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PITFALLS IN COMPUTATION, OR WHY A MATH BOOK ISN'T ENOUGH

*
George E. Forsythe

1. Introduction

Why do students take mathematics in college and university?
I see two reasons: (i) To learn the structure of mathematics itself,
because they find it interesting. (ii) To apply mathematics to the
solution of problems they expzct to encounter in their own fiélds,
whether it be engirnzering, physics, eccnomics, or whatever.

I am sure that (ii) motivates far more students than (i). More-
over, most solutions of major mathematical problems involve the use of
automatic digital computers. Hence we may Jjustifiably ask what mathe-
matics courses have to say about carrying out mathematical work on a

computer. This questicn motivates my paper.

I am not in a mathematics department, and tend to moralize about
them, If the reader prefers not to be lectured to, I invite him to
ignore the preaching and just pay attention to the numerical phenomena
for their own sake.

I want to acknowledge the help of Mr. Michael Malcolm in critizing

the manuscript and doing the computations with a special floating decimal
arithmetic simulator he wrote for Stanford's hexadecimal ccmputer.

*
The preparation of this manuscript was supported in part by the Office

of Naval Research (NR Ok 211), the National Science Foundation (GJ 798),

and the Atomic Energy Commission (Stanford PA $#18). This material was
presented by invitation to the Mathematical Association of America in
Eugene, Oregon, 25 August 1969.

Reproduction in whole or in part is permitted

for any purpose of the United States Government.
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2., Nature of computers

An automatic digiéal computer is a general-purpose machine. The
bits of information in its store can be used to represent any quanti-
fiable objects -- e.g., musical noter, letters of the alphabet, elements
of a finite field, integers, rational numbers, parts of a graph, etc.
Thus such a machine is a general abstract tool, and the generality of
computing makes computer science an important topic, just as mathematics
and natural language are important.

In the use of computers to represent letters of the alphabet, ele-
ments of a finite field, integers, etc., there is no error in the repre-
sentation, nor in the processes that operate upon the quantities so
represented. The problems in dealing with integers (to select one
example) cn computers are of the following types: Is there enough
storage to contain all the integers I need to deal with? Do I know a
process that is certain to accomplish my goal on the integers stored in
the computer? Have I removed the logical errors ("bugs") from my computer
representation of this process? Is this the fastest possible process or,
if not, does it operate quickly enough for me to get (and pay for) the
answers I want?

The above problems are not trivial; there are surely pitfalls in
dealing with them; and it is questionable whether math books suffice for
their treatment. But they are not the subject of this paper. This paper
is concerned with the simulated solution on a digital computer of the
problems of algebra and analysis dealing with real and complex numbers.
Such problems occur everywhere in technology -- for example, whenever it
is required to solve a differential equat’ -~ or a system of algebraic
equations.

There are four properties of computers that are relevant to their
use in the numerical solution of problems of algebra and analysis, and
are causes of many pitfalls:

i) Computers use not the real number system, but instead a simula-
tion of it called a "floating-point number system."” This introduces the

problem of round-off.

PRECEDING PAGE BLANK
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11) The speed of computer processing permits the solution of
very large problems. And frequently (but not always) large problems
have answers that are much more sensitive to perturbations of the data
than small problems are.

1i1) The speed of computer processing permits many more opera-
tions to be carried out for a reasonable price than were possible in
the pre-computer era. As a result, the instability o1’ many processes
1s conspicuously revealed.

iv) Normally the intermediate results of a computer computation
are hidden in the store of the machine, and never known to the pro-
grammer. Consequently the srogrammer must be able to detect errors in
his process without seeing the warning signals of pogsible error that
occur in desk computation, where all intermediate results are in front
of the problem solver. Or, conversely, he must be able tc prove that

his process cannot fail in any way.
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3.  Floating-point number system
The badly named real number system is one of the triumphs of the

human mind. It underlies the calculus and higher analysis to such a
degree that we may forget how impossible it is to deal with real numbers
in the real world of finite computers. But, however much the real
number system simplifies analysis, practical computing must do without
it.

Of all the possible ways of simulating real numbers on computers,
one is most widely used Loday -- the floating-puint number systems. Here

a number base P is selected, usually 2, 8, 10, or 16. A certain
integer s is selected as the number of significant digits (to base B )
in a computer number. An integer exponent e 1s associated with each

nonzero computer number, and e must lie In a fixed range, say

m<e<M.

Finally, there is a sign + or - fur each nonzerc floating-point number.

Let F =F(B, s, my, M) be the fleoating-point number system. Each
nonzero X € F has the structure

e
x=Iudld200uds .B 3

where the integers dl’ J d'§ have the bounds

lsd se"l’

1

Osd SB-l (i=2’l00’s) )

i

m< e< M 0

Finally, the number O belongs to F , and is represented by

+ .00 ...0 " g™ .,

Actual computer number systems may differ in detail from the ideal
one discussed here, but the differences are only of secondary relevance
for the fundamental problems of round off.
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Typical floating-point systems In use correspond to the following

values of the parameters:

B=2 , s&=1Lk8 m =-102% , M=1024  (Control Data 6(00)
B = , 8=27 , m=-2128 , M=127 (IBM T7090)

=10 , s=8 , m=-50 , M= 4o (IBM 650)

= % , 8§=13 , m=-51 , M= 77 (Burroughs 5500)
=16 , s= 6, m=-6+& , M= 63 (IBM System/360)
B=16 , s=1+ , m=-64 , M= 63 (IBM System/360)

Any cne computer may be able to store numbers in more than one system.
For example. the IBM System/360 uses the last two base-16 floating-point

systems for scientific work, and also a certain base-10 system for account-

ing purposes.

F is not a centinuum, nor even an infinite set. It has exactly
Q(S-I)Bs-l(M - m + 1)+l numbers in it. These are not equally spaced
throughout their range, but only between successive powers of B and .-
their negatives. The acccmpanying figure, taken from [ 3], shows the
33-pcint set F for the small illustrative system =2, s =3,
m=-1, M=2,

Because F 1is a finite set, there is no possibility of representing
the continuum of real numbers in any detail. Indeed, real numbers in
ahsolute value larger than the maximum member of F cannot be said tc be
represented at all, And, for many purposes, the same is true of resl
numbers smaller in magnitude than the smallest positive number in F .

