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6, Phonon spectrum for lead.-' 

?. Relaxation of quasfpartlcles by interaction with phonons. 
Processes 1 and 2 represent scattering of a quasiparticle 
into another by phonon emission or absorption.  3 repre- 
sents annihilation of qua«.ipartides to form a ground 
state pair.*3 

8, ft /H I ratio of the reduced thermal conductivity in the 
sGpePconducting state to that in the normal state vs 
reduced temperature T/T of a number of mercury specimens, 
numbered in order of increasing residual resistivity, as 
weP as a lead specimen (dotted curve). The dashed curve 
Fs the f-function liquation (l^Ol.4 

9. The thermal conductivity of tin specimens:  (a) normal 
state, (b) superconducting state, OSn-1, fSn-2, TSn-3, 
ASo-i*. The arrows show the values of p /L.""* 

o 

10» The thermal conductivity of thallium specimens. The 
numbers of the corresponding specimens are  shown on the 
curves. The dashed curves snow the thermal conductivity 
in the normal state.3* 
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11, The variation of r>' with T/H for thallium specimens. 36 

12, The dependence of K /K on T/T .**    The points and full 
curves represent experimental data; the numbers on the 
curves refer to the corresponding specimens:  the points 
are for •Ti-'t, OSn-1, Sn-2, Curve H is for mercury and 
lead according to references 2 and 3. The dashed and 
dotted curve Is for scattering of electrons only by 
phonons, derived by extrapolating the values of 1/n for 
specimens T/-7, T/-8, T.Ä-1, and T/-2. The dashed curves 
ate theoretical: curve G is for the case of scattering 
of electrons by lattice defects3", curves B, K, and R 
are for the case of scattering by phonons.>a»1,"t3n 

13, H./K plotted against T/T for tin specimens, according 
to HClm3; points 0, Sn2 and +, Sn3 show typical scatter; 
dashed line is Heisenberg-Koppe10»1 "1 f-function (1*+).* 

)k,    A logarithmic plct 
low temperatures w 

15. The effect of (a) Impurity and (b) strain on x and x 
In pure lead and In lead alloys, (b) Effect o^ straiR 
on the conductivity of the specimen PbTiO^X." 

showing the proportionality of K 
Ith T* for lead and thallium." 
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THERMAL CONDUCTIVITY OF SUPERCONDUCTORS 

INTRODUCTION 

The discovery of electrical superconductivity In 1911 triggered 
experiments designed to determine whether the phenomenon occurs In heat 
transport. The first results1 showed that instead of thermal super- 
conductivity, the heat conduction In the superconducting state Was lower 
than in the normal state. Since, in metals, in the normal state, -the 
conductivity is composed of the electronic component plus the lattice 
component, it may be written as 

K    + v 
e.'.n   ph,n (0 

In the superconductive state, we may write 

s   e/, s   ph,s 
(2) 

i 

Here the subscript n stands for the normal stafe, s for the superconducting 
state, e/ for the electronic contribution to the thermal conductivity, and ph 
the lattice contribution. Since the "superelectrons" which carry the re- 
si stanceless current in a superconductor cannot be expected to carry the 
thermal current, x .      would be expected to be smaller than x . ,3 Likewise, 
since the superelectrons move without friction against the lattice, they pre- 
sumably do not contribute to the scattering of the lattice waves, hence v  . 
might be expected to be larger than x   .  Therefore, since the heat is*5 • 
carried only by that fraction of the electrons which are still normal and by 
the lattice component, x would be expected to be smaller than x , because 
the lattice contribution is small in both states. Qualitatively" this ex- 
plains the results. 

A complete understanding of the thermal conductivity in superconductors 
can only be achieved as a consequence of a detailed microscopic theory of 
superconductivity. The thermodynamic and electrodynamic behavior of super- 
conductors has led to a working hypothesis which has been remarkably success- 
ful in a rough interpretation of the observed effects, although. In Its crude 
form, it cannot have any physical significance. This Is the two-fluid model 
In which the electron fluid is regarded as a completely interpenetrating mix- 
ture of a normal and a superconductive constituent. 

The Two-Fluid Model 

The two-fluid model does not explain the phenomena of superconductivity 
but is a convenient scheme for their description.  It assumes'1 that a frac- 
tion (l-X) of tf 3  Fermi surface is modified; the electrons on the surface 
condense into a lower state.  It also assumes that the electrons In those 
modified regions cannot be thermally excited, though the fraction of the Ferml 
surface thus affected is a function of temperature and increases with decreas- 
ing temperature. The superconductive regions can be oriented so as to yield 
a supercurrent. It has been shown experimentally that the decrease in total 
entropy is a result of the growth of the superconductive concentration and 
that, in fact, the entropy of this constituent is zero at all temperatures 

1 

1  "» 'JlJijfeÄ J**j 



below the critical temperature T£. Since the superconductive regions con- 
tribute zero to the entropy, there being no thermal excitation, the Thomson 
coefficient for supercurrents Is zero, and the entropy Is less than It would 
be In the normal state. Similarly, the electronic thermal conductivity Is 
reduced, since only the normal fraction of the Fermi surface contributes 
toward it. Such conclusions led to the postulate that there ts an energy gap 
In the electron spectrum of the metal8 which is roughly coincident with the 
Fermi energy. The Bardeen, Cooper, Schrieffer (BCS) theory* and some experi- 
mental data* seem to favor such a model. On the other hand, the lattice 
component of thermal conductivity is enhanced, since the lattice waves can 
only be scattered by the electrons on the normal fraction of the Fermi surface. 
Another explanation is that in the superconducting state the lattice thermal 
conductivity Is increased relative to that In the normal state because the 
energy gap In the electronic spectrum leads to an Increase in the relaxation 
time for phonons. The energy gap confers on the metal an aspect which Is not 
too different from that of a dielectric crystal,8 Owing to the small size of 
the gap, this behavior can not be seen except at very low temperatures. This 
feature of superconductivity (dielectric-like behavior) becomes very convinc- 
ing In the heat conduction. However, because of the smallness of the lattice 
term, the electronic contribution (though rapidly falling) will dominate the 
thermal conductivity Just below T . 

c 

Assume4»0 that the modification of the superconducting fraction of the 
Fermi surface has associated with it a latent heat; thus the Helmboltz free 
energy, usually of the form 

F. - 1/2 vT
a, (3) 

is now modified to 

F- -  1/2 xi yTa -  (1 - y)R    . 00 

The first term Is the contribution from the normal region, the second term 
is the contribution from the superconducting region, y and 0 are constants 
characteristic of their respective regions. The latter term Is due to the 
latent heat since there is no continuum of states available for thermal ex- 
citation. The condition 

(oF/ax)T - 0 (5) 

gives x as a function of T.  It Is not possible to assume simply a « I, 
as It would be In the ebsence of interaction between the n- and s- regions, 
since this would not generally satlsfy(5)«If one takes a ■ 1/2, the observed 
thermodynamic properties ere approximately reproduced, I.e. 

y- (vT
9/!*)3 - (T/Tc)\ (6) 

where T Is the transition temperature, for which v ■ 1. The specific 
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heat par unit volume Is 

C - - T (d8F/dT8) = 3v(T3/T 3), (7) 

but the specific heat due to the thermal excitation of the electrons in the 
normal region is 

C - - T(d*F/dTa) - V(T
3/T a), 

n A       t 
(8) 

The difference C - C is ascribed to the change of energy as electrons 
change their phase, f.e. from being in an s-reglon to being In an n-reglon. 

The thermal conductivity of normal metals can be written 

1/3 C v * (9) 

where 

C = VT (10) 

is the electronic specific heat, 
energy (assumed isotropic) and 

v is the velocity of electrons of Fermi 

?   a VT (11) 

I 

is the effective electron mean-free-path. The two-fluid model has been 
applied10 to the thermal conductivity:  the electronic thermal conductivity 
in the superconducting state differs from that in the normal state because C 
and possibly / are altered.  For C we should now use C , because we are con- 
cerned with the transport of energy by electrons which Pemain normal when 
passing along a temperature gradient, rather than with a change of energy 
due to a change of phase. Thus, 

y*e,,n"<T/Va<<Vfn>- (12) 

It should be noted that if we had used the C defined by (7) instead of C 
defined by (8) to calculate H ,  , there would have been a discontinuity" 
at the transition temperature In the curve of H . vs T, similar to that ob- 
served for the specific heat, because / (T ) mult equal "   (T ). 

s c n c 

The behavior of ■"  requires some assumption; " could differ from / 
because, when an electron is scattered from a statesin the n-region, thePe 
are fewer final states available to it, since the states in the s-region 
are modified. The ratio ' /■" should depend on the mechanism of scattering. 
It was suggested10 that for scattering by static imperfections 

«7(1 
n <) (13) 



so that 1 > i0. This form would be appropriate if scattering were isotropSc 
and If a fraction y/2 of the possible final states were blocked by electrons 
in the s-states. Thus, if the thermal resistance is mainly due to static im- 
perfections, the fractional change of the conductivity, on passing from the 
normal to the superconducting state is 

W« n^« « - *« J««  n - 2(T/T )V1 + (T/T )\ o,n o,s   o,s o,n      c        c 0*0 

Consider now the case where the thermal resistance is mainly due to 
lattice waves: at low temperatures an electron, interacting with a phonon, 
does not change its "horizontal" position on the Fermi surface (from a po- 
sition or region of large concentration to that of a lower one) by a large 
amount (see reference II p.9 and Fig. I). It thus appears that an electron 
in the n-region will, in the majority of cases, remain in the n-region after 
an Interaction, so that i • £  . Hence the change in the ideal (intrinsic) 
thermal resistance     s   n 

S'W Hl,s/Hi,n 
(T/Tc)

8, (15) 

It would hardly be expected that (14) and (15) would give the temperature 
dependence of the ratios f and g exactly, although one would expect these 
equations to give at least a qualitative description of their variation. We 
shall see later that this is so for (14) but not for (15). 

