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APSTRACT

We consider the pro"-Lem of maximizing the long-run averaga return

in a single server queueing reward systen, in which the customer's offer

of a joint distribution of reward and service tire required to earn this

reward is independent of the renewal process which governs customer

arrivals. After formulating the problem as a semi-Markov decision

process, we characterize the form of an optimal policy. Wnen the

renewal process is Poisson, the characterization is easily stated:

a-cept a customer if and only if the ratio of his expected reward to

his expected service time is larger than g, the long-run average

return. When the arrival process is Poisson, g is easily found.

Next, batch arrivals are permitted, and further results are obtained.
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i. Introduction

"We consider the problem of maximizing the long-run average return

in a single ser',,er quu-inirn rew:ard system in wL'ch the customer's offer

of a joint distribution o- reward and sei-vice tirTe required to earn this

revard is independent (,f t!ie renewal process -W.,Jch governs c-,tomer

arrivali-. In describing tŽe n~odel, ve fiil it e::_ightening to intro-

duce the nr:cessary notaiion and terminclogy in the con-text of a problem

"which '.:e refer to as "the -treetvalker's dilemma."

Consider a streetwalker wiorking in a large city, and suppose that

her custo.ers arrive according to a reneval process having interarrival

distribution F with F(O) = 0. Each arriving customer mekes an offer

which she must either accept or reject, and all cu.stomers who arrive

while she is busy or whose offer she has rejected are assumed lost. Thus

pre-emption and backlogging are not permitted. If she accepts a custcmer
(i.e., an offer) of type x, -- < x < ', then the probability that she

"-will receive no more than s dollars and that the service time required

to earn this reward will not exceed t is given by the joint distribu-

tion Gx(s,t). Furthermore, the distribution function H of the type

of offer she receives is independent of the renewal process and of her

past decisions, and hence successive offers are independent and identi-

cally distributed. The streetwalker's dilemma, then, is to decide which

customers to accept and which customers to reject so as to maximize her

long-run average return.

The model can be viewed as one for determining whether or not a

factory or job shop should accept potential jobs. Several other interesting
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examples of this model are given by Miller r2, pp. 67-70]. The funda-

mental difference between our model and Miller's [21 is that his is

!,stricted to (i) exponential service time which is assumed independent

of *he customer type, (ii) Poisson arrivals, and (iii) a finite number of

customer types. On the other hand, Miller has the added generality of

allowing wi•ry servers.

In section 2 we formulate the problem as a semi-Markov decision

process and introduce the necessary notation. Employing recent results

due to Ross l4., we determine the structure of an optimal policy in

section 3. Next, we specialize To the case of Poisson arrivals and prove

a monotonic property which enalles us to easily calculate, in practice,

the optimal policy. Finally, we allow batch arrivals, and again deter-

mine the structure of an optimal policy.

2. Notation and Definitions

In characterizing the structure of an optimal policy, it behooves

us to formulate our model as a semi-Markov decision Irocess.

cfi:'itic:'. A semi-Msrkov decision process is a process with state space

S and action space A. Whenever a transition to some state occurs, an

action is chosen. It the state is x and action a is chosen, then

(i) the next state of the system is given by the distribution

function P (.\,
x,a

(ii) conditional on the event that the next state is y, the time

until the transition from x to y occurs is a random vari-

able with distribution function F

and
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(iii) there is a reward earned at the time the action is taken, and

it is a random variable depending on x and a.

When the transition times are identically one, that is, when

F (t) equals 0 for t < l and 1 for t l 1, then we havex, y, a

the more familiar Markov decision process.

We shall say that an offer is made only when a customer arrives and

finds the streetialker free. Then in our model, the process is said to

be in state x at time t if the last offer made at or prior to time

t was an offer of type x so S = (-_C-). We say that a transition

to state y occurs at time t if an offer of type y is made at time

t. In each state there are two possible actions: accept (action 1)

and reject (action 2). Thus, A = f1,21. The reward earned for reject-

ing an offer is zero while the reward earned for accepting an offer of

type x has distribution function R x(.) given ly

M

Rx(S) = [dGx(s,t)

0

The transition function P is independent of x and a and equalsx, a

H, whereas the distribution F of time until the next transitionx, y, a

occurs equals F if a = 2. We give F later for the case a = 1.x, y, a

A policy -, is any (possibly randomized) rule which for each t Ž 0

specifies which action to take at time t given the current state and

the past decisions and hiztory of the process. Of particular interest

are (nonrardodized) stationary policies which, independently of the time

t and the past decisions and history of the process, simply specify

which action to take from each state. In our model, a stationary policy
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separates the types of offers into two categories: those we always

accept and those we always reject.