Morecver, each number in F has to represent a whole interval of real

numbers., If x and y are two real numbers in the range of F , they

will usually be represented by the same number in F whenever

ey 1/1x] < 3 87°
As a mciel of the real number system R , the set F has the

arithmetic operations defined on it, as carried out by the digital com-

; 1t is not important to be more precise here.

puter. Suppose x and y are floating-point numbers. Then the true
sum X +y will frequently not be in F . (For example, take the
33.point system illustrated above, let x =5/ and y = 3/8 .) Thus
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the operation cof addition for example, must itself be simulated on the
computer by an approximation called fluating-point addition whose re-
sult will be denoted by ff(x + y) . 1Ideally, fI(x + y) should be
that member of F which is closest to the true x +y  (and either one,
in case of a tie). In most computers this ideal is almost, but not quite,
achieved, Thus in cur toy 33-point set F we would expect that tI(5/4 + 3/8)
would be either 3/2 or 7/4 . The difference between ff(x + y) and
x +y 1is called the rounding error in addition.

The reason that 5/4 + 3/8 1is not in the 3%-point set F is re-
lated to the spacing of the members of F . ~n the other hand, a sum
like 7/2 + 7/2 is not in F Dbecause ‘| 1is larper than the largest

member of F . The attempt to form such a sum on most machines will

cause a so-called overflow signal, and often the compu.ation will be

curtly terminated, for it is considered impossible to provide a useful

approximation to numbers beyond the range of F .

While quite a number of the suns x+y (for x, y in F ) are
themselves in F , it is quite rare for the true product x.y to belong
to F , since it will always involve 28 or 2s-1 significant digits.
Moreover, overflow is much more probable in a product. Finally, the
phenomenon of underflow occurs in floating-point multiplication, when two
nonzero numbers x, ¥ have a nonzero product that is smaller in magnitude
than the smallest nonzero number in F . (Underflow is also possible,
though unusual, in addition.) Thus the simulated multiplication operation,
fi(x.y) , involves rounding even more often than floating addition.

The operations of floating addition and multiplication are commutative,
but not associative, and the distributive law fails for them also. Since
these algebraic laws are fundamental to mathematical analysis, working with
floating-point operations is very difficult for mathematicians. One of the
greatest mathematicians of the century, John von Neumann, was able to carry
out some large analyses with floating-point arithmetic (see [10]), but they
were extremely ponderous. Even his genius failed tc discover a method of
avoiding ncnassociative analysis. Such a rew method, called inverse error

analysis, owes its origins to Cornelius lanczos and Wallace Gilvens, and has
been heavily exploited by J. H.Wilkinson. A detailed study of inverse error
analysis is part of the subject of numerical analysis. We will mention it

again in Section 5.
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L, Two examples of round-off problems

One of th. commonest functions of snalysis is the exponential function .

Since it is so much used, it is essential to be able to have the value of

ex readily available in a computer progran, for any floating-point number x .

There is nowhere near enough storage to file a table of all valuevs of e* ’
go one must instead have an algorithm for recomputing e* whenever it is
needed. (By an algorithm we mean a process that is completely defined and
guaranteed to terminate by delivering the desired output.) There are, in
fact, a great many different methods such an algorithm could use, and most
scientific computing systems have one programmed into it. But let us assume
such an algorithm did not exist on your computer, and ask how you would
program it. This is a realistic model of the situation for a more obscure
transcendental function of analysis.

Recall that, for any real (or even complex) value of X , e* can be
represented as the sum of the universally convergent infinite series

X x2 xs
e =] l+x+ﬁ+-3T+ see .

Since you learned mathematics because it is useful, you will surely expect
to use the series to compute X . Suppose that your floating-point number
system F 1s characterized by B =10 and 8 = 5 . Let us use the

series for x = -5.5 , as proposed by Stegun and Abramowitz [13]. Hewre
are the numbers we get:

e = 1.0000
-5.5000
+15.125
-27.730
+38.129
-L1.0Lk2
+38,LL6
-30.208
+20.708
-12.092
+6.9803
=3.h902
+1.5997

+0.002630:3
8

——




The sum is terminated when the addition of further terms stops changing
it, and this turns out to be after 25 terms. Is this a satisfactory
algorithm? It may seem so, but in fact e 22 = 0.00408677 , so that
the above series gets an answer correct to only about 36 percent! This
is awful.

What is wrong? Observe that there has been a lot of cancellation in
forming the sum of this alternating series. Indeed, the four leading
(i.e., most significant) digits of the eight terms that exceed 10 in
modulus have all been lost. Professor D. H. Lehmer calls this phenomenon
catastrophic cancellation, and it is fairly common in badly conceived
computations. However, as Professor William Kahan has observed, this

great cancellation is not the cause of the error in the answer -- it merely
reveals the error. The error had already been made in that “the terms
like 38.129 , being limited to 5 decimal digits, can have only one digit
that contributes to the precision of the final answer. It would be
necessary for the temm (-S.S)u/h! to be carried to 8 decimals (i.e.,
10 leading digits) for it to include all € leading digits of the answer.
Moreover, an eleventh leading digit would be needed to make it likely that
the sixth significant digit would be correct in the sum. The same is true
of all terms over 10 in magnitude.

While it is usually possible to carry extra digits in a computation,
it is always costly in time and space. For this particular problem there
is a much better cure, namely, compute the sum for x = 5.5 , and then

take the reciprocal of the answer:

5.5 . 1/e95

e =

1/(1 + 5.5 + 15.125 + ...)

i

0.0040865 , with our 5-decimal arithmetic.

(The symbol ' = ' means 'equals approximately'.) With this computation,
the error is reduced to 0.007 percent.

O



Note how much worse the problem would be if we wanted to compute e*
for x = =100 .

Actual computer algorithms for calculating e* often use & rational
function of x , for x on a fairly short interval like 1 <x<e .
If x 4is outside this interval, say

et <€ & < A

then well known properties of the exponential function are used to obtain
the answer from the rational approximation to e¥ , wheoe y = x/ e .
The creation of such algorithms for special functions is a branch of
numericel analysis in which the general mathematician can herdly be an
expert. On the other hand, it is part of the author's contention that
mathematics books ought to mention the fact that a Taylor's series is
often & very poor way to compute a function.

T will briefly state a second example. Recall from the calculus that

(1) P ax =P . 1 l-p l-p
af -xs * Tp = 17 (b -a’") (pF1) .
8

Now using a floating-point system with g = 10 and s = 6, let us
l, b=2, and p = 1.0001 .

evaluate the above formule for a

We have
2 -
- L. [ 1. o000l
7 1.0001 0.0001 :
X
-.0001

If we use 6-place logarithms to evaluate 2 , we have

logy, 2 % 0.2010%0

log,, 27+000 + 5,0000301030 = -1+ 0.999969

whence, using our logarithm table again,

-.0001

2 0.99993 .

efje

10
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Thus, from (2), we get I % 0.7 , an answer correct to only one digit.
The precise meaning of the restriction to g =10, s =6 is not
s0 clear in the evaluation of 2"0001 as it would have been in the
previous example. However, the example does illustrate the fact that
Prmule (1), which is precisely meaningful for real numbers as long &s
P )é 1, is difficult to use with finite-precision arithmetic for p
close to 1 . Thus practical computation cannot admit the precise
distinction between equality and inequality basic to pure mathematics.

