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ABSTRACT

ISODATA, a novel method of data analysis and pattern classification,

is described in verbal and pictorial terms, in terms of a two-dimensional

example, and by giving the mathematical calculations that the method uses.

The technique clusters iany,-variable data around points in the data'@

original high-dimensional space and by doing so provides a useful descrip-

tion of the data. A brief summary of results from analyzing alphanumeric,

gaussian, sociological and meteorological data is given.

In the appendix, generalizations of the existing technique to cluster-

ing around lines and planes are discussed and a tentative algorithm for

clustering around lines is given.'
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ISODATA, A NOVEL METHOD
OF DATA ANALYSIS AND PATTERN

CLASSIFICATIONI

by

Geeffrey H. Ba!1 and David j. Hall
Stanford Research Institute

I INTRODUCTION I.
In this paper we discuss a technique for dealing with problems in

which the data are inherently described in many dimensions, where each
dimension correspinds to a variable of the problem. Such problems are
very commonplace, and many which are customarily described in terms of
a small (3 to 10) nunAl Q. dcmansions are in fact of a much larger di-
mensionality, but have been simplified in order to allow manipulation
(and description) of the data. Such collapsing of the problem is often
useful and suitable, indicating the preponderant importance of certain
of the parameters. However, there remains a class of problems for which
such collapsing destroys significant interrelations between the parameters
that would give the data meaning.

II PATTERN RECOGNITION PRJ9PROCESSING AND CIASSIFICATION

The area of research labelled "pattern recognition" consists pri-.

marily of efforts to develop techniques capable of dealing with problems
of inherently high dimension.

Many aspects of the pattern recognition problem are, in fact, data
analysis called by a different name. Realizing this, we feel free to
discuss ISODATA in the context of pattern recognition (which is our back-

ground), although others might prefer "automatic data analysis" as the
label for our work.

One statistician, John W. Tukey, has stated that, in his mind, data
analysis includes, among other things: "procedures for analyzing data,
techniques for interpreting the results of such procedures, ways of plan-
ning the gathering of data to make its analysis easier, more precise and
more accurate, and all the machinery and results of (mathematical)

Examples of such problems include automatic speech recognition, medical

diagnosis, alpha-numeric character recognition, sociological question-

naire analysis, and weather prediction.

21
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statistics which apply to analyzing data."

2Dr. Tukey goes on to say that he considers data analysis as a
science in the sense that it has:

a) intellectual content

b) organization into an understandable form

c) reliance upon the test of experience as the ultimate I
standard of validity.

As a science he feels that,

a) "Data analysis must seek for scope and usefulness rather
than security.

b) Data analysis must be willing to err moderately often in
order that inadequate evidence shall more often suggest
the right answer.

c) Data analysis must use mathematical argument and mathe-
matical results as bases for judgment rather than an
bases for proof of validity."

We feel that our work on ISODATA fits this description of data anal-
ysis. Since we have also been able to describe ISODATA in the terminology
of pattern recognition, we feel justified in relating data analysis to
pattern recognition. Our work on ISODATA-POINTS has concentrated pri-
marily on developing the algorithm and demonstrating experimentally that
it works on both real and artificial data. We are now engaged in study-
ing the algorithm analytically and in comparing it to both other cluster-

ing techniques and to existing multivariate statistical mothods.

A convenient (though not usually well-defined) division of the
pattern recognition problems is:

1) Design and Evaluation of Transducers--here "transducers"

are those parts of a pattern recognition system that
transform a physical phenomenon into a set of electrical
measurements or optical patterns that are in a form
suitable for the preprocessor.

2) Design, (Automatic) Synthesis, and Evaluation of Pre-
processing--here "preprocessing" Is that part of the
system that transforms the measurements from the trans-
ducers into multi-dimensional patterns. This transforma-
tion should enhance the differences between classes we
want to discriminate. At the same time it should preserve
within-class similarities.

3
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3) Design, (Automatic) Zy....... s, and Evaluation of t!.u

Categorizer--here the categorizer is that P*'L that
transforms the patterns from the preprocessing into
labels (output codes) associated with each set or
class of natternq.

In the design of the 'preprocessing" to do automatic classification,
a first Sub-task ib Lu dlldlyse e representative set oi patterns. Many
present preprocessing evaluation techniques, even when used on a set of
representative data, give little information aq to how to modify the I
preprocessing technique in order to improve it.

In order to know whether we can improve the preprocessing we must
be able to distinguish between:

1) poor performance of the preprocessor, and
2) inherently difficult data. :

The proposed technique has demonstrated its ability to lay bare the
structure of the data. ISODATA can be used to evaluate preprocessing -
by comparing the clustering before the preprocessing with the clustering
after the preprocessing. This makes it possible to evaluate the pre-
processor with respect to the inherent difficulty of the data. The
clear picture of the data that the researcher obtains using this technique
helps him to modify the preprocessor so that thu resulting patterns
are structured in a more suitable manner. We have found that under-
standing the structure of the data is also suggestive of now ways for
transducing the physical phenomenon.

In the classification of patterns a primary problem is the obtaining
of an economical description of the patterns. Due to the complex nature
of patterns arising from the real world, a description not rigidly con-
strained by a number of a priori assumptions is desirable, The class

of techniques we describe has the characteristic that its description
of the data is determined primarily by the data and is self-adjusting
in a way that makes this description economical.

In discussing this technique we concentrate on using it for the
analysis of data, We see the technique as specifically applicable to:

1) The design of preprocessing (and also more conventional
data analysis), by allowing the examination of the
structure of multidimensional data in the original high-
dimensional space; and

2) Classification of patterns, by finding the structure in
each class of patterns and providing an economical
description of the classes of patterns against which a
pattern of unknown class can be compared and so assigned
to a specific class.

4



III THE TECHNIQUE
*!

ISODATA, as the derivation of the name suggests, is a collection
of ±terati-r- i~v,. .t s uLto , e 1Lmpt to summarize all of the

finest nuances extractable from the data. Rather it focuses on central I
tendencies and the major structure of the data. As ISODATA jt qnrma ,
used, 1L ib a compromise between attempting to store and analyze every
detail and aspect of the data right from the start (if desirable, tiis

can be done later in the analysis on limited portions of the data) and an
approach that averages virtually everything together. (In fact, if it
were desirable for some reason, either extreme is attainable by appro-

priate selection of certain process parameters that control ISODATA,)

It is not practical to compare all patterns with all other patterns
for large numbers of patterns. Rather the procedure compares patterns
with a set of clusters constructed from subsets of the patterns them-
selves, and groups patterns together on the basai of these comparisons.
The comparisons are made by establishing a measure of distanco in the

measurement space. Patterns are groupeo.together if they lie closest
to the same "description of a cluster." The number of clusters used
by the technique varies in a way that depends on the structure of the
patterns in measurement space and on the ISODATA process parameters that
the researcher controls.

When used on data for which categorization information is not avail-
able, ISODATA finds a good approximation to the natural structure of the
data, rather than trying to impose an assumed structure on the data. By
clustering only one class of patterns at a tMa,,e, categorization informa-
tion can be usedin conjunctionwith ISODATA to structure the data for a
specific pattern classification problem; a probability distribution of
the data need not be known or even assumed to exist. The development of
a computationally-simple method that could be implemented for patterns
of more than 1NO dimensions (e.g., optical patterns and complex waveforms)
was an important factor guiding the development of this technique.

