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1. INTRODUCTION

Our purpose here is to review the method of K. RITTER (196%4), (1965),
(1966) for obtaining a global solution to a linearly-constrained quadratic
minimization problem. In writing this primarily tutorial paper, we have

made some modifications and introduced an exanple that we hope will

contribute to a better understanding of an important algorithm. As a
matter of fact, Ritter's method 1s the only rigorous procedure we know
of for solving the general quadratic programming problem. Other algorithms
exist, but they fall to fit this description because of thelr logical gaps
or thelr less ambitious nature. Examples of the latter type are the
frequently alvanced proposals for obtalning a local minimum of a concave
quadratic function over a polyhedral convex set.

The problem with which we are concerned can be stated without loss of

generality as

(1.1) minimize o(x) = ¢"x + 3x"Dx
subject to Ax =z b

x=20

where the matrix A is of order m X n and D = D'. If D is positive semi-
definite, or more precisely, if ¢ is a convex function on the convex
polyhedral constraint set

X={fx: Ax>bp, x 20},

then (1.1) is called a convex quadratic program. There is an abundant

literature on convex guadratic programming, and the interested reader




may consult the volumes by KUNZI and KRELLE (1962), BOOT (1964),

ABADIE (1967), and DANTZIG and VEINOTT (1968) for a selcction or
algorithms and an ample supply of further references. Ritter's mcthod,
described in this paper, is designed to handle problems of the form (1.1)
in which the convexity of ¢ on X 1is not assumed.

The quadratic programming problem is a sort of bridge between linear
and nonlinear programming. It might also be sald that the nonconvex
quadratic programming problem is a bridge between integer and nonlinear
programming. This alone should be sufficient to sustain one's interest
in techniques for efficlently solving difficult problems of this kind.

Ritter's method 1s composed of three distinct phases. Its Phase I
is essentially the same as that of the Simplex Method for linear program-
ming (see DANTZIG (1963)). This procedure is used to determine whether
there exlsts a vector satisfying the constraints; indeed, it produces
an extreme polnt of the constraint set X if and only if that set i1s non-
empty. Once this has been settled in the affirmative, another aspect
of Phuse I deals with expressing the objective function in terms of the
independent (i.e., nonbasic) variables. The extreme point at hand then
1s used as the starting point for Phase II which determines either a local
minimum or gives an indication that the objective function is not houn.u-d
below on the constraint set. Phase III is a method for constructing a
cutting plane that excludes the previously located local minimum without
excluding the global minimum i1f it has nct yet been found. After the
cutting plane is placed, (i.e., adjoined as a constraint) the Phase I
procedure 1s reapplied to the augmented problem. Termination can occur

in Phase I if no feasible points remain after placing the cutting plane,

or 1t can also occur in Phase III after a weak sufficiency condition for




a global minimum is satisfied, or with an indication that ¢ is not
bounded below on the constraint set. The number of calculations
preformed in each phase is finite. RITTER (1964), (1966) proved that
if X 1s a bounded set, then the method cycles through the three phases
only a finite number of times. The finiteness of this method for
unbounded constraint sets is an unsettled question.

It is our intention in this paper to motivate and explain Phases
II and III as developed by RITTER. Both of these phases depend on being
able to distinguish a local minimum. Ir Section 2, we set forth the
necessary uand sufficient conditions characterizing a polnt as a locul
minimun of a guadratic programming problem. Section 3 is concerned with
the construction of the cutting plane at a given local minimun (i.e.,
Phasc IIT). We describe Ritter's algorithm for finding & local minimum
in Section 4 where we include u small example illustrating how the

methoa works.




2. NECESSARY AND SUFFi1CIENT CONDITIONS FOR A LOCAL MINIMUM

The quadratic program again is
(2.1) minimize ¢{x) = c¢"x + 3x"Dx
subject to Ax 2 Db
x20

vhere A 1s of order m X n and D is symmetric. The problem determines

a polyhedral convex constraint set X given by
(¢..") X={x€Rr : Ax2b, x 2 0}

By a local mirimum of ¢ on X we shall mean a vector x € X for wvhich there

exists a positive scalar ¢ and a corresponding e-neighborhood, N(i,c) =
{x € R : ||x - x||] < ¢}, suchthat ¢(x) < p(x) for all x € X N N(x,e). If
the latter in:quality holds for all x € X, then Xx 1s called a global
minimim of ¢ on X. This 1s all perfectly standard, and we make this
explicit statement only to emphasize our use of the tem.local (global)
minimun'with reference to the point x rather than the functional value
@(x). By solving (2.1) we mean obtaining a global minimum of @ on X or
showing that none exists.

The Kuhn-Tucker theorem on necessary conditions of optimality is
immediately applicable to the quadratic programming problem because the
constraints are linear and consequently the Kuhn-Tucker constraint qualifi-
cation 1s satisfied at all relative boundary points x € X. As originally
stated, the Kuhn-Tucker theorem pertains to global minima. However, it is

well known (and clear from their proof) that the so-called "Kuhn-Tucker
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conditions" must obtain at a local minimum, just as at a glot:l minirm.
It is also well knowr that these conditions can hold at points which
are not local minima. For this reason, one says that in general they

are necessary but not sufficient. We state them now in a special way ;

for the problem at hand.