There are degrees of uncertainty caused by approximate equality.

11
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5. Solving quadratic cquationc

The two examples of Section 4 were taken from the calculus. But
we don't have tn learn college mathematics to find algorithms. In ninth
grade there is a famous alporithm for solving a quadratic equetion,
implicit in the following mathematical theorem:

Theorem. If & , b, ¢ are real and a # 0, then the equation
ax + bx+ c = 0 is satisfied by exactly two values of x , namely

(3) =-b + dbz-hac

X =

1 28
and
2
-b - \b© - Lac
() X2 7 2a '

Let us cee how thece formulac work when used in a straightforward
manner to induce an algorithm for computing X, and X . This time we
shall use a floating-point system with g =10, s =8, m= <5,

M = 50 ; this has more precicion than many widely used computing systems.

Case 1l: al = i p bE -lO'5 y € =1 4
The true roots of *he corresponding quadratic equation, correctly

rounded to 11 sipgniiicant decimals, are:

X, = 99990,904990 (true)

g

X, = 0.007010000000001 (true) .

If we use the expressions of the theorem, we compute

X) = 100%00.00 (very good)

%, = 0 (100 percent wrong) .

(The reader is advised to be sure he sees how x, becomes O in this

floating-point computation.)

AL
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Once again, in computing x, we have been a victim of catastrophic
cancellation, which, as before, ;erely reveals the error we made in having
chosen this way of computing Xy o There are various alternate ways of
computing the roots of & quadratic equetion that do not force swuch
cancellation. One of them follows from the easily proved formulas,
true if be £ 0 :

(5) xl = g )

b = \Jb2 - hac

(6) X, = = .

b+ b2 - bac

Now, if b < 0, there is cancellation in (4) and (5) but not in (3)
and (6). And, if b > 0 , there is cancellation in (3) and (6), but not
in (4) and (5). Special attention must be paid to cases where b or c
is 0.

At this point I would like to propose the following criterion of
performence of a computer algorithm for solving a quadratic equation.
This 1s stated rather loosely here, but a careful statement will be found
in [2].

We define a complex number 2z +to be well within the range of F if

either z =0 or

< Im(z) < sM'2 3

m+2

e < Re(z) < BM'E and B

B

r

This means that the reel and imaginary parts of 2z are safely within the
magnitudes of numbers that can be closely approximated by & member of F .
The arbitrary factor 52 is included to yield a certain margin of safety.
Suppose a , b, ¢ are all numbers in F that are well within the
range of F . Then they must be acceptable as input data to the quadratic
equation algorithm. If & =b =c¢ = 0 , the algorithm should terminate

13
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with a message signifying that all complex numbers satisfy the equation
ax°+bx+c=0. If a=b=0 and ¢ # 0, then the algorithm should
terminate with an error mecsage that no complex number satisfies the
equation.

Otherwise, let 2y and Z, be the exact roots of the equation, so
mumbered that |z,| < |z,| . (If a =0, set g, == .) Whenever e,
is well within the range of F , the algorithm should determine an
approximation that is close to zZ, in the sense of differing by not
more than, say, p+1 units in the least significant digit of the root.

The same should be done for z, -

If either or both of the roots z; are not well within the range of F,
then an appropriate message should be given, and the root (if any) that is
well within the range of F should be determined to within a close
approximation.

That concludes the loose specification of the desired performance of
a quadratic equation solving algorithm. Let us return to a consideration
of some typical equations, to see how the quadratic formulas work with

them.

Cese 2: a=6, b=5, ¢c =4,

There is no difficulty in computing X, = 0.50000000 and
X, = -1.3333333 , or nearly these values, by whatever formula is used.

Case 3: a=6x1030, b=5x1030, c=-hx1030.

Since the coefficients in Case 3 are those of Case 2, all multiplied

by 1030 , the roots arc unchanged. However, application of any of the

formulas (3)-(6) causes overflow to occur very soon, since b > 10°° A

out of the range of F . Probably this uniform large size of |a| ’ Ibl ’
|c| could be detected before entering the algorithm, and all three
to

numbers could be divided through by some scale factor like 10‘7’0

reduce the problem to Case 2.

14
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Cese : a = 1lu A y b = «l? o L’i’ .

Here z, 1is near 1, while z, 1s near 10 . Tlus our
algorithm must determine 2y very clogely. cven though Z5 1s out of
the range of F . Obvioucly any attempt to bring the cocfficients to
approximate equality in magnitude by simply dividing them all by the name
number is doomed to failure, and mirlt itself cause au overflow or
underflow. This equation 15, In fact, a severe tect for a quadratic
equation solver and even for the computing system in which the colver
is run.

The reader may think that a quadrntic equation with one root out or tne
range of F and one root within the range of F 15 a contrived example
of no prectical use., If so, he iz mistuken. In many iteration algorithur
which solve a quadratic equation ac a subroutinc, the quadratics do heve
a singular behavior in which a = 0 as convergence occurs. One such examplc
is Muller's method [9]) for finding zeros of general smooth functions of z .

Case 5: a = 1.0000070 , b = -L,0000000 , c¢ = 3.0999999 .

Here the two roots are z, = 1.99968z7172 , z, = 2.000316228 .
But applying the quadratic formulas (3), (&) gives

< = 2 = 2.0000000 I}

“1 F3
with only the first four digits correct. These roots fail badly to meet

my criteria, but the difficulty here ic different from that in the other
examples. The equation corresponding to Cace 5 is the first of our equations
in which a small relative change in a coefficient a , b, ¢ inducers a

much larger relative change in the roots 2y 9 Zp This is a form of
instability in the equetion itself, and not in the method of solving it.

To see how unstable the problem is, the recader should chow that the computed

roots 2.000000C are the exact roots of the equation
0.999999992x" - ¥.C7%09098x + 2.999999938 = 0 ,

in which the three coefficients differ, respectively, from the true
a,b, c of Case 5 by lecs than one unit in the lest significant di:-it.
In this sense onc can cay that 2 , 2 are pretty pood roots for Case 5.
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This last way of looking at rcunding errors is called the inverse
error approach and hac been much explolted by J. H. Wilkinson. In reneral,
it 18 characterized by asking how little chenge in the data of & problem
would be necescary tu cauce the computed answers to be the exact solution
of the changed problam. The more cleccical way of looking at round off,

the direct error approach, simply acke how wrong the ancwers are ac
colutions of the problem with its piven dota. While both methods are
useful, the important feature of inversc error analycic is that in many

large matrix or polynomial probleme, it can permit uc easily to continue

to use acrociative operationr, anu thic is often very difficult with direct
error analycis.

