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Abstract: An elementary proof is given of the Wielandt-Hoffman Theorem
for normal matrices and of a generalization of this theorem.
The proof makes no direct appeal to results from linear-
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1. Introduction

In [2) Wielandt and Hoffman proved a theorem on the eigenvalues of
normal matrices which is of considerable importance in the error analysis
of eigenvalue algorithms based on the use of unitary transformations
[4,5]). Their proof was very elegant and was based on the use of linear
programming techniques. In [5] Wilkinson gave an elementary proof in
the case when the matrices are Hermitian, which was based on an earlier
proof due to Givens [1]. This proof did not extend easily to the general
case., Here we give an elementary proof for the general case which
applies immediately to a generalization of the Wielandt-Hoffman theorem
due to Kahan [3]. Not surprisingly the proof involves techniques which
are familiar in the area of linear programming but no direct appeal is

made to results from that field.

2. The Basic Theorn_.g

The proof depends on a theorem which is not directly concerned with

normal matrices. Before stating this theorem we give two definitions.

DEFINITION 1. The set of n elements al’il,a.e’ 12""’°‘n, in of
an nxn matrix A 1is called a dia.gona.l of A if il’ 12, “"in is
a permutation of the integers 1,2,...,n . If i,j =3 (J =1,eeeyn)

then we have the principal diagonal.

DEFINITION 2. A matrix X 1is called a doubly stochastic matrix if

o x, - b
xij >0 eand iglxi‘j = 1=1xji =1 (J =21400on) i.e., all row

and column runs are unity.




AW I

THEOREM 1. If P is a real matrix such that the sum of the
elements on the principal diagonal is not greater than the sum
of the elements on any other diagonal, and X 4is any doubly
stochastic matrix, then S(X) = ZZpiniJ is a minimum when

RN RG

Prooi’. ‘Whe minimum 1s attained, possibly for many different X .
Let us chiooce ¥ 1o be & minimizing doubly stochastic matrix having
the maximum number of zero off-diagonal elements. We shall show that
all its off-diagonals must be zero. For suppose that this is not true.

Let x, . be a non-zero off-diagonal. Then x < 1 and hence
e i.2'12

there 1s a non-zero element x (say) inrow i, . If i )L i

12, 13 2 3 2

then similarly there is a non-zero element x in row 15 C

1yl
Continue in this way until we reach an x for which im equals

im-l’ im

some earlier ik . Let x be the smallest of the Esitive elements

X X

).'.’xi

. . » X, . .
T tker Fr1? tire m-1’ 1k

Construct a matrix Y such that

yi i = xi i + X ) 8 = k’k+l, -o-,m-l (201)
' 8 ’"s
Ve B = X -X 5, 85 =kktl,..eymel (2.2)
tpotan is’is+l
Yij = %y otherwise. (2.3)

Then Y is clearly a doubly stochastic matrix and
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I m-l m=1 _ l
EZ pi.jyi,j 'zzpljxij =X sgk Pis’is = sz=k pis’is+l Q (‘2‘)*) '1

The expression in brackets cannot be positive since otherwise by replacing:

the elements Py 4 in the principel diagonal by the eloncnts
s’ s

R

we could obtain & smaller diagonal sum. Hence

22 p,.v. '<Zzpn"13 .

s B U5 JRET

But Y 1s clearly a doubly stochastic matrix and it has at least one
more off-diagonal zero than X , contradicting the hypothesis. Hence
all off-diagonal elements of X must be zero, i.e., X =1 .

An exactly analogous theorem holds when the principal diagonal

.

has the maximum sum. #

P

3% The Wielandt-Hoffman Theorem

s

THEOREM 2. If A and B are normal matrices and C = A-B , and

if &y and bi are the eigenvalues of A and B arranced o

a 2
that § lay -b,|  is & minimum for all possible orderings, then

. g'a’i ‘bi|2 < chi . (HC”F = the Frobenius norm of C) (7.1)

!
? |
i Proof. Since A and B are normal there exist unitary Q, and Q,
{ i such that %
A = Q, diag(a,)al , B =q, diag(p,)a’ . (3.2)
1l i ? 2 3% 2 *

) s
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(Note then we are free to prescribe the ordering of the &y and bi

and we choose the ordering which gives 2 |a.i- bi|2 a minimum value.

