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1.    INTRODUCTION 

Our purpose here is to review the method of K. RITTER (19Ö*-)*   (1965)^ 

(1966) for obtaining a global solution to a linearly-constrained quadratic 

minimization problem.    In writing this primarily tutorial paper, we have 

made some modifications and introduced an example that we hope will 

contribute to a better understanding of an important algorithm.    As a 

matter of fact, Hitter's method is the only rigorous procedure we know 

of for solving the general quadratic prograraming problem.    Other algorithms 

exist, but they fail to fit this description because of their logical gaps 

or their less ambitious nature.    Examples  of the latter type are the 

frequently advanced proposals for obtaining a local minimum of a concave 

quadratic function  over a polyhedral convex set. 

The problem with which we are concerned  can be stated without loss of 

generality as 

(1.1) minimize      cp(x)  -  cTx + ;?xTüx 

subject to      Ax ^ b 

x 2? 0 

where the matrix A is of order m X n and D = DT .    If D is positive semi- 

definite,   or more precisely,  if cp is a convex function on the convex 

polyhedral constraint  set 

X = fx :  Ax 2? b,  x ^ 0}   , 

then (l.l) is called a convex quadratic program.    There is an abundant 

literature on convex quadratic programming,   and the interested reader 
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may consult the volumes by KUNZI and KRELLE  (1962),   BOOT (1964), 

ABADIE (I96T), and DANTZIG and VEINOTT (1968)  for a Gelcction of 

algorithms and an ample supply of further references.    Ritter's method, 

described in this paper,  is designed to handle problems of the form (l.l) 

in which the convexity of cp on X is not assumed. 

The quadratic programming problem is a sort of bridge between linear 

and nonlinear programming.    It might also be said that the nonconvex 

quadratic programming problem is a bridge between integer and nonlinear 

programming.    This alone should be sufficient to sustain one's interest 

in techniques for efficiently solving difficult problems of this kind. 

Hitter's method is composed of three distinct phases.    Its Phase I 

is essentially the same as that of the Simplex Method for linear program- 

ming (see DANTZIG (1963)).    This procedure is used to determine whether 

there exists a vector satisfying the constraints;   indeed,  it produces 

an extreme point of the constraint set X if and only if that set is non- 

empty.     Orce this has been settled in the affirmative,  another aspect 

of Phase I deals with expressing the objective function in terms of the 

independent (i.e.,  nonbasic) variables.    The extreme point at hand then 

is used as the starting point for Phase II which determines either a local 

minimum or gives an indication that the objective function is not bounacd 

below on the constraint set.    Phase III is a method for constructing a 

cutting plane that excludes the previously located local minimum without 

excluding the global minimum if it has not yet been found.    After the 

cutting plane Is placed,   (i.e.,  adjoined as a constraint) the Phase I 

procedure is reapplied to the augmented problem.    Termination can occur 

in Phase I if no feasible points remain after placing the cutting plane, 

or it can also occur in Phase III after a weak sufficiency condition for 
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a c-loLal minimum is satisfied,  or with an indication that cp is not 

bounded below on the constraint set.    The number of calculations 

preformed in each phase is finite.     RTPTER (1900,   (1966) proved that 

if X is a bounded set, then the method cycles through the three phases 

only a finite number of times.    The finiteness of this method for 

unbounded constraint sets is an unsettled question. 

It is our Intention in this paper to motivate and explain Phases 

II and III as developed by RITTER.     Both of these phases depend  on being 

able to distinguish a local minimum.     Ir Section c1, we set forth the 

necessary and sufficient conditions  characterizing n point as a local 

minimum of a quadratic programming problem.    Section  3 iß  concerned with 

the construction of the cutting plane at a given local minimum (i.e., 

Phase III).    We describe Hitter's algorithm for finding a  local minimum 

in Section k where we include a small example illustrating how the 

method works. 

. 
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2. NECESSARY AND SUI'FiCIENT CONDITIONS FOR A LOCAL MINIMUM 

The quadratic program again is 

(2.1) minimize  <p(x) = cTx + ?xTDx 

subject to  Ax 2 b 

x i 0 

where A is of order m X n and D Is symmetric. The problem determines 

a polyhedral convex constraint set X given by 

(l>.. ) X = fx 6 If : Ax ^ b, x 2 0) 

By a local minimum of 9 on X ve shall mean a vector x € X for which there 

exists a positive scalar c and a corresponding «-neighborhood, N(x,c) » 

fx 6 FP   :  ||x - x|( <  e}, «uchthat cp(x) s v{x) for all x € X fl N(x,c).    If 

the latter in-'quallty holds for all x € X,  then x is called a global 

minimum of cp on X.    This is all perfectly standard, and ve make this 

explicit statement only to emphasize our use of the term local (global) 
11 

minimum with reference to the point x rather than the functional value 

cp(x).    £|y solving (2.1) we mean obtaining a global minimum of cp on X or 

showing that none exists. 

The Kuhn-Tucker theorem on necessary conditions of optlmality Is 

innedlately applicable to the quadratic programming problem because the 

constraints are linear and consequently the Kuhn-Tucker constraint qualifi- 

cation is satisfied at all relative boundary points x € X.    As originally 

stated, the Kuhn-Tucker theorem pertains to global minima.    However,  it is 

well known (and clear from their proof) that the so-called "Kuhn-Tucker 
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condltionß" must obtain at a local mlnlmun. Just as at a global fflinim-yn. 

It is also well known that these conditions can hold at points which 

are not local minima. For this reason, one says that in general they 

are necessary but not sufficient. We state them now in a special way 

for the problem at hand. 

(2.3) THEOREM (KUHN and TUCKER (1951)): If x is a local minimum of 9 

on X, there exists a vector y such that 

(2.3a) c + Dx - ATy   ^ 0 

(? .3b) 

(? .3c) 

(2 .3d) 

(2 3e) 

-b + Ax ^ 0 

x    ^ 0 

y   ^ 0 

(P.3f) 

xT[   c + Dx - ATy]  = 0 

yT[-b + Ax ] - 0 

We  refer to (2. ja) through   (?.3f) as the Kuhn-Tucker conditions of (2.l) 

and ar^ pair (x,y) € R"   x R"   satisfying them will be  called a Kuhn-Tucker 

point.    A stationary point,   x,   of cp on X Is one for which there exists 

a y  such that (x,y) is a Kuhn-Tucker point.    If the  (slack) vectors u and 

v  are defined vln the equation^ 

(:'A-0 

(;>.Ub) 

c  + Dx - ATy 

-b  + Ax 

the Kuhn-Tucker conditions  can be  rendered as 

(.'•.5) u > 0, x > 0, y » 0, v 2- 0, xTu = 0, yTv - 0 



■•r-rlciblf s Xj  and Uj  are paired and are taid to be complementary 

(r-T    "^\Leweiirü 01' each other).    "Hie same terminology applies to the 

iAi <?$ yl  *js$ vl. 

