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ASY'RACT

Hard limiting before pulse compression or correlation processing Is a
common approach to the CFAR (constant false alarm rate) problem, and it
offers a good and simple solution in a single-target or scarce-target envi-
ronment. With the advent of radars with a large time-bandwidth product the
possibility arises that expanded radar returns due to multiple targets of in-
terest may overlap very largely or entirely but still may be sufficiently sep-
arated to be resolved after receiver processing. In this case the compressed
pulses cannot attain full amplitude at the processor output even if the signal-
to-noise ratio at the input is very high; this phenomenon is known as capture
and small signal suppression. The purpose of this report is to exhibit that,
in addition to compressed target responses of reduced magnitudes, false
targets may be generated with apparent amplitudes of the same order or ex-
ceeding those of legitimate targets. Spurious target generation in the case of
chirp radar has been known for some time. The theory has been extended to
maximum-length linear shift-register codes which are used as modulation
functions of pulse-compression and phase-coded CW radars. It is found that
a single pair of radar returns coded in this manner is subject to capture only
and not to false target generation. Surprisingly, however, the addition of a
third expanded signal produces a spurious response. This generation of a
false target should be taken in account when the dynamic range of future
phase-coded radars using linear shift-register codes is specified, in particu-
lar if the radar is designed for automatic track and raid-size determination.

General formulas were derived to predict the effects of capture and
false target generation as a function of the signal energy distribution and
relative phasing before entering the limiting device. The formulas were
evaluated numerically, with the results being presented in the form of
computer-generated plots.

PROBLEM STATUS

This is the final report on NRL Problem R02-38.201. The problem will
be considered closed 30 days after the issuance of this report.

AUTHORIZATION

NRL Problem R02-38.201S~~Project S-4614-6173.:

Manuscript submitted October 8, 1969.
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CAPTURE AND SPURIOUS TARGET GENERATION DUE TO HARD
LIMITING IN LARGE TIME-BANDWIDTH PRODUCT RADARS

SUMMARY

This report contains the results of a study of the effects of limiting combined with
various types of pulse coding in the suppression or "capture" of real targets and the
generation of false targets. In the study, the radar return is described by a complex
signal vector which is modulated in amplitude and in phase. The limiter generates an
output vector in phase with the input vector, but with a constant (unit) amplitude.
Throughout this report is is assumed that the limiter input waveform is the sum of two
or three phase-coded signals &f the same kind but with different delays. The component
signals are assumed to overlap entirely. Their amplitudes and the rf phases of their
carriers may be arbitrary. It is assumed that the signal-to-noise ratio is high and that
the beat products coming out of the limiter can therefore be predicted. It is shown in the
different sections of the report how the beat products may interfere with the legitimate
target returns, thus causing an apparent amplitude change (capture effect) and how they
may combine and form new signals of the same kind as radiated by the radar, thus caus- I
ing a false target response (spurious target, ghost target).

In the first two sections of the report the model and the assumptions are explained
and are related to radar designs. Examples show how limiting takes place in radar re-
ceivers. There are two cases: intentional limiting, to obtain CFAR (constant false
alarm rate) or to reduce equipment complexity, and accidental limiting, which occurs if
the radar receiver is overdriven by larj;e clutter returns or electronic interference.

The sections following the first two sections are devoted to the analysis of the lim-
iter output if the input consists of two or three mutually delayed expanded radar signals.
The sections are the following:

1. General Theory of the Hard Limiting of Two Input Signals. In this section general
formulas are derived and discussed. The nonlinear relationship between limiter output
and the instantaneous phase difference of the input signals is developed into a Fourier
series. The Fourier coefficients C,, are calculated for the order ,, in the range between
-14 and +15. The results are plotted and printed out for a number of parameter choices.

2. Limiting of a Pair of Constant-Frequency CW Sinusoids. This section may be of
interest to the designers of CW, pulsed CW, or pulse doppler radars. The theory comr-
pares favorably with a bench test.

3. Limiting of a Pair of Linearly-Frequency-Modulated Signals. It is shown that in
addition to small signal suppression there is a false target generation effect. After pulse
compression an array of false targets appears to both sides of the true target returns.

4. Limiting of a Pair of Zero-Pi-Phase-Modulated Signals. All components of the
limiter output may be identified with images of the original input signals. The smaller
signal will be captured to an amount depending on the intensity ratio before limiting and
on the carrier rf phase. The capture effect is minimized If the carriers are 90 degrees
out of phase. There is no evidence of any false targets.

m u ~ n umm um nnnm nmmm 1



2 H. H. WOERRLEIN

5. General Theory of the Hard Limiting of Three Input Signals. The two-signal
theory is extended to the three-signal case in a straightforward manner. A two-
dimensional Fourier series is used to express the nonlinear relation between output and
input quantities.

6. Limiting of a Triplet of Linear Coded Sequences. It is shown that the limiter
output is composed in this case of four coherent signals. Three signals are identical
with the input signals, and they are the true target responses; but the fourth signal has a
pseudo-random delay, and it is a false target or ghost target. The theory is confirmed
by the results of a computer simulation. (To be exact regarding the history of this study,
the computer simulation was made first, and the theoretical explanation for the false
target generation effect was sought and found afterward.) Pseudo-three-dimensional
plots show the various captured true target amplitudes and the false target amplitude as
a function of the carrier rf phases and with various signal magnitude ratios as parame-
ters. It is seen in this section that the false target may be as strong as the true targets.
If there are two equally strong true targets and one smaller true target, there will be a
false target of approximately the same size as the smaller true target. The location of
the false target changes erratically if the true target geometry changes slightly.

APPROACH

It is assumed that the radar transmits a phase-coded signal of large Ume-bandwidth
product. The phase codes considered in this report are linear FM and linear shift-
register-generator sequences, as they are described for example in Ref. 1. The target
space contains a number of discrete point scatterers at different ranges; that is, the tar-
gets are assumed to be far enough separated that they can be resolved individually by the
radar. At the radar receiver input there will therefore be a summation of phase-
modulated sine waves, with the phases between the sine waves dependin% on the very ac-
curate range increments between the multiple targets and with the time delays between
the modulation functions depending somewhat less sensitively on the geometry. The
summation of the individual radar returns will hence be both amplitude and phase modu-
lated, even if the transmitted signal envelope was constant.

The type of transmitted signal calls for a matched filter or a correlator as a
receiver-processor. In practice the receiver-processor is frequently preceded by a
hard-limiting device, which may be operating either at IF or on the in-phase and quadra-
ture components of bipolar video signals, depending on the radar design. Examples of
such receiver designs are given In the next paragraph. For the purpose of this analysis
the hard limiter Is assumed to be at IF. The hard limiter at bipolar video can be handled
as a special case of the IF limiter, wherein the input signals are allowed to be in phase
(positive) or 180 degrees out of phase (negative) and are not allowed to have phase values
in between.

To keep the theoretical model as simple as possible without losing significance it is
assumed that two or three signals with various relative magnitudes, delays, amd RI
phases are present at the limiter input. It is also assumed that the noise is negligible at
the limiter input. The assumption of a large signal-to-noise ratio may not always be
fulfilled, and in such cases the results of this analysis should not be applied. It is weil
known that the limiter acts like a linear device causing a loss of only 1 to 1.5 dB In radar
sensitivity as long as the signals ae sufficiently deep in the noise (2,3). This study Is
concerned with the case that the limiter output signal can be predicted from the radar
and the target parameters. In this deterministic cas the nonlinewarties of the channel
cause the formation of coherent beat products which may correlate with the transmitted
radar code at a time shift which does not correspond to the actual location of a physical
target. In this case a spurious target response Is generated. The amplitude of the
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spurious targ.,t cannot be explained as simply an addition of range side lobes, as would
be indicnted if 3iaear-matched-filter theory would hold. The false targets may be of the
same magiitude or stronger than the true targets. This fairly quantitative claim has
been supported by the results of a computer simulation.

Complex signal notation is used throughout this linalysis. The limiter is matheinati-
cally described as a device which removes the amplitude variation from the complex
signal. The limiter output is a complex phase-modulated signal of uniform amplitude.
It is assumed that the limiter operates distortion-free, i.e., that the phase modulation of
the input signal arrives undistorted at the output. Much of the approach to the problem
was influenced by thoughts presented by Nolen in a paper entitled "Effecti of Limiting on
Multiple Signals' (4). To pA o- . 6..,sAtinuity and also since Nolen's paper is not gener-
ally available, some of his results, particularly those pertaining to linear FM, are re-
viewed in this report.

