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ABSTRACT

Hard limiting before pulse compression or correlation processing is a
common approach to the CFAR (constant false alarm rate) problem, and it
offers a good and simple solution in a single-target or scarce-target envi-
ronment. With the advent of radars with a large time-bandwidth product the
possibility arises that expanded radar returns due to multiple targets of in-
terest may overlap very largely or entirely but still may be sufficiently sep-
arated to be resolved after receiver processing. In this case the compresszd
pulses cannot attain full amplitude at the processor output even if the signal~
to-noise ratio at the input is very high; this phenomenon is known as capture
and small signal suppression. The purpose of this report is to exhibit that,
in addition to compressed target responses of reduced magnitudes, false
targets may be generated with apparent amplitudes of the eame order or ex-
ceeding those of legitimate targets. Spurious target generation in the case of
chirp radar has been known for some time. The theory has been extended to
maximum-length linear shift-register codes which are used as modulation
functions of pulse-compression and phase-coded CW radars. It is fouud that
a single pair of radar returns coded in this manner is subject to capture only
and not to false target generation. Surprisingly, however, the addition of a
third expanded signal produces a spurious response. This generation of a
false target should be taken in account when the dynamic range of future
phase-coded radars using linear shift-register codes is specified, in particu~
lar if the radar is designed for automatic track and raid-size determination,

General formulas were derived to predict the effects of capture and
false target generation as a function of the signal energy distribution and
relative phasing before entering the limiting device. The formulas were
evaluated numerically, with the results being presented in the form of

computer-generated plots,
PROBLEM STATUS
This is the final report on NRL Problem R02-38,201., The problem will
be considered closed 30 days after the issuance of this report.
AUTHORIZATION

NRL Problem R02-38.201
Project S-4614-6173

Manuscript submitted October 8, 196y,
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CAPTURE AND SPURIOUS TARGET GENERATION DUE TO HARD
LIMITING IN LARGE TIME-BANDWIDTH PRODUCT RADARS

SUMMARY

This report contains the results of a study of the effects of limiting combined with
various types of pulse coding in the suppression or "capture' of real targets and the
generation of false targets. In the study, the radar return is described by a complex
signal vector which is modulated in amplitude and in phase. The limiter generates an
output vector in phase with the input vector, but with a constant (unit) amplitude,
Throughout this report is is assumed that the limiter input waveform is the sum of two
or three phase-coded signals of the same kind but with different delays. The component
signals are assumed to overlap entirely. Their amplitudes and the rf phases of their
carriers may be arbjtrary. It is assumed that the signal-to-noise ratio is high and that
the beat products coming out of the limiter can therefore be predicted. It is shown in the
different sections of the report how the beat products may interfere with the legitimate
target returns, thus causing an apparent amplitude change (capture effect) and how they
may combine and form new signals of the same kind as radiated by the radar, thus caus-
ing a false target response (spurious target, ghost target).

In the first two sections of the report the model and the assumptions are explained
and are related to radar designs. Examples show how limiting takes place in radar re-
ceivers. There are two cases: intentional limiting, to obtain CFAR (constant false
alarm rate) or to reduce equipment complaxity, and accidental limiting, which occurs if
the radar receiver is overdriven by large clutter returns or electronic interference.

The sections following the first two sections are devoted to the analysis of the lim~
iter output if the input consists of two or three mutually delayed expanded radar signals.
The sections are the following:

1. General Theory of the Hard Limiting of Two Input Signals. In this section general
formulas are derived and discussed. The nonlirear relationship between limiter output
and the instantaneous phase difference of the input signals is developed into a Fourier
series. The Fourier coefficients C, are calculated for the order » in the range between
-14 and +15. The results are plotted and printed out for a number of parameter choices.

2. Limiting of a Pair of Constant-Frequency CW Sinusoids. This section may be of
interest to the designers of CW, pulsed CW, or pulse doppler radars. The theory com~
pares favorably with a bench test.

3. Limiting of a Pair of Linearly-Frequency-Modulated Signals. It is shown that in
addition to small signal suppreasion there is a false target generation effect. After pulse
compression an array of false targets appears to both sides of the true target returns.

4. Limiting of a Pair of Zero-Pi-Phase-Modulated Signals. All components of the
limiter output may be identified with images of the original input signals. The smaller
signal will be captured to an amount depending on the intensity ratio before limiting and
on the carrier rf phase. The capture effect is minimized if the carriers are 80 degrees
out of phase. There is no evidence of any false targets.
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5. General Theory of the Hard Limiting of Three Input Signals. The two-signal
theory is extended to the three-signal case in a straightforward manner. A two-
dimensional Fourier series is used to express the nonlinear relation between output and
input quantities.

6. Limiting of a Triplet of Linear Coded Sequences. It is shown that the limiter
output is composed in this case of four coherent signals. Three signals are identical
with the input signals, and they are the true target responses; but the fourth signal has a
pseudo-random delay, and it is a faise target or ghost target. The theory is confirmed
by the results of a computer simulation. (To be exact regarding the history of this study,
the computer simulation was made first, and the theoretical explanation for the false
target generation effect was sought and found afterward.) Pseudo-three~dimensional
plots show the various captured true target amplitudes and the false target amplitude as
a function of the carrier rf phases and with various signal magnitude ratios as parame-
ters. It is seen in this section that the false target may be as strong as the true targets.
If there are two equally strong true targets and one smaller true target, there will be a
false target of approximately the same size as the smaller true target. The location of
the false target changes erratically if the true target geometry changes slightly.

APPROACH

It is assumed that the radar transmits a phase-coded signal of large time-bandwidth
product. The phase codes considered in this report are linear FM and linear shift-
register-generator sequences, as they are described for example in Rel. 1. The target
space contains a number of discrete point scatterers at different ranges; that is, the tar-
gets are assumed to be far enough separated that they can be resolved individually by the
radar. At the radar receiver input there will therefore be a summation of ;hase-
modulated sine waves, with the phases between the sine waves depending on the very ac-
curate range increments between the multiple targets and with the time delays between
the modulation functions depending somewhat less sensitively on the geometry. The
summation of the individual radar returns will hence be both amplitude and phase modu-
lated, even if the transmitted signal envelope was constant.

The type of transmitted signal calls for a matched filter or a correlator as a
receiver-processor. In practice the receiver-processor is frequently preceded by a
hard-limiting device, which may be operating either at IF or on the in-phase and quadra-
ture components of bipolar video signals, depending on the radar design. Examples of
such receiver designs are given in the next paragraph. For the purpose of this analysis
the hard limiter is assumed to be at [F. The hard limiter at bipolar video can be handled
as a special case of the IF limiter, wherein the input signals are allowed to be in phase
(positive) or 180 degrees out of phase (negative) and are not allowed to have phase values
in between.

To keep the theoretical model as simple as possible without losing significance it is
assumed that two or three signals with various relative magnitudes, delays, and RF
phases are present at the limiter input. It is also assumed that the noise is negligible at
the limiter input. The assumption of a large signal-to-noise ratio may not always be
fuifilled, and in such cases the resulis of this analysis should not be applied. It is well
known that the limiter acts like a linear device causing a loss of 1to 1.5 dB in radar
sensitivity as long as the signals are sufficiently deep in the noise (2,3). This study is
concerned with the case that the limiter output signal can be predicted from the radar
and the target parameters. In this deterministic case the nonlinearities of the channel
cause the formation of coherent beat products which may correlate with the transmitted
radar code at a time shift which does not correspond to the actual location of a physical
target. In this case a spurious target response is generated. The amplitude ol the
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spurious targ:t cann-t be explained as simply an addition of range side lobes, as would
be indicated if 'aear-matched-filter theory would hold. The false targets may be of the
same magnitude or stronger than the true targets. This fairly quantitative claim has
been supported by the results of a computer simulation.

Complex signal notation is used throughout this analysis. The limiter is matheinati-
cally described as a device which removes the amplitude variation from the complex
signal. The limiter output is a complex phase-modulated signal of uniform amplitude.

It is assumed that the limiter operates distortion-free, i.e., that the phase modulation of
the input signal arrives undistorted at the output. Much of the approach to the problem
was influenced by thoughts presented by Nolen in a paper entitled "Effecis of Limiting on
Multiple Signals'" (4). TO pscuvas .« cuutinuity and also since Nolen's paper is not gener-
ally available, some of his results, particularly those pertaining to linear FM, are re-
viewed in this report.