AM it turns out,    .s exposition of tbia "Lheory is sinplifled by 

coRb     ng the nonnegativlty restrictions (x ^ 0) with the other linear 

inequalities In one grand system.    Itus v,e can consider a more general 

system of constraints 

ü, r * hj j.  - Iß •' • fj* 

and special!-^ it by choosing p   . m + n and 

f A:#        1 = 1,.. .,m 

Ll|-B,^ i = m + 1, ...,in + n 

i 1 - 1,•..^m 

0 i = m + 1,...,m + n 

where, for example,  Gt# denotes the i^h row of a matrix G. 

Relative to the constraints of the problem and any point x € R"  we 

may define 

G(x) = fl : G,#x = hi,      1 = 1,...,m + n} 

The constraints corresponding to indices in G(x) are said to be binding 

(or active) at  x.     Ihe set 

X,    -  {x € Ff   :  Gl#x = ht }      1 = 1, .,.,m + n 

Is a linear manifold as is 

X = {x6RB:x€x1,i€ G(x)} 



vhlch Is meant to equal R"   if G(x) = 0. 

It is clearly important to be able to dlBtlnguißh local miniinu from 

other types of stationary points.    Ibis claaslflcatlon problem has been 

rather thoroughly treated by RITTER.    (See RITTER (l^),  (1965) as 

well us the more recent and general work of McCORMICK (1967), or FlAoCO 

and MCCORMICK (1968).)    For this discussion, we adopt Rltter's formu- 

lation of the problem and consider the program 

(2.6) minimize      cTx + |xTDx 

subject to     Gx 2 h 

which, as we have a ready noted, includes (2.l).    The Kuhn-Tucker con- 

ditions of (2.6) are 

(2.7a) c + Dx - GTy - 0 

(2.7b) -h + Gx ^0 

(2.7c) y ^ 0 

(2.7d) yT[-h + Gx]      =0 

For a Kuhn-Tucker point  (x,y),  I.e.,  a solution of (2-7), we      tine 

G(x,y) = fl € G(x) : yt > 0}   . 

If 1 6 G(x,y), the 1th constraint of (2.6) is said to be strongly binding. We :;,- 

X = {x € E" : x € I,, 1 € G(x,y)} . 
Vheve  is also a corresponding subsystem of (2.7), namely 

(2.8a) c + Dx - GTy = 0 

(2.8b) -ß + Gx     =0 

(2.8c) ^>0 

-7- 
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in which G is the appropriate subniatrix of G. In the light of its usage, 

we will assume the nonsingularity of the matrix 

(2.9) 

This Implies that the rows of G are linearly independent. 

Given a Kuhn-Tucker point for (2.6), there is a range over which 

the vector h may be varied without causing either the strongly binding 

constraints to become nonbinding or the nonbinding constraints to become 

strongly binding. Since the matrix specified by (2.9) is nonsingular, 

eqvations (2.8a) and (2.8b) can be used to define a Kuhn-Tucker point 

A       A 
as a function of h when h is chosen from the set just described. Over 

A 
this range of h,  the value of the objective function cp is an implicit 

function of n.    The following lemma relates the multipliers    y 

to the rate of change of cp as h is perturbed. 

(2.10)    LEMMA    (RITTER (1965)):     For the set of all fi such that  (2.8) 

has a solution,  9 can be  regarded as a function of h and in this sense, 

yT  = ^9 

Proof.    By the chain rule for differentiation 

Rewriting (2.8a) and post multiplying by |~ I    , we obtain 

19 = V.-P [|] 

[SI 
[^ 

ATA      ("dx 
CP- y G]   - 

Ldh '1 '0 
dhj 

-8- 



These two equations imply 

7^cp = yTG 

Since the matrix in (2-9) is nonsingular,  /    1 can be expressed as a 

A M 
function of h and (2.8)-canbe used to obtain 

A 
G 

where I  Is an identity matrix of appropriate order, 

that 

From this ve conclude 

■Bl 1 

and  the 

We 

pollitti. 

(..n) 

(i) 

(ii) 

(in) 

rt'iujj t, fdllow!-.. 

new etulr Hitter'!; charaeterizntion theorem for stationary 

mOR^! (Hl'ITKH (!"•-'-)):  If (x,y) is a solution of (L'.8) then: 

A 

x  Is   i   hi'il  mlnlnrum of cp en X iffcp is convex on X; 

x ir.  n   I.CMI   rmixlmum of cp on X IffX = R"   and cp is concave; 

, A 
x li; 'i ..i Mi,' point of cp on X ilfcp is nonconvex on X provided 

■T / i* ■ 11" X  R", then x Is a saddle point iff cp is neither 

convex nor concave. 

Proof,  (l) Suppose cp is convex on X and suppose x 6 X.  Then 

h : fix % h. Hy  the assuiription (2.9), there will be a unique stationary 

. 
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point x' of <p subject to Gx = h.  Then cpCx') ^ cp(x). Now if we choose 

x sufficiently close to x, we may preserve the positivity of the 

multipliers. The result q)(x) ^ (p(x ) ^ (p(x) now follows from Lemma (2.10), 

Conversely, If x is a local minlnum of q) on X then (p(x) ^ <p(x) for 

all x 6 i 0 N(x,€). We have 

cpCx) = <p(x) + (cT + xTD)(x - x) + ki'x -  x)TD(i - x) - 

cp(x) + yT6(x - x) + hCx -  x)TD(i - x) 

Since G(x - x) 0 , 

cp(i) - cp(x) = Hx - x)TD(x - x) i 0 . 

It follows now that the quadratic form zTDz is convex on X H N(x,e) and 

hence on I, its carrying plane. Therefore ^ is convex on X.  (See 

COTTLE (1967).) 