For each policy r and each state x, ve define

Ip x EF z(t) -
(1) = lim inf E Ix

T-t

and

7 n

(2) m2 (x) = lim inf J=l

n E• E 7.' T X= X
SJ=l j I I

where Z(t), Zj, and T-r denote, respectively, the total rewards received

by time t, the reward received during the jth transition interval,

and the length of the jth transition interval; X1  is the initial

state.

The criterion given in (1) is the usual definition of the long-run

average return. 7he criterion given in (2) was first suggested by

Ross r4l and is the limit of the ratio of the expected reward earned

during the first n transitions to the expected tire for the first n

transitions. Even though (1) is slightly more appealing than (2), we

shall adopt (2) as our definition of the long..run average return as it

is more amenable to analysis. We shall show, however, that the two

criteria are equivalent for stationary policies.

The problem, then, is to find a policy -r*, termed optimal, such

that

) (x) = sup 2 (x), for each x C S
I.
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Finally, let R(x,l) and R(x,2) denote the expected reward

received during a transition interval wnich begins with her acceptance

or rejection of an offer of type x, respectively. Also, denote by

*T(x,l) and ¶(:.,2) the expected length of a transition interval which

begins with her scceptance or rejection of an offer of type x, res-

pectively. Then

<x,1) -- C F sdG (s,t) ,

R(x,2) = 0 ,0,

T(x,l) = r (t + EYt) dG(s,t)

and

T(x,2) - f ydF(y) p.

0

v:here EY is the expected amount of tire that she must wait (renain
tI

idle) until she receives another offer given that she spent an amount

of tire t with her previous customer. (Y is just the excess life

at tire t of the renewal process r3, p. 1731.) Note too that T(X,l) • p.

for all x.

3. Otimal Policies

Of considerable importance is the fact r4l that we can assure with-

out loss of generality that whenever action a is taken in state x,

then the length of each transition interval is identically T(x,a) and

the reward earned is identically R(x,a). Using this fact, it follows



6.

that V (x,n), the maximal expected ce-discounted reward earned during

the first n transitions when x, is given by (VV(xO) 0)

(3) V(x, n) = max {f(xl1 ) + e"T(=)l) ,V(y,n-l)dH(y) ;

C.'

Note that V (x,n) is increasing in n for each x.cv

Throughout the remainder of the paper, we shall assume that the

following condition holds:

Condition 1: There is an M < - such that YR(x,l)! < M for all x c- S.

Lemma 1. The limit function V, (x) ur lir V,(xn) exists, is bounded in
n-•

x, and satisfies the functional equation

(4) 77(x) = max fR(x,l) + e ('Tx') f Va(y)dH(y); e-1 F V(y)dH(y)}
-- C'

Proof. Assume that V (x,n-l) :-M(l-e-c~n1)/(l-e-Cý'). Then since

V1 (xn-1) > 0, T(xl) - :t for each x, and R(xl) ! M, we have

V (x,n) m nax ZR(x,l),O + e-" I V (y,n-1)dH(y)

M + e-"L' sup V V(yjn-l)
y

SM + e"a M(l-e-CtW)/(l-e-IY:)
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Mus, it follows that V (x,n) is unifomlny bcunded in x and n.

Therefore, we can conclude that the limit exists and is bounded in x

Eince V (x,n) is increasing in n for each x. The desired result

now follows by apoplying the Lebesque dominated convergence theorem to

(3).
Q.E.D.

Lemma 2. For each pair x,z in S and all c! > 0, va•(x)_V-(z). I. g M.

Proof. Fix x,z 7 S and - > 0, recall that T(x,l) 1 !i, and note
•9CO6

that V (y)dH(y) -- 0. By Lerma 1, V (z) e e (y)dH(y) so

again by Lemma 1 we have either

V (X) "R(x,l) + e -(z'l) V (y)dH(y)

• M + e"•'iT (, ) r 7Vxy)dly)

SM + Výýz)

or

Ii either case, '.,r2 1ave ,(x) - Y1(z) _< In so tie desired result is

obtained by reversing the roles of x and z.

Q.E.P.

Theorem 3. It is optimal to accept an offer of type x if and only if

•,x, l)

where g is the optimal long-run average reward, i~o., g = sup r2 (x)

for all x.
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Proof. It follows from Le~mna 2 and Theorem 3 of reference 4 that there

is a bounded function h and a constant g such that

(5) h(x) = max {R(x,l) + rhiy)dH(y) - gT(x,l); rh(y)dH(y) - gp), for all x

Finally, Theorem 2 of reference 4 states t"hat if there is a boundAed func-

tion h and a constant g which satisfies (5), then there is a station-

ary policy ri* such that

S= 2 (x) = max c?2 (xý for all x

and for each x, -- * pi-scribes an action which naximizes the right side

of (5).

