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GLOSSARY OF SYMBOLS

Following is a list of syrr=1b015 used in this report, Subscripts "'m'l,
"d", and '"'s'" designating quantities in the measured, deterministic, and
statistical channels, respectively, and horizontal bars above variables,
designating normalized quantities, are not included in order to simplify
the list. With three exceptions {B, P, and T), upper-case letters repre-

sent complex guantities and lower-case letters represent real quantities.

a,b = subscripts identifying the magnetoionic com-
ponents.
B = bandwidth over which the statistical channel

model is accurate.
B = bandwidth of a real Gaussian function.

B,, = effective bandwidth of the tap-gain spectrum for
the i-th path,

c = integer controlling the abscissa spacing of values
used in the least-squares statistical fit.

cq (At), ca(At) true autocorrelation functions of real Gaussian

functions.

Cig (At} = true crosscorrelation function of two real Gaus-
sian functions.

¢y (At), To(At) = estimates of autocorrelation functions of real
Gaussian functions.

Ciz{At) = estimate of crosscorrelation function of two real
Gaussian functions,

Cqq (At) = true autocorrelation of gl, (t; )} and g}, (t. ).
cy (At), 2’1 (At) = real and imaginary parts of C!(At).
C, (At) = tap-gain correlation function for the i-th path.
C,;(0) = power ratio for the i-th path.

C,;.(0), C;1(0) = power ratios for magnetoionic components of the
: i-th path.

AC,; (At) = error in the least-squares statistical fit of C,; (At)
for the i-th path.
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Gi(t)

GY'(t)

h(T, t)
H(f, t)
Hfy )

H(k)
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1

subscript denoting a deterministic channel model
quantity.

expected number of independent values in the £-th
subinterval of an amplitude- or phase-density
histogram for the i-th path,

probability of a value in the £-th subinterwval in the
amplitude- and phase-density histograms respec-
tively for the i-th path.

error in the deterministic fit for the channel,.
RMS value in time of E(f,, fr ).

abbreviated version of E(f,, t.) for any time, t..
frequency.

frequency in the domains of the correlation func-
tions.

frequency of the carrier,

specific frequency of measurement.

frequency of analog-to-digital conversion.
direct and inverse Fourier transform operators.

real and imaginary parts of Gl({(t).

tap-gain function for the i-th path.

tap-gain function for the i-th path with linear
phase component removed,

intermediate tap-gain function in deterministic {it
in frequency-domain method of measurement for

the i-th path.

impulse response of a time-varying channel.
frequency response of a tirme—'varying channel.
RMS value in time of H(fy, t,).

abbreviated version of H(f,, t.) for any time, t,.

integer subscript denoting the number of a path.
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P
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R{af, Af)
R(0, 0)

AR (Af), AR (At)
AR g (Af), ARt (At) =
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I

It

integer subscript denoting a specific frequency of
measurement (k =1, 2, ..., 1ll1).

general numbering integer,

actual number of values in a sample for each fre-
quency, f.

reduced actual number of values.

number of values used in the least-squares fit for
the i-th path.

effective number of independént values for the
i-th path.

number of values observed to fall in the £-th sub-
interval in the amplitude- and phase-density
histograms respectively for the i-th path.

number of paths.

effective number of observed values in the £-th
subinterval of an amplitude- or phase-density
histogram for the i-th path,

fractional number of values observed to fall in the
£-th subinterval in the amplitude- and phase-density

histograms respectively for the i-th path.

probability density functions.

cumulative distribution functions.

integer subscript denoting a specific time.
channel correlation function.

power ratio for a channel.

difference between the deterministic and measured
channel correlation functions on the frequency and
time axes.

difference between the statistical and measured
channel correlation functions on the frequency and
time axes. '

channel correlation function of hypothetical
measured channel, with equal time spreads on
all modes.



s(T, V)

<

™, 6(T)

subscript denoting a statistical channel model
quantity.

channel scatter function,

time.