(il) Suppose x is a local raaxiraum and X ^ If . Then the Lemma (2.10) 

Implies that in any sufficiently small neighborhood of x there exists 

a point x' such that c^x') > cp(x). This contradicts the assumption 
A 

that x is a local maximum. Hence X = Ff and moreover c + Dx = 0,  From 

this we have 

cp(i) s cp(x) - cp(x) + 7q<x)(x - x) 

for all x in an €-neighborhood of x, say N(x,e).  It now follows that cp 

is concave on N(x>e) and hence RT . 

If cp  s concave on R", then of course, the Kuhn-Tucker conditions 

are sufficient to infer that x is a local—indeed global—maximum. 

10- 



(iii) If i ^ " , and x is a saddle point of cp on X then cp Is not 

ci'nvex (>n £  by (, i). If cp is not convex on £  then x Is neither a local 

minimum by (i) nor a local maxlnrum since Z f 1?,  so It must be a saddle 

point of cp on X. If X = If , parts (l) and (ii) leave only the conclusion 

that x is a saddle point if and only If «p Is neither convex nor concave 

(i.e. xTDx is an indefinite quadratic form). 

(2.12) REMARKS.  Simple examples shov that the exclusion of weakly 

binding constraints from the statement of (2.1l) Is necessary. Another 

important fact about this theorem is that If (x*,y*) Is a Kuhn-Tucker 

.  ,. A 
point for \2.b}  and the function cp is convex on the linear manifold X, 

then x* is a local minimum cp on X (i.e., in the problem (2.6)) and not 

A A 
Just in the quadratic program derived from the lata c,D,G,h. 

While 'iliec rem (2.1l) gives a useful sufficiency condition for a 

local miniraum, the- goal ^ to determine a global minimum. With this 

in mind, we mention here an obvious but useful global sufficiency con- 

dition given by RITTER (lf*64). Let x* be a feasible vector for (2.6) 

such that G(x ) / $. liy a suitable permutation of the constraints, 

C,  and h ran be partitioned as | „'I and \ ^'\    >   respectively, so that [t] and \K) ' 
GQx    --  ho 

G^x* > h^. 

(. .! 0    PHurc^rrifi]:     If x*   is a  local minimum of  (2.6) and 

mln   fxTnx   :   GQX .'•  o}  ^ 0  , 

thrn x    Is; '1 i'l  1 al   minimum of cp »n X. 

-11- 



Proof.    We have the Identity 

cp(x) = (p(x*) + 7cp(x»)(x - x*)  + Mx - x#)TD(x - x*). 

Since x* is a local minimum, there exists a vector y   such that (x ,y ) 

is a Kuhn-Tucker point.    Let y    =      _0|   In conformity with the partl- 

tloning of G and h.    Then 

c + Dx* - Gjyo - Qly+  = 0 

-ho + GQX* = 0 

-h* + G4.X* > 0 

yo ^ 0 

y* 2 0 

yot-ho + Gox*] = 0 

Irli-K + G+X*] = 0 

(trivially) 

The last of these Kuhn-Tucker conditions implies y+ = 0, so we arrive 

at the observation that the linear inequality system 

G^n = c + Dx , y0 ;> 0 

has a solution.  By the alternative theorem of PARKAS (190?) we see that 

GQX >  0, (cT + x*TD)x < 0 

does not have a solution. Hence 

(2.110 GQ2 i 0 implies (cT + x*TD)z ^ 0 

Suppose x € X.    Then C^x ^ ho,  and it follows that    GD(x - x*) ^ 0.    With 

z = x - x*,   (2.14) implies 7cft)(x*)(x -  x*)  = (cT  + x*TD)(x - x*) ^ Q. 

-12- 
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Moreover, by the hypothesis of the Proposition, ve have (x - x*T )D(x - x*) ^ 0 

for all x 6 X. The result now follows from the Identity. I 

•13- 
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3.     CONSTRUCTION OF A CUTTING PLANE 

The results of the preceding section enable one to distinguish 

between stationary points  of a quadratic program.    Once a local miniraum 

has been reached,  it is natural to try to introduce a cutting plane 

which will exclude the previously determined local minimmn without 

excluding the global minimum if it has not been located so far.    In 

this  section we look at the cutting plane problem (Phase III) and post- 

pone until the next section the matter of finding a local minimum (Phase II) 

Given a local minimum,   it is possible to determine a vertex of the 

constraint set X that lies in the  lowest-dimensional face of X containing 

the local minimum.    Then the primal variables and their complementary dual 

variables can be relabeled so that the slack variables at that vertex are 

denoted as v-variables.    After this relabeling process,   a series of 

algebraic manipulations can be carried out to put the problem in the form 

(3.1) minimize  cp(x) = cTx + gxTDx 

subject to v = -b + Ax 

v 5 0, x 2: 0 

with (x,v,ü,y) being the Kuhn-Tucker point associated with local miniraum 

x  •    We shall assume that this point is a nondegenerate solution so that 

v > 0,  x ^ 0.    Suppose that x can be partitioned as x =    f      j with Xi > 0, 

303   = 0.     The nondegeneracy assumption implies Uj   = 0, u2 > 0.    The reader 

should be warned that here the single subscripts pertain to subvectors 

and not necessarily to coordinates  of the corresponding vectors.    This 

image should obviate the introduction of more elaborate notation without 

leading to undue confusion. 

■ Ik- 



As indicated in Section 1,   the purpose of a cutting plane  Is  to 

exclude the previously determined local,  but nonglobal,  minimum without 

excluding a global mininr'm.    Geometrically speaking,  the previously 

determined local raininum and the set of global minlraa are to be  separated 

by the cutting hyperplane.    How might one want to proceed in constructing 

such a hyperplane?    Suppose for the moment that the set 

S =  fs = |      | € R?   :   6TDs < 0,  sa 2: 0} 

is nonempty and "known."    Then for each s € S there exists a smallest 

Ta  > 0 such that 

cp(x + TS) < cp(x)      for all T > T$   . 

If for all s € S,   the point x +  Tg c (| X,   then x Is a global minimum.     On 

the other hand,   if for come s €  S and coine  T > TS   the point x + TS € X, 

then an improvement cm bo made.    Wc define 

Y - Cx + TS   :   s € E,   T .^ TJ   . 

Thus, we are interested in a supporting hyperpluno to the set Y. 

The procedure described below is a constructive method for choosing 

a particular supporting hyperplanc.     Occasionally it is possible to 

construct a parallel   cutting plane that chops off more of X. 

