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i
ISODATA, a novel method of data analysis and pattern classification,

is described in verbal and pictorial terms, in terms of a two-dimensional
example, and by giving the mathematical calculations that the method uses.
The technique clusteils wany-variable data around points in the data's
original high-dimensional space and by doing so providii a useful deacrip—
tion of the data, A brief summary of results from analyzing alphanumeric,

gaussian, sociological and meteorological data is given,

In the appendix, generalizations of the existing technique to cluster-
ing iround linas and planes are discussed and a tentative algorithm for
clustering around ltnes is given,:
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ISODATA, A NOVEL METHOD
OF DATA ANALYSIS AND PATTERN

CLASSIFICATION
by
Geoffrey H, Ball and David J, Hall
Stanford Research Institute

I INTRODUCTION

In this paper we discuss a technique for dealing with problems in
which the data are inherently described in many dimensions, where each
dimension correspgnds to a variable of the problem. Such problems are
very commonplace, .and many which are customarily described in terms of -
a small (3 to 10) numiuc. ol dimensions are in fact of a much larger di-
mensionality, but have been simplified in order to allow manipulation
(and description) of the data, 8uch collapsing of the problem is often
useful and suitable, indicating the preponderant importance of certain
of the parameters. However, thare remains a class of problems for which
such collapsing destroys significant interrelations between the purnmeters.
that would give the data meaning.

II  PATTERN RECOGNITION PREPROCESSING AND CLASSIFICATION

The area of research labelled 'pattern recognition’’ consists pri-
marily of efforts to develop techniques capable of dealing with problems
of inherently high dimension. '

Many aspects of the pattern recognition problem are, in fact, data
analysis called by a different name. Realizing this, we feel free to
discuss ISODATA in the context of pattern recognition (which is our back-
ground), although others might prefer 'automatic data analysis' as the
label for our work.

One statistician, John ¥, Tukey, has stated that, in his mind, data
analysis includes, among other things: 'procedures for analyzing data,
techniques for interpreting the results of such procedures, ways of plan-
ning the gathering of data to make its analysis easier, more precise and
more accurate, and all the machinery and results of (mathematical)

*

Examples of such problems include automatic speech recognition, medical
diagnosis, alpha-numeric character recognition, sociological question-
naire analysis, and weather prediction.




w1
statistics which apply to analyzing data.

Dr. Tukey goes on to say2 that he considers data analysis as a
science in the sense that it has:

a) intellectual content
b) organization into an understandable form

c) reliance upon the test of experience as the ultimate
standard of validity.

As a science he feels that,

a) "Data analysis must seek for Scope and usefulness rather
than security.

b) Data analyeis must be willing to err moderately often in
order that inadequate evidence shall more often suggest
the right answer,

e) Data analysis must uce mathematical argument and mathe-
matical results as bases for judgment rather than ax
bases for proot of validity."

We feel that our work on ISODATA fits this description of data anal--
ysis, . S8ince we have also bheen able to describe ISODATA in the terminology
ol pattern recognition, we feel justified in relating data analysis to
pattern recognition, Our work on ISODATA-~POINTS has concentrated pri~
marily on developing the algorithm and demonstrating experimentally that
it works on both real and artificial data, We are now engaged in study-~
ing the algorithm analytically and in comparing it to both other cluster--
ing techniques and to existing multivariate statistical methods.

A convenient (though not usually well-defined) division of the
pattern recognition problems is:

1) Design and Bvaluation of Tranaducers=-=here "transducers'
are those parts of a pattern recognition system that
transform a physical phenomenon into a set of electrical
measurements or optical patterns that are in a form
suitable for the preprocessor.

2) Design, (Automatic) Synthesis, and Evaluation of Pre-
processing--here ''preprocessing’ is that part of the
system that transforms the measurements from the trans-
ducers into multi-dimensional patterns., This transforma-
tion should enhance the differences between classes we
want to discriminate., At the same time it should preserve
within-class similarities,
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3) Design, (Automatic) 3S,n*hesis, and Evaluation of the
Categorizer--here the categorizer is that puri that
transforms the patterns from the preprocessing into
labels {output codes) associated with each set or
class of natterna.

In the design of the "preprocessing” to do automatic classification,
2 £firsy sub-task ls (v anulyse a representative set of patterns. Many
present preprocessing evaluation techniques, even when used on a set of
representative data, give little information as to how to modifyv the

preprocessing technique in order to improve it.

In order to know whether we can improve the preprocessing we must
be able to distinguish between:

1) poor performance of the preprocessor, and
2) inherently difficult data,

The proposed technique has demonstrated its ability to lay bare the
structure of the data. ISODATA can be used to evaluate preprocessing

by comparing the clustering beiore the preprocessing with the clustering
after the preprocessing. This makes it possible to evaluate the pre-
processor with respect to the inherent difficulty of the data. -The

clear picture of the data that the researcher obtains using this technique
helps him to modify the preprocessor so that thu resulting patterns

are structured in a more suitable manner, We have found that under-
atanding the structure of the data is also suggestive of new ways for
transducing the physical phenomenon,

In the classification of patterns a primary problem is the obtaining
of an economical description of the patterns. Due to the complex nature
of patterns arising from the real world, a description not rigidly con-
strained by a number of a priori assumptions is demirable. The class
of techniques we deacribe has the characteristic that its description
of the data is determined primarily by the data and is self-adjusting
in a way that makes thls description economical.

In discussing this technique we concentrate on using it for the
analysis of data. We see the technique as specifically applicable to:

1 The design of preprocessing (and alav more conventional
data analysis), by allowing the examination of the
structure of multidimensional data in the original high-
dimensional space; and

2) Classification of patterns, by finding the structure in
each class of patterns and providing an economical
description of the classes of patterns against which a
pattern of unknown class can be compared and so assigned
to a specific class.
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111 THE TECHNIQ'E

ISODATA, as the derivation* of the name suggests, 1s a collection
of iterative techniquoc, It J0de uui sliempt To summarize all of the
finest nuances extractable from the data. Rather it focuses on central
tendencies and the major structure of the data. As ISODATA is normally
used, il is a compromise between attempting to store and analyze every
detail and aspect of the data right from the start (if desirable, tlLis
can be done later in the analysis on limited portions of the data) and an
approach that averages virtually everything together. (In fact, if it
were desirable for some reason, either extreme is attainable by appro-
priate selection of certain process parameters that control ISCDATA.)

It is not practical to compare all patterns with all other patterns
for large numbers of patterns. Rather the procedure compares patterns
with a set of clusters constructed from subsets of the patterns them-
selves, and groups patterns together on the basis of these comparisons.
The comparisons are made by establishing a measure of distance in the
measurement space. Patterns are groupeg together if they lie closest
to the same ''description of a cluster. The number of clusters used
by the technique varies in a way that depends on the structure of the

patterns in measurement space ard on the ISODATA process parameters that
the researcher controls,

When used on data for which categorization information is not avail-
able, 1SODATA finds a good approximation to the natural structure of the
data, rather than trving to impose an assumed structure on the data. By
clustering only one class of patterns at 8 tiue, categorization informa-
tion can be usedin conjunction with 1SODATA to structure the data for a
specific pattern classification problem; a probability distribution of
the data need not be known or even assumed to exist. The development of
a computationally-simple method that could be implemented for patterns
of more than 1C0 dimensions (e.g., optical patterns and complex waveforms)
was an important factor guiding the development of this technique.

The simplest type of ISODATA is ISODATA-POINTS. This technique is
described ir the next section. In Appendix A we discuss ISODATA-LINES and
ISODATA~PLANES, two generalizations of ISODATA-POINTS. There we give a
tentative algorithm for ISODATA-LINES. Though neither of these general-

izations has yet been programmed, we feel them to be relatively straight-
forward generalizations of ISODATA-POINTS.

¥ith apologies for adding another acronym to the growing list, we have
coined ISODATA to represent Iterative Self-Organizing Data Analysis
Techniques A. (The "A" was added to make ISODATA pronouncable ) The

classically-oriented can derive it from 1SO, meaning "the same” or "like,"
+ Data.)

‘Here we uce 'cluster' in a genersl way--allowing it to mean a set of

patterns grouped around a point, a line, or a plane., Hence the 'descrip-
tion" is the specification of the point, line, or plane arocund which the
patterns are clustered.

5
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IV DETAILED DESCRIPTION OF ISODATA-POINTS

Ir this section we describe ISODATA-POINTS from four points of

view, each succeeding point of view being more precise than the last,.
The four points of view are:

(1) Verbal
(2) Pictorial

(3) Two-dimensional Illustrative Example

(4) Mathematical

We also give the resultsof a principal components analysis (a more
conventional statistical analysis technique) on the same data so that

the results of it can be compared with the type of resulta obtaine
using ISODATA-POINTS.