It may be argued that the signal-to-noise ratio of the unprocessed signal is ordinar-
ily very small in typical pulse-compression or phase-coded CW correlation radar sys-
tems of large cor:elation gain. Therefore the assumption that the signail-to-noise ratio
is large would in many cases not be valid and the conclusions from this study would not
apply. It is true that the signal-to-noise ratio may be exceedingly small for a minimum
de-ectablo signal. One should keep in mind, however, that large interfering scatterers
(clutter) nay :e strong enough to dominate over the noise at the limiter input even if the
rada. f• designed to detect very small signals by virtue of a high correlation gain.

l'4FLEMENTATION EXAMPLES OF HARD-LIMITING
RECEIVER-PROCESSORS

Hard limiting may take place at IF or at bipolar video, which may also be considered
as zero IF. Components of limited dynamic range, like RF amplifiers or mixers, may
act very much like hard limiters as soon as they become saturated by large signals. The
IF limiter may be considered as a device which ideally would preserve the phase and de-
stroy the amplitude modulation of a signal. If the Input signal is mathematically de-
scribed by a complex vector of variable amplitude and variable rotation rate, then the
output signal would be given by a constant-amplitude vector which points at any given
moment in the same direction as the input vector. The output vector may be assumed to
have unit amplitude all the time. To practically implement a hard-limiting device one
may use amplilier chains whose gain is controlled through a feedback loop in such a
fashion that it is inversely proportional to the input signal amplitude. At the output of
the amplifier chain one would observe a phase-modulated sinusodl signal with consta
amplitude as long as the foedback loop is fast enough to respond to changes of the Input
amplitude. A probably less troublesome way to achieve hard limiting Is to use the cutof
characteristics of suitable nonlinear elements like translators or diodes, after the input
signa has been sufficiently preamplified.

Figure 1 is a uimplified diagram of a linear FM1 palse.compression receiver. The
RF signal coming from the duplmeer is pramp;Wled, heterodyned to a conveniently se-
lected IF, passed through a hard limiter and a veighing filter, pulse comessed in an
ultrasonle dispersive delay line, detected, and video amplified for display. The wight-
btr filter may serve a d"al purpose in this caw. It may be used to roduce the range side
iobes of the compressed radar signal and to eUminate hither harmanics which may be
generated by the diode limiter. In other words it smooths off the corners of the signal
coming from the limiter. A typical reaon for plwing a limiter -heAd of the pulse-
compression device is to nomalse the noise power so tt it is possible to set, after
pulse compression and rectiftcaton, a ditection threshold at a computed level to ahieve
a constan false alarm rate, or CFAR, no matter how strong the noise or Interference is



4 H. H. WOERRLEIN

DLOPLEIIER

FROM
LOCAL

OSCILLATOR

Fig. I - Typical linear FM pulse-compression receiver

b.*hwe limiting. The dynamic range of the radar signal becomes increased through pulse
compression by as much as its correlation gain. Limiting may also be used to keep the
dynamic range of the processed signal between convenient boundaries. Another reason
for limiting may be that it is simpler or cheaper to use components with a relatively
small dynamic range and that any large dynamic range after pulse compression would
not be needed anyway.

Figure 2 shows a commonly implemented layout for a digital correlator using binary
shift registers as memory elements and operating on coherently detected, at) called bi-
polar video signals, the In-phase or I-signal and the quadrature or Q-signai. To reduce
equipment complexity one may omit the Q-slgnal channel. One loses on that case, how-
ever, on the average, 3 4B In radar sensitivity. This type of correlator in frequently
used to process pseudo-randomly zero-pi-phase-coded radar signals. One of Its ad-
vantage* is Its flexibility, since the code memory may contain virtually any sequence of
plus sada minus bits. The only information that is recorded in the shift regosters about
the ry'ar signals is the polarity of the bipolar video signals at the instant of sampling.
The value of Its amplitude is disregarded. The output signals are therefore the same as
it %aid limiting had taken placob In the video amplifiers between the coherent detector
and the shift registers in Fig. 2.

GENERAL THEORY OF THlE HARD LIWMIT OF TWO
INPUT BIKNAIJ

The approach In the case of hard limiting of two input signals Is the same as the one
seleced by Nolen (4). In addition to reviewing the case of two constant-frequency

W Sam,
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sinusoids and two linearly swept FM signals which have been treated by Nolen, a method
of handling the case of the pseudo-randomly zero-pi-phase-coded signals by essentially
the same technique wilfl e bhowu.

Two signals at the limiter input may be described mathematically as the summation
of two complex vectors. Through separating out a factor I.xp ( 12r.1,' t ), where f,, may
be called the carrier frequency, one displays only the variations of the complex vectors
with respect to an average position or with respect to a reference vector. In Fig. 3 there
is shown as an example two superimposed signal- oi different magnitudes.

IMAGINARY A1IS

VIt'TOQ 2 ROTATIf•S AR0•UO I ME
•\ AT A RATE GIVEN k.YS[NOPOA•T oF" veCTORl

IN"'1[IR IOFIR'RI4CE F*[QUENCY

RE&L axis

Fig. 3 - Phasor dlagimn Illumtrating
limitcr operation In the complex plmse

The signal with the larger amplitude will be arbitrarily designated signal 1. If the
vectors represent two sine waves of constant but different frequencies, with 1. beinC the
frequency of shiw wave 1, vector I may be considered to be faxed and ve,.ýor 2 to be ro-
talng with the difference frequency. The true (real) electrical signal may be visualized
a the proJection on the real axis of the complex vector summation a'laled around the
origi~natft mrate I..

The heavily drawn vector in Fig. 3 repre"ets symbolic*Uy the limiter odtput signal.
Its enpolnt always falls on the unit circle around the origin, and It Is al4ltwd in parallel
with the complex vector resultant from the linear combinalton of the input signals.

To solve the prolem one has to reesent the limiter output sIpa as a function of
the phase differe.ce of the input signals with the ratio o: the smal• signal amplitude to
the large signal amplitude a a parameter. The evolving nonlinear expre"ion Is to.
complicated to be directly useful, hower. Developw the relation betwee, the output
signal sad the phase change of the lopu signals in a Fourier series permits A much more
uaselI functional presentation of Ut outplt signal in 1. fin. of stierimposed %.Oiwrent
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phase-modulated signals with a.mplitudes that can be calculated essentially through eval-
uation of Fourier coefficients.

Let it be assumed that the limiter input signals have the constant amplitudes AIo and
A, and the variable phases o( t) an -,,(t ), ,yhere t is the time. The input signal -•,
which is the sum of the two zign-s would exhi'At both amplitude and phase changes as a
function of time. By convention the amplitude 4, shall be no larger than A0. One can
then define the small signal to large signal amplitude ratio ;I, which would never be
larger than 1:

. x_ _< •(1)

0

The input signal may then be expressed as

sin zA e'1 O(k) 4A 1  e1j6 t)

A0  eilto(t){1+ a tjt (t)h( t()IJ

A Cj.' 0 (t) R ja~t) (2)

In the last line of this formula, R represents the length of the resultant vector described
by the terms between braces on the second line, and a represents its phase. Reference
is made to Fig. 4 to e:'alain the relationship. To the end of a unit vector parallcl to the
real axis is attached a smaller vector of length a and at an angle

o (t) -ý '/, ,,- 00(t) .(3),

IMAGINARY AXIS

REAL AXIS

UNIT VECTOR

Fig. 4 - Phasor relationships
in the complex plane

Ir
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The action of the ideal limiting device is to replace the time-variable amplitude of
the signal by a unit amplitude and to leave its phase untouched. This may be mathemati-
cally accompished by a simple omission of the factors A0 and R in Eq. (2). The limiter
output hence is given by

Sou [ (4)

The function a depends on the phase difference e, which in turn is a function of t.
From the geometry depicted in Fig. 4 or through evaluation of the identity

ou•; obtainsow-otan e'a(8) I + a ej9 
,(5)

S= tan asino (6)
+ a C o s 0-

A plot of a as a function of o and with the parameter a ranging from 0 to 1 in steps of
0.2 i. pictured in Fig. 5. f a = o, then a is identically equal to 0. For small values of
a, say for a = 0.2 the function resemiles a sine wave. For a = 1, a is a linear saw-
tooth function connecting from a = -90 degrees to +90 degrees and with the discontinuity
at o =* 180 degrees. For values of a inthe range between 0.2 and I the function a(,)
resembles a distorted sine wave.

ALPHA (DEGREES)
90.

-180 
-90 

0. 
0.

II

; 
-- 

THETA (DEGREES)--

Fig. 5 - Relation between the phase of the sum signal and the
phase difference of the component signals

The phase difference o may change according to a pseudo-random sequence as a
function of t, or it may be some other very complicated sequence. Hence the nonlinear
expression which one obtains for the output signal through combining Eqs. (4) and (6),

S~namely,

So=exp j [o(t) + tan"! 1 + acor 8(t)

does not directly indicate which signal components are present in 8out. In particular it
does not show how strongly the original signals are present and whether and to what

SSI
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extent new signals are generated. It is a fortunate circumstance that the Fourier series
development of Eq. (7) leads to a summation whose terms may be identified in several
cases of practical importance with Images of the input signals and with newly generated
signals. Since a is a periodic function of o with the period 27, one may use the devel-
opment

eJa(o) exp tan- I a n )

SC.(a) e Oo (8)
-s

This formula expresses an identity except at those points where the function on the left
side, has a discontinuity. A finite number of summation terms may provide a very good
approximation except in the vicinity of discontinuities. It may be remarked that Eq. (8)
does not represent a spectral decomposition of the limiter output but rather a series ex-
pansion for a nonlinear relationship.