Let eTx 5 T denote the constraint  to be adjoined.    Tlie task is to 

specify the vector e  rind the scalar T.    This will be done by considerlrif'. 

the problem of finding the global minimum for every value of T of the 

quadratic program 

■15- 



(3-2) minimize      cTx + |xTDx 

subject to XQ 2 0 

eTx s T   . 

The approach vlll be to specify the vector e in a manner which will 

simplify the solving of (3.2).    The Inequality constraint eTx ^ T will 

be called the "capacity constraint" and e will be chosen so that for 

each value of T ^ 0,  a global minimum for the corresponding program 

(3.2) exists. 

We partition c,  D, and e to be compatible with the partitioning 

of x  =   I     1   •    Thus 

Since  (xx,^)   is u local minimum I'or proLiem (j.i) with li >   \  it 

follows that Dji   is nonslngular.    The stationary 

point at hand is assumed to be a local minimum;  thus    we know from 

Theorem (2.1l) that cp Is convex on the subspace  rx=|       1 € If   : Xg   = Oj 

Rence,  we are assured that a global minimum for (3.?) exists when 

ej   is set equal to Eero and ea   Is  choosen to satisfy «^ > 0. 

A global minimum in (3-2) must satisfy the Kuhn-Tucker conditions, 

which can be written as follows: 

(3.3a) 0        Ci   + DJJX!   ♦ DxaXa 

(3-3b) ua   = ca   ♦ DiJxx   ♦ haaxg  + CaC 

(3.3c) it)        T -    63X3 

-16- 
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(3.3d) £    >.    0,    il)   >    0,    Up,    Z   0,    Xg    *   0 

(3-3e) C«w =  0, xjua  = 0 

The nonslngularlty of Du  makes it possible to eliminate Xi  from (3*2) 

and its Kuhn-Tucker conditions  (3-3)-    In particular, 

Xi   - -ETlcj   -  E^lDiaXg   , 

and after the substitution,   (3'2) becomes 

(3.IO minimize      cp(x2)  = cx8  + 'xgDXa 

subject to x3  ^ 0 

63X2   ^ T 

with 

c  -    ca     -    cJl^ID12 

D =    Das   - D^DliDis 

cp(x)  = -.Wl^ic! 

cp(x)  = cp(x) + cpCxg) 

The point xs   = 0 is a local minimum with cp(o) = 0 for all T ^ 0.    For 

T  small enough, x2   -  0 will be the only stationary point  in the constraint 

set of  (3'^) and thus it is  the global minimum.    Consideration of 

Theorem (?.ll) leads one to the observation that at any local minimum of 

(3.'i),   other than the point x2   - 0,   the capacity constraint 03X3  ^ T must 

be binding.    For this reason,   only points satisfying the Kuhn-Tucker 

conditions with the slack variable ■ 1' the capacity constraint at zero 

value   (i.e.,  a) -  O) will  be  uonsii        I. 

•IT- 
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The Kuhn-Tucker conditions for (3»^) are 

(3.5a) 

(3.5b) 

(3.5c) 

(3.5d) 

1^=0 + Dxa  + eaQ 

u)    = T - eäxg 

Ua^O, XQ^O,  £2:0,  uj^O 

>ijua = 0,  ^uu 

The problem of determining a global minimum of (3-k) can be carried out 

by finding a nonnegative basic solution of (3'5a)>  (3-5b) satisfying 

the complementary slackness condition (3-5d) and giving the lowest value 

of cp.    The next section should reveal that for a given value of T, the 

problem of solving (3-5) in order to produce the smallest value of 

q) is simpler than the original problem only in the sense that its size 

is smaller.    The vector e8 is to be chosen so that having the required 

solution to (3«5) for a particular value of T makes it easy to obtain 

the global solution "or (3.4) for all values of T ä 0. 

Let ea = c > 0.    Then for any solution of (3-5) with ou = 0, we 

have 

(3.6) x^Dxa  = -(1 + Q)T 

From this relationship and the assumption that the capacity constraint 

is binding, it follows that we are seeking a point satisfying (3.5) that 

minimizes 

(3.7) ^(xa) = T - £(1 + Q)r 

-18- 





the value ofT. I n particular: 

( i) if a*< 1/T 1 X;a = 0 is the global ·ui nimum, and JCa = Ti"" is no 

special sort of point; 

(11) if 1/T ~ ';* < 2/T, :xa = o 13 the global minimum and :xa = -rx* 

is a local mini~; 

(11i) if 2/T ~a* 1 then XQ = TX* is the global minimum Of (3.4) • 

Note that if a* ~ 01 then the point i =tDi~ c1
) 1 with which we 

started, is a global minimum for the original quadratic program, for 

we have satisfied the hypptheses of Proposition (2.13). 

~e method given by RI'rl'ER for finding the required solution of 

(3.9) requires the examination of all the solutions of (3.9) with w = 0. 

To simplifY the operation, he gives some rules making it possible to 

avoid explicit examination of every solution of (3.9).(See RITTER (1966), pp. 347.) 

When D is negative semi-definite the problem is much easier because 

a solution to problem ( 3. 9) can be found in which x* is an extreme point 

of the constraint region [X : x ::2: o, c'x ~ 1}. SUch cases correspond to 

quadratic programs w1 th concave minimands. The task of setting up problem 

(3.9) after finding a local minimum will emerge as a by-product of Ritter's 

method for finding that local minimum. 

~e cutting plane to be adjoined is e' x ::2: T, with 

only the value T is yet to be specified. This is done first by computing 

the largest number T1 such that ~(x(-r1 )) - ~*where~* is the smallest 

value of the objective function yet found- and x(T) = { -Dilcl :._ TIJll~ax*) 
\ -rx* 
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T2 = sup [T : Ax(T) ~ b, x(T} ~ 0) 

Thus T2 is the largest value of T such that x(T) satisfies the con

straints ignored i~ problem (3.2). If Ta = •, this is another indi

cation that the objective function ~ is not bounded below on the 

constraint set x. ~t 

T =max [T1 ,T2 ) 

The cutting plane that is adjoined is eTx ~ T. If T = T1 , the cutting 

plane is a support to Y, hence it excludes no local minimum yielding 

a lower value of the objective function than has yet been determined. 

