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ABSTRACT

Concentzated static and step loading were applied to circular

arches with geometric parameters 7 <,Y< 20. The static equilibrium

path and the dynamic responset at the loading position were recorded.

Dynamic buckling is distinct. Supercritical and subcritical response

were separated by 0. 5 per cent of the total load. The sensitivity of the

arch to offset loading was studied. The effect was pronounced in the

static tests but moderate in the dynamic case. An energy approach

was used to determine the lower and upper bound for the critical step

load. The lower bound agrees well with the experimental results.



NOMENCLATURE

A Cross sectional area of the arch

b Arch width

E Young's Modulus

h Arch thickness

H Central arch rise

I Moment of inertia

L Arch length

,&L Distance between load and center of arch

N Axial force

P Concentrated load

P Nondinensional load = PL3  A liZ
16EI

R Arch radius

S(t) Heaviside step function

t Time

V Potential energy of the system

V Nondimensional potential energy = A • V
16E6E1

w Arch displacement

w Initial arch shape = H(l - 4x 2

0 Lz

x Arch coordinate

3Nondimensional arch coordinate = -x
-L

y Nondimensional arch displacement =

yo Nondimensional initial arch shape = 2



NOMENCI.,LATURE (cont'd)

jArch half angle

7 Geometric parameter= L-
4Rh

Percentage of eccentricity = t-L
L

P. Nondimensional axial strain

p Mass density

Nondimensional tme = 4 j t

( }, = _a

* a

• a C

Subscripts:

cr Experimental critical value

CC. Classical theoretical value

max Maximum value
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I. INTRODUCTION

The stability of shell type structures under static loads has

attracted much attenticn in the past few decades. The stability of the

same type structures uader dynamic loads is currently the subject of

much investigation. However, considerable difficulties are encountered.

First, the definition of dynamic stability is not as straightforward as in

the static analysis. Secondly, the appropriate equations are now time

dependent in addition to the spatial dependence of the static problem.

The procedure most commonly used to solve these equations is to

eliminate the spatial dependence by finite elements, finite difference,

energy or Galerkin techniques and integrate the resulting time dependent

equations numerically. The integration usually required exceedingly

small time steps and convergence is a continual problem. In order to

find the dynamic buckling load, the loading parameter must be incre-

mented and the integ ation performed again until some type of critical

load is found,

The establishment of a lower bound for the dynamic buckling

load may prove to be a useful alternative to the above procedure.

Analytical work along these lines has been carried out by several

investigators IRefs. 1-5). In this method the knowledge of the static

equilibrium positions for the structure is utilized to predict a lower

bound on the dynamic buckling load under step or impulse loading.

Unfortunately, the usefulness of the lower bound has not been demon-

strated by comparison with experiments. The work reported in this

paper is an effort to help fill part of this gap. Towards this purpose,

the energy analysis and experiments have been carried out on a clamped
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circular arch. The arch was chosen as a model structure because of

its simplicity and the fact that it has many of the nonlinear character-

istics of more complicated shell structures.

U1. ANALYSIS

Using an energy type analysis, the dynamic stability of nonlinear

elastic bodies subjected to step loading has been previously discussed

by several authors. In order to clarify the concepts, the following

discussion of a simple system is pursued.

First consider a nonlinear one degree-of-freedom system with

a static load deflection curve of the form OABC as shown in Figure ia.

OA and BC represent stable branches while the AB branch is unstable

under dead weight loading. Starting at the origin the maximum undamped

dynamic response under a step loading is shown by the dotted line. The

intersection of this curve with the branch AB is significant because this

determines the load at which the undamped system will snap under step

loading. This is easily seen by examining the potential energy curves

for various load levels as shown in Figure lb. Visualizing the system

as a ball dropped from the origin of these curves, it is obvious that the

deflection will be linited to a region near the origin as long as P5 P D*

However if P is increased above PD the ball (i. e. the nonlinear

system) will cover additional territory. PD is, therefore, defined as

the critical dynamic load. The response histories at a supercritical

and subcritical load level are illustrated at the left part of Figure la

where time is plotted as the third axis perpendicular to the P-ql plane.

When a multi degree-of-freedom system is considered, the

potential energy is no longer a single curve but a multi-dimensioned
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manifold in a generalized cocrdinate space. in this case, the energy

method fails to yield a unique critical condition. The alternative is to

obtain the lower and upper bounds. The ideas can be adequately

illustrated using a two degree-of-freedom model.

A typical static load deflection curve is shown in Figure 2a.

The broken line OED is the ql component of the maximum dynamic

response. The elliptic path between points A and B is the bifurcated

branch. Therefore, there are always five equilibrium positions at the

level PB < P<PA. These positions can be easily identified in the

energy surfaces. Two such surfaces are illustrated in Figures Zb and

Zc. The characteristics of the equilibrium positions are as follows:

The center one is unstable (hill), the left and right ones are stable

(depression), the upper and lower ones are unstable (saddle).

Figure Zb shows the constant load energy surface through D,

the inersection of the dynamic and static deflection curve. At this

load, the potential energy at the hill (center equilibrium position) is

equaled to that at the origin. An infinitesimal increase of the load

lowers the potential energy at the hill to below zero ar.d allows the

system to go over the large displacement region. Therefore this load

level is the .per bound for the dynamic load.

The lower bound is shown in Figure 2c where the energy at the

saddle points is zero. An infinitesinal decrease of the load causes the

zero energy level contour to become multiconnected and the system

does not have sufficient energy to go between the two regions.

The bounds discussed above are for elastic structures without

damping. Should damping be present, the picture would be different.

The lower bound is not affected because energy is needed to account for



4

dissipation. If the undamped system can not escape from the near

stable region, the dissipative system also will not escape. However,

the upper bound must be reconsidered. The amount of energy

dissipated is a function of the dynamic path and thus depends on the

initial conditions. An upper bound similar to the undamped case seems

to be meaningless unless one can find a monotonically descending path

on the energy surface that connects the origin to the far stable region.

This is exactly the case for the static critical load where the saddle

points merge with the near equilibrimn position. Therefore, the static

critical load is the upper bound for the damped system.

In order to calculate the upper and lower bounds on the dynamic

buckling loads using the cxergy method, the static equilibrium

positions must first be determined. For the shallow arch this can be

'ccomplished in a straightforward manner as shown by Schreyer and

Masur (Ref. 6). The analysis, including the potential energy of the

arch, will be presented here for completeness.

A. Symmetric Equilibrium Positions

Using the coordinate system shown in Figure 3, the equation of

motion of a shallow arch can be expressed in terms of the displacement

as derived in reference I.

4 w  a4w 8 2 w a 2 w
o ) + %- + pA--- + PB(x)S(t) = 0 (1)

ax Ox ft

where
L/Z

AEJ LVoZ - (wZ]

L/2
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Substituting the nondimensional quantities,

W Az 4 F~.y I. 2 N T
L

2x ( C1_

L 81C

3  2

Eq. (1) can be written in dimensionless form as follows,

y,,,, + 2y, + + P a(-) SM = 0 (2)

where
2y) (y,) 2 dx (3)

The corresponding static equation is

y + y"+'Pa(3)=0 (4)

The solution of (4) is

Yl =  [-I=+- 7< 0)

(5)

YZ = BIsin jO + B2 cos 3 + B3  + ( < I

The boundary conditions for a clamped arch are:
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yl(-I) 0 0

y, - 1) =y' 1) Y

y2 (l) 0 (6)

The continuity conditions and the jump in shear at the point of loading

(5 = 0) are expressed as follows:

Y1 (0) - Y2 (0) = 0

Yj (0) - y (0) = 0

y'; (0) - y" (0) = 0

y1 1(0) - Y'(0)=

Substitute (5) intn (6) and (7), and provided that tan R g p, the unknown

constants are found as follows:

A =- Y;
1 3

Apsip [ZF4'Y+-E(Cos t±-lIA2 = 2 sing L

A =

P A. sin ,. CA4  -a- - -,- A 2 co4

B =

B2 = A 2
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B3  -Z

B4 = A 4

The constants A1 , A, .... B4 are functions of ji and P.

The j± P relationship can be found by substituting (5) into (3).

2 2YZ+(A 2 - A2 + B z 2 B 2) E sin 2 1
~ I 2 1 4

- (AIA2 - BIBZ) p. sin. - Z(A 1A3 + BB 3 ) sin ti (9)

2 2 232) z

+ 2(AZA 3 - B B 3 )(cosg-1)-(A+A 2 +B +B ) -- (A 3 +B 2

The roots of this transcendental equation correspond to the

value of ji at the equilibrium positions under the specified load level

P.

B. Antisymmetric Equilibrium Positions

In evaluating (6), (7), the following algebraic equation must be

solved

-. sin I- AI sin

= (10)

Lcos Ij IA 3 . V (J - cos 1)
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If tan . =, AIt A. can not be determined uniquely as in (8). The

lowest possible 1i that satisfies this condition is t -4. 492. In this

case, only ono cf (10) is independent.

A3 = P 3(± s in g) -A I sinL (11)2Rs

Substitute (11) and (5) into (3). A quadratic equation for A is

obtained.

2 2 P 2(sin2 tt - t )A 1I +-- -(sin 2 F± - t)Al

+ IL(sin Rj cos jt - jl)A2 +-- (sin ± + 2 cos ji - 2) A 2  (12)

-2 z
+ -'E (sung- +2^ 2 -  2= 0

TheA A 4 , B1 , B2 , B 3 and B4 will be determined according to (8).

C. Potential Energy of the System

Let V designate the potential energy

/L/2 a(.W~

L/2 [E
The nondimensional potential energy V is as follows:

V (y O -o)2 1 -2PlYo-y)1 (14)

-I o
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Su.bstitute (5) into (14), we obtain

V (~A + A+ B + B) (A2 -A2.+B-B2  ) i ~
12 1 ' 4 i 2 1 2

"(AIA 2 - BIB) sin?-]+ 2\(Y [(A 1 -B,)(I - cos ji) (15)

- (AZ+B) sin d +67Z+ -2 1 4j5( 2 -- AZ-A 4 )

The results obtained above were evaluated numerically on an IBM

360/75 computer. The numerical results for the critical static load

agree with the results obtained by Schreyer and Masur (Ref. 6). The

values of the upper and lower bounds were numerically calculated and

are compared with the experiment in Section IV.

Ill. EXPERIMENT

The arches used in the experiments were cut from 1/16 inch

thick 2024-T3 aluminum sheet and were rolled to approximately 30

inch radius in a three roll roller. They were then heat treated for

eight hours at 375 degrees Fahrenheit. The arches were mounted into

a aieavy steel frame for testing, the ends being secured using Devcon

B. The geometry of the tested arches is listed in Table I.

There were three main steps in the complete testing of an

arch. Namely, they were an initial imperfection measurement, a

quasi-static test and a dynamic test. The arches were reusable and

were reloaded at different locations, including from 0 0/o up to 6 0/0

offset from the center. In between tests, imperfections of the arch
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shape w:re measured in order to assure that the arch was not

subjected to excessive plastic deformation.

A. Initial Imperfection Measurement

A pendulum like apparatus was built to measure imperfections

of the arch. It consisted of a fixed center and rotatable arm which

could be adjusted in length. A dial gauge was installed at the tip of

the arm (see Figuire 4).

The measurement was made by first adjusting the arm to the

appropriate radius. Starting from one end of the arch the dial gauge

readings were taken at half inch intervals along the arch. This

measurement gave the deviation of the arch shape from the preset

radius. Applying the "Least Square Method" to the measured data the

"best fit radius" and the "best fit imperfection" can be found.

B. Static Tests

The static point load was applied using a knife edge. The knife

edge was loaded through a stiff spring by a dead weight resting on a

hydraulic jack. By slowly lowering the jack, the loading on the arch

could be very smoothly increased. The load was measured usirg a

strain gaged load link and the displacement of the knife edge was deter-

mined using a linear potentiometer. The load deflection curve was

directly recorded on an XY plotter. A schematic of the loading device

is shown in Figure 5.

C. Dynamic Tests

The dynamic step load was applied by preloading the knife edge

that was used in the static tests but restraining the knife edge from
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loading the arch with a pin. The pin was rapidly retracted transfering

the load to the arch. The effect of the inertia of the weight was

minimized by attaching it with a soft spring. With this arrangen ent,

it was found tha- the variation in the load was less than 10 per cent of

the total load. The large variation occurred after the arch buckled,

thus its affect was small on the determination of the critical load. A

Honeywell Visicorder (Model 1508) was used to record the displacement

of the arch and the variation in the load. A photograph of the loading

device is shown in Figure 6.

IV. TEST RESULTS

Four arches were used in the test program. These were

selected to have the smallest imperfections. In addition, an effort was

made to select arches with a minimum amount of nonsymmetric

imperfection. The deviation from the best fit radius was less than

0. 005 inches in all cases. The arches were used repeatedly until all

information was acquired. Between tests, imperfections measure-

ments show a slight plastic deformation around the point of loading.

In spite of this, repeated tests showed almost identical response

characteristics.

The critical static load and the effect of asymmetric leading is

shown in Figure 7. In general, a 10 per cent reduction of critical

load was detected when the load wa.- applied offset irom the center an

amount equal to 6 per cent of the arch length. This effect was especially

sensitive in the neighborhood of the center because the curve forms a

cuap 6 = 0. Similar behavior was obtained theoretically and experi-

mentally by Thompson for a truss structure (Ref. 7).



Figure 8 is a comparison of the experiments with the existing

analysis. The critical loads are normalized by Schreyer and Masur's

classical solution (Ref. 6). The upper curve is the classical solution

for a sinusoidal arch (Refs. 2 and 3). The lowest curve is the static

energy solution for clamped circular arches (Ref. 8). Experiments

performed by Gjelsvik and Bodner are also shown on the figure.

It was observed on the load deflection diagram that the equilib-

rium paths crossed the abscissa (displacement axis) at no point other

than the origin. Therefore, only the original configuration is a

possible equilibrium position at the zero load condition.

A typical test result for the step loading experiment is shown

in Figure 9. The figure shows the deflection-time traces at the loading

point when a step load was applied.

The numbers attached to the curves are the loads expressed in

pounds. The closest pair which change in nature defines the critical

load. At the critical range, a one-half per cent change of load will

result in a factor of three changes in response. The dotted straight

lines represent the equilibrium position obtained from the static tests

at the corresponding load levels. The subcritical responses were

damped to the near equilibrium positions while the supercritical

responses vibrated around the far equilibrium positions. If damping

were not present, the supercritical response would have completed

the bell shape curves as illustrated in Figure i.

The effect of loading offset is shown in Figure 10. In contrast to

static tests, the influence of the loading location is much less and the
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reduction of the critical load appears to have a smooth transition near

the center.

Finally, the dynamic critical loads were normalized by

Schreyer and Masur's static classical solution, and are shown in

Figure 11. In addition, the solution obtained by Vahidi (Ref. 5) using

finite differences and direct numerical integration of the equations is

shown in the figure. For these experiments the agreement with either

of the two analysis is good.

V. CONCLUSIONS

Overall, the static tests agree reasonably well with Schreyer

and Masur's solution. The somewhat lower results are probably

caused by initial imperfections. The results are sensitive to the

position of the loading as shown in Figure 7.

The step loading tests showed a very distinct dynamic buckling

phenomenon. The critical load was determined to within 1/2 per cent

for all cases. The influence of a load offset was not as important as

in the static case.

As shown in Figure 11, the agreement between the dynamic

critical load and the lower bound was iound to be good. The bound

shown in the figure is virtu.ially the same if calculated using the saddle

point or the unstable symmetric position. This is due to the fact that

the asymmetric deflection is not decisive in this problem since it

bifurcates, not from the stable side of the load deflection curve, but

from the unstable side. This has previously been pointed out in

reference 6.

1w
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The reason why the lower bound is above the critical load

obtained by Vahidi, who used nunerical integration is not clear.

However, the difference between the results from the two analyses is

very small. The experiments are also slightly below the lower bound.

While this is somewhat disconcerting, the difference could again be

explained by ivitial imperfections as in the static case. Despite this

small inconsistency, the usefulness of the energy method for this

simple structure has been demonstrated. This encourages an

extension of this type of analysis to more complicated structures

where a direct solution of the differential equations is impractical.

Finally, it was found that the original rest configuration of the

arch was the only equilibrium position at the zero load condition. This

is in agreement with Vahidi's calculation (Ref. 9). Since the existence

of other equilibrium positions is a requirement in an energy approach

to determine the critical load level, the impulsive loaded clamped

circular arch can not be rigorously classified as a dynamic buckling

problem.
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TABLE I

Gecmetric Descriptions of the Tested Arches

Arch I Arch 2 Arch 3 Arch 4

b (in) 0.75 0.75 0.75 0.75

h (in) 0. 0632 0.0643 0.0643 0. 0643

L (in) 12.20 10.90 9.50 7.75

R (in) 31.56 32.09 32.01 31.58

18.655 14.395 10.962 7.395

*H (in) 0. 5895 0.4628 0.3524 0. 2377

*P(degree) 11.075 9.729 8.503 7.030

Calculated
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Fig. 4. Measuring of Initial Imperfection of a Circular Arch.
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