It may be argued that the signal-to-noise ratio of the unprocessed signal is ordinar-
ily very small in typical pulse-compression or phase-coded CW correlation radar sys-
tems of large correlation gain. Therefore the assumption that the signal«to-noise ratio
is large would in many cases not be valid and the conclusions from this study would not
apply. It is true that the signal-to-noise ratio may be exceedingly small for a minimum
delectable signal., One should keep in mind, however, that large interfering scatterers
(clutter) may De strong enough to dominate over the nojse at the limiter input even if the
rada, i+ designed to detect very small signals by virtue of a high correlation gain.

IMFLEMENTATION EXAMPLES OF HARD-LIMITING
RECEIVER-PROCESSORS

Hard limiting may take place at IF or at bipolar video, which may also be considered
as zero IF. Components of limited dynamic range, like RF amplifiers or mixers, may
act very much like hard limitera as soon as they become saturated by large signals. The
IF limiter may be considered as a device which ideally would preserve the phase and de-
stroy the amplitude modulation of a signal. If the input signal is mathematically de-
scribed by a complex vector of variable amplitude and variable rotation rate, then the
output signal would be given by a constant-amplitude vector which points at any given
moment in the same direction as the input vector. The output vector may be assumed to
have unit amplitude all the time. To practically implement a hard-limiting device one
may use ampliiier chains whose gain is controlled through a feedback loop in such a
fashion that it is inversely proportional to the input signal amplitude. At the output of
the amplifier chain one would cbserve a pliase-modulated sinusoidal signal with constant
amplitude as long as the feedback loop is fast enough to respond to changes of the input
amplitude. A probably less troublesome way to achieve hard limiting is to use the cutoff
characteristics of suitable noulinear elements like transistors or diodes, ater the input
signal has been sufficiently preamplified,

Figure 1 is a simplified diagram of a linear FM pulse-compression receiver. The
RF signal coming from the duplexer is preamplified, heterodyned to a conveniently se-
lected IF, passed through a hard limiter and s weighting filter, pulse compreseed in an
ultrasonic dispersive delay line, detected, and video amplified for display. The weight-
fur filter may serve a dual purpose in this case. B may be used to reduce the range side
iobes of the compressed radar signal and to eliminate higher harmonics which may be
generated by the diode limiter. In other words it smooths off the corners of the signal
coming {rom the limiter. A typical reason for placing a limiter shead of the pulse-
compression device is o normalise the noise power so that it is possible to set, aler
pulse compression and rectification, a detection threshold st a computed level to achieve
a constant false alarm rate, or CFAR, 00 matter how strong the noise or interference is
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Fig. 1 - Typical linear FM pulse-compression receiver

before limiting. The dynamic range of the radar signal becomes increased through pulse
compression by as much as its correlation gain. Limiting may also be used to keep the
dynamic range of the processed signal between convenient boundaries. Another reason
for limiting may be that it is simpler or cheaper to use components with a relatively
small dynamic range and that any large dynamic range after pulse compression would
not be needed anyway.

Figure 2 shows a commonly implemented layout for a digital correlator using binary
shift registers as memory elements and operating on coherently detected, sn called bi-
polar video signals, the in-phase or I-signal and the quadrature or Q-signal. To reduce
equipment complexity one may omit the Q-signal channel. One loses on that case, how-
ever, on the average, 3 dB in radar sensitivity. This type of correlator is irequently
used to process pseudo-randomly zero-pi-phase-coded radar signals. One of its ad-
vantages is its flexibility, since the code memory may contain virtually any sequence of
plus a:x! minus bita. The only information that is recorded in the shift registers about
the rrdar signals is the polarity of the bipolar video signals at the instant of sampling.
The value of its amplitude is disregarded. The output signals are therefore the same as
it hard limiting had taken place in the video amplifiers between the coherent detector
and the shift registers in Fig. 2.

GENERAL THEORY OF THE HARD LIMITING OF TWO
INPUT SIGNALS

‘The approach in the case of hard limiting of two input signals is the same as the one
selected by Nolen (4). In addition to reviewing the cases of two constant -frequency
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Fig. 2 - Typical digital matched filter layout
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sinusoids and two linearly swept FM signals which have been treated by Nolen, a method
of handling the case of the pseudo-randomly zero-pi-phase-coded signals by essentialiy
the same technique will Le showii.

Two signals at the limiter input may be described mathematically as the sumination
of two complex vectors. Through separating out a factor «xp (,2nf,r,, where /, may
be called the carrier frequency, one displays only the variations of the complex vectors
with respect to an average position or with respect to a reference vector. In Fig. 3 there
is shown as an example two superimposed signals of different magnitudes.

IMAGINARY AXIS

)

VECTOR 2 ROTATING AROUND THE
ENDPOINT OF VECTOR |
AT A RATE GIVEN LY
\ THER IFFPRENCE FREQUENCY

Fig. 3 - Phasor diagiam {llustrating
l;mltcr operation in the complex plane

The signal with the larger amplitude will be arbitrarily designated signal 1. If the
vectors represent two sine waves of constant but different frequencies, with 7 being the
frequency of sine wave 1, vector 1 may be considered to be {ixed and vevior 2 to be ro-
tating with the difference frequency. The true (real) electrical signal may be visualived
as the projection on the real axis of the complex vector summation rutated around the
origin at the rate /..

The heavily drawn vector in Fig. 3 represents symbolically the umlt§r output signal.
its endpoint always falls on the unit circle around the origin, and it is aligned in paraliel
with the complex vector resultant from the linear combination of the inpul signails.

To solve the problem one has to represent the limiter output signal as a function of
the phase difference of the input signals with the ratio ol the small signal amplitude to
the large signal amplitude as 3 parameter. The evolving nonlinear expression is tod
complicated to be directly useful, however. Developing the relstion betweern: the output
sigual and the phase change of the input signals in 4 Fourier series permits a much more
useful functional presentation of the output signal in e foi.n of superimposed (oherent
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phase-modulated signals with amplitudes that can be calculated essentially through eval-
uation of Fourier coefficiants,

Let it be assumed that the limiter input signals have the constant amplitudes 4, and
A, and the variable phases .,(t) an? &,(1), where t is the time, The input signal s;,
which is the sum of the two cign~!s would exhibit both amplitude and phase changes as a
function of time. By convention the amplitude 4, shall be no larger than 4,. One can

then define the small signal to large signal amplitude ratio », which would never be
larger than 1:

a=-L< 1
4, (1)

The input signal may then be expressed as

Sin " .40 ej(bo(') + Al ej(f"-( "
iy if -
( . Ao el‘/o(t){l ' oa c’\‘bl(‘) ‘ﬁ(\(‘)l}
| ;
= A, SR g ety (2
In the last line of this formula, R represents the length of the resultant vector described
;: by tihe terms between braces on the second line, and « represents its phase. Reference

is made to Fig. 4 to exnlain the relationship. To the end of a unit vector parallcl to the
real axis Is attached u smaller vector of length a and at an angle

0(t) = dy(*), = ¢o(t) - 3)

IMAGINARY AXIS

REAL AXIS
]

ONIT VECTOR 1 ~

e 2w

Fig. 4 - Phasor relationships
in the complex plane
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The action of the ideal limiting device is to replace the time-variable amplitude of
the signal by a uait amplitude and to leave its phase untouched. This may be mathemati-

cally accompiished by a simple omission of the factors 4, and R in Eq. (2). The limiter
output hence is given by

s o g t)east)] ) (4)

out

The function « depends on the phase difference ¢, which in turn is a function of ¢.
From the geometry depicted in Fig. 4 or through evaluation of the identity

R e2(0) = 14+ aefd (5)
one obtains
¢ = tan™} ___a_.f:_lg_a___ . (6)
1+ acosé

A plot of o as a function of ¢ and with the parameter » ranging from 0 to 1 in steps of
0.2 is plctured in Fig. 5. If a = 0, ther « is identically equal to 0. For small values of
a, say for a = (0.2 the function resemhles a sine wave. For =z = 1, « is a linear saw-
tooth function connecting from « = =80 degrees to +80 degrees and with the discontinuity

at ¢ = £180 degrees. For values of a in the range between 0.2 and 1 the function «(4)
resembles a distorted sine wave.