Decpite the elementary character of the quadratic cquation, it is
probably clill caf'e to gay that not morc than five computer algoritiurs
exist anywhere that meet Lice author's criteria for such an alpgorithm.
Creating cuch an aliroritnm is not & verv decp problem, but it does
require attention to the goal and to the details of attaining the goal.
It illustratesc the cort of place that an underpraduate mathematics or
computer ccicnce major can make a cubctantial contribution to computer
libraries.

T wicsh Lo acknowled.;e that tue present section cwes a great deal to
lectures by Profescor William Kahan of the University of California,

Berkeley, given at Stanford in the Spring of 19ru.




6.  Solviny linear systeme of cquations

As the high school student moves from ninth grade on to tenth or
eleventh, he will cncounter the soluticn of gystems of Linear algebraic
equations by Gausc' method of eliminating unknowns. With a little
systematization, it becomes another alporitnm for (feneral use. 1 would
like to examinc it in the cimple cace of two equations in two unknowns,
carried out on a computer with (3 =10, s =5.

Let the equation system be one treated by Forsythe and Moler [3]:

0.000100x + 1.00y 1.00

(7)

1.00x + 1,00y = 2,00 g

it

The true solution, rounded correctly to the number of decimals shown, 1is
x = 1.00010 , y = 0.99990 (truly rounded).

The Gauss elimination algorithm uses the first equation (if possible)
to eliminate the first variable, x , from the second equation. This is
done by multiplying the first equation by 10000 , and subtracting it
from the second equation. When we work to three significant digits, the

resulting system takes the form
[0.000lOOx + 1.00y = 1.00 (the old first equation)
L - 10000 y = -10000 .

For just two equations, this completes the elimination of unknowns.
Now commences the back solution. One colves the new cecond equation for y,
finding that y = 1.00 . Thie value is substituted into the first equation,
which is then solved for x . One then finds x = 0.00 . In scummary, we
have found

VA 5 e
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Of course, this is awful! What went wrong? There wac certainly no long
accumulation of round-off errors, such as might be feared in a large problem.
Nor was the original problem unstable of itself, as it would be if t'.e lines
represented by the two equations (7) were nearly parallel.

There is one case in which it is impossible to eliminate x from
the second equation -- when the coefficient of x in the first equation
is exactly O . Were such an exact O to occur, the algorithm is preceded
oy interchanging the equations. Now, once again, if an exact zerc makes a
mathematical algorithm impossible, we should expect that a near zero will
give a floating-point algorithm some kind of difficulty. That is a sort
of philosophical principle behind what went wrong. And, in fact, the
division by the nearly zero number 0.0001 introduced some numbers (10000)
that simply swamped the much smaller, but essential data of the second
equation. That is what went wrong.

How could this be avoided? The answer is simple, in this case. If it
is essential to interchange equations when a divisor is actually zero, one
may suspect that it would be important, or at least safer, to interchange
them when the coefficient of x in the first equation is much smaller in
magnitude than the coefficient of x in the second eauation. A careful
round-off analysis given by J. H. Wilkinson [14] proves this to be the
case, and good linear equation solvers will make the interchange whenever
necessary to insure that the largest coefficient of x (in magnitude) is

used as the divisor. Thus the elimination yields the system
{fl.OOz + 1,00y = 2,00
\\ lo:/(-):f = l.OO .

After the back solution we find

¥y = 1.00

a very fine result.

18



This algorithm, with its interchanges, can be extended to n equations
in n unknowns, and is a basic algorithm found in all good computing
centers.

The following example chows that there remains a bit more to the

construction of a good linear equaticn solver. Consider the system

10.0 x + 100000 ¥y 100000

(8)

I

1.00x + 1.00y Bo00 A

If we follow the above elimination procedure, we see that
interchanging the equations is rot called for, since 10.0 > 1.00 .
Thus one multiplies the first equation by 0.100 and subtraéts it from
the second. One finds afterwards, still working with p =10, s =3,
that

10.0x + 100000y 100000

"

- 10000y

-10000 .

Back solving, one finds

¥y = 1.00

X 0.00 ¢

This is just as bad as before, for system (8) has the same solution
as (7). Indeed, system (8) is easily seen to be identical with (7), except
that the first equation has been multiplied through by 100000 .

So, the advice to divide by the largest element in the column of
coefficients of x 1is not satisfactory for an arbitrary system of equations.
What seems to be wrong with the system (8) is that the first equation has
coefficients that are too large for the problem. Eefore entering the
Gaussian elimination algorithm with interchanges, it is necessary to scale
the equations so that the coefficients are roughly of the same size in all
equations. This concept of scaling is not completely understood as yet,
although in most practical problems we are able to do it well enough.
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If you were faced with having to solve a nonsingular system of
linear algebraic equations of order 26, for example, you might wonder
how to proceed. Some mathematics books express the solution by Cramer's
rule, in which each of the 26 components is the quotient of a different
nunerator determinant by a common denominator deterninant. If you looked
elsewhere, you might find that a determinant of order 26 is the sum of
26! terms, each of which is the product of 26 factors. If you decide to
proceed in this manner, you are going to have to perform about 25 x 26!
multiplications, not to mention a similar number of addition:i. On a fast
contemporary machine, because of the time required to do preparatory
computations, you would hardly perform more than 100,000 multiplications
per second. And so the multiplications alone would require about lOl7
years, if all went well. The round-off error would usually be astronomical.

In fact, the solution can be found otherwise in about (1/3) x 26°

5850 multiplications and a like number of additions, and chould be
entirely finished in under half a second, with very little round-off
errcr. So it can pay to know how to solve a problem.

I wish to leave you with the feeling that there is more to solving
linear equations than you may have thought.
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T. When do we nave o sood colution?

Anotier exurple " u Llinecar algcebrale system hac beoen furnishied by
Moler [5]):

D730 ¢ Cuhedy - 0,217 < 0
(9)
\)o‘)l;ﬁx L4 “c";) ':1' = \')0"-)51‘ = O .
Some onec proposer two diffcerent solutions to (9), namely
(xl, yL) = (0,999, <1.001)
and

(xz, yQ) = (De5hl, =-0,087) .

Which one is better? The usual check would be to substitute them both
into (9). We obtain

O.’ISOxl + 0.563yl - 0.217 = -0.0012h43

o.f)lle + 0.059,\;1 - 0,254 = -0.001572
and

0.780x, + 0.503y, - 0.217 = -0,000001

D013k, + r).z'-sgyg - 0.254 = O .