If T = T2 , the new lowest value of the objective function is assumed 

at the feasible point x(T), and no local minimum giving a lower value 

for ~is lost. Now the Phase I procedure must be reapplied. 
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U.     RITTER'S ALGORITHM FOR FINDING A LOCAL MINIMUM 

k.l.    Overview.    This section Is devoted to the algorithm 

described by RITTER (196U),   (1966)  for the calculation of a local mlniraum 

of a quadratic prognun.    Our style of presentation differs sharply 

from that  ur.ed by RITTER.    We regard Ritter's algorithm as a type of 

principal pivoting method,  and our aim here is to in'3rpret  it in this 

context.     Examining the algorithm from this point of view simplifies the 

presentation and results in some simplification in the method itself. 

Principal pivoting algorithms are associated with solving linear 

complementarity problems,  that is,   systems of the form 

(U.la) w - q + Mz 

(4.1b) w ^  0,   z > 0 

zTw  =  0 

where MC   Rpxp.     Ejy suitable identifications,  the Kuhn-Tucker conditions 

of a qundratlc program In the form (P.l) become a special  case of (4.1). 

Moreover,   a cunvex quadratic program and its dual  can be solved by solving 

the corresponding linear complementarity problem C+.l).     (See COTTLE (1964); 

for survey  references on the solving of linear complementarity problems 

cee  LEMKK  (iVo^),   COTTLE and  DAIiTr.L;   (l'KH) and COTTLE  (1968).) 

C*.:1) 

The  Dy.'itcm t-xprcssod  in  ('♦.J'O  enn be  recorded  in the  tabular form 

] 
T 

q   |     M 



^■»■^■üll 

A eolution of (i»-.la) is called nondegenerate if at most p of its 2p 

unknowns equal zero (or, more generally, at most p of the 2p unknowns 

equal their "current" lower bound). 

The variable wl is said to be the complement of zi.    Initially, 

in (^-la) Vi  are basic, the z1 nonbasic. The rules of a particular 

algorithm may specify that a nonbasic variable be increased, and in 

this role, it is called the driving variable. If the increase of the 

driving variable causes a basic variable to reach a specified value 

(for example zero) then the latter is called a blojking variable. The 

pair of variables used in the pivot operation (basic exchange) is 

denoted by 

<BLOCKING VARIABLE,    DRIVING VARIABLE>  . 

The blocking variable specifies a row, and the driving variable specifies 

a column. Thereby a pivot element (of the tableau) is singled out.  The 

pivot element is the rate of change of tbe blocking variable with respect 

to the driving variable. 

This type of algorithm can terminate in two ways. The first way 

termination can occur is with a solution to (U.l). Having a solution 

to (^-.l) indicates that a (possibly vacuous) block pivot could have 

been performed about a principal nubmatrix to go directly from (4.1) to 

a basic solution of (4.1a) satisfying (4.1b) and (4.1c). (See PARSONS 

^1967).) The second is with an indication that no blocking variable 

exists. This type of termination must admit of meaningful interpretation 
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If the algorithm 1B to be useful.    In our case, the system (^.l) relates 

to the Kuhn-Tucker conditions of a quadratic program, and the second 

type of termination must signify that the problem either has an empty 

constraint set or the objective function Is unbounded below on the 

constraint set.    A further requirement of a useful principal pivoting 

algorithm is termination after a finite number of pivot operations. 
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k.2.    Hitter's Algorithm for Determination of a Local MLnlmun 

The task to be accomplished 1B to find a local minimum for the 

problem 

(IK 3a) minimize      cTx + |xTDx 

(J+.3b) subject to      Ax ^ b 

{h.3c) x ^ 0 

It will be assumed that x = 0 is a feasible point;  hence  -b > 0. 

The existence  of a feasible point can be checked using the Phase I 

procedure.     Clearly a feasible quadratic program can be written in the 

form (it.3). 

Let us  assume that some ^ < 0,   for otherwise the point x = 0 is 

a local minimum.     (The oase where  c > 0, but some cl   = 0 requires 
more careful attention and this will be given later.)    The algorithm 
to be described here works by- 

maintaining a solution to the Kuhn-Tucker conditions which yields a 

local minimum for the problem given by  (U.3) augmented with a capacity 

constraint. 

(h.k) eTx <: T    where ei  ^ 0    and Ct  > 0    If Cj   S 0  . 

The vector e may be any vector satisfying these requirements though it 

is convenient to use ej   = 1 for all i.     With the parameter T  = 0,  the 

point x ~ 0 is  obviously a local minlmujii for the augmented problem since 

no other point  is feasible.    At the point x = 0,  the capacity constraint 

eTx s T = 0 is binding and has a positive multiplier.     Then the 

capacity constraint is relaxed by an increase of the parameter T.    Next 
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the Kuhn-Tucker con itions 'for (4 .3), (4.4) are used to compute a local 

minimum x = x(T) for this augmen~ed problem. 

However, there are conditions under which it is impossible to 

increase T so that x(T) remains a local minimum of the augmented problem. 

Depending on how tM,s situation arises, it will be necessary either to 

specif,y that certain nonnegativity constraints (x1 ~ 0) be treated as 

equality constraints, {x1 = o), or to change the capacity constraint. · 

Lemma {2.10) shows that as T is being increased, the objective 

~Ulction is being decreased as long as the capacity constraint 

has D posit~ve multiplier. After a finite number of iterations, 

the algorithm either terminates with an indication that the objective 

tunction has no finite lower bound on the feasible region or the 

multiplier of the capacity constraint reaches th& value zero. When this 

occurs, we have a local minimum to the problem without the capacity con

straint, but we may still have the imposed condition that same of the 

variables be held at the value zero. If there are no such restrictions, 

the point at hand is a local mininrum to (4.1) and Phase III is to be 

executed. However, if we have a local mininrum to the problem with the 

additional conditions that some of the variables be equal to zero, then 

a new capacity constraint is to replace the one just dropped, and the 

procedure is to be cont inued. 

Each iteration of the algorithm corresponds to a different basic 

solution to the Kuhn-Tucker equations for the augmented problem. If 

these solutions are nondegenerate, a decrease in the objective function 

must occur at each iteration. Consequently, no basic sol~tion of the 

Kuhn-Tucker e~uations can be repeated and since there are only a finite 
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number, there can only be a finite number of iterations. 
Before stating the details of Ritter's algorithm, 

it is necessary to mention two pivot-theoretic propositions 

needed to demonstrate the legitimacy of the algorithm. Tbe 

proofs of these propositions are straight-forward applications of 

techniques from numerical linear algebra. 