ALPHA (DEGREES)

-180 ~90

\/ THETA (DEGREES)—

Fig. 5 - Relaticn between the phase of the sum signal and the
phase difference of the component signals

The phase difference ¢ may change according to a pseudo-random sequence as a
function of ¢, or it may be some other very complicated sequence. Hence the nonlinear

expression which one obtains for the output signal through combining Eqs. (4) and (6),
namely,

‘ . a sin §(¢t
Sout = €XP J [¢°(t) + tan~! I—;—a:c—‘r(e—z—t—)»] ' (7)

does not directly indicate which signal components are present in s, .. In particular it
does not show how strongly the original signals are present and whether and to what

e A

g e W

;
%
A

s ialtdbiie b e i K = ke 4




N Y Dt A By TR, AR B P RNV SIAAY P8 AT LM NI AR 1 iy g o

f
¢

8 H. H, WOERRLEIN

extent new signals are generated. It is a fortunate circumstance that the Fourier series
development of Eq. (7) leads to a summation whose terms may be identified in several
cases of practical importance with images of the input signals and with newly generated
signals, Since a 18 a periodic function of ¢ with the period 27, one may use the devel-
opment

a sin 0

e/8(0) = exp (j tan"! —m—m— )
1+ acos @

i C,(a) ein . (8)

This formula expresses an identity except at those points where the function on the left
sids has a discontinuity. A finite number of summation terms may provide a very good
approximation except in the vicinity of discontinuities. It may be remarked that Eq. (8)
does not represent a spectral decomposition of the limiter output but rather a series ex-
pansion for a nonlinear relationship.

All coefficients C,(a) are real, since o is an odd function of 9. The proof is as
follows: As a consequence of the relationship e/®(-9) = [¢/%(8))*, where the asterisk
indicates complex conjugate, one may equate X C,(a) e~/ and [SC,(a)eind)*. Hence
Cn(a) = Ch(a); i.e., the coefficients C, are real. In the general case the coefficients C,
and C_, will not be the same, however.

Nolen has shown how the coefficients C, may be obtained by collection of terms
from ar infinite product of infinite series in powers of exp (j6). It is possible to calcu~
late the C, values through numerical integration methods, which may perhaps be more
easily adapted to automatic computer evaluation. The coefficients may be obtained in the
usual way through multiplication of Eq. (8) with exp (-jm¢) and integration over ¢:

+w
J' o/ [9¢0)=26) g
-n

*w +&0
:f Z C,(a) elm o~ind gg

il -TYT")

+17
C,,(a)J‘ el(n=m)8 4g
-

= 2nC,(a) . (9)
Hence
*n
C.(a) = _I_.J e/ [2(8)-n8) 4q | (10)
2nJ_,

This integral may be decomposed into a real and an imaginary part:

47

*n
Ilﬁf cos [a(8) - nd) do + j !%f sin [a(8) - ng) dé . a1

i

&
"%
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The second integral is equal to 0, since ¢ is an odd functjon of 4. By the same token 7: 3
the remaining integral taken from ¢ = -7 to 9 = +n i8 equal to twice the integral taken
from 6 =-0to 6=

©
n

4+
n -l—f cos [a(8) - ng] dé
2nJ_,

%j cos [a(f) - ng] dog . (12)
9

Ingerting Eq. (6) for « as a function of 9 leads to the full expression for the ¢, values:

C_= lJ. cos (tan" _asing no) de . (13)
0

1+ acos @

Although this integral cannot be evaluated in closed form for any arbitrary value of the sig-
nal amplitude ratio a, it can be integrated in the special case a = 1. In this case one
obtains

.6 g

. 2 sin 5 cos &

a(g) = tan~1 _Sind tan~1 2 2

1+ cos @ 2 cosz%
sin =
2
= tan-l :% . (14)

cos 3

This is the equation for the straight line which appears in Fig. 5 if the parameter a is
equal to 1. Inserting Eq. (14) into Eq. (12) leads to

Cn(l) = }’ f COS(% - ng) de = % ('l)n . (15)
0

Also if a = 0, i.e., if the smaller signal disappears entirely, a trivial solution exists. In
that case o is identically equal to 0 and one obtains

”

C,(0) = %f cos ng d@
o

1, ifn=0, .;'
= 0, for all other n values . (16)

The general shape of the curves in Fig. b suggests that a sine function might be a reason-
ably good approximation for « (9) as long as a is small enough. Analytically one may
derive from Eq. (6) that a good approximation is

¢ =asing , 1))

for small values of a, Inserting this approximation into the integral for ¢, leads to

»
;l'- f cos (a sin 6~ nd) do . (18)
(]
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This i8 an integral representation of a Bessel function of the first kind of the order » and
with the argument a (Ref. 5).

A good approximation to C, and C., for sufficiently small values of a is therefore
C,=Jy(a) and C. = J.,(a). From the first term of the McLaurin series for J (x) one
obtains the approximate relationships

C.,=-a/2 and C, = a/2, if a<<1. (19)

It would be erroneous, however, to regard Eq. (18) as an approximation for the higher
order coefficients C,. The higher order coefficients ¢, depend very critically on the
higher order terms in the development of o as a function of ¢, and exactly those have
been neglected in the approximation given as Eq. (17). A valid approximation may be ex-
pressed as a summation of products of Bessel functions (4).

The approximate expression given as Eq. (19) along with the special result given as
Eq. (15) provides some insight into the general behavior of the Fourier coefficients C,
as functions of a. A numerical method based on a fast Fourier transform computer

program has been used to obtain numerical answers for a set of different parameters.

The computer program and the methods by which it was checked are explained in the Ap-
pendix of this report. The results are presented as a set of curves in Fig. 6 and in the
form of line spectra in Fig. 7. Figure 7 also exhibits digital printouts for the ¢, values.
The following section of this report will illuminate the physical significance of the Fourier
coefficients C, in a special case.

-4 -50 }
2 i o]
[
&
Z _yn -
.-z 40 /
(&)
-30 /
M

1
y /~ // Fig, 6 - The Fourier coefficients ¢, as functions of the sig-

nal intensity ratio a (labeled A by the computer) and of the
-20 / order n (labeled N) ranging between ~4 and 5
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An expression for the limiter output signal which will later prove to be quite useful
will be derived. The combination of Eqs. (3), (4), and (8) results in

*n
o et
Saurt 1) - ) €, ¢ [T I (20)

where the coefficients C, are the Fourier coefficients which have been discussed in this
section,
LIMITING OF A PAIR OF comM-mmxncv CW SINUSOIDS

TMMMMMUWlMUQWMCWM«»N
expressed through two linear functions of time:

Selt) 2Rt wl G (1) w00 4, . (a1)

where /, and /, are the constant frequencies of the sinuscids, 4,, is the phase shift :
which exists at the moment ¢ 0, and the amall to larger signal amplitude ratio is .
given by the parameter o+ which has been defined in Eq. (1), 1

Inse:tion of Eq. (31) into Eq. (30) permits oce to write an expression for the limiter ~ : .
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Cy €, €4y ... on the side adjacent to 7, and givenby C.,, C_,, C_;, ... on the other
side. Consequently Fig. 7 may be regarded as line spectra of the limiter output wave-
forms in the case of two monochromatic input oscillations with different frequencies.
The figure shows how the spectral envelope becomes distorted unsymmetrically unless
the two input signals are equally intense. It should also be noted from Fig. 7 that the
higher order beat products (» farther from 0) fall off much faster for small » values
(s, s, closer to 0 db) than for 2 values in the vicinity of 1. It is evident that the smaller

signal may be suppressed relative to the larger signal by as much as approximately 6 dB,

as it is well known (6).

It can be seen directly from Eq. (19) that the amplitude ratio of the smaller and the
much larger signal after limiting is equal to

——— ::-. with a 1. (23)

That is 1/2 the amplitude ratio before limiting. The factor 1/2 in amplitude corresponds

to -6.02 dB. The smaller signal is accompanied by a mirror image of approximately the
same size.

It is also possible to explain the 6-dB suppression of a small signal without going
into mathematics. The small signal may be visualized as a small vector attached to the
endpoint of the larger signal vector. The vector resultant from the summation of both
input vectors equals the large signal vector with a small additional amplitude and phase
modulation caused by the smaller signal. Half of the small signal energy produces the
amplitude modulation and half produces the phase modulation of the signal superposition.
After limiting, the signal erergy is normalized and the amplitude modulation is removed,

which would account for a 3-dB loss. The phase modulation is contained in two sidebands,

namely in the captured small signal and in its image. Both are of approximately the
same inte.sity and thus suffer a power splitting, which accounts for another 3-dB loss in
the power balance.