A, Verbal Description

IsohArA-POINTS is an iterative procedure for the sorting of
2 set of multi-dimensional (multi-variable) patterns into subsets of
patterns. An average pattern is used to represent each subaset of

.pAtterns, and the iterative process, by changing the composition of

these subsets, creates new average patterns, These new average patterns
define new subsets each of which has reduced variation about the average
pattern. The process also combines average patterns that are so simtlar
that their being separate fails to provide a significant amount of
additional information about the structure of the patterns,

B. Pictorial Flow Dia!rnm

We show a pictorial flow diagram of ISODATA-POINTS in Fig. 1.
In line with our considering ISODATA as a procedure for sorting patterns
we show the patterns being fed into a sorter, one at a time, from a
"pattern hopper.' The patterns are sorted into subsets on the basis of
distance Irom a set of cluster points--each pattern going into that sub-
set associated with the cluster point to which it, the pattern, is
closest. The cluster points themselves are obtained as an output of

the previous fteration. The set of clusjer points for the first itera-
tion must be provided by the researcher.

The selection can be arbitrary, since the results of clustering have
been found experimentally to be nearly independent of the choice of the
initial cluster points, Usually, however, a wise choice reduces sig-
nificantly the number of iterations needed for satisfactory clustering.
We have found it best to use a subset of the patterns randomly selected
from the training petterns ss the initiel cluster points,.




TR

L4

R ot

Ty T ATy e

————

g RIS
L

1

e

FK \ “”PEE“" / “RECIRGULATES” SPLIT
vt LURILY AFCRAWL FUIRES IV
‘o BECOME NEW CLUSTER CENTERS
SORTER 80X \

CLUSTER | CLUSTER .. . CLUSTER —
T | Pont 1 | PoiNT 2 POINT n 1W
L t

sunseT | { sueser e SUBSET

RECIRCULATES PATTERNS
AFTER ALL ARE SORTED,

“CLUSTER
INFO PILLS"

LL‘—I | 2 Ly . n

COMPUTES FOK EACH SUBSET:
o« o » 1) AVERAGE VALUE
2) STANDARD DEV:ATION
' OF EACH COMPONENT

AVE VALUE| | TAVE VALUE, AVE VALUE,| 3) NUMBER 0° PATTERNS,
190 [2pehed] e e 10 N

Ny N

Ly

PATTERNS 60 TO SPLITTER if:
1) 00D-4TERATION

CLUSTER “IMFO" HOPPER

OISCARDED SWALL
CLUSTERS

PATTERNS €0 T0 LUMPER IF:

i

2) FAS NANY
CLUSTERS AS

(GREATES MORE CLUSTERS)

1) LAST ITERATION,
LUMPER (§,) o

(REQUCES NUMBER OF CLUSTERS) | 2) EVEN ITERATION,

SPLITTER (8)

WANTED

FI1G. 1

or

1) TWICE AS NANY
CLUSTERS AS

EXIT VALVE DESIRED

AFIER LAST e /

ITERATION
FINAL CLUSTER
CATCHER

A PICTORIAL DESCRIPTION OF ISODATA-POINTS
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After all patterns have been sorted, the average of each of the
subsets of patterns is computed, and the gample standard deviations in
each dimension of each subset are determined. The average pattern
vector, the standard deviation in each dimension for each subset, and
the number of patterns in each subset are then passed on into the
"Ciuster inrormation Hopper.'

Those small clusters (with fewer than €  clomsnts) aive discarded at

“Valve 1." The positioning of "Valve 2" is Yetermined by the number of

the iteration and by the total number of clusters, as indicated on the
diagram.

The criteria and method of splitting and lumping of clusters are
given in detail in the next two sections. 8Splitting takes place if the
standard deviation in any dimension is greater than @_ and also if both
(1) the cluster has enough members to split and (2) ha§ H?Eh average
distance between its mean and the patterns in its subset,

Lumping occurs between, at most, the L pairs of means that are less

than @ _ apart. (The process parameters GE, ec, ON, and L are all supplied

by the“reseacrcher,)

After each lumping or splitting, the modified set of average points
is used as the set of cluster points for the next iteration and placed
in the "Sorter Box." The program ends when the number of iterstions
performed equals the number specified by the researcher. At this stage,
the cluster points should adequately '"fit"” the data.

€. Two-Dimension Illustrative Bxample

In order to illustrate the details of ISODATA-POINTS we have
contrived the set of two-dimensional patterns shown in Fig. 2. The two
dimensions are height and weight. The patterns (the points shown in

Fig. 2) are intended to represent the height and weight of typical
professional athletes.

Given these points to cluster, the ISODATA-POINTS technique
proceeds in a manner that we illustrate in Figes, 2-18, Each figure
illustrates a major step in the computer program. (The actual figures

are placed after the explanatory text for all of the figures and can
be folded out.)

The clustering shown in this example wus found by running the
existing ISODATA-POINTS computer program. One particularly interesting
aspect of this run is the way in which the technique found and isolated
a number of points lying virtually alone, This offers one approach
to treating "wild shots" in the analvsis of data, since they are
singled out for further study or for discarding.
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Figure

Step

Selection of the Pattern Set

Note that three distinct clusters are labelled "Rugby’

and twn ave lahellsod "Bazlize®all," Theieluie, {ur
this problem a simple average, for example of all
basketball players, will not describe satisfactorily
a representative basketball player.* In other words,
the classes are composed of several subclasses, 1i.e.,
they are "multi-modal."

Obviously this particular data set can be analyzed
with pencil and paper, A computer is not necessary
because the data points are described by only two
characteristics of the athletes, 1.e., their weight
and height. 1If, however, these data were described
in many more dimensions, e.g., more than 3 or 4, then
it becomes nearly impossible to display them satisfac-
torily in their raw form even in many sets of two-
dimensional representations.

We will show in Section VI how to obtain for these
cases a two-dimensional plot that ulefully doscribon
the data. .

One important goal of this ISODATA analysis is a com-
prehensible and useful description of the data. In
order to obtain this description we seek to divide
the data points into relatively homogeneous subsets,
each subset of which can be adequately described by
its average point. The following example seeks to
describe how relatively honoconoous subsets of data
can be obtained.

Selection of Initial Cluster Points

Note that one small region has two initial cluster
points and another small region has three. These
initial trial cluster points were selected to show
that if by arbitrary selection a bad choice of initisl

cluster points is made, that even then the final cluster

points will be good ones.

Partitioning of the Pattern Space as Defined

Implicitly by the Cluster Points

Note that the boundaries are the perpendicular bi-
sectors of the lines joining pairs of cluster points.
Since we are seeking minimum distance of a pattern
over all cluster points, the boundaries are meaning-
less except where they are betwsen the two closest

e e g i SRl . sttt AL L | oot S A Sl it ,1' T

* Or to say this in another way, a man with his head in an oven and his
feet on a cake of ice can hardly be adequately described as being

"warm on the average."
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cluster points. Hence the piecewise-linear nature
of the boundary.

Ornwsdmm ad +bha Tass
....... Vase a@u L

s o2
Initial Partition

P - I - . s
TaD AVE ALTULSGLAVL 4 UBINKE LIOE
——

Note that the patterns are assigned to only one sgb-
set, and that all subsets are contained in convex
volumes of pattern space. Note also that the initial
partition 18 not a good one. Subsets having fewer
than 8 _ elements would be discarded at this point.
(GN 18" a researcher-supplied process parameter.)

It may be helpful in this particular example to think
of the data points as representing men standing in a
large field, The men are positioned in the field in

- accordance with their weight and their height. The

partitions that divide the data points into sub-
sets can be thought of as "fences" dividing the men
into groups. The cluster points can be considered
as "group leaders" to whom the men owe temporary
allegiance, i.e., & man owes his allegiance to the

closest group leader. As we shall see, in the IBODATA .

process group leaders come and go (1tlwns sver thus) .

Finding the Average Point of Each Subset

- After the first iteration the ISODATA average points

become cluster points.

SPiitting of the Average Points takes place when

(1) the maximum standard deviation exceeds 6_(a
researcher-supplied ISODATA process paraﬁeter)
and either 2 or 3 is true. :

(2) - the number of patterns in a subset exceeds
(20 _+ 2) and (vhen the average distance of
patterns in subset i from the average point
of subset i) exceeds XS. the average distance
of a pattern from its closest average point.
NROWS is the number of clusters

* A volume is convex if the straight line connecting any two points in

the volume lies entirely within the volume.