(4.5) PROPOSITION• Consider the system of homogeneous linear equations 

expressed in tabular form as 

where ME R(p-l)x(p-l)is symmetric and positive ~efinite, mE RP-1, and 

~ E R. After the block pivot making z1 , wa basic, the tableau is 

M'"l 

w~ = 

If tJo-mT Mm > 0, then the matrix 

is positive definite . 

'rhe other little f act we will need is 

(4.6) PROPOSITION: Consider the t ableau 

Xt Xa y 

ul = ~1 Dta -AT 

ua nra D:aa -BT 

v = A B 0 
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If D^a iß positive definite, then after the principal block pivot making 

Uj, xa, v the basic variables, the entry in the tableau found at the 

intersection of the row corresponding to vl and the column corresponding 

to yj is nonnegative. 

In describing Ritter's algorithm for finding a local minimum, we 

display the Kuhn-Tucker equations for the quadratic program (k.3) 

augmented with the capacity constraint (k.h)  in the tableau 

1     T     x   y   C 

u = 

V = 

U) = 

c 0 D -AT e   i 

-b 0 A 0 0    j 

0 1 -eT 0 0    | 

The variables Xj, vi,  a» are primal variables. The  variables v1 are 

slack variables for the Inequality constraints, so Ax - v = b, and u) is 

the slack variable for the capacity constraint, so eTx + UJ = T. The 

multipliers are Uj, yt, and £; u is the vector of multipliers for the 

nonnegativity constraints, y is the vector of multipliers for the 

inequality constraints Ax ^ b, and Q  the multiplier for the capacity 

constraint. 

For any value of T, say T, the corresponding value of the vector 
in a basic solution of 

of basic variables /\ the Kuhn-Tucker equations is found by adding the 

first column to T times the second column of the tableau. 

Now for the details of the algorithm. Specific rules are printed 

in italics. Comments and Justifications are included in each step in 

ordinary roman type. 
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STEP 1. Let cr/er = min [cdeJ : eJ > 0]; it is assumed that x = O, 

is not a local minirrnunz and Cr /er < O. Perform the pivots (u,. ,,) ' 

(w,Xr) to complete a 2 X 2 pn~ncipal block pivot. 

The values of the variables after the pivot are: 

(4.7) UJ ( CJ -~ Cr) + ,-(dJ r - ~ dr r) ' 
er er r 

XJ o, (J ;ir; j=l,2, •.•• ,n) 

Ur = 0 Xr = ... (t) 

Vt -b1 - ... (~' er J Yt = 0 U = 1,2, ••• ,m) 

c = ~ - ... (~) w 0 
er 

Since -b ~ o, this point satisfies the Kuhn-Tucker conditions when 

,. = 0. If the problem is nondegenerate, then for SOllie T 1 > 0, the point 

given by (4. 7) satisfies the Kuhn-Tucker conditions in the range 

0 ~ T :-:; T1 • The specification of T1 is given in 

STEP 2 . If the column ofT is nonnegative, then terminate the procedure. 

In such a ease , T as a driving variable is not blocked. Lemma (2.10) 

implies that i f T approaches infinity, the objective function is un-

bounded below on X. If the T colwnn contains at least one negative entry, 

theu increase ,. until s ome basic variable becomes zero. Let T1 be the 

value ofT. The assumpt ion of nondegeneracy implies that this basic 

variable is unique. The basic variable that becomes zero when T = T1 

is the "candidate" to become the blocking variable. If the candidate to 

become the blocking vari able is C, t he multiplier associated with the 

capacity constraint, then go t o step 6; otherwise go to the next step. 
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STET   3.    We want to make a principal pivot so as to bo ablt   1J  in ■'■.;., 

T a little bit more before any other basic variable becomes ne.^itiv. . 

•Hie desired pivot is on the blocking variable candidate and its comple- 

ment,  and feasibility can be preserved only if the pivot entry iß 

positive.     ThiB can be seen by considering the following tableau where 

the blocking variable candidate is wa 

IT z, v.a 

wi    -' 1     Ci     •      fi 

1   eg   :   f3 

D          d   | 

dT         6 

Wi ,   Zi,  ci,   i', d € W1   and wa,   Zg ,  c3,  fa,   6 are scalars. 

Fv r      TX   ^ T < TB   :     -ca/fa   , 

Ca    +   Tfa   >   0,   Ci    +   T^   >  0 

md   ror i  > TJJ 

C2    +   Tfg   <   0 

i   ■   '-■ 0,   liit ii inM'l'i-filing the pivot (w3,za)  results  in th«' tuMr.-m 

1 T 7i 
wa 

'.7 

-   --   <l h 
fa (1 
6 

D -1 -' r' 
1 "o -      1';, 

r 
ü -7'' 

1 
6 



So for T > Ta, 

-^(ca + Tfa) > 0 ; 

for some T3 > Ta , 

(nx + rfx) --7(03 + Tfa) d > 0,  If Ta i T < Tj . 

Hence the rule Is:  If the desired pivotal entry Is positive, 

then the blocking variable candldate Is the blocking variable and Its 

complement acts as a driving variable In a pivot operation. Upon 

completion of this pivot, repeat step 2.    If the deslreJ pivotal entry Is 
negative or the blocking candidate Is a multiplier, go to step k.If the block- 
ing candidate Is a primal variable and the pivotal entry is zero, go to step ^. 

Since we only make pivots about positive pivotal entries, after 

step 1, the principal block pivot entry is positive definite. Repeated 

application of Proposition (^.5) indicates that this is so. Hence the 

primal variables of the augmented problem that are zero specify a face 

of the feasible region containing the current point and restricted to 

which the quadratic objective function is convex. The principal block 

pivotal entry placing the point on that face is positive definite. Hence 

by Theorem (2.1l) the current point is a local minimum for the augmented 

prob^pm. 

If the blocking variable is a multiplier, performing the Indicated 

principal pivot Increases the order of the pivotal block, and the 

objective function is to be restricted to a higher-dimensional linear 

manifold, since fewer primal variables are at the zero level. If the 

blocking variable is a primal variable, then the order of the principal 
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pivot block is decreased, and the objective function is to be restricted 

to a lower-dimensional linear manifold. Thus, if it is convex on the 

higher-dimensional linear manifold, it must be convex on the manifold. 