The two-fluid model, in the explicit form given above, reproduces the 
thermodynamlc properties only at temperatures above about T /2; at lower 
temperatures, the specific heat decreases exponentially with decreasing tem- 
perature, and in view of (9) one would expect * .  to behave similarly.  It 
should be noted that at T , the superconductive neat conductivity K breaks 
away from K . The change may be sudden or gradual, Fig. 1, but no discon- 
tinuity in H  is obs 
investigated.3 Howeve 
Fig, 2.13 This jump is of magnitude 

erved at T even though this effect has been carefully 
ever, at T there is a discontinuity in the specific h< heat, 

Cei,s-'-^Tc (16) 

[compare with equation (10)]. Measurement of y provides direct information 
about N(E_), the density of states at the Fermi level. At lower temperatures 
the energy gap A(T) tends to dominate the specific heat, but a simple formula 
like 

C   * exp(-A(T)/T) (17) 

is not adequate, until A reaches its limiting value A. > which is expressed 

A „ 1.76 k T 
o        c 

(18) 

where A is the value of the energy gap at T ■ 0 and Jc is the Boltzmann 
constant. 



The Ratio *r /K 
s n 

Since the electrons in the superconductive region of the Fermi surface 
cannot be thermally excited into a continuum of states, it follows that 
lattice waves can be scattered only by the electrons of the normal region, 
and not by those of the superconductive regions of the Fermi surface. Thus, 

W_ /W_ 
E,s E,n 

(T/T.)* (19) 

where W is the thermal resistance due to the conduction electrons, and if 
f .   is limited by the interaction with conduction electrons 
ph 

Hph,s/Hph,n i/x (20) 

However, the lattice resistance due to phonon-phonon interactions should be 
unchanged by the transition from the normal to the superconducting state.  It 
can thus be seen that H t      < a  . ,  but v    > p,  .  , so that, depending on 
the circumstances, H mly'le either smaller ör larger than K . 

The ratio of electronic thermal conductivities in the superconducting and 
normal states x   /y. has been difficult for superconductive theory to 
explain. When fmpurlty'scattering is dominant, the BCS theory" predicts1-' 
that this ratio should be a universal function of T/T , independent of the 
particular element measured. The expression is complicated but it is a very 
similar function to, and its values are close to, those of the Heisenberg- 
Koppe formula10»1'• 

"ei.s'V.n 
2(T/T )s/l + (T/T )4 rcf equation (1U)1. (21) 

Both expressions agree with experiment, and they have zero slope at T ■ T , 
The temperature dependence of v /:-  is shown in Fig. 3. However, a radically 
different behavior is observed in metals like lead, mercury, and indium, 
where T occurs in the phonon scattering region of Fig, *+a,1R  In these 
elements previous workers have found that x.        /x ,  falls from T as rapidly 
as (T/T ).1P The BCS prediction for this rSglSn f'S* completely at variance 
with th£ observations.1,1 

As can be seen from Fig. 3, x should become extremely small at suf- 
ficiently low temperatures. However, only the electronic component of thermal 
conductivity has been considered in these calculations/1 This is by far the 
dominant mechanism for a pure metal in the normal state. But, it should be 
remembered that this is only the case because phonon conduction in metals is 
inhibited owing to the extremely effective scattering of phonons by the free 
electrons.11»17»?fl The removal, on cooling, of a progressively Increasing 
fraction of the electron fluid from the thermal distribution in the super- 
conductive state not only decreases the heat conduction by electrons but also 
decreases the scattering of phonons by them. Accordingly, phonon conduction 
in the metal will become the dominant process at sufficiently low temperatures. 
Its behavior, then, will be closely analogous to that of a dielectric crystal. 



Thus, at some temperature below T , HJr.   must become larger than the 
function of Fig. 3. So far, no theoretical attempt has been made to determine 
this temperature; however, experimental data suggest that It will be below 
O.k T In the case of a pure metal. At sufficiently low temperatures, phonon 
mean-free-paths are limited by the size of the crystal19'30 and by Its surface 
roughness,»31 resulting fn a mean-free-path Independent of temperature. Al- 
so, below the Debye temperature, 6-, phonon velocities are roughly constant 
and the lattice specific heat varies as Ta, Thus, the thermal conductivity 
should become proportional to T3, In the case of good single crystals, the 
factor of proportionality depending on the diameter19 of the specimen since 
the only relevant process will be scatter of phonons on the walls of the 
specimen. Thus a size effect In the heat conductivity of a superconductor 
is expected. Moreover, x , which is chiefly limited by scatter of electrons 
on point-imperfections atshigher values of T/T must become less sensitive to 
these at lower temperatures, since their scattering cross section is smell 
for phonons. Instead, K must be strongly influenced by extended lattice 
faults. s 

The relative importance of conduction by phonons will be shifted to high- 
er reduced temperatures as the Impurity content of the specimen riser. For 
very impure specimens which have a low electronic conduction in the normal 
state, one can expect values of x which approach or even exceed those of x . 
The explanation of the inversion of the x /x ratio in the case of alloys n 

is thus provided by a combination of depressed electron and enhanced phonon 
conduction. The correctness of this model is borne out, at least qualita- 
tively, by experiments.*3 Even so, it must be regarded as surprising that, 
in some cases, for example in a lead alloy with 10% bismuth, a rapid rise of 
x occurs already at T . 

The opposite case is given by a pure metal with an intrinsically high 
electrical conductivity, such as aluminum, in which the residua) heat con- 
duction due to the normal electrons will remain the dominant factor in x 
even at the lowest temperatures In spite of an enhanced phonon conductiv?ty. 
In such cases one should expect a close adherence to the semi-empirical 
formula (f-function), particularly when, as in aluminum, T is well below the 
maximum In the thermal conductivity. c 

The Electronic Thermal Conductivity of Superconductors with 
Strong Electron-Phonon Coupling 

Experiments on the strong elemental superconductors lead and mercury 
Indicate that the electronic thermal conductivity of these materials differs 
markedly from that of typical weak superconductors like tin or indium. For 
lead and mercury3f33 the ratio, x /x , of the thermal conductivity in the 
superconducting and normal states wh8n plotted against the reduced temperature 
T/T_ shows a steep positive slope of about 5 near T ■ T . For tin3* and 
indium, 
1.6. 

35 
on the other hand, the experiments yield a smSller slope of about 

A theory of the electronic thermal conductivity of superconductors, based 
on the quasipartlcle approximation and the Boltzmann equation approach of 
Bardeen, Rlckayzen, and Tewordt,13 has been carried through previously.3* 
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The results obtained are in substantial agreement with the data on tin and 
indium. The lack of agreement of this theory and the data on lead Is not 
surprising since, as shown in the work of Schrleffer et a},9''  the strong 
electron-phonon coupling causes the quasiparticle picture to be quite meaning- 
less over much of the energy spectrum. 

It therefore seemed reasonable to apply Schrieffer's theory, which was 
used in explaining tunneling characteristics, to discuss the electronic 
thermal conductivity of strong superconductors without recourse to the quasi- 
particle approximation.5" The starting point for this theory is the Kubo 
formula in which the thermal conductivity is expressed in terms of the cor- 
relation function of two heat current operators.39 This is first examined In 
the Hartree-Fock approximation in the Nambu-"'0 space. It is shown that in the 
Eliashberg31 approximation of neglecting the momentum dependence of the elec- 
tronic self-energy, the calculation of the thermal conductivity is reduced to 
a quadrature, involving however the complex energy gap and renormalization 
functions which are solutions of the Eliashberg gap equations at finite tem- 
peratures. These expressions are too complicated to be reproduced here but 
the reader is referred to the original paper (reference 28) for more details. 
The problem was also considered in the ladder approximation in the Nambu 
space. A generalized Boltzmann equation was derived which includes corrections 
to the Hartree-Fock approximation corresponding to the replacement of the scat- 
tering by the transport cross-section. This treatment shows that the standard 
Boltzmann equation for superconducting quasi-particles is obtained in the weak- 
coupling limit. 