10
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7 (Cont.d)

Step
More precisely,
NROWS

~— 1
AD = N i=1 (AVEDSTI) x (Ni)
and

Ni
AVEDST1= % (Distance of pattern j from

1 J=1 the mean vector of subset i)

(For all patterns
in subset i)

(3) The number of clusters is less than or equal
to one-half the number of clusters that the
researcher has specified as boing desired.

The 8plitting occurs in the following fashion:

It the conditions of splitting are satisfied
then the first new average points (for example,
the right hand or the upper average points
of Fig. 7) are created by sadding 1 to that
“component of the original average point having
the largest standard deviation. The second
"average points” (for example, the left hand
or the lower average points of Fig. 7) are
created by subtracting 1 from that component
of the original average point having largest
_ standard deviation. '

o
The actual amount added is arbitrary (here it is +1) so long as it is

sufficient to provide detectable differences in the distance of a

pattern from the two cluster centers and is not so iarge as to change
other boundaries appreciably.

11
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Figure SteB
8, The Partition for Iteration 2.

Note that the boundaries between the pairs of cluster
points split from a single point are perpendicul&r to
the direction having maximum standard deviation.

v Sorting of the Patterns for Iteration 2.
10, Finding the Average Points of Iteration 2.

Note the effect of the "outlier” (shown with an arrow)
on the average point for the uppermost cluster.

11. The Average Points found in Iteration 3.

In iteration 2 the average points were again split
(since the number of subsets was less than one-half

the number of subsets desired). Note that the
"outlier" of Fig. 10 has been made & cluster by itself.

12, ’ The"Avéra!e Points of Iteration 3 are Split in the
anner Described under Fig. 7 above. -

13.7 : ' The Sorting of the Patterns in Itoratioﬂ 4.

14, Th? Finding of Average Points for Iteration 4.

15. The Lumping Together of Close Average Points.

In this iteration the criteria for lumping (an even
iteration and the existence of mors than one-half the
nunber of subsets desired) are satisfied. This figure
illustrates the lumping together of all pairs of
average points that are less than a distance of A
apart. (8, is a researcher-supplied ISODATA process
parameter). Note th ; only pairs of average points
are lumpesd together. Note also that the lumped
average point obtained is the average of the two
average points and is obtained by weighting each
average point -by the number of patterns in its sub-
set. This makes the lumped average point the true
average point of the combined subset,

Splitting of average points in several dimensions (into more than two
new "average points") was once considered for use in the algorithm,
¥e found that this becomes hazardous unless the covariance matrix is

calculated, and this calculation is undesirable.
ET

Lumping triples was considered for the algorithm, and discarded, since
it appeared to change the partition too radically for the 1terntive
procedure to satisfactorily "converge."

12
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Step

The Partition for Iteration 5.

Thea Avvaracs DAatnte Paw +thn Quhenéc Af THamnsdnn K
; Avaraga Uninte Ior Tho Tulroeic o7 JToration

The Average Points for Iteration 6.

In the previous iteration, six average points ware
split. 1In this iteration four pairs of average points
will be lumped together. These four pairs of points
are indicated by being circled.

The Final Average Points After Several Iterations.

No splitting or lumping 1is allowed in this final
iteration, which is principally for consolidation.
We feel that theme 18 average points do quite ade-
quately describe this set of 562 data points with

a 30:1 reduction of the number of points. Naturally,
no description of the original data points which
provides a similar amount of reduction can be as
accurate as the original data itself. However, a
reduced data description is often more useful than
the more accurate but much more voluminous veraion.

Note the way the. "wild shots" or "outliers' have
been found and isolated by assigning them to clusters
of their own. These wild shots can now be examined
for their importance--either as a rare occurrence
well worth noting,or as an equipment malfunctien.

We terminated the iterative procedure after itera-
tion 7, because the clustering obtained seemed quite
adequate. If it had been necessary, we could have
gone on by continuing the lumping and splitting,

- starting at the end of iteration 8, Our experience

has shown that abgut six iterations are adequate
for many problems --adequate in the sense that the
number of clusters is stable and the subsets rela-
tively homogeneous,

We can, by increasing ©_ and increasing ©_ reduce the
number of clusters we ogtain. Decreasing them both
would increase the number of clusters,

The number by each average point gives the number of
patterns in that cluster.

*®
We are presently seeking better criteria for terminating the iterations.

13




WEIGHT —18S

350 5

300 ~

250 -

OVERWEIGHT
EXECUTIVES
200 =
_ BASKETEAL JiLOSHoTS
150 -
JOCKEYS
100 T T Y T - T o
58 83 89 73 ] 83 8

HEIGHT —~ INCHES

FIG. 2 SELECTION OF TME PATTERN SET

-
2
4
5
4
bt
‘3




-~ = e

—— —— e -

SIS o o

WEKGHT —L8S

350 =

300 +

250 =

200

150 =

INTIAL
CLUSTER
POINTS

.
= .
.
. LN )
. ‘e
. L] .
L]
3 ‘e
o DY
. . *
v fe " 08
. LN .
] ..
. L) ", 6,
[ atee ae
. . .
se00sa0 s o0
. ey 0 .
'l
[ D...
. s a®y
e »
[N ] LAY
* e s
LI D
L A L
¢ e e
I I
. . e
-...'l‘.l
e 2t
“ s,
e ¢ triew
e % s e
e ® 0y
. o9 .
[ .
..’.0 o
3
Ctee
.
L3-S
s 0
. L]

100

T
173
HEIGHT —— INCHES

1

FiG,3 SELECTION OF INITIAL CLUSTER POINTS

)
o

Jé
i
&
et
4
ey
o
i
1

e




- - e T

WEICHT —(8S

o e p T
s s A

350 -
300 —
POINT |
250 o
200
CLUSTER POINT 2
/ /
'/
150 ’//5/
YA /4
oLusTER |/ 7
POINT 5/ -J
, @-1-@(LUSTER POINT 4
100 T T T T ;
58 83 88 3 78 8 8

HEIGHT — INCHES

FiG. 4 PARTITIONING OF THE PATTERN SPACE AS DEFINED IMPLICITLY
8Y THE CLUSTER POINTS




WEGHT —18S

0 - !
30 - SUBSET |
250 SUBSET 3
200 -
(50 | SUBSET
5 H :.
AT ACRE . SUBSET 4
100 T J T T T -
58 63 68 73 " 3 3

HEIGHT — INCHES

FIG. 5 SORTING OF THE PATTERNS FOR ITERATION 1

JSING THE INITIAL PARTITION

B e e e

i




e - ———y———

R

. ,_-_»..-n-“:.
TN LRSS e et e m'

350 = \ !

300 =

TGSt e MERAGE POINT
NG st @ SUBSET |

C 250 AVERAGE POINT  "wioe "\ lie'es 'y tvi
g SUBSET 3 < "oterrn iy eeiithn
.-'_ . . I
3 \
g .

200 o

AVERAGE POINT
SUBSET 2
AVERAGE
POINT
-
150 1 susser 5
LN R . AVERAGE POINT
=y SUBSET 4
100 T T T T T 1
58 63 68 3 1] 83 88
HEIGHT — INCHES

FIG. 6 FINDING THE AVERAGE POINT OF EACH SUBSET




WEIGHT —LBS

350 -
300
AWERAGE POINT SPLIT
®/Fon AVERAGE POINT |
250 |
AVERAGE PONT SPLIT @ “WERAGE POINT SPLIT
FRON AVERAGE POINT 3 FRON AVERAGE POINT 2
20 —
150 ~ _ g’AvsaAcE POINT SPLIT
FROM AVERAGE POINT ¢
@ WERACE POINT 5
(NOT $PLIT)
100 ) T T | T -
58 63 88 i) 7 83 8

HEIGHT— INCHES

FIG.7 SPLITTING OF THE AVERAGE POINTS




RSO oY

350

b 300 N
8
:

200 —
k 150
’ ~ 100
| 58
i HEIGHT — INCHES
;
“. FIG.8 THE PARTITION FOR ITERATION 2
r
!
!




WEICHT —L8S

350 =

300 +

250

200

150 =

100

P RR s T P ke

.e

*
. ® [}
0‘6
e,
e R,y
.‘. L I
L4 e .o

L]

LI Y
- -8 e
* (]
.