A simple bench test has been run by R. M. Crisler to check on the validity of the
theoretical resuits described in this section. Two constant-frequency sine waves of high
spectral purity, one at 80 MHz and the other one at 60.016 MHz were added together in a
hybrid circuit, amplified in an intenticnally strongly overdriven and hence hard-limiting
IF strip and displayed and photographed on a Singer Model SPA-100 microwave spectrum
analyzer. The amplitude ratio « of the two sinusoids could be adjusted by means of a
calibrated attenuator inserted in the 60.016-MHz signal path before the hybrid. Tuc IF
amplifier may be assumed to have a fairly flat amplitude response over the {requency in-
terval of intcrest. Figure 8(a) shows the signal superposition before entering the IF
atrip as it appeared on the screen of a Tektronix type 454 oscilloscope. In Fig. 8() isa
display of the amplifier output, which exhibits tairly constant amplitude except in the
immediate vicinity of the nulls of the input signal envelope. When the input signals dil-
fered by a few decibels, the minima of the unlimited signal envelope were large enough to
saturate the IF amplifier so that one would obeerve a constant amplitude oscillation with-
out any dipe in the output. Figures 8(c) through 8(j) show the results of the spectral anal-

sis of the linearly superimposed sinusoids (Fig. 8(c)) and of the hard-limited signals
{hnﬂdmum). The vertical scale is linear in decibels, each division corre-
sponding to a 10-dB siep. Figure 8(c) shows that the input Irequencies are free from
mrmchhnbhfouhyc&r&oum: In Fig. 8(d) one sees a symmetrical
mdmﬂrﬂ r&dmb&n&sdmwymmw
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{(a) Scope picture of twc equally
strong sinusoidal signals be-
fore limiting

) IS q

(b) Scope picture of the same
signals as in Fig. 8(a) but after
hard limiting

(e) Spectrum of the limiter
output 3ignal! from two input
signals differing by 5 dB
(same as Fig. 7(d))

(D Spectrum of the limiter
output signal from two input
signals differing by 10 dB
(same as Fig. %e))

.(c) Spectrum of the
signals of Fig. Ma)

17

(d) Spectrum of the limiter -
output signal from two input
signals differing by 20 dB
(same as Fig. (x))

et

(1) Spectrum of the limiter sy
output signal from two input Z
signals differing by 25 ¢B 5
(same as Fig. 7(h))

) Specirum of the lmiter
signal from one ingut

Fig. 8 - Waveforms aad spectra recorded ia 8 bench lest
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If the input signals differ by as little as 5 dB, the stronger output signal obtains
nearly its full size, and the smaller signal appears at approximately -10 dB. That means
the smaller signal was suppressed by approximately 5 dB through the limiter and it is
accompanied by a slightly smailer image line and by a regularly spaced array of spectral
lines which taper off unsymmetrically (Fig. 8(e)). If the input signals differ by 10 dB
(Fig. 8(f)), then nearly the full amount of the theoretically predicted 6-dB small signal
suppression may be observed. Figures 8(g), 8(h), and 8(i} show the small signal sup~
pressed by 5 dB and accompanied by an equally strong image when the input signals dif-
fered by 15, 20, and 25 dB respectively before limiting. Figure 8(j) shows a single spec-
tral line representing the fundamental frequency of a hard-limited single-frequency input.
The spectral lines displayed in Figs. 8(d) to 8(i) are the beat frequencies of the two input
signals due to the nonlinear processing; the spectral lines are not harmonic frequencies.
Harmonic frequencies which are present if a 60-MHz signal is limited would be at multi-
ples of 60 MHz, ar.d they would therefore be outside the spectral range displayed, which
covered an interval of approximately 200 kHz centered around 60 MHz.

Point-by-point comparisun of the measured spectra such as shown in Fig. 8 and the
calculated C, values pictured in Fig. 7 discloses their exact matching.

This section of the report may be concluded with the remark that the beat frequencies
generated through hard limiting would appear like false targets in the case of a CW radar
or a pulse doppler radar of insufficient dynamic range. As applied to a pulse doppler
radar one may say that two clutter components of slightly different doppler frequencies
but both falling in the clutter notch of the processor response — if strong enough to drive
the IF amplifier into saturation - may generate beat frequencies which would be within
the accepted doppler domain.

It may be noted also that an analogy exists with an antenna problem. False angular
responseg (ghost targets) are observed in a two-target environment if the elements of an
array antenna are nonlinear (7,8).

LIMITING OF A PAIR OF LINEARLY-FREQUENCY-
MODULATED SIGNALS

Consider a pair of linearly-frequency-modulated signals in the idealized case where
the input signale are entirely overlapping and very strong as compared to thermal noise.
The analysis is very similar to the one given in the previous section {or the case of
constant-frequency sinusoids. A pair of linear FM signals gives rise to beat frequencies
within the bandwidth of the frequency excursion. These constitute signals which are
compressed by the matched filter or correlator and which will appear, after processing,
as an array of false targets both behind and ahead of the pair of true targets (4). If the
expanded signals overlap less than completely, there will be a proportionate reduction of
the false target magnitudes (4). Let one input signal be given by

Ay exp j(2nft+ bt 2)
and the other by a acaled, time- and phase-shifted version of the first signal:
A, expj[2amf (t-T) +b(t-T)3 + ¢, .

The instantaneous frequency of the first signal, which is by definition equal to the deriva-
tive of its phase divided by 27, is then equal to
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and the instantaneous frequency of the second signal is given by
fo —:— (t-T) .

where 7 is the mutual time shift between the two input signals. Inserting

bo(t) 2nf ¢ v bt? (24)
and
Gy (1) = 29 (t=T)y + b (t-T)2 + & (25)
into Eq. (20) results in
Soue() - Z c, ci[217[0(f-nT)dz(r—nT)zcnd,m-(n-l)anJ} ' (26)

Equation (26) says that the !imiter output may be decomposed into a summation of linear
FM signals. By comparison with the expressions for the input signals one derives that
the limiter cutput consists of an array of mutually-time-shifted images of the input wave-
forms, with delay T between adjacent components and with amplitude ¢, for the nth
component.

At the output of the matched filter or correlator which would foliow in the signal
processing scheme after the hard limiter one would therefore cbserve an array of com=-
pressed pulses, namely, the large signal response with amplitude ¢,, the smaller signal
response with amplitude C,, an image responge with amplitude C.,, and smaller pulses
at regular intervals and with amplitudes C,, C,, ... on the side of the smaller true sig-
nal and with amplitudes C_,, C.,, ... on the side of the image. If the compressed and
detected signals were passed through a logarithmic amplifier, one would be able to ob-
serve at its output essentially the same waveforms as the ones depicted in Figs. 8(d)
through 8(j). All that has been said in the previous section on the amplitude ratios and
capture effects would apply also in the case of linear FM. One could in fact envisage the
spectrum analyzer displays 8(d) through 8(j) also as scope pictures for the case of linear
FM, simply by considering the traces as functions of time instead of frequency. It is
then obvious that one observes false targets in addition to the true targets. This phe-
nomenon may be very cumbersome if the radar should be used for more functions than
simple target detection. The way out of this dilemma would of course be to use a re~
ceiver and signal processor of sufficiently large dynamic range.

Attention should also be given to the phase term 2#/,n7 in Eq. (26), which causes
the doppler frequency of false targets to increase with order » if there is a mutual
motion between the true targets. This means that the doppler of false targets may be
within the acceptance domain of a pulse-compression pulse doppler radar even if the
“true" responses due to clutter would be rejected by means of doppler filtering of the
compressed signals.

IUGORE. oo WA IR i LIS R IANLIC RUEMI A TS 4 2Tt 61
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LIMITING OF A PAIR OF ZERO-PI-PHASE-MODULATED SIGNALS

Consider now the class of radar signals which may be generated through switching
the phase of a sinusoid between 0 and 180 degrees depending on a binary code. The bi-
nary code may be visualized as a sequence of zeros and ones or as a sequence of plus
and minus signs or as a video type waveform alternating between two discrete voltage
levels. Since the result of this section will be generally valid for any binary coded se-
quence, no further restriction will be made at this point as to specific code classes. An
expression shall be derived for the small and the large signal size after hard limiting as
a function of the RF phase ,, between the input sinusoids and with the input amplitude
ratio » as a parameter. As before in this report the RF signals are assumed to be com-
pletely overlapping and strong as compared to the noise. Equation (20) will permit one
to decompose the limiter output into a meaningful sum of component signals which may
be identified with the input signals. Let the code be represented by a sequence of coeffi-
cients <, whose values are either 0 or 1. The phase modulation impressed on a radar
signal may then be expressed as

t - kr

b (t) = 7 Z O TECt —/(—— (27)
&

where the summation runs over all k values, ¢ is the time, ~ is the duration of a bit,
and rect x stands for Woodward's rectangular function notation:

rect x = 1, for x in the interval (-0.5,0.5) ,

(28)

= 0, outside the same interval .