(2.3) THEOREM (KUHN and TUCKER (1951)): If x is a local minimum of ¢

on X, there exists a vector y such that

(2.3a) c+Dx-Ay 20
(2.3p) -b + AX 20
(2.3c) x 20
(°.3d) y 20
(2.3e) X[ c+Dx-A"yl =0
(3 4%¢) ¥y [-b + AX 1=0

We refer to (2.3a) through (2.3t) as the Kuhn-Tucker conditions of (2.1)

and any pair (x,y) € B x R* satisfying them will be called a Kuhn-Tucker

point. A stutionury point, x, of ¢ on X is one for which there exists

a y such that (x,y) is a Kuhn-Tucker point. If the (slack) vectors u and

v are def'ined vin the equations
(l‘.h:t) u- ¢+ Dx - A'y
(».4) T = =D+ e

the Kuhn-Tucker conditions can be rendered as

(.5) ur0, x>0, y20,v20,xu=0,y'v-o0.
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i eriables x; and uy are paired and are sad to be complementary

{or Svrpkemeity 01 each other). 'The same terminology applies to the
wileg ¥y wxd v, .
Ax It turns out, .= exposition of this ‘heory 1s simplified by
cord''. ng the nonnegativity restrictions (x 2 0) with the other linear
in:quslities in on¢ grand system. Thus we can consider a more general
system of constraints
Gy .2 hy L= 3,000,p

-

end speclali-=z 1t by choosing p - m + n and

[ A, i=1...,m
G‘*=
Ijcq,p 1 =m+1,...,m+n
b‘ 1=1,- -’m
h‘ =
0 i1=m+1,...,m+n

vhere, for example, G,, denotes the 1h row of a matrix G.
Relative to the constraints of the problem and any point x € R» we

may define
G(i)=[i:ct*i=h‘, i=l,-oo,m+n]

The constraints corresponding to indices in G(x) are said to be binding

(or active) at x. The set
L - {x€R : Gux=h} 1=1,...,m+n
is a linear manifold as 1is

L={x€R : x€g,1€ax)

-6-




which is meant to equal R* 1if G(x) = ¢.

It is clearly important to be able to distinguish local minima from
other types of stationary points. This classification problem has been
rather thoroughly treated by RITTER. (8ee RITTER (1964), (1965) as
well w3 the more recent and general work of McCORMICK (1967), or FIALCO
and MCCORMICK (1968).) For this discussion, we adopt Ritter's formu-

lation of the problem and consider the program
(2.6) minimize c'x + ix"Dx
subject to Gx 2 h

which, as we have a'ready noted, includes (2.1). The Kuhn-Tucker con-

ditions of (2.6) are

(2.7a) c+Dx-Gy=0
(2.70) -h + Gx =0
(2.7¢) y=z0
(2.7d) y'{-h +G6x] =0

For a Kuhn-Tucker point (k,y), i.e., a solution of (2.7), we .ine

G(x,y) = {1 € G(x) : y, > 0} .

If 1 € G(X,¥), the 1'N constraint of (2.6) is said to be strongly binding.

A ==
L=f{xer :x€g,1€axy)].
There is also a corresponding subsystem of (2.7}, namely

A

(2.8a) c+Dx-G0'F=0

(2.8b) A+ bx =0

(2.8¢) $>0
-T-
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in which é is the appropriate submatrix of G. In the light of its usage,

we will assume the nonsingularity of the matrix

p -

(2.9)
& o

This implies that the rows of é are linearly independent.

Given a Kuhn-Tucker point for (2.6), there is a range over which
the vector h may be varied without causing either the strongly binding
constralnts to become nonbinding or the nonbinding constraints to become
strongly binding. Since the matrix specified by (2.9) is nonsingular,
equations (2.8a) and (2.8b) can be used to define a Kuhn-Tucker point
as a function of ﬁ vhen ﬁ is chosen from the set Jjust described. Over
this range of ﬁ, the value of the objective function ¢ is an implicit
function of ﬁ- The followlng lemma relates the multipliers §
to the rate of change of ¢ as ﬁ is perturbed.

(2.10) IEMMA (RITTER (1965)): For the eet of all fi such that (2.8)

A
has a solution, ¢ can be regarded as a function of h and in this sense,

7= e

Proof. By the chain rule for differentiation

R = Ve [S%]

Rewriting (2.8a) and post multiplying by [25] , we obtain

b

(90 - ¥'6] [d—f] =0

dh |




These two equations imply

%o = "6 [ﬁ]

Since the matrix in (2.9) is nonsingular, can be expressed as &

x
A
y

function of h and (2.8) canbe used to obtain

A dx
D -G’ [E] 0

where T 1s an identity matrix of appropriate order. From this we conclude

that.

and the result rfollows,
We now state Ritter's charncterization theorem for stationary
points.

(..11)  THEOREM (RITTER (1veh)): 1t (x,§) is a solution of (=.8) then:
A

(i) x Is  leedd minfmum of @ on X 1ff¢ 1s convex on £;
A
(11) x 1s v Loend moximum of p on X 1ffE = B and ¢ 1s concave;
A
(111) x is « aatdie point of ¢ on X itf'¢p 1s nonconvex on £ provided

A A
£ /. 1rf R, then x is u saddle point iff ¢ is neither

convex ner concuave .,
» A -
Proof. (1) Suppose ¢ 1s convex on £ and suppose x € X. Then

A-
ho: 6x > Ah. By the assumption (0.9), there will be a unique stationary

-l




point x’ of ¢ subject to Gx = h. Then o(x’) < @(x). Now if we choose

x sufficiently close to x, we may preserve the positivity of the

multipliers. The result ¢(x) 2 (p(x') 2 ¢(x) now follows from Lemma (2.10).
Conversely, 1f x is a local minimum of @ on 2 then o(x) 2 ®(x) for

all x € ¥ n N(x,e). We have
@lx) = o(x) + (" + x"D)(x - x) + ¥(x - x)"D(x - x) -
ox) + ¥'8(% - x) + 3(x - x)"D(x - x) .
A, -
Since G(x - x) = 0,
olx) - px) = 3(x - x)"D(x - x) 20 .
It follows now that the quadratic form z'Dz is convex on in N(x,¢) and

hence on 1, its carrying plane. Therefore ¢ is convex on 3 (See
COTTIE (1967).)

(11) ©Suppose x 1is a local maximum and ¢ # . Then the Lemma (2.10)
implies that in any sufficlently small nelighborhood of x there exists
a point x’ such that ¢(x’) > ¢(x). This contradicts the assumption
that x 18 a local maximum. Hence :‘. = B and moreover ¢ + Dx = O. From

this we have

ox) < @x) = qx) + vgx)(x - x)

for all x in an e-neighborhood of x, say N(x,e). It now follows that o
is concave on N(x,e) and hence R*.