Hence
- H H
A-B=0Q dlag(ai)Ql - Q, diag(bi)Q2 =C . (3.3)
giving
. H H H
dlag(ai)Ql Qy - Qy Qp diag(bi) =Q,0Q, - (3.4)

Writing Q = Q}]{ Q2 , & unitary matrix, we have

latae(e, o - @ dtag(e )2 - ol (3.5)

i

since the Frobenius norm is unitarily invariant. Hence

T la-5,0% la,1° = JelE - (5.6)

Now the matrix P with Py; - |a.i -bJ.l2 is real and from the ordering
of the a, and bi its principal diagonal is minimal. Further, since

¢ is unitary, the matrix 2 with z,. = |q,. is a doubly stochastic

ij 13'
matrix. Hence by Theorem 1 and equation (3.6)

L 2 2 ) 2
Lleg-pyl” 5 LXlay -5yl layyl™ = el (3.7)

and the result is proved.

When A and B are Hermitian, the e, and bi are real, and it
is easy to prove that the orderings a8, 285 2 000 2 &, > bl > b2 2 00 > bn
csive the minimal value. In fact, returning to Theorem 1 in the case when

Blies = (ai -bj)2 with a, and bi real and monotonically ordered, the

iJ
proof is much simpler. For if X has a non-zero off diagonal element

s Y
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in row 1 or column 1 it must have at least one such in both. Suppose

xlr and xsr are non-zero and x 1is the smaller. If we increase

X, and Xy by x and diminish x

changed by

1r and Xgq by x the sum is

x[ (al - bl)2+ (a.s 'br)2 - (al 'br)2 - (a.8 'bl>]2 = x(a.l - aﬁ)(br -bl) <

Hence continuing in this way the minimizing X has no non-zero otf'f-diagonal
elements in row 1 or column 1, and continuing again the minimizing X
is I . (Notice we do not even have to show that for this P , the

principal diagonal is minimal; this emerges from the proof.)

e
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L. Generalization of the Wielandt-Hoffman Theorem

A generalization of the Wielandt-Hoffman Theorem which is of

practical importance is the following.

THEOREM 3. If X is an nxr matrix with orthonormal columns,
A is an nyn normel matrix, B 1s an rxr normal matrix

and R an nxr matrix is defined by
AX «XB = R , (4.1)

if the eigenvalues a, (i =1,...,n) of A and by (i = 1,0e0,y1)

i
2
of B are ordered so that f |°’i -bil is & minimum, then
i=1

X, 2 2
la, -, < |IR]| . (k.2)
12;:'1 i7" &l

1/2” R||§ was given by

A weaker result with || R||§. replaced by 2
Wilkinson in [5] and the result itself by Kahan [3].
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Notice we are interested only in the selection and ordering of the

relevant r of the 8, to be associated with the bi + Writing
A = Q. diag(a, )} , B =q. diag(, ) (4.3)
1 i’ P i’e :

with the prescribed ordering of the ai and bi , We have

2 2 2
latag(a,)Q - @ datag(o)); = flay Ryl = IRI (.b)

where Q 1is an nxr matrix with ortho-normal columns. Hence

L & 2 2 2
Lot vl = rle (i:5)

Let Y =[Q|Z] be an nxn unitary matrix given by the completion

of Q 3 then if

2 o
BN |ai B bjl (7)) 2Ry =0 (i >r) . (4.6)
W e 2 2
iglvisl = -0 %, b,
iL__:'l jgllellel Jz-;-‘l igl'al bJI IqlJl (%.7)

and from the definition of the ordering of the a, and bi y the diagonal
of P is minimal. Hence by Theorem 1 and Equation (kL.5)

)
[

i (4.8)

. = . = b, B 3 i
iglpll i=l' 8‘1 1' S ng j_g]_'al bJ I lqlJ I R

This theorem is of practical value when r orthonormal approximate

eigenvectors xl,...,xr are known corresponding to alleged eigenvalues

ul,oo-,ur . If

P ERART
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Ax =T (1 =1,..4,r) ' (L.9)

L b R

Then
AX - X diag(pi) = R (4.10)

with an obvious notation, and diag(pi) is the matrix B of Theorem 3.
This then states that there exist r eigenvalues al,...,ar of A

such that

iél(ai = ui)z = " R”g 0 (h"ll)

Notice that the Wy can include multiple or pathologically chic
eigenvalues. The result is well known when r =1 and the
Wielandt-Hoffinan theorem corresponds to the case r = n. We observe
that by using less than r of tihe alleged eigenvectors we can obtain
results of the type (4.11) corresponding to any s (<r) of the

approximate eigenvalues.

:
1
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