If the carrier frequency is given by £, then the phase of the stronger input signal may
be written as '

Bo(t) = 2mE b + Bo(t) (29)

and the phase of the smaller signal may be derived from the phase of the stronger signal
through introduction of a time delay T and the mutual RF phase 4, ,:

Gy () = 2mft + g (t-T) + ¢ - (30)
Inserting these expressions into Eq. (20) yields
bs (&) = . C ei["'ﬁc(t-r)'("'l)‘/’c(‘)"“/’10] ei211fot (31)
out = n .

ns=o

It is now important to observe that both «.(t) and «.(¢t - T) can assume only either one
of the discrete values 0 or ». Hence

: ¢=TYy= - 3 i ol
e’[""’c( )= (n=1)é (£)] z c”"‘(t), for all even values of n,

(32)

j -T
= e"/"“ ). for all odd values of n .

Equation (31) may therefore be transformed into two separate summations, one of them
combining all even-index terms and the other collecting all odd-index terms:
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. j 2ng i (ty jamft :
t! :
Soue(t) = (Z Cn e ‘°> &Pt 12T /
- i(2 4 j T j f t
+ <Z Consi o/ (2 e ‘O) !Bl 2Tl (33) ,
n=-a /

From this expression one can read that the limiter output may be written as the summa-
tion of two signals, each of them being of the same functional shape as one of the input
signals, and with the complex amplitudes described by the sums of exponentially weighted
Fourier coefficients of even or odd order respectively:

(Z ¢, ejznd)”’) or (E Cons ej(zml)ém) . (34)
: These expressions are consequently properly called the amplitude of the stronger signal
‘ and the amplitude of the smaller signal after limiting has taken place. Since Eq. (33) is
; a complete description of the limiter output signal as long as the assumptions made are
valid, there is no indication of false targets.

It is possible to transform expressions (34) back to their original domain in a gen-
eral fashion so that explicit knowledge of Fourier coefficients C,(a) will not be required
for numerical evaluation of capture effects. From Egq. (8) one may derive

efo(@+m) E C,(a) ein(9+m) - Z: (-1)" €, (a) eind (35)

Hence one obtains through addition of Eqs. (35) and (8)

efa(0) 4 oia(l+m) - 9 ZCQn("’) ef2nf (36)
i Through subtraction one obtains
! eia(0) . eia(fsm)y - 2 Z:sz!(a) e/2ne1)8 (37)

These are general relations exactly of the form as needed to express the limiter output
: signal amplitudes (34) in terms of the function exp ja(s). The large signal amplitude
| ' after limiting is

z Can enm‘”“’ = [eju(d)‘o) + eja(d’“"")]/.’ (38)

i ) and the small signal amplitude is

2: Czr”‘ 01‘(2"’1)(/)10 = [t‘ju(d,lo) - (‘jc((blovn)]/2 . (39)

Equations (38) and (39) have been programmed for automatic computer evaluation. The .
results are depicted in Fig. 9 both for the large and for the small signal distributions. .
There is a horizontal line at the -3~dB level labeled with the parameter 0 dB indicating ‘

that the power is equally split between the output signals if the input signals are equally )
strong. All curves below or above the =3-dB line refer to the smaller or stronger signal
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Fig. 9 - Capture of a pair of zero-pi phase-coded signals as a
function of the carrier rf phase, with the signal intensity ratio
as the parameter

respectively. The curves indicate that the capture effects are minimized if the RF phase
between the input signals is around 90 or 270 degrees. I the RF phase amounts to zero
or 180 degrees, the smaller signal will be suppressed entirely, at least in the absence of
noise or any other type of third signal component. Noise in addition to the two input sig-
nals will permit the smaller signal to determine the limiter output signal with some fi-
nite probability even in the case of an RF phase difference of 0 or 180 degrees. If there
is a correlated third signal at the limiter input, there may be a false target generation
effect, as will be shown in the next section. It should be mentioned that Eqs. (38) and
(39) may be used to derive a simple geometric construction method in a complex plane
to describe the capture effects of two zero=pi-phase-coded signals. It is worth under-
scoring that Eqs. (38) and (39) properly describe the capture effects no matter what
particular binary phase code is used.

GENERAL THEORY OF THE HARD LIMITING OF THREE
INPUT SIGNALS

The previous sections have discussed and provided mathematical descriptions of
how the limiting of a pair of linear FM signals gives rise not only to capture effects but
also to spurious target generation, whereas any kind of zero-pi-phase-coded signal pair is
subject only to capture and not to false target generation. The absence of false targets in
the case of zero-pi phase codes, although in agreement with general knowledge on this
subject, may seem somewhat baffling from a theoretical point of view, in particular since
certain pseudo-random sequences, namely linear maximal sequences, which are fre-
quently used as radar modulation functions and which are easily generated by means of
feedback shift registers, exhibit a very strong structure and have the property to produce
a sequence of the same code but with a different delay if combined linearly, This prop-
erty justifies the adjective ""linear'" in "linear maximal sequences," and when one speaks
here of a linear code combination, one means the new code generated if two codes with a

BN e G WSS

e
i
3
A
}

T 15 . O W ST Bl S




NRL REPORT 7001 23

relative delay between them are combined according to the rule¢s of Boolean algebra

on a bit-to~bit basis. This kind of linear combination would also take place if two phase
modulated RF signals are multiplied or beat together, since the multiplication of com-
plex signals results in the addition of the exponents. The effect of signal multiplication
takes place at any nonlinear element in the signal channel und especially in a limiter. It
was therefore speculated that faise targets might be generated, if not in the case of two
input signals, in the case of three or more input signals.

The theory developed is a simple extension of the analysis made for the two-input-
signal case presented eariier in this report. The same assumptions are made through-
out, namely, complete expanded signal overlap and hizh signal-to-noise ratio. The input
signal to the limiter may then be written as

=4, ), A, RALUS AN A, REZISS

in 1]
Jg(t) i i$
:Aoeo (1+ale‘+azez)
= 4, Pt poeinct) (40)

The convention is that the first sigaal, 4, e’ o ‘), is the sirongest signal, so that it is
meaningful to describe the input signal s;, as the strongest signal modified in amplitude
and in phase through the presenc~ of two smaliler signals, mathematically expressed in
Eq. (40) through ® and o. Set

a, = i—‘- and a =-f—2- ) (41)
tooa, 1A,
ay; and a, being the two ratios of a smailer signal to the large signal, and set
0,3 ¢y~ g and 0, = ¢y - &g - (42)

The ideal limiter normalizes the amplitude of the input signal, Eq. (40), while preserving
its phase function ¢,(t) + a(t):

. ei['bo(')'ﬂ(‘)] i (43)

out

where « is the phase angle of the complex factor between large parentheses on the sece
ond line of Eq. (40):

a, sinfh, + a, sin 0
a(t) = tan"} ! ! 2 L (44)

14 a, cos 0, + a, cos N,

To obtain a physically meaningful interpretation of the limiter output signal it has to be
decomposed into a summation of signals. In the previously treated case of & pair of in-
put signals it proved successful to develop « as a function of ¢ into a Fourier series.
Applying the same technique in the case of a triplet of input signals leads us to consider
the development
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+ + 0

ja(f,.0 j(m@
e M0 Conlay ay) & 0117020 45)

M= N==0

which is a double Fourier series for « as a function of ¢, and 0,. Combining Eq. (43)
with Egs. (45) and (42) leads to the series development for the limiter output:

Sout ZZ Cmn(apaz) ejl’"d)l*nd)z'(l-m-")d)o} . (46)

The Fourier coefficients C,, may be expressed as a double integral, and they may be
determined by numerical integration methods. In the case of practical importance which
will be studied in the next section one obtains general expressions for limiter output sig-
nal amplitudes which may be transformed back to the original domain, so that any ex-
plicit knowledge of Fourier coefficients will not be required. The Fourier series ap-
proach permits one to derive relationships in terms of the original quantities.

LIMITING OF A TRIPLET OF LINEAR CODED SEQUENCES

In the case of a triplet of linear coded sequences let the phase modulation function of
the strongest signal be given by

L
bc(t) = repy,m Z Ccp rect t -Tk‘r : (47)

k=1

where ¢ is the time, = is the duration of a bit, ¢, = 0 or 1 depending on a maximal lin-
ear sequence, L is the code length, and rep,, indicates the periodic repetition of the
code, the repetition period being equal to Lv. A modulation function of this kind is usually
generated by means of shift registers with suitable feedback connections. A shift register
generator consisting of S stages may be used to generate a code of length L = 25 - i,
This kind of code generation is frequently used in radar, both for theoretical and practi-
cal reasons. This method requires little hardware, and it yields a code with a nearly
ideal autocorrelation function, the range side lobes being at a uniform level of -20 log L
dB below the main peak. The low and uniform-range side-lobe level is a consequence of
the strong structure inherent in this kind of pseudo-random sequence, namely, of the
property that the codes added bit by bit to a delayed version of the same code under the
rules of Boolean algebra will result in the original code sequence shifted by a pseudo-
random number of bits. It will be seen that the same property is responsibie for the gen-
eration of a false target of sometimes larger magnitude than any one of the suppressed
true target returns.