It r.n be shown r4, p. 51 that if the expected length of a transi-
1 2

tion interval is finite for a stationary policy T-, then (0 1 2
'TT TT

"Aoreovcr, in view of condition 1, it is easy to show by a simple renewal

reward argurrent (see r17) that if the expected length of a transition
1 2

interval is infinite for a stationary policy , then Cp 1 2 - 0.

This establishes Theorem 4.

Theorem 4. For cach stationary policy -r, cp1 - . Hence, a best

stationary policy in the sense of (1) is given by Theorem 3.

Poisson Arrivals

Of particular interest, i.- :he special case wherein the renewal

process of arrivals is a Poisson process with rate %. Here, 1 =1

and it follows from the memoryless property of Poisson processes thet
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FYt 1 1/?, for each t. Hence,

1(~ ) = tX + 1A,

where

O -C

is the mean time that the strcetwalker spends with a customer of type x.

Theorem 3 now sirmlifies and takes on a more intuitive form: it is opti-

mal to accept an offer of type x if and only if R(x~l)/tx X g, that

is, if and only if the ratio of the mean reward to the .Tnan service 'ime

is at least as large as the long-run everc,:c rre v.

Although ve have determined the structure c. an c,;ial policy, it

renrains to determine g. We now establish a monotonic prperty whie.>,

in practice, enalles us to easily calculate g.

Theorem 5. Suppose the arrival (reneial) process is Poisson, and let

g(c) be the lone-run average reward when an olfer of type x is accepted

if and only if R(x,l)/t ! c. Then g(.) is unimodal.

Proof. Let R = •° :(x,])/tx z c!, R' -X : E(xl)/t Ž c' and

p rdII(x). Using abbreviated notation, ve have (see r1 1 )

(l-p) • o - pr -dHgjlK(c) = - R___ p ___ __RR_

(-)t+ p(p. + f tdH) IA + Ftp

Fix c' > c. Upon considerable rearranging of terms, w obtai/-

•'We assumae that dlH > ,0 otherwise it is obvious that g(c) =g'c)
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(7) sign 7g(cI) - g(c)] = sign Fg(c') -

Also, the definition of R and R' yields

IF R
(0) c S < c'

*jt

If c : g, then (7) and (8) yield

g(c') .. . .CR -g(c') c • - c ,1.[ tc

so g(.) is nonincreasing on [g,-).

To show g is nondacreasing on (--,g], it suffices by (7) and

(8) to show that g(c) z c for all c r g. By definition of g(c),

ýA+ r !t1rg(C) - C1 = f(R - Ct) - C!.L

R R

- r(N_ t)+ .- c(I.L+ jt)
R' R" R"

= f(C-ct)+ J(1-¾ 'o" R" 9) 0

where R" = x:(x,l)/t - g}. The last equality follows from (6).

Q.E.D.
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Botch Arrivals

Suppose that customers arrive in batches. In particular, suppose

that (i) each arrival consists of n customers with probability pn
N

and " pn = 1, (ii) the batch size and the offers are independent of
n=l

the renewal process, and (iii) the conditional distribution of offers

given that there ere n customers in the batch is given by H , son

Hn(X1 ,...,xn) = Pf ith offer is -• xi, i = 1,2,...,n!batch size is nj

As before, the streetwelker can accept at host ore customer frcm each

batch, and all rejected offers are lost. Transitions are defined as
before, and we say that the system is in state ' •l)...:x L f the

last offer made was the batch X1 ,...xn of offers.

Recal] thet in the special case of Poisson arrivals it is optimal

tD accept an offer oi type x if and only if p x g wThere ox = (xl)/t.

Consequently, this leads one to the conjecture that with batch and

Poisson arrivals, the streetwalker accepts that offer--if any-- xi*

for which px = naXT x : i = 1,2,...,n1. This conjecture is, however.

false, for it turns out that the relevant quantity is R(x,l) - txg

rather than o x. Thus, offers cannot be ranked according to px even

though px provides us wIth a simple acceptance-rejection criterion.

Theorem 6. When batch arrivals are permitted, it is optimal to reject

all offers from the batch x 1 ,...,xn if and only if

T(xi l) < g for i = 1,2,...,n
•1Qxi,l) - I
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If an offer from the batch x 1 ,...,xn is accepted, then It is optimal

to accept that offer with the largest value of

R(xil) - g7(xi,l) •

Proof. The arguments used in establishing Lemmas I and 2 suffice to

establish their analogues for the case of batch arrivals. Hence, tyere

is a bounded function h and a constant g such that for all

(xil,...•n)•n • we have

N
(9) h(xIJ..,xn) rax{ max F(xi,1) + .. .(y., .... ydH y,n i=l, 2,*...n In=l

T•x,) r n~Pn fh(Yl, o..Yn dn(Yl"...,Yn) •

The desired results Dow follow as shown in the proof of Theo.rem 3.

0..E .D.
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