If ¢ "8 concuve on R*, then of course, the Kuhn-Tucker conditions

are sufficient to infer that x 18 a local—indeed global—maximum.




(11i) 1t E # ®, and x is a saddle point of ¢ on X then ® 1s not
convex on E by (i). If o is not convex on E then x 1s neither a local
minimum by (1) nor a local maximum since , # B, so it must be a saddle
point of @ on X. If - R, parts (1) and (11) leave only the conclusion
that x 1s a saddle point if and only if ¢ 1s neither convex nor concave
(i.e. x"Dx is an indefinite quadratic form).

(2.12) REMARKS. Simple examples show that the exclusion of weakly
binding ccnstraints from the statement of (2.11) is necessary. -Another
important fuct about this theorem is that if (x*,y*) is a Kuhn-Tucker
point tor (2.6) and the function ¢ is convex on the linear manifold i,
then x® 1s n local minimum ¢ on X (i.e., in the problem (2.6)) and not
Just in the quadratic program derived from the lata c,D,&,ﬁ.

While Thecrem (0.11) gives a useful sufficiency condition for a
leocal minimn, the gonl s to determine a global minimum. With this
In mind, we mention here an obvious but useful global sufficiency con-
dition given iy RITIER (2@0h). Let x* be a feasible vector for (2.0)

such thut G(x*) 4 @. Iy 1 rsultuble permutation of the constraints,

G
G and h can be partitioned as (Co) and (:f) s respectively, so that
iy
Cox* = ho
*
Gox* > hy
(.ov<) Puorocreron: 1 x* s a local minimum of (2.6) and

mln {x'px : Gox =+ 0} 2 0,

L} . .
then xo is woprl Ul minfmum of o on X.

-11-
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Proof. We have the identity
o(x) = o(x*) + vo(x*)(x - x") + 3(x - x*)'D(x - x*).

Since x* is a local minimum, there exists a vector ¥ such that (x*,¥ )

- b/
is a Kuhn-Tucker point. Let y = (-o) in conformity with the parti-
Ve

tioning of G and h. Then

C*DX*"G!t)i"GIJﬁ:O

-hg + Gox* =0
-h, + G x* >0
Yo 2 O
i# 2 O

Vol-hg + Gox™] =0 (trivially)
Yil-n, + Gx*] =0

The last of these Kuhn-Tucker conditions implies y, = O, so we arrive

at the observation that the linear inequality system
% =c+Dx , yo 20
has a solution. By the alternative theorem of FARKAS (1902) we see that
Gox 2 0, (c" + x*"D)x< 0
does not have a solution. Hence
(2.1%) Goz 2 0 implies (c' + x*'D)z 20 .

Suppose x € X. Then Gox 2 hy, and it tollows that Gy(x - x*) 2 0. With

z = x - x*, (2.14) implies 9 (x" )(x - x*) = (" + x*'D)(x - x*) 2 o.

-12-




Moreover, by the hypothesis of the Proposition, we have (x -

for all x € X. The result now follows from the identity.

-13-
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3. CONSTRUCTION OF A CUTTING PLANE
The results of the preceding section enable one to distinguish
between stationary points of a quadratic program. Once a local minimum
hes been reached, it is natural to try to introduce a cutting plane
which will exclude the previously determined local minimum without
excluding the global minimum if it has not been located so far. In
this section we look at the cutting plane problem (Phase III) and post-
pone until the next section the matter of finding a local minimum (Phase II).
Given a local minimum, it is possible to determine a vertex of the
constraint set X that lies in the lowest-dimensional face of X containing
the local minimum. Then the primal variables and their complementary dual
variables can be relabeled so that the slack variables at that vertex are
denoted as v-varlables. After this relabeling process, a series of

algebralc manipulations can be carried out to put the problem in the form
(3.1) minimize ¢(x) = c'x + >x"Dx
subject to v =-b + Ax
v 20,x=0

with (x,v,u,y) being the Kuhn-Tucker point associated with local minimum
x . We shall assume that this point is a nondegenerate solution so that
v> 0, x 2 0. Suppose that x can be partitioned as x = 2 with x, > 0,
xa = O. The nondegeneracy assumption implies 1, = O, uy >x%. The reader
should be warned that here the single subscripts pertain to subvectors
and not necessarily to coordinates of the corresponding vectors. This

usage should obviate the introduction of more elaborate notation without

leading to undue confusion.

-1h-




As indicated in Section 1, the purpose of a cutting piane is to
exclude the previously determined local, but nonglobal, minimum without
excluding a global minimwm. Geometrically speaking, the previously
determined local minirum and the set of global minima are to be separated
by the cutting hyperplane. How might one want to proceed in constructing

such a hyperplane? Suppose for the moment that the set

s={s=(°‘)eﬂ":sfns<o, s; 2 0}

52

is nonempty and "known." Then for each s € S there exists a smallest

T, > 0 such that

>T.

o({x + Ts) < o(x) for all

=1

If for all s € S, the point x + T.SQ'X, then x 15 a global minimum. On

the other hand, if for some s € § and some T > T, the point x + Ts € X,

%]

then an improvement con be made. We define
i lg'frs g BpeES mE 7]

Thus, we are interested in a supporting hyperplune to the set Y.

The procedure descrived below is a constructive method for choosing
a particular supporting hyperplane. Occasionally it is possible to
construct « parallel cutting plane that chops off more of X.

Let e"x > T denote the constraint to be adloined. The task 1s to
specify the vector e nd the scalar v. This will be done by considering
the problem of finding the globul minimum for every value of T of the

quadratic program

-15-
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(3.2) minimize c'x + ix"Dx
subject to X 20
e'x < T .

The approach will be to specify the vector e in a manner which will
simplify the solving of (3.2). The inequality constraint e'x <1 will
be called the "capacity constraint” and e will be chosen so that for
each value of T 2 0, a global minimum for the corresponding program
(3.2) exists.