The simplest type of ISODATA is ISODATA-POINTS. This technique is
described ir the next section. In Appendix A we discuss ISODATA-LIENS and
ISODATA-PLANES, two generalizations of ISODATA-POINTS. There we give a
tentative algorithm for ISODATA-LINES. Though neither of these general-
izations has yet been programmed, we feel them to be relatively straight-
forward generalizations of ISODATA-POINTS.

With apologies for adding another acronym to the growing list, we have

coined ISODATA to represent Iterative Self-Organizing Data Analysis
Techniques A. (The "A" was added to make ISODATA pronouncable.) The
classically-oriented can dertve it from ISO, meaning "the same" or "like,"
+ Data.)
*Here we uee "cluster" in a general way--allowing it to mean a set of
patterns grouped around a point, a line, or a plane. Hence the "descrip-
tion" is the specification of the point, line, or plane around which the
patterns are clustered.



IV DETAILED DESCRIPTION OF ISOII&TA-POINTS

Ir this section we describe ISODATA-POINTS from four points of

view, each succeeding point of view being more precise than the last.

The four points of view are:

(1) Verbal

(2) Pictorial

(3) Two-dimensional Illustrative Example

(4) Mathematical

We also give the results of a principal components analysis (a more
conventional statistical analysis technique) on the same data so that
the results of it can be compared with the type of results obtained
using ISODATA-POINTS.

A. Verbal Description

ISODATA-POINTS is an iterative procedure for the sorting of
a set of multi-dimensional (multi-variable) patterns into subsets of
patterns. An average pattern is used to represent each subset of
patterns, and the iterative process, by changing the composition of
these subsets, creates new average patterns. These new average patterns
define new subsets each of which has reduced variation about the average
pattern. The process also combines average patterns that are so similar
that their being separate falls to provide a significant amount of
additional information about the structure of the patterns.

B. Pictorial Flow Diagram

We show a pictorial flow diagram of IS0DATA-POIH in Fig. 1.
In line with our considering ISODATA as a procedure for sorting patterns
we show the patterns being fed into a sorter, one at a time, from a
"pattern hopper. " The patterns are sorted into subsets on the basis of
distance from a set of cluster points--each pattern going into that sub-
set associated with the cluster point to which It, the pattern, is
closest. The cluster points themselves are obtained as an output of
the previous iteration. The set of cluster points for the first Itera-
tion must be provided by the researcher.

The selection can be arbitrary, since the results of clustering have
been found experimentnlly to be nearly independent of the choice of the
initial cluster points. Usually, however, a wise choice reduces sig-
nificantly the number of iterations needed for satisfactory clustering.
We have found it best to use a subset of the patterns randomly selected
from the training patterns as the initial cluster points. 4

6
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After all patterns have been sorted, the average of each of the
subsets of patterns is computed, and the sample standard deviations in
each dimension of each subset are determined. The average pattern
vector, the standard deviation in each dimension for each subset, and
the number of patterns in each subset are then passed on into the
"Cluber iniormation Hopper."

Those small clusters (with few.r than - clcannta) are diavarded at
"Valve 1." The positioning of "Valve 2" is §etermined by the number of
the iteration and by the total number of clusters, an indicated on the
diagram.

The criteria and method of splitting and lumping of clusters are
given in detail in the next two sections. Splitting takes place if the
standard deviation In any dimension is greater than _ and also if both
(1) the cluster has enough members to split and (2) hal high average
distance between its mean and the patterns in its subset.

Lumping occurs between, at most, the L pairs of means that are less
than Sc apart. (The process parameters Sit act ON, and L are all supplied
by the researcher.)

After each lumping or splitting, the modified set of average points

is used as the set of c'I-iter points for the next Iteration and placed
in the "Sorter Box."' The program ends when the number of iterations
performed equals the number specified by the researcher. At this stage,
the cluster points should adequately "fit" the data.

C. Two-Dimension Illustrative Example

In order to illustrate the details of I8ODATA-POINTS we have
contrived the set of two-dimensional patterns shown in Fig. 2. The two
dimensions are height and weight. The patterns (the points shown in
Fig. 2) are intended to represent the height and weight of typical
professional athletes.

Given these points to cluster, the ISODATA-POINTS technique
proceeds in a manner that we illustrate in Figs. 2-19. Each figure
illustrates a major step in the computer'program. (The actual figures
are placed after the explanatory text for all of the figures and can
be folded out.)

The clustering shown in this example was found by running the
existing ISODATA-POINTS computer program. One particularly interesting
aspect of this run is the way in which the technique found and isolated
a number of points lying virtually alone. This offers one approach
to treating "wild shots" in the analysis of data, since they are
singled out for further study or for discarding.

58
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Figure Step

2 Selection of the Pattern Set

Note that three distinct clusters are labelled "Rugby"and twn or- Von1-• =! t. • , to ...T. lJ

this problem a simple average, for example of all

basketball players, will not describe satisfactorily
a representative basketball player.* In other words,
the classes are composed of several subclasses, i.e.,
they are "multi-modal."

Obviously this particular data set can be analyzed
with pencil and paper. A computer is not necessary
because the data points are described by only two
characteristics of the athletes, i.e., their weight
and height. If, however, these data were described
in many more dimensions, e.g., more than 3 or 4, then
it becomes nearly impossible to display them satisfac-
torily in their raw form even in many sets of two-
dimensional representations.

We will show in Section VI how to obtain for these
cases a two-dimenzional plot that usefully describes
the data.

One important goal of this ISODATA analysis is a com-
prehensible and useful description of the data.. In
order to obtain this description we seek to divide
the data points into relatively homogeneous subsets,
each subset of which can be adequately described by
its average point. The following example seeks to
"describe how relatively homogeneous subsets of data
can be obtained.

3 Selection of Initial Cluster Points

Note that one small region has two initial cluster
points and another small region has three. These
initial trial cluster points were selected to show
that if by arbitrary selection a bad choice of initial
cluster points Is made, that even then the final cluster
points will be good ones.

4 Partitioning of the Pattern Space as Defined
Implicitly by the Cluster Points

Note that the boundaries are the perpendicular bi-
sectors of the lines Joining pairs of cluster points.
Since we are seeking minimum distance of a pattern
over all cluster points, the boundaries are meaning-
less except where they are between the two closest

*Or to say this In another way, a man with his head in an oven and his
feet on a cake of ice can hardly be adequately described as being

"warm on the average." 9
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Figure Stp
cluster points. Hence the piecewise-linear nature
of the boundary.

t|
Initial Partition

Note that the patterns are assigned to only one syb-

set, and that all subsets are contained in convex
volumes of pattern space. Note also that the initial
partition is not a good one. Subsets having fewer

than BN elements would be discarded at this point.

(eN is a researcher-3upplied process parameter.)

It may be helpful in this particular example to think
of the data points as representing men standing in a
large field. The men are positioned in the field In
accordance with their weight and their height, The
partitions that divide the data points into'sub-
sets can be thought of as "fences" dividing the men

into groups. The cluster points can be considered
as "group leaders" to whom the men owe temporary
allegiance, i.e., a man owes his allegiance to the
closest group leader. An we shall see, in the XB0DATA

process group leaders come and go (it was ever thus).