Tt seems clear that (xg, y2) is & better solution than (xl, yl) ,
since it makec the residualcs far smaller.

However, in fact the true colution ic (1, -1) , as the reader can
verify cacily. Hence (xl, yl) ic far closer to the true solution than
(x:__-’ .‘/2) !

A percistent percon may ack apain: which solution is really betfer?
Clearly the answer nunt depend on one'c criterion of yoodness: a rmall
residual, closenecs to Liae truc rolution, or perhaps comething else. OSurely
one will want different criteria for different problems. The pitfall to be
avoided here is the velier that all such criteria are necessarily satisficd,
if one of tham ic.
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8. Sensitivity of certain problems

We now show that certain computational problems are surprisingly
sensitive to the data. This aspect of numerical analysis is independent
of the floating-point number system.

We first consider the zeros of polynomials in their dependence on
the coefficients. In Case 5 of Section L4 above, we noted that, while
the polynomial x2 - 4x + 4 has the double zero 2 , 2 , the rounded
roots of the polynomial equation

(10) 2" uky 3.9999999 = O

are 1.999683772 and 2.000316228 . Thus the change of just one
coefficient from L to 32.9999999 causes both roots to move a distance
of .000316228 . The displacement in the root is 3162 times as great
as the displacement in the coefficient.

The instability just described is a common one, and results from
the fact that the square root of € is far larger than € . For the
roots of (10) are the roots of

(x - 2)2 =€ , €= ,0000001 ,

and these are clearly 2 i‘/é . For equations of higher degree, a still
more starting instability would have been possible.

However, it is not only for polynomials with nearly multiple zeros
that instability can be observed. The following example is due to
Wilkinson [1Lk]. Let

p(x) = (x+ 1)(x+ 2).eo(x + 19)(x + 20)

20 4 Oloet & L ;

The zeros of p(x) are -1, -2, ..., =19, =20 , and are well separated.
This example evolved at a place where the floating-point number system
had =2, s =30 . To enter a typical ccefficient into the computer,
it is necessary to round it to 30 significant base-2 digits. Suppose

2e
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that a change in the 30-th most gipnificant base~2 digit ic made in

only one of the twenty coefficients. In tuct, suppose that the cocitTiclent
of x[9 is changed from 210 1o 210 +

,,-BO
o

.  How much etfect doct Lhis .
small change have on tlie zeros of the polynomial?
To answer this, Wilkinson carefully computed (B =2, & = 90)

ryo
R Yady] ]()
X

the roots of the equation p(x) + 2 = 0 . These are now liscted,

correctly rounded to the number of diprits shown.

1.00000 0000 10.00520 €145 + 0,0435G 0901

2,00000 2000 11.79303 3381 + 1.05232 97281

5,00000 0000 135.99235 8137 + 2.51833 00701

14,00000 0000 16.73075 Th6C + 2,81262 LEL]

4,99999 9928 19.50243 9400 + 1.9%033 3471

6.,00000 69LL

£.09969 7234

8.00726 7603 -
8.91725 0249 s
20.84690 8101 -

+
+

Note that the small change in the coefficient 210 has cauced ten
of the zeros to become complex, and that two have moved more than &.&
units off the real axis! Of course, tc enter p(x) completely into the
computer would require many more roundings, and actually computing thc -
zeros could not fail to cause still more errors. The above table of
zeros was produced by a very accurate computation, and does not suffer
appreciably from round-off errors. The reason these zeros moved so far
is not & round-off problem -- it is a matter of sensitivity. Clearly
zeros of polynomials of degree 20 with well separated zeros can be much
more censitive to chanpges in the coefficients than you might have thou::i.

To motivate a second cxample, let me quote a standard theorem of

algebra: In the ring of cquare matricer ol Tixed order n , if AX - 1 ,

where I is the identity matrix of vrder n , then XA =1 .

It follows {rom tlLic theorem and continuity considerations that, i¢
A 1is a fixed matrix and ¥ a variable cne, and if AX « I - 0, the

zero matrix, then also A - I -6 . Hence, if AX - I is small in sore
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sense, then XA - I 15 also small. However, as with polynomials, one's
intuition may not be very good at puecsing how small these smallnesses
are. Here is an example: Fix

, [ oo e
] 10000 9999 :
Let
9999.9999  =9997.0001
Y =

«10001 7998 .
Then a computation without round-off chows that

001 .NO0L
At -1 -
0 0 .

From the last equality the reader may conclude that X 1is close, though
not equal, to the unique inverce A'l . However, another calculation

without round off shows that
19997 .0001 19995.0003
=19999 «19995

Thus the quantities AX - I and XA - I , which must vanish together,
can be of enormously differing magnitudes in a csensitive situation, even
for matrices of order 2 .

The true inversce matrix is given by

- 99 -9998
A = g

-10000C 9999

and this is hardly cloce to X .

——— o e g . & e i $5 5 At .
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9. A least-cquares problem of ililbert

The following least-squares problem was discussed by the greai
mathematician David Hilbert [(/], and leads to some interesting matrices.
Fix n>1. Let £(t) be given and continuous for 0 <t <1 . We

wi'h to approximate f(t) as well as we can by a polynomial

2 -1 .
xO + xlt + x21 P e o) = xn_ltn of degree n - 1 . To be more precise,
we wish to determine XO’ xl, 300y xn-l so that

1
2 1 n-l 2 ]
o(») = oj [£(6) = xg = %t - vev = x 6777 dt

is as omall as possible. It is not difficult to chow that the minimizing
vector of coefficients x exists, is unique, and can be determined by

solving the system of n simultaneous equations
(11) s = 0O (1 =0, 1, vvey n=1) .

If you carry out the algebra, you find that (11) is equivalent to

the system of n linear algebraic equations

where
T 1

(13) 8y 5 = [t )7L = 5T (i, 5=1,2 «vu, n)

0
and

Loae
(lh‘) bi = J‘ t i‘(t)dt (i = l, 2, e ey n) .

0

The matrix A cf coefficients in (12) is now called the Hilbert

matrix (of order n ), and is denoted by Hoos

I
(28
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[ 1 1 1
l 'é' -5 DR E
r 1 i 1
2 3 jry ntl

H = .
n

s s Lk
n n+l n+2 o 2n-1 -

The equations (12) with matrix A = Hn are called the normal equations
for the problem. It appears that all one has to do is to find and use
a quadrature rule for approximating the b, 1in (14), and then solve
the system (12). This is certainly the standard advice in books on
practical statistics.