We partition ¢, D, and e to be compatible with the partitioning

X
of x = . Thus
X3
Cy i Dy ey
Co= ;s D= , and e =
Cg Dgy  Dag eg

Since (%;,?) ls & local mlulrum ror problem (3.1) with 2, > °, it
follows that Dy, 1s nonsingular. The stationary
point at hand is assumed to be a local minimum; thus we know fram
Theorem (2.11) that @ is convex on the subspace {x = (::) €ER : xg = 0}.
Rence, we are assured that a global minimum for (3.7) exists when
e, 1s set equal to rero und e; 1s choosen to satisfy eg > O.

A global minimum in (3.2) must satisty the Kuhn-Tucker conditions,

which can be written as follows:

(3.3a) 0 cp *Diixy + Dygxg
(3.3v) uz = C3 + Didxy ¢+ Dyaxg + €p(
(3. 3¢) w =T - e3xg

-16-
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(3-3(1) gzo,umo,u,,zo,xazo

(3-39) w= 0, x;uﬂ =0

The nonsingularity of Dy, makes it possible to eliminate x, from (3.2)

and its Kuhn-Tucker conditions (3.3). In particular,
x = -Ditc, - DiiDaxs

and after the substitution, (3.2) becomes

(3.4) minimize  @(xa) = °xp + 'x3Dxg
subject to Xg 2 0
e;x.‘, =T
with
- T -1
c = c - cDnbe
= T
D = Tz - DioDiiDy,
o(x) = -iciDile,
o(x) = o(x) + o(xz)

The point x; = 0 is a local minimum with @(0) = O for all T 2 0. For

T small enough, x; = O will be the only stationary point in the constraint
set of (3.4) and thus it is the global minimum. Consideration of

Theorem (2.11) leads one Lo ihe observation that at any local minirmum of
(3.4), other than the point Xp = 0, the capacity constraint elx, < T must
be binding. For this reason, only polnts satisfying the Kuhn-Tucker
conditions with the slack variable « 1t the capacity constraint at zero

value (i.¢., w = 0) will be congi

=7




The Kuhn-Tucker conditions for (3.l4) are

(3.58) ug = ¢ + Dxg + eg(
(3.5v) w =T - e}xg

(3.5¢) ug 20, % 20,20, w20
(3.5d) xJug =0, Qw=0

The problem of determining a global minimum of (3.4) can be carried out
by finding a nonnegative basic solution of (3.5a), (3.5b) satisfying
the complementary slackness condition (3.5d4) and giving the lowest value
of c'p The next section should reveal that for a given value of T, the
problem of solving (3.5) in order to produce the smallest value of
(-p is simpler than the original problem only in the sense that its size
is smaller. The vz;.ctor ea 1s to be chosen so that having the required
solution to (3.5) for a particular value of T makes it easy to obtain
the global solution ®or (3.4) for all values of T 2 O.

Iet g = ¢ > O. Then for any solution of (3.5) with w = 0, we

have

(3.6) x3Dxg = -(1 + ()7

From this relationship and the assumption that the capacity constraint
is binding, it follows that we are seeking a point satisfying (3.5) that

minimizes

(3.7) o(xg) =7 - (1 + ()7

-18-




Putting 0 = 1 + (, we will treat the problem of finding a solution to

(3.8a) v, = Dxg + Co

(3.8p) W =T - cX

(3.8¢) u 20, x 20,020, w20
(3.8a) xlug = 0, ow = 0

with w = O which makes the value of ¢ the largest for each value of
7. If 0 21, the multiplier associated with the capacity
constraint is positive, and the corresponding xg is a local minimum.
Equation (3.7) can be regarded as saying that for ¢ 2 2, the correspond-
ing point x; is a global minimum.

The point x; = O is a global minimum of (3.4) when T = O. Hence we

are only interested in soluticans for T > O. For such T we put

'U-g/'r ; s XB/T

u 3

w/T o =g/t

[
[}

w

and our problem becomes that of finding the solution of

(3.9a) U = Dx + oc

(3.9v) w= 1-2¢'%x

(3.9¢) W20,X20,w820,020
(3.94) X0 =0, gn=0

with ® = O and the largest value of o. Let (u¥,x*), (0,0%) denote the

solution found. The solution of (3.8) can be interpreted according to

»19-



the value of T. In particular:
(1) 1if 0% < 1/7, x; = O is the global winimum, and x; = TX* is no
' special sort of point;
(11) 1f 1/t <% < 2/1, xg = O 15 the global minimum and x; = Tx¥
1s a local minimum;
(111) 1f 2/t <T*, then x = Tx* is the global minimum of (3.4).
Note that if G* < 0, then the point X =('Ditc‘) , with which we
started, is a global minimum for the original quadratic program, for
we have satisfied the hypotheses of Proposition (2.13).
The method given by RITTER for finding the required solution of
(3.9) requires the examination of all “he solutions of (3.9) with w = O.
To simplify the operation, he gives some rules making it possible to
avoid explicit examination of every solution of (3-9).(See RITTER (1966), pp. 347.)
When D is negative semi-definite the problem is much easier because
a solution to problem (3.9) can be found in which %¥* 15 an extreme point
of the constraint region {x : ¥ 2 0, ¢'X < 1}. Such cases correspond to
quadratic programs with concave minimands. The task of setting up problem
(3.9) after finding a local minimum will emerge as a by-product of Ritter's
method for finding that local minimum.

0
The cutting plane to be adjoined is e'x 2 T, with e = (_

) s where

5

only the value T is yet to be specified. This is done first by computing
the largest number T, such that @(x(T,)) = ¢* where ¢* is the smallest

value of the objective function yet found and x(T) = Diicy o 1D ex .
T *

-20-



Iet
T2 = sup {7 : Ax(T) = b, x(7) 2 0}

Thus T; is the largest value of T such that x(T) satisfies the con-
straints ignored in problem (3.2). If T = @, this is another indi-
cation that the objective function ¢ is not bounded below on the

constraint set X. Let

T = max {Ty,Ta}

The cutting plane thét is adjoined is e'x 2 T. If T = T,, the cutting
plane is a support to Y, hence it excludes no local minimum yielding
a lower value of the objective function than has yet been determined.
If T = T,, the new lowest value of the objective function is assumed
at the feasible point x(?), and no local minimum.giving a lower value

for ¢ is lost. Now the Phase I procedure must be reapplied.

