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ARSTRACT

We consider the protiem of maximizing tne long-run averags return
in a single server queueing reward systen in which the customer's offer
of a Joint distributicn of reward and service time required to earn this
reward is independent of tre rerewal process which governs customer
arrivals, After formulating the problem as & semi-Markov decision
process, we characterize the form of an optimal pclicy. When the
renewal process is Poisson, the characterization is easily stated:
a~cept & customer if and only if the ratio of his expected reward to
nis expected service time is larger then g, the long-run average
return., When the arrivel process 1s Poisson, g is easily found.

Next, batch arrivals are permitted, and further results are ohtained.




1.

1. Introduction

Wie consider the problem of maximizing the long-run average return
in a single server quensirng ravard system in which the custemer's offer
of & joint distribution of reward and service tire required to earn this
rewvari is independent of the rerewal process waich geverns customer
arrivaele.s In describirg th= nodel, we 111 It er’ightening to intro-
duce the nscessary notetion and terminclogy in the context of a problem
wnich we vefer to as "the ~treetwalker's dilemme.”

Consider a streetwalker working in a large city, and suppose that
ner customers arrive according to & renewal process having interarrival
distribvution ¥ with F(0) = 0. Each arriving customer mekes an offer
which she must either accept or reject, and all customers who arrive
while she is busy or whose offer she has rejected are assumed lost. Thus
pre-emption and baclilogging are not permitted. If she accepts a custcmer
‘i,e,, an offer) of type X, =-»< x < o, then the probebility that she
will receive no more than s dollars and that the service time required
to earn this reward will not exceed t is given by the joint distribu-
tion Gx(s,t). Furthermore, the distribution function H of <ke type
of offer she receives is independent of the rerewal process and of her
past decisions, and hence successive offers are independent and identi.
cally distributed. The streetwalker's dilemma, then, is to decide which
custcerers to accept and which customers to reject so as to maximize her
long-run average return.

The model can te viewed as one for determining whether or rot a

factory or job shop should accept potential jobs. Several other interesting
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examples of this model are given by Miller [2, pp. 67-70]. The funda-
rental difference between our model and Miller's [2] is that his is
regtricted to (i) exponential service time which is assumed independent
of tae customer type, (i) Poisson arrivals, and (iii) a finite numker of
customer types, On the other hand, Miller has tne added generality of
allowing mery servers,

In sectlor 2 we formulate the problem as & semi-Markov decision
process and Iintroduce the necessary notation. Emplnylng recent results
due to Ross L], we determine the structure of an optimal policy in
section 3., Next, we specialize to the case of Poisson arrivals and prove
a monotonic property which ena.les us to easily calculate, in practice,
the optimal policy. Finally, we allow tatch arrivals, ard again deter-

mire the structure of an optimal policy.

2. Notation and Lefinitions

In characterizing the structure of an optimal policy, it behooves

us to formulate our mcdel as a semi-Markov decision jrocess.

Defirditicn. A semi-Markov decision process is & process with state space

S and action space A. Whenever a transition to some state occurs, an
action is chozen., If the state is x eand sction a 1s chosen, then
(1) the next state of the system i1s giver by the distribution
X o)
function Px,a( Y5
(11) corditional on the event that the next state is y, the time

until the transition from x t2 ¥y occurs is a random vari-

able witn distribution function F (),
X,y,8a

and
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(i11) there is & reward earned at the time the action is teken, and
it is & random variable depending on x and a,

When the transition times are identically one, that is, when
Fx,y,a(t) equals O for t<1l and 1 for t =1, then we have
the more familiar Markov decision process.,

We shall say that an offer is made only when & customer arrives and
finds the streetwalker free, Then in our model, tne process is said to
be in state x at time t if the last offer made at or prior to time
t was an offer of type x so § = (-o,~)., We say that a transition
to state y occurs at time t 4if an offer of type y 1s made at time
4, In each state there are two possible actions: accept (action 1)
and reject (action 2)., Thus, A = fl,2}. The reward earned for reject-
ing an offer is zero while the rewsrd earned for accepting an offer of
type x has distribution function Rx(-) given ty

=]

Rx(s) = fécx(s,t) .
o]
The transition function Px a is independent of x and & and equals
s

H, whereas the distribution Fx v,a of time until the next transition
R

occurs equals F i1if & =2, Ve give Fx,y,a later for the case a = 1,

A policy - is any (possitly randomized) rule which for each t =0
specifies which actlion to take at time +t given the current state and
the past decisions and history of the process, Of particular interest
are (nonrardemized) stationary policies which, independently of the time
t and the past decisions and history of the process, simply specify

wnich action to teke from each state. In our model, & stationary pclicy




separates the types of offers into two categories: <those we always
accept and those we always reject.

For each policy = &and each state x, ve define

“

(1) @ (x) = 1im inf Eﬂf-zif)_!x = x|
bl t oo 't 1 .J
and
£ vz Ix 1
5 r:!_j;l;-l"x,’
(2) cgﬁ(x) = lim inf =

n-om
E r 20X = x

wnere Z(t), Zj’ and T denote, respectively, the total rewards received

by time t, the reward received during the jth transition interval,

and the length oif the Jth transition interval; Xl is the initial
state.