All coefficients C, (a) are real, since a is an odd function of O. The proof is as
follows: As a consequence of the relationship e;a("O) = [eja(O)]*, where the asterisk
indicates complex conjugate, one may equate YC.(a) eI"nO and (ICn(a) eJneJ*. Hence
Cn(a) = C*(a); i.e., the coefficients C, are real. In the general case the coefficients C,n
and C., will not be the same, however.

Nolen has shown how the coefficients C, may be obtained by collection of terms
from an infinite product of infinite series in powers of exp (j 0). It is possible to calcu-
late the C, values through numerical integration methods, which may perhaps be more
easily adapted to automatic computer evaluation. The coefficients may be obtained in the
usual way through multiplication of Eq. (8) with exp (-jmo) and integration over a:

f eJ [(0)-00] dJ

- f ~C,(a) ec"' eiJO do

C.("' eJ(n-m)O dO

S217C,(a) (9)

Hence

ea [a(o)-IoJ dO (10)~cn(a) 2ff.

This integral may be decomposed into a real and an imaginary part:

SL cos [a(O) - nO) do + j sin (•,() - n do ( 1)

SO
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The second integral is equal to 0, since a is an odd function of 0. By the same token
the remaining integral taken from o = -7r to o +27 is equal to twice the integral taken
from 0 0 toe077

""f cos (a() -no] do• II
77 cos [a(O) - no] dO (12)

Inserting Eq. (6) for a as a function of o leads to the full expression for the c, values:

Cn a sin O (13)
77 Cs a-1 + a cos 0o

Although this integral cannot be evaluated in closed form for any arbitrary value of the sig-
nal amplitude ratio a, it can be integrated in the special case a = 1. In this case one
obtains

o o
1 sin O - 2 sin 1 cos-•

!a(O) =tan-! si tan-1 2 2

1 + cos 0 2 cos20

sin -

tan-1  7 (14)

cos "2

This is the equation for the straight line which appears in Fig. 5 if the parameter a is
equal to 1. Inserting Eq. (14) into Eq. (12) leads to

C,(1) = f cos - nO) dO ... . (15)ff 0 2 1 2n

Also if a 0 O, i.e., if the smaller signal disappears entirely, a trivial solution exists. In
that case i is identically equal to 0 and one obtains

C( : •0) cos nOdO 1, if n O,

= 0, for all other n values . (16)

The general shape of the curves in Fig. 5 suggests that a sine function might be a reason-
ably good approximation for a (o) as long as a is small enough. Analytically one may
derive from Eq. (6) that a good approximation is

a = a sin , (17)

for small values of a. Inserting this approximation into the integral for C, leads to

11 co. (a sin 0- nO) dO. (18)

0I
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This is an integral representation of a Bessel function of the first kind of the order n and
with the argument a (Ref. 5).

A good approximation to C, and C- 1 for sufficiently small values of a is therefore
C, = J1 (a) and C. 1 = J._(a). From the first term of the McLaurin series for i (x) one
obtains the approximate relationships

C-1 = -a/2 and C, = a/2, if a << 1 (19)

It would be erroneous, however, to regard Eq. (18) as an approximation for the higher
order coefficients C,,. The higher order coefficients C, depend very critically on the
higher order terms in the development of a as a function of e, and exactly those have
been neglected in the approximation given as Eq. (17). A valid approximation may be ex-
pressed as a summation of products of Bessel functions (4).

The approximate expression given as Eq. (19) along with the special result given as
Eq. (15) provides some insight into the general behavior of the Fourier coefficients C,
as functions of a. A numerical method based on a fast Fourier transform computer
program has been used to obtain numerical answers for a set of different parameters.
The computer program and the methods by which it was checked are explained in the Ap-
pendix of this report. The results are presented as a set of curves in Fig. 6 and in the
form of line spectra in Fig. 7. Figure 7 also exhibits digital printouts for the C, values.
The following section of this report will illuminate the physical significance of the Fourier
coefficients C, in a special case.

_j -50

LUJ

~-40

-30

Fig. 6- The Fourier coefficients C, as functions of the sig-
nal intensity ratio a (labeled A by the computer) and of the

-2C order n (labeled N) ranging between -4 and 5
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Fig. 7(e) - Spectral line presentation ot the Fourier coefficients C.• with the order .between -14 and 15 and strength above -50 dB
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0

V/I .. . {~f t

1 0 1

Fig. 11) - Spectral line preuentatiuon o the Fourier coefficients C.
with the orJer . between -14 and 15 and streng above -50 dB

An expression for the limiter output signal which will later prove to be quite useful
will be derived. The combination of Eqs. (3), (4), and (8) results in

~ 2C, " ~ '" (20)

where the coefficients C. are the Fourier coefficients which have been discussed in this
section.

LIMITING OF A PAIR OF CONSTANT-FEQUENCY CW SIN==IDS

The phaes of two input signals Uat are comstat-frequency CW alnuamos ema be
expressed through two linear finetlos of Utni :

40(t) 2Wa mdt 61(l) 2911 *t . (410

where 1. and ,t aredo te coital frequencies of the sueo~ls .• is dth phame shift
which exdsts at the moment 0, and the small to larger signal amplitude ratio is
given by the parameter ,a which hW been deflad in ft. (1).

Insertion of Sq. (11) into Eq. (20) permits one to write as expression uw the limiter
Output:

This is an expression for a inar ofetolta Cfolnte| efty suMo) cs t-
go at freqimcy to with amlptn C¢,.), tr•eqwmmy f, v4% a-m1ld1a C,(a), sad sift-

baIns arranged an both skis of ti. pair of intp hisqmics at regular slrvls deter-
mined by th• frequscy differipoe , f and with ampllt ted aper off and gives by
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CI, C3 , C4 ,... on the side adjacent to f and given by C.-, C-2 ,• C3 I ... on the other
side. Consequently Fig. 7 may be regarded as line spectra of the limiter output wave-
forms in the case of two monochromatic input oscillations with different frequencies.
The figure shows how the spectral envelope becomes distorted unsymmetrically unless
the two input signals are equally intense. It should also be noted from Fig. 7 that the
higher order beat products (n farther from 0) fall off much faster for small , values
(si so closer to 0 db) than for a values in the vicinity of 1. It is evident that the smaller
signal may be suppressed relative to the larger signal by as much as approximately 6 dB,
as it is well known (6).

It can be seen directly from Eq. (19) that the amplitude ratio of the smaller and the
much larger signal after limiting is equal to

S... . . . •,th , I(23)
Co(a) 2

That is 1/2 the amplitude ratio before limiting. The factor 1/2 in amplitude corresponds
to -6.02 dB. The smaller signal is accompanied by a mirror image of approximately the
same size.

It is also possible to explain the 6-dB suppression of a small signal without going
into mathematics. The small signal may be visualized as a small vector attached to the
endpoint of the larger signal vector. The vector resultant from the summation of both
input vectors equals the large signal vector with a small additional amplitude and phase
modulation caused by the smaller signal. Half of the small signal energy produces the
amplitude modulation and half produces the phase modulation of the signal superposition.
After limiting, the signal energy is normalized and the amplitude modulation is removed,
which would account for a 3-dB loss. The phase modulation is contained in two sidebands,
namely in the captured small signal and in its image. Both are of approximately the
same inteasity and thus suffer a power splitting, which accounts for another 3-dB loss in
the power balance.