-21-



L. RITTER'S ALGORITHM FOR FINDING A LOCAL MINIMUM

L.1. Overview. This section 1s devoted to the algorithm

described by RITTER (1964), (1966) for the calculation of a local minimum

of a quadratic program. Our style of presentation differs sharply

trom that used by RITTER. We regard Ritter's algorithm as a type of

principal pivoting method, and our aim here is to in'2rpret it in this

context. Examining the algorithm from this point of view simplifies the

presentation and results in some simplification in the method itself.
Principal pivoting algorithms are associated with solving linear

complementarity problems, that is, systems of the form

(k.1a) w=q+ Mz
(4.1p) w20, z2>0
(4.1c) z'w = 0

where M € RP*P, By suiltable identifications, the Kuhn-Tucker conditions

of a quadratic program in the form (2.1) become a special case of (L4.1).
Moreover, a convex quadratic program and its dual can be solved by solving
the corresponding linear complementurity problem (L.1). (See COTTLE (1964);
tfor survey reterences on the solving of linear complementarity problems

see [EMKE (1voll), COMLE and DAIMDTG (19¢8) and COTTLE (1908).)

The syster. cxpressed in (h.14) can be recorded in the tabular form

(k.0) W o- | qQ it




A solution of (4.1a) is called nondegenerate 1if at most p of its 2p

unknowns equal zero (or, more generally,at most p of the 2p unknowns
equal their "current" lower bound).

The variable w, 1is sald to be the complement of z,. Initially,
in (4.la) w; are basic, the z; nonbasic. The rules of a particular
algorithm mey specify that a nonbasic variable be increased, and in

this role, it is called the driving variable. If the increase of the

driving variable causes a basic variable to reach a specified value

(for example zero) then the latter is called a blo:king variable. The

pair of variables used in the pivot operation (basic exchange) is
denoted by

< BLOCKING VARIABLE, DRIVING VARIABIED>

The blocking variable specifies a row, and the driving variable specifies

a column. Thereby a pivot element (of the tableau) is singled out. The

pivot element 1s the rate of change of tie blocking variable with respect
to the driving variable.

This type of algorithm can terminate in two ways. The first way
termination cau occur is with a solution to (4.1). Having a solution
to (k.1) indicates that a (possibly vacuous) block pivot could have
been performed atout a principal submatrix to go directly from (4.1) to
a basic solution of (k.la) satisfying (4.1b) and (4.1c). (See PARSONS
\1967).) The second is with an indication that no blocking variable

exists. Thils type of termination must admit of meaningful interpretation




-1f the algorithm 18 to be useful. In our case, thesystem (4.1) relates
to the ‘Kuhn-’l‘ucker conditions of a quadratic program, andthe second
type of termination must signify that the problem.elther has an empty
constraint set or the objective function is unbounded below on the
constraint set. A further requirement of a useful principal pivoting

algorithm is termination after a finite number of pivot operations.
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4.2, Ritter's Algorithm for Determination cf a Local Minimum

The task to be accomplished is to find & local minimum for the

problem

(4.32) minimize c'x + ix"Dx
(4.3b) subject to Ax 2 b
(%.3c) ®xZ= 0

It will be assumed that x = O is a feasible point; hence -b > O.
The existence of a feasible point can be checked using the Phase 1
procedure. Clearly a feasible quadratic program can be written in the
form (4.3).

Let us assume that some ¢; < O, for otherwise the point x = 0 1s

a local minimun. (The case where c > O, but some ¢; = 0 requires
more careful attention and this will be given later.) The algorithm
to be described here works by

maintaining a solution to the Kuhn-Tucker conditions which ylelds a
local minimum for the problem given by (4.3) augmented with a capacity

constraint.
(4.4) e'x <T where e, 20 and e, >0 if ¢, O .

The vector e may be any vector satlsfying these requirements though it
is convenient to use ey = 1 for all 1. With the parameter 7 = 0, the
point x = O 1is obviously a local minimum for the augmented problem since
no other point is feasible. At the point x = 0, the capacity constraint
e'x <7 = 0 is binding and has a positive multiplier. Then the

capaclity constraint is relaxed by an increase of the parameter T. Next
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the Kuhn-Tucker conditions for (4.3), (4.4) are used to compute a local

minimum x = x(7) for this augmented problem.

However, there are conditions under which it is impossible to
increase T so that x(T) remains a local minimum of the augmented problem.
Depending on how this situation arises, it will be necessary either to
specify that certain nonnegativity ccnstraints (x, 2 0) be treated as
equality constraints, (x; = 0), or to change the capacity constraint.

Iemma (2.10) shows that as T is being increased, the objective
frimction is being decreased as long as the capacity constraint
has ¢ positive multiplier. After a finite number of iterationms,
the algorithm either terminates with an indication that the objective
function has no finite lower bound on the feasible region or the
multiplier of the capacity constraint reaches the value zero. When this
occurs, we have a local minimum to the problem without the capacity con-
straint, but we may still have the imposed condition that some of the
variables be held at the value zero. If there are no such restrictions,
the point at hand is a local minimum to (4.1) and Phase III is to be
executed. However, if we have a local minimum to the problem with the
additional conditions that some of the variables be equal to zero, then
a new capacity constraint is to replace the one just dropped, and the
procedure is to be continued.

| Each iteration of the algorithm corresponds to a different basic
solution to the Kuhn-Tucker equations for the augmented problem. If
these solutions are nondegenerate, a decrease in the objective function
must occur at each iteration. Consequently, no basic solution of the

Kuhn-Tucker equations can be repeated and since there are only a finite
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number, there can only be a finite number of iterations.
Before stating the details of Ritter's algorithm,
it is necessary to mention two pivot-theoretic propositions
- needed to demonstrate the legitimacy of the algorithm. The
proofs of these propositions are straight-forward applications of
techniques from numerical linear algebra.