However, what it cbserved is that for n bigger than 8 or 9 (the
threshold depends on the system used), linear equations solvers in ordinary
floating-point precision will simply refuse to solve (12). Moreover, for
problems that can be solved (say r = 6 ), there are enormous differences
in the solution vectors x for apparently identical problems on slightly
different machines. Why all this trouble?

Let me try to explain the sensitivity of the problem first. Let

T = H;l . Then it can be proved that

g -€30 3360 -7560 7560 -2772
-630 14700 -88200 211680 -220500 83160
3360 -88200 564480 -1411200 1512000 -582120
Te = | -7560 211680 -1411200 3628800  -3969000 1552320
7560  -220500 1512000 -3969000 4410000 1746360
-2772 83160 -582120 1552320 -1746360 698544

e

This means that a change of 10'6 in just the one element b5 will produce

changes in the solution vecter x of

(.00756, -.2205, 1.512, -3.960, L. k1, -1.7h636)T .
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Such changes are unavoidable in & system with A =10 and 3 =7 .
This means that some of the coefficients of the best fitting polynomial
of degree 5 will have unavoidable uncertainties of the order of 4 units.
This may give some explanation of the instability in the answers. More
details are in Section 19 of [3].

Here are approximate values of tn , the maximum elements in Tn ’
for n<10 :

n tn

2 1.20 x 10

3 1.92 x 10°

L 6.8 x 10°

5  1.79 x 10

6 buably 10°

7. 1.33 x lO8

8  4.25 x 107

9  1.22 x 107
10 3.48 x 10%° .

It cannot be demonstratad here, but if tn >> as s You just cannot
solve the system an =b with s-digit arithmetic to base g .

The conclusion of this example is that one should not follow a
Statistics book blindly here. It is much better to arrange things so
that matrices of Hilbert type do not arise, even approximately. And
when they do, one must be sure to use enough precision so that tn << B
There are other ways of attacking least-squares problems which are less
sensitive to the data.

S
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10. Instability in solving ordinary differential equations

The standard initial-value problem for & single ordinary differentiel
equation dy/dx = f(x, y) 4is to determine y(x) as accurately as possible
for x>0, given y(0) . In one very common class of methods (the
multistep methods) of solving this problem approximately, cne picks a
fixed interval h >0, and determines y_  to approximate y(nh) for
n=12, ... . One highly recommended multistep method in desk-computing
days was the Milne-Simpson method. Here one let Yo = y(C) , the given
initial value, and determined ¥, by some method not mentioned here.

Let y;l = f(nh, yn) . The idea was to determine y ., from ¥, and

Yo (n =1, 2, ...) by the integral
(n+1)h

(15) Yoy = Vpoy v ] floy(x))ax
(n-1)h

Since the intesral in (15) can not usually be evaluated exactly, Milne's
idea was to approximate it by Simpson's formula, and so let

h
& = = ' ' r
(1) Y1 "1t 3 (yn-l ¥ hyn ¥ yn+l)

At the time we seek to find y from (16) we know Yp.1 and y , and

+1

| B ]
1 and yn 3y but yn+l is not known. For general f,

Milne [7] determined the solution of (16) by an iterative process that

'
hence yn_

is irrelevant to the present discussion. Let us merely assume that Yn+1
hat been found so that (16) holds, where g = f((n+1l)h, yn+l) , and
that thic has been done for n=1, 2, ... , as far as we wish to go.
Thics method was highly recommended by Milne for solution of ordinary
differential equations at a desk calculator, and it seemed to work very
well indeed. Most problems were probably solved within 30 steps or less.

As soon as automatic digital computers arrived on the scene, users
of the Milne-Simpcon method ctorted to find extraordinary behavior in
certain problems. To illustrate what happened, let us take the very
simple test problem

28
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dy/dx = f(x, y) = -y , with y(0) =1 .

& 2 -X
The true solution, of course, is y =e = .

Take h = 0.1 , and carry out the Milne-Simpson process with Yo = 1
and ¥y = 0.90483742 , an 8-decimal correctly rounded value of

e « Thi is not something you can do in your head, and so I will give

you the results, as computed on a system with g =10, s =8.

-X

a: ycomputed s

.2 .81873069 .81873075

3 . 74081817 .74081822
8.0 .00033519912 .00033546263
8.1 .00030380960 .00030353914
13,2 .00000036689301 .0000018506012
: B S . 0000032084 360 .0000016744932
13.4 -.000000070769248 .0000015151441 .

We see that by x = 3.0 a noticeable oscillation has set in,
whereby successive values of Y alternate in being too low and too high.
By x = 13.4 this oscillation has grown so violent that it has (for the
first time) actually thrown the sign of ¥y negative, which is unforgiveable
in anything simulating a real exponential function!
The Milne-Simpson method is very accurate, in that the Simpson formula
is an accurate approximation to the above integral. What can be the matter?
Since f(x,y) = -y , we can explicitly write down the formula (16)

in the form

(g * oy * yh+l) .

<
]
<
)
1
i

nt+l n-
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Time the computed f yi} satisfy the 3-term recurrence relation

, h bh h _
(17) L+t ¥, - (1 -3,; = O -

We know that the general solution of (17) takes the form

o _ n n
16) Y, =AM AN, ,
where xl, 7\.2 are the roots of
1Y (1+%)x2+%>\-(1-%) = 0 .

Some algebra and elementary analysis show that

1 -h+ o(n?) , as h=0 ,

>
n

re
i

-(l+%)+0(h2) , & h=-0 .,

“atiting the values of )"l’ M, into (18), and using the reletion nh = x ,
we find that, for small h ,

v, & A L-n)e ()P a0+ D)
Hx é . £
n hih 3
= Al(l - h) + (1) A2(1 + 3)
= Ale"x + ()" Azex/s 1

‘. Tirst term is the desired solution, and the second is an unwelcome
extra solution of the difference equation (17) of the Milne-Simpson metlhiod.
Jdow the initial conditions might have been chosen exactly so that A, =1
.nd A2 = 0 . (They were roughly of this nature.) Had they been so

1l

chosen, and if the solution could have proceeded without round-off error,
‘i1ic unwanted term in A2 would never have appeared. But, in fact, a
omall amount of this solution was admitted by the initial condition, and

SR A 2 AT




some more of it crept in as the result of round-off. Then, after enousih

steps, the size of e® caused the unwanted term to dominate the

colution, with its oscillating sign.

This disaster never occurred in desk computation
't carry out enough steps. However,
observe harmless

, so far as we know,

because at a desk one just doesn
Professor Milne telle me that he did occasionally
oscillations in the low-order digits.