T

P et esess o

58

T
63

HEIGHT — INCHES

FIG.9 SORTING OF THE PATTERNS FOR ITERATION 2

88

4
A
A
4




I REBSEL ik st oy e it - e L M

350

i
:

300 ~

250 =

WEIGHT — 185

200 -

150 =~

u.'. ‘. O]

100
58 63 68 13 18 6 88
HEIGHT — INCHES

FIG. 10 FINDING THE AVERAGE POINTS OF ITERATION 2




I

T YRS

WEIGHT —1BS

350 -

300 =

250 -

200 ~

150 =

100

@ - @ Q
Tglindl ~
v v Ll L L] B

8

83 68 [}
HEIGHT — INCHES

FIG. 11 THE AVERAGE POINTS FOUND IN ITERATION 3

18

RS . R

L
=

1y

11
8




- i e — — -

—— vy

J

WEIGHT —1,

400 —

350

300 —

200

150 —

100

250 -

| ! T | T L
56 83 68 [£] 78 83 88

HEIGHT — INCHES

FIG. 12 THE AVERAGE POINTS OF ITERATION 3 ADR SPLIT IN THE MANNER
DESCRIBED UNDER FIG. 7 ABOVE




WEIGHT —LBS

SO AR A S G e s s o e v

350 -
300 —
200 <
150 =
LR SRR .

100 r r Y Y r 1

58 63 68 13 18 83 88

HEIGH T ~—— INCHES

FIG. 13 THE SORTING OF THE PATTERNS IN ITERATION




—

——— — =

WEIGHT —L8S

PR e s A o jom e 4 i i e e

350 -

300 -

.
"N\ sl o * . .
e ..o :‘ . Q,. :9-7'
. e o
. : .0'.' M :.'u :0:'0: .o: ”
850 1+—— o B o i@y Y
. o o o: N . .

T T L
68 13 18 83

HEIGHT — INCHES

FIG. 14 THE FINDING OF AVERAGE POINTS FOR ITERATION 4




2T TR i ke e

350 ]

FOETE A DO T M AT 4 s 11 Y o mrm e =

300 — ,
AVERAGE POINTS NOT
LUNPED < ° YWEIGHTED AVERAGE OF
| . TWO AVERAGE POINTS
2 B0q ° °
—I‘ °
- °
200 —
° :
°
150 < °
~-
o=@
100 T T T I T L
58 63 66 13 18 83 88

HEIGHT — INCHES

FIG.15 THE LUMPING TOGETHER OF CLOSE AVERAGE POINTS




- - wr-

350 -

300 —

250 —
? ,
1~
=
-
200 —
150 —
'00 1 RS | 1 T -
58 63 68 73 18 83 a8
HEIGHT — INCHES

FIG. 16 THE PARTITION FOR ITERATION §

v
e




WEIGHT —LBS

200 -

150 -

100

58

63 68 3 18 83
HEIGHT —— INCHES

FIG. 17 THE AVERAGE POINTS FOR THE SUBSETS OF ITERATION §




e i e ———

WEICHT —LBS

350

300 +

250

200 =

150

100

S e YR STCRM TP ITNN Y

G ..'. .'..'..9...3 ..: :...
o":-..\\.'. .o"' "':.. y ‘O .
.'\ ""..:o'-'.- '-..'
RS YR
P ) '\k:" u:.:: .
€. ol &
.f" ) : :' .<0‘-. . . a:
.o‘ \0 .o( :\n . @.
) \ w3 'Y SR
v )b AR I
7/ . .-:'f:{

58

63 68 K 18
HEIGHT — INCHES

FIG. 18 THE AVERAGE POINTS FOR ITERATION 6

- s - LA



T T Y ——r e

150 ~ cn e 8= ®@ é(s)‘

HEIGHT — INCHES

FIG. 19 THE FINAL AVERAGE POINTS AFTER SEYERAL ITERATIONS




fa

7“}’21{‘9‘"!‘&_!1 1 ARy

oMY e e

e

o

D. Mathematical Description

ettt il a i LT

The details o; the calculations made in the existing ISODATA-
PULNES cOmputer progrum are given in this section.

In Pig. 20 we show a computational flow chart af the technique
A glossary of the symbols used in the mathematical description 1s given
next in order to ease the struggle with new notation. Following the
glossary we explicitly write the mathematical expression in the sequence
calculated for each significant computation made by the program.

Readers not interested in the details of the computation made
by ISODATA-POINTS can skip this section (i.e. turn to page 42) with ocut b
serious lose.

l."I‘he processing time for this program is about
(2.7 x 1074
X (number of dimensions) ] seconds/iteration
on the B-5500 computer (at $180/hr) at SRI, The program is
written in Algol 60,

x (number of patterns) x (number of cluster points)
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P SORTING OF ALL PATTERNS

o INTO SUBSETS {C;} ON BASIS
L OF DISTANCE FROM CLUSTER
e POINTS {M.}

CALCULATION OF:

1} AVERAGE PATTERN

2) STANDARD OEVIATION

3) AVERAGE DISTANCE

4) NUMBER OF PATTERNS
FOR EACH SUBSET

COMPARE NUMBER OF -
PATTERNS IN EACH _
SUBSET AGAINST

N.

DISCARD SMALL SETS

TAKE THIS BRANCH IF!

TAKE THIS BRANCH IF:
1} 000 ITERATION

1} LAST ITERATION

OR 2) LESS THAN ONE-HALF DESIRED OR 2) EVEN ITERATION
NUMBER OF CLUSTERS OR 3) TWICE AS MANY
BRANCH CLUSTERS AS DESIRED

"SPLITTING PROCESS" "LUMPING PROCESS"
PROCESS PARAMETER PROCESS PARAMETER
6, 8

et s e prigen SRS DR EOTRIR AN

FIG.20 A FLOW DIAGRAM SHOWING THE COMPUTATIONAL CYCLE
OF ISODATA-POINTS
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i SYMBOLS USED IN MATHEMATICAL DESCRIPTION

FOUND IN

SYMBOL STANDS FOR STEP NOS.

[ D
-

. AD Overall average distance of 6, 10
patterns from the average vector
of the cluster to which they are
assigned. 8

AD = (AVEDST,) x N,

2|

AVEDST, ~ The average distance of the patterns 4, 8, 10
- ) in cluster C, from the average '
vector (aver&ge point) of that cluster

AV!DST =— g P - P) (PJ— P)

 for all P eC,

c The 1th cluster

D The dimension (number of components) 5, 9
of a pattern vector.

The Euclidean distance between the 12
average vector P for cluster C:I.
and the average vector P for
cluster c J

_ __\
83 -\[( - PR P

L The maximum number of pairs of 12, 13
average vectors that can be
lumped at one time.

1]

SRV R G R T ST g D
o

R ]

- M Tg cluster point (vector) for the 1, 2, 11,
. cluster 14

34
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FOUND IN
SYMBOL STANDS FOR STEP NOS.
N The total number of patterns. 2,8
Ni Tha number of pnffnr & in the 3, 8,8,
cluster C 10, 13
NROWS The total number of clusters. 2,4,5,
(8tands for the Number of Rows 6, 7, 9,
in the matrix having the cluster 10, 11, 123
point vectors as rows, which is 14
an NROWS x D matrix.)
th o . ; :
PJ The j Pattorn vector. 2,4
p The Ith component of the Jth 8
14 , ,
pattern vector PJ.
{i The averagg pattern vector 3, 4, 10,
for the 1 =~ cluster C 12, 13
1B‘ The £*P component of the average 5
pattern vector P for the 1
cluster
P + The positively "split" part of the 10
) average vector 1P. (See Step 10.)
;3 - The negatively '"split" part of the 10
average vector 1P. (S8ee Step 10.)
th
°1L The standard doviat%ﬂn of the 1 5, 9
cluster C, in the £ component
(dimensioﬂ)
A}
i
1
[« - -2
if N1 Z (pJE 1"1)
J=1
all PJGC1
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SYMBOL

STANDS FOR

FOUND IN
STEP NOS.

ik

The largest standard deviation

of all of the components# of the
patterns in cluster C,. The
largest gﬁandard deviation occurs
in the k component,

1% = "3* {"13}

The ISODATA process parameter against
which the distance 3 between pairs
of patterns is compnlad. It controls
the "lumping' process. It is supplied
by the researcher.

The ISODATA process parameter against
which the maximum standara deviation
o, 1is compared. It controls the
8plitting process. 1t is supplied
by.the researcher,

10

The ISODATA process parameter against
which the number N, of patterns in a
cluster is comparea. It 1s supplied
by the researcher,
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STATEMENT OF THE GOAL

Given a set of pattern veectara (P 3 =21 N1 & Gimension v,
the goal of ISODATA-POINTS is to sort Ehem into subsets C, each having
N, members and having small within-group variance, 1i.e., iind a sat of
average vectcors such thal eauch of these average vectors adequately
describes that set of patterns lying closest to it. (Measures and

criteria for determining when an adequate description of the data has
been obtained are being sought.)

The following steps describe in symbols the manipuletions shown

graphically in the figures accompanying the two-dimensional example
illustrating ISODATA~POINTS.