The thermal conductivity of pure superconducting lead has been considered 
to be anomalous for many years.715 The experimental results are summarized in 
Fig, 5. As was mentioned above, the curve of >< I v.    vs T/T for typical weak- 
coupling superconductors tin and indium has a small limiting slope of about 
1.5. I" the case of the strong-coupling superconductors, lead and mercury, 
the decrease in the thermal conductivity is steeper, i.e. the limiting slope 
for lead is about 9.sa 

The strong-coupling superconductors are characterized by large electron- 
phonon matrix elements, and by peaks at low energies in the density of phonon 
states in which the electrons are coupled. These distinguishing character- 
istics have unambiguously been shown to be responsible for the anomalously 
large values in lead and mercury of the ratio of the energy gap at 0 K to the 
critical temperature, and for the anonalous thermodynamle properties of these 
metals.n  It has often been speculated that the smaller thermal conductivity 
of these strong-coupling superconductors is another consequence of their un- 
usual electron-phonon interactions. It was not clear, heretofore, how this 
explains the great reduction in thermal conductivity. 

The calculation is based on the foregoing theory,s* and the general 
theory is supplemented by a specific modeI** for the phonon spectrum and the 
electron-phonon coupling constants in lead.  The phonon spectrum used is 
shown in Fig, 6.  It is found that even near the critical temperature, long- 
lived, particle-like excitations exist for the energies important in thermal 
conduction.  In this quasiparticle limit, the general formula obtained in 
reference 28 (equation 2.17) reduces to (neglecting the effect of scattering- 
in terms) 



Hs - A/T* duü üüFuf A, T)1*/Z r (u>.T). (22) 

a, (A, ,T) 

where 

A . N(0) V|/2Un k (23) 

with N(0) the density of states at the Fermi surface for one spin, V_ 
the Fermi velocity, m  the angular frequency of the phonons, A, (u),T) 
the real part of the Eltashberg gap function28»31, Z the renormal Ization 
function, T (iu,T) the quasiparticle lifetime which Is related to the 
parameters of the Ellashberg theory according to3***»-'' 

u,Z,r(u)) - 2Za(ttfJ - A,2) - 2A.A2Z. (24) 

k is Boltzmann's constant, and T the absolute temperature. Equation (22) 
has the same general form as is obtained from a phenomenological Boltzmann 
equation.13»a*a But, there is an important difference because the virtual 
effects of phonons in causing the superconducting transition have not been 
approximated by a model potential, but have been treated in the same way 
as the real transitions which scatter quasiparticles. As a result, the large 
value of the energy gap (in units of k T ), is in principle and practice 
contained In (22). c 

In order to bring out the physical origins of the large limiting slope 
of the reduced thermal conductivity of lead (K /K VS T/T ), it is helpful 
to have a formal expression for this slope. Suchnan expression follows at 
once from (22). The thermal conductivity in the normal state is obtained 
from this equation by setting 4 equal to zero. Forming the ratio x /x and 
taking the derivative at the critical temperature, one obtains    u n 

d/dt(H,/KJ - - l/23/(äa,
r/3t)' 

s n t=l 

r dU)~-
1(u),T ) seen3 1/23 <JU/ f d<u(Su>)a "-1 (w,T ) 

o o 

sechs l/2fi tu + r du> uf5 r^U.T ) seen* 1/2« mO/M 

/nfrn (<i>,T)/ "$(<»,T)]taiI/ J du, J  r-1 (u,,^) 

sech8 1/29 u) 
c (25) 

where 3 ■ 1/JkT, t - T/T , r ■ Z, r, and the temperature derivative of A,2 Is 
taken outside the integration because it is essentially constant in the 
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relevant region of tu. The following three factors appear to be responsible 
for the large slope In lead as contrasted with weak-coupling materials: 
1. The larger value of the ratio 2'_s(0)/k T (U.3 for lead as opposed to 3.5 
for materials well described by the BCS theSry) has as its corollary a larger 
value of the slope - VM( ','Vt  , (l**.! for lead, 9.'; for materials follow- 
ing BCS).  The more rapid openino-up of the energy gap in lead means physical- 
ly that the heat carryirr, quasiparticles are more rapidly frozen out. This is 
the most obvious cause o'" rue red-iced thermal conductivity, but, taken hy it- 
self, it does not suffice, to explain the large effect, 2. The quasiparticle 
lifetime *""* decreases more rapidly with frequency in lead than in weak-coup- 
ling materials. This effect  has its origin ir. the small density of low-fre- 
quency phonons in lead.  The ratio of integrals multiplying ?>/^t(A()~ in (25) 
is the larger the more rapidly r-1 decreases with frequency.  In loose physi- 
cal terms one can say that in all materials, the advent of the energy gap 
suppresses the carriers that are most weakly damped, and are thus most ef- 
ficient in carrying energy. This theory indicates that In lead this supres- 
sion is particularly effective. For the ratio of integrals mentioned, a value 
of about 1.1 is found.  For the model of Oebye phonons and "jellium" matrix 
elements worked out by Tewordt,""h the ratio is about 0.5.  3. The ratio 
" (u;,T)/ '" (u),T) decreases for lead when T decreases below T so that the 
last ratio of integrals in (25) is positive. The sign of this term appears 
to be connected with the coherence factors which go into a calculation of the 
relaxation rate for a ouasipartible in a superconductor.  In this model, the 
dominant relaxation process is one in which two quasiparticle excitations 
annihilate, emitting a phonon. Tiis is labeled process 3 In Fig, 7. This 
jives a positive sign. The other two kinds oc  processes, labeled 1 and 2 
in Fig. 7, scattering of auasipart ides with phonon emission and absorption, 
give the opposite sign. The value for this term rthe last ratio of integrals 
in (25)1 is calculated to be 3.5. Working backwards from the final slope 
obtained in reference 26b, it can be concluded that for the model used in this 
reference, the ratio is negative and approximately -0,9, 

Although no one of the three factors discussed is large enough to account 
for the effect, taken together thev change the slope 1,6 obtained in Te- 
wordt'sr*°  model to the large "alue II.  In Towordt's model the virtual pro- 
cesses are accounted for by the BCS rxjdel and the real processes bv a Oebye 
spectrum of lonqitudinal phonons coupled to the electrons by "iellium" matrix 
elements. 

The model, although container the effects discussed above, has certain 
weaknesses. The absolute value o\    ;.hc thermal conductivity at the critical 
temperature has approximately the correct value. At lower temperatures, how- 
ever, the complete absence of low-frequency phonons will result in the thermal 
conductivity in the normal state rot  approaching the T"? increase of the Bloch 
theory, but instead, increasing exponentially.  In spite of such weaknesses, 
the basic conclusions of this thcorv appear sound. 

This theory is based on a pre ious theory"' which was motivated by a 

Note in Fig. 6 that there are no longitudinal phonons below 7 meV and no 
phonons whatever below 2.15 rcV^i 1 l i-electron volts). 



feeling that the quaslparticle approximation, in the sense of lifetimes being 
small compared to excitation energies, might break down for thermal conduc- 
tivity In lead. The present theory indicates that no such breakdown occurs. 
However, the virtual effects of high energy phonons are  important for thermal 
conductivity. These are consistently treated by the previous theory38 and not 
by a phenomenological Boltzmann equation. The results are  In fair agreement 
with experiment. 

The difference In behavior between the strong-coupling and the weak- 
coupling superconductors is clearly apparent from Fig. I; the x curve depart- 
ing from M abruptly in the case of lead and gradually In the case of tin. 
It can also be seen that the transition temperature T  for lead, is above the 
maximum In x and for tin, it is below it. This means that the scatter of the 
normal electrons, at the onset of superconductivity, is mainly by phonons in 
lead and by impurities in tin. In both cases, however, x is lower than K 
for the whole range of superconductivity. 

Thermal Conductivity in the Superconductive State 

The usual procedure is to measure the thermal conductivity of super- 
conductors both in the normal and the superconductive states. The ^ormer 
measurements are made in a magnetic field larger than that needed to quench 
superconductivity, and, if necessary, are reduced to zero field strength by 
extrapolation.3 

Observations on the thermal conductivity in the superconducting state 
can be classified4 into (a) cases where H . ( x , and W. ) W , (b) cases where 
x . < K t  and W ) W  (c) cases where x £ is negligible in ?he normal state 
but appreciable0!n the superconducting s?ate, and (d) cases where x . is ap- 
preciable both In the normal and in the superconducting states. There are, 
of course, cases intermediate between any of the above classes, and their in- 
terpretation is correspondingly uncertain. W and W. are the residual and 
ideal (intrinsic) thermal resistivities, respectively. Thus, as In the case 
of thermal conductivity in normal metals, the thermal conductivity of super- 
conductors can be discussed in terms of the scattering of electrons by lattice 
waves, I.e. the ideal thermal resistance W., the elastic scattering of elec- 
trons by impurities, i.e. the residual thermal resistance, W , and the lattice 
component of thermal conductivity. 