(4.5) PROPOSITION: Consider the system of homogeneous linear equations

expressed in tabular form as

2 %2
W, = M m
Wy = mT ]

where M € RP™1X(P™1) 45 gymmetric and positive definite, m € RP-1, and

p € R. After the block pivot making z,, wp basic, the tableau is

w1 Z2
2y = M-l -M"'m
W = m M1 p-m' M 1m

If w-m'Mm > O, then the matrix

M* =

is positive definite.
The other little fact we will need is

(4.6) PROPOSITION: Consider the tableau .

X Xz y
w = | Dy Dy -AT
Uy = Dla D2 -B
v = A B 0




If D,z is positive defini*e, then after the principal block pivol making
u;, Xg, Vv the basic variables, the entry in the tableau found at the
intersection of the row corresponding to vy and the column corresponding
to y; 1s nonnegative.

In describing Ritter's algorithm for finding a local minimum, we
display the Kuhn-Tucker equations for the qadratic program (k.3)

augmented with the capacity constraint (L4.4t) in the tableau

1 T x |y C
u = c . ) D -A' e
v = {-b 0 A O 0
w= | O 1 -’ 0 0

The variablee x,, vy, w are primal variables. The variables v, are

slack variables for the inequality constraints, so Ax - v = b, and w is
the slack variable for the capacity constraint, so e'x + w = T. The
multipliers are u;, y;, and {; u is the vector of multipliers for the
nonnegativity constraints, y is the vector of multipliers for the
inequality constraints Ax 2 b, and { the multiplier for the capacity
constraint.

For any value of T, say T, the corresponding value of the vector

in a basic solution of

of basic variables A\ the Kuhn-Tucker equations is found by adding the
first column to T times the second column of the tableau.

Now for the details of the algorithm. Specific rules are printed

in italics. Comments and justifications are included in each step in

ordinary roman type.




sTEP 1. Let c,/e, = min {c;/e; : e; > 0}; it is assumed that x = O,

is not & local minimum, sad ¢ /e, < 0. Perform the pivots {u.,{),

{w,x. ) to complete & 2 X 2 pmincipal block pivot.

The values of the variables after the pivot are:

(h-?) u, = (c’ - %" c,.) 5 T(%‘_r' - -?é dfr) ’ x’ = 0, (J#r; J=1,2,oo-,n)
: Al
e % - (3,)
= R - TPR = Tp
Vg = _bl T(e / Y 0 (.. 1,2,---,]!1)
ey
£ = 'E:‘ " T(ef > w =0

Since -b = 0, this point satisfies the Kuhn-Tucker conditions when
T = 0. If the problem is nondegenerate, then for some T, > O, the point
given by (L4.7) satisfies the Kuhn-Tucker conditions in the range
O<T<T. The specification of T, 1s given in

STEP 2. If the column of T is nonnegative, then terminate the procedure.

In such a case, T as a driving variable is not blocked. Lemma (2.10)
implies that if T approaches infinity, the objective function is un-

bounded below on X. If the T column contains at least one negative entry,

then increase T until some basic variable becomes zero. Iet T, be the

value of T.- The assumption of nondegeneracy implies that this basic

variable is unique. The basic variable that becomes zero when T = T,

is the "candidate" tobecome the blocking variable. If the candidate to

become the blocking variable is [, the multiplier associated with the

capacity constraint, then go to step 6; otherwise go to the next step.
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STEF 3. We want to make a principal pivot so as to be able 1o fuerons
T a little bit more before any other basic variable becomes neiitive .
The desired pivot i1s on the blocking variable candidate and its comple-
ment, and feasibility can be preserved only if the pivot entry is
positive. This can be seen by considering the following tableau where

the blocking variable candidate 1s w;

1l T Zl Y
W, = Cy £y D d

Wi, %, 03, Iy d € R and wy, 23, c3, fz, 8 are scalars.

For Tl » T < T -Cg/fg 3
cg +Tfg >0, ¢ +7f >0
nnd tor 12> Ty

br o ~ O, thew pertoraing the pivot (wg,zg) results in the tallenu
[ T 71 Wy
2 17
My ’ S =G S f - 5 d D - % dd’ % o
5 s - -1":1 _:.l. qf l
l 4] b K 6




———r

So for v > 15,
1 .
.E(c2 + 1f3) > 0 ;

for some T4 > T3 ,

("1+Tf1)-%(°a+7fa)d>0, 1If 1, ST< Tg.

Hence the rule is: 1f the desired pivotal entry 1sgpositi;e,

then the blocking variable candidate 1s the blocking variable and its

complement acts as a driring variable in a pivot operation. Upon

completion of this pivot, repeat step 2. If the desired pivotal entry is

negative or the blocking candidate is a multiplier, go tc step 4. If the block-
ing candidate is a primal variable and the pivotal entry 1s zero, go to step 5.

Since we only make plvots about positive pivotal entries, after
step 1, the principal block pivot entry is positive definite. Repeated
application of Proposition (4.5) indicates that this is so. Hence the
primal variables of the augmented problem that are zero specify a face
of the feasible region containing the current point and restricted to
which the quadratic objective function 1s convex. The principal block
pivotal entry placing the point on that face i1s positive definite. Hence
by Theorem (2.11) the current point is a local minimum for the augmented
problem.

If the blocking variable is a multiplier, performing the indicated
principal pivot increases the order of the pivotal block, and the
objective function is to be restricted to a higher-dimensional linear
manifold, since fewer primal variables are at the zero level. If the

blocking variable 1s a primal variable, then the order of the principal




pivot block is decreased, and the objective function is to be restricted
to a lower-dimensional linear manifold. Thus, if it is convex on the
higher-dimensional linear manifold, it must be convex on the manifold.
If the blocking candidate is a primal variable, then the pivotal
entry is nonnegative. Proposition (4.6) implies that if the blocking
candidate is a primal variable in the role of a slack variable, then
the pivotal entry is nonnegative. If the blocking variable is a primal
variable not in the role of a primal s.ack, then the desired coefficient
is on the main diagonal of the current pivot matrix. Since the latter
is positive definite, its diagonal elements are positive.
STEP 4. The blocking variable candidate is a multiplier. Let this

variable become negative and drop it from considération as a pntential

blocking variable as long as it remains negative. Now return to step 2.