Step . Computation

1. S8elect arbitrary subset of patterns having NROWS
elements. These should be chosen as intelligently
as possible--i.e,, if possible, one from sach
known sub-class or cluster, Cresate a set of
points that are duplicates of this randomly .
selected set of patterns, Call this duplicate
set the initial "cluster points,” = {Mi' ial,=-,
NROWS}

2. Do for all jal,--~,N:*

For each pattern PJ find M:“l such that

(PJ- ”1"')'(’3'“1"") - Min [(PJ-M1)°(PJ-M1)]
where the dot product

A'B = (nl,...,aD)'(bl...,bD)
D

s a,b
i=l i1

Assign Pd to subset C,*. This step sorts the {p}
ot

into subsets on the basis of distance from the

[Mi} (see figure below). (Ties are arbitrarily

decided. They almost never occur.)M
1

(PJ- M)

Py

Note that the Mi are not changed during this calculation over all j.
37
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Step Computation
3. Compute for all of the 1 clusters C, the average
- i
vector 1? of each cluster i
P=<= £ P
1° 5\, 3’
i PJeC1
where N1 i8 the number of patterns in cluster Ci’
NOTE: The £ P&.is obtained as patterns are being sorted.
4, For all i, i=1,.,., NROWS,

Compute ihi'nJifagiiéiltlncc'AVIDST ot pltt'rhi

in cluster Ci from the average vect r, of that
cluster,

1
rAvma'r T '\/(PJ 1?) (P )

1

For all P3€c1

For all i, i=l,...,NROWS, and for all g 1,...,D
find ER‘ ltandnrd deviation 012 of the 1 subset
for £ measurement where

1 lﬁ—i \

1 " N1 Jz “’Jz 1"1)

4]

For eall PJ€01

Compute average distance overall, 33, where

., Mmows
AD = — L (AVEDST) x N
¥ 1 t

This is the average distance of the patterns from
their closeet cluster point.

38
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Computation

NOTE:

Certain parameters, L and the total rnumber of
iterations, which wilY be mengioned in the following
steps, are provided the program bv the researcher

For Steps 7-10 and Steps 12-13 no use is made of the

individual patterns. All calculaticis are made based on

means, standard deviations, AVEDST and AD, and the process
parameters.

For all i, i=1,..., NROWS.

If N, < 8, then discard the 1th cluster, Ci' and reduce the
numb&r o? clusters by 1,

. wévs«..-u P

- ..€a) If this iteration is the 1ast 1teration, set 9 0 and

".8kip to step 12.
(b) If number of clusters is less than or equal to 4 the
number desired, then lkip the remaining step in 8 and
do step 9,
(c) 1If this iteration is an oven-numbered 1toration, or
11 number of clusters is greater than or equal to -
twice the number desired, then skip to step 12,

. _NOTE:

Steps 8 throuzh'll'ccmpriae the so-called "splitting”
process,

For all 1, ic 1,.:., NROWS, for j=l,...,D., find ‘K and
1% such that e )

1% = mjx(aiJ)

1o,

For each i, i=1,...,NROWS

(a) 1f 1% >6, and

((1f AVEDST, >AD and if N, >20+ 2) or

(NROWS % 0.5 x number of clusters desired))

then create

39
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Step Computation
10. (Cont P = P+ (0.....0.41.0....0) a
+ + \_——~ (k" component)
The +1 is placed in this k component
clement {(corrssponding to foer ciuster i)
in order to split the clus%e* along the
direction having the maximum variation,
1-'5-" B+ 0,...0-1,..,,00
A ___—(k  element)
(b) P is replaced by P ', and P ~ is added to
%he list of average vectors, which increases
the number of clusters by 1, (See figure helow)
11, Sthrt the process again at Step 2. Use the
{ P, iml,...,NROWS'} as the new set [M’]in
place of the existing set {M }. (NROWS " .1
the number of clusters after splitting or
Lumping. )
"NOTE:F " Steps 12 through 14 comprise. the so-called "Lumping"
o process, :
12, For all i, ial,..,., NROWS:

For all j > 1, j=i + 1,..., NROWS:

(1)' Compute the pairwise distance 8 15 between
averageé points where

\
‘\[( P) (p-JT’)

t
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Step Computation
2, nt. 2} < .
12, (Cont.) (23 If 51J < QC then place 61,),’ ig Jl in an
ordered (3 x L) matrix, ~ “
B g ]
13 i3, L
11 12 PR 1L
J J e v
1 2 L
| -
where b, . < B .. <B
1y 0 T3 iy
NOTE L (which is £ & for programming convenience) controls
the maximum number of pairs of clusters that are
lumped together.
13. For all £, £ =1,..., L,
It P and J'i have not been previously used in
yA £
lumping, then
(1) Compute
P L [N P\e N ’i)
1l Ni +NJ 1‘Q£ ) Jth
£ 2
- — -
(2) Replace , P with AL P and delete , P from the
1 ) )
1ist of average vectors (reducing the number of
clusters by 1),
»X
14, 1f more lterations are to be done (this is at dis-

cretion of 1nvest1¢atq:), s*art the process again

at Step 2. Use the { P, 1=1,...Nnovls'l as the new
set {M'} in place ot ihe existing set [M }. 1f this
was thé last iteration, then end process.

41
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E. Analysis of the Height vs., Weight Data Using Principal
Components Analysis

An alternative method of describing and analyzing the data of
Section C (the two-dimensional example) would be principal components
n1 ed e

and -

It may be ol jected that principal components analysis should not
be applied to data that is as heterogeneous as the data in this two-dimen~-
sional example. We agree, At least part of our point is that it is not
easy in high dimensions to determine just how heterogeneous the data is.

"The (Principal Component Method) is a relatively straight-
forward way of 'breaking down' a covariance or correlation matrix into
a set of orthogonal components or &xes equal in number to the number of
variates concerned. These correspond to the latent roots and the accom-
panying latent vectors,..,of the matrix. The method has the property that
the roots are extracted in descending order of magnitude, which is important
if only a few of the components are to be used in summarizing the data,
The vectors are muguallv orthogonal, and tho componogta derived from them
are uncorrelated, The greatest possible ''scatter'' of n points pro-
Jected onto a given number s of cooxdinate axes 1n a k-dimeunsional space
(s Sk is obtainéd by this method.

The aversge point of the height vs, waight data 1s -(724,208),
(the inches are mul<iplies by 10) and the covariance matrix is

2667 1111
1111 2814

The first eigenvalue is 3854 and the corresponding eigenvector
is (.936,1.00), The second eigenvalue is 1627 and the corresponding eigen-
vector is (1,00, -.936), In Pig. 21 we have plotted these eigenvectors
as a second set of 'coordinate axes' with the mean value of all of the data
as origin. The length of the vectors is proportiocnal to the magnitude of
the associated eigenvalue.

The direction of the first eigenvector indicates that generally
there is a positive correlation between height and weighc; that 1s, weight
increases with height. This 'accounts for'' about 70% of the variance.
Both height and weight contributed about equally to this component,

The second eigenvector displays the extent to which height and
weight are negatively correlated. Again both height and weight contribute
about equally to this component.

*
The exact_values of ''scatter' for n data points in k dimensions are given
by Wilks.
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These descriptions relate primarily to directions in the data.

The largest eigenvector gives the direction along which a scale should be
set up to get maximum variation in the dats TP 4w oo

Boas wi Lhe gals
analysis 1s to find such a scale, then this is a very reasonable analysis
technigue.

However, such "'direction-finding" techniques tend to igncre
details in the data such as the existence of isolated clusters, e.g., the
cluster around the point (82", 115 1bs.) in Fig. 21.

Clustering techniques like ISODATA-POINTS ignore direction while
clustering the data in the pattern space. However, the average points
obtained can be used to derive the directional characteristics of the
data. They are primarily sensitive to the density of the patterns in
pattern space. They are well suited to '"zooming" in on the detailed
structure of the date. They also can serve a3 methods for a preliminary
sorting of patterns into relatively homogeneous subsets for further
statistical processing. (This sorting cen prevent the confounding of two

disparate effects resulting from treating these effects as if they were
the result of the same (simple) cause.)

It may also be objected that ISODATA-PQINTS has a certain arbi-
trariness about it and that by setting the process parameters differently
we would obtain different average points. It is true that different
average points can be obtained hy varying the process parsmeters. How-
‘ever the results of the clustering plus specification of the cluster

parameters used, provides an objective and useful deacription of the
data.