SFinding the Average Point of Each Subset

S. After the first iteration the ISODATA average points
become cluster points.

7 Splitting of the Average Points takes place when

(1) the maximum standard deviation exceeds 0 (a
researcher-supplied I8ODATA process paraleter)
and either 2 or 3 is true.

(2) the number of patterns in a subset exceeds

(20 + 2) and (when the average distance of
patterns in subset i from the average point
of subset i) exceeds D, the average distance

of a pattern from its closest average point.
NROWS is the number of clusters

* A volume is convex if the straight line connecting any two points in
the volume lies entirely within the volume.

10
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Filere Step

7 (Cont.d) More precisely,

AD1 i (AVEDSTt) x (N )

and N

AVEDST = - (Distance of pattern J from
N N1  J=l the mean vector of subset i)

(For all patterns
in subset i)

(3) The number of clusters is less than or equal
to one-half the number of clusters that the
researcher has specified as being desired.

The Splitting occurs in the following fashion:

If the conditions of splitting are.satisfied
then the first new average points (for example,
the right hand or the upper average points
of Fig. 7) are created by adding 1 to that
component of the original averape point having

the largest standard deviation. The second
"average points" (for example, the left hand
or the lower average points of Fig. 7) are
created by subtracting 1 from that component
of the original average point having largest
standard deviation.

The actual amount added is arbitrary (here it is +1) so long..as it is
sufficient to provide detectable differences in the distance of a
pattern from the two cluster centers and is not so large as to change
other boundaries appreciably.

S~11



Figure SLtep

8. The Partition for Iteration 2.

Note that the boundaries between the pairs of cluster
points split from a single point are perpendiculpr to
the direction having maximum standard deviation.

Sorting of the Patterns for Iteration 2.

10. Finding the Average Points of Iteration 2.

Note the effect of the "outlier" (shown with an arrow)
on the average point for the uppermost cluster.

11. The Average Points found in Iteration 3.

In iteration 2 the average points were again split
(since the number of subsets was less than ose-half
the number of subsets desired). Note that the
"outlier" of Fig. 10 has been made a cluster by itself.

12. The Average Points of Iteration 3 are Split in the

Manner Described under Fig. 7 above.

13. The Sorting of the Patterns in Iteration 4.

14. The Finding of Average Points for Iteration 4.

15. The Lumping Together of Close Average Points.

In this iteration the criteria for lumping (an even
iteration and the existence of more than one-half the
number of subsets desired) are satisfied. This figure

W,• illustrates the lumping together of all pairs of
average points that are less than a distance of'*
apart. (i is a researcher-supplied ISOIATA process
parameterf. Note th#$ only pairs of average points
are lumped together. Note also that the lumped
average point obtained is the average of the two
average points and is obtained by weighting each
average point by the number of patterns in its sub-
set. This makes the lumped average point the true
average point of the combined subset.

Splitting of average points in several dimensions (into more than two
new "average points") was once considered for use in the algorithm.
We found that this becomes hazardous unless the covariance matrix is
calculated, and this calculation is undesirable.

* Lumping triples was considered for the algorithm, and discarded, since

it appeared to change the partition too radically for the iterative
procedure to satisfactorily "converge."

12



Fiere Step

16. The Partition for Iteration 5.

17 Th... &,,o,.o D1j6t-

18. The Average Points for Iteration 6.

In the previous iteration, six average points were
split. In this iteration four pairs of average points
will be lumped together. These four pairs of points
are indicated by being circled.

19. The Final Average Points After Several Iterations.

No splitting or lumping is allowed in this final
iteration, which is principally for consolidation.

We feel that these 19 average points do quite ade-
quately describe this set of 562 data points with
a 30:1 reduction of the number of points, Naturally,
no description of the original data points which
provides a similar amount of reduction can be as
accurate as the original data itself. However, a
reduced data description is often more useful than
the more accurate but much more voluminous version.

Note the way theo "wild shots" or "outliers" have

been found and isolated by assigning them to clusters
of their own. These wild shots can now be examined
for their importance--either an a rare occurrence

well worth noting,or as an equipment malfunction.

We terminated the iterative procedure after itera-
tion 7, because the clustering obtained seemed quite
adequate. If it had been necessary, we could have
gone on by continuing the lumping and splitting,
starting at the end of iteration 6. Our experience
has shown that abgut six iterations are adequate
for many probleus -- adequate in the sense that the
number of clusters is stable and the subsets rela-
tively homogeneous,

We can, by increasing 0D and increasing 0 reduce the
number of clusters we obtain. Decreasing them both
would increase the number of clusters,

The number by each average point gives the number of
patterns in that cluster.

We are presently seeking better criteria for terminating the itera+ions.

13
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D. Mathematical Description

The details o& the calculations made in the existing ISODATA-
vuvint' computer progrum are given in this section.

In Fig. 20 we show a computational flow chart onf the technIniqe.
A glossary of the symbols used in the mathematical description is given
next in order to ease the struggle with new notation. Following the
glossary we explicitly write the mathematical expression in the sequence
calculated for each significant computation made by the program.

Readers not interested in the details of the computation made
by ISODATA-POINTS can skip this section (i.e. turn to page 42) with out
serious lose.

F

The processing time for this program is about

(2.7 x 10-4 x (number of patterns) x (number of cluster points)

x (number of dimensions)] seconds/iteration

on the B-5500 computer (at $180/hr) at SRI. The program is

written in Algol 60.
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SORTING OF ALL PATTERNS
INTO SUBSETS (Cj) ON BASIS

OF DISTANCE FROM CLUSTER

POINTS (M6)

CALCULATION OF:

I) AVERAGE PATTERN
2) STANDARD DEVIATION

3) AVERAGE DISTANCE
4) NUMBER OF PATTERNS

FOR EACH SUBSET

COMPARE NUMBER OF
PATTERNS IN EACH
SUBSET AGAINST

DISCARD SMALL SETS

TAKE THIS BRANCH IF, TAKE THIS BRANCH IF:
1) ODD ITERATION I) LAST ITERATION

OR 2) LESS THAN ONE-HALF DESIRED OR 2) EVEN ITERATIONNUMBE OF/ CLSESR3 TWICE AS MANY
BAC CLUMTER AS CDUEEIRED 3

PON
"SPLITTING PROCESS" "LUMPING PROCESS"
PROCESS PARAMETER PROCESS PARAMETER

,SIC

END I Y E RA ION

FIG. 20 A FLOW DIAGRAM SHOWING THE COMPUTATIONAL CYCLE
OF ISODATA-POINTS
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SYMBOLS USED IN MATHEMATICAL DESCRIPTION

SYMBOL STANDS FOR JOUND NOS

AD Overall average distance of 6, 10
patterns from the average vector
of the cluster to which they are
assigned. 1 l•__S

Z= (AVIDSTi) x N,

AV DSTt The average distance of the patterns 4, 6, 10
"AVIDST 1  in cluster C from the average

vector (averige point) of that cluster

SN

for all P eCi

Ci The 1 th cluster 2, 3, 4,
it, 5, 7

1D The dimension (number of components) 5, 9
of a pattern vector.

