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Abstract:   An elementary proof is given of the Wielandt-Hofftnan Theorem 

for normal matrices and of a generalization of this theorem. 

The proof makes no direct appeal to results fron linear- 

programming theory. 
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1.      Introduction 

In [2] Wielandt and Hofßnan proved a theorem on the eigenvalues of 

normal matrices which is of considerable Importance in the error analysis 

of eigenvalue algorithms based on the use of unitary transformations 

[U,^].    Their proof was very elegant and was based on the use of linear 

programming techniques.    In [5] Wilkinson gave an elementary proof in 

the case when the matrices are Hermltian, which was based on an earlier 

proof due to Givens [1].    This proof did not extend easily to the general 

case.   Here we give an elementary proof for the general case which 

applies immediately to a generalization of the Wielandt-Hoffman theorem 

due to Kahan [3].    Not surprisingly the proof involves techniques which 

are familiar in the area of linear programming but no direct appeal is 

made to results from that field. 

2.      The Basic Theoiqm 

The proof depends on a theorem which is not directly concerned with 

normal matrices.    Before stating this theorem we give two definitions. 

is 

DEFINITION 1. The set of n elements a. , ,e.~ A  »•••»a« 4  of 

  1,^ 2,i2    n,ln 

an nxn matrix A is called a diagonal of A if i., i.,..., 1 

a permutation of the integers 1,2,..,,n . If i.i = J (J = ^•••»n) 

then we have the principal diagonal. 

DEFINITION 2. A matrix X is called a doubly stochastic matrix if 

x.. > 0 and V x. . = ^ x.. = 1 (j = 1, ...>n)  i.e., all row 
" —       1^1     1=1 

and column runs are unity. 
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THEOREM 1.    If   P   is a real matrix such that the sum of the 

elements on the principal diagonal is not greater than the sum 

of the elements on any other diagonal, and   X    is any doubly 

stochastic matrix, then   S(X) 3^^Pl1x..    is a minimum when 

X -■   I   . 

Proof.     ii.L minijiium is attained, possibly for many different   X . 

Let us choose   X   to be a ininimizing doubly stochastic matrix having 

the maximum number of zero off-diagonal elements.   We shall show that 

all its off-diagonals muet be zero.    For suppose that this is not true. 

Let   x.     .      be a non-zero off-diagonal.    Then   x.     J    < 1   *&& hence 1l,i2 V  2 
there is a non-zero element   x.     .       (say) in row    i0 .    If    1, / 10 l2,l3 d *       d 

then similarly there is a non-zero element x. .  in row 1, . i3,H 3 

Continue in this way until we reach an   x.        .      for which    i      equals i   ., i m 
m-1   m 

some earlier    i,   .    Let   x   be the smallest of the positive elements 

x. >x, ,.«.,x 
Wl    Vl,V2 ra-l^k 

Construct a matrix   Y    such that 

y.     .        = x + x ,    s = k,k+l, ...,m-l (2.1) 
s    s s    s 

y,     ..        = x,    ,        -x      ,     s = k,k+l, ...,m-l (2.2) 
VVl       S'Vl 

y     = x otherwise. (2.3) 

Then   Y    is clearly a doubly stochastic matrix and 
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ZZPi/y -T.Zv^ J U 

m-1 
Z P. 

m-1 

S=lt     iB,iS £kPi
£'Vi 

(2.U) 

The expression in brackets cannot be positive since otherwise by replacing 

the elements   p.     .       in the principal diagonal by the elcincntG 
1 > i 

B      S 
p.     . we could obtain a smaller diagonal sum.    Hence 
Wl 

CZPi/ij l^EPi/y 

But Y is clearly a doubly stochastic matrix and it has at least one 

more off-diagonal zero than X , contradicting the hypothesis. Hence 

all off-diagonal elements of   X   must be zero,   i.e.,    X = I   . 

An exactly analo^ouc theorem holds when the principal diagonal 

has the maximum sum. 

3.     The Wielandt-HoffYnan Theorem 

THEOREM 2.    If    A    and   B    are normal matrices and   C   - A - B ,  and 

if   a.    and    b.    are the eigenvalues of   A    and   B    arranged ro 
n 2 

that       H la-i "^l      is a !Tlinimuin for a11 possible orderings, then 

V|ai-bi|
2    <   1|C|1F    .    (||C||F = the FrobeniuE norm of C)     (3.1) 

Proof.    Since   A   and   B   are normal there exist unitary   Q     and   Q,2 

such that 

^H H A = Q1 diag(ai)Q"   ,    B = Q2 diag(bi)^    . (5.2) 

jf/gtoUbskMu 
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(Note then we are free to prescribe the ordering of the   a.    and   bi 

and we choose the ordering which gives  Z. |a.-h |      a minimum value. 