As an example consider the shift register generator depicted in Fig. 10. At its out-
put one would observe a periodic binary code sequence, the repetition period being equal
to 31 clock pu_se intervals. Since the shift register contains five stages, the feedback is
connected as shown in Fig. 10 to ensure maximum code lengthand L = 25-1=25-1=
31. If one would start to count a new period for example when the shift register is loaded
with the sequence 1, 0, 0, 0, O, then as a consequence of the operation depicted in the fig-
ure one would be able to record the output

1000010101110110001111100110100,
If this code word is added to the same word but shifted to the right by one bit, namely,
0100001010111011000111110011010,
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Fig. 10 - Maximum-code-length shift register code generator

one obtains as a result of the binary addition the new code word
1100011111001101001000010101110,

The remarkable feature of linear coded sequences is that the code word obtained is not
any arbitrary sequence but is the same as the original sequence shifted by a number of
bits, in this case shifted by 18 bits as one can easily verify by inspection of the sequences.
Binary code addition takes place if a signal of the type exp j4c(t) is multiplied with an-
other signal exp j¢.(t-7), T being the relative delay between the two signals, since the

product of exp jo.(t) and exp jgc(¢-T) i8 exp j[éc(t) + ¢o(t-T)). In the special case
of linear coded sequences one has then

B B (t=T) g (e-T")
and also

Balt) JSCET) id (t=Ty) i (e-T') (48)

T’ being a delay which depends in a pseudo-random fashion on the shift between the codes
added together.

Now apply the results from the previous section. The limiter input signal is mathe-
matically described by Eq. (40), where the exponent of the strongest signal is

idg(t) = j[B(t) ¢ 2mhyt) (49)
the exponent of the second signal is

id (t) = jlac(t-T) ¢ 2mfgt ¢ &,0] . (50)
and the exponent of the third signal is

Jdy(t) = jlde(t-Ty) ¢ 2nfyt « &) . (1)

° ut&:nrmquncy. é0 Ad 4,, are the RF phases between the second and

the first and the third and the first signal respectively, and 7, and T, are the mutual
delays. Inserting Eqs. (49), (50), and (51) into Eq. (46) results in
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sOu' - Z Zcﬂm(al'az) el(qulo'né‘J,O)

y e-j(mon-l)gbc(t)ojméc(t-T, Yrind (t=Ty) ejz-nfo(r) ' (52)

This expression may be significantly simplified if one realizes that exp jk¢. 18 equal to
exp jo. or to 1, depending on whether k is odd or even. Using also the property given
by Eq. (48) one can write the following truth table for the exponential expression

exp [~j(min=-1)d.(t) + jms (t-T,) + jnoé.(t- T) )R

even m odd m
j t j t-T
even n e’d"( ) e'é‘( 1)
odd n ejd;c(r-Tz) ei!‘b,(‘)'%("'.)‘c’a“"ﬂ‘: —. cj._s‘_u—r-)

One can now write Eq. (52) in the form of a sum of four terms in such a way that each
index of a Fourier coefficient C,, is even or odd throughout each summation:

F( 2k ot 200 )] A () iami e
QM" = [Z Z C?*.?l(al‘a2) Py 10 a0 ] e W ¢ [\]
R}
'{
' {

. A AR SR TS AR DIV S Gy N LD o VY LI
‘{ z.czn.x.u.:(a;-“z)«[ ‘e ‘"}r e (8Y)

-

J{ (1), 0 2, jé =T )y jani ¢
Z.:czhl.zl(“v“z)' 10 200 ] IO R o

Ca. 2001?89 ¢

-
-

2k (nol)éw}} cu&‘_u-r’) ’nm’v

™

This expression shows that the limiter output consists of four signals, three of them be-
ing identical with the three input signals except for an amplitude change and the fourth
signal being an image of the coded sequence at some pseudo-random starting nosition.
The amplitudes of all four signals can be calculated if the ratios of the small to large
signals before limiting and the RF phases are known, without requiring specification of
the particular linear code used. The amplitudes are given by the expressions in the
large enclosures in Eq. (§3). These are also the amplitudes which the four correlation
peaks of the signal ~_ ,, will have after crosscorrelation processing with respect to the
transmitted radar code ,(t;:. R is hence possible to derive quantitative information

about capture and {alse turget generation effects by evaluating the sums of Fourier co-
efficients as indicated by Eq. (33).

As has been indicated, the Fourier series approacl. reveals its usefulness and power
through the fact that the summations in Eq. (53) can be transformed back to the original
domain, thereby enabling numerical discussion of results without a  ~d to Xnow the Fou-
rier coefficients. Through inserting the arguments o, : » and/or s, « inplace of o,
and/or #, in Eq. (45), one derives the foliowing three relations:

s At A5

-
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PRAILPALILYD Z (-1)7 C (2, a,) & Ehtm0a) (54)
- n

e“(a"o’.") = ¥ Z -D" C (2.8 el(no'mo’) . (58)
L] ]

and
. o . 5
R 0y0m) _ Z Z (-1)™" Con(ay. 2q) el(ndionoz) ) (56)

- »

These expressions contain the same Fourier components as Bq. (45), however, with al-
ternating signs, so that coefficients with even or odd = and n values may be made to re-
inforce or cancel by suitably combining Eqs. (48), (54), (55), and (56). Thereby a back
transform for the amplitude relations in Eq. (53) is obtained.

In adding Eq. (45) and Eq. (54) all the terms with even » values will be doubled and
all the terms with odd » values will be canceled. This may be written in the following
self-explanatory shorthand notation:

4 = e
(45) + (54) = 2 £ L. c 1)
In & similar fashion one obtains three more useful linear combinations:
(45) - (S4) = 2 c....
2 b o
of‘ s
a's
(88) ¢+ (36) = 2 -1H*C ... .
Z i o
and
(58) - ($6) = 2 e ... .
Z;' i @

Now linear combinstions are formed between Bgs. (57) and (39) or between Eqs. (58) and
(60) with the purpose of reinforcing or canceling terms with even or odd n's. Oune obtains
‘four Mnear combinations of iaterest:

(S7) ¢« (S9) = (45) » (SA) » (S5) ¢« (%)
:.Z Z C ... .
st ol : ("’
even even
.ty ate

SRR RN RN P e 11

L 7 C KR PR

e T R s

TR e
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(58) + (60Y = (45) - (54) + (55) - ($6)

4Z Zc (62)

all sl
odd even
="' n's

13

1

(57) - (59) = (45) + (54) -~ (55) - (S6)

WY Yo -

all all
even add
-'s RS

(58) - (60) = (45) - (54) - (55) + (56)

=4 ) ) e ()

all all
odd odd
e's n's

These linear combinations are expressions exactly of the form needed to express the
amp:iitudes in Eq. (53) in terms of ofc.

From Bq. (61) one obtains the amplitude of target 1 (strongest target):
Target 1 amplitude = 0.35

[,“‘-»‘W Oro) | G090 T Sy0) | (89 O30 ™) | ,""dm""‘:o"’] X (85)
From Eq. (63) oue obtains the amplitudes of the second-strongest true targei:
Target 3 amplitude = 0.23

[.f.(é‘.-ézo) N ’i.(‘.."~‘1.) . 'j.(‘.,-".") . pi.(é|"'-é,g")] ) (“)

The smallest true target amplitude is obtained from Eq. (63):
Target 3 amplitude = 0,23

[,”“sr“u‘ v o!t Gt TSy | 10(8yg 8yt ) ,“‘“*u"**n"’] . (87)
. The false target ampiitude follows trom 2q. (64):
False target amplitude = 0.28
[e"“w‘n’ I (O S TUPEL (L TR T it I .-"“ub""n""], (e8)
Equations (88) through (68) are coniplex notations describing both the amplitude change,

Le.,ewcmmmm&mﬂuom A problem sxists how o pre-
sest the aniplitude distributions which degend on two variables (s, and 4,,) and on two

A 33 N I R b i e e S R
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parameters (a, and a;). It was decided to write a program for the NRL CDC-3800
computer, using eeparate real and imaginary expressions for exp ja(#,.4,) derived

from Ey. (44):
. 1+ a coséh, + a, cos @
Re eu(0|.82) B, 1 : 2 2 = (69)
\/(ha‘ cos 6, +a, cos 6,)° + (A sin 8 +a, sin 6,)
and
n ,i‘(ol":) i a, sin 8, + 2, 3in 0, .
N (70) '

(1+a, cos @, + &, cos 0,)’ + (8, sin 6, v+ a, 3in @, )’

The product obtained from the computer i8 a punched paper tape which contains the data
for a pseudo-three-dimensional plot to be drawn by the Gerber plotting machine at NRL.
Thug any handling of numerical data by a draftsman is circumvented.