5 The Euclidean distance between the 12
average vector .P for cluster CtlI
and the average vector P for
cluster C

P

L The maximum number of pairs of 12, 13
average vectors that can be
lumped at one time.

M Tt cluster point (vector) for the 1, 2, 11,

1 cluster 14
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SYMBOL STANDS FOR FOUND IN .

____ ___ __ ___ ___ ___ ___ ____ ___ ___ ___ ___ ___ ___ STEP NOB.

N The total number of patterns. 2, 6

N. ThR numher nf pattarns in the 3, 5, t
1 1 cluster C1 . 10, 13

NROWS The total number of clusters. 2, 4, 5,
(Stands for the Number of Rows 6, 7, 9,
in the matrix having the cluster 10, 11, 12
point vectors as rows, which is 14
an NROWS x D matrix.)

P The jth Pattern vector. 2,4

pJ The Ith component of the jth B
pattern vector PJ

P The averasg pattern vector 3, 4, 10,
' for the i cluster C 12, 13

th
ipA The £ component of the avj~ape 5
'A pattern vector P for the i

cluster. "

J + The positively "split" part of the 10
average vector iP. (See Step 10.)

" The negatively "split" part of the 10
average vector iP. (See Step 10.)

CtA The standard deviat n of the ith 5, 9
cluster C in the I component
(dimenslob)

JulIL11 P CC1 I
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SYMBOL STANDS FOR 1TFOUNDoIN
H___:_ ____________________ _ TSTEP NOS.

i k The largest standard deviation 9, 10I
i of all of the components of the

"patterns in cluster C The
largest Aandard deviaition occurs
in the k component.

i k mi my ij

eC The ISODATA process parameter against 12
which the distance 8 between pairs
of patterns in compai~d. It controls
the "lumping" process. It is supplied
by the researcher.

The ISODATA process parameter against 10
which the maximum standard deviation

Alk is compared. It controls the
splitting process. It is supplied
by the researcher.

e N The ISODATA process parameter against 7, 10

which the number N of patterns in a

cluster is compare&. It is supplied
by the researcher.
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STATEMENT OF THE GOAL

Given a set of pattern vnntnra fu Z , -anani.ion . i,
the goal of ISODATA-POINTS is to sort 4hem into subsets C,,each having
11 members and having small within-group variance, i.e., hnd a sot of

avorage vectors zuch. that vh of these average vectors adequately
describes that set of patterns lying closest to it. (Measuree and
criteria for determining when an adequate description of the data has
been obtained are being sought.)

The following steps describe in symbols the manipulations shown
graphically in the figures accompanying the two-dimensional example

illustrating ISODATA-POINTS.

Step Computation

1. Select arbitrary subset of patterns having NROWS
elements. These should be chosen as intelligently
as possible--i.e., if possible, one from each
known sub-class or cluster. Create a set of
points that are duplicates of this randomly.
selected set of patterns. Call this duplicate
set the initial "cluster points," = Lii
NUOWB]

2. Do for all jal,---,N:

For each pattern P find Xi such that

(P " " M " W M Min (P ' -M '-

where the dot product
A'BD D ..,'' aD' bl' bD)

D
* Z aib

Assign P to subset Ci** This step sorts the {PJ

into subsets on the basis of distance from the

(M d (see figure below). (Ties are arbitrarily

decided. They almost never occur.) Mii

"Note that the M are not changed during this calculation over all J.
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Step Computation

3. Compute for all of the i clusters Ci the average
vector iP of each cluster i

P PE pi
P•i

where N is the number of patterns in cluster Ci.
±

NOTE: The E P is obtained as patterns are being sorted.

4. For all i, i=1,.,., NROWS.

Compute the average distance'AVUDBT of patterns
in cluster C from the average vectir, of that
cluster.

AVID8T (P N1

2. N1 . -- " ' ,.

For all P j cC

5. For all i, i-l ... ,NROWS, and for all' , Dl,....,D
find je standard deviation a of the 2 subset

for I" measurement where

Vot

For all P eCI

6. Compute average distance overall, AD, where

NROWS
AD -- 2 (AVEDSTi) x N

N i=

This is the average distance of the patterns from
their closest cluster point.
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Step Computation i

NOTE: Certain parameters e , e , e , L and the total number of

iterations, which will be mentioned in the following
steps, are provided the program bv the rprha

For Steps 7-10 and Steps 12-13 no use is made of the
indlvldila.1 -. ÷terne All calculatiom, ae made based on

means, standard deviations, AVEDSTi, and AD, and the process
parameters.

7. For all i, i=l,..., NhtOWS.

If N < 0 then discard the ith cluster, Ci, and reduce the
numbir ol clusters by 1.

(a) If this iteration is the last iteration, set eC= 0 and
.skip. to step 12,

(b) If number of clusters is less than or equal to j the
number desired, then siop the. remaining step in 8 and
do step 9.

(c) If this iteration is an even-nutbered iteAti.on, or
if number of clusters is greater than or equal' to
twice the number desired, then skip to step 12.

NOTE: Steps 9 through ll'comprise the so-called "splitting"

process.

9. For all i, ifi,.:.,.NROIV, for J=1,...,D., findk and•. ~ ~ ~ i ik such that" .... .

Ik= m jx(i)

10. For each i, i=l,...,NROWS

(a) if iak >8 E and i

((if AVRDST >A5 and if Ni >20 + 2) or

(NROWSS 0.5 x number of clusters desired))

then create "
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Step . Computation

10.(Cont) .T = .P .. (0 ..... O.+1.0 .... .0)L-Cn,(k cncomponent)

he +1 is placed in this kth component

cl..cmcnt (corresponding to a k ,fur uiuuter i)
in order to split the cluster along the
direction having the maximum variation.

i• - i + (0,....o,-1,...,o) (th
(k element)

(b) P is replaced by +, and i is added to
the list of average vectors, which increases
the number of clusters by 1. (See figure below)

tP

x

11. Start the process again at Step 2. Ume the

jP, iml ... ,NROWS'} as the new alt (MJ)in
P ace of the existing met {Mo}. (lROWtiu

"the number of clusters after splitting or
lumping.)

NOTB: Steps 12 through 14 comprise the so-called "lumping"
process.

12. For all i, t-1,..., NUOWS:

For all j > 1, jmi + 1,...,,ROWS:

(1) Compute the pairwise distance 8 between

average points where ii
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Step Computation

12.(Cont.) (2) If 5 1 < KC then plane 5 ±, • I in an

ordered (3 x L) matrix. ~

"ij "i~j • "LJLI(
2 2I

1 12 L

il J2 . ' JL

where . < 5 . < 5i 1i
S1 L

NOTE: L (which is 9 9 for programming convenience) controls

the maximum number of pairs of clusters that are
lumped together.