Hence 

A -B = Q1 diac(ai)^ - ^ diag^)^ = C (3.3) 

Giving 

diag(ai)Q1
:[ Q2 - Q^ Q2 diag(bi) = Q^CQ2 

II 

Writing   Q, = Q, Qg ' a uni"tary matrix, we have 

Hdiag(a.)Q - Q diag^.))^    =    |jCl|F 

(3.U) 

(3.5) 

since the Frobenius norm is unitarily invariant.    Hence 

SZK-^/K/ (3.6) 

Now the matrix   P   with    p..  =  la.-b.l      is real and from the ordering 

of the    a.    and    b.    its principal diagonal is minimal.    Further,  since 
o 

Q    is unitary, the matrix   Z    with   z.. = |q. .|      is a doubly stochastic 

matrix.    Hence by Theorem 1 and equation (3.6) 

ZK-M^ < ZEK-b/K icii; (3.7) 

I 
and the result is proved. 

When   A   and   B   are Hermitian, the   a.    and   b.    are real, and it 

is easy to prove that the orderings   a, > a2 > ... > a    ,    b^ > b2 > .., > b 

r^ive the minimal value.    In fact,  returning to Theorem 1 in the case when 
p 

•n      = (a   -b )     with   a.    and   b.    real and monotonically ordered, the 
^ij    i  d        i      i 

proof is much simpler. For if X has a non-zero off diagonal element 

-.-v*% 
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In row 1 or column 1 It must have at least one such In both.    Suppose 

x.      and   x are non-zero and   x   is the smaller.    If we increase ir sr 

xin    and   x _   by   x   and diminish   x.      and   x ,   by   x   the sum is ü sr ir SI 

changed by 

x[(a1-b1)2+(as.br)2-(a1-br)2-(aß-b1)]2 = x(a]L-a^^-b^ <ü     (....; 

Hence continuing in this way the minimizing   X   has no non-zero off-diagonal 

elements in row 1 or column 1, and continuing again the minimizing   X 

is   I .    (Notice we do not even have to show that for this   P , the 

principal diagonal is minimal; this emerges from the proof.) 

h.     Generalization of the Wielandt-Hofflnan Theorem 

A generalization of the Wielandt-Hofftaan Theorem which is of 

practical Importance is the following. 

THEOREM 3.    If   X   is an   nxr   matrix with orthonormal columns, 

A    is an   nyn   normal matrix,    B    is an   rxr   normal matrix 

and   R   an   nxr   matrix is defined by 

AX - XB   =   R     , (l+.l) 

if the eigenvalues   a.    (i = 1, ...,n)    of   A   and   b.    (i = 1, ...,r) 

of   B   are ordered so that      L I a4 " ^41      ^ a minimum, then 
i=l X     X 

t\*i-\\2 < Ml    • (^) 
i=l 1   1 

2 l/2   2 
A weaker result with j| R ||_ replaced by 2 ' || R ||  was given by 

Wilkinson in [5] and the result itself by Kahan [3]. 

5 
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Notice we are interested only in the selection and ordering of the 

relevant   r   of the    a.    to be associated with the   b.   .   Writing 

A = Q1 diäg(ai)Q"    ,    B = Q? diag(bi)Q2 (^.3) 

with the prescribed ordering of the   a.    and   b.   , we have 

|lidiag(ai)Q - Q diagCb.)^ = ||Q^ R Q2!|F = jl R ^ (U.M 

where    Q    is an    nxr    matrix with ortho-normal columns.    Hence 

f      V |a.   - b.l2lq..|2 = ||R|12 
(^.5) 

Let Y - [Q | Z ] be an nxn unitary matrix given by the completion 

of Q ; then if 

Pii  = lai " bil (J^r)    '    Pi1  = 0 (j>r)     * (lt,6) 
ij 

n        n 

i=i -1=1 ^ I
J     i=i i=i      j    I

J 
(^.7) 

and from the definition of the ordering of the    a.    and   b.  , the diagonal 

of    P    is minimal.    Hence by Theorem 1 and Equation  (^.5) 

£?!!=  £K-M2<  E      Ela-b  I   |q    |2 = l!R|i;  • {k.Q) 
i=l i=l M    i=l J J 

This theorem is of practical value when r orthonormal approximate 

eigenvectors x..,...,x  are known corresponding to alleged eigenvalues 

|ii» • • MIX, . If 

m 
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Axi - ^^ = ^    (i = 1, ...,r) (^.9) 

Then 

AX - X diag^) = R (U.10) 

with an obvious notation, and diag(p1 ) is the matrix B of Theorem 3. 

This then states that there exist r eigenvalues a..,...,a  of A 

such that 

Z^-^-IIRIIF « (^11) 
i=l    1       1 ' 

Notice that the   p,.    can include multiple or pathologically chic 

eigenvalues.    The result is well known when   r = 1   and the 

Wielandt-Hofflnan theorem corresponds to the case   r = n.      We observe 

that by using less than   r   of the alleged eigenvectors we can obtain 

results of the type (^.11) corresponding to any   s    (c r)    of the 

approximate eigenvalues. 

MfafciHairtmi&m&**'*'" 
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