If the blocking candidate is 3 primal variable, then the pivotal 

entry is nonnegative. Proposition (4.6) implies that if the blocking 

candidate is a primal variab}e in the role of a slack variable, then 

the pivotal entry is nonnegative. If the blocking variable is a primal 

variable not in the role of a primal s~ack, then the desired coefficient 

is on the main diagonal of the current pivot matrix. Since the latter 

is positive definite, its diagonal elements are positive. 

STEP 4. The blocking variable candidate is a multiplier. Let this 

variable become negative and drop it from consideration as a p0tential 

blocking variable as long as it remains negative. Now return to step 2. 

The interpretation is that we now have a local minimum for the augmented 

problem with the further restriction that the primal variables which are 

complements to the mulLlpliers with negative values are restricted to 

equal zero and are not merely nonnegative. 

STEP 5· The blocking candidate is a primal variable, hence the point 

has moved to another face of the convex polytope X. Let vr denote the 

candidate. ~e the pivots (v .. ,w), '.C,y,.) and then drop the capacity 

constraint from consideration. All the primal v~riables must be non

negative, and if all the basic multipli.ers are positive the point is a 

local minimum. If some of the multipliers are zero but none are negative, 

it is necessary t o examine the principal submatrix at the intersections of the 

rows of the basic multipliers at zero value and their complements. If that matrix 
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is positive semi-definite, then the current point is a local minimum. 

If the current point is a local minimum, terminate Phase II; otherwise 

go to step 1· 

STEP 6. The blocking variable is C; make the pivot (C,w). '!be pivot 

entry must be positive since the coefficient in the desired position is 

the negative of the coefficient of T in the blocking row. '!bus we have 

a local minimum without the capacity constraint. If all the multipliers 

are positive, the point is a local minimum to the original problem. 

Terminate Phase II. If some of the multipliers are negative, then go 

to step 1· 

STEP 7. Let u1 , ••• ,u, d~ ote the multipliers having negative values. 

Introduce a new capacity constraint e'x = T with eJ > 0, it is customary 

to set eJ 1, (j = l, ... ,s), eJ = O(j = s + l, ... ,n), where~' (j = l, ••• ,s), 

just denote the complements of the basic multipliers. With T = 0 the 

current point is a local minimum to the problem with the new capacity 

constraint . Return to step 1 and proceed as before. 

This completes the description of Ritter's algorithm to determine 

a local minimum. After finite number of steps, either the objective 

function is shown to be unbounded below on the feasible region X (and hence 

we are finished) ~r we stop with a local minimum and must proceed to 

Phase III . 

When describing his algorithm, RrTTER does not employ the tabular 

form used here. He maintains a distlnction between the x-variables and 

the v-variables which is not necessary . 

We now return to the task of identifying the data for the problem 

to be Folved in the construction of a cutting plane. Let i: be the local 
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mlnimura Just  found.    As stated in Section 3,  one  could,  in principle, 

determine a vertex of the feasible region which lies in the lovect- 

diraensional face of X containing x.    The primal variables and their 

complements could then be relabeled so that the slack variables at 

that vertex are the v-variables.    Two non-principal block pivots could 

be made in  the  original tableau to make the v-varlables and the u 

variables basic in the Kuhn-Tucker equations.    Let the following tableau 

represent that  situation. 

(U.8) Xj, 

Ul Cl Du Dja 'V 
U3   = ca % -A; 

v    = -b Ax As ü 

where the vector x has been partitioned so thnt the positive primal 

variables  at  the   local minimum are Xj   and  v.    The vector c and u and the 

matrices  D and A are partitioned  In a  compatible  fasnlon.     The  tableau 

corresponding to the local minimum i;-, 

ih.9) 1 ui «a y 

Xl -Dx-R Dfl -r\-i nri ^JA
T

X 

Ua   - 7a   -   DjaDx"!^ ^T
3Dxi Eba-D^aDx-lDxa -Aa^Dx'aDj-iAj 

V -b    -  Ax^Jcj AxDi'i1 Ae  -A^xB;, Ax DA 

So the problem to be solved in Itias«    Hi   1^  to find a nonnegative 

complementary solution for 



(^•10) 

0 

1 c3 -D^aDfJci 0 

that gives the largest value for ff. 

Tableau (4.10) is formed from data contained In the rows associated 

with the multipliers that are basic in tableau associated with the local 

minimum. IMs indicates that to cet up the required Phase II problem, 

it is only necessary to identify the primal variables that are comple- 

mentary to the multipliere that are bas^.- in the final tableau of 

Phase II. 

L 



t--  .-   . — ."   '•'•'• ■""'■   '    '"■    .        .     HI! ■BT" 

7 7 X        x-      x'      xj 
«(x) =_!__?__I+.2 
y 2      2       2       2 

(Objective Function) 

(Constraint Set) 

Fig. 1—Example of a Nonconvex Quadratic Program 
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k.3.    An Exan^le Solved Using Ritter's Method 

We will illustrate the method on the nonconvex quadratic progran: 

minimize      cp(x) '^kxl -  ^Xg -  ^xf  + ^Xg 

Cx! +    xa s 6 

-x1 + Ifxa ^ 6 

xx   ä o,  XQ ä o 

Figure 1 depicts the set of feasible points and some of the isovnlue 

contours  of cp.     4s  indicated there,  the problem has three stationary 

points;  two are local minima, and one is a saddle point. 

The point x = 0 is a feasible point, BO the method can be started 

in Phase II to determine a. local minimum. 



Phase II.     Determining a local minimum. 

The capacity conetraint is Xx   + Xa  ^ T.    Ihe first two pivot: 

for initialization. 

1 T xx Xa yi Ya C 

u,   = 

U)     = 

1        1/2 0 -1 0 2 -1 1 

-1/2 0 0 1 1 u 1* 

6 0 •2 -1 0 0 0 

6 0 1 -k 0 0 0 

|          0 1 -1 
  

-1 0 0 o       | 

Pivot: 
<ua,C> 

c 

Va 

w 

1 T Xl «a yi Ya "9 

1 0 -1 -1 i -5 1      1 

1/2 0 0 -1 -i -1* 1 

6 0 -2 -1 0 0 o      i 

6 0 1 -k ü 0 0 

0 1 -1 
♦ 

0 0 0 

Pivot: 
<U),X9> 

ID yx ya 

C 
vi 

'•'a 

Xa 

1 -i 0 1 -s 1 

1/2 -i i i* -1 -14 1 

!        *-' 
_ i -i 0 0 0         | 

\        (• -i. 5 0 Ü 0          j 

\       '"' ] -1 -I 0 0 0 

For T=l/2 
C is the 
blocking 
variable. 
Muke the 
principal 
pivot 

ID 

yi ya ua 

1/2 ü -1 ') -1 

-1/2 I -1 1 k -1 

1      11/2 0 _  > 1 1* -1 

^ 0 1 U Jo -U 

!/■'■ Ü (j -1 -i -I4 

A Kuhn-Tuckor 
point and ih« 
point Xj       u, 
xa        .,  i n a 
local mini num. 
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. Phase III. Constructing a cutting plane. 