In complex data we have found that there are a variety of valid
clusterings depending on the number of average points used, on scaling,
and on the structure of the data itself. For example, if the data con-
sists of tight clusters of data whose distances apart are large with
respect to the "diameter' of a cluster then the number of clusters will
not vary even with wide variations in the process parameters. If, on
the other hand, the data is uniformly distributed in pattern space, then
the number of clusters found will tend to vary rather smoothly with
changes in the process parameters. The way that the number of clusters

varies as a function of the process parameters can be used to describe
the structure of the data.

For these reasons, we feel that what must seem arbitrariness to
some 1s a flexibility that is needed for the analysis of real data. We

feel that this flexibility is not detrimental in the case of dats analysis
by clustering.

We agree with John Tukey's appeal for good judgment in place of
rigorous optimization:

"Scientists know that they will sometimes be wrong; they try not

to err too often, but they accept some insecurity as the price
of wider scope. Data analysts must do the same.''16
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And further.

"if data analysis is to be well done, much of it
mast B2 o2 woiter ui Judgmeni, and Luaeory,  wnetner
statistical 0f7non-statistical, will have to guide,

not command."”

And finally. we quote from Tukey at some length, because of the rele-
vance of his remarks to clustering techniques,

"Practicing data analysis® 1If data analysis is to

be helpful and useful, it must be practiced. There

are many ways in which it can be used, some good and

some ovil. Laying aside unetniral practices, one of

the most dangerous (as I have argued elsewhere (Tukey,
1961b)) is the use of formal data-analytical procedures
for sanctification, for the preservation of conclusions
from all criticism, for the granting of an imprimatur,
While statisticians have contributed to this misuse,
their share has been small. There is a corresponding
danger for data analysis, particularly in its statisticeal
aspects, This is the view that all statisticians should
treat a glven set of data in the same way, just as all
British admirals, in the days of #2ail, maneuvered in
accord with the same principles, The admirals could not
communicate with one another, and a single basic doctrine
was essential to coordinated and effective action. Today
statigsticians can communicate with one another, and have
more to gain by using special knowledge (subject matter
vr methodological) and flexibility of attack than they
have to lose by not all behaving alike,

in general. the best account of current statistical
tuinking and practice is to be found in the printed
discussions in the Journal of the Royal Statistical
Socisty. While reviewing some of these lately, I was
sarprised, and a little shocked to find the following:

'l enoald like to give a word of warning concerning the
approach to tests of significance adopted in this paper.
It 18 very easy to devise different tests which, on the
average, have similar properties, i.e., they behave satis-~
factorily when the null hypothesis is true and have approxi-
mately the same power of detecting departures from that
hypothesis. Two such tests may. however, give very
different results when applied to a given set of data,
This situation leads to a good deal of contention amongst
statisticians and much discredit of the science of
statistics. The appelling position can easily arise in
which one can get any answer one wants if only onelsoea
around to a large enough number of statisticians.'
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To my mind this quotation, if taken very much more
seriously than I presume it to have been meant,
nearly typifies a picture of statistics as a mono-
lithic, authoritarian structure designed to produce
the 'Affirdial! roenlte  Whiln +the womzibility of
development in this direction is a real danger to
data analysis, I find it hard to believe that this
danger is as great as that posed by over-emphasis
on optimization.

Facing uncertainty! The most important maxim for

data analysis to need, and one which many statis-
ticians seem to have shunned, ie this: 'PFar better

an approximate answer to the right question, which

i8 often vague, than an exant answer to the wrong
gquestion. which can always he made precise,' Data
analysid must progress by approximate answers, at best,
since its knowledge of what the problem really is will
at best be approximate, It would be a mistake not to
face up to this fact, for by denying it, we would deny
ourselves the use of a great body of approximate
knowledge, as well as failing to maintain alertness

to the possible importance in each particular instance
of particular ways in which our knowledge is incomplete,

9

We are presently investigating in more detail the relation-
ships between clustering and "direction-finding" techniques. It appears
at this time as though they are qualitatively different, wnd that they
should be used to complement each other in data anslysis.

V. EXPERIMENTAL RESULTS FROM COMPUTER IMPLEMENTATION OF ISODATA-POINTS

In order to understand and evaluate the technique, we have per-
formed a series of experiments, These experiments have been of three
types: those designed to validate ISODATA-POINTS, those designed to
illustrate graphically the approach taken, and those designed to ana-
lyze data from the real world.

The detailed results that we have obtained using the ISODATA-POINTS
program will be c¢ontained in a larger report, We shall not attempt to
repeat the contents of that report, but rather shall extract some of
the results that we consider particularly significant,

The validation experiments were constructed from data whose struc-
ture was well known, in ovder that we might evaluate the clustering
obtained by ISODATA-POINTS. The data was obtained by adding Caussian
random noise to 10 prototype patterns which serve as the ideal versions
of the noisy vectors. Each vector had 10 anulog dimensions and can be
displayed as shown in Fig. 22(a). The values in each dimension were
coded into a 10-bit binary number using 'snake-in-the-box" codes
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(a modified gray scale coding). These 10 dimensions were then com-
bined to give a 100-bit pattern. The closest intermean distance was
108 units of the original 10-dimensional space, or roughly 20 bits
apart in Hamming distance. The covariance matrix was the same for all
distributions and was the scalar matrix, 6I, I being the identity
matrix, and 9=30 units, where ¢ is the standard deviation of the dis-
tributions, The size of =30 is ulso indicaied in Fig. 2Z2{(a).

The patterns were processed by the ISODATA-POINTS program without
specifying the distributions from which they came. The process para-
meters were varied by the authors until the program sorted the patterns
into 11 clusters. We assigned each cluster to the mode whose patterns
predominated in that cluster. Doing this the program classified 98%
of the patterns correctly. The Bayesian decision~theoretic optimum
separating planes, which were positioned using a priori knowledge of
the location of the means, achieved a 88% correct rate using unquantized
data,

In a later experiment only two distributions were used. The wave-
forms of the two means are shown in Fig, 22, Their means were but 58
units (about 10 bits) apart, while they still had a standard deviation
of about 30 unite (about 8 bits). We obtained estimates of the mean
values, again without knowledge of the pattern mode from which the data
cane. The values obtained were only slightly different from the correct
means. The optimum decision plane gave a percentage correat classifica-
tion of 81% while ISODATA-POINTS (using two large clusters and two quite
small ones) obtained 78%.

In a second validation experiment we constructed 48 pattern vectors.
half of which had the last six bits + 1's and half of which had the last
8ix bits - 1's, The first 24 bits of these 30-bit vectors were then
filled with pattern vectors positioned so as to have all pairwise Hamming
distances between patterns exactly 24 bits in this 24-dimensional space.
The ISODATA-POINTS program proved capable of extracting the six consistent
bits of this 30~bit vector--disregarding the rest of the 'noise"” for which
bits were not consistent. The program was 100% correct in its classifica-
tion of these vectors. Again no categorization information was used to
cluster the patterns.

In another experiment designed primarily to illustrate ISODATA-POINTS
graphically, we drew a set of O's and a set of Q's on a 10 x 10 retina
of squares., The 0's and Q's had no registration noise (i.e., were not
translated or rotated) but did have bits of noise added randomly, ad-
Jacent to the main outline of the O's and Q's. The program proved cap-
able of dividing the O's from the Q's perfectly. 1In addition, the sub-
tracting of the average '0' pattern from the average ''Q" pattecn em-
phasized the fact that the tall of the Q's was the primary distinction
between these two classes of patterns,
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We felt that the utility of ISODATA-POINTS would be most clearly

indicated by application to data drawn from actual research situations.
i We chnose two such situations. The first was the sorting of a set of

sociological questionnaires, relating to the attitude of 209 scientists
at varinma Air Rarece laharatariea. Tn this instance it was somewhat
difficult to specify a reasonable sorting of the questionnaires into
groups or categories. The second was a set of weather data, relating
to ceilling height prediction in Washington, D.C. In this situation,
we could perform a preliminary sort (i.e., define a classificaticn)
using the ceiling height that actually did occur.