The moral of this example is that n
books are not enough to keep you

ot only are meth books not

enoupgh, but even old numerical enalysis

out of some pitfalls!

— by Gmy Oy




11. Instability in solving a partial differential equation

The following is a simple problem for the heat equation. Suppose a
homogeneous insulated rod of length 1 is kept at temperature O at one
end, and at temperature 1 at the other end. If the entire rod is
initially at temperature O , how does it warm up?

Let u = u(x, t) denote the temperature at time t at that part of
the rod that is x units from the cold end. Then, if the units were
chosen to make the conductivity 1 , the temperature u satisfies the

differential equation

£
’

Q/

=

Su

~4
av

(20)

foex <l s 50}

Q/
o

>4

with end and initial conditions

u(0, t) =0 (X >0)
(21) wlly 5y =k (t>0) .,
u(x, 0) =0 (Ocx<1) .

This problem can perhaps best be solved by separation of variables
and trigonometric series. But let us apply the method of finite differences,
which might in any case be needed for a more difficult problem. To do
this, we divide the length of the rod into equal intervals, each of length h .
And we divide the time interval [0, =) into equal intervals of length k .
Instead of trying to determine wu(x, t) for all x and t , we will limit
ourselves to computing u(x, t) on the discrete net of points of type
(mh, nk) , for integers m, n . The heat equation (20) can then be

simuleted by a number of finite-difference equations, of which we pick one:

(22) uw{k-h, t) - 2ulx, £) +t ulxth, ) > uf(x, t+k) = alx, t)

=
h .

Equation (22) can be used to determine u(x, t) for all net points

in the infinite strip of the problem, as follows: Solve (22) for



ulx, t+ k) in terms or' u(x=ly, t) ., u(x, t) , u{x+h, t) . Thus compul.c
u(x, k) ftor x =hy 2N, esey (n=l)h in terns of the given initial
conditions on the linc t - 0 . The given end conditions give u(0, k)
and u(l, k) «+ With this set of values of u at all points of the net

with t - k , we can continue and compute all values on the net for t = ?k .

itecs The computation ic very attractive, because each new value of
u(x, t+ k) 1is determined explicitly from (22) -- there is no need to solve
a large number of simultaneous equations.

How does the solution behave? To try a case, we pick h = 0.1 and
k - 0.01 . Thus the rol is represented by 9 interior points and two
endpoints, and we get a solution at time steps 0.01 apart. Just to show
the behavior of the solution of (22), we give the value of the temperaturc
u(5.5, t) at the midpoint of the rod, computed with g =10, s =§&,

for selected times:

t u(0.5, t) computed from k = 0.01
0 0

0.05 1

0.06 -4

0.07 16

0.15 132276

7020 -28157050

D406 +1.0196022 x 101“+

1.00 -2.9590007 x 10“‘ s

The values in the table are ridiculous, of course. It is a classical

oxample of inctability. Common sense and mathematics both tell us that

e
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the real temperature can never get outside the range O < u(x, t)‘s L ug
Our difference-equation problem is & disastrous model of the continuous
problem, even though both difference expressions in (22) are reasonable
models of the derivatives in (20). |

This terrible pitfall has been known for at least 20 years, and
vet new problem solvers keep on rediscovering it.

It is interesting to note that if one selects 8 time step only
half as long, the computation proceeds very nicely. Here is the
corresponding table of valuec of u(0.5, t) for a computation (p = 10,
£=8) with h=0.1, k=0.005:

t5 u(0.5, t) computed for k = 0.005
0 0

0.05 10937500

0.06 14599609

0.07 17956543

0.15 . 350372(1

0.20 41204382

1.00 19997173

The values of the midpoint temperature are converging to 0.5 , as
they obviously should in the physical problem.

What ic the reason for the great difference in behavior between
k =0,005 and X = 0.01 ? The matter can be analyzed in many ways, and
here is one simple approach. Let AN = k/h2 . Then, from (22),

(23) u(x, t+k) = Ma{x-h, t) + (L-22)u(x, t) + Au(x+h, t)

Hence, if O <A < % , the formula (23) represents u(k, t+k) as a

weighted average with non-negative weights of wu(x-h, t) , u(x, t) ,

Sk




and u(x+h, t) . Hence wu(x, t+k) will always be between the maximum

and minimum values of u(x, t) . But, if A >-]2-'- s the weights alternate

in sign and thus permit a solution in which
lu(x, t+k)| = Alu(x-h, t)] + (@A -1)|u(x, t)| + Mu(x+h, t)| .

Here the sun of the weights is UA-1>1 . This permits an exponential
srowth of a solution with an alternating sign pattern.

Thus the condition O < A = k/h"2 < % is essential to keep the
solution bounded. A deeper discussion found, for example, in Forsythe
and Wasow [L4] proves that the solution of (22) converges to the solution
of (20) uniformly for ell (x, t) with 0<x<1l, 0<t<T<w,
as h-0, k=0 in such a way that k/hgsl/2 .

The proof of convergence and an analysis of the stability of (22) can
be carried out by means of Fourier analysis. The stability can be examined
in more detail by studying the eigenvalues and eigenvectors of the linear
transformation (23) that maps each line of solutions onto the next line.

Note that in our two tables we had A =1 and A = l/ 2 , respectively.
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12. Round-off errors in polynomial deflation

Our final example, due to Wilkinson [1k], shows & more subtle
effect of round-off error that arises in the course of finding polynomiel
zeros. The quartic polynomial

B (x) = x" - (.7980x + 2.9948x" - 0.043686x + 0000089248
haz zeros that, correctly rounded, are ac follows:
0.002k532 , 0.012576 , O.L4s732 , 6.32505 .

I. Suppose first that we compute the zero 0.0024532 , and then
deflate P, to a cubic by dividing Ph(x) by x -0.00245322 , using
£ =10, 5 =5. Ifwe do, the resulting cubic has zeros

0.012576 , 0.457215, 6.32561 ,

co that the main error introduced by this deflation is a change of the
largest zero by UL units in its last place.

II. Suppose, on the other hand, that we first compute the zero
C.525¢ , and then deflate P, toa cubic by dividing Ph(x) by
x-0.3256 , again using 5-place decimal arithmetic. If so, the resulting

cubic has the zeros

0.0026261 + 0.064339 i ,

0. 467148 .

We have perturbed two of the remaining zeros beyond recognition, and
have changed the second significant digit of the third.
Thus it appears to matter a great deal which zero of Ph we locate

first. For the present case we can get a feeling for what is happening

by examining the process of division of Ph(x) by the linear factors.