The Ideal Resistance in the Superconducting State 

To realize the condition W > W below T , the specimen must be very 
pure and the transition temperature Reasonably high. This condition has, so 
far, been fulfilled only in lead and mercury. The thermal conductivity of 
lead is shown in Fig. lb; Figs. 5 and 8 show * /x vs T/T for both lead and 
mercury. c 

From the reasoning used to develop (15), x should be Independent of T 
just below T , until scattering by imperfection! becomes important.4 In gen- 
eral, x„ should be of the form 

1/H - W - W,  + W 
s   s   i,s   o,s (26) 
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where 

i,s   I,n  c 
(27) 

is independent of temperature and W   is related to W   by (|U), while r o,s o,n 

W    oc 
o,n 

(28) 

For this discussion, it is important to note that W   should increase 
monotonically with decreasing temperature, and so should W 

The observed behavior of H does not conform to these predictions. 
Immediately below T , 

HS * T", (29) 

so that 

g = (T/Tc)\ (30) 

in contrast to (15). At lower temperatures H does not decrease steadily 
with decreasing temperature, but increases again and then decreases at a 
temperature such that W   is comparable to W.  .4 

K o,n     Y i,n 

There are at least three interpretations of the observed behavior of 
v.. ,A    The one considered most likely by Klemens4 is that W.  is approxi- 
mately described by (15), but for some unknown reasons whicn are presumably 
outside the scope of the two-fluid treatment, (15) does not describe g im- 
mediately below T , Just below T , the actual g-function is smaller than 
(15), but not by a very large amount rthe observed values of K are not less 
than 3/*t H (T ) at the minimum"!; at lower temperatures H increases again to 
its theoretical value t>  (T ), then, at still lower temperatures, decreases 
monotonically, due to W  . 

o,s 

Then there is the interpretation that (30) holds over a wide range of 
temperatures, but that the ideal and imperfection resistances do not combine 
additively as in (26), so that W is not a monotonic function, even though 
W   and W.  are. This viewpoint raises two questions:  (l) Why should 
*?,s be so'much smaller than \  ? and (2) Why should (26) break down so 
violently at intermediate temperatures that W decreases with decreasing 
temperatures, even though both W.  and W   increase? 

i,s     o,s 

The third interpretation ascribes the maximum in H to an enhanced 
lattice thermal conductivity in the superconductive state, but the difficulty 
is that a rather large amount of lattice conductivity is needed, i.e. H 
(h    K) ■*( 1 watt/cm-deg.,r- By direct evaluation of a theoretical formu-^ 
la"**, an estimate for lead was obtained which implies that a       (U °K) <* )0"s 

watt/cm-deg. Also, measurements*' on lead showed that « wa? limited only by 
boundary scattering at the lowest temperatures. An upper limit of, say 5%, 
can be put on the resistance of all other phonon mechanisms at 1 °K.  If this 
57' were all due to the scattering of phonons by electrons, and the assumption4 
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made th«t the ratio of this scattering in the superconducting and normal 
states is (T/T )* Tcf equation (19)1, the measurements would require that 
Hoh n ^  ^ $ at 'ea8t ,0"a *«att/cm-deg., or extra resistance would be 
visible at 1 K as a deviation from the pure T3 behavior observed. Hence, 
sine« H .  has been observed, at lowest temperatures, to be limited by 
boundary scattering, this gives an upper limit to H   at higher temperatures 
which is too tow to account for the peak in the H Burve at about 3 K, 

Some experimental evidence98 has been reported which seems to support the 
second Interpretation. Measurements on high purity tin and thallium, Figs. 9 
•nd 10 show, first, a behavior of the electronic thermal conductivity at the 
transition from the normal to the superconducting state which is similar to 
that found in lead and mercury,3»3 and second, an anisotropy of 

^o " "T - 0 V (3D 

which, in the case of thallium does not exceed ~ 10%, but for tin, <y  along 
the rÖOI] axis is 1.4 times greater than ry along the TllO] axis, see Table I. 

At sufficiently low temperatures, the electronic thermal conductivity 
In the normal state can be expressed 

T/xn - po/L + T W. (T) (32) 

Here the first term is determined by the scattering of electrons by lattice 
defects and the specimen boundaries (p is the residual electrical resistivity 
and L Is the Lorenz number) and the second by scattering by lattice vibrations 
(phonons). According to Makinson37 

TWj (T) - <vTa 

There Is also a change in the quantity 

a dfT V,(T)1/dt3 

(33) 

(34) 

which on the simplest theory37 should be a constant. The change in T W.(T) 
(or in <*')» see Fig. 11, lies outside all possible experimental errors and, 
can, evidently only be explained by a lack of additivity in the scattering of 
electrons,se Table I shows the ratio, at T ■ T  of the scattering by 
lattice imperfections to the scattering by phonons, which is determined by 
the value of p /L « T*.  It can be seen from the table that for the purest 
specimens measured, the conductivity at temperatures near T is limited by 
scattering of electrons by phonons. 

The data of Fig. 12 and Table i show that for a relative increase in 
phonon scattering (a reduction in o /L « T_3), x./x_ decreases near T. Ks/Hn 
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H /x is then close for specimens of thallium and tin" with the same 
ratios p /I « T '' (specimens TX-3, Sn-1 and Sn-2). For the thallium and 
tin, therefore, as was found earlier"»" in the experiments on mercury and 
lead, the reduction in tne electronic thermal conductivity at the transition 
from the normal to the superconducting state is sharper when the electrons 
are scattered by phonons than when the scattering is by lattice defects. 

A qualitative explanation of the different form of the dependence of 
K /»«. on T/T for scattering by imperfections and by phonons is: In the 
former case, the electron mean free-path is the same in both the normal and 
superconducting states of the metal.  In the latter case it is rather the 
mean collision time, T, between electrons and phonons which should stay con- 
stant, assuming an unchanged interaction between them. As a result of the 
change in the electron energy spectrum in the superconducting state, this 
leads to a reduction in the electron mean-free-path and therefore in the value 
of H IK  . A calculation of the heat conductivity for the case T ■ constant 
leadl to the following result 

*n /^Cv Ks ~ T/T   P e ~ {^f}' d" ~ T/T   <* ftf cosh 2rr/expfAr1  cosh -1 + 1 ]dff      (35) 

*\ »>., Ks/xn = 3/2--   r x*  sech^l/2 ./ f +  (A/T)sjdv (36) 

where € = J 'p  + A is the excitation energy in the superconductor, 
n B (e ' ' + l)"1, and A is the superconducting energy gap, assumed to be 
of value 1.7 T . The curve R of Fig. 12 is calculated from (3$) and (36). 
It can be seencthat (35) and (36) only describe the variation of K /H with 
T/T qualitatively. This may possibly be due to the electron-phonon ?nter- 
actfon being different in the normal and superconducting states (by electrons, 
is meant the so-called normal electrons of the superconductor). Another pos- 
sibility is that the different dependences of the K /H on T/T for thallium, 
tin, mercury and lead (Fig, 12) are produced by the differences in A/T for 
these metals.41 

The Residual Resistance in the Superconducting State 

In the case of tin, indium, tantalum, thallium, vanadium, and niobium, 
the normal ftäte electronic thermal conductivity, For those specimens which 
have been studied, is determined at T and below by imperfection scattering, 
and the same applies to the various alloys and to impure specimens of lead 
and mercury. These specimens can be used to test (1*0 for K , , except 
where H .  is appreciable and complicates the picture. As fong as lattice 
 EttL- 
There appears to be some anisotropy in y /H    vs T/T in tin. The change 

of x /K with T/T for specimens along the r?10laxisCfollows a steeper law 
than foP specimens along the r00l! axis. This is similar in form to the 
anisotropy in ultrasonic absorption near T ,Ar 
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conduction Is unimportant, the ratio x /K should agree with {\k);  If 
H /K IS larger than expected, the difference is ascribed to x .  , though 
I? iS usually not possible to prove that this is so.       p ' 

K has been measured for tin down to about T /3. 3,4S Fig. 13 shows 
valuessof H /H ;" the specimens art  numbered in increasing order of W , Note 
that the curve? for Sn2 and Sn3 art  practically coincident, even though their 
values of W   differ by a factor of about 2. The high values of K /X are 
ascribed to°*n  . Since these specimens have appreciable lattice conduction 
even in the normal state, this seems a plausible interpretation. 