A simple bench test has been run by R. M. Crisler to check on the validity of the
theoretical results described In this section. Two constant-frequency sine waves of high
spectral purity, one at 60 MHz and the other one at 60.016 MHz were added together in a
hybrid circuit, amplified in an Intentionally strongly overdriven and hence hard-limiting
IF strip and displayed and photographed on a Singer Model SPA-100 microwave spectrum
analyzer. The amplitude ratio , of the two sinusoids could be adjusted by means of a

Scalibrated attenuator inserted in the 60.016-MUz signal path before the hybrid. Tie IF
amplifier may be assumed to have a fairly flat amplitude response over the frequency in-
terval of interest Figure 1(a) shows the signal superposition before entering the IF
strip as it appeared on the screen of a Tektronix type 454 oscilloscope. In Fig. 8(b) is a
display of the amplifier output, which exhibits fairly constant amplitude except in the
immediate vicinity of the nulls of the input signal envelope. When the input signals dif-
fered by a few decibels, the minima of the unlimited signal envelope were large enough to
saturate the IF amplifier so that ore would observe a constant amplitude oscillation with-
out any dips in the output. Figures 6(c) through 8(J) show the results of the spectral anal-
sis of the Itnearly superimposed sinusois (Fig. (c)) ad of the hard-limited signals

vhe rest of the pictre). T. vertical scale is linear In decibels, eah division cre-
tspo to a 10-45 step. FIgur0 (c) shows that the input freqeeis an tree from

s r sideiands before ethey e*Wr the limiter. In ft i(d) ame ie a symmetrical
arra of spectral limas generatd on ltath sides of the equally strong linu frequsaciss.
I somld be remrld that the amplitudes of the signal freqecles I ad. arwe ap-
psaumaeY 4 dB below the intmu ty provded by the limiter for a single ;#Ap swAl
(ompre Fig. 6(d) with ni. Rim
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(a) Scope picture of two equally
strong sinusoidal signals be-
fore limiting

(e) Spectrum of the limiter (h) Spectrum of the limiter- output signal from two input output signal from two input
signals differing by 5 dB signals differing by 20 dB
(same as Fig. 7(d)) (same as Fig. 7(g))mI

(b) Scope picture of the samesignals an in Fig. $(a) but after
hard limiting

(0) Spectrum tf the imlfer (1) Spectrum of te limiter
output signal from two input output sigald from two input
slpals differing by 10 dB signals differlag by 25 M
(same as Fig. 7(&)) (aMe Fig. 7(h))

(C) Spectrum of the
signals of Fig. Ata)

(3) S•ectrum of do bolmer (j) 9peCtnM of the limiter
Gutput sina fins two 110 IPt 850l6 from om iqm"
sigals dftewug by is dS siod

(g sfit. -I1))

(14 gowerum of the UMntr
oets (muwd ( Fig. 8(ba) from
ho, owualy drew uglp"l SW

nil. sameas ttg. (a))FiU. 6 - Wavefrorm aef Wwera isesijd isa abeh t
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If the input signals differ by as little as 5 dB, the stronger output signal obtains
nearly its full size, and the smaller signal appears at approximately -10 dB. That means
the smaller signal was suppressed by approximately 5 dB through the limiter and it is
accompanied by a slightly smaller image line and by a regularly spaced array of spectral
lines which taper off unsymmetrically (Fig. 8(e)). If the input signals differ by 10 dB
(Fig. 8(f)), then nearly the full amount of the theoretically predicted 6-dB small signal
suppression may be observed. Figures 8(g), 8(h), and 8(i) show the small signal sup-
pressed by 6 dB and accompanied by an equally strong image when the input signals dif-
fered by 15, 20, and 25 dB respectively before limiting. Figure 8Q) shows a single spec-
tral line representing the fundamental frequency of a hard-limited single-frequency input.
The spectral lines displayed in Figs. 8(d) to 8(i) are the beat frequencies of the two input
signals due to the nonlinear processing; the spectral lines are not harmonic frequencies.
Harmonic frequencies which are present if a 60-MHz signal is limited would be at multi-
ples of 60 MHz, ar.J they would therefore be outside the spectral range displayed, which
covered an interval of approximately 200 kHz centered around 60 MHz.

Point-by-point comparisun of the measured spectra such as shown in Fig. 8 and the
"calculated C. values pictured in Fig. 7 discloses their exact matching.

This section of the report may be concluded with the remark that the beat frequencies
generated through hard limiting would appear like false targets in the case of a CW radar
or a pulse doppler radar of insufficient dynamic range. As applied to a pulse doppler
radar one may say that two clutter components of slightly different doppler frequencies
but both falling in the clutter notch of the processor response - if strong enough to drive
the IF amplifier into saturation - may generate beat frequencies which would be within
the accepted doppler domain.

It may be noted also that an analogy exists with an antenna problem. False angular
responseo (ghost targets) are observed in a two-tai-get environment if the elements of an
array antenna are nonlinear (7,8).

LIMITING OF A PAIR OF LINEARLY-FREQUENCY-
MODULATED SIGNALS

Consider a pair of linearly-frequency-modulated signals in the Idealized case where
the input signals are entirely overlapping and very strong as compared to thermal noise.
The analysis is very similar to the one given in the previous section for the case of
constant-frequency sinusoids. A pair of linear FM signals gives rise to beat frequencies
within the bandwidth of the frequency excursion. These constitute signals which are
compressed by the matched filter or correlator and which will appear, after processing,
as an array of false targets both behind and ahead of the pair of true targets (4). If the
expanded signals overlap less than completely, there will be a proportionate reduction of
the false target magnitudes (4). Let one input signal be given by

A0 exp j(2nfot + bt 2)

and the other by a scaled, time- and phase-shifted version of the first signal:

A, exp( 27f(t -T) +(t-T) 2 +b

The instantaneous frequency of the first signal, which is by definition equal to the deriva-
tive of its phase divided by 27, is then equal to

iI

I L
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b

and the instantaneous frequency of the second signal is given by

F 0o •-(t-T) .

where T is the mutual time shift between the two input signals. Inserting

6 0 (t) 2rfot + ht 2  (24)

and

61i(t) - 2 0fo(t - T) + b (t - T) 2 + (25)

into Eq. (20) results in

ot) - • c, n t2O2fo( t-nT)4b( t-nT)
2

+ný,1 o-(n-1)nhT
2

] (26)
n=-wv

Equation (26) says that the limiter output may be decomposed into a summation of linear
FM signals. By comparison with the expressions for the input signals one derives that
the limiter output consists of an array of mutually-time-shifted images of the input wave-
forms, with delay T between adjacent components and with amplitude C,, for the nth
component.

At the output of the matched filter or correlator which would follow in tie signal
processing scheme after the hard limiter one would therefore observe an array of com-
pressed pulses, namely, the large signal response with amplitude C0 , the smaller signal
response with amplitude C¢, an image response with amplitude C-1 , and smaller pulses
at regular intervals and with amplitudes C2 , C,, ... on the side of the smaller true sig-
nal and with amplitudes C-,, C.,, ... on the side of the image. If the compressed and
detected signals were passed through a logarithmic amplifier, one would be able to ob-
serve at its output essentially the same waveforms as the ones depicted in Figs. 8(d)
through 8(j). All that has been said in the previous section on the amplitude ratios and
capture effects would apply also in the case of linear FM. One could in fact envisage the
spectrum analyzer displays 8(d) through 8(j) also as scope pictures for the case of linear
FM, simply by considering the traces as functions of time instead of frequency. It is
then obvious that one observes false targets in addition to the true targets. This phe-
nomenon may be very cumbersome if the radar should be used for more functions than
simple target detection. The way out of this dilemma would of course be to use a re-
ceiver and signal processor of sufficiently large dynamic range.

Attention should also be given to the phase term 2v 0 nT in Eq. (26), which causes
the doppler frequency of false targets to increase with order n if there is a mutual
motion between the true targets. This means that the doppler of false targets may be
within the acceptance domain of a pulse-compression pulse doppler radar even if the
"true" responses due to clutter would be rejected by means of doppler filtering of the
compressed signals.

W1
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LIMITING OF A PAIR OF ZERO-PI-PHASE-MODULATED SIGNALS

Consider now the class of radar signals which may be generated through switching
the phase of a sinusoid between 0 and 180 degrees depending on a binary code. The bi-
nary code may be visualized as a sequence of zeros and ones or as a sequence of plus
and minus signs or as a video type waveform alternating between two discrete voltage
levels. Since the result of this section will be generally valid for any binary coded se-
quence, no further restriction will be made at this point as to specific code classes. An
expression shall be derived for the small and the large signal size after hard limiting as
a function of the RF phase 6 1 between the input sinusoids and with the input amplitude
ratio a as a parameter. As before in this report the RF signals are assumed to be com-
pletely overlapping and strong as compared to the noise. Equation (20) will permit one
to decompose the limiter output into a meaningful sum of component signals which may
be identified with the input signals. Let the code be represented by a sequence of coeffi-
cients ek whose values are either 0 or 1. The phase modulation impressed on a radar
signal may then be expressed as

i(t) = 7 ' rect t - (27)
k

where the summation runs over all k values, t is the time, - is the duration of a bit,
and rect x stands for Woodward's rectangular function notation:

rect x = 1, for x in the interval (-0.5,0.5) ,

(28)

= 0, outside the same interval

If the carrier frequency is given by fo, then the phase of the stronger input signal may
be written as

00(t) = 2rf 0 t + C(t) , (29)

and the phase of the smaller signal may be derived from the phase of the stronger signal
through introduction of a time delay T and the mutual RF phase 0:

fj(t) = 2wfot + 4c(t- T) + 41" (30)

Inserting these expressions into Eq. (20) yields
S~+0

sotut(t) = C, ej n.,(t'T)-(n'1)0,( t)+nr,°] e j2/f.t (31)

It is now important to observe that both 4(t) and 6,(t - T) can assume only either one
of the discrete values 0 or -n. Hence

Se~~j[n& ( t.T)-(n-l )(/©( t)] JNV O
e -- e , for all even values of n,

(32)
J(

e = e * , for all odd values of n

Equation (31) may therefore be transformed into two separate summations, one of them
combining all even-index terms and the other collecting all odd-index terms:

. .