We use detached coefficients:

30




First, the division by x -0.0024532 :

1 - 6.7980 + 2.9948 - 0.043686 + 0.000089248
- 0.0024532 + 0.166707206 - 0.00730587492 + 0.0000892LTL16

1 - 6.7955 + 2.9781 - 0.036380

Thus the cubic that results from the first deflation is
fs(x) L 6.7955::2 + 2.9781x - 0.036380 . Moreover, a careful
examination of the division shows that Ps(x) is exactly (i.e., without
round off) equal to the quotient of

f’h(") = x’* - 6.7979532:5 + 2.99&7707206::2 - 0.04368587492x + 0.000089247416

by x-0.0024532 . Hence the zeros of i’s are exactly the zeros of T’h
except for 0.0024532 ., Note that all the coefficients of P, and Ph
are quite close, so it is reasonable to expect that the zeros of Ph and
'f’h should be close (as they are).

Now we show the deflation by x - 6.3256 :

1 - 6.7980 + 2.9948 - 0.043686 + 0.0000892L8
- 6.3256 + 2,9882134k4 - 0.04174896 + 0.0122526872

1 - 0.4724 + 0.0066 - 0.001397

Thus the result of this deflation is & cubic P,(x) - x° - 0.472Ux°
+ 0.0066x - 0.,001397 . Again, is(x) is exactly the quotient of

i’h(x) = xl‘ - 6.7980;:3 + 2.99&815»&::2 - 0.04368596x + 0.0122526872

by x - 6.3256 . Note that P, and i’u differ very much in their
constant terms. Hence the product of the roots of Pu must be very
different from that for Pu . This is an explanation for the great
shift of the zeros of P:5 .
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Further analysis shows that the shift in zeros during thic kind of
deflation is generally small when deflation iz made with zeroc of cmall
modulus, and is generally large when deflation is based on zeros of large
modulus. Thus it is better to get zeros of small modulus first in using a
polynomiel solver with deflation in the above manner.

0f course, any zero of a deflated polynomial can be refined by use
of the original polynomial, and that it normally done. But, zeros that
change as much as those above are difficult to refine, cince the refinement

process may converge to the wrong zero.




13. Conclusions

Around ten years ago, when I last read a number of them, most
mathematics books that dealt with numericel methods at all were from ten
to fifty years out of date. In the past ten years, man& excellent new
methods have been devised for most of the elementary problems -- methods
that are well adapted to automatic computers, and work weli. Let me cite
a few examples ~f important algorithms hardly known ten years ago:

1. For getting eigenvalues of stored square matrices, there is an
excellent method that starts with the transformation of Householder (1958),
and follows it with the QR-algorithm of Francis (1961-62) and
Kublanovskaja (1961). It is the method of choice for most problems.

For references, see Wilkinson [15].

2. For solving ordinary differential equations, special methods
have been developed by Gear [5], Osborne [11], and others which can deal
with so-called stiff equations. (Roughly speaking, a stiff equation is
one whose solutions contain very rapidly decaying transients which
contribute nothing to the long-term solution, but which interfere
drastically with most numerical methods of solving the equation.)

3. For evaluating the definite integral of a smooth function of
one real variable, the method of Romberg (see Vol. 2 of Ralston and Wilf [12])
has proved to be very useful.

N, For minimizing a smooth real-valued function of n real
variables, a variant by Fletcher and Powell [1] of a method of Davidon
is far superior to anything used in the 1950's. And there are still more

recent methods.

Many other examples could be given. Indeed, the 1900's have proved
almost explosive in the number of newly invented algorithms that have
supplanted those known earlier. Of the methods kncvm years age for common
numerical problems, only Gauss' systematic elimination method for solving
linear algebraic equation systems with dense, stored matrices remains




supreme today, and even it must be augmented with scaling and pivoting
decisions, as we noted in Section 6 above. Newton's method for solving
a nonlinear system of equations is still much used today, though it has
strong competition from newer methods.

Because of my knowledge of mathematics texts ten years ago, and my

knowledge of the explosive increase in numerical methods in the 1960's,
I am confident that today's mathematics courses cannot be trusted to
include important knowledge about computer methods. As we noted in
Section 10 above, you can't trust early numerical analysis textbooks
either.

On the other hand, there are experts in numerical analysis. They
have societies in which methods are presented and discussed. The
Society for Industrial and Applied Mathematics (SIAM) and the Special
Interest Group on Numerical Mathematics (SIGNUM) of the Association for
Computing Machinery (ACM) are the most active in this country. There are
a number of journals with important information. For a start, you might
consult the keyword-in-context index of Computing Reviews, the review
journal published by ACM, as well as the algorithms in the Communications
of ACM and in Numerische Mathematik. Modern monographs and textbooks in
numerical analysis are slowly appearing, and the beginner might
profitably consult Ralston and Wilf [12].

It might be noted as a digression that, just as mathematics departments
mainly ignore modern numerical analysis, so also the newly created computer
science departments often give the subject little attention, since they
are so busy with a variety of important nonnumerical fields. Thus numerical
analysts remain a small corps of specialists whose greatest appreciation
probably comes from the users of mathematical programs.

Students of mathematics are well equipped to read about numerical
methods. Why should they repeat the classical blunders of generations
past? Why aren't they informed of the existence of good numerical
methods, and roughly where to find them?

Remembering that most students take mathematics in order to apply it

on computers, I ask why mathematics courses shouldn't reflect a true

Lo



awareness of how computing is done? Why shouldn't students demand in
their mathematics courses a greater awareness of the points of contact
of pure mathematics and its practice on a computer?

Of course, a mathematics instructor can shrug his shoulders and
say that actual computing problems don't interest him, and suggest that
his students contact & numerical analyst sometime. If the instructor
actually says this out loud, it at least has the virtue that the students
may realize immediately that the mathematics is not applicable directly,
instead of having to discover it for themselves. It still sounds
irresponsible to me. After all, Society has been supporting mathematicians
pretty well for the past 25 years -- not because mathematics is a beautiful
art form, which it is -- but because mathematics is useful, which it also
is. But this would seem to imply that & mathematician should convey some
awareness of the main ways in which his subject is used.

On the other hand, a mathematics course cannot really include very
much numerical analysis. Wilkinson's treatise [15] on computing
eigenvalues is 70O pages long, and can hardly be summarized in every
course on linear algebra! As a practical matter, then, the mathematics
instructor's main responsibility is to be aware of the main features of
practical computing in the areas of his mathematics courses, and mention
occasional points of contact, while giving his students important
references to important algorithmic materials in other books.

If one just ignores the relations between mathematics and its
important applications, I fear that an instructor is running the risk
of being exposed by some technological chapter of the Students for
Democratic Society for not being relevant, and that is a very nasty
accusation nowadays. Why risk it?
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