The sociological data were obtained from the Systems Analysis
Laboratory of the Management Sciences Division of Stanford Research
Institute. We found the groups into which the ISODATA-POINTS technique
divided the scientists' questionnaires had reasonable interual con-
sistency as measured by the mean deviation from the average point.
Conversations with the research sociologists have indicated that these
groupings are meaningful in terms of their experience with the personnel
in the laboratories. We were even able to obtain distances(in terms
of the measurements made by the questionnaire) between the average
points of these groups and to obtain the spatial relationships of the
groups in three dimensions. We feel that such groupings can point out
the characteristics of the people to whom a questionnaire is given.
These characteristics appear to be useful in revising the questionnaire
for future use.

v
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The ceiling height weather data provided us with the opportunity

to investigate three aspects of the ISODATA-POINTS process. In this 4
. sense the weather problem is a very "rich" problem suggestive of many : 1
useful modifications of ISODATA-POINTS. In particular it allowed us: 4

(1) To evaluate ita ability to predict ceiling height;

%
(2) To evaluate its capabilities for measurement selection ;

i
(3) To learn how ISODATA-POINTS exhibits the structure of g
experimentally-obtained data. g

&

i

1

i

4

The performance obtained by the technique was slightly better than
persistence forecasting. (Persistence forecasting is the technique of
forecasting that predicts that the same conditions that exist at the

] preosent time will be in effect at some later time--(in this case five
| hours). This prediction was, however, made without utilizing the
categorization information. In the near future we hope to improve the
predictinn score by utilizing the actual ceiling height that occurred
five hours later for a preliminary sorting of the patterns,

*
The analysis of this data was supported by contracts from the Behavioral
Science Division of the Air Force Office of Sclentific Research. f
] . *‘ .
By measurement selecticn we mean the determination of those predictors
or measurements that are most useful in discriminating between classes.
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Utilization of the typical patterns, or cluster centers, as we
have called them, allows us to evaluate the measurements that define

each of the patterns. We have done this for the weather data and have
obtained agreement with hath tha intuitive ratines of o motoorolsgist

and measurement evaluations obtained by statistical techniques. We

have been able to go somewhat further than this in one respect. From
our examination of the duia ii is evideut that when one considers only
the weather records that resulted in low ceiling heights, the important
measurements are different from those considered important when one uses
high ceiling height records as well. This indicated to us that predictors
or measurements that may be essential in one region of pattsrn space need
not be even useful at all in other regions. Any over-all statement
regarding predictor worth that averages together performance in differert

regions of pattern space seems destined to obscure such important details.
By plotting the cluster centers in a plane using the distances of

the clusters from each other, we were able to see the structure of this

experimental data. This we found quite suggestive of new measurements
that should be made.

VI HOW THE OUTPUT FROM AN ISODATA-POINTS ANALYSIS CAN BE USED

The information supplied by an 180DATA-POINTS clustering consists

of:
1. For eech cluster:
a) The number of patterns in it;
b) The average diestance of the patterns in that cluster
from the average point of the cluster;
c) The number of patterns from each class that are in this
cluster;

d) The identity of the patterns that are in that cluster.

2. The positions of a set of average points that the process has
located in regions of high pattern density, and the standard
deviation of the patterns around these average points for each
of the pattern components

3. The distance of all patterns from all of the final average
points,

9. The distance of each average point from every other average
point, i.e,, the distances between all possible pairs of
average points.

5.

The average distance (taken over all patterns) from a pattern
to its closest cluster point.
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_to determine if the patterns are compactly clustered.

ing can be analyzed.
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Using this information it is possible to learn a great deal about
the structure of the patterns in pattern space. The gross structure of
the data is obtained by examining the :patial relationships between the
average points. Nate that ¢he numbo, ol average polnts 1s small enough
to allow comparison of each average point with every other average point,
We have found that a most useful way of comparing these average noints is
a graphical ploi. It 1s not possible to draw the plot in the original
pattern space because it has too many dimensions. However, by usiug the
distancps between pairs of average points, it is possible to plot at
lTeast three average points on a flat surface. We have found that with
real data we have frequently been able to plot on a plane more than three
average points with sufficient accuracy to aid our intuition. The dis-
tribution of patterns around these average points can be plotted using
distances from these average points and a more detailed understanding of
the fine structure of the data obtained.

Using the information now available in the program some evaluation

of the significance of a given clustering is possible. One criterion of
clustering thai can be used is average distance (AD) of & pattern from its
¢closest average point (the average point for the cluster to which a pattern
belongs). 1In Fig. 22 we show the value of AD vs.the number of clusters

for the two-dimensiorial -example as the iterations progressed, Note that
after the fourth iteration it changes little as the number of masks changes
This criterion 15, however, probably not as sensitive as might be desired.
By using the distences betwsen average points as well it appears possible

We are continuing to seek new ways in which the results of the cluster-

VII SUGGESTIONS FOR FURTHER RESEARCH

The following further research is suggested by the work thus far.

In addition to research on algorithms for ISODATA-LINES and I1BS0DATA-
PLANES, we intend to investigate:

1) Criteria for clustering, in order to improve our ability
to interpret the results of clustering and to facilitate
a more efficient manipulation of the process parameters,

o o ik RN R Lo ok il ikt bl 4 D B R i RN 1 it e
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(2> Methodology for using clusters of patterns Here we
seex methods of displaying and analyzing the results
of clustering.

(3) Classification techniques based on ISODATA-POINTS,
ISODATA-LINES and TRODATA-PIANPS that uso distance

Cawvesian &

from points, line segments, and planar segments as
the criteria for determining the class membership of
an unknown pattern.

i e N 55 b b ok

(4) Actual hardware implementations of any methods that 3
prove promising after thorough investigation by computer 3
programs. These implementations would be used for data =
analysis and classification on the basis of distance
from points, lincs, and planes,.

(5 Applications using.computer programs implementing
ISODATA-POINTS, IBODATA-LINES, and ISODATA-PLANES on
real-world probloems,

In the following five sections we shall discuss these areas for
further research in scme detail.

1. Criteria for Clustering

80 far, in developing the I1BSODATA techniques we have contentod
ournelves with using irtuitively satisfying criteria in the "decision=-
making”" in the computer program. At this time, we feel that we should
investigate additional analytical justification and possibly entirely
new criteria. The needed criteria are:

(1) Criteria that could help determine the "goodness of
fit" of a given clustering. These criteria would help
define "convergence” for ISODATA-like procedures that
learn without a teacher.

(2) Criteria for lumping and splitting of the clusters

One important aspect of this part of the work is the deter-
mination of the effect of changing the scaling function used for various
measurements, e.g., changing from linear to logarithmic scales. This

will have an effect on the clusters found. We need to know more about
the extent of the effect.

There exist interesting statistical problems in this work.
For example, Dr. Charles Dawson of SRI has been able to show that the
sum of an infinite set of n-dimensional multivatiate Gaussian distri-
butions having means distributed uniformly along a straight line segment
can be considered as n-1 dimensional distributions lying in hyperplanes
having the straight line a&s their normal vector, except very close to
the end of the line segment. This model seems an interesting one for the
case of detecting a known signal with time-varying amplitude. It also is
qQuite close to a model for one IS8ODATA-LINES cluster.
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2.  Methodology for Utilizing Clusters of Patterrs

{r our work thus far we have developed several methods and
FTIBYANS 1 aiu ws im sueiung lhe Iine STructure ol qdata alter clustering.
Two important ones are:

(1) The cluster center plot. By using the distance between
cluster centers we are able to plot the relative
positions of the cluster centers on a plane. We can
always plot three such centers and still satisfy the
inter-point distance constraints exactly. Frequently
we have found it possible to plot more than three on
a plane. The exact number that it is possible to plot
depends on the spatial relationships that exist in the
data.

(2) A distance-from-cluster-center computer program. Using
This program we are &ble to obtain a histogram of the
distances of the patterns from the various cluster
centers., This gives indications of the distribution
of thc patterns about the cluster centers--i.e. are
they loose or tight clusters, etc. This particular
program is useful in setting thresholds and weighting

distances between pairs of cluaters for the classification

of patternn.

Tt is essential thlt we devalop other methods of rnpidly
manipulating these clusters of data in order to learn various things
about the fine structure of the patterns. We have found that the ideas
come most easily in attempting to analyze real data. We are particularly
interested in drawing together these techniques to develop a coherent
methodology.

3. Classification Using Distance from Lines and Planes

IBODATA-POINTS can be used as a mode-seoking classification
technique. Our work on the development of ISODATA-POINTS haw also
helped us understand so-called piecewise-linear error-correction classi-
fication techniques. -1t theretore scums piausible that :l'c development
of ISODATA-LINES and ISODATA-PLANES should help the development of
classification techniques that are based on the distance from a set of
line segments or from a set of planar segments, where different sets of
line segments for example, would be associated with the difierent classes
(see Fig. 24).

For certain classes of patterns, such as speech, word recogni-
tion, or speaker recognition, and other nou-stationary time-segies analy-
8is problems, this type of technique may prove quite powerful. Another
such application might be optical pattern recognition--specifically with

x
This seems all the more true when the possibility of optical implementa-
tion exists and makes pattern dimensions of 1000 reasonable.
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'ftthpnét1mp1§mantg;10nltf-11,the pattern could be put in the form shown
- in Fig. 26, thie weuld allbw;therdotn;lod,exupindtlon of non-stationary

time not bs siower than the sanmpling rate.