The criterion given in (1) is the usual definition of the long-run
average return. The criterion given in (2) was first suggested by
Ross (41 and is tne limit of the ratic of the expected reward earned
during the first n transitions to the expected time for the first n
transitions. Even though (1) is slightly more appealing tnan (2), we
gnall adopt (2) as our definition of the long-run everage return as it
ic more amenable to analysis. We shall show, however, that the two
criteria are equivalent for stationary policies.

The problem, then, is to find a policy =%, termed optimal, such

that

2 2,
= ~ 1 -
tn i.‘(x) = sup  (x), for each xS .
n



Finally, let R(x,1) and R(x,2) denote the expected reward
received during & transition interval which btegins with her acceptance
or rejection of an offer of type X, respectively. Also, dencte by
T(x,1) and T(x,2) +the expected length of & transition interval which
begins with her accenmtance or rejection of an offer of tyne x, res-

vectively, Then

m o

R(x,1) = r f sde(s,t s
Q0 .o

R(x,2) =0,

T(x1) = [ [ (¢ +EBr,) ac (s,t) ,
0 -

(x,2)

n

w
[ yaF(y) = u ,
0

viere EYt is the expected amount of tire that she must wait (remain
idle) until she receives another offer given that she spent an amount
of time t with her previous customer, (Yt is Just the excess life

at time 1 of the rerewal process 3, p. 1737.) Note too that 7(x,1) - ©

for all x.

3. MMtimal Policies

0f considerable importance is the fact [hj that we can assume with-
out loss of generality that whenever action a i1s taken in state x,
then the length ol each transition interval is identically T(x,a) and

the reward earned 1is identically F(x,a). Using this fact, it {follows
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that Va(x,n), the maximal expected g-discounted reward earned during

tne first n transitions when X, = x, is given by (Va(x,o) = 0)

(3) v (xn) = max {R(x,0) + T Y (y,n)an(y) 5
e oL fmva(y,n-l)dﬁ(y)} .

Note that ch(x,n) is increasing in n for each x.
Througnout the remainder of the parer, we shall assume that the

following condition holds:
Condition 1: There is an M < » such that !'R(x,1)! « M for all x ¢ S.

Iemma 1. The limit function Va(x) = lim Va(x,n) exists, is bounded in
Ti=a0
%, and satisfies the functional equation

— [+-] Ls-]
. = - 1 &
(%) 7,(x) = mex {R(x,l) + emeT(®1) [ v, (au(y); e rVa(y)dH(y)} .
Proof. Assume that Va(x,n-l) fM(l-e'c"m"')/(l—e'“"L). Then since

Va(x,n-l) 20, 7T(x,1) =u for each x, and R(x,1) <M, we have

(=]
v (x,n) = max (&(x,1),0) + ™ I va(y,n_l)d}{(y)

-0

<M+ e sy ‘Ja(y,n-l)
Y

£ M+ e % M(1-e7¥) /(1)

- M(1me (A1) g gy



Thus, it follows that V&(x,n) 1s uniformly beunded in x and n.
Therefore, we can conclude that the limit exists and is bounded in =x
gince Vk(x,n) is increasing in n for each x. The desired result

now follows by eonplying the Lebesque dominated convergence theorem to

(3).
Q.E.D.

lemms 2. For emch pair X,z in S and all ¢« > 0, !V&(x)-?}(z)! £ M.

Proof. Fix x,z2 © § and ~ > 0, recall tnat ~7(x,1) =1, and note
o o
toet [V (y)aH(y) > 0. By Lemme 1, V,(z) = e [ v (y)au(y) so

again by Lemma 1 we have either

— s \ ™ .
Tl ¢ v, (v)an(y)

-l

R(x,1) + e

"

v, ()

— <«
<M+ e—m-(x"l> r W&y)dH(y)

'

<M+ ¥ ’Z
O’k),
or

. =i 1l
i) = e [ ey « V(e

In either case, wi iave Vb(x) - V&(z) = M sc the desired result is
cbtained bty reversing ine roles of x and z.
Q.E.D,

Theorem 3. It is optimel to accept an offer of type x if and only if

Fh'x,l -
Flx,1) - w g

where g 1is tine oplimal long-run average revard, i.q., g = sup ni(x)

Ial

for all x.
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Proof. It follows from Tewmma 2 and Theorem 3 cf reference Lt that there

is a bourded function I and & constant g euch that

(5) n(x) = mex {R(x,2) + Iiy)a(y) - 7x1); T(y)au(y) - b, tor a1l x .

-0 -0

Finally, Theorem 2 of reference U states that if there is a bourded Punc-
tion h and a constant g vwhich satisfies (5), then there is & station-
ary policy % such that

g = @i*(x) = mex Qe(x? for all x ;
m m

and for each x, -% pricceribes an action which maximizes the rigat side

of (5).

W.Fel,

1t zon te sincwn T4, p. 57 that ii the expected length of a transi-

ticn interval is finite for a stationary policy w, then @i O

"

Horecver, in view of condition 1, it is easy to show by & simple renewal
revard argurent (see f171) that if the expected length of & transition
interval is infinite for a stationary policy =, then mi =w = 0.