time in the domains of the correlation functions.
integration time.

time duration of a sample.

specific times of analog-to-digital conversion.
subséript denoting tabulated chi-square values.
channel time-scatter function.

channel time-scatter function of hypothetical
measured channel with equal time spreads on all
modes.

channel frequeﬁcy-scatter function.

tap-gain spectrum for the i-th path.

channel input signal in the time domain.
channel input signal in the frequency domain.
channel output signal in the time domain.
Fourier transform of y(t}).

exp(-j2mT, fy ).

general ampilitude variable.

bounds on £-th subinterval in amplitude- and phase-
density histograms,

magnitude of the crosscorrelation between the
normalized deterministic tap-gain functions for
the i-th and £-th paths.

Dirac delta function.
errors in least-squares deterministic fit.

error in least-squares statistical fit for the i-th
path,

RMS value of the distribution of IA‘C,Bi (At)l.
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20
20,

205,, 204

20,

Gm (Q’, Mgy )

RES

Ti(t)

RMS value of the distribution of |Ty].
frequency-~-scaling constants.
general correlation function.

number of subintervals in the amplitude- and
phase-density histograms respectively for the
i-th path.

frequency in the scatter domain,
channel frequency shift.

tap-gain frequency shift for the i-th path.

-frequency-shifts of the two magnetoionic com-

ponents of the i-th path.

mean differential frequency shift of the two magneto-~
ionic components of the i-th path.

3.1416
channel time spread.

effective time spread on each mode in the measured
ionospheric channel.

channel frequency spread,
tap-gain frequency spread for the i-th path.

frequency spréa.ds of the two magnetoionic com-
ponents of the i-th path.

mean frequency spread of the two magnetoionic
components of the i-th path.

standard deviation of the ordinate of a sample
cumulative distribution of a Rayleigh-distributed
variable as a function of its abcissa and the effec-
tive number of independent values.

time delay.
channel time delay.
tap-gain time delay for the i-th path.

intermediate time-varying tap-gain time delay
in the deterministic {fif in the frequency-domain
method of measurement for the i-th path.
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X3

chi~square values of amplitude- or phase-~density
histograms for i-th path.

tabulated values of chi-square.
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ABSTRACT

—— Specially designed ionospheric propagation measurements were
made and analyzed to confirm the validity and accuracy of a proposed
ionospheric communication channel model. This stationary channel
model incorporates a delay line that is fed by the input (transmitted) sig-
nal. Several adjustable taps on the delay line deliver signals with delays
corresponding to the relative propagation times of typical ionospheric
modes, Each delayed signal is modulated in amplitude and phase by an v
independent baseband complex bivariate Gaussian random function of |
time with a zero mean value and quadrature components with equal RMS
values that produce Rayleigh fading.] Each random tap-gain function, in
general, has a spectrum that is the/sum of two Gaussian functions of
frequency with independently adjdstable amplitudes, frequency shifts, and
frequency spreads. The two Gaussian terms in the spectrum represent
the two magnetg‘i,on‘i'éxc‘:omponents present in ionospheric modes, The
delayed and iﬁodulated signals, one for each mode, are summed to form
theﬂ;,oﬁ;tput (received) signal.
~ Ionospheric measurements were made in 12-kHz bands at two HF

frequencies over a 1294-km path. Three samples of 10- to 13-min
duration were analyzed for typical daytime and nighttime propagation
conditions.o‘g’cejistical tests confirmed the validity of the hypotheses that
the tap-gain functions are independent and have bivariate Gaussian dis-
tributions and that their spectrums are the sum of two Gaussian functions

of frequency. The model is shown to be accurate over a band with a width

that is about cne-fourth of the reciprocal of the time spread on the modes

<

{2.5, 8.0, and 12 kHz for the three samples}.

Key words: Channel model, channel simulator, ionosphere, measure-
‘ ments, model.
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EXPERIMENTAL VERIFICATION OF AN IONOSPHERIC
CHANNEL MODEL

C. C. Watterson, J. R. Jurocshek, and W. D. Bensema

!