The interpretation is that we now have a local minimum for the augmented
problem with the further restriction that the primal variables which are
complements to the multipliers with negative values are restricted to
equal zero and are not merely nonnegative.

STEP 5. The blocking candidate is a primal variable, hence the point

has moved to another face of the convex polytope X. Let v, denote the

candidate. Make the pivots (v,,w), ‘(,y.) and then drop the capacity

constraint from consideration. All the primal variables must be non-

negative, and if all the basic multipliers are positive the point is a
local minimum. If some of the multipliers are zero but none are negative,
it is necessary to examine the principal submatrix at the intersections of the

rows of the basic multipliers at zero value and their complements. If that matrix
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is positive semi-definite, then the current point is a local minimum.

If the current point is a local minimum, terminate Phase II; otherwise

go to step T.
STEP 6. The blocking variable is (; make the pivot ({,w). The pivot

entry must be positive since the coefficient in the desired position 1s
the negative of the coefficient of T in the blocking row. Thus we have

a local minimum without the capacity constraint. If all the multipliers

are positive, the point is a local minimum to the original problem.

Terminate Phase II. If some of the multipliers are negative, then go

to step T.

STEP 7. Iet u,...,u, dcnote the multipliers having negative values.

Introduce a new capacity constraint e'x = T with ey >0, it is customary

toset ey =1, (j=1,...,8), ¢ =0(j =8 +1,...,n), vhere x, (§ = 1,...,8), °

Just denote the complements of the basic multipliers. With T = O the

current point is a local minimum to the problem with the new capacity

constraint. Return to step 1 and proceed as before.

This completes the description of Ritter's algorithm to determine
a local minimum. After finite number of steps, either the objective
function is shown to be unbounded below on the feasible region X (and hence
we are finished) or we stop with a local minimum and must proceed to
Phase III.

When describing his algorithm, RITTER does not employ the tabular
form used here. He maintains a distinction between the x-variables and
the v-variables which is not necessary.

We now return to the task of identifying the data for the problem

to be rolved in the construction of a cutting plane. ILet X be the local
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minimum Jjust found. As stated in Section 3, one could, in principle,
determine a vertex of the feasible region which lies in the lowest-
dimensional face of X containing x. The primal variables and their
complements could then be relabeled so that the slack variables at

that vertex are the v-variables. Two non-principal block pivots could
ve made in the original tabtleau to make the v-variables and the u
variables basic in the Kuhn-Tucker equations. Let the tollowing *ableau

represent that situation.

(4.8) 1 Xy Xo y
0 2“1 51 1 31 3 —KLY
uz = ;a 31'2 ’632 'X;
v - L5 A [ o

where the vectcr x has been partitioned so that the positive primual
variables at the local minimum are x; and v. The vector ¢ and u and the
matrices D and A are partitioned in u compatible fasaion. The tubleau

corresponding to the locul minimum 1o,

(4.9) 1 0, X2 Y
~_y~ ~_ ~_ »\-_1 1
X -Ditey D;1 -t s DTN
B ~ Sy ey~ =1l S e e TR ALY
ug - cg - Dighac Piabry Dya-DlaDiils -AJ Do DA
~ ~~1~ ~ ey ~ ~ e ~~.x~
v - v - Al Ay Dyy Ra -A Dy Dha ADOLA

Sou the problem to ve solved in Phase 111 {5 to tind a nonnegative

complementary solution for

L {h-




(4.10) 1 X e

~ ~ ~~ ~Y [ Cad

u = 0 D22-D201iDha ca-Dyghy,c

~ ~Y ~_ ~
ca -DyaDitc; 0

L
t
-

that gives the largest value for ;:

Tableau (4.10) is formed from data cortained in the rows associated
with the multipliers that are basic in tableau associated with {:he local
minimum. This indicates that to cet up the required Phase II problenm,
it 1s only necessary to identify the primal variables that are cumple-
mentary to the multipliers that are bas.. in the final tableau of

Phase II.




€, + x, <6

X = (‘I ): s T 4:: E: (Constraint Set)
1 1=

l,2ﬁ

Fig. 1—Example of a Nonconvex Quadiatic Progrom
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L.3. An Example Solved Using Ritter's Method

We will iliustrate the method on the nonconvex quadratic program:

minimize @(x) :=3% - ixg - 38 + 5@

2)(1 + xa < 6
-x, + bxg <6
X3 2 O, Xg 20

Figure 1 depicts the set of feasible points and some of the isovalue
contours of ¢. As indicated there, the problem has three stationary
points; two are local minima, and one is a saddle point.

The point x = O is a feasible point, so the method can be started

in Phase II to determine a local minimum.




Phese 11. Determining a local minimum.
The capacity constraint is x; + X3 < v. The first two pivot: re

for initialization.

1 T Xy Xg Y Ya ¢
uy = 1/2 0 - 0 2 -1 1 Pivot:
u
ug = -1/2 0 0 1 1 L L AT
v, - 6 0 =2 Sl 0 0 0
va = 6 0 1 -k 0 0 0
w = 0 1 -1 -1 0 0 0
1 T X X3 n Y3 ug
uy = 1 0 -1 -1 1 -5 1 Pivot:
¢ = 1/? 0 0 -1 -1 b 1 (w,xg )
vy = 6 0 -2 -1 0 0 0
v = 6 0 1 -4 0 0 0
0w = 1 -1 o5 0 )
1 T Xy w n Y3 Uy
For 1=1/"
1 . -1 ) 1 1 i
= ; ' 2 ! ( 15 the
¢ - 178 o] L | &/ 1 tlocking
- & © .2 - c ¢ variable.
"1 : ! ! : : Mike the
Va 4 -h 3] L rrincipal
. ivot
. S ] -1 = | %
o (C,0) .
1 T x, ¢ N Ya ug
u = 1/ .0 Sl 1 it ) 0 A Kuhn-Tucker
a -1/ -1 1 1 y -1 point and the
. pOInt Xy U,
. ne oo -0 1 1 b -1 X3 ., 1s a
vy - 4 : 0 1 4 L 16 =) local mininum.
%o 15 u O -1 -1 -4 1




Phase III. Constructing a cutting plane.

