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Abs tract

Let C be a bounded convex polyhedral set and let f:C4C be continuous

and piecewise linear. Using notions from complementary pivot theory, it

is shown that if each fixed point of f lies interior to some piece of

linearity, then f has an odd number of fixed points. In addition, an

algorithm is given for computing a fixed point of f.
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1. Introduction

Using the main ideas of complementary pivot theory (see [1] - (8]),

we prove the following theorem.

Theorem: Let C be a bounded convex polyhedral set and let f:C-+C be

continuous and piecewise linear. If each fixed point of f lies interior

to some piece of linearity, then f has an odd number of fixed points.

An algorithm for computing (finitely quick) a fixed point of f

(whether or not the interior condition is met) is a by-product of the

proof of the theorem.

The essential difference between our attitude and that of (11, (4],

[8], and hence Sperner's Lemma is that we label vertices of a triangula-

tion with vectors instead of integers. For a simplex to be "completely

labeled," there must be a convex combination of the vector labels which

generate zero.

2. Graph Principle

Our proof will rest on a simple graph principle; the same principle

used in [l] - (8]. By a graph (N,A), we mean a finite set N together

with a symmetric anti-reflexive relation A on N. If aAb (hence bAa

and a 0 b), we say a and b are adjacent. We call an element a of N odd

or even if it is adjacent to an odd or even number of elements of N,

respectively. Recall that a graph has an even number of odd elements.

In the next section, we construct a particular graph and use this device

to prove our theorem. In this graph each element will be adjacent to

exactly one or two elements; in this case, the odd elements have a

natural pairing.
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3. The Theorem and Proof

Let C be a finite dimensional bovnded convex polyhedral set. We can

assume that C lies in n-dimensional Eucledian space and that it has an

interior. Let T be a triangulation of C (i.e., T is a complex and ITI - C,

see (9]), and let f:C.C be a continuous function which is linear (i.e.,

affine) on each simplex of T. Let (C,T,f) denote such a triple. If each

fixed point of f is interior to an n-simplex of T, then we say that

(C,T,f) is nondegenerate. To prove our result, it is sufficient to prove

the following theorem.

Theorem: If (C,T,f) is nondegenerate, then f has an odd number of

fixed points.

Given (C,T,f) we notice that f is completely determined by its action

on the vertices of T. Indeed, if reSeT, then f(r) - Zs f(s)xs where

r - Ea sxs, Es xs 1, and xs> 0 (where a ranges over the vertices of S).

A simplex S of T contains a fixed point if and only if the system

r (f(s)-s)xs - 0

$x "
8 a

has a nonnegative solution in the xs (where s ranges over the vertices of

S). In this case Es sxs is the fixed point. If (C,T,f) is nondegenerate,

then it follows that a simplex will contain at most one fixed point; if S

contains a fixed point, then S is an n-simplex and the solution x8 of the

system above is unique and positive.

Assume (C,T,f) is nondegenerate. Let C' be an n-simplex which contains

C in its interior. We shall extend both T and f to C' to generate (C',T',f').

Let vo,...,vn be the vertices of C'.
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Extend T to a triangulation T' of C' without introducing new vertices;

that is, a vertex of T' is either a vertex of T or a vertex of C'. Hence

each (n-l)-face of C' is an element of T'.

Temporarily let r be any point of C. Define f' on C' by setting

f'(t) - f(t) for vertices of T and f'(vi) - r for vertices of C' and then

by extending f' linearly on the simplexes of T'. Now we further specify

r. Select reC such that-for any (n-l)-simplex S of T' the system

(f'(vo)-vo)xS + Es (f'(s)-s)xs - 0

Xs + E X x 1

either has a unique positive solution in xS and the xs or else has no non-

negative solution (where s ranges over the vertices of S). Such r's are

very available; in fact, almost every element of C will suffice.

We can now define a particular graph. Let (C',T',f') be generated

as just described. Let N1 be the set of simplexes of T' which contain

fixed points; these simplexes will be n-simplexes of T. Let N2 be the

set of (n-l)-simplexes S in T' for which the system

(f'(vo)-vo)Xs + Es(f'(s)-S)xs = 0

xS + xs Xs 1

has a nonnegative solution in xS and the x (where s ranges over the ver-

tices of S); these solutions will be positive and unique. Let N - NIU N2.

We define two distinct simplexes of N to be adjacent if they lie in a com-

mon simplex of T'.
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Let S be the (n-l)-simplex with vertices (vl,...,v n. One can

now establish that SOcN2' that each element of N IU{So is, adjacent to

exactly one element of N, and that each element of N2 {So} is adjacent

to exactly two elements of N. From the graph principle, we see that N1

contains an odd number of elements; this establishes the theorem.

The figure illustrates the structure for a 2-dimensional C. The

arrow at a vertex t denotes the direction of f'(t)-t (further specification

is unnecessary), the heavy lines denote the boundary of C, and the small

circles denote the simplexes which are in N.

4. The Algorithm

The preceding development gives a procedure for calculating finitely

quick a fixed point of (C,T,f). After constructing (C',T',f'), one begins

at S and proceeds to an adjacent simplex, etc. This step from simplex to

simplex is essentially a "pivot" as known in linear programming. One even-

tually terrinatres with a simplex containing a fixed point, and hence, one

has the fixed point.

The next section show:s that if (C,T,f) is degenerate, the algorithm

may still be applied to find a fixed point ((C,T,f) is altered slightly

to make it nondegcnerate; however, from solely computational considerations,

there are far miore effiiient methods of dealing with degeneracy).

The section on Brouwer's Theorem demonstrates that if g:C-C is a con-

tinuous function and if E>O, then the algorithm can be used to compute

a point teC such that Ig(t)-tJ•c. Scarf's procedure [8] has this

capability.
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Kuhn [4] .scribes a. extrernely efficient data handling procedure

which can be adapted to our algorithm.

5. Perturbation and Stability

Here we show that nondegeneracy is stable and that nondegeneracy can

be achieved via a perturbation.

Suppose that (C,T,f) is nondegenerate. Then there is an r>O such

that (S,T,g) is nondegenerate and such that a simplex of T will contain a

fixed point of f if and only if it contains a fixed point of g, if

Sf-gI~c.

Consider (C,T,f) and (C,T,g). Suppose that g(C) = r and that r is

interior to an n-simplex of T. Then there is an e >0 such that for0

0<c<E0, (C,T,(l-c)f+Eg) is nondegenerate. Further, if a simplex of T

contains a fixed point of (l-c)f+cg, then it contains a fixed point of

f for 0<e<c

-
O

6. Brouwer's Theorem and Extensions

From Sections 4 and 6 we see that for any (C,T,f) there is a fixed

point. We can now prove Brouwer's fixed point theorem.

Let g:C-'C be a continuous function. Choose (C,T n,f n) such that

Ifn-glI for n=l,2,.... Let sn be a fixed point of f. We have
n

Ig(Sn)-aSn<-. If s is a custer point of the sn sequence, then clearly s

is a fixed point of g.

For the general case g:CO1C where g is continuous and C is compact and

convex, our theorem has implications regarding the parity of the number of

Axed points. These results will be reported on in another paper.

4
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