" problems where many predictors are used to predizt one qQuanti{ity--for

-

respect to recognizing patterns in spite of translation and rotstion.
¥e have some evidence that translation of & pattern in one direction
creates a straight line in measurement space so long as the rate of
changs of overlap between the nottorn and 442 2r2nslals Lo m cunsiant,
These techniquos also lend themselves to the use of & priori probabili-
ties and cost functions.

A A i | i
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q. Implementation of 18ODATA

In Fig. 25 we show three implementations capable of computing
the minimum Euclidean distance from:

(1) An n-dimensional point (the point is specified by a
vector MO).

(2) An n-dimensional line segment.

4

11\3)1 _An n-dimensional planar segnent.

- These assemblies could therefore be used as basic units for
clessification using distance from lines or planes. These assemblages
are parvicularly useful when it i3 not necessary during training to .
he g!d(shpwn in Pig. 28) after each pattern

b

' Tho qm§11t1g;- nhown‘axo iqrinblusguin linear amplifiers.

B ,Bothttﬁbf?étiq;ﬁifindgthi weights can be optical masks in

time series with the cnly requirement being that the system response

"
'

8, f'APblicitions
Dats usually analyzed by tihojqonio-'hnllyltl, particularly
non-stationary series such as speech and buoincll trends, seem to provide
suitable sources of daia for ISODATA-LINES.

A good. source of datu for ISDQQZA-PLANEB would be prediction
example, ceiling height or air turbulence in Neteorology.

" Data from the socisl sciences Qbuld provide excsllent data
usually suitable for analysis by at least ons of ths three ISODATA
techniques.

The techniques should be particularly useful for analyzing
preprocessing for pattern recognition. The selection of neasurements

becomes, we have found, more meaningful when it is possible to exauine
relatively homogenecus subsets, i.e., after clustering,
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IMPLEMENTATION FOR FINDING EUCLIDEAN DISTANCE
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OF A PATTERN FROM A PLANE
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FIG. 26 AN OPTICAL PANEL FOR INPUTTING A HIGH-DIMENSIONAL PATTE
~ INTO AN ISODATA SYSTEM _ '
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We are attempting to improve and refine our techniques for
measurement selection and to look at the possibilities of generating
meaningful measurements antamo+irall..,
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In thia anpendix wc condider ihe generalization of ISODATA-POINTS
to the fitting of connected line segments to “tubular" high dimensional
data and to the fitting of triangular'segments of hyper~planes to

"surface-1ike'" high-dimensicnal data.

The fundamental concept of ISODATA is the iterative adjustment of
the position of "clusters" in order that these clusters come tc reflect,
in their relative positions, the structurc of the data. 1In ISODATA-POINTS
the goal is to adjust these clusters so that they lie around well-chosen
nverage po*nts

In the generalizations of ISODATA-POINTS in this section we will
relate first pairs (ISODATA-LINES) and then triples (ISODATA-PLANES) of
points to each other. In the first genornlization we relate pairs of
points together .in order to oreate ‘1irie Begments. By al]owing each point
to be in more- than one pair. we are able to.create a piccewile—linegr o
cur\e We propo-o fitting Jurv.es componed ‘of - segments of these lines to

- the ‘data (rather than just. single pointu), .thus obtaining an piece-wise
~linear algebraic exprbllion do-cribin: a set of dava poiuts in.a high-
: dimentionul npnce. Buch 1terative fitting ot & set of line legmnnt- to -

data. we: eall IBODATA-LINIS Suuh n curvo 1a -hown fittod to . set of -
hypothotionl data-in- Fig A- T,

In the lecond generali;;tion of IBODATA-POINTS we lnsociate triples

“of poinim toeotherﬂ Thole triplea of pointa can be used to define a

triangular segment of a plane in n-dimenaionnl space. By allowing points

to be in.more than one triple of. “pointa we 1ink these triangulur segments

of planea together to. form -8 piecewile-pllnar surface in n-space, This

.-surface would then be. 1turut1Vo1y adjultud to cause it to fit s set of
r:datn. This technique we oall ISODATA-PLANES - Such & uurtnco in a three-

dimensional space is lhown in Fig A-Z

‘We hnve not deVelode nn adoquutq nlgorithm for eithor of these

',generalizntion- We have 1ﬁvoltigntod ISODATA-LINES to a greater extent,
- the results of which we now deacribe.

An example of "tubular' data would bte a set of time samples of the
patterns at the output of a set of band-pass filters into which a word
has been spoken. An examyle of surface-like data is the values of
n-predictors that are used to predict a #ingle predictand such as the
ceiling height at Washington, D.C.
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A. ISODATA-LINES

At the presant time it appears to us that the elonwichm o0

T2 veasn ~-a

ISODATA-LINES snoulda congsist of the following ateps:

(1) Use ISODATA-POINTS tc define cluster centers within the
data.

B s Ay L i £ e ki

(2) Take the nearest two cluster points and rejate them
(i.e., they are to define a line segment).

(3) 8tarting with one cluster point of this pair, find that
new cluster point nearest to it. Relate this pair.

(A maximum allowable distance for pairs might be used
here )

(4) Continue this procedure until all accsptable * cluster
. “points are paired. At this point iterative adjustment
of the line segments would Legin.

(8) Rffective iterative adjustment of the line segments
- _roqutrcl the lnlwnrinc of tho tolloving tvo.questions:

(a) Whnt lubsot of patterns should be associated
(probably not disjointly) with esch line segment?

(b) In what direction should each pattern move the
cluster points that define the line segment

associated with that pattern and what amount should
it move 1t?

'lnch pair considered for a relationship should be examined to ensure
that there are points lying near the straight line segment connecting
them. A simple modification of the 1S80DATA-POINTS program to store
the second (and third?) cluster points nearest to the patterns would

allow the presence or absence of patterns between two cluster points
to be found.

‘gomo cluster points may be ipolated from others due to the nature of
the data and in this sense "unacceptable.” 1If this isolated poiut were
split into two points in the manner of ISODATA-POINTS a best-fit line
to this isolated cluster could be obtained.

A-4




These are two reasonably well-defined questions. Though
we have no tested definitive answers, we have the following
conjectural answers:

To 5(a); A pattern should be associated with the two
line segments to which it is closest.

To 5(b); A pattern should move the cluster points in a
direction toward the pattern in a direction
perpendicular to the line connecting the extreme
end points of two line segments sharing a common
center cluster point. 1In Fig. A-3 this line is
shown as a dashed line connecting Cluster Point 1
and Cluster Point 3.

The details of the proposed adjustment procedure (for two
dimensions) are shown in Fig. A-4. A perpendicular BD is, in effect,
erected to line AC. Patterns associated with these two line segments
whose projection (on the line Ka)are in the interval AD are used to
modify Points A and B. Patterns in the interval DC are used to modify
Points B and C. A pattern projecting directly on A would modify only
A, and the same for C. A pattern projecting on D would modify only B.
The proportion of modification made to each of the two points for cases
in between would be linear, as indicated in Fig. A-4(b). 1In Fig. A-4(c)
we shgz ;he amount of modification made for a sample pattern projected
onto AD,

Note that the bias in this adjustment procedure tends to
straighten the kinks in the piecewise-linear curve shown in Fig. A-3.

As we develop a better understanding of ISODATA-LINES, it seems
nearly certain that something analogous to splitting and lumping will be
useful. 1In Fig. A-5 we indicate two situations in which different kinds
of splitting might be called for. As for lumping, it could conceivably
occur if two cluster points draw close together (i.e., as the line segment
between them shortens) or as a cluster point at the end of a curve draws
near to a line segment.(Some provision for branching data would be
necessary.) Straightness of consecutive segments could also be used as
a criterion for dropping the interior cluster point (this is the reverse
of the splitting in Fig. A-5(b)).

We feel that the use of the ISODATA-POINTS program to find
reasonable starting lines will greatly reduce running time by reducing
the number of iterations required by ISODATA-LINES to find a good fit
to the data.

%
The calculation of distance from 2 line segment does not require more

than the algebraic manipulation of the distances from the two defining

end points. No explicit formula for the line segment itself need be
found.
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(¢) THE PROPORTION OF CLUSTER POINT MODIFICATION
CAUSED BY A SINGLE PATTERN
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B. ISODATA-PLANES

We have not yet workec out a tentative algorithm for the itera-
tive adjustment of these planes, except insofar as the algorithm ias
simiiar tn ISODATA-LINES. We feel that by the time we have developed
ISODATA~-LINES we will have a good start on developing I1SO0DATA~PLANES,

It is interesting to note that for IBODATA-PLANES we only need distances
from the three defining points in order to find the distances from a
plane. We do not need an explicit formula for the plane,
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