It
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sout(t) 0 ' 
2

. e e

+ (• c 2 n, 1 ei(2n~1)•/Io) ej,6c(,-T) ej2lT°t (3•'

"\ n I-e /

From this expression one can read that the limiter output may be written as the summa-
tion of two signals, each of them being of the same functional shape as one of the input
signals, and with the complex amplitudes described by the sums of exponentially weighted
Fourier coefficients of even or odd order respectively:

C 2 n e 0) or (.r C2n, 1 e )to (34)

These expressions are consequently properly called the amplitude of the stronger signal
and the amplitude of the smaller signal after limiting has taken place. Since Eq. (33) is
a complete description of the limiter output signal as long as the assumptions made are
valid, there is no indication of false targets.

It is possible to transform expressions (34) back to their original domain in a gen-
eral fashion so that explicit knowledge of Fourier coefficients C,(a) will not be required
for numerical evaluation of capture effects. From Eq. (8) one may derive

eja(0+,7) ej. 1( ) ,(0 ,,,) : - t)n (a) jn~O (35)

Hence one obtains through addition of Eqs. (35) and (8)

eta(O) 4 eJa(0*7) : 2 ••C 2n( a') e j2nO (36)

Through subtraction one obtains

jia(O) - e=(0 +77) 2 L C2 n, (a) ej( 2n'l)o (37)

These are general relations exactly of the form as needed to express the limiter output
signal amplitudes (34) in terms of the function exp jc(o). The large signal amplitude
after limiting is

2C 2 , j2n eJ (10) + ei8((10t'n (38) 9 .
and the small signal amplitude is ' "

SC 2 ,| t' - J ]/ 2

Equations (38) and (39) have been programmed for automatic computer evaluation. The
results are depicted in Fig. 9 both for the large and for the small signal distributions.
There is a horizontal line at the -3-dB level labeled with the parameter 0 dB indicating
that the power is equally split between the output signals if the input signals are equally
strong. All curves below or above the -3-dB line refer to the smaller or stronger signal



22 H. H. WOERRLEIN

5 DB

-30, 
--

5. 
. .. ........ .

u 45 90 135 180

IN DE5REE5

Fig. 9 - Capture of a pair of zero-pi phase-coded signals as a
function of the carrier rf phase, with the signal intensity ratio
as the parameter

respectively. The curves indicate that the capture effects are minimized if the RF phase
between the input signals is around 90 or 270 degrees. If the RF phase amounts to zero
or 180 degrees, the smaller signal will be suppressed entirely, at least in the absence of
noise or any other type of third signal component. Noise in addition to the two input sig-
nals will permit the smaller signal to determine the limiter output signal with some fi-
nite probability even in the case of an RF phase difference of 0 or 180 degrees. If there
is a correlated third signal at the limiter input, there may be a false target generation
effect, as will be shown in the next section. It should be mentioned that Eqs. (38) and
(39) may be used to derive a simple geometric construction method in a complex plane
to describe the capture effects of two zero-pi-phase-coded signals. It is worth under-
scoring that Eqs. (38) and (39) properly describe the capture effects no matter what
particular binary phase code is used.

GENERAL THEORY OF THE HARD LIMITING OF THREE
INPUT SIGNALS

The previous sections have discussed and provided mathematical descriptions of
how the limiting of a pair of linear FM signals gives rise not only to capture effects but
also to spurious target generation, whereas any kind of zero-pi-phase-coded signal pair is
subject only to capture and not to false target generation. The absence of false targets in
the case of zero-pi phase codes, although in agreement with general knowledge on this
subject, may seem somewhat baffling from a theoretical point of view, in particular since
certain pseudo-random sequences, namely linear maximal sequences, which are fre-
quently used as radar modulation functions and which are easily generated by means of
feedback shift registers, exhibit a very strong structure and have the property to produce
a sequence of the same code but with a different delay if combined linearly. This prop-
erty justifies the adjective "linear" in "linear maximal sequences," and when one speaks
here of a linear code combination, one means the new code generated if two codes with a
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relative delay between them are combined according to the rulb 3 of Boolean algebra
on a bit-to-bit basis. This kind of linear combination would also take place if two phase
modulated RF signals are multiplied or beat together, since the multiplication of com-
plex signals results in the addition of the exponents. The effect of signal multiplication
takes place at any nonlinear element in the signal channel and especially in a limiter. It
was therefore speculated that false targcts might be generated, if not in the case of two
input signals, in the case of three or more input signals.

The theory developed is a simple extension of the analysis made for the two-input-
signal case presented earlier in this report. The same assumptions are made through-
out, namely, complete expanded signal overlap and hign signal-to-noise ratio. The input
signal to the limiter may then be written as

Sinr A. ej(iO(t) + A, ejo'(t) + A2 e,'62(t)

Ao eJo(t), + a 1  + a 2 ejS2

- A, eJ0O(t) R eja(t) (40)

The convention is that the first sig.al, Ao eihO t), is the strongest signal, so that it is
meaningful to describe the input F'ignal si, as the strongest signal modified in amplitude
and in phase through the presence. of two smaller signals, mathematically expressed in
Eq. (40) through R and a. Set

A1  A2
at ~ and a, 2, (41)

A0 0

a and 12 being the two ratios of a smaller signal to the large signal, and set

01ý1 •- 6 and 02 'b2 60 (42)

The ideal limiter normalizes the amplitude of the input signal, Eq. (40), while preserving
its phase function o0( t ) + a( t

Sout (43)

where a is the phase angle of the complex factor between large parentheses on the sec-
ond line of Eq. (40):

a, sin 0t+ a 2  sill 02 .2a(t) Z ta 'l- C (44)0" ,4 it Cox O! + a Cox 0•"

To obtain a physically meaningful interpretation of the limiter output signal it has to be
decomposed into a summation of signals. In the previously treated case of a pair of in-
put signals it proved successful to develop a as a function of o into a Fourier series.
Applying the same technique in the case of a triplet of input signals leads us to consider
the development

__i

-~ - --- -
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ja(0112 j(m0 1.n02 ) (45)i ~ ~e "(1.02) Z Cmn~ai'a 2 )

which is a double Fourier series for a as a function of o1 and o 2. Combining Eq. (43)
with Eqs. (45) and (42) leads to the series development for the limiter output:

Sout m T Cm,,n(ai, a 2 ) eJ [*.2( 1-n-,)%3 (46)

The Fourier coefficients Cmn may be expressed as a double integral, and they may be
determined by numerical integration methods. In the case of practical importance which
will be studied in the next section one obtains general expressions for limiter output sig-

nal amplitudes which may be transformed back to the original domain, so that any ex-
plicit knowledge of Fourier coefficients will not be required. The Fourier series ap-
proach permits one to derive relationships in terms of the original quantities.

LIMITING OF A TRIPLET OF LINEAR CODED SEQUENCES

In the case of a triplet of linear coded sequences let the phase modulation function of
the strongest signal be given by

L

0,c(t) =rePLr 77 ck rect -- r (---

where t is the time, r is the duration of a bit, ck = 0 or I depending on a maximal lin-

ear sequence, L is the code length, and repL, indicates the periodic repetition of the
code, the repetition peri.od being equal to L-. A modulation function of this kind is usually
generated by means of shift registers with suitable feedback connections. A shift register
generator consisting of S stages may be used to generate a code of length L = 21 - 1.
This kind of code generation is frequently used in radar, both for theoretical and practi-
cal reasons. This method requires little hardware, and it yields a code with a nearly
ideal autocorrelatlon function, the range side lobes being at a uniform level of -20 log L
dB below the main peak. The low and uniform-range side-lobe level is a consequence of
the strong structure inherent in this kind of pseudo-random sequence, namely, of the
property that the codes added bit by bit to a delayed version of the same code under the
rules of Boolean algebra will result in the original code sequence shifted by a pseudo-

random number of bits. It will be seen that the same property Is responsible for the gen-
eration of a false target of sometimes larger magnitude than any one of the suppressed
true target returns.

As an example consider the shift register generator depicted in Fig. 10. At its out-
put one would observe a periodic binary code sequence, the repetition period being equal
to 31 clock puise intervals. Since the shift register contains five stages, the feedback is
connected as shown in Fig. 10 to ensure maximum code length and L = 2 S. 1 = 2 s 1 =
31. If one would start to count a new period for example when the shift register is loaded
with the sequence 1, 0, 0, 0, 0, then as a consequence of the operation depicted in the fig-
ure one would be able to record the output

1000010101110110001111100110100.