Similar results were obtained for indium.3»43 However, in all cases 
It is found that the observed f-function decreases more rapidly with tem- 
perature just below T than the function (\k)   (semiempirical function). It 
could be that this departure from the conclusions of the two-fluid theory 
just below T is related to the similar departure already noted for the g- 
functlon. STadek, on the other hand, suggested the following form for 

Ke/,s/xe/,n: 

f - 3(T/Tj?/2 + (T/T.)4 (37) 

which he based on an assumption about I    which seems no more artificial 
than (13).4 S 

Substantially similar results for K   have been obtained for tantalum3, 
tin, indium, thallium, tantalum and vanaofum;*4 the case of niobium was com- 
plicated by frozen-in magnetic flux. 

Not much data are available on K . /K .      below about T /2, partly 
because not many measurements have been*made a? sufficiently tow tem- 
peratures and partly because of the increasing importance of K .  as the 
temperature is decreased. Dh,s 

Measurements of n below about 1 K have been made.3*» 'V-J"r    For tin 
and tantalum indications have been found4* that x /H decreased faster with 
temperature than it should according to equationss(l2) and (14). This was 
confirmed by the extensive work on tin46, where an exponential decrease with 
temperature was found in H for two pure spec. ,«. ,,  changing at lower tem- 
peratures to a T3 dependence. The latter variation is ascribed to lattice 
conduction, while at higher temperatures H    is important (it is x 
which varies exponentially).4* A speclmene6fslead which had previou5Tts 

been measured at helium temperatures49 was measured down to O.^ °K.38 Below 
1 °K it was found that H. « T3 (presumably lattice conduction), but just at 
the upper limit of the measured temperature range, indications were found of 
a faster variation, which is confirmed if one joins up these measurements 
with those at higher temperatures. Probably this is a case of x    decreas- 
ing exponentially with temperature. Measurements of tin, Indium6 tfiallturn, 
aluminum, tantalum, and niobium from O.^f ° to 1° K disclosed an exponential 
variation of x in the case of thallium; In the other cases, the effect 
appeared to be masked by lattice conduction. 

\h 



Presumably, the exponential behavior of H ,  at low temperatures is re- 
lated to a similar variation in the specific hMt.  In some cases, indications 
of such a variation of the specific heat of superconductors well below the 
transition temperature have been observed.  It appears likely, therefore, that 
the Gorter-Casimir two-fluid theory breaks down at very low temperatures. 

The Lattice Component of Thermal Conductivity in 
the Superconducting State 

In superconductors one should expect heat to be carried by phonons 
rather than by electrons at low temperatures, where the concentration of 
normal electrons must become vanishingly small. This phonon conduction 
will be enhanced by the reduction of the scattering which the phonons ex- 
perience by encounters with normal electrons. Evidence for this effect can 
be obtained either by observing the temperature dependence of H at suf- 
ficiently low temperatures, or by introducing agents into the specimens 
which will scatter phonons selectively. Both types of experiments have been 
carried out, and have shown beyond doubt that a superconductive metal exhibits 
behavior identical with that of a dielectric crystal, as far as thermal con- 
ductivity is concerned, when sufficiently near to absolute zero. Even if H 
is too small to be observed in the normal state, in the superconductive state 
Wf decreases very rapidly with temperature, so that at very low temperatures 
x    is only limited by the scattering of phonons by static imperfections or 
b8unaaries. Thus, experiments below 1 K usually give clear indications of 
lattice conduction. 

In the dimensional equation, 

= A C (38) 

where C is the specific heat per unit volume of the heat carriers, v is their 
velocity and 9   is their mean-free-path; A is a constant which is usually equal 
to 1/3, v is temperature-independent and C is proportional to T\* Hence H 
wi\ 1 vary with jr   since ' is constant. As was pointed out by Casimir19, 
scatter of phonons only occurs at the geometric surface of the specimen In a 
perfect dielectric crystal at low enough temperatures. This means that * 
is constant and is determined by the specimen dimensions. Thus the magnitude 
of H is dependent on si?c alone. This type of behavior has indeed been ob- 
served ° in dielectric crystals, the heat conductivity being proportional to 
T" and of the predicted nagnitude. 

Clear evidence for a similar behavior in suDerconductors has been found 
in measurements of thermal conductivity in lead-"-, particularly K down below 
1 K.  It was pointed out"" that phonons and electrons each have one scatter- 
ing mechanism for which theory and experiment agree, and one for which there 
is much confusion. The heat conduction by phonons at the lowest temperatures 
is expected to be limited by boundary scattering and to vary as T?.  This is 
well substantiated experinentally; Fig, ]k  shows results for lead and thal- 
lium.  Similar results have been obtained for tin, indium, and niobium.  How- 
ever, when one extrapolates this to higher temperatures and attempts to obtain 
that part of the phonon conduCi *'i ty which is limited by electronic scatter- 
ing, confusion arises because the electronic scatterers are themselves car- 
riers of heei. As a result, estimates of this cart of the phonon conductivity 
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are very unreliable and disagreement with theoretical predictions not sur- 
prising; similarly with electronic conductivity limited by phonon scattering. 

Although the curve of Fig. 1*4 shews a definite variation of K with Ts, 
the numerical value of H was found to be rather smaller, in this case, than 
would be expected on the basis of Casimir's treatment which, for a cylindrical 
specimen, predicts / • d(d is the specimen diameter). Similar deviations are 
found in other cases. At the lowest temperatures, K has been found to vary 
as T3 in lead35, tin and indium4', and ti^.'l^»','  ltswas found that generally 
the group at Oxford35»wi*p deduced values for W which were five to ten times 
higher than values expected from the external dimensions of their specimens, 
while the group at Cambridge^»rl found values of W in rough agreement with 
the external dimensions,4 Two possible explanations have been given' for the 
findings of the Oxford group:  (l) their specimens contained considerably more 
grain boundaries and (2) x . is reduced by frozen-in magnetic flux. 

ph 

A study of the effect of strain on K shows clearly that even a very 
small degree of cold work, such as is produced by a slight vibration of the 
cryostat, can raise the numerical value of H substantially. This difficulty 
was not fully understood in most of the researches quoted in the foregoing. 
More careful work93 has shown that, at least in the case of tin, values for K 
can be obtained which are sufficiently close to (he value predicted by Casimil 
to make scattering by the specimen boundaries the dominant process. 

Even so, however, the tendency of H to fall short of the predicted value 
deserves attention," The situation can be  represented, conveniently, by in- 
troducing several thermal resistances which are characterized by different 
mean-free-paths, and which are combined additively. Thus, denoting the mean- 
free-path derived from observation as o' we wn te 

I// (1/d) (1//b) (39) 

in which f,    is a mean-free-path characteristic of an additional resistance in 
the bulk material. The circumstance tnat, as yet, no metal specimen has been 
found in which this additional internal resistance is zero, whereas it is of 
considerable magnitude in most, may be due to the fact that the metals are 
much more plastic than the dielectric crystals investigated. This is a field 
where further research is indicated, particularly because the features associ- 
ated with the internal scattering appear to be complex. Although the tem- 
perature dependence of K is cubic in many cases, both higher and lower powers 
of T have been observed. Moreover, it has been found that even at the lowest 
temperatures, a single crystal of the given material will exhibit a thermal 
conductivity proportional to V, even though a polycrystalIine sample may show 
a T3 dependence. This suggests that the internal scattering centers, which 
are  most probably dislocations, may have a more profound effect than the 
crystal boundaries. 

In the case of impure tin specimens*" H varies more slowly than T" except, 
at the lower end of the temperature range. At higher temperatures H  <* Ts. 
Goodman** presumed the dominant scattering mechanism in the Tn region* to be 
scattering by the free electrons. Klemens* pointed out that this war, unlike- 
ly, since from (19), W_  should vary as T", not as T"0, However, it has been 
shown4 that dislocations can play an important part in determining H . , even 

ph 
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in normal metals where W_ is not quenched. 
the T" region x_._  is limited mainly by dislocations. This 

It seems quite possible, there- 
fore, that in the T" regTon x    is limited mainly by dislocations, 
interpretation can also be applied to a tantalum specimen*"* where x 
was found to vary as T* below I K. 

ph.s 

A more convincing proof of the phonon nature of H at low temperatures 
is provided by work in which selected scattering mechanisms are introduced 
into the specimen.q Observation of the different effects of changes on H 
and K allows a more unambiguous assessment of the nature of the energy 
transport in each case. Assuming that the heat is entirely carried by phonons 
in the superconductor, at low enough temperatures, we may expect the following 
behavior of x and K in the same specimen: 
(I) K should be inSensitive to point imperfections, i.e., to the amount or 
naturesof the impurity, whereas x    should be much reduced by small amounts of 
impurity and should be sensitive ?o its nature.  (2)  K should be reduced by 
large-scale imperfections, e.g., grain boundaries, such as are introduced by 
plastic deformation and recrystalIization, whereas H should not be greatly 
influenced by them. Providing that the specimen is pure enough, dislocations 
should reduce both K and H . In many cases, however, n Is so small already 
because of impuritiel, thatnthe only observable effect iS the reduction in K , 
(3) x should be reduced when the specimen diameter becomes small compared s 

to the phonon mean-free-path in the bulk material, whereas x should not. 