This report shows the resulting absolute value amplitude distributions for three i
cases: Figs. 11 are for three equally strong signals at the limiter input; Figs. 12 are .
for two equally strong signals at the limiter input, with the third signal 10 dB smaller

than either one of the stronger signals; and Figs. 13 are for one strong signal and two

smaller signals, each of which is at a -10-dB level with respect to the strongest signal.

The strongest false target is obaerved if the three true target signals are equally strong

and in phase or 180 degrees out of phase, In this case each of the true target waveforms

and the false target will appear with an amplitude equal to 1/2 of the maximum poasible

ataplitude. With finite length codes the false target may actually be slightly stronger

than any one of the true targets. This effect is due to the interference of range side :
lobes, as will be explained shortly. )

If one has two equally strong signals and one smalier signal at the limiter input,
then a false target is generated of approximately the same size as the captured smaller
signal, as can be seen from comparing e in Fig. 12(d) with the surface in Fig.
12(c). The two stronger signals suffer capture to an extent depending on their relative
phasing, and it should be noted (Figs. 123(s) and 12(b)) that each maximum of one signal
coincides with a minimum of the other signal component.

§

ded If all input signals are equally strong and

or 180 degrees. Thei one can read from Eq. (44) or trom Egs. (69) 10) that - ‘
exp ju(8,.0,) = 1 i ot Jesst one of the argur.wnts is equal to 0 and that cxp sa(w.») : -1,
To obtain the captured target and the falve ta amplitudes, one has to combine the ex- o *

ponential functions according to 8gs. (68) through (38). One obtains the following:

Case 1: All true targets having the same polarity, f.e., o, : o,, - 0:
target 1 amplitade = 0,35 [(1) + (1) + (1) ¢ (-1)] = 0.8 |
target 2 amplitode = 0.38 {(3) - (1) + (1) - (-1)] = 0.8 .
target 3 amplitude = 0.28{(1) + (1) - (1) - (-3)] = 0.8 -
taloe target amplitude = 0.38 ((1) - (1) - (1) + (-1)] = -0.5.
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Fig. 11{a) - True target 1 amplitude for the case of three equally strong expanded
signals using zero~pi shift register phase coding (for machine convenience the
parameters ¢, , d;0, 44, and a, are labeled as shown)
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A PHT 10 1IDEDY

Fig. 11(b) - True target 2 amplitude for the case of three equally strong expanded
signals using zero~pi shift register phase coding
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i | - True target 3 amplitude for the cas of three equally » expanded
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Fig. 11(d) - False target amplitude for the case of three equally strong
expanded signals using sero-pi shift register phase coding
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TARGET NO 1
AMPL 1 TUDE

PHI 20 (DEG)

/J

PARAMETER CHOICE
Al1=1,00 R2=0.32

X

PHI 10 (DEG

Fig. 12(a) - True target 1 amplitude for the case of two equally strong targets
and one smaller true target using zero-pi shift register phase coding

TARGET NO 2 ﬂ
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PHI 20 (OEC)

PARAMETER CHOICE
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: Fig. 12(b) - True target 2 amplitude for the case of two equelly strong targets
Ch and one smaller true target using zero~pi shift register phase coding
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TARGET NO
AMPL I TUDE

PHT 20 (0D

180

PARAMETER CHOICE
Al=0.32 R2=0.32

N

PRI 10 (DEG

Fig. 13(a) - True target 1 amplitude for the case of one strong target and two
equal intensity smaller true targets using zero-pi shift register phase coding

TARGET NO 2 ﬂ
AMPL I TUDE
PRI 20 (DEG)

PARAME TER CHOICE
Al=0.32 A2=0.32

PHI 10 (DEG)

Fig. 13(b) - True target 2 amplitude for the case of one strong target and two
equal intensity smaller true targets using zero-pi shift register phase coding
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Fig. 13(c) - True target 3 amplitude for the case of one strong target and two
equal intensity smaller true targets using zero-pi shift register phase coding
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Fig. 13(d) - False target amplitude for the case of one strong target and two
equal intensity smaller true targets using zero~pi shift register phase coding
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After hard limiting there will be four signals, each of them having 1/2 the maximum
possible amplitude, three of the signals corresponding in time shift and polarity to the
true input signals and the fourth signal corresponding to a false target with a polarity
opposite to the true target polarity.

Case 2: One of the true targets having phase opposition with the remaining pair of
true targets, e.g., #;, = 0 and ¢,, = 7

target 1 amplitude

0.25 [(1) + (=1) + (1) + (1)] = 0.5
0.25 [(1) - (-1) + (1) - (1)] = 0.5
0.25 [(1) + (-1) = (1) - (1)] = -0.5
false target amplitude = 0.25 [(1) - (=1) - (1) + (1)] = 3.5.

target 2 amplitude

target 3 amplitude

The limiter output contains again three signals of the same polarity and one signal of the
opposite polarity. One of the three same-polarity signals corresponds to a false target,
and the opposite polarity signal corresponds to one of the true targets in this case. It
should be obvious that the polarity of the compressed signals can consequently not be
evaluated to permit discrimination between true and false targets.

Consider the output signal obtained from a matched filter or a pulse compression
device, In the single-target case one will obtain an impulse-like point target response,
consisting of a central spike of height ¥, where ¥ is equal to the length of the code, sur-
rounded by uniform-range side lobes at the -1 level. This type of autocorrelation func-
tion is depicted in Fig. 14(a). If there are three input signals of equal intensity, corre-
sponding to one of the two previously considerad cases, there will be three correlation
spikes of one polarity, corresponding to three true targets in case 1 or to two true tar-
gets and one false target in case 2, of a magnitude #/2 - 1, and one correlation spike
with the opposite polarity, corresponding to a false target or a true target and with a
magnitude #/2 + 1. The addition or subtraction of 1 from ¥/2 originates from the con-
structive or destructive interference of a uniform-range-side-lobe level with the corre-

lation peaks, Hence it may happen that the false target is larger than any one of the true
target responses,

The existence of a spurious target response has been confirmed by a computer sim-
ulation. Figure 14(a) shows the autocorrelation function of a maximum-length linear
shift register code with L = 63 bits. This function is descriptive of the radar response
to a single point target. Figure 15(a) is a plot of the processor response due to three
equally strong equi~-phase true targets. ‘The response is obtained through addition of
three mutually delayed binary-coded video signals, hard limiting, and crosscorrelation
with the original code. The resulting crosscorrelation function shows a spurious re-
sponse exactly as predicted by the theory. The preservation of a uniform-range-side-
lobe level and the predicted capture effect are confirmed. The uniform-range-side-lobe
level is preserved since the crosscorrelation function depicted in Fig. 15(a) is the same
as the sum of four autocorrelation functions, each of them having uniform side-lobe lev-
els as shown in Fig. 14(a), weighted with the factors +1/2 or -1/2, and mutually delayed
by the amounts 7,, 7,, and 7°.

Figure 16(a) when compared with Fig. 15(a) exhibits that the false target may
undergo a very erratic motion if the true target geometry changes but very slightly.
This erratic motion effect may be used in a video integration process to enhance the ra-
tio of true targets to false targets.
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Fig. 14(a) - Simulated radar
response to a single target,
for a radar using a 63-bit
repetitive code
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Fig. 14(b) - Simulated radar response to a single
target, for a radar using a 63-bit truncated code

Fig. 15(s) - Simulated radar
response to three point targets,
for a radar using a 63-bit re-
petitive code
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Fig. 15(b) - Simulated radar response to three point
targets, for a radar using a 63-bit truncated code
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Fig. 16(a) - Simulated radar
. reaponse to three point targets,
........................... i..“‘......;A.‘.........’.‘..-...... of a slighuy varied geometty'
for a radar using a 63-bit re-

petitive code
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Fig. 16(b) - Simulated radar response to three point
targets, of a slightly varied geometry, for a radar
using a 63-bit truncated code

Figures 14(b), 15(b), and 16(b) show the pulse compression waveforms obtained if
the code sequences are truncated. It is known that truncation increases the average
range-side-lobe level. The spurious targets may be observed at the saame locations
where they would be if the code sequence were repeated. The false target response may
be of reduced magnitude and depends on how much the expanded radar signals overlap.
Since the range-side-lobe structure of truncated sequences is very complicated and ir-
regular, an exact theory to quantitatively explain capture and false target genecation ef-
fects should not be expected.