If this code word is added to the same word but shifted to the right by one bit, namely,

0100001010111011000111110011010,

S.. .. "" lT' •_ --•.::::•- ..... .. ---: --::J ' ':' • . . .. "•"'• ... ... ... ...
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Fig. 10 - Maximum-code-length shift register code generator

one obtains as a result of the binary addition the new code word
1100011111001101001000010101110.

The remarkable feature of linear coded sequences is that the code word obtained is not
any arbitrary sequence but is the same as the original sequence shifted by a number of
bits, in this case shifted by 18 bits as one can easily verify by inspection of the sequences.
Binary code addition takes place if a signal of the type exp jo(t) ist muliplied with an-
other signal exp jo,(t - T), T being the relative delay between the two signalsb, since the
product of exp Jo.(t) and exp j6c(t - T) is exp j [oc(t) + .0c(t - T)]. In the special case
of linear coded sequences one has then

J e0(') eAc(t-T) jec(t'T')
te e te

and also
Sejl( t ) a J,6,( t'T) e~qe 3'~ eJ~(eT (48)

T' being a delay which depends In a pseudo-random fashion on the shift between the codes
added together.

Now apply the results from the previous section. T7e limiter bint signal Is matbe-
matically described by Eq. (40), where the exponent of the strongest signal Is

j! 0 (t) = j f4-(t) + 2wf•t] , (49)

Oh exponent of the econd sign is

"4I1(t) - J(0,(t- T) 4 2Woft 4 410 (50)

and the exponent of the third signal is

jIa(t) j joc(t -7 2 ) * 2Wft 6 • (21)

Here, to Is the RI frequency, ,and •oa are the RF pluses betwe the second and
the first and the third and the first signal respectively, and 7j and 73 we the mtu"al
delays. ftserting Eqs. (49), (50), and (51) into Eq. (46) results In
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' = • •ut . ej(a2 O &o

× ei(m~n- Ohbc(t)÷jm6c( t-r )'n€tr j2w°( t) (2

~C~'Cl )+ 2 e 277f0 (t (52)

This expression may be significantly simplified if one realizes that exp jk6, is equal to
exp i.c or to 1, depending on whether k is odd or even. Using also the property given
by Eq. (48) one can write the following truth table for the exponential expression
exp f-j(mn+n- 1) c(t) + jmcjc(t-T ) + jnVc(t-T2)]"

even m odd m

even n ejVct ej•(tT

oddn jf'C(t-T2) ej•()•,j-i6c~-2! e ,•( t-T' )

One can now write Eq. (52) in the form of a sum of four terms In such a way that each
index of a Fourier coefficient C,, is even or odd throughout each summation:

ou t C2 k. 2,(aola 2) e(2haIo2#6 ) ed k() 2w 1I t

kJ

t~ e[(2A Nl6iO 20; Oi6 e _j~ciF )i21,16

* iC 2 ,* 1 . 21(al 2 -4) e

* C2 k' 2 1 - 101,1- 2 ) } r (53)

This expression shows that the limiter ouiput consists of four signals, Wee of them be-
ing identical with the three input signals except for an amplitude change and the fowth
signal being an image of the coded sequence at some pseudo-random starting oslUo.
The amplitudes of all four signals can be calculated if the ratios of the small to large
signals before limiting and the RF phase$ are known, without requiring specificaton of
the particular linear code used. The amplitudes are given by the expsmions in the
large enclosures in Eq. (53). These are also the amplitudes which the four correlation
peaks of the signal s., will have after croescorrellon processin with respect to the
transmitted radar code i( I(. r t is hence possible to derive quandtav information
.bout capture and false target generation effects by eviathng the sums of Fourier co-
efficients as indicated by Eq. (53).

As has been Indicated, the Purier series aproelL reveals Its valuues and power
through the fact that the summatons In • q. (53) can be transformed back to the or$gig

ithereby emabling numerical discussion of results nitho a •d to kow the Fv-
nor coefficients. Through Inaeiting the arguments #I ," ianor e@I In place o e,

and/or 0, in Sq. (45), one derives the following three relations:
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S1(54)

ja(e1,6 2 +W) j2~ (1"C~a., e(Noet +02) (55)

and
e w /l ')ej(me.., ( 56)

These expressions contain the same Fourier components as Eq. (45), however, with al-
ternating signs, so that coefficients with even or odd a and n values may be made to re-
Infone or cancel by suitably combining Eqs. (45), (54), (55), and (56). Thereby a back
transform for the amplitude relations in Eq. (53) is obtained.

In adding Eq. (45) aud Eq. (54) all the terms with even . values will be doubled and
all the terms with odd m values will be canceled. This may be written In the following
sel-explanatory shortband nottim-

4s) + (S4) 2 c..

In a similar fasMhion one obtins three more useful r comblaktlnms: 1'
(45)( -. ((6)

odd as 0(58

(SS) (56) k2 (-1)* )( ) 4
ull all

(SS) (•6) '2 (-1)* (

allB

Movhow ear cobmillm ane fomed between 1*s. (57) and (59) or beItwe s (5) SWd
(60) fth the purpose ol reistorcing or canceftn terms with eve or odd a's. On 5&
bwu liner coinlafow of imbrest

(S7) *(59) (45) *(S4) *(SS) , (96)

4 2~(1
0, 1 oi

&a*to ewes
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(58) + (60) (45) - (54) 4 (55) - (56)

4~2 C.. (62)all ell
odd even

(57) - (59) (45) + (54) - (55) - (56)

4, E , E1 63)

n d

(58) - (60) (45) - (54) (55) + (56)

all All
odd odd

Tbee linear combinations are expressions exactly of the form needed to express the
ampmdtudei in Sq. (53) in terms of ej,.

From Eq. (61) am dtain the amplitude of target 1 (stro1gent target):
Target 1 amplitude 0.25

* *~(6 a*as') ie4l0.6201)J (65)

From Eq. (62) -3e obtaim the amplitudes of the second-stroagest tru target:

Tvrpt 2 amplItufe - 0.25

[ ` 6 - •""6 e''Tz°) *`Te'T 3) - u(ti'A,.. )] (66)

The smallest true target ampliude is obtained frm 9q. (63):
Target 3 ampUtwd - 0.35

p ce(6t.1)), %2 it so,. lk.40 o,*(a, 6 1'. 0~) ta It4(ois.*#4!kO) go (6)

The brm target ampltuteb u om , q (64):

False target amplitude 0.25

I 3~u~imueb 1(0) thmu (6) a" caupi n ktimw deecrtmg beth the mplitude dhap.
Le., capture eflkt, Md the phase chae &ee to Um11.11g A prbem exmat hm to pre-se doe askadeU dblbdsliaw wkwh• I ontwo varkdew 1 .d &,01 wA on two



NRL REPORT 7001 29

parameters (a, And 82). It was decided to write a program for the NRL CDC-3800
computer, using separate real and imaginary expressions for exp j (a,.o2 ) derived
from E4. (44):

Re I + a1 cos #1 a cos 02

+ at cos 01 + a2 cos 02) + (a, sin 0, 02 %in 02 ) 6

and
Aa, *a sin 01 + 03 sin 6

(z+al coas 94 *a 2 cos a)2 * (a sin 0 +a sin 0). (70)

The product obtained from the computer is a punched paper tape which contains the data
for a pseudo-three-dimensional plot to be drawn by the Gerber plotting machine at NRL.
Thus any handling of numerical daita by a draftsman is circumvented.

This report shows the resulting absolute value amplitude distributions for three
cases: Figs. 11 are for three equally strong signals at the limiter Input; Figs. 12 are
for two equally strong signals at the limiter input, with the third signal 10 dB smaller
than either one of the stronger signals; and Figs. 13 are for one strong signal and two
smaller signals, each of which Is at a -10-dS level with respect to the ,trongest signal.
The strongest false target is observed if the three true target signals are equally strong
and In phase or 180 degrees out of phase. In this cue each of the true target waveforms
and the false target will appear with an amplitude equal to 1/2 of the maximum possible
amplitude. With finite length codes the false target may actually be sUghtl stronger
than any one of the true targets. This effect Is due to the interference of range side
lobes, as wil) be explained shortly.

If one has two equally strong signals and one smaller signal at the limiter ntput,
then a false target is gerated of apprnately the same se as the captured smaller
signal, as can be seen from comparing the surface tn Fig. 12(o with the surface tn Fig.
12(c). The two stronger signals suffer capture to an extent depending on their relative
phing, AMd It should be noted (Figs. 12(a) And 12(b)) that each maximum of one saig•
coincides with a minimum of the other signal component.