Experiments designed to test these predictions have been performed on 
lead,'5'1 The results unequivocally show the phonon nature of the heat trans- 
port. Fig, 15a shows x and x for two single crystals, one of pure lead and 
one of an alloy containing 0.7/ bismuth.0 The conductivities in the normal 
state at 1 K differ by a factor of 100 and (even in the superconducting state 
at h    K) there is still a large difference. The conductivity at this tem- 
perature evidently is still mainly electronic, but the two x curves merge 
below 2 °K. Very similar numerical values of x were obtained at 1 °K with 
specimens of lead containing the same amount of tin or thallium. On the other 
hand, measurements on a lead specimen containing 0.6% thallium (PbTx'0,6%) be- 
fore and after severe strain due to bending showed x reduced to 1/6 its 
original value, whereas x was completely unchanged, Fig. 15b,s Probably, 
the dislocations, introduced into the sample by the strain, are very effective 
scatterers of phonons, but the electronic conductivity is unaffected by them 
because of the thallium impurity. 

The effect of sample si« on K is more difficult to demonstrate clearly. 
Simply to compare measurements made on a thick rod and a thin wire of the same 
material can not be conclusive since it is almost impossible to avoid strain- 
ing the latter. Thus, it would be diTicult to distinguish with certainty 
between reduction in x due to limitaiion of the phonon mean-free-path result- 
ing from geometrical boundaries or From dislocations. However, an experiment 
has L>een performed1"'" on a lead Toil 0.07 mm thick which was stabilized me- 
chanically by being rolled into a scroll.  Since the phonon mean-free-path of 
the material was of the order of 0.5 mm, a size effect should have been no- 
ticeable in the foil.  Indeed the heat conduction of the foil at I °K was 
found to be five times smaller than that of a bulk specimen of the same ma- 
terial, whereas x is essentially the same in both cases. Moreover, the tem- 
perature dependence of x for the scroll approaches T, which is to be expect- 
ed for boundary scattering. 
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Metals, such as the transition metals, which have low intrinsic electrical 
conductivity should exhibit the most pronounced effect of enhanced phonon con- 
duction. The most striking example of this kind has, indeed, been observed in 
tantalum8* which was measured down to 0.2 K, The result of these investi- 
gations indicates that H /H is even larger than one in the neighborhood of 
1 N.  If the data are pfot?ed in a form which permits comparison with the 
semiempirical function (f-function), see Fig. 16, it can be seen that the 
latter represents the data remarkably well down to about O.k T . Below this 
temperature, there is an enormous rise in the phonon conduction wh>ch at 0.2 T 
assumes a value about a hundred times larger than the electronic contribution. 
Data on niobium, included in Fig. 16, and on vanadium present a similar pat- 
tern. The results for tantalum have been used to separate the phonon contri- 
bution x h  from the electronic part H . ."" This analysis shows that at a 
temperature T /k,  the phonon conductivity*is scMl increasing with decreasing 
temperature even though the ratio H .  /x .  approaches 10?, indicating the 
Strong scatter of phonons by the normal conduction electrons. Comparing the 
numbers clearly indicates that the maximum in H will be less pronounced or 
will disappear for metals with better intrinsic electronic conductivity. 

Aluminum is a typical example of the latter behavior, *»*  Here the data 
agree well with the semiempirical function (f-function) over the entire range, 
including the lowest temperatures. Fig. 17 shows the observations"'5 of x 
plotted for pure aluminum and an alloy with 1.7 atomic %  copper. The pure 
metal follows the B.C.S. function with an energy gap slightly smaller than 
that predicted by the theory. At temperatures below T /3, however, the alloy 
shows a deviation to higher values, indicative of a phonon component. 

The thermal conductivity has been measured on two indium-lead alloy 
samples containing *+,05 and 7.31 atomic %  lead, respectively, down to O.h  °K.r" 
The results were interpreted in the light of the Bardeen, Rickayzen, and Te- 
wordt (BRT)1"1 theory. This theory assumes that the dominant electron scatter- 
ing is due to impurities and the dominant phonon scattering is caused by e- 
lectrons. The normal-state data were fitted with 

AT + BTP C+0) 

where the first term represents x .  and the second, K   . This determined 
the two parameters A and B.  It wSs'?ound that the phonon'contribution was 
very small in both the normal and the superconducting cases. Similarly the 
superconducting data were expressed by 

ATR ,  + x . 
ei   ph,s 

<h\) 

Here R  is the BRT ratio of electronic thermal conductivity   the two 
states, and x.   the lattice component, included the effects of boundary 
and point-defect Scattering as well as the electronic scattering considered 
by BRT. Hence, the additive resistance approximation 

1/Hph,s " ,/HBP + ,/HBRT 

was used. Here 

C+2) 
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"MT = Br Rph (43) 

is the BRT value assuming phonon scattering by electrons alone. Xap '
S
 
tne 

phonon thermal conductivity limited by boundary and poiru-defect scattering 
according to Slac!■,r" ;ipp involves two additional adjustable parameters, the 
mean-frce-path due to boundary scattering L and o temperature T^ whicii is a 
measure of the point-defect scattering.  In evaluating L, the velocity of 
sound was taken as 1.9x10" cm/sec. The accepted value of the energy gap for 
indium, 7£ (0)/_k T = 3.7 was used. 

As shown in Figs. 1" and 19 the agreement between theory and experiment 
is quite good. The fit to the superconducting data obtained in this manner 
is particularly good at the lower temperatures.  In this region boundary and 
point-defect scattering predominate. Tue slight disagreement near 1 K is 
attributed to the limitations o' 'he additive resistance approximation.™ The 
small phonon contribution (the linearity of the normal-state data rules out the 
strong possibility o' a larger phonon term) probably accounts for the poor fit 
at higher temperatures, where the BRT result predominates. However, it is 
quite apparent tnat y.    is largely lattice conductivity over almost the entire 
range shown. The maximum or plateau region near 1 K for the superconducting 
case is caused by tue transition from the scattering of the phonons by elec- 
trons, './_, '■o a combination of boundary and point-defect scattering, L-,.*' 

c Dr 

One err not obtain a value ror W_  from the very low temperature ob- 
servations (except an uppc-r limit, wnfch is probably very much larger than 
W_ ), because of   tne importance or  phonon-phonon interactions, which are  not 
influenced by the superconductinc behavior.  It is only possible to observe 
VL  o'er a limited temperature range below Tc,  It has been determined in 
this way for Sn96-Hc ':," lead-bismuth alloys*' which 
measured"", and for indium- thai I i ;«n alloys,'" 

had been previously 

A conflicting picture c" tne ratio h = W  /Wc s results from these 
observations. Huir" suggested n - (T/T)' , OTsen'^'h -*, (T /T)r, and Sladek*r, 
whose measurements seen most suitablecfor the evaluation o<   h, did not obtain 
a simple power law, nor the same curve of r  "ersus T/T for all his samples, 
but rather a series of curves for n, all in the vicinity of h ■ (T /T)', but 
too hinh just below T rnd lending to become :no  'ov at lower temperatures. 

Tiic in'.orpre'.at ion contains uncertai.ities, hence 1/ , could easily 
;iave component'; ot'or than \L   (.his is certainly so at lowest temperatures 
and nay e so even 1 f '.' ( --- T" ), which would tend to decrease n. The sep- 
aration of y.     in^o H  P'\ind ;■_ .  involves the assumption that the ratio f = 
H  /H   is inHcperaeflf o alToy composiiion.  Nevertheless there are pro- 
bably real discrepancies "rom h = (T/T) ', particularly just below T , just as 
trern are discrepancies in ;•..   inst 'below T , c 

i ,s ■ c 

! was ion; ione I cbee 
orea.s 
S tfl .c 

•loi 
no 

l 11 ti'OSt 

c^iiSt 'I 

the '-ror,ction (ser iempl rica' formula) 
esob in whic.n scattering or  electrons in tne normal 
impurities u- !.■/ pnonons.  In "rex.,   tl'.e observed 

;c lea:!, which has a low characteristic tern« 
transition tenperature (7.2 °K) , do not follow 

on tor any temperature region.   \<   can be seen 'rom Fig, ] 

values o' •■ /»t for a metal-1 
s n 

ppr-it;:re ana a relatively .-.i- 
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however, that xs exhibits a maximum at 0.5 T which is similar to those shown 
by tantalum and niobium at much lower reduced temperatures. The question 
therefore arises whether the maximum in ;< of lead is different in nature 
from the enhanced phonon conduction found in the K of the transition metals. 
Fortunately, the sensitivity of the phonon conduction to dislocations allows 
this problem to be decided experimental'y/' When the pure single crystal 
of lead of Fig. 1 was strained at hellem temperature, it was observed that y. 
was Indeed reduced. However, this reduction occurred only at temperatures 
well below the maximum in »t , i.e., in the reduced temperature region found 
in tantalum and niobium.*3 The maximum in lead was quite unaffected, whereas 
It was drastically reduced in the transition metals by similar treatment. 