To place the cutting plane the compleme.ntary solution for 

1 

u1 = 0 -1 1/2 

w = 1 -l/2 0 

with w = 0 and the largest value of"; is to be found. Clearly the only 

possible solution is vi th "; and i'1 as the basic vnriables. So the 

solution tabluau is 

1 w 

"' a 4 -4 2 

2 -2 0 

For the problem 

minimize q:(x) = 

1 
2Xl S: T 

and 0 s: T s: t the point x1(T) = 2T, xa(T) =~is not even a stationary 

point. But fort< T s: ~ ' x(T) is a local minimum and x = (~) is the 
2 

global minimum. Finally for T ~ ~' x(T) is the global minimum. 

The final step of constructing the cutting plane requires the 

determination of T1 and T2 • Solving .for the largest T such that 

~(x{T)) = ~(x) gives T1 = ~ ,an~ solving for the largest T such that 
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X(T) t X gives Ta   = 1/8.    Thus T = ll/8 and the cutting plane to be 

adjoined is      ^  * ll/8    (i.e., Xi  ^ ll/k). 

With the cutting plane adjoined, the problem becomes 

minimize      0(x) = %Xi - jXg -  jxf  + ^Xg 

subject to                    2X! +   XQ  ^    6 

- xx + ifxa  ^    6 

xx ^ ll/U 

«i 2 0, Xa ^ 0  . 

Notice that x = 0 is not a feasible point so Phase I must be executed. 

The result of Phase I  Is a problem in the form 

minimize      cp(vs,v1) = .9/UV3  + Hy3^i){n J^) 

subject to -9v3   - Uv!  + va = 27/k 

2V3 +    Vi + xa =    1/2 

-  V3 + Xi   =  ll/k 

x ^ 0, v ^ 0  . 

■1*0- 

*m 



mm 

Phase IT.     DeUrminlng a cecond local minimum. 

Now the capacity constraint Vi   + V3   ST is introduced. 

two initialization pivots. 

We perform 

Yx = 

vs = 

X3 = 

xi = 

li) = 

1 T V3 vi ya Ua Ul c 
1    -9A 0 3 2 -9 2 -1 1* j 
1     0 

0 2 1 -1+ 1 0 1 

2TA 0 9 h 0 0 0 0 

1/2 0 -2 -1 0 0 0 0 

11A 0 1 0 0 0 0 0   ! 

0 1 -1 -1 0 0 0 0.     1 
 1 

Pivot: 

<y3,C> 

ya ua U! Ya 

yi = 
v8 = 

Xa = 

xi = 

UÜ = 

1      9A 0 -3 -2 9 -2 1 1 

9ß 0 -1 -1 5 -1 1 1    1 
27/k 0 9 h 0 0 0 0 

1/2 0 -2 -l 0 0 0 0 

11A 0 1 0 0 0 0 0 

!    0 1 -1* -1 0 0 0 0 

Pivot: 

<U),V3> 

In the  following tableau when T  = l/U,  x8  is the blocking candidate. 
A new vertex of the feasible region has been found.     Make the 
multiplier of the capacity constraint nonbasic by performing (xs,w) 
and  <C^2>. 

yi = 

xs   = 

X!    = 

Pivot: 

<XS,U)> 

Xa Ya u. ya 

yi== 

O)      = 

Xi   = 

v^   = 

1        3/2 0 3/2 -1/2 9 -2* 1 1    1 
2 0 1/2 -1/2 5 -1 1 1    | 

9 0 -9/2 -1/2 0 0 0 0 

-iA 1 1/2 1/2 0 0 0 0 

!     ' 
0 -1/2 -1/2 0 0 0 0 

1    1/^ 0 -1/2 -1/2 0 0 0 0 

Pivot: 
<C,u2> 
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The resulting tableau gives another local mlninnun. 

ug = 

yi = 

va = 

U) - 

1 T »a vl Ya c Ul ya 

3A 0 3/h -iA 9/2 -2/2 1/2 1/2 

5A 0 -lA -iA 1/2 1/2 1/2 1/2 

9 0 -9/2 -1/2 0 0 0 0 

-iA 1 1/2 1/2 0 0 0 0 

3 0 -1/2 -1/2 0 0 0 0 

iA 0 -1/2 -1/2 0 0 0 0 

Placing the next cutting plane results in an empty feasible region. 

-kp. 
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4.4 Concluding Remarks 

In Phase II of Ri tter 's method, it is not necessary to use the 

algorithm given here. It can be replaced by any quadratic programming 

algorithm. Such algorithms have been given by BEALE {1955), {1967) and 

KELLER {1969). The latter is closely related to Ritter's Phase II but 

is simpler and makes no use of a capacity constraint. A more detailed 

analysis of this relationship will be the subject of a future report. 

-
Each phase of Ritter's method has been shown to be finite and in 

his paper RITTER (1966) has given an argument proving that when X is 

bounded one will cycle through the three phases only a finite number 

of times. It is apparent from the description of the method that it 

may require an inordinate computational effort. For concave problems 

where there can be a very large number of local minima, one could be 

so unfortunate as to locate them in order of decreasing value of the 

objective func"t .i.8n, and thereby enumerate them all. Although in this 

case the computational effort to construct the cutting plane is small, 

it may be necessary to add a large number of them. This can lead to 

much work because the effort to locate the local minima is proportional 

to the number of variables plus the number of constraints. Linear 

programming can be used to eliminate constraints made superfluous by 

the cutting plane but this requires additional computational effort. 

{See RITTER (1965).) 

The case where D has a number of both positive and negative eigen-

values can possibly cause this algorithm quite a lot of difficulty. In 

this case, the fin~ing of a solution to the problem in order to construct 
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the cutting plane may require an inordinate amount of computational effort. 

Since problem (3.9) has such simple structure.  It may be fruitful to 

devise methods that exploit its special features. 
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