CONCLUSIONS

It is shown in this report that hard limiting of superimposed expanded radar returns
may cause & false target effect in addition to the well-known capture effect. The false
target effect has been known for the case of a pair of linear FM radar returna. It is
shown that a zero-pi-phase-coded radar signal modulated by a maximum-length shift
register sequence may be subject to a false target effect. It is interesting to note that
with two targets in the case of sero-pi phase coding there is capture only and no false
target effect; at least three true targets must be taken into account to show the existence
of a false target. This study may serve as an example to show the erroneous conclusions
one may reach, in nonlinear systems theory, by deriving rules about muitiple target re-

e s st AR, 1+ S o

o SRR e e,

e

sponses from the study of a two-target model.

To avold false target etfects one must avoid the limiting of expanded radar returns

having a high signal-to=-noise ratio.
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Appendix
NUMERICAL DETERMINATION OF THE FOURIER COEFFICIENTS

The coefficients C, are the Fcurier coefficients of the complex function «xp jr(#)
as can be seen from Eq. (8). The {usi Fourier transform is a convenient technique for
the given task, in particular since it is "naturally" adapted to the handling of complex
variables. Therefore a program has been written in the XTRAN language for a time-
sharing computer terminal facility ai NRL, using an FFT subroatine provided by Com-
share. A program listing is reproduced at the end of this appendix.

The program goes through the follewing iogical steps:

1. Read ¥ = number of samples; this must be a power of 2.

2. Read the small-to-largc signal ratio.

3. Compute a period of the function «xp jato) at the ¥ saxpling points

N~ S LY I

using separate numerical expressions for the real anc jor the imaginary parts of the
function

ety g an Vi sir ) (jeaeasty

t» acos a sin A
2 )

N ———— £ - .
o e e
/[ ol daves 4 ,/l v al +» dacos B

4. Calculate the Fourier coelficients of this function by meuns of an FFT subroutine.

S. Print ot all €, values of interest (the printout ¢ing restricted to the range
ne 18, -14, ..., 14, 1S and C, - -60 dB).

8. Go to step 1 10 reiuitiate the program with 2 new data set, (Subsequent o step 5
the program returns o its starting point 8o that a naw data set can be read and the cor-
responding ¢. values can be determined. The progiam recycles until its execution is
interrupted by an “escape" command to the compuie;.)

To ensure that a sufliciently large number of sampling points was used, their num-
ber was inrreased by f{actors of 2 from one iteration to the next uatil the calculated co-
elficients rem. ned the same to within 0.01 dB. To exhibit the convergence of the
computed ¢, values tuward a limit when the number of sinples Is increased, the se-
quence of printouts for M 1+ » =2 -10dBand for ¥ = &, i85, 82 and 128 samples is
reproduced within Table Al.




NRL REPORT 7001

Table A1
Values Printed Out for 20 log 2 = -10 dB
and for ¥ = 8, 16, 32, and 128 Samples

Order C, c, (dB) Order Cn ¢, (dB)
Number of Points ¥ = 8 Number of Points ¥ = 32

-4 0.0022 -53.14 -4 0.0026 -51.67
-3 -0.0094 -40.58 -3 -0.0094 -40.50
-2 0.0359 -28.90 -2 0.0359 -28.90
-1 -0.1521 -16.36 -1 =0,1521 -16.36
0 0.9745 -0.22 0 0.9745 -0.22

1 0.1601 -15.91 1 0.1602 -15.91

2 -0.0126 -37.98 2 -0.0128 -37.84

3 0.0013 -57.72 3 0.0020 «~53.80

Number of Points ¥ = 18

Number of Points ¥ = 128

-4
-3
-2
<1
0
1
2
3

0.0028
-0.0094
0.0359
-0.1531
0.9745
0.1602
-0.0138
0.00%0

-40.50
~28.90
-16.36

-0.22
~13.9%
-37.84
~33.80

-51.67

womomobd

0.0026
-0.0094
0.c3%9
-0.1521
0.974%
0.1602
-0.0128
0.0020

=51.67
~40.50
-28.90
-16.36

-0.22
-15.81
~37.84
-53.80
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In this case 13 data points are sufficicat. The printouts remain the same for a

larger number of data points, as shown for » = 32 and 128. The use of only eight data
points would entail some error, emlﬂlyut:ruﬁnuhunlymalhrmw
products are concerned.

' mwmrdamp&smrm.WmmVlewtydar

1, Le, i oy
was close to 2 linear sawtooth function. lnthhcmalou-mmm&;rmmuhmd»
For smaller » values 8 much smaller aumber of sampling points suificed.

The validity of the program was checked by the {ollowing criteria:

1. The imaginary part of the Fourier cosificients turned out to be 0 within the con-
fines of round.lf errors, as required by the theory presented in the section "General
Theory of the Rud Limiting of Two Input Sigoals.*

2. For »

1 (5, S, = 0 dB) the coelficients obtained

by the

computer program
agree vl those cucuhud from the special-case-equation {13) iv within about 0.01 dB.

3, For small » values the 8.02-dp loss as suggested by Eq. (19) has been confirmed.

4. For all values of », the calculated ¢, nhamiuucclkuwmcmvuh
mrmmmmm mupermaamuuolmmtuanmmolm
hard-limited summation of two sinusalds, as described (n the section "Limiting of a Pair
of Constant<Frequency CW Sinusocids.™

The computer results are presentad in two formats:

[

st
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42 H. H, WOERRLEIN

1. A set of curves for C,(a) with n values between -4 and 5 and with . values cor-
responding to the range from 0 to -30 dB, in Fig. 6.

2. Line spectra including a numerical printout for the C, values in Fig. .

Both formats have their specific 1aerits and drawbacks. The advantage of format 1
is to indicate clearly how the C, values vary as a functicn of a. The drawing would be

too crowded if one would attempt to display in it all higher order beat products, however.

For this reason the pres=ntation in format 2 was added. Figure 7 shows all beat prod-
ucts whose order is between -14 and 15 if they are stronger than -50 dB with respect to
the total signal energy.

2 pe f T 1 AR A i

510 2t R SR o S A AT Aoy 50 it o0

R St s

S




R o o1 el

e b s
N O

e

g

e BTGIRERL, o T RTIT I A ARV

NRL REPORT 7M1

PI = 34141592653
NPG=%

% NTP = TOTAL NUMBER OF UATA PBINTS, MAY BE SUBUDIVIDED INTU
NG GROUPS WITH NPG DATA PBINTS PER GROUP

1 WRITE (1.11)

READ €0,:2) NTP

NG = NTP/NPG

*FVALUATE THE FURMULA FGR ALPHA
WRITE €15,13)

READCO0,17) AlA

A = EXPCALBG(10+3720.%(=A]A))

S1 SINCZ2«%P1/NTP)

Co COSC2.%¥P1/NTP)

DY 200 J=1.NG

S = SINC(2.%P1/NG*x(J~1))

C= CUSC2.%PI/NG*¢J~-1))

DO 100 LL=1.NPG

IF CLL+EQ+1) GBT2 50

STEMP = SI  #C+CO %S

C = CO *C- Sl »3

S = STEMP

S50 DEN = SORT(l.+ A%(A+2:.%())

ARRAY (1 sNPGRCJ~1)+LLs1,1) = (1.+AX*C)/DEN
100 ARRAY(2,NPG*(J-1)+LLs1,»1)=A%*S/DEN
200 C'E ' '
URITE (1,14

ANTP=NTP

1€1)= ALOGCANTP)IZALOG(2:) +41

FOR L=2,32 ICL)=0

CALL FASFTCARRAY»1,M,SARRAYs=1,1FL)
WRITE €1,19)

VB 500 N=MAXOCNTPZ2+1,NTP-15),NTP
X=ARRAYC1sNs1,51) -

IF CABSCX)YeLTe001)? GOTOS00
WRITEC1216) N=1=NTP,»X5108#ALOG10(X%xX)
S00 C'E

DO 600 N=l,MINOI(NTP/2,19)

X= ARRAYC(1,Ns151)

IFCABS{X)«LTes001) GOTO600
WRITEC(15,16) N=1,%10.%ALOG10(X*X)

600 C'E

WRITE (1,14)

G'8 1}

na

11 F'T(3/,$SPECIFY TOTAL NUMBER OF POINTS 3 $,2)

12 F'T C14)

13 F*'T (3/,5 A [MINUS DB) & $,2)
14 F'T ¢3/)

15 F'T (/»SORDER CN CN IN DRBS$,3/)

16 FITIX,13,8%0F100455X2F942)
17 FITUFS+2) ’
RND

XTRAN Program for the Determination of C,(a):
D'N ARRAY(2,1024,151),1€3),M(236) s SAKKAY(256)

e e e e AR e 1
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