A clearer picture of the behavior in the case of lead can be obtained 
from the curves in Ftg. 20.a This shows that at temperatures above ~ 0.*+ T 
the experimental values are  lower than those given by the f-function 
(semiempirical function), whereas they are higher below that temperature. 
Introducing dislocations into the specimen by strain does not affect the 
higher temperature region of x at all. However, x now follows the semi- 
emplr'tal function remarkably well below ~ 0.^ T . Thus, it seems that the 
failure to obey the f-function arises from two quite different reasons. At 
high temperatures, where the predominant process is the scatter of electrons 
by phonons, the theoretical understanding is not yet sufficient, whereas 
phonon conduction becomes predominant below 0,*f T . Once phonon conduction 
Is drastically reduced by scattering on dislocations, the semiempirical 
formula holds quite well. Hence the maximum in x in lead is entirely 
electronic in nature and is clearly connected witn the maximum in n , 

n 

Klemens4 points out that the interpretation""" of the thermal conductivity 
of lead-bismuth alloys contains difficulties. Fig. 21 shows plots of x and 
K versus T for these alloys. It is easily seen that i;: the Increase o? x 
f8r the alloys 0.2% Bi and 0.5% Bi over the values of x for alloys of lows 

bismuth content is to be explained in terms of enhanced lattice conduction, 
then x .  for these two alloys is higher than H .  for the alloys 0.1% Bi 
and 0,82% Bi, and possibly even higher than x . " for pure lead. Of course, 
It Is possible to explain this by assuming some'imperfections to be present 
In the more dilute alloys and not in the more concentrated alloys, though 
this disagrees with the usual observations. 

Thermal Conductivity in the Intermediate State 

A superconducting pure element, in the shape of a long cylinder, under- 
goes a sharp transition from the superconductive to the normal state upon the 
application of a longitudinal magnetic field. In other cases the transition 
Is gradual; increasing the magnetic field causes a gradual Increase of flux 
In the specimen, until all the material is in the normal state. Upon removing 
the field, the material does not return to the original superconductive state, 
but some magnetic flux remains frozen in. 

The intermediate state of the material is not homogeneous, rather It con- 
sists of a mixture of normal and superconducting regions in the material, the 
former having high flux density (above the critical field) and the latter, zero 
flux. Since the lines of flu;; are continuous, the structure of the intermediate 
state Is dominently one of filaments or layers, alternately normal and super- 
conducting, lylnq In the direction of the field. 
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A number of measurements have been made of the thermal conductivity of 
superconductors in the Intermediate state, with the specimens as long cylin- 
ders. With longitudinal fields there will usually not be a marked mixing of 
vne two states, except in the case of alloys, when the normal state inclusions 
will be mainly filaments running the length of the specimen. With transverse 
cie1ds, however, the specimen will readily break up into a mixture of two 
states, and the normal state inclusions would then be, predominantly, layers 
"orpendicular to the cylinder axis, and thus to the direction of heat flow. 
T'->e thiei-.ncss of the individual regions may be of the order of 0.01 cm. 

With a cylindrical specimen in a longitudinal field, with normal and 
superconducting filaments along the direction of heat flow, the overall thermal 
conductivity would be expected to be given by the average,' 

V„K„ + n n 
(1 Vs m 

■here Y is the fraction of normal material and can be deduced from flux meas- 
urement?. Similarly, for transverse fields, the thermal resistance averages 
are given by 

W = v W + 
n n (1 VWs e*5) 

As a consequence of either (••'>) or (^5), the thermal conductivity In the 
intermediate state (either with subcritical fields or with frozen-ln (trapped) 
flux) should be intermediate between the normal conductivity H and x as 
measured in the virgin superconducting state. Within the bounas of tnls re- 
striction, hysteresis effects are possible. 

Such behavior was indeed observed in many early measurements In transverse 
fields3»66 and in longitudinal fields,3 Later measurements showed variations 
of H with magnetic field strength, however, which could not be reconciled with 
either (Mt) or (^5), In the case of some lead-bismuth alloys and of niobium, 
it has been found^p that the thermal resistance passed through a maximum value, 
on applying a field, which was higher than the resistance In either the normal 
or the superconductive state, Fig. 22. Also, on removal of the field, K did 
not return to the original value x , but to a value again lower than either K 
or K (a hysteresis effect). These anomalies seem more likely to occur the s 

lower the temperature and the larger the impurity content, but this Is not a 
general rule. This effect has been ascribed5* to a heat flow mechanism which 
occurs in the superconductive state in addition to electronic conduction; in 
the intermediate state this mechanism would be inhibited, A two-fluid circu- 
lation was suggested for this additional mechanism,Pr    A more likely explan- 
ation seems to be lattice conduction.'"' 

Further instances of anomalies in transverse fields were found later for 
pure lead',r»A'', pure tin and indium (but not for tin containing 0.13^% Bl)"a, 
and for mercury."0»'70 

The anomalously high thermal resistance in the intermediate state has 
been attributed to various scattering mechanisms acting at the boundaries of 
the filaments. The situation has been greatly clarified by a systematic 
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investigation of tue alloy series Snlr.."  The induced magnetic TOment an! the 
dependence of the electrical and thermal resistance on the magnetic field 
strength were measured on these specimens. A typical set of results for an 
almost perfect single crystal containing 2.8% indium is given in Fig. 23 for 
two temperatures. Whereas the fraction of frozen-in flux Is largely tem- 
perature Independent, the maximum in the thermal resistance is pronounced 
at 2.03 °K and practically nonexistent at 2.65 °K. From this it can be de- 
duced that the structure of the intermediate state is much the same at dif- 
ferent temperatures and that the relevant scattering mechanisms may be dif- 
ferent. More detailed analysis does indeed suggest that the filament boundar- 
ies scatter both electrons and phonons but that the temperature dependence is 
different for the two mechanisms. 

Theory of the Thermal Conductivity of Superconducting 
Alloys with Paramagnetic Impurities 

The prediction of "gapless" superconductivity In paramagnetic alloys'7" 
and the confirmation of this prediction7'" are significant recent develop- 
ments,7* Although the theory Is based op an approximate treat^nt of a simple 
model and more detailed experiments are needed, the prediction is unambiguous 
and the confirmation convincing. The assumption is that the static magnetic 
impurities are randomly distributed and that their spins are uncorrelated. 
The theory makes It clear that the key feature of the superconducting state 
is the condensation phenomenon. A gap in the single particle excitation 
spectrum is evidently not a necessary requirement for either the infinite 
conductivity or the perfect diamagnetism of the condensed state. The experi- 
mental Investigation of this phenomenon of superconductivity without an energy 
gap promises to improve our understanding both of superconductivity and of the 
effects of magnetic impurities in metals in general. 

Based upon this theory, the electronic thermal conductivity K of a weak- 
ly coupled, Isotropie superconductor, doped with a small concentration of 
paramagnetic impurities, is calculated, starting from a Kubo formula, by con- 
sidering the electron-Impurity Interaction in the ladder approximation. 

A considerable simplification of the final expression occurs if it Is 
assumed that the total single particle lifetime is much smaller than the ex- 
change lifetime «r , With this assumption, an expression is obtained for H /H 
of the form    5 s n 

Ks/xn - (3/2TT
?
)3
3
 J du> J>  sech*(*-=(») h(m/A,<y) 
b 

(Mi) 

a * (TSA)
-1 

(*»7) 

A is the average order parameter, and 

0 e  0/kT) (W) 
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_k Is the BoHzmann constant, and T absolute temperature. The units are  chosen 
so lhac-fl = 1.  For non-magnetic i-purilies, the usual result is found that 

h(w/A < 0 * 0 ('<?) 

and 

h(u/A > 0 » 1 (50) 

the average order parameter /\(T,T ) being the energy gap in this case. For a 
paramagnetic alloy, the lower limit of integration is the physical energy gap 
UJ  (A,rv) and not the average order parameter A(T,T ). Moreover, the function 
h^w) increases smoothly toward unity for u; > u> . 

o 

The ratio K /K is evaluated numerically as a function of the reduced 
temperature (T/T ) = t for different impurity concentrations, including non- 
magnetic impurities. The results are shown in Fig, 2'r. 