This esteblishes Theorem 4,

Tneorem L. TFor cach etatiorary policy wi Ex oi. Hence, & best
————— t

stationery policy in tte sense of (1) is given by Theorem 3.

Poisson Arrivals

Of particuler interest, ir che special case wherein the rerewnl
process of arrivals is & Foisson process with rate )\, Here, 1w = l/},

and it follews from the memoryless property oi Polsson processes that




EYt = 1/) for each +t. Hence,

T(x,1) = tx + 1/7\ )
vhere
o
t, = [T tdG_ (s, )
5 ="
is the nean time that thc strcetwalker spends with a customer of type Xx.
Theorem 3 now simplifies and takes on & more intuitive form: 1t 1s opti-
mal to accept an offer of type x if and only if ﬁ(x;l)/tx > g, that
is, if and only if the ratio of the mean reward to the mean service “ime
is at least as large as the long-run cvercre rew .
Although we have determined the structure ¢ an <piinal policy, 1t
rerains to determire g. We now establish a monotonic preperty whi-l,

in practice, enables us to easily celculate g.

Theoren 5. GSupvose the arrival (renewal) process is Poisson, ard let
¢(c) be the lonr-run average reward vwnen an offer of type x is accepted

if end only if ﬁ(x,l)/tx =c, Then g(+) is unimodael.

Proof. let R = fx: ‘ﬁ(x,J.)/tx =c¢l, R = fx: R(x,l)/tx 2 ¢!, and

D = de(x). Using ebbrevieted notation, we have (see "17)

R
(1-p) - 0+ p Jan JR
(5) () = At
(1-plw + ple + [ Zam)  wo+ [t
RP R

1/

Fix e¢' > c. Upon considerable rearranging ol terme, we obtaln—

1 ,
ﬁ/Wc asswne that [dH > O otherwise 1t is obvious that g(c) = glc').
!




R
(7) sign (a(c') - a(e)] = sign [gle') - T
ReR'

Also, the definition of R and R! yields

[®
™, 1

(8) c < 125- <ct .
Jt
RR!

If ¢ =g, then (7) and (8) yield

[ ®
-R1?

gle) - cglct) mcep-cn,
%

RR!

s0 () 1= nonincreasing on [g,=).

10.

R~R' 1

‘l .

To show g is nondecreasing on (~o,g], it suffices by (7) and

(8) to snow that g(c) > c for ell c¢ < g. By definition of g(c),

it

o+ "t1g(e) - ) = [(R - ct) - ou
R R

R~R R"

f (R - ct) + fﬁ -~ e(p + ft)
M. M Rll Rll

f Sﬁ - ct) + I(l - %) =0,

vhere R' = {x : 'ﬁ(x,l)/tx > g). The last equality follows from (6).

QIE.DD
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Batch Arrivals

Suppose tinat customers arrive in batches. In particulaer, suppose

that ) each arrival consists of n customers with probability pn

==

(i
1
and %

P, = 1, [(ii) the batch size and the offers are independent of
n=1
the renewal process, and (iii1) the conditioral distribution of offers

given that there eare n customers in the batch is given by Hn’ S0

Hn(xl,...,xn) = P{ith offer is ¢ x,, 1 = 1,2,...,nlbatch size is n} .

As btefore, the streetwalker can accept at rost ore customer frcom each
vatch, ard all rejected offers are lost. Transitions are defined es

btefore, ard we say tnat the system is in state .;xr) < 5 if the
4

frl,..

las: offer made was the batch xl,...,xn of offers.
Recall tnet in the special case of Poisson arrivals it is optimal

> mcnept an offer of type x if ard orly if p =g where o = ﬁ(x,l)/tx.

Corsequently, *his leads ore to the conjecture that with batch and

Poisson arrivals, the streetwalker accepts that offer--if any-- X5

for which pxi* = maxfpxi: i1 =1,2,.4.,n', This conjecture is, however,

false, for it turns out that the relevant quantity is §(x,1) - txg

rather than ox. Thus, nffers cannot be ranked according to oy even

though oy provides us with & simple mcceptance-rejection criterion.
Theorem €. When batch errivals ere permitted, it is optimal to reject

all offers from the tatch xl,...,xn if and only if

R(xill)
m < g for 1=1,2,.0.5n &
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If an offer from the batch xl,...,xn is accepted, then it is optimel

to eccept that offer with the largest value of
_ﬁ(xi;l) - g?(xi,l) .

Proof. The argurents used in establishing Lemmas 1 and 2 suffice to
establish their analogues for the case of batch arrivals. Hence, thare
is a bounded function &L and & constent g sucih that for all

(xl,...,xn) € } we have

N
(¢) h(xl,...,x Y = max{ max [ﬁ(x b1) # 5p hiy.seeey J8H (¥ seee,y.)
n : i A - n n'vl n

i=l)2) eeeyl n=1

- N
- ET(xi:l)J ; nilpnfh(yl’""yn)drn(yl""’yn) - SP} .

The desired results now follow as shown in tne proof of Thewrem 3,

Q.E.D.
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