13. For all L, I= ,..., L.

If P and iP have not been previously used in

lumping, then

(1) Compute

NP + N [ )+ NN4P)+

(2) Replace tP with iP and delete P from the

list of average vectors (reducing the number of

clusters by 1).

y 4

o il,

14. If more iterations are to be done (this is at dis-

cretion of investigator), start the process again

at Step 2. Use the ( [P, i=1 .... NROWS'] as the new

set (M, in place of Ihe existing set (MU) If this
was the last iteration, then end process.
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E. Analysis of the Height vs. Weight Data Using Principal
Components Analysis

An alternative method of describing and analyzing the data of
Section C (the two-dimensional example) would be principal components

It may be objected that principal components analysis should not
be applied to data that is as heterogeneous as the data in this two-dimen-
sional example. We agree. At least part of our point is that it is not
easy in high dimensions to determine just how heterogeneous the data is.

"The (Principal Component Mlethod) is a relatively straight-

forward way of 'breaking down' a covariance or correlation matrix into
a set of orthogonal components or axes equal in number to the number of
variates concerned. These correspond to the latent roots and the accom-
panying latent vectors .... of the matrix. The method has the property that
the roots are extracted in descending order of magnitude, which is important
if only a few of the components are to be used in summarizing the data.
The vectors are mutually orthogotial, and the componeqts derived from them
are uneorrelated." The greatest possible "scatter" of n points pro-

* Jected onto a given number a of cooidinate axes in a k-dimeusional space
(a A kI is obtained by this method.

The average point of the height vs. weight data is (724,208),
(the inches are multiplied by 10) and the covariance matrix is

[667 1111"

11[ 1 2814]

The first eigenvalue is 3854 and the corresponding eigenvector
is (.936,1.00). The second eigenvalue is 1627 and the corresponding eigen-
vector is (1.00, -. 936). In Fig. 21 we have plotted these eigenvectora

as a second set of "coordinate axes" with the mean value of all of the data
as origin. The length of the vectors is proportional to the magnitude of

the associated eigenvalue.

The direction of the first eigenvector indicates that generally
there is a positive correlation between height and weighc; that is, weight
increases with height. This "accounts for" about 70% of the variance.
Both height and weight contributed about equally to this component.

The second eigenvector displays ihe extent to which height and

weight are negatively correlated. Again both height and weight contribute
about equally to this component.

The exact values of "scatter" for n data points in k dimensions are given

by Wilks.
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These descriptions relate primarily to directions in the data.
The largest eigenvector gives the direction along which a scale should be
set up to get maximum variation in thA dat Tf t! ;: Z..-1- •1 4L•I
anaiysis is to find such a scale, then this is a very reasonable analysis
technique,

However, such "direction-finding" techniques tend to ignore

details in the data such as the existence of isolated clusters, e.g., the
cluster around the point (62", 115 lbs.) in Fig. 21.

Clustering techniques like ISOi.4TA-POINTS ignore direction while
clustering the data In the pattern space. However, the average points
obtained can be used to derive the directional characteristics of the
data. They are primarily sensitive to the density of the patterns in
pattern space. they are well suited to "zooming" in on the detailed
structure of the date. They also can servw as methods for a preliminary
sorting of patterns into relatively homogeneous subsets for further
statistical processing. (This sorting can prevent the confounding of two
disparate effects resulting from treating these effects as if they were
the result of the same (simple) cause.)

It may also be objected thatISODATA-POIFT8 has a certain arbi-
trariness about it and that by setting the process parameters differently
we would obtain different average points. It is true that different
average points can be obtained by varying the process parameters. How-
ever the results of the clustering plus specification of the cluster
parameters used, provides an objective and useful description of the
data.

In complex data we have found that there are a variety of valid
clusterings depending on the number of average points used, on scaling,
and on the structure of the data itself. For example, if the data con-
sists of tight clusters of data whose distances apart are large with
respect to the "diameter" of a cluster then the number of clusters will
not vary even with wide variations in the process parameters. If, on
the other hand, the data is uniformly distributed in pattern space, then
the number of clusters found will tend to vary rather smoothly with
changes in the process parameters. The way that the number of clusters

varies as a function of the process parameters can be used to describe
the structure of the data.

For these reasons, we feel that what must seem arbitrariness to
some is a flexibility that is needed fok the analysis of real data. We
feel that this flexibility is not detrimental in the case of date analysis
by clustering. •

We agree with John Tukey's appeal for good judgment in place of
rigorous optimization-

"Scientists know that they will sometimes be wrong; they try not
p to err too often, but they accept some insecurity as the price

of wider scope. Data analysts must do the same."16
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And further.

"if data analysis is to be well done, much of it

statistical o,•7_non-statistical, will have to guide,

not command."

And finally, we quote from Tukey at some length, because of the rele-

vance of his remarks to clustering techniques.

"Practicing data analyshs' If data analysis is to
be helpful and useful, it must be practiced. There
are many *ays in which it can be used, some good and

some evil. Laying aside unethiral practices, one of
the most. dangerous (as I have argued elsewhcre (Tukey,
1961b)) is the use of formal data-analytical procedures
for sanctification, for the preservation of conclusions
from, all criticism, for the granting of an imprimatu
While statisticians have contributed to this misuse,

their share has been small. There is a corresponding
danger for data analysis, particularly in its statistical
aspects. This is the view that all statisticians should
treat a given set of data in the same way, just as all

British admirals, in the days of sail, maneuvered in
accord with the same principles. The admirals could not

- communicate with one another, and a single basic doctrine
was essential to coordinated and effective action. Today
statisticians can communicate with one another, and have
more to gain by using special knowledge (subject matter
"or methodological) and flexibility of attack than they
have to lose by not all behaving alike.

in general. the best account of current statistical
thinking and practice Is to be found in the printed
discussions 1.n the Journal of the Royal Statistical

Society. While reviewing some of these lately, I was
sirprised, and a little shocked to find the following:

snoild like to give a word of warning concerning the
approach to tests of significance adopted in this paper.
It 1s very easy to devise different tests which, on the
average, have similar properties, i.e., they behave satis-
factorily when the null hypothesis is true and have approxi-
mately the same power of detecting departures from that
hypothesis. Two such tests may. however, give very
different results when applied to a given set of data.
This situation leads to a good deal of contention amongst

statisticians and much discredit of the acience of
statlstics. The appalling position can easily arise in
which one can get any answer one wants if only one 1 oes
around to a large enough number of statisticians.'

45

3



1~

To my mind this quotation, if taken very much more
seriously than I presume it to have been meant,
nearly typifies a picture of statistics as a mono-

lithic, authoritarian structure designed to produce

development in this direction is a real danger to

data analysis, I find it hard to believe that this
danger is as great as thit poses by over-emphasis

on optimization.

Facing uncertaintyf The most important maxim for
data analysis to heed, and one which many statis-U
ticians seem to have shunned, Is this: 'Far better
an approximate answer to the right question, which
is often vague, than an exact answer to the wrong
question, which can always be made precise.' Data
analysis must progress by approximate answers, at best,
since its knowledge of what the problem really is will
at best be approximate. It would be a mistake not to
face up to this fact, for by denying it, we would deny

ourselves the use of a great body of approximate
knowledge, as well as failing to maintain alertness
to the possible importance in each particular instance 19
of particular ways in which our knowledge is incomplete."

We are presently investigating in more detail the relation-
ships between clustering and "direction-finding" techniques. It appears
at this time as though they are qualitatively different, knd that they
should be used to complement each other in data analysis.

V. EXPERIMENTAL RESULTS FROM COMPUTER IMPLEURNTATION OF ISODATA-POiNTS

In order to understand and evaluate the technique, we have per-

formed a series of experiments. These experiments have been of three
types: those designed to validate ISODATA-POINTS, those designed to
Illustrate graphically the approach taken, and those designed to ana-
lyze data from the real world.

The detailed results that we have obtained using the ISODATA-POINTS
program will be contained in a larger report. We shall not attempt to
repeat the contents of that report, but rather shall extract some of
the results that we consider particularly significant.

The validation experiments were constructed from data whose struc-
ture was well known, in order that we might evaluate the clustering
obtained by ISODATA-POINTS. The data was obtained by adding Gaussian

random noise to 10 prototype patterns which serve as the ideal versions
of the noisy vectors. Each vector had 10 analog dimensions and can be
dJsplayed as shown in Fig. 22(a). The values in each dimension were
coded into a 10-bit binary number using "snake-in-the-box" codes
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FIG. 22(a) TEN WAVEFORMS REPRESENTING THE TEN-DIMENSIONAL
PROTOTYPE PATTERNS

(b) TWO NEARLY IDENTICAL PROTOTYPE WAVEFORMS
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(a modified gray scale coding). These 10 dimensions were then cow.-
bined to give a 100-bit pattern. The closest intermean distance was
108 units of the original 10-dimensional space, or roughly 20 bits
ahart in Hamminw distance. The envarianne matrix was tho same fnr qi1 I

distributions and was the scalar matrix, 01, I being the identity
matrix, and 7-30 units, where a is the standard deviation of the dis- I

LribuLiujua. The tizw uv 4=30 ib aizu indiudLed in Fig. 22(a).

The patterns were processed by the ISODATA-POINTS program without
specifying the distributions from which they came. The process para-
meters were varied by the authors until the program sorted the patterns
into 11 clusters. We assigned each cluster to the mode whose patterns
predominated in that cluster. Doing this the program classified 98%

of the patterns correctly. The Bayesian decision-theoretic optimum
separating planes, which were positioned using a priori knowledge of
the location of the means, achieved a 99% correct rate using unquantized
data.

In a later experiment only two distributions were used. The wave-
forms of the two means are shown in Fig. 22. Their means were but 56

units (about 10 bits) apart, while they still had a standard deviation
of about 30 units (about 6 bits). We obtained estimates of the mean
values, again without knowledge of the pattern mode from which the data
came. fhe values obtained were only slightly different from the correct
means. The optimum decision plane gave a percentage correct classifica-
tion of 81% while ISODATA-POINTS (using two large clusters and two quite
small ones) obtained 78%.

In a second validation experiment we constructed 48 pattern vectors.
half of which had the last six bits + l's and half of which had the last
six bits - l's. The first 24 bits of these 30-bit vectors were then
filled with pattern vectors positioned so as to have all pairwise Hamming
distances between patterns exactly 24 bits in this 24-dimensional space.
The ISODATA-POINTS program proved capable of extracting the six consistent
bits of this 30-bit vector--disregarding thn rest of the "noise" for which
bits were not consistent. The program was 100% correct in its classifica-
tion of these vectors. Again no categorization information was used to
cluster the patterns.

In another experiment designed primarily to illustrate ISODATA-POINTS
graphically, we drew a set of O's and a set of Q's on a 10 x 10 retina
of squares. The O's and Q's had no registration noise (i.e., were not
translated or rotated) but did have bits of noise added randomly, ad-
jacent to the main outline of the O's and Q's. The program proved cap- 4
able of dividing the O0s from the Q's perfectly. In addition, the sub-
tracting of the average "0" pattern from the average "Q" pattern em-
phasized the fact that the tall of the Q's was the primary distinction
between these two classes of patterns.
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We felt that the utility of ISODATA-POINTS would be most clearly
indicated by application to data drawn from actual research situations.

We chose two such situations. The first was the sorting of a set of

sociological questionnaires, relating to the attitude of 209 scientists
*t +fa-i- Ai, Vnr,- 1ahnrtnriP:. Tn 11th1 instance it was somewhat

difficult to specify a reasonable sorting of the questionnaires into

groups or categories. The second was a set of weather data, relating
to ceiling neignt preoiction in Washington, D.C. in this situatiun.

we could perform a preliminary sort (i.e., define a classification)
using the ceiling height that actually did occur.

The sociological data were obtained from the Systems Analysis
Laboratory of the Management Sciences Division of Stanford Research
Institute. We found the groups into which the ISODATA-POINTS technique
divided the scientists' questionnaires had reasonable internal con-
sistency as measured by the mean deviation from the average point.
Conversations with the research sociologists have indicated that these
groupings are meaningful in terms of their experience with the personnel
in the laboratories. We were even able to obtain distances(in terms
of the measurements made by the questionnaire) between the average
points of these groups and to obtain the spatial relationships of the
groups in three dimensions. We feel that such groupings can point out
the characteristics of the people to whom a questionnaire is given.
These characteristics appear to be useful in revising the questionnaire

for future use.

The ceiling height weather data provided us with the opportunity
to investigate three aspects of the ISODATA-POINTS process. In this
sense the weather problem is a very "rich" problem suggestive of many
useful modifications of ISBODATA-POINTS, In particular it allowed us:

(1) To evaluate its ability to predict ceiling height;

(2) To evaluate its capabilities for measurement selection

(3) To lecrn how ISODATA-POINTS exhibits the structure of I
experimentally-obtained data,

The performance obtained by the technique was slightly better than
persistence forecasting. (Persistence forecasting is the technique of
forecasting that predicts that the same conditions that exist at the
prosent time will be in effect at some later time--(in this case five
hours). This prediction was, however, made without utilizing the
categorization information. In the near future we hope to improve the
prediction score by utilizing the actual ceiling height that occurred
five hours later for a preliminary sorting of the patterns.

,

The analysis of this data was supported by contracts from the Behavioral
Science Division of the Air Force Office of Scientific Research.

By measurement selection we mean the determination of those predictors
or measurements that are most useful in discriminating between classes.
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Utilization of the typical patterns, or cluster centers, as we
have called them, allows us to evaluate the measurements that define
each of the patterns. We have done this for the weather data and have
obtained agreement with he,th tho cn,4•,•rt• f ••t••G

and measuremenc evaluations obtained by statistical techniques. We
have been able to go somewhat further than this in one respect. From
our examin±.ation of tav UaLa it is evidet:t that when one considers only
the weather records that resulted in low ceiling heights, the important
measurements are different from those considered important when one uses
high ceiling height records as well. This indicated to us that predictors
or measurements that may be essential in one region of pattern space need
not be even useful at all in other regions. Any over-all statement
regarding predictor worth that averages together performance in differert
regions of pattern space seems destined to obscure such important details. ••

By plotting the clster centers in a plane using the distances of
the clusters from each other, we were able to see the structure of this
experimental data. This we found quite suggestive of new measurements
that should be made.

VI HOW THE OUTPUT FROM AN ISODATA-POINTS ANALYSIS CAN BE USED

The information supplied by an ISODATA-POINTS clustering consists
of:

1. For each cluster:

a) The number of patterns in it;

b) The average distance of the patterns in that cluster
from the average point of the cluster;

c) rhe number of patterns from each class that are in this

cluster; j
d) The identity of the patterns that are in that cluster.

2. !he positions of a set of average points that the process has
located in regions of high pattern density, and the standard
deviation of the patterns around these average points for each
of the pattern components.

3. The distance of all patterns from all of the final average

points.

4. The distance of each average point from every other average
point, i.e., the distances between all possible pairs of
average points. it

5. The average distance (taken over all patterns) from a pattern
to its closest cluster point.
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Using this information it is possible to learn a great deal about
the structure of the patterns in pattern space. The gross structure of
the data is obtained by examining the spatial relationships between the
average Points. Nntp th-+ tlt aver4ge points is smpall enough
to allow comparison of each average point with every oth-er average point. -'

We have found that a most useful way of comparing these average pnints ig
a...* a it is not possible to draw the plot in the original
pattern space because it has too many dimensions. However, by usitng the
distances between pairs of average points, it is possible to plot at
least t•ee average points on a flat surface. We have found that with
real data we have frequently been able to plot on a plane more than three
average points with sufficient accuracy to aid our intuition. The dis-
tribution of patterns around these average points can be plotted using
distances from these average points and a more detailed understanding of
the fine structure of the data obtained.

Using the information now available in the program some evaluation
of the significance of a given clustering is poss'ble. One criterion of
"clustering tha. can be used is average distance (AD) of a pattern from its
closest average point (the average point for the cluster to which a pattern
belongs). In Fig. 22 we show the value of AD vs.the number of clusters
for the two-dimensional example as the iterations progressed. Note that
after the fourth iteration it changes little as the number of masks changes,
This criterion is, however, probably not au sensitive as might be desired.
By using the distsncem between average points an well it appears possible
to determine if the patterns are compactly clustered.

We are continuing to seek new ways in which the results of the cluster-
Ing can be analyzed.

VII SUGGESTIONS FOR FURTHER RESEARCI H

The following further research in suggested by the work thus far.
In addition to research on algorithms for ISODATA-LINIS and ISODATA-
PLANES, we intend to investigate:

(1) Criteria for clustering, in order to improve our ability
to interpret the results of clustering and to facilitate
a more efficient manipulation of the process parameters.
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I
(2) Methodology for using clusters of patterns Here we

seek methods of displaying and analyzing the results
of clustering.

(3) Classification techniques based on ISO[TA-POINTS,
ISODATA-LINSS Anti IrerAP_1AV-' 0, thnt .- :=rCC
from points, line segments, and planar segments as
the criteria for determining the class membership of
an unknown pattern.

(4) Actual hardware implementations of any methods that
prove promising after thorough investigation by computer
programs. These implementations would be used for data
analysis and clas3ification on the basis of distance
from points, lincs, and planes.

(5) Applications using computer programs implementing
ISODATA-POINTS, ISODATA-LINUS, and ISODATA-PLANIS on
real-world problems.

In the following five sections we shall discuss these areas forfurther research in somn detail.

1. Criteria for Clustering

So far, in developing the ISODATA techniques we have contented
ourselves with using intuitively satisfying criteria in the "decision-
making" in the computer program. At this time, we feel that we should
investigate additional analytical Justification and possibly entirely
new criteria. The needed criteria are:

(1) Criteria that could help determine the "goodness of
fit" of a given clustering. These criteria would help
define "convergence" for IBODATA-like procedures that
learn without a teacher.

(2) Criteria for lumping and splitting of the clusters

One important aspect of this part of the work is the deter-
mination of the effect of changing the scaling function used for various
measurements, e.g., changing from linear to logarithmic scales. This
will have an effect on the clusters found. We need to know more about
the extent of the effect.

There exist interesting statistical problems in this work. 4'
For example, Dr. Charles Dawson of SRI has been able to show that the
sum of an infinite set of n-dimensional multivatiate Gaussian distri-
butions having means distributed uniformly along a straight line segment
can be considered as n-i dimensional distributions lying in hyperplanes
having the straight line as their normal vector, except very close to
the end of the line segment, This model seems an interesting one for the
case of detecting a known signal with time-varying amplitude. It also is
quite close to a model for one ISODATA-LINES cluster,
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I9
2. Methodology for Utilizing Clusters ef Patterns -

in our work thus far we have developed several methods and
. A" .dU.K.. tLil i.'1C s5tructure ot oata alter clustering.

Two important ones are: I
(1) The cluster center plot. By using the distance between

cluster centers we are able to plot the relat ive
positions of the cluster centers on a plane. We can
always plot three such centers and still satisfy the
inter-point distance constraints exactly. Frequently
we have found it possible to plot more than three on
a plane. The exact number that it is possible to plot
depends on the spatial relationships that exist in the
data.

(2) A distance-from-cluster-center computer program. Using
this program we asa able to obtain a histogram of the
distances of the patterns from the various cluster
centers. This gives indications of the distribution
of the patterns about the cluster centers--i.e. are
they loose or tight clusters, etc. This particular
program is useful in setting thresholds and weighting
distances between pairs of clusters for the classification

- of patterns.

¶t is essential that we develop other methods of rapidly
manipulating these clusters of data in order to learn various thingsI

about the fine structure of the patterns. We have found that the ideas
come most easily in attempting to analyze real data. We are particularly
interested in drawing together these techniques to develop a coherent

methodology,

r 3. Classification Using Distance. from Lines and Planes

ISODATA-POINTS can be used as a mode-seoking classification
technique. Our work on the development of ISODATA-POINTS has also
helped us understand so-called piecewise-linear error-correoction classi-
fication techniquwb .l t Lhereture s+ims a plausible that !,o dovwiopmbnt
of ISOa4TA-LMS and IODATA-PZAYES should help the development of
classification techniques that are based on the distance from a set of
line segments or from a set of planar segments, where different sets of
line segments for example, would be associated with the different classes
(see Fig. 24).

For certain classes of patterns, such as speech, word recogni-
tion, or speaker recognition, and other nou-stationary time-series analy-
sis problems, this type of technique may prove quite powerful. Another
such application might be optical pattern recognition--specifically with*]

This seems all the more true when the possibility of optical implementa-
tion exists and makes pattern dimensions of 1000 reasonable.
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I
respect to recognizing patterns In spite of translation and rotation.We have some evidence that translation of a pattern in one directioncreates a straight line in measurement space so long as the rate ofchange of overlap between thp not*&" -A 4*. . .. ..---- ..
These techniques also lend themselves to the use ofa2ur probabili-ties and cost functions.

4. Implementation of I8ODATA

In Fig. 25 we show three implementations capable of computing
the minimum Euclidean distance from:

(1) An n-dimensional point (the point is specified by avector Mo

(2) An n-dimensional line segment.

13) An n-dimensional planar segment,
* These assemblies could therefore be used as basic units forclcssification using distance from lines or planes. These assemblagesare Particularly useful when it is not necessary during training tovary the correction factors i.::,M(shown In Fig. 25) after each pattern" i5.'lassifIed.;

The amplifiers shown-are variable-gain linear amplifiers.
. hoth th, patterns and thi weights can be optical masks inthese implementations It the pattern could be put in the form showniA Fig. 26', this'would allow.the detailed examination of non-statlonarytime saries with the only requirement being that the system response.time not bs siower than the sampling rate.

S. Appl ications

Data usually analysed by timesaeries analysis, particularlynon-stationary series such as speech and business trends, seem to providesuitable sources of data for 180DTA4LIN•S.

gA ood soure-e of data for X3ODVTA-PAIM would be Prediction.. roblwms where many Predictors are used to'prediot one quantity--forexample, ceiling height or air turbulence in'Neteorology.

Data from the social sciences would provide excellent datausually suitable for analysis by at least one of the three ISO/ATA
techniques.

The techniques should be particularly useful for analyzingpreprocessing for pattern recognition. The selection of measurementsbecomes, we have found, more meaningful when it is possible to eia.,inerelatively homogeneous subsets, i.e., after clustering.
•i "5"-
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We are attempting to improve and refine our techniques for
measurement selection and to look at the possibilities of generating
meaningful measurement- r.•t 4  !1:. j
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APPENDIX A

:G,.ZTA-LJLAZZ ANDI ISODATA-PLANES

In thiq appendix wc Coraiid'n Oxe generailzation of ISODATA-POINTS
to the fitting of connected line segments to 'tubular" high dimensional
data arnd to the fitting of ti-iangular~ segments of hyper-planes to

"surface-1±ke" high-dimensional datat.

The fundamental concept of ISODATA is the iterative adjustment of
the position of "clusters" in order that these clusterý; come to reflect,
in their relative positions, the struQ~urc of the data, In ISODATA-POINTS
the goal. i±E to adjust these clusters so that they lie around well-chosen
average pO;nts.

In the generalizations of ISODATA-POINTS in this section we will
relate first pairs (ISODArA-LZINZb) and then trip.ýes (ISODATA-PLANBS) of
points to each other. In the first generalization we relate, pairs of
points together in order to create line negmenmtaý By allowing each..point4
to be in more.than ýone rai~rlwe ar. able to create a piecewise-.linear
curve': We propose fitting curivesocomposed 'of segMentS Of these lines to
*the'data: (rather-thin just. -single points), :thus obtainling ani pi.ece-wi8*
linear algebraic exprbmsion describing a, set of dara poiaits in a high-

*diment ional.s pac'e. Such iterative.f ittin .g .o If a aset .oflim. sii'mqnte to,
data We' call. ISODATA,-LINZS.>S'u~h& c'urve is shown fitted to a set ofI
hypothetical data-in; Fig. A-1.

n nthe second.ý.general~iiatioin of ISOIDATA-POINTS we associate triples
of poincm togother.' These triplesaxof points can be used to define a
triangular segment. of a plane, ihný-dimensional- apace. .By allowing points >
to be inmore than one triple of poihnts.we sink these triangular segments
of planes together to form a piocowis.-pl'anar surface in n-apace. This
surface would then be~iterativ'ely adjusted to cause it to fit a sot of
data. This iechr'ique we call fSODATA-PLANES Such a surface* in a three-
dimensional m pace is shown in Fig. A-2.

We have:i not developed an. adouat algorithm for either of these
generalizations. We have investigated IBODATA-LINIS to a greater extent,
*the results of which we now describe..

*U

An example of "tubular" data would be a set of tine samples of the
patterns at the output of a set of band-pasm filters into which a word
has been spoken. An examrie of surface-like data is the values of
n-predictors that are used to predict a single predictand such as the1Z.
ceiling height at Washington, D.C.
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A. ISODATA-LINES

At the present time it appears to us that tha ____ .
I! •'TA-LiE. snouic consist of the following ateps: 1

(1) Use I$ODATA-PO!NT8 to dcfino cluster centers within the
data.

(2) Take the nearest two cluster points and reiate them
i,-: (i.e., they are to define a line segment).

(3) Starting with one cluster point of this pair, find that
new cluster point nearest to it. Relate this pair.
(A maximum allowable distance for pairs might be used
here.)

(4) Continue this procedure until all acceptable cluster
points are paired. At this point iterative adjustment
of the line segments would begin.

(B) Effective iterative adjustment of the line segments
requires the answering of the following two questions:

(a) What subset of patterns should be associated
(probably not disjointly) with each line segment?

(b) In what direction should each pattern move the
cluster points that define the line selgment
associated with that pattern and what amount should
it move it?

*Zach pair considered for a relationship should be examined to ensure1 that there are points lying near the straight line segment connecting
them. A simple modification of the ISODhTA-POINT8 program to store
the second (and third?) cluster points nearest to the patterns would
allow the presence or absence of patterns between two cluster points
tO be found.

Some cluster points may be isolated from others due to the nature of
the data and in this sense "unacceptable." If this isolated point were
split into two points in the manner of ISODATA-POINTS a best-fit line
to this isolated cluster could be obtained.
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These are two reasonably well-defined questions. Though
we have no tested definitive answers, we have the following
conjectural answers:

To 5(a); A pattern should be associated with the two
line segments to which it is closest.

To 5(b); A pattern should move the cluster points in a
direction toward the pattern in a direction
perpendicular to the line connecting the extreme
end points of two line segments sharing a common
center cluster point. In Fig. A-3 this line is
shown as a dashed line connecting Cluster Point 1
and Cluster Point 3.

The details of the proposed adjustment procedure (for two
dimensions) are shown in Fig. A-4. A perpendicular BD is, in effect,
erected to line AC. Patterns associated with these two line segments
whose projection (on the line AXC)are in the interval AD are used to
modify Points A and B. Patterns in the interval D-C are used to modify
Points B and C. A pattern projecting directly on A would modify only
A, and the same for C. A pattern projecting on D would modify only B.
The proportion of modification made to each of the two points for cases
in between would be linear, as indicated in Fig. A-4(b). In Fig. A-4(c)
we show the amount of modification made for a sample pattern projected
onto AD.

Note that the bias in this adjustment procedure tends to
straighten the kinks in the piecewise-linear curve shown in Fig. A-3.

As we develop a better understanding of ISODATA-LINES, it seems
nearly certain that something analogous to splitting and lumping will be
useful. In Fig. A-5 we indicate two situations in which different kinds
of splitting might be called for. As for lumping, it could conceivably
occur if two cluster points d&aw close together (i.e., as the line segment
between them shortens) or as a cluster point at the end of a curve draws
near to a line segment.(Some provision for branching data would be
necessary.) Straightness of consecutive segments could also be used as
a criterion for dropping the interior cluster point (this is the reverse
of the splitting in Fig. A-5(b)).

We feel that the use of the ISODATA-POINTS program to find
reasonable starting lines will greatly reduce running time by reducing
the number of iterations required by ISODATA-LINES to find a good fit
to the data.

The calculation of distance from a line segment does not require more
than the algebraic manipulation of the distances from the two defining
end points. No explicit formula for the line segment itself need be
found.
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B. ISODATA-PLANES

We have not yet workeE out a tentative algorithm for the itera-
tive adjustment of these planes, e_±.ct insofar as the alaorithm is
wimiiar to INODATA-LINES. We feel that by the time we have developed
ISODATA-LINES we will have a good start on developing ISODATA-PLANES.
It is interesting to note that for !SODATA-PUNES we only nood distance&

from the three defining points in order to find the distances from a
plans. We do not need an explicit formula for the plane.
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