Abrikoso" and Gor'kov have shown that the energy gap function u; (T) is 
quite different than the Gor'kov order parameter \(T) in such alloys.0 It is 
found that y  /H is less than unity in the "gapless" region H   <  1. This 
theory prediltsnthat even in the gapless region the thermal conductivity in 
the superconducting state is lower than that in the normal state, because al- 
though the energy spectrum has no gap, it is still distorted. In addition, 
the onset of gaplessness does not lead to ?n abrupt change in the thermal con- 
ductivity. Long before the gap actually vanishes, the BCS singularity in the 
density of states is smoothed out by the impurity scattering.  Finally, it is 
found that H./K as a function of t, has a characteristic concentration de- 
pendence. For P ~ 0.9, H_/K decreases for small n. while for t «^0.75, it 
increases with n.(n. is the paramagnetic impurity concentration)« 

For non-magnetic impurities in systems with weak electron-phonon inter- 
actions (to which this theory is restricted), a simple calculation of the 
thermal conductivity, using a Boltzmann equation, is possible. To justify 
the elaborate formalism used, it is pointed out that in the gapless region 
(always close to T ), it is not possible to associate a narrow band of en- 
ergies with a state of momentum near the Fermi momentum, i.e., the quasi- 
particle approximation breaks down.  In addition, the effects of the para- 
magnetic impurities in renormalizing the energy spectrum are crucial. Both 
these effects would cause difficulties in conventional transport theory, but 
they are  easily taken into account in the Kubo formulation. 

Tne Thermal Conductivity as a Defect Detector 
in Superconductors 

It has been demonstrated above that nhonon conduction predominates in it 
at low temperatures, that it is sensitive to strain, and independent of    S 

point imperfections. Clearly tnis can provide a distinction between these 
two different types of lattice defects.  Investigations of this nature have 
the added advantage that, in the same specimen, the scattering of phonons 
and, by simply applying a magnetic field, that of electrons can be studied 

>; 
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without even warri,.j *.ne samp'"-,    o roor.  temperature.  In most cases the mag- 
netic fields required to destroy superconductivity are less than 1000 oersteds. 
The accompanying magneto-resistive effects in the normal state are small. 
Those whic!-. exist can usually be taken into account by running comparison ex- 
periments above T ,e 

Systematic experiments have been performed on the effect of strain and 
lmpurity,CB»7B The clearest results were obtained by Rowel I*", who subjected 
pure lead and a lead alloy to controlled bending at helium temperatures and 
measured the thermal conductivity in the normal and superconducting states 
before and after Introducing the strain. Another feature was the study of 
annealing effects at different temperatures between that of liquid helium and 
room temperature. Order of magnitude agreement was obtained between the 
density of dislocations derived from the measurements of heat conductivity and 
those predicted on the basis of the strain introduced. More spectacular re- 
sults than were obtained on lead are  those on a niobium rod which was origin- 
ally single crystal and which was subsequently stretched in steps until it 
ruptured, x showed no effect except at the highest strain. Even after 
fracture x changed only by a few per cent. On the other hand, the effect 
on H Is far-reaching. In its undisturbed condition, the niobium specimen 
showed e very pronounced maximum in x at temperatures below 0.*t T . With 
successive Stretching, this maximum was largely removed. Point imperfections, 
which scatter electrons, will reduce both x and x at high reduced temper- 
atures, where the heat transport is still by electrons. The maximum in x at 
low temperatures because of phonon conduction is unaffected. However, since 
x Is drastically reduced, x may now exceed » in this temperature region. 
At still lower temperatures, this relation is again reversed and K /X becomes 
smaller than unity. Extended lattice defects, such as dislocation!, intro- 
duced by strain, appear to have little or no effect on the electronic part of 
the conduction mechanism. Therefore, x , as well as the high temperature part 
of x » will not change materially. In ?he low temperature region, on the 
other hand, where heat is carried by phonons, x is decreased. The phonons 
are scattered by the dislocations; with increasing strain the ratio K /X 
becomes progressively smaller,3 s n 

This method can also be applied to the study of nuclear radiation damage. 
The thermal conductivity of a single crystal rod of niobium was measured first 
in the undamaged state then after neutron irradiation at room temperature. 
Both x and x are  reduced by irradiation, Fig. 25. If it is assumed that 
both iRterstitlals and vacancies have been produced by irradiation, it is be- 
lieved8 that, although the former may have migrated at the temperature of ir- 
radiation, the temperature was never high enough to cause migration of va- 
cancies In niobium. Hence the decrease in x is ascribed to the vacancies 
produced directly by the radiation and assume a more-complicated process to be 
responsible for the decrease in x . A calculation based on the condensation 
of interstittals due to irradiatiSn yields an increase of about 10* disloca- 
tions/cm3 In niobium. Using"'"' 

0 - (h^^b8^ kr)N (51) 

for a random array of dislocations, where h is Planck's constant, v the 
velocity of phonons, v is Gruneisen's constant, b the magnitude of the 
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■Su'^er'-i vector, k  the faltzmann constant, and N is tha density of dislocations 
per unit ares,  to"~determ<ne the change in * with the number of dislocation 
lines, analysis of the observed change in H yields 3xl09 lines/cm", which is 
in surprisingly good agreement. 

<j 

Conclusions 

The thermal conductivity of superconductors is discussed from the view- 
point of the two-fluid model and the Bardeen-Cooper-Sehr Jeffer theory. The 
significance of the ratio v f*.    is discussed and its dependence on T/T is 
shown to be a universal function independent of the particular element meas- 
ured. The electronic thermal conductivity of superconductors with strong 
electron-phonon coupling differs markedly from typically weak superconductors 
like tin or indium. A theory is discussed to explain this phenomenon. The 
thermal conductivity in the superconductive state Is discussed from the stand- 
point of:  (a) the ideal resistance, (b) the residual resistance, (c) the 
lattice component, and (d) in the intermediate state. The existence of 
"gapless" superconductivity is shown in the theory of the thermal conductivity 
of superconducting alloys with paramagnetic impurities. Finally, the use of 
thermal conductivity to detect defects in superconductors is discussed«  ~. 
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13  ABSTRACT 

This report is one of a series which is intended to inform the reader on the pre- 
sent status of the thermal conductivity in solid materials. The first of the series 
was USAELRDL Technical Report 2361, dated May 1963, which gave a general overall pictur« 
of the Held but specifically discussed the conductivity of dielectric solids (insul- 
ators). This was followed by Technical Report ECOM-2799, «-«ted February 1967, which 
dealt with concepts mainly applicable to metals, such as: a. The electronic component 
of thermal conductivity and its relation to the free electron theory, b* The telation- 
ship between electrical and thermal conductivity, as exemplified by the Wledia*nn-Franz< 
Lorenz law, and the limitations of the law. c. Electron-lattice wave scattering, and 
the restrictions on the theory. Next In the series was Research and Development lech- 
nical Report ECOM-2932, dated February 1968, wherein considerations mainly applicable 
to semiconductors and semimetals were discussed, such as: 

a. The influence of carrier concentration and degeneracy on the thermal conductivity ol 
both extrinsic and intrinsic semiconductors, and on the Wledmann-Franz-Lorenz law. 
b. The electronic component of the thermal conductivity, In terms of both holes and 
electrons, for an extrinsic semiconductor, c. The transport properties of an intrin- 
sic semiconductor, d. The thermal resistance In semiconductors arising from free 
electrons (holes). 

After this, Research and Development Technical Report ECOM-3026, dated September 1968, 
was written. This treated the lattice component of thermal conductivity In metals, 
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13. Abstract (Cent) 

«Hoys, «nd semiconductors and the influences affecting it, Phonon scattering 
processes were described by a relaxation time. 

2   2 
Since ail intrinsic resistivities are proportion«) to 0» E.C. , and since 

the coefficients C. cannot be obtained from first principles, the lattice 
j 

component was expressed in terms of the intrinsic electronic component of 
there»! conductivity. The residual therm«! resistivity MIS also considered. 
The Influence of the idc*S or intrinsic electronic thermal resistivity and 
that of the residue! thermal resistivity on the total thermal conductivity 
was discussed, A rather detailed discussion was given of the oiethods of 
separating the measured thermal conductivity into ehe electronic and lattice 
components» The Intrinsic lattice component of thermal conductivity and in- 
fluences affecting it were considered rather completely, Ä fairly exhaustive 
treatment of th« effect of crystal imperfections on  the lattice thermal con- 
ductivity Mas given. 

In the present report Me discuss the thermal conductivity of super- 
conductors from the viewpoint of theory set forth in the previous reports 
plus considerations from the theory of" superconductivity. 
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