To place the cutting plane the complementary solution for

~

1 X3 ;'

U, = 0 ] <1 afs

€
I

1 |-1/2 o

with ® = O and the largest value of ;'is to be found. Clearly the only
possible solution is with ;'and §; as the basic variables. So the

solution tabluau is

R ,
T = b | -4 2
X = 2 | -2 0

For the problem
minimize  ¥(x) = 3x - % -5§ + 5
I, < 7T

and O < 7 <% the point x(7) = 21, x(7) = ¥ is not even a stationary
0

point. But for + < T < %, x(7) is a local minimum and x = (L) is the
2

global minimum. Finally for T 2 %, x(1) is the global minimum.

The final step of constructing the cutting plane requires the

determination of T, and T,. Solving for the largest T such that

¢(X(T)) = ¢(i) gives T, = %,and solving for the largest T such that
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x(1) € X gives 73 = 1/8. Thus T = 11/8 and the cutting plane to be
adjoined is ix, 2 11/8 (i.e., x, 2 11/4).

With the cutting plane adjoined, the problem becomes
minimize ¢(x) = Ix, - 3xg - 5§ + 43
subject to X, + x5 s 6
-x +hxg < 6
X, 2 11/4

x3 20, x5 20.

Notice that x = O 18 not a feasible point so Phase I must be executed.

The result of Phase I 1s a problem in the form

minimize  @(vy,vy) = -9/bvy + 3(vy,v, )(3 2)("3)

~ 1 Vy
subject to -9vy - bvy + vy = 27/h
2vg + vy + Xg = 1/2
-V, +x =11/b

x20,vz20.
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Thase TT.

Delermining a second local minimum.

Now the capacity constraint v; + vy < 7 1s introduced. We perform

two initialization pivots.

1 T Va vy Ya ug Uy C
Vs = -9/h 0 3 2 -9 2 1 1* | Pivot:
1 = 0 0 1 -k 1 0 1 (¥a,0)
vy = o7/ 0 L 0 0 0 0
X = 1/2 0 -2 -1 0 0 0 0
X = 11/k 0 1 0 0 0 0 o
w = 0 1 =i -1 0 0 0 0.
1 s Vg Vi Ya Ug u Ya
¢ = 9/l o [ -3 -2 9 -2 1 L Pivot:
Y, = 9/k 0 -1 -1 5 -1 1 1 (w,Va)
vy = 27 /4 0 9 L 0 0 0 0
Xg = T2 0 - Sl 0 0 0 0
X = 11/k 0 1 0 0 0 0 0
w = 0 1 S8 ) 0 0 0 0
In the following tableau when T = 1/4, x; 1s the blocking candidate.
A new vertex of the feaslble region has been found. Make the
miltiplier of the capacity constraint nonbasic by performing (xz,w)
and (C,ug) -
1 T w Vi ¥Ya Uz uy Ya
€ = 9/ -3 3 1 9 -2 1 1 Pivot:
= gﬂ-l -1 1 4] & =1 1 1 <XQ;(U>
V| = a7/k 9 -9 -5 0 0 0 0
Xz = 1/2 5 ¥ 1 0 0 0 0
X, = 11/k 3. LY 1 0 0 0 0
Vg = 0 1 % | -l 0 0 0 0
1 T X2 Vi Ya U Uy Ya
¢ == 3/2 0 3/2  -1/2 9 Lo 1 1 Pivot:
== 2 0 /2 -1/2 5 -1 1 1 (Crus)
vy = 9 0 |-9/2 -1/2 0 0 0 0
w = -1/k4 1 1/2 1/2 0 0 0 0
Xyl = 3 0 5% S 0 0 0 0
vy = 1/h 0 -1/e  -1/2 0 0 0 0




The resulting tableau gives another local minimum.

1 T X3 Vi Ya ¢ u, Ya
ug = 3/4 0 3/b -1/4 9/2 -3y2 1/2 1/2
Y, = 5/4 0 -1/8 A/ 1)/2 1/2  1/2  1/2
vg = 9 0 -9/ -1/2 0 0 0
w = -1/k 1 /2 1/2 0 0 0 0
X, = 3 0 -1/2  -1/2 0 0 0 0
Vy = 1/h 0 -1/2  -1/2 0 0 0 0

Placing the next cutting plane results in an empty feasible region.
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k.4  Concluding Remarks

Tn Phase II of Ritter's method, it is not necessary to use the
algorithm given here. It can be replaced by any quadratic programming
algorithm. Such algorithms have been given by BEALE (1955), (1967) and
KELIER (1969). The latter is closely related to Ritter's Phase II but
is simpler and mskes no use of a capacity constraint. A more detailed
analysis of this relationship will be the subject of a future report.

Each phase of Ritter's method has been shown to be finite and in
his paper RITTER (1966) has given an argument proving that when X is
bounded. one will cycle through the three phases only a finite number
of times. It is apparent from the description of the method that it
may require an inordinate computational effort. For concave problems
where there can be a very large number of local minima, one could be
so unfortunate as to locate them in order of decreasing value of the
objective function, and thereby enumerate them all. Although in this
case the computational effort to construct the cutting plane is small,
it may be necessary to add a large number of them. This can lead to
mich work because the effort to locate the local minima is proportional
to the number of variables plus the number of constraints. Linear
programming can be used to eliminate constraints made superfluous by
the cutting plane but this requires additional computat;onal effort.
(see RITTER (1965).)

The case where D has a number of both positive and negative eigen-
values can possibly cause this algorithm quite a lot of difficulty. 1In

this case, the finding of a solution to the problem in order to construct
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Since problem (3.9) has such simple structure, it may be fruitful to

devise methods that explolt 1ts special features.

il

the cutting plane may require an inordinate amount of computational effort.
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