It has been discused that there is no false target generation effect if UMere are onl,
wo signls• at th Umer InpuLt. It should therefore be no surprise thI the falu target
lsu Is much reoced it two of the three true target sign•ls are relaUirel small (Fig.
3(4)). be dKIscSSiOn Of caphur MAn efeCts Of Mals tagetVM I geeaio s MUth 1mph -

,,d if all t i4 nal are equalUy stong ad If ther mutual RF pbass ar equal to 0
or 1S8 degrees. Tbea on can read from Eq (44) or from Eqs. (69) and (t0) that

P is •(0.0,),I t1 at Wlst onSofthe od Parr...M 5 is eql9to 0 andt ,-p ,(.) -,
To htaln tte captred te"t and the bfas target apllbaa, am hua to combine Ut hn-
pomeital tunctiom according to Rq. (65) throoo (U). One obta, the follovdwi

Cam 1: All true targets having the same polarity, I.e., 0,, ,, o:

targt I amplltmd , 0.25 [(1) + (1) (1) + (-1)j a 0.5

targ* ampla - 0.15(1) - (1) + 1 - (-l)l)J a 0.

targt*S 3mpltmb - O.S [(1) (1) - (1) - 0.5l a O.jbbetaeta&a ~ a O.2 S[(1) - (1). ()1)(-()J ...5.

.~**...4 fJ ~ O*' T'!
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Fig. 11(a) - True target 1 amplitade for the case of three equally strong expanded
signals using zero-pi shift register phase coding (for machine convenience the
parameters h, 62 0, a,, and a 2 are labeled as shown)

T•R6FT NiC 2 MI,

PMPL I I U[F

P4 !N G

FHR,ý 1i0 PO( I
P "I~

Fig. 11(b) -True target 2 amplitude for the case of three equally strong expanded

signals using zero.-pi shift register phase coding
- .



NRL REPORT 7001 31

TRRGC NO 3
AMPL I TUDE

PHI 20 WOG)

ISO

PRRRMETER CHOICE

Rl=1.00 R2=1.O0

too 0

PHI 10 IDEGI

Fig. 11(c) - True target 3 amplitude for the came of three equally strong expandedsigal usn ereo-Pi shift register ph&" codingIi
FALSE TRRGET
AMPL I TUDE

I.I

SPHI 20 (BEGI

"PRARAMETER CHOICE

"1= 1. 00 2= 1 00.

Too 0 
,

PHI 10 IDEGI
* ,, Fig. 11(d) - False target amplitude for the case of three equally strong

expanded signals using zero-pi shift register phase ooding
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TARGET NO I1
AMPLITUDE

.5 PHI 20 (DECA

.10

PARAMETER CHOICE
90 so A 1 100 R2= 0.32

PHI 10 (DEGI

Fig. 12(a) - True target 1 amplitude for the case of two equally strong targets
and one smaller true target using zero-pi shift register phase coding

TARGET NO 2
AMPLITUDE

S PHI 20 (DEC)

PARAMETER CHOICE

A R11.00 A2=0.32

PHI I0 (DEG)

Fig. 12(b) - True target 2 amplitude for the cae of two equally strong targets
and one smaller true target using zero-pi shift register phase coding

4 L
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TARGET NO 3

AMPL I TUDE

PHI 20 (oEG)

o I$I
:go • goPARAMETER CHOICE

A I=1.00 A2=0=32

PHI 10 (ODE)

Fig. 12(c) - True target 3 amplitude for the case of two equally strong targets
and one smaller true target using zero-pi shift register phase coding

FALSE TARGET I
AMPLITUDE

PHI 20 (OEC)

PARAMETER CHOICE
.A 1=1.00 A2= 0.32

19 0
• PHI 10 ODEG)

Fig. 12(d) - False target amplitude for the case of two equally strong targets
and one smaller true target using xero-pi shift register phase ooding
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i TARGET NO I

AMPL I TUDE

I,

PHI 20 (0lGl

0 (Cj

PRRRMETER CHOICE

RI=O0 3? R240.32

i1o 0

PHI 10 (DEG)

Fig. 13(a) - True target 1 amplitude for the case of one strong target and two
equal intensity smaller true targets using zero-pt shift register phase coding

TARGET NO 2
AMPLITUDE

PHI 20 (DEG)

0

PARAMETER CHOICE

RIOo.32 A2=O.32

PHI 10 (DEG)

Fig. 13(b) - True target 2 amplitude for the case of one strong target and two
equal intensity smaller true targets using zero-pi shift register phase coding
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TARGET NO 3
AMPLITUDE L

PHI 20 (DEC)

PARAMETER CHOICE
9o 90 R1=0.32 R2=0o32

PHI 10 (DEG)

Fig. 13(c) - True target 3 amplitude for the case of one strong target and two
equal intensity smaller true targets using zero-pi shift register phase coding

FALSE TARGET
AMPLITUDE

.5 PHI 20 (DEC)

"0

A

PARAMETER CHOICE

(60:0 1=0.32 R2=O.32

PHI 10 I(EGI .

Fig. 13(d) - False target amplitude for the case of one strong target and two
$ equal intensity smaller true targets using zero-pi shift register phase coding
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After hard limiting there will be four signals, each of them having 1/2 the maximum
possible amplitude, three of the signals corresponding in time shift and polarity to the
true input signals and the fourth signal corresponding to a false target with a polarity
opposite to the true target polarity.

Case 2: One of the true targets having phase opposition with the remaining pair of
true targets, e.g., -blo 0 0 and 02o

target 1 amplitude = 0.25 [(1) + (-1) + (1) + (1)] = 0.5

target 2 amplitude = 0.25 [(1) - (-1) + (1) - (1)] = 0.5

target 3 amplitude = 0.25 [(1) + (-1) - (1) - (1)] = -0.5

false target amplitude = 0.25 [(1) - (-1) - (1) + (1)] = 0.5.

The limiter output contains again three signals of the same polarity and one signal of the
opposite polarity. One of the three same-polarity signals corresponds to a false target,
and the opposite polarity signal corresponds to one of the true targets in this case. It
should be obvious that the polarity of the compressed signals can consequently not be
evaluated to permit discrimination between true and false targets.

Consider the output signal obtained from a matched filter or a pulse compression
device. In the single-target case one will obtain an impulse-like point target response,
consisting of a central spike of height N, where N is equal to the length of the code, sur-
rounded by uniform-range side lobes at the -1 level. This type of autocorrelation func-
tion is depicted in Fig. 14(a). If there are three input signals of equal intensity, corre-

sponding to one of the two previously considered cases, there will be three correlation
spikes of one polarity, corresponding to three true targets in case 1 or to two true tar-
gets and one false target in case 2, of a magnitude N/2 - 1, and one correlation spike
with the opposite polarity, corresponding to a false target or a true target and with a
magnitude N/2 + 1. The addition or subtraction of 1 from N/2 originates from the con-
structive or destructive interference of a uniform-range-side-lobe level with the corre-
lation peaks. Hence it may happen that the false target is larger than any one of the true
target responses.

The existence of a spurious target response has been confirmed by a computer sim-
ulation. Figure 14(a) shows the autocorrelation function of a maximum-length linear
shift register code with L / 63 bits. This function is descriptive of the radar response
to a single point target. Figure 15(a) is a plot of the processor response due to three
equally strong equi-phase true targets. The response is obtained through addition of
three mutually delayed binary-coded video signals, hard limiting, and crosscorrelation
with the original code. The resulting crosscorrelation function shows a spurious re-
sponse exactly as predicted by the theory. The preservation of a uniform-range-side-
lobe level and the predicted capture effect are confirmed. The uniform-range-side-lobe
level is preserved since the crosecorrelation function depicted in Fig. 15(a) is the same
as the sum of four autocorrelation functions, each of them having uniform side-lobe lev-
els as shown in Fig. 14(a), weighted with the factors +1/2 or -1/2, and mutually delayed
by the amounts T,, T,, and T'.

Figure 16(a) when compared with Fig. 15(a) exhibits that the false target may
undergo a very erratic motion if the true target geometry changes but very slightly.
This erratic motion effect may be used in a video integration process to enhance the ra-
tio of true targets to false targets.
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i:i

S• . i. .... ..... .. ..

Fig. 14(a) - Simulated radar Fig. 14(b) - Simulated radar response to a single
response to a single target, target, for a radar using a 63-bit truncated code
for a radar using a 63-bit
repetitive code

Fig. 15(a) -Simulated radarH
response tothreepoint targets,
for a radar using a 63-bit re-

Fig. 15(b) - Bimulated radar response to three point
targets, for a ratdar usit a 63-bit truncated oode

A
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Fig. 16(a) - Simulated radar
response to three point targets,

... . .............. of a slightly varied geometry,
for a radar using a 63-bit re-
petitive code

I

SI I!

I I

I ~Fig. 16(b)1 - Simulated radar response to three point
t targets, of a slightly varied geometry. for a radar
S~using a 63-bit truncated code

Figures 14(b), 15(b), and 16(b) show the pulse compression waveforms obtained f

the code sequences are truncated. Rt is known that truncation increases the average
range-side-lobe level. The spurious targets may be observed at the same locations
where they would be if the code sequence were repeated. The false target response may
be of reduced magnitude and depends on how much the expanded radar sip*W overlap.
Since the rnge-side-lobe structure of truncated sequences In very complicated and ir-
regular, an exact theory to quantitatively explain capture and false target generation ef-
facts should not be expected.

S~ CONCLUSIONS

R is shown in this report that hard limiting of superimposed expanded radar returns
may cause a false target effect in addition to the well-known capture effect. The false
target effect has been known for the cue of a pair of linear FM radar returns. I is
shown that a zero-pi-phase-coded radar signal modulated by a maximum-length shift
register sequence may be subject to a false target effect. It is interesting to note that
with two targets in the case of tero-pi phase coding there is capture only and no false
target effect; at least three true targets must be taken into account to show the existence
of a false target. This study may serve as an example to show the erroneous conclusions
one may reach, in nonlinear systems theory, by deriving rules about multiple target re-
spones from the study of a two-target model

To avoid false target effects one must avoid the limiting of expanded radar returns
having a high signal-to-noise ratio.
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Appendix

NUMERICAL DETERMINATION OF THE FOURIER COEFFICIENTS

The coefficients C,, are the Fourier coefficients of the complex function ,.Ip i (,,)
as can be seen from Eq. (8). The fast Fourier transform is a convenient technique for
the given task, in particular since it Is "naturally" adapted to the handling of complex
variables. Therefore a program has been written in the XTRAN language for a time-
sharing computer terminal facility at NRL, using an FFT subroutine provided by Comn-
share. A program listing is reproduced at the end of this appendix.

The program goes through the following logical steps:

1. Read N a number of samples; this must be a power of 2.

2. Read the small-to-largc signal ratio.

3. Compute a period of the function .-xp I is,) at the N sampltr., points

2w

using separate numerical expres*ions for the real a :or the Imaginary part of the
function

,,le4*J I an"I 1m' ( 1 j 0)P ) (1-t ^ 0,e s )•

a C I os a •St

4. Calculate the Fourier coefficients of this tnoction by meows of aa FFT subroutine.

S. Print out all r. values of interest (time printout ing restricted to the range
" -15, -14, ... ,14, 15 and C, ý 40 dB).

6. Go to step I to rehdtiate the program with a new data set. (Skdmequent io step S
the program returns to its starting point so that a "w data set can be read and the car.-
responding r. valueb can be determined. The prorm recycles until Its execution is
Interrupted by an "escape' comnmad to the compt'rAx.)

To ensure that a sufficiently lae number of sampling pouts was used, their num-
ber was irreased by factors of 2 from one Iteration to the next until the calculated co-
efficients rem.. 'med the same to within 0.01 dB. To exhibit the convergence of the
computed c. values tuward a limit when the number of samples is increased, the se-
quence of prmntouts for .n tw .a -10 dB and for t 8, 14, 32, stdl28u amples is
reprodaced within Table Al.

"40
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Table Al
Values Printed Out for 2o log•a -10 dB
and for N = 8, 16, 32, and 128 Samples

Order c- C. (dB) Order c, C, (dB)

Number of Points N = 8 Number of Points v = 32

-4 0.0022 -53.14 -4 0.0026 -51.67
-3 -0.0094 -40.58 -3 -0.0094 -40.50
-2 0.0359 -28.90 -2 0.0359 -28.90
-1 -0.1521 -16.36 -1 -0.1521 -16.36

0 0.9745 -0.22 0 0.9745 -0.22
1 0.1601 -15.91 1 0.1602 -15.91
2 -0.0126 -37.98 2 -0.0128 -37.84
3 0.0013 -57.72 3 0.0020 -53.80

Number of Points N 16 Number of Points m 128

-4 0.0026 -51.67 -4 0.0026 -51.67
-3 -0.0094 -40.50 -3 -0.0094 -40.50-2 0.0359 -28.90 -2 0.0359 -28.90

-1 -0.1521 -16.36 -I -0.1521 -16.36
0 0.9745 -0.22 0 0.9745 -0.22
1 0.1602 -73.91 1 0.1602 -15.91
2 -0.0138 -37.84 -2 -0.0128 -37.84
3 :0.0020 -53.80 3 0.0020 -53.80

In this case 1(1 daft pints are suflictiat. The printoos remain the same for a
larger number of dua points, as shown for x a 32 and 1M8. The use of only eight data
points wvoW entail some error, eslialy as far as th reatUvely smaller sixe begt
products are concerned.

TIe largest number of samps wu required In the vicinity of i, i.e., If a (a)
was cloee to a liUwr sawtooth fnclion. In this case a 104 -point transform was selected.
For sdaler * values a much smaller number of smupling point sufficed.

The validity of the progrm wm checked by the foilonbg criteria.c

1. The Inngtaosy part of ta Fourier coefficIents turned out to be 0 within the com-
fime of rouad'k.4 errors, as requird by the theory presented in the section "Oeneral
Theory at the 1i~rd Uamilting of Two Inpuat Signals."

2. For a (5 so a 00) the OBnoeficenWs talned by th. comnqptr program
agree '41 ,hose calculated from the (1,c)al-case a (I1)to within ab&A 0.01 45.

3. For small n vtlues the O.02-4b loss as sugg*ted by Sq. (19) has been confirmed.

4. For all values of .-, the calulaed C. values are in eocenent agreemeit with
experImentally obained vlues. The euperineat consists of the spectral analysis of the
hard-limited summation of two slissolds, as dwcrlbed in the sedton "Limitiag of a Pair
of Constant-Frequency CW Slauioids."

The computer results are presented in two formats:
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1. A set of curves for C,(a) with n values between -4 and 5 and with values cor-
responding to the range from 0 to -30 dB, in Fig. 6.

2. Line spectra including a numerical printout for the C, values In Fig. 7. I
Both formats have their specific merits and drawbacks. The advantage of format 1

is to indicate clearly how the C,, values vary as a function of n. The drawing would be
too crowded if one would attempt to display in it all higher order beat products, however.
For this reason the pres"ntatiou in format 2 was added. Figure 7 shows all beat prod-
ucts whose order is between -14 and 15 if they are stronger than -50 dB with respect to
the total signal energy.

S~4

!V

i i

I :
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XTRAN Program for the Determination of C,(a):

DN ARRAY(2J1024 .Il)I,!(3).M(?ý6)aSAIPfAY(C3
6 )

PI = 3.141b926b3b
NPG=8
.NIP = TOTAL NUMBER OF VATA POIN7S, MAY BE St•BVIVIDE) INTO

NG GROUPS WITH NPG DATA POINTS PER GROUP

I WHITE (!*1i)
REA) (0,:2) NTP
NG = NTP/NPG
*EVALUATE THE FORMULA FOR ALPHA
tlI rE (i,13)
iEAUCO, !17) AIA
A EXP(ALOG(IO.)/20.*(-AIA))
5I = SIN(e.*PI/NTP)
CO = COS(2.*PI/NTP)
D00 200 J=I,NG
S SIN(2.*PI/NG*(J-1))
C= CJS(2.*PI/NG*(J-]))
00 100 LL=INPG
IF CLL-EO#I) GOTO 50
STEMP = Si *C+CO *S
C = C -*0" SI *S

' •S :STEMP
•-. 0 DEN = SQRT(l*+ A*(A÷2-*C)) _

ARRAY0.vNPG*C(JI)+LLIl) = (I.+A*C)/DEN
100 ARRAY(2,NPG*(J-1)+LL&iI )=A*S/DE

W*IRITE (1,14)
""2ANTP=NTP

I(i)= ALOG(ANTP)/AL0G(2,) +.)

FOR L=2#3t I(L)=O
CALL FASFTCARRAY*IM, SARRAY,-Io]FL)
WRITE (1,15)
00 500 N=MAXO(NTP/2+IPNTP-|5),NTP

X=ARRAY(1 •Ni, i)
IF (Ah3(X),LT..O01) G0T0bO0
"WRlTECIP16) N-1-NTPX10.-*ALOGIO(X*X)
Soo CIE
DO 600 N=1,#INO(NTP/2,15)

i • X= ARRAY(IN,-I,|)

lF(A:S(X).LT.0O01) GOT0600
WRITE(0,16) N-tXs1.0*AL@G1O(X*X)
600 C'E
WRITE (1,14)

11 F*T(3/,SSPECIFY TOTAL NUMBER OF POINTS I SZ)

12 FI~ T (14)
13 F'T (3/,S A EMINUS DB) I SiZ)
14 FIT (3W)
15 FIT (/#$ORDER CN CN IN DBSj3/)16 F'T(Xs I3,4XpFlO.4,p!X&F9o2)

,•17 F'T(FS *2)

EN

- 1
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General fonrulas were derived to predict the effects of capture and false target gener-
ation as a function of the signal energy distribution and relative phasing before entering the
limiting device. The formulas were evaluated numerically, with the results being presented
in the form of computer-generated plots.
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