a    -  1)  and t  = act with a  =  $y/pE/a   .     Equation  (5.4) 
o o 

indicates  that,  if a  >   0,  then the overstress  immediately behind the shockfront 

always  attenuates with time along the shock. 

Assuming that  o  >  0 behind  the  shockfront,  Eq.   (5.4)   can be  integrated by 

quadrature as follows: 

a       . 
t  =   23  /     f     U) dC  + C"        , (5.5) 

where the integral is identical to that of Eq. (4.12).  Thus, closed-form 

solutions of Eq. (5.5) are possible for special constitutive assumptions. 



For f(c.) =  c    with  6^1,  Eq.   (5.5) becomes 

t  =  [26/(1 -  5)]   (aj1"6  -  a1'6) (5.6) 

where a = a(0), and 3 has been chosen as 6.  Therefore, the overstress 

immediately behind the shock attenuates monotonically with time along the 

shockfront from a = aatt = 0toa = 0att=°o. 

It is interesting to note that for 5=2, Eq. (5.6) can be satisfied 

by one of the self-similar solutions given in Section III: 

8a  = (x + a) 2n + (n2 - i) (Aj + In  C(n - l)/(n + l)]}]  ,  (5.?; 

where n * (t + a)/(x + a), and a, A are constants.  To satisfy the compati- 

bility condition (5.6) for 6=2, the constant a in (5.7) must be chosen as 

follows: 

a = if/aj 

Therefore, the dimensionless overstress o(x, t) behind the shockfront  is 

given by. 

(5.8) 

a = 8/ 
r-1. (t + 4/aj) (2 + (n - l/n) Ul  + In (~n} (5.9) 

and the stress boundary condition at x = 0 is, 

o(0, t) = 8/r2(t + U/ffj) + (2t + ajt2/^) (Aj - In [1 +  8/(0^)]}] 

The behavior of this function for various values of A is shown in Fig. 1. 
1 6 

(5.10) 
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. 

In dimensional forms, the resulting expressions for a(X, t), u(X, t), 

and e(X, t) for this case are given as follows: 

a = a/o - 1 
o 

[4c a /(Ey)] (X + ct ) 
o o 

2c (X + ct ) (t + t ) - [c2t (t + 2t ) - X (X t 2ct )] 
o      o o o 

[In  [(ct t X + 2ot )/(ot - X)] + B} 
-1 

(5.11) 

where 

u = - (a /p) [o(t + t )/(X + ct ) + c  ]  ,        (5.12) 
o o       o 

e = (a /p) [a(t + t )2/(X + ct )2 + c"2]  ,        (5.13) 

to = 2ao/(Ya1E)   , (5.14) 

and B is a constant.  The behavior of the functions u(0, t) and e(0, t) for 

various values of A are indicated in Figs. 2 and 3.  It is of interest to 

note that (5.13) yields a permanent strain e given by 
P 

e = lim e = - (a /E) [(4c a /ByE)   (X + ct )"  - 1] 
p  _ o        o o 

■(:->■» 

(5.15) 
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5.2. Constant speed solution behind an elastic precurser. 

Duvall [22] suggested that the one-dimensional, unsteady motion in a 

semi-infinite (x ^ 0), rate-sensitive, elastoplastic region generated by a 

continuously applied load at its boundary (x = 0) may eventually consist of 

an elastic precurser propagating into an initially quiescent region, an un- 

loading, relaxation zone, and a sub-elastic, constant-speed, nonlinear wave 

motion as depicted in Fig. 4.  After a reasonable length of time, the elastic 

precurser will be far ahead of the leading wave of the constant speed region 

and the boundary of x = 0 will be far behind it.  Relative to an observer 

moving with the leading wave of the constant speed region, the unsteady motion 

behind the leading wave becomes essentially steady. 

Any of the constant-speed, nonlinear wave solutions described by Eq. (4.12) 

in Sec. IV with c < 1 may be considered as a constant-speed portion of such an 

"unsteady" motion.  If the overstress on the leading wave s = s is a > 0, 

then the quadrature expression, (4.12), becomes, 

-2  _  .a -i 
s - s1 = [ß(l - c )/G] / f (?) d?   , (5.15) 

ai 

where s = ct - x, and c < 1.  From Eq. (5.16), the stress boundary condition 

required to maintain the constant-speed motion can be evaluated in a straight- 

forward manner. 

It is of interest to note that, if the initial rate of loading of the 

applied stress at the boundary is not too high such that the time required to 

raise the stress a from zero to the value of the static yield stress a is 
o 
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much longer than the pertinent characteristic relaxation time of the medium, 

then a complete description of a possible nonlinear wave motion for a continu- 

ously loading boundary may be constructed exactly.  Figure 5 is a schematic 

representation of such a motion. It consists of four solution regions separa- 

ted by three discontinuities described as follows: 

(1) Solution Regions 

R : the undisturbed region, a = 0 

R : the elastic region, a < o 

R : the constant stress region, o = o 

R : the constant speed solution region, a > o . 

(2) Discontinuities 

s :  the leading elastic wave 

s0:  the trailing elastic wave 

s : the leading constant speed wave. 

Such an unsteady motion may ue  generated by a monotonically increasing 

stress boundary condition.  The manner in which the stress varies at the 

boundary in tha elastic range can be quite arbitrary (so long as the rate of 

loading is small enough so that there will be no dynamic overstressing in the 

elastic precurser) and has been chosen as a linear function of t in Fig. 5 for 

simplicity, while the rate of stressing beyond the static yield stress must 

follow the expression given in Eq. (4.12) or the differential equation, (U.V). 

22 



It is clear from Eq. (H.7) that nontrivial solutions in R can be generated 

from a leading wave s on which the stress is ö = 0 only if f(0) > 0. The 

value of f(0) can be arbitrarily small. Alternatively, if f(0) = 0 lor a 

specific constitutive relation, a solution such as the one depected by Fig. 5 

can still be generated by viewing s as a small discontinuity in the value of 

ö such that the overstress jumps across this "plastic shock" from zero to some 

small constant positive value a    <<  1. The jump in a from 0 to a at the 

boundary of X = 0 may be viewed as the result of a very fast rate of loading r 

in a small interval of time At near t = t such that lim (r At) = c = 
o - i 

At-^o 
=  (l+o   )o    and 0 < 0,  « 1.     The fact that a = o    in R,  is an admissible 1     o I o 3 

solution can be deduced immediately from Eq.   (4.7). 
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