1. INTRODUCTION

Historically, the evaluation of existing radio communication systems
and the development and evaluation of new systems or techniques has
usually required experimental measurements of their performance over
actual communication links. Such evaluations must be made simulta-
neously with two or more systems over the same path to obtain meaningful
results, because the propagation or channel conditions are uncontrolled
and cannot accurately be repeated at other times and/or over other pa.ths%.
Because of the disadvantages of on-the-air measurements, there has
been a rapidly increasing interest in the past several years in the de-
velopment of channel simulators that can be used in laboratory experiments
to obtain similar but more comprehensive and meaningful evaluations of
communication systems,

The advantages that laboratory experiments can have over on-the-
air measurements are numerous:

(a) Accuracy: Channel conditions can be mathematically

described and reproduced accurately, allowing complementary

theoretical and experimental studies to be made,

(b) Stationarity: A stationary channel simulator imposes no

time limitation on an experiment; many experiments requiring
a number of hours are easy to perform on a stationary channel
simulator but are impractical over actual ionospheric links,

(c) Repeatability: Because channel conditions can be accurately

defined and controlled, experimental simulator measurements

made on one system at one time and place can be compared



meaningfully with similar measurements made on other systéms
at other times and places,

{d) Availability: Channel conditions can be selected at will,

avoiding the need to wait for the desired combination of condi-
tions that is necessary in on-the-air tests.

(e) Range: Channel conditions can profitably cover a range
ofl values that exceeds the most extreme conditions of actual
ionospheric links. |

(f) Cost; ILaboratory measurements with a channel simulator

are quicker and less costly than similar on-the-air measurements.

However, the substantial advantages of laboratory simulator experi-
ments over on-the-air evaluations are limited unless it is known that the
channel model upon which the simulator design is based is both valid and
accurate. A channel simulator based on an unproven channel model can
possibly be a very useful laboratory tool, but the results it yields may
not be typical of ionospheric channels and must be used with caution.
While many measurements of the ionosphere have been made over the
years, some detailed characteristics of ionospheric channels needed to
specify a valid and accurate channel model have unfortunately not been
available. Consequently, the validity and accuracy vof some recently
developed.ionospheric channel simulators can be questioned, which in
turn limits their value.

Therefore, in 1965, the Institute for Telecommunication Sciences
and Aeronomy (ITSA)* of the Environmental Science Services Administra-
tion (ESSA) undertook a 3-year program with the support of the Defense
Communications Agency (DCA) to develop an ionospheric channel model
of proven validity and accuracy, which could be used bhoth for theoretical

analyses and for the design and construction of ionospheric channel

*Now the Institute for Telecommunication Sciences (ITS).



simulators. Subsequently, the program was expanded to include the
development of an atmospheric noise model of proven validity and
accuracy to increase the capability of the ionospheric channel model.
The specific tasks in the program were;
{a) To develop specialized propagation-measuring equipment,
to use this equipment for measurements of the ionospheric medium
at high frequencies (HF) over a typical pa.th, to a.nal*)-fze the measure-
ments to determine the validity and accuracy of a proposed ionc-
spheric channel model (exclusive of additive noise}, and to recom-
mend specifications for channel sirnulators based on the model.
{b) To make a theoretical study of the relative advantages and
disadvantages of building specially designed channel simulators
rather than using large general-purpose digital computers for
channel simulation in experimentally evaluating communication
technigues or systems.
(c) To design and build an ionospheric channel simulator for
experimental use at the ESSA Research Lahoratories if, as ex-
pected, the study in (b) showed specially designed channel
simulators to be preferable.
(d) To develop special atmospheric-noise recording equipment,
to make recordings of atmospheric noise for a range of conditions,
to design and build an experimental atmospheric noise simulator
based upon a proposed model, to compare statistical analyses of
the tape-recorded atmospheric noise with similar analyses of
the output of the atmospheric noise simulator to determine the
validity and accuracy of the noise model, and to recommend

specifications for atmospheric noise simulators based on this model,

Reports on the results obtained in each of these four tasks are being

submitted tc the sponsor. This report describes the results of task (a).



Task (b) has already been reported by Quincy (1968); task (c) is being
reported by Watterson et al, (1969), and task (d) by Coon et al. {1969).
A fifth report is being submitted by Watterson and Coon (1969) combining
the recommended specifications from tasks (a) and (d) for ionospheric
channel and atmospheric noise simulators. .

While the results of tasks (a) and (d) will define an ionospheric
channel model that includes additive atmospheric noise, the term '‘chan-

nel model' throughout the remainder of this report will refer to models

of ionospheric channels without additive noise.

2. CHANNEL MODELS
2.1 General Models

In considering possible channel models of the ionospheric medium for
communication purposes, it is convenient to think of ionospheric channels
as filters with complex frequency responses that vary with time, H({, t).
Because the filter responses are random, they can be viewed as a2 random
'process. From present knowledge of the ionosphere we know that the
process is nonstationary -in both frequency and time. However, if
consideration is restricted to band-limited channels with maximum
bandwidths typical of practical communication systems (say 10 kHz),
the process can be viewed as nearly stationary in frequency for channels
in most parts of the spectrum. (Stationarity in this report will imply
ergodicity.) An accurate model of the medium can therefore be stationary
in frequency if the bandwidth is suitably limited, with a resulting con-
siderable simplification of the model.

If sample functions of the process are sufficiently restricted in time
(say 15 minutes), then the majority of such sample functions can be con-
sidered nearly stationary; therefore, the model alsc can be made
stationary in time, with considerable additional simplifcations resulting.

Since the number of independent band-limited measurements of the medium

L1



that can be taken in a few minutes is sufficient to determine the statistical
parameters and the accuracy of the model with reasonable confidence, the

validity and accuracy of such a stationary model can be experimentally verified.

A stationary channel model, in addition to being considerably simpler
to define and easier to instrument than a nonstationary model, has another
considerable advantage: the theoretical or experimental results obtained
from its use are independent of the duration of the analysis or measurement
(assuming a duration sufficient for a good estimate). In such analyses or
measurements with a stationary model, the results describe the system
performance expected over the ionospheric medium during the few-minute
interval that the model represents. A change in the model parameters
allows it to accurately repreéent the channel at other times or other
chanﬁels with different transmitting- receiving locations and/or different
frequencies. This advantage of stationarity is evident in experiments
where an hour or more of measurements is required to obtain sufficient
data (for example, measurements of low average error rates in a digital
systems). It is difficult to obtain meaningful measurements of this type
over a nonstationary ionospheric path or a nonstationary simulator,
because the channel conditions are difficult to define, but very meaningful
measurements can be obtained with a stationary simulator because the
channel conditions can be described relatively easily and with considerable
accuracy. However, it must be realized that the confidence with which
one can accept the validity of a model decreases as the duration of an
experiment increases beyond the time duration of the measurements
that were used to validate the model. Even though the model is less
reliable for longer experiments, it still produces results that are very
meaningful; 1.e., they are produced under conditions that can be éccurately
described,

Because of the advantages that a ba.nd-lirn_ited stationary model has

over a nonstationary one, we decided to select a band-limited stationary



model that seemed most suitable and to experimentally determine the
validity and accuracy of this model from analyses of propagation measure-

ments. Two types of stationary models were considered: (a) a tapped-

delay-line model with equally spaced taps and {(b) a tapped-delay-line
model with unequally spaced taps. Block diagrams of these models are
presented in figure 1.  In both models, the input (transmitted) signal is
fed to an ideal delay line, and undistorted& delayed versions of the input
signal are delivered to a number of taps. {(In fig. 1 and throughout this
report, the word "tap' means a delay-line connection whose output sigﬁal
is used, not an unused connection on the delay line, ) The signai delivered
to each tap is s.uitably modulated in amplitude and phase by a tap-gain
function, Gy (t), and the resulting modulated signals are siimmed to form
the output (received) signal.

The model with equally spé.ced taps,which has been analyzed by
Kailath (196l), is completely general because it can be made to acéurately
describe any band-limited channel that is stationary or nonstationary in
frequency and time. To do this, the adjacent spacings of the taps have to
be made =2qual to the reciprocal of the bandwidth over which the model is
accurate, suitable tap-gain functions have to be used to modulate the sig-
nals delivered to the taps, and the length of the delay line must be some-~
what greater than the differential propagation times of the signal components
over the various ray paths in the ionospheric medium.

The model with equally spaced taps could be accurately used as a
stationary band-limited model for the ionospheric medium, but it has one
practical disadvantage when a bandwidth of 10 kHz is desired, as in the
present program. A 10-kHz bandwidth requires adjacent tap spacings of
100 us. Since the ionospheric medium can support propagation over
several modes with differential propagation times up to 10 ms or
more, and a model and simulator that handles these cases is desirable,

a total of 100 active taps would be required to accurately represent such



a channel. The task of measuring the ionospheric medium, analyzing
the measurements to determine the statistical characteristics of 100
complex tap-gain functions to define the channel model parameters, and
subsequently designing and building equipment for synthesizing 100
tap-gain function generators, is a formidable one. While the delay-
line model with equally spaced taps is mathematically attractive,

it becomes very unattractive from a practical point of view, at least

as an ionospheric channel model for bandwidths of 10 kHz=.

Fortunately, the ionospheric medium exhibits a characteristic t};at
makes 100 tap-gain functions unnecessary for an accurate 10-kHz model
for most channels. Most of the time and over most ionospheric
communication links, propagation takes place over relatively few,
nearly discrete, modes of propagation: a one-hop path off the E layer
(1E mode), a two-hop path off the F layer (2F mode), etc. When a short
pulse is transmitted over such a link, several pulses are received,
one for each mode, as illustrated by oblique ionograms. It is
fairly obvious that it should be possible to make an accurate tappéd-
delay-line channel model with a limited number of taps (say 3 or 4},
as illustrated in figure 1b, provided the tap delays are spaced according
to the differential propagation times of the various modes and provided
the modes are sufficiently close to being discrete, A received pulse
should not be spread or stretched in time relative to the length of the
transmitter pulse by more than about 1/(4B), where B is the bandwidth
in Hertz of the channel being modeled. This restriction will be dis-
cussed in more detail later.

For the 10-kHgz bandwidth of interest here, the tapped-delay-line
model with equally spaced taps in figure la was considerably more

complicated than the model in figure 1b that has & limited number of



unequally spaced taps. Therefore, the latter model was chosen for
the present task. Two facts should be noted, although their investigation
is beyond the scope of this report. First, the chosen model of figure 1b
can be modified to alleviate the restriction that the time spread on each
mode must be less than about 1/(4B). If the single tap for any mode
with excessive time spread is replaced by a pair of suitably spaced taps,
each with its own tap-gain multiplier, the allowable time spread on the
mode is increased by a factor of about four. Three or more taps per
mode could be used to further increase the allowable time spread. If
the process were carried far enough the model would evolve into the
model with equally spaced taps shown in figure la. Second, if the
limited number of taps in the model of figure 1b were spaced equally
over the total time spread of a spread-F channel, it would become the
model of figure la for a limited bandwidth. . -

The channel models that have been discussed are both general models,
because the characteristics of the tap-gain functions, {Gi(t)j, have not
been specified. Any general model might have an infinite variety of
specific models based upon it. Before proceeding to section 2. 3 for
a brief review of specific models that have been used by others and to
section 2. 4 for a description of vthe specific model chosen for the present
task, we describe in the following section the mathematical functions
used to characterize random channels throughout the remainder of
the report.

2.2 Channel Characterization

2.2.1 Any Time-Varying Channel

Any time-varying channel, stationary or nonstationary, can be
characterized in terms of a number of system functions that relate

the output signal to the input signal (Bello, 1963). Two of these system

functions are commonly used, the real time-varying impulse response,

h(T,t), and the complex time-varying frequency response, H(f,t). To
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show their relationship to each other, and to the input and output signals
in both the time domain and the frequency domain, let the real input
signal in time be x(t): then the real output signal in time is obtained

from the convolution

y(t) = Sh(T, t) x{(t-7) dT7 , . (1)
where »
h{T,t) = 0 when T <0. {2)

If X(f) is the Fourier transform of x(t),
x(t-T) =5 X(f) exp [j2m(t-T)] af . (3)

Substituting (3} into (1), we have

y(t) = 5df X(f) exp(j ZWtf)SdT h(T, t) exp(-j2nfT). {4)

Now let the second integral in (4) be defined as
(==
H({, t) =§h(¢, t) exp(-j2miT) d7 . _ (5)
Therefore, H({f, t) is the Fourier transform on T of h{(T, t). Substituting
(5) in (4) gives

y(t) = SX(f) H(f, t) exp(j2mtf) df . (6)

-0

If Y(f) is defined as the Fourier transform of the output signal,

y(t), note that

Y(f) # X(f) H{f, t) ; (7)



i.e., the complex amplitude spectrum of the output signal is not equal
to the product of the amplitude spectrum of the input signal with the
time-varying frequency response of the channel, and the convolution
theorem does not hold (Sherman, 1961). The product X({f) H(f, t}) is a
"time-varvying spectrum' and cannot equal the ''static spectrum"

Y(f). However, Y(f) can be obtained from X(f} and H(f. t) by performing
the integration in {6) and then obtaining a Fourier transform of the
result.

While both the real impulse response, h(T,t), and the compléx ¥
frequency response, H(f,t), are commonly used to characterize a
time-varying channel, we found it more convenient to use H({, t} or
functions derived from it throughout the remainder of this report,

2. 2.2 Stationary Time-Varying Channels

Since H(f, t) is a random process when it represents time-varying

. channels, it must be described in statistical terms. Two statistical
descriptions of stationary time-varying channels given by Hagfors (1961),
Bello (1963}, Gallager (1964), and others are the channel correlation
function and the channel scatter function.

For a channel stationary in frequency and time, the channel correlation

function can be defined as

R(Af, At) = H (£, t) H(f+ Af, t4At) (8)

where the long bar indicates an average in the frequency-time plane,
and the asterisk indicates the complex conjugate of the function. The -
function R{Af, At) is not one of fr_equency, f. or time, t. when H{{, t) is
stationary inthese variables, but depends only upon the frequency and
time displacements, Af and At.

Since fewer independent measurements can be made over the band

of interest at one time than can be made in time at any one frequency,

10



it is convenient to define R(Af,At) more expliacitly as an integral in the

time domain,
»

ty/2
. ' 11m 1 B '
R{af, 4t) = e T g HO(f, 1) H(f + Af, t 44t dt . (9
. -t1/2 :

The channel scatter function then is defined as the double Fourier

transform on Af and At of R{Af, At),

o ®

" s{T, V) =ff R(Af, At) exp(j2TTASf - 12TTVAt) dAE dAt (10)

-®m _o

At this point, it is convenient to consider dimensions. A continuing
signal expressed as a real function of time has the dimensions of
voltage or current. When it is autocorrelated to obtain a correlation
function ( with unit resistance assumed), and the result is Fourier
transformed to obtain a spectrum, the correlation function has the
dimensions of power and the spectrum has the dimensions of power per
unit frequency (power density). In the preceding equations, H({, t) is not
a signal, but a dimensionless ratio of two amplitude spectrums:; con-
sequently, R(Af, At) is dimensionless. It is convenient, however, to
