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PITFALLS IN COMPUTATION, OR WHY A MATH BOOK ISN'T ENOUGH 

George E. Porsythe 

1.      Introduction 

Why do students take mathematics in college and university? 

I see two reasons:    (i)   To learn the structure of mathematics itself, 

because they find it interesting,    (ii)    To apply mathematics to the 

solution of problems they expect to encounter in their own fields, 

whether it be engineering, physics, economics, or whatever. 

I am sure that (ii) motivates far more students than    (i).    More- 

over, most solutions of major mathematical problems involve the use of 

automatic digital computers.    Hence we may justifiably ask what mathe- 

matics courses have to say about carrying out mathematical work on a 

computer.    This question motivates my paper. 

I am not in a mathematics department,  and tend to moralize about, 

them.    If the reader prefers not to be lectured to, I invite him to 

ignore the preaching and just pay attention to the numerical phenomena 

for their own sake. 

I want to acknowledge the help of Mr. Michael Malcolm in critizing 

the manuscript and doing the computations with a special floating decimal 

arithmetic simulator he wrote for Stanford's hexadecimal computer. 

The preparation of this manuscript was supported in part by the Office 
of Naval Research (NR Ohk 211), the National Science Foundation (GJ 798), 
and the Atomic Energy Commission (Stanford PA #18).    This material was 
presented by invitation to the Mathematical Association of America in 
Eugene, Oregon, 25 August 1969« 

Reproduction in whole or in part is permitted 
for any purpose of the United States Government. 
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2,  Nature of computers 

An automatic digital computer is a general-purpose machine. The 

bits of information In its store can be used to represent any quanti- 

fiable objects -- e.g., musical noter, letters of the alphabet, elements 

of a finite field, integers, rational numbers, parts of a graph, etc. 

Thus such a machine is a general abstract tool, and the generality of 

computing makes computer science an important topic, .just as mathematics 

and natural language are important. 

In the use of computers to represent letters of the alphabet, ele- 

ments of a finite field, Integers, etc., there is no error in the repre- 

sentation, nor in the processes that operate upon the quantities so 

represented. The problems in dealing with integers (to select one 

example) on computers are of the following types:  Is there enough 

storage to contain all the Integers I need to deal with? Do I know a 

process that is certain to accomplish my goal on the Integers stored in 

the computer? Have I removed the logical errors ("bugs") from my computer 

representation of this process? Is this the fastest possible process or, 

if not, does it operate quickly enough for me to get (and pay for) the 

answers I want? 

The above problems are not trivial; there are surely pitfalls in 

dealing with them; and it is questionable whether math books suffice for 

their treatment. But they are not the subject of this paper. This paper 

is concerned with the simulated solution on a digital computer of the 

problems of algebra and analysis dealing with real and complex numbers. 

Such problems occur everywhere in technology — for example, whenever it 

is required to solve a differential equat' i or a system of algebraic 

equations. 

There are four properties of computers that are relevant to their 

use in the numerical solution of problems of algebra and analysis, and 

are causes of many pitfalls: 

i) Computers use not the real number system, but Instead a simula- 

tion of it called a "floating-point number system." This introduces the 

problem of round-off. 

PRECEDING PAfiE BUNK 
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11)    The speed of computer processinf'; permits the solution of 

very large problems.    And frequently (but not always) large problems 

have answers that are much more sensitive to perturbations of the data 

than small problems are. 

iii)    The speed of computer processing permits many more opera- 

tions to be carried out for a reasonable price than were possible  in 

the pre-computer era.    As a result, the instability of many processes 

is conspicuously revealed. 

Iv)    Normally the intermediate results of a computer computation 

are hidden in the store of the machine,  and never known to the pro- 

grammer.    Consequently the programmer must be able to detect errors in 

his process without seeing the warning signals of possible error that 

occur in desk computation, where all intermediate results are in front 

of the problem solver.    Or, conversely, he must be able to prove that 

his process cannot fall in any way. 

J 
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3-      Floating-point number system 

The badly named real number system la one of the triumphs of the 

human mind.    It underlies the calculus and higher analysis to such a 

degree that we may forget how impossible it is to deal with real numbers 

in the real world of finite computers.    But, however much the real 

number system simplifies analysis, practical computing must do without 

It. 

Of all the possible ways of simulating real numbers on computers, 

one Is most widely us'id today — the floating-point number systems.    Here 

a number base   ß    is selected, usually 2, 8,  10,  or 16.    A certain 

integer    s   is selected as the number of significant digits (to base    P ) 

in a computer number.    An integer exponent    e    is associated with each 

nonzero computer number,  and    e    must lie in a fixed range, say 

m < e < M . 

Finally, there is a sign    +    ur    -    fur each nunzero floating-point number. 

Let F = F(0, S, m, M) be the floating-point number system. Each 

nonzero   x ? F   has the structure 
g 

x = +  . d. d2...ds   . P      , 

where the integers    d.,   ..., d      have the bounds 

1 < d1 < 0-1 , 

0 < d. < ß-1 (1=2,...,s)     , 

m < e < M 

Finally, the number 0 belongs to F , and is represented by 

+ .00 ... 0 ' pm 

Actual computer number systems may differ in detail from the ideal 

one discussed here, but the differences are only of secondary relevance 

for the fundamental problems of round off. 

r- 
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0 =    2 s = US m =-1025 M =1021+ 

0 =    2 s = 27 m = -128 M = 12? 

0 = 10 s =   8 m = - 50 M =   1+9 

0 =    8 s = 15 m = - 51 ,      M =   77 
0 = 16 s =   6 m = - 61+ ,       M =    63 

0 = lb s = 11+ m = - bU ,       M =    63 

Typical floatinp-point systems in use correspon'i to the following 

values of the parameters: 

(Control Data 6600) 

(IBM 7090) 

(IBM 650) 

(Burroughs 5500) 

(IBM System/560) 

(IBM System/560) 

Any one Computer may be able to stnre numbers in more than one system. 

For example,  the IBM System/360 uses the last two base-l6 floating-point 

systems for scientific work,   and also a certain base-10 system for account- 

ing purposes. 

F    is not a ecntlnuum,  nor even an infinite set.    It has exactly 

2(0-1)0      (M - m + l)+l    numbers in it.    These are not equally spaced 

throughout their range,, but only between successive powers of    0    and 

their negatives.    The accompanying figure,  taken from [J>],  shows the 

35-Püint set    F    for the small illustrative system    0 = 2,    s = 3 , 

m = -1 ,    M = 2  . 

Because    F    is a finite set,  there is no possibility of representing 

the continuum of real numbers in any detail.    Indeed,  real numbers in 

absolute value larger than the maximum member of   F    cannot be said to be 

represented at all.   And, for many purposes, the same is true of real 

numbers smaller in magnitude than the smallest positive number in    F . 

Moreover,  each number in F   has to represent a whole interval of real 

numbers.    If    x    and   y    are two real numbers in the range of    F , they 

will usually be represented by the same number in    F   whenever 

|x-y|/|x| < 2 P      ;  it is not important to be more precise here. 

As a model of the real number system   R , the set    F    has the 

arithmetic operations defined on it, as carried out by the digital com- 

puter.    Suppose    x    and    y    are floating-point numbers.    Then the true 

sum   x + y    will frequently not be in    F  .    (For example,  take the 

53-P0int system illustrated above,  let    x = 5A    an^    y - 5/Ö  .)    Thus 
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the operation of addition, for example,  must itself be simulated on the 

computer by an approximation called float.Ine-point addition whose re- 

sult will be denoted by    fl(x 4- y)  .    Ideally,    fi(x + y)    should be 

that member of   F   which is closest to the true   x + y    (and either one, 

in case of a tie).    In most computers this ideal is almost,  but not quite, 

achieved.    Thus in our toy 55-point set   F   we would expect that    fi(5A + 5/8) 

would be either   5/2 or 7/U   .    The difference between   fl(x + y)    and 

x + y    is called the rounding error in addition. 

The reason that 5/U + 3/8    is not in the 35-point sot    F    is re- 

lated to the spacing of the members of    F .    rn the other hand,  a sum 

like    7/2 + 7/2    is not in    F   because   7    is larger than the largest 

member of    F .    The attempt to form such a sum on most machines will 

cause a so-called overflow signal, and often the computation will be 

curtly terminated,  for it is considered impossible to provide a useful 

approximation to numbers beyond the range of   F . 

While quite a number of the sums     x + y    (for   x, y    in   F )    are 

themselves in   F , it is quite rare for the true product    x.y    to belong 

to   F , since it will   always     involve   2s   or   2s-l   significant digits. 

Moreover,  overflow is much more probable in a product.    Finally, the 
j 

phenomenon of underflow occurs in floating-point multiplication, when two 

nonzero numbers   x, y   have a nonzero product that is smaller in magnitude 

than the smallest nonzero number in    P .    (Underflow is also possible, 

though   unusual, in addition.)    Thus the simulated multiplication operation, 

fl(x.y) ,  involves rounding even more often than floating addition. 

I The operations of floating addition and multiplication are commutative, 

'=] but not associative, and the distributive law fails for them also.    Since 

these algebraic laws are fundamental to mathematical analysis, working with 

floating-point operations is very difficult for mathematicians.    One of the 

greatest mathematicians of the century, John von Neumann, was able to carry 

out some large analyses with floating-point arithmetic (see [10]), but they 

were extremely ponderous.    Even his genius failed to discover a method of 

avoiding nonassociative analysis.    Such a new method, called inverse error 

analysis,  owes its origins to Cornelius Lanczos and Wallace Givens, and has 

been heavily exploited by J. H.Wilkinson.   A detailed study of inverse error 

analysis is part of the subject of numerical analysis.    We will mention it 

again in Section 5« 

I 
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h.     Two examples of round-off problems 

x 
One of th* commonest functions of analysis Is the exponential function   •   • 

Since It Is so much used, It Is essential to be able to have the value of 
y 

e     readily available in a computer program,  for any floating-point number   x * 

There Is nowhere near enough storage to file a table of all values of   e   , 
so one must instead have an algorithm for recomputing   e     whenever it is 

needed.    (By an algorithm we mean a process that is completely defined and 
guaranteed to terminate by delivering the desired output.)   There are, in 
fact, a great many different methods such an algorithm could use, and most 

scientific computing systems have one programmed into it.   But let us assume 

such an algorithm did not exist on your computer, and ask how you would 
program it.    This is a realistic model of the situation for a more obscure 

transcendental function of analysis. 

Recall that,  for any real (or even complex) value of   x ,    e     can be 

represented as the sum of the universally convergent infinite series 

2        3 
e       =     l+X+*|'+^r+... 

Since you learned mathematics because it is useful, you will surely expect 

to use the series to compute ex . Suppose that your floating-point number 

system F is characterized by p = 10 and s = 5 • Let us use the 

series for  x = -5.5 , as proposed by Stegun and Abramowitz [13]. Hei'e 

are the numbers we get: 

e'5*5 =  1.0000 

-5.5OOO 

+15.125 
-27.730 
+38.129 
-U1.9U2 
+38.M*r; 

-30.208 

+20.768 
-12.692 

+6.9805 
-3.I1902 j 

+1.5997 

+0.0026362 

8 



The sum is tenninated when the addition of furt her terms stops changing 

it, and this turns out to be after 25 terms. I s this a satisfactory 

algorithm? It may seem o, but in fact e-5·5 = o . oo4o8 77 , so that 

the above series ets an an~wer correct to only about 36 percent! This 

is awful. 

What is wrong? Observe that there has been a lot of cancellation in 

form~ng the sum of tlis alternatin series. Indeed, the four leading 

(i.e., most significant) di its of the eight terms that exceed 10 in 

modulus have all been lost . Professor D. H. Lehrr.er calls this phenomenon 

catastrophic cancellation, and it is fairly common in ba~v conceived 

computations. However, as Professor William Kahan has observed, this 

great cancellation is not t he cause of the error in the answer -- it merely 

reveals the error. The error had already been made in that ·~he terms 

like 38.129 , being limited to 5 decimal digits, can have only one digit 

that contributes to the precision of the final answer. It would be 

necessary for the term ( - 5.5) 4/4! to be carried to 8 decimals (i.e., 

10 leading digits) for it to l nclude all 6 lead··ng digits of the answer. 

Moreover, an eleventh leading c'li it would be needed to make it li!<ely that 

the sixth significant digit would be correct in the sum. The same is true 

of all terms over 10 in magnitude. 

While it is usually possible to carry extra digits in 3 computation, 

it is always costly in time and space. For this particular problem there 

is a much better cure, namely, compute the sum for x = 5.5 , a~i then 

take the reciprocal of t he answer: 

e - 5· 5 

= 1/(1 + 5·5 + 15.125 + ••• ) 

o .oo4o865 ' with our 5-decimal arith~etic. 

(The symbol ean s ' equals approximately'.) With this computation, ' ~ ' . 
the error is reduced to 0 .007 percent. 
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Note how much worse the problem would be if we wanted to compute e 

for x ■ -100 . 

Actual computer algorithms for calculating e  often use a rational 

function of x , for x on a fairly short interval like 1 < x < e . 

If x is outside this interval, say 

a ^   ^  a+l e  < x < e    , 

then well known properties of the exponential function are used to obtain 
v /a the answer from the rational approximation to   e" , wh«..«   y = x/e    . 

The creation of such algorithms for special functions is a branch of 

numerical analysis in which the general mathematician can hardly be an 

expert.    On the other hand,  it is part of the author's contention that 

mathematics books ought to mention the fact that a Taylor's series is 

often a very poor way to compute a function. 

I will briefly state a second example.    Recall from the calculus that 

(i)   a1' ^' ^r' ^ (bi's" ai"p) (^x> • a 

Now using a floating-point system with   ß = 10   and   s = 6 ,  let us 

evaluate the above formula for   a = 1 ,    b = 2 , and   p = 1.0001 . 

We have 

(2) I    = r     dx 
J       1.0001 
1        X 

.0001 

0.0001 

If we use 6-place logarithms to evaluate    2"* , we have 

log10 2    =    0.301030      , 

log10 2'*0001    =    -0.0000301030    =    -1 +  0.999969 

whence,   using our logarithm table again. 

2-0001    =   0.99993 

10 



\ 

Thus,  from (2), we get    I f 0.7 , an answer correct to only one digit. 

The precise meaning of the restriction to   ß = 10 ,    s = 6   is not 

so clear in the evaluation of   2"* as it would have been in the 

previous example.    However, the example does illustrate the fact that 

übrmula (l), which is precisely meaningful for real numbers as long as 

p /^ 1 ,  is difficult to use with finite-precision arithmetic for   p 

close to   1 .    Thus practical computation cannot admit the precise 

distinction between equality and inequality basic to pure mathematics. 

There are degrees of uncertainty caused by approximate equality. 

I 
I 
I 
I 
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5-      Solving quadratic equatlonc 

The two examples of Section h were taken from the calculus.    But 

we don't have to learn colleße mathematics to find algorithms.    In ninth 

grade there is a famous algorithm for solving a quadratic equation, 

implicit in the following mathematical theorem: 

Theorem.    If   a , b , c    are real and   a / 0 , then the equation 
2 

ax   + bx + c  - 0    is satisfied by exactly two values of   x ,  namely 

■ 

(3) 

and 

(M 

-b + Mb2 
- Uac 

2a 

-b -i2 
- h&c 

2a 

Let us see how these formulas work when used in a straightforward 

manner to induce an al^orithn for computing   x,    and   Xp •    This time we 

sha]l use a floating-point system with    p = 10,    s=8,    m = -50 , 

M = 50 > this has more precision than many widely used computing systems. 

Case 1;      a = 1 ,    b - -10"5 ,    c = 1 . 

The true roots of the correspondinp quadratic equation, correctly 

rounded to 11 cinjiii'icant decimals,  are: 

x    = 99990,99^990 

0.000010000000001 

(true) 

(true)    . 

If we use the expressions of the theorem, we compute 

loo'.no.00 

x2 = 0 

(very good) 

(100 percent wrong)  . 

(The reader is advised to be .rare he sees how   xr,   becomes    0    in this 

floating-point computation.) 

12 

■Mi 



Once again,  in computing   x.0   we have been a victim of cataEtrophic 

cancellation, which, as before, merely reveals the error we made in having 

chosen this way of computing   x2 .    There are various alternate ways of 

computing the roots of a quadratic equation that do not force such 

cancellation.    One of them follows from the easily proved formulas, 

true if   be / 0 : 

(5) 2c 

\F h&c 

(6) x2    ^ 

-b+ i\ 1+ac 

Now, if b < 0 , there is cancellation in (1+) and (5) but not in (3) 

and (6), And, if b > 0 , there is cancellation in (3) and (6), but not 

in (M and (5). Special attention must be paid to cases where b or c 

is 0 . 

At this point I would like to propose the following criterion of 

perfotmance of a computer algorithm for solving a quadratic equation. 

This is stated rather loosely here, but a careful statement will be found 

in [2]. 

We define a complex number z to be well within the range of F if 

either z = 0 or 

m+2 
< Re(z) < ß 

M-2    .   m+2 ^ T , v ^  M-2 
and  ß   < Im(z) < ß 

This means that the real and imaginary parts of z are safely within the 

magnitudes of numbers that can be closely approximated by a member of F . 
2 

The arbitrary factor ß  is included to yield a certain margin of safety. 

Suppose a , b , c are all numbers in F that are well within the 

range of F . Then they must be acceptable as input data to the quadratic 

equation algorithm. If a=b = c=0, the algorithm should terminate 

13 I 
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with a message signifying that all complex numbers satisfy the equation 

ax2 + bx + c = 0 . If a = b « 0 and c / 0 , then the algorithm should 

terminate with an error message that no complex number satiefies the 

equation. 

Otherwise, let z, and «2 be the exact roots of the equation, so 

numbered that [zJ < |z2| • (If a = 0 , set 82 - » .) Whenever z1 

is well within the range of F , the algorithm should determine an 

approximation that is close to z1 , in the sense of differing by not 

more than, say, ß+1 units in the least significant digit of the root. 

The same should be done for Zp . 

If either or both of the roots z.    are not well within the range of 

then an appropriate message should be given, and the root (if any) that is 

well within the range of F should be determined to within a close 

approximation. 

That concludes the loose specification of the desired performance of 

a quadratic equation solving algorithm. Let us return to a consideration 

of some typical equations, to see how the quadratic formulas work with 

them. 

Case 2;  a=6, b-5, c=-U. 

There is no difficulty in computing   x,  = 0.50000000   and 

x2 = -1.3333333 , or nearly these values, by whatever formula is used. 

Case 3;      a = 6 x 1030 ,    b = 5 x 1030 ,    c = -U x 1030 . 

Since the coefficientc in Case 3 are those of Case 2, all multiplied 
30 by   10     ,  the roots are unchanged.    However, application of any of the 

formulas (3)-(6) causes overflow to occur very soon, since   b   > 10?    , 

out of the reuige of   F .    Probably this uniform large size of    |a| ,   |b| , 

|c|    could be detected before entering the algorithm, and all three 
30 numbers could be divided through by some scale factor like    10      to 

reduce the problem to Case 2. 

1U 



Caae 'i;     a = lu       ,   b ■ -10     ,    '.•        i^ 

Here   z.    Is near    1 , while   zM    is near    10'    .    Tlmn our 

algorithm must determine   z.    very clonely,  even though   z«    is out oi' 

the range of   F .    Obvioucly any attempt to bring the coefficients to 

approximate equality in ina^itude by simply diviüin,: them all by ttio nait.c 

number is doomed to failure, and might itself cause an overflow or 

underflow.    This equation in,  in fact, a severe test for a quadratic 

equation solver and even for the computin/i system in which the solver 

is run. 

The reader may think that a quadratic equation with one root out of the 

range of   F   and one root within the ranpe of   F   is a contrived example 

of no practical use.    If so, he is mistaken.    In many iteration alp;orithn.r 

which solve a quadratic equation ac a subroutine, the quadratics do huvo 

a singular behavior in which   a -• 0   as convergence occurs.    One such example 

is Mullens method t9l for finding zeros of general smooth functions of   z . 

Case 5;     a ^ l.OOOOOOO ,    b = -U.0O0OOOO ,    c - 3.0999999 . 

Here the two roots are   z1 - 1.999685772 ,    z2 = 2.000316228 . 

But applying the quadratic formulas (5),   (h) fives 

z-  = Zg = 2,0000000    , 

with only the first four digits correct.    These roots fail badly to moot 

my criteria, but the difficulty here is different from that in the other 

examples.    The equation corresponding to Case 5 Is the fir^t of our equation.- 

in which a small relative chance in a coefficient   a , b , c    induces a 

much larger relative change in the roots    z,  ,  Zp .   This is a form of 

Instability in the equation itself, and not in the method of solving it. 

To see how unstable the problem is, the reader should chow that the computeO 

roots   2.0000000   are the exact roots of the equation 

O.999999992X'" - ■■so^^o^fix *■ 3.9999999'-8 = 0   , 

in which the three coefficients differ,  respectively,  from the true 

a , b , c   of Case 5 by iecs than one unit in the If.st significant diijit. 

In this sense one can cay that   2 , ?.   are pretty good roots for Case '). 

15 



This last way of looking at rounding errors iß called the Inverse 

error approach and has been much exploited by J. H. Wilkinron.    In general, 

it is characterized by askln^ how little change in the data of a problem 

would be necencary to cauae the computed answerr. to be the exact solution 

of the changed problem,    The more clacsical way of looking at round off, 

the direct error approach,  simply arks how wrong the ancwerc are ac 

solutions of the problem with lln gl-'cn dnta.    While both methods are 

useful, the important feature of inverse error analycic is that In many 

large matrix or polynomial problemc,  it can permit ur. eacily to continue 

to use acroclative operatlonr,  anu thlr: ic often very difficult with direct 

error analycic. 

Despite the elementary character of the quadratic equation,  it is 

probably rllll cafe to cay that not more than five computer algoritlur.s 

exist anywhere that meet ine author1 n criteria for sucli an algoritiur. 

Creating euch an algoritnm is not a voir/ deep problem, but it does 

require attention to the goal and to the detailr of attaining the goal. 

It illustrates the sort of place that an undergraduate mathematics or 

computer science ma.jcr v?an make a substantial contribution to computer 

libraries. 

I wish to acknowledge that tue present section owes a great deal to 

lectures by Profess jr William Kahan of the University of California, 

Berkeley, given at Stanford in the Spring of 19'V,. 

I< 
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6.      Solvlntj: linear ij^stonu; of equations 

As the hich cchool student movcc I'rom ninth grade on to tenth or 

eleventh,  he will encounter the solution of cyetemB of linear alßebralc 

equations by (Juur.c1  method of eliminating unknowns.    With a little 

ayetematlÄation,   it becomes another algorithm for general use.    1 would 

like to examine it  in the simple case of two equations in two unknowns, 

carried out on a computer with   i* = 10 ,    s = 3 . 

Let the equation system be one treated by Forsytho and Moler [3]: 

o.ooomox + l.OOy = 1.00 

(7) 
l.OOx +  l.OOy  - 2.00 

The true solution,   rounded correctly to the number of 'Jecinals shown,  Is 

x = 1.00010    ,    y = 0.99990        (truly rounded). 

The Gauss elimination algorithm uses the first equation (if possible) 

to eliminate the first variable,    x ,  from the second equation.    This is 

done by multiplying the first equation by    10000 , and subtracting it 

from the second equation.    When we work to three significant digits, the 

resulting System takes the form 

( 

O.OOOlOOx + l.OOy - 1.00 

- 10000      y = -10000 

(the old first equation) 

For Just two equations, this completes the elimination    of unknowns. 

Now commences the back solution.    One solves the new second equation for   y , 

finding that    y = 1.00 .    This value is substituted into the first equation, 

which is then solved for   x .    One then finds   x = 0.00 .    In summary, we 

have found 

y 1.00 

0.00 

17 
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Of course, this is awf"u.lt What went wrong? There was certainly no long 

accumulation of round-off errors, such as might be feared ir, a large problem. 

Nor was the original problem unstable of itself, as ·t would be if t'.e lines 

represented by the two equations (7) were nearly parallel. 

There is one case in which it is impo sible to eliminate x from 

the second equation -- '\-Then the coeffi cient of x in the first equation 

is exactly 0 • Were such an exact 0 to occUl~, the algorithm is preceded 

by interch&nging the equations. Now, once again, if an ~ zero makes a 

mathematical algorithm impossible, we should expect that. a near zero will 

give a float in -point al orithm some kind of difficulty. That is a "Ort 

of philosophical principle behind what went wrong . And, in fact, the 

d "vision by t;e nearly zero number 0 . 0001 introduced some numbers (10000) 

that s impl swampe the much smaller, but essential data of the second 

equation . That is what went wrong. 

How could this be avoided? The answer is simple, in this case. If i t 

is es sential to interchange equations when a divisor is actually zero, one 

may suspect that it would be important, or at least safer, to interchange 

them when the coefficient of x in the first equation is much smaller in 

rr,a itude than the coefficient of x in the second ea·1ation. A careful 

r ound-off analysis gi ven y J . H. Wilkinson [14] proves this to be the 

ca se, and ood linear equation solvers will make the interchange whenever 

sar y to ·nsure t hat t he lar est coefficient of x (in magnitude ) is 

u~ d a the divi sor. Thu the elimination yields the system 

f.. "'t r the acl' solutio!'! we f ind 

{ 

y = 1. 0 

X == 1.00 

a very fine result. 
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This algorithm, with it interchanges , can be extended to n equations 

in n unknowns, and is a basic al orith.m found in all good computi ng 

centers. 

The following example shows that therP. remains a bit more to the 

construction of a good linear equation solver. Consider the system 

(8) 
{

10.0 X+ 100 

l.OOx + 

') y 

l. OOy 

100000 

2. 00 

If we follow the above elimination procedure, we see that 

interchanging the equations is rot called for, since 10.0 > 1.00 • 

Thus one multiplies t he fir st equation by 0 .100 and subtracts it from 

the second. One finds a.rterwards, still working with f3 = 10 , s = 3 , 

that 

{

l O.Ox + 10000 y 

l OOOOy 

Back solving, one finds 

{ 

y = 1.00 

X = 0. 00 

= 100000 

-10000 

This is just as bad as before, for system (8) has the same solution 

as (7). Indeed, system ( 8) is easily seen to be identical with (?), except 

that the first equation has been multiplied through by 100000 • 

So, the advice to divide by the largest element in the column of 

coefficients of x is not satisfactory for an arbitrary syste of equations. 

What seems to be wrong with t he ystem (8) is that the first equation has 

coefficients that are ~oo large 1or t he probl em. Before entering the 

Gaussian elimin&tion algor i t hm with i nterchanges, it is necessary to scale 

the equations so that t he coeffi cients are roughly of the same size in all 

equations. This concept of scali ng is not completely understood as yet, 

all;hough in most practical problems we are able to do it well enough. 
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If you were faced with having to solve a nonsingular system of 

linear algebraic equations of order 26, for example, you might wonder 

how to proceed. Some mathematics books express the solution by Cramer's 

rule, in which each of the 26 components is the quotient of a different 

numerator detenninant by a cormnon denominator deter.ninant. If you looked 

elsewhere, you might find that a determinant of order 26 is the sum of 

26! terms, each of which is the product of 26 factors. If you decide to 

proceed in this manner, you are going to have to perf orm about 25 x 26! 

multiplications, not to mention a similar nun.ber of addi tion 1. On a fast 

contemporary machine, because of the t ime required to do preparatory 

computations , you would hardl y perform more than 100, 000 multiplications 

per second. And so the multiplications alone would require about 1017 

years, if all '"ent well. The round-off error would usually be astronomical. 

In fac t , t he solut ion can be found otherwise in about (1/3) x 263 • 

5859 multiplications and a like nw.ber of additions, and should be 

entirely finished in under half a second, with very little round-off 

error. So i t can pay to know how to solve a problem. 

I wish to l eave you with the f eeling that there is more to solYing 

linear equations than you may have t hought. 
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7«     When Act vc havo a ,'ood colutjon? 

Anotnor example •■;' u Linear algebraic .'lyr-.ttm Ivar boon furnlsticd b.v 

Moler [81s 

ro.Viix * . .'r :>/ - O.2.I7    ■■   0 

(9) \ 
^).'.)lix ^   V''> f;; - Cu'd^h    =-    0    . 

Gome one proposer two different rolutionc to (9),  namely 

(x^ yL)  = (0.999,  -1.001) 

and 

fx,, y0) = (o.öl.l,  -0.087)    • 

Which one ic better?   Tiie usual check would be to substitute them both 

into (9).    We obtain 

'o.730x    +  C.56?y    - 0.217    -    -0.00121+3 

and 

o.9l3x   + o.o59y   - 0.25U   =   -0.001572 

o.73ox2 + o.5^3y2 - 0.217   =   -0.000001 

] ^0.)13x2 +  0.t:.59y2 - 0.251+    -      0 

I 
*. However,  in fact the true colution ic    (1,  -1)  ,  as the reader can 

j, verify cacily.    Hence    (x,,  y,)    ic X'ar closer to the true solution than 

It seemc clear that    (x0, y2)    is a better solution than    (x , y ) , 

fince it makec the residuals far smaller. 

(x£,  y2)  ! 

A persistent person may ask a^ain:    which solution is really better? 

Clearly the answer rm~t depend on one'e criterion of goodness:    a small 

residual,  closeness to the trm; rolution, or perhaps something else.    Surely 

one will want different criteria lor different problems.    The pitfall to be 

avoided here in the relief that all such criteria are necessarily satisfied, 

if one of them is. 
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8. Sensitivity of certain problems 

We now show that certain computational problems are surprisingly 

sensitive to the data. This aspect of numerical analysis is independent 

of the floating-~oint number system. 

We first con ider the zeros of polynomials in their dependence on 

the coefficients. In Case 5 of Section 4 above, we noted that, while 

the polynomial x2 - 4x + 4 has t he double zero 2 , 2 , the ruunded 

roots of the polynomial equation 

(10) x
2 

- 4x + 3.9999999 = 0 

are 1.999683772 and 2. 000316228 • Thus the change of just one 

coefficient from 4 to · 9999999 causes both roots to move a distance 

of .000316228 • The displacement in the root is 3162 times as great 

as the displacement in the coefficient. 

The instability just described is a common one, and results from 

the fact that the square root of E is far larger than 

roots of (10) are the roots of 

2 
(x - 2) = E , E = . 0000001 

For the 

and these are clearly 2 ~/E . For equations of higher degree, a still 

more tarting instability would have been possible. 

However, it is not only for polynomials with nearly multiple zeros 

that instability can be observed. The following example is due to 

Wilkinson [14]. Let 

p (x) = (x + l)(x + 2) ••• (x + 19)(x + 20) 

The zeros of p(x) are - 1, - 2, ••. , -1, -20 , and are well separated. 

This example evolve at a place where the floating-point number system 

had f3 = 2 , s =" 30 • To en er a typical coefficient into the computer, 

it is necessary t o round it to 30 significant base-2 digits. Suppose 
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that a change in the 30-th most cicniflcant baße-2 digit ic made in 

only one of the twenty coefficient.';.    In fact,  suppose that the coefficient 
W of   x -^   is changed from    210   to   210 + How much effect doc:  tl.i; 

small change have on the zeros of the polynomial? 

To answer this, Wilkinson carefully computed    (ß = 2 ,    s = 90) 

the roots of the equation   p(x) + 2" lx      - 0 .    These are now listed, 

correctly rounded to the number of dlciti shown. 

1.00000 0000 

2.00000 0000 

3.00000 0000 

U.OOOno 0000 

U.99999 9928 

6.00000 69UU 

G.99969 723I+ 

8.00726 7603 

8.91725 021+9 

20.8U690 3101 

10.09526 Ml+5 + 0.61*350 0901*1 

11.79303 3381 + 1.65232 97281 

13.09235 3137 1 2.51883 00701 

16.73073 7^66 + 2.81262 hQyhl 

19.502I13 9H00 + 1.9lv033 osVji 

Note that the small change in the coefficient    210   has caused ten 

of the zeros to become complex, and that two have moved more than    2.51 

units off the real axis!    Of course, to enter    p(x)    completely into the 

computer would require many more roundlngs, and actually computing the 

zeros could not fail to cause still more errors.    The above table of 

zeros was produced by a very accurate computation,  and does not suffer 

appreciably from round-off errors.    The reason these zeros moved so far 

is not a round-off problem — it is a matter of sensitivity.    Clearly 

zeros of polynomials of degree 20 with well separated zeros can be much 

more renr.itive to changes  in the coefficients than you might have thought. 

To motivate a second example,  lot me quote a standard theorem of 

algebra:    In the ring of square matricoc of fixed order   n ,  if   AX - I , 

where    I    is the identity matrix of order    n ,  then    XA - I . 

It follows from thir theorem and continuity considerations that,   ii' 

A    is a fixed matrix and   X    a variable one,  and if   AX - I -• Ö ,  the 

zero matrix, then also    .LA  - I -• 0 .    Hence,  if   AX - I    is small in some 
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sense, then   XA - I   is also small.   However, as with polynomials, one's 
Intuition may not be very good at fjuecning how small these smallnesoes 

are.   Here is an example:   Fix 

A = 

Let 

9999 9998 

10000 9999 

9999•9999  -9997.0001 

.10001      9998 

Then a computation without round-off chows that 

A* - I - 
,001 .0001 

From the last equality the reader may conclude that X iß close, though 

not equal, to the unique inverse A" . However, another calculation 

without round off shows that 

XA - I = 
I9997.OOOI 

.19999 

19995.0003 

-I9995 

Thus the quantities   AX - I   and   XA - I , which must vanish together, 
can be of enormously differing magnitudes in a sensitive situation, even 

for matrices of order   2 . 
The true inverse matrix is given by 

€ 

'999  -999Ö 

-100000  9999 

and this is hardly clocc to X . 

2U 
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9«  A leant-gquaren problean of Hllbert 

The following least-squares problem was diEcusced by the creat 

mathematician David Hllbert [i'<], and leads to come interesting matrices. 

Fix n > 1 . Let fft) be ßiven and continuous for 0 < t < 1 . Wo 

wi-h to approximate f(t) as well av,  we can by a polynomial 
2 n-1 x^ + x^t + x^t + ... + x ^t   of degree n - 1 . To be more precise, 

u   i.    t, n-l 

we wicb to determine x^., x.. ..., x .,  so that o'    l' n-l 
j_ 

*(x) =   J [f(t) - x0 - x^t Vl^'1^ dt 

is as small as possible.    It is not difficult to chow that the minimizing' 

vector of coefficients    x    exists,  is unique,  and can be determined by 

solving the system of    n    simultaneous    equations 

(11) ^T   =    0 (i = 0,  1,   ...,  n-l)     . ox, 
l 

If you carry out the algebra, you find that  (11) is equivalent to 

the system of   n    linear algebraic equations 

(12) Ax    =    b      , 

where 

1     •   i   ■  i 1 
(13) a        =     f    t^V    cit    =   j-— (i,   i  = 1,  2,   ...,   n) 

and 

1    .   , 
(lU) b-   =    f   t1' f(t)dt (i = 1,  2,   ...,  n) 

The matrix   A    cf coefficients in (12)  is now called the Hilbert 

matrix (of order    n  ),  and is denoted by   H    : 
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1 

1 
2 

H = n 

1 -n 

1 
2 

1 
3 

1 
n+I 

1 
3 

1 
4 

1 
n+2 

1 
n 

1 
n+l 

1 
2n-l 

l 

The equat ions (12 ) wi~h matrix A = Hn are called the normal equations 

for the problem. It appears that all one has to do is to find and us e 

a quadrature rule for approximating the b. in (14) , and then solve 
l. 

the sy"'" t (12) . This i s ertainly the standard advice in books on 

practical statistics . 

However, w .at · ~ ob ... er ed i s that for n big~er than 8 or 9 (the 

threshold depends on the system u sed) , linear equations solvers in ordinary 

floating-point precision will simply refuse to solve (12). Moreover, for 

problems t hat can be salved (say r. = 6 ), there are enormous difference 

in the solut ion vectors x for apparently identical problems on slightly 

different machines . Why all this trouble? 

Let me try to explain the sensitivity of the problem first. Let 
- 1 T = H • Then it can be proved t~t 

n n 

36 - 630 3 6o -7560 7 560 -2772 

- 630 14700 -8820 211680 - 220500 831 ~0 

3360 - 882 0 5644Bo -1411200 1512000 - 58212 
T6 -7560 2ll680 -1411200 3628800 - 3969000 1552320 

75Co - 220500 15 2000 - 3969000 4410000 -17463 0 

-2772 831 0 - 582120 1552320 -1746360 69854h 

This mean- t hat a han e of 10- 6 
in just the one element b5 will produce 

changes in · he solution ·Jectcr X of 

( . 00756, -. 2205, 1. 5:2, - 3 . 69, 4 . 41, -1.74 36) T 
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Such changes are unavoidable In a oystetn with   p « 10   and   s = 7  . 
This means that some of the coefficients of the best fitting polynomial 

of degree 5 will have unavoidable uncertainties of the order of U unite. 
This may give some explanation of the instability in the answers.    More 
details are in Section 19 of [3]. 

Here are approximate values of   t    , the maximum elements in   T   , 
for   n < 10 : 

2 

3 

k 

5 

6 

7 

8 

9 

10 

1.20 x 10 

1.92 x 102 

6.U8 x 103 

1.79 x 105 

k.kl x 106 

1.33 X 108 

U.25 x 109 

1.22 x 1011 

3.U8 x 1012 

It cannot be demonstrated here, but if   t   >> ß    , you just cannot 
solve the system   H x = b   with s-digit arithmetic to base   ß . 

The conclusion of this example is that one should not follow a 
Statistics book blindly here.    It is much better to arrange things so 
that matrices of Hilbert type do not arise, even approximately.    And 
when they do, one must be sure to use enough precision so that    t    « ß" 
There are other ways of attacking least-squares problems which are less 
sensitive to the data. 

i 
I 
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10.    Inatablllty In solving ordinary differential equations 

The standard Initial-value problem for a single ordinary differential 

equation   dy/dx ■--- f(x, y)    is to determlJie   y(x)   as accurately as possible 

for   x > 0 , given   y(0)  .    In one very common class of methods (the 

multistep methods) of solving this problem approximately, one picks a 

fixed interval   h > 0 , and determines   y     to approximate   y(nh)    for 

n = 1,  2,   ...  .    One highly recommended multistep method in desk-computing 

days was the Milne-Simpson method.   Here one let      y0 = y(0) , the given 

initial value, and determined   y,    by some method not mentioned here. 

Let    y' = f(nh, y )  .    The idea was to determine   y +1    from   y   ,    and 

y      (n =1, 2,  ...) by the integral 

(n+l)h 

(15) yn+1 = yn_1 +       J     f(x,y(x))dx     . 

(n-l)h 

Cince the integral in (15) can not usually be evaluated exactly, Milne's 

idea was to approximate it by Simpson's formula, and so let 

^ W = ^n-1 + I ^A-l + K + K+J        « 
At the time we seek to find   y +1   from (16) we know   y    .    and   y    , and 

hence   y' ,    and   y'   ; but    y'.,    is not known.    For general   f , Jn-1 Jn n+1 
Milne [7] determined the solution of (l6) by an iterative process that 

is irrelevant to the present discussion.    Let us merely assume that   y +-i 

hac been found so that  (16) holds, where    y'      = f((n+l)h, y      ) ,  and 

that this has been done for    n = 1, 2,  ...  , as far as we wish to go. 

This method was highly recommended by Milne for solution of ordinary 

differential equations at a desk calculator,  and it seemed to work very 

well Indeed.    Most problems were probably solved within  50   steps or less. 

As soon as automatic digital computers arrived on the scene, users 

of the Milne-Simpcon method stcrted to find extraordinary behavior in 

certain problems.    To illustrate what happened,  let us take the very 

simple test problem 
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dy/dx = f(x, y) = -y with y(O) = 1 

-x The true solution, of course, is y = e 

Take h = 0.1 , and carry out the Milne-Simpson process with y0 = 1 

and y1 = 0.90483742 , an 8-decimal correctly rounded \~lue of 

e-O.l • Thi is not something you can do in your head, and so I will give 

you the results, as computed on a system with ~ = 10 , s = 8 • 

X 

.2 

. 3 

8.0 

8.1 

13.2 

13.3 

13.4 

Ycomputed 

.81873069 

• 74o81817 

.0003351 912 

• 00030380960 

• 00000036689301 

. 0000032084360 

-. 000000070769248 

-x e 

. 81873075 

.74081822 

. 00033546263 

.00030353914 

. . 
. 0000018506012 

. 0000016744932 

. 0000015151441 • 

We see that by X = 8 .0 a noticeable oscillation has set in~ 

whereby successive values of y alternate in being too low and too hi gh . 
n 

By x = 13.4 this oscillation has grown so violent that it has (for the 

first time) actually thrown the sign of y negative, which is unforgiveable n 
in anything simulating a r eal exponential function! 

The Milne-S:L"Tlpson method is very accurate, in that the Simpson formula 

is an accurate approxi.111ation to the above integral. What can be the matter? 

Since f(x, y ) = -y } we can explicitly write down the formula (16) 

in the fonn 



WH 

I 

r •!"«. «rmrv "VnauwWiVf*'^ J 

Tliuc the computed    {y.}    satisfy the 3-temi recurrence relation 

(17> (l + |)Vl + T ^n - f1 - \K.l   '   0   ■ 

We know that the general solution of (1?) takes the form 

1.8)        yn = A^ + A2^   , 

where   K,, ^   are 'bhe roots of 

■O) (l + |)X.2 + lf X-  (1-|)     =0     . 

Some algebra and elementary analysis show   that 

^ = 1 - h + 0(h2) ,      as   h ^ 0    , 

\2 = -(1 + |) + 0(h2) ,      as   h ^ 0    . 

: atLlng the values of   K., K^   into (18),  and using the relation    nh = x , 

we find that,  for small   h , 

yn    =    A^l - h)n +  (-l)
n A2(l + I)" 

1 3.x 

=    A^l - h)HX  +  (-l)
n A2(l + |)

E     3 

•      «      "X   .    /   . \Tl   .      x/ 3 =   A^     + (-1)    A2e ' 

''ho first term is the desired solution, and the second is an unwelcome 

••        extra solution of the difference equation (1?) of the Milne-Simpson method. 

:Jow the initial conditions might have been chosen exactly so that A.= 1 

r nd A« = 0 . (They were roughly of this nature.) Had they been so 

I chosen, and if the solution could have proceeded without round-off error, 

f..ue unwanted term in A2 would never have appeared. But, in fact, a 

j        Mmall amount of this solution was admitted by the initial condition, and 
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r.omc more of it crept In as the result of round-off.    Then,  after enough 
x/3 r.tepn, the size of   e '       caused the unwanted term to dominate the 

colution, with its oscillating sign. 
This disaster never occurred in desk computation,  so far as we know, 

because at a deck one ^ust doesn't carry out enough steps.    However, T 

Professor Milne tells me that he did occasionally observe harmless 

oscillations in the low-order digits. 
The moral of this example is that not only are math books not 

enough, but even old numerical analysis books are not enough to keep you 

out of some pitfalls'. 
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11. Instability in solving a part.ial differential equation 

The following is a s i mple problem for the heat equation. Suppose a 

homogeneous insulated rod of length 1 is kept at temp,erature 0 at one 

end, and at temperat ure 1 at the other end . If t he ent i re rod is 

initially at temperature 0 , how does it warm up? 

Let u = u(x, t ) denote t he temperat ure at time t a.t that part of 

the rod that is x unit s f rom t he cold end . Then, i f the unit s were 

chosen to make the conductivity 1 , t he t emperature u satisfies the 

differential equation 

(20 ) 

l ') 

o~u 
---'2 ox 

ou = ~ at 

with end and initia.l condi tions 

(21) 
{ 

u( O, t ) 

u (l, t) 

u (x, 0 ) 

0 

1 

0 

( 0 <X < 1 

(t > 0) ' 

(t > 0) ' 

(0 <X < 1) 

t > 0) 

This problem can perhaps best be solved by separation of variables 

and tri gonometric series . But let us apply the method of finite differences, 

which mi ght in any case be needed for a more difficul t problem. To do 

t his, we divide the length of the rod into equal intervals, each of length h • 

And we divide the time interval [ 0, ~) into equal intervals of length k • 

Instead of t rying t o determine u (x, t) f or all x and t , we will limit 

ourselves t o comput i ng u (x, t) on the discrete net of points of type 

(mh, nk) , f or i ntegers m, n . The heat equation ( 20) can then be 

s i mulat ed by a number of finite -difference equations , of which we pick one: 

(22) 'u(x- h , t) - 2u x, t ) + u (x + h , t) 
112 

= u( x, t+ k ) -u(x, t) 
k 

Equat ion (22 ) can be us ed t o det ermine u (x, t) for all net points 

in the i nfin i te stri p of t he problem, a f ollows: Solve (22) for 
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u(x,  t + k)    In Lcnnc oi'   u(x-h,  t) , u(x, t)  ,  u(x+h,  t)  .    Thus compui.c 

u(x,  k)    for   x = li,  2h,   ...,   (n-l)h   in tern.s of the given initial 

condition!: on the line   t - 0 .    The given end conditions give   u(0,  k) 

and   u(l,  k)  .    With this set of values of   u   at all points of the net 

with    t  - k , we can continue and compute all valuer, on the net for   t  = ^k 

F.tc.    The computation ic very attractive, because each new value of 

u(x, t + k)    is determined explicitly from (22) -- there is no need to solve 

a large number of simultaneous equations. 

How does the solution behave?   To try a case, we pick   h = 0.1   and 

k     0.01 .    Thus the rol is represented by 9 interior points and two 

endpoints, and we get a solution at time steps    0.01   apart.    Just to show 

the behavior of the solution of (22), we give the value of the temperature 

ii(0.5,   t)   at the midpoint of the rod, computed with   ß = 10 ,    s - 6 , 

for selected times: 

t u(0.5,  t) computed from k = 0.01 

I 
I 
I 
I 
I 
I 

( 

0.05 

O.06 

0.07 
• • • 

0.15 

• • ■ 

:-.2o 

• • • 

0.99 

1.00 

1 

16 

•  • 

132276 

■28157050 

+1.0196022 x 10' 

.2.9590007 x 10' 

The valuer; in the table are ridiculous,  of course.    It is a classical 

oxamplc  of inrtability.    Common  sense and mathematics both tell us that 
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the real temperature can never get outside the range 0 < u(x, t) < 1 . 

Our difference-equation problem is a disastrous model of the continuous 

problem, even though both difference expressions in (22) are reasonable 

models of the derivatives in (20). 

This terrible pitfall has been known for at least 20 years, and 

yet new problem solvers keep on rediscovering it. 

It is interesting to note that if one selects a time step only 

half as long, the computation proceeds very nicely.    Here is the 

corresponding table of values of   u(0.5,  t)    for a computation    (ß - 10 , 

s = 8)    with   h = 0.1 ,    k - 0.005 : 

t u(0.5,  t) computed for k = 0.005 

0.05 .10957500 

O.06 .lU599609 

0.07 .I79565U3 

• •  • « •  ■ 

0.15 .35657261 

• «  • f   •   • 

0.20 A130U382 

• •   • •  •  • 

1.00 A9997173 

The values of the midpoint temperature are converging to    0.5  ,  as 

they obviously should in the physical problem. 

What is the reason for the great difference in behavior between 

k = 0.005    and    k = 0.01 ?    The matter can be analyzed in many ways,  and 
o 

here is one simple approach. Let \ =  k/h . Then, from (22), 

(23)    u(x, t + k) = \u(x-h, t) + (l-2\)u(x, t) + \u(x+h, t)  . 

Hence,   if    0 < \   < ■% ,  the formula (23)  represents   u(k,  t+k)    as a 

weighted average with non-negative weights of   u(x-h,  t)  ,  u(x,   t)  , 

öh 
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and u(x+h, t) . Hence u(x, t + k) will always be between the maximum 

and minimum values of u(x, t) . But, if \ >-x , the weights alternate 

in sign and thus permit a solution in which 

|u(x, t + k)| = \|u(x-h, t)| + (2\-l)|u(x, t)| + \|u(x+h, t)| . 

Here the sum of the weights is U\ -1 > 1 . This permits an exponential 

growth of a solution with an alternating sign pattern. 
/ 2    1 

Thus the condition 0 < \ = k/h  < ^ is essential to keep the 

solution bounded. A deeper discussion found, for example, in Forsythe 

and Wasow [h]  proves that the solution of (22) converges to the solution 

of (20) uniformly for all    (x, t)    with    0<x<l,     0<t<T<o0, 

as h -♦ 0 , k -• 0 in such a way that k/h < l/2 . 

The proof of convergence and an analysis of the stability of (22) can 

be carried out by means of Fourier analysis. The stability can be exanined 

in more detail by studying the eigenvalues and eigenvectors of the linear 

transformation (23) that maps each line of solutions onto the next line. 

Note that in our two tables we had \ = 1 and \ = l/2 , respectively. 

35 

I 

I 

f 

I 

i 

I 

.,„„.„■,.■.,,„-a^^am, jam—»»Mwrf-«ryy :■ ■■-.■■.,-■.■ 



12.    Round-off errors in polynomial deflation 

Our final example, due to Wilkinson [Ik], shows a more subtle 

effect of round-off error that arises in the course of finding polynomial 

zeros.    The quartic polynomial 

; 

Pu(x) = x   - 6.798OX3 + 2.99U8xd - 0.0li3686x + O.OOOO892I48 

has zeroc that,  correctly rounded, are ac follows: 

0.002U532   ,    0.012576   ,    O.U5732   ,    6.32565    . 

I. Suppose first that we compute the zero    0.0021+532 ,  and then 

deflate   P^    to a cubic by dividing    P^(x)   by   x - 0.002^532 ,  using 

P. = 10 ,    G = 5 .    If we do, the resulting cubic has zeros 

0.012576   ,    0.1+57315 ,    6.32561   , 

so ^hat the main error introduced by this deflation is a change of the 

larfrest zero by   k   units in its last place. 

II. Suppose, on the other hand, that we first compute the zero 

6.3256 , and then deflate   P.    to a cubic by dividing   P|,(x)    by 

x-O.3256 ,  again using 5-place decimal arithmetic.    If so, the resulting 

cubic has the zeros 

0.0026261   +    0.061+339 i , 

O.U671I+8    . 

We have perturbed two of the remaining zeros beyond recognition,  and 

have changed the second significant digit of the third. 

Thus it appears to matter a great deal which zero of    P>     we locate 

first.    For the present case we can get a feeling for what is happening 

by examining the process of division of    P^(x)    by the linear factors. 

We use detached coefficients: 
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First, the division by x- 0.0024532 

1 - 6.7980 + 2.9948 - o.o43686 + o.oooo89248 
- 0.0024532 + 0.166707206 - 0.00730587492 + 0.000089247416 

1 - 6.7955 + 2.9781 - o.o36:38o 

Thus the cubic that results from the first deflation is 
- 3 2 P3(x) = x - 6. 7955x + 2.978lx - 0.036:380 • Moreover, a careful 

examination of the division shows that P3(x) is ~~ (i.e., without 

round off) equal to the quotient of 

by x- 0.0024532 • Hence the zeros ot P3 are exact~ the zeros of 'P4 
except tor 0.0024532 • Note that all the coefficients ot P4 and P4 
are quite close, so it is reasonable to expect that the zeros ot P4 and 

'P4 should be cloae (as they are). 

Now we show the deflation by x - 6.3256 

1 - 6.7980 + 2.9948 - o.o43686 + o.oooo89248 
- 6.3256 + 2.g8821344 - 0.04174896 + 0.0122526872 

1 - o.4724 + o.oo66 - 0.001397 

... 3 2 
Thus the result ot this deflation is a cubic P3(x) :. x - o.4724x 
+ o.oo66x - 0.001397 • Again, P3(x) is exactly the quotient ot 

by x - 6. 3256 • Note that P4 and P4 differ very much in their 

constant terms. Hence the product of the roots of P4 must be very 

different from that for P4 • This is an explanation for the great 
A 

shift of the zeros of P3 • 



Further analycic chows that the shift in zeros during thic kind of 

deflation is generally small when deflation is made with zeros of sraall 

modulus, and is generally large when deflation is based on zeros of large 

modulus. Thus it is better to get zeros of small modulus first in using a 

polynomial solver with deflation in the above manner. 

Of course, any zero of a deflated polynomial can be refined by use 

of the original polynomial, and that is normally done. But, zeros that 

change as much as those above are difficult to refine, since the refinement 

process may converge to the wrong zero. 

I 
I 
I 
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13. Conclusions 

Around ten years ago, when I last read a number of t hem, most 

mathematics books that dealt with numerical methods at all were from ten 

to f :U'ty years out of date. In the past tt-.n years, many excellent new 

methods have been devised for most of the elementary problems -- methods 

that are well adapted to automatic canputers, and work well. Let me cite 

a few examples ~f tmportant algorithms hardly known ten years ago: 

1. For getting eigenvalues of stored square matrices, there is an 

excellent method that starts with the transformation of Householder (1958), 

and follows it with the QR-algorithm of Francis (1961-62) and 

Kublanovskaja (1961). It is the method of choice for most problems. 

For references, see Wilkinson [15j. 

2. For solving ordinary differential equations, special methods 

have been developed by Gear [ 5], Osborne [ 11], and others which can deal 

with so-called !!!!! equations. {Roughly speaking, a stiff equation is 

one whose solutions contain very rapidly decaying transients which 

contribute nothing to the long-term solution, but which interfere 

drastically with most numerical. methods of solving the equation.) 

3. For evaluating the definite integral of a smooth function of 

one real variable, the method of Romberg (see Vol. 2 of Ralston and Wilf [12 )) 

has proved to be very useful. 

4. For minimizing a smooth real-valued function of n real 

variables, a \~riant by Fletcher and Powell [1] of a method of Davidon 

is far superior to anything used in the 1950's. And there a:re still more 

recent methods • 

Many other examples could be given. Indeed, the 19o0 ' s have proved 

almost explosive in the number of newly invc~ted algorithms t hat have 

supplanted those known earlier. Of the methods knc~.rn years ago for common 

numerical problems , only Gauss' systematic elimination method for solving 

linear algebraic equation systems with dense, stored matrices remains 

~··--



supreme today, and even it must be augmented with scaling and pivoting 

decisions, as we noted in Section 6 above. Newton's method for solving 

a nonlinear system of equations is still much used today, though it has 

strong competition from newer methods. 

Because of my knowledge of mathematics texts ten years ago, and my 

knowledge of the explosive increase in numerical methods in the 1960's, 

I am confident that today' s mathematics courses cannot be trusted to 

include important knowledge about computer methods. As we noted in 

Section 10 above, you can't trust early numerical analysis textbooks 

either. 

On the other hand, there are experts in numerical analysis. They 

have societies in which methods are presented and discussed. The 

Society for Industrial and Applied Mathematics (SIAM) and the Special 

Interest Group on Numerical Mathematics (SIGNUM) of the Association for 

Computing Machinery (ACM) are the most active in this country. There are 

a number of journals with important information. For a start, you might 

consult the keyword-in-context index of Computing Reviews, the review 

journal published by ACM, as well as the algorithms in the Communications 

of ACM and in Numerische Mathematik. Modern monographs and textbooks in 

numerical analysis are slowly appearing, and the beginner might 

profitably consult Ralston and Wilf [12]. 

It might be noted as a digression that, just as mathematics departments 

mainly ignore modern numerical analysis, so also the newly created computer 

science departments often give the subject little attention, since they 

are so busy with a variety of important nonnumerical fields. Thus numerical 

analysts remain a small corps of specialists whose greatest appreciation 

probably comes from the users of mathematical programs. 

St dents of mathematics are well equipped to read about numerical 

methods . Why should they repeat the classical blunders of generations 

pa5t? Why aren't they informed of the existence of good numerical 

methods, and roughly where to find them? 

Remembering that most stuuents take mathematics in order to apply it 

on computers, I ask why mathematics courses shouldn't reflect a true 
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awareness of how computing is done? Why shouldn't students demand in 

their mathematics courses a greater awareness of .he points of contact 

of pure mathematics and its practice on a ccrnputer? 

Of course, a mathematics instructor can shrug his shoulders and 

say that actual computing problems don't interest him, and suggest that 

his students contact a numerical analyst sometime. If the instructor 

actually says this out loud, it at least has the virtue that the students 

may realize immediately that the mathematics is not applicable directly, 

instead of having to discover it for themselves. It still sounds 

irresponsible to me. After all, Society has been supporting mathematicians 

pretty well for the past 25 years -- not because mathematics is a beautiful 

art form, which it is -- but because mathematics is useful, which it also 

is. But this would seem to imply that a mathematician should convey some 

awareness of the main ways in which his subject is used. 

On the other hand, a mathematics course cannot really include very 

much numerical analysis. Wilkinson's treatise [15] on computing 

eigenvalues is 700 pages long, and can hardly be summarized in every 

course on linear algebra! As a practical matter, then, the mathematics 

instructor's main responsibility is to be aware of the main features of 

practical computing in the areas of his mathematics courses, and mention 

occasional points of contact, while giving his students important 

references to important algorithmic materials in other books. 

If one just ignores the relations between mathematics and its 

important applications, I fear that an instructor is running the risk 

of being exposed by sane technological chapter of the Students for 

Democratic Society for not being relevant, and that is a very nasty 

accusation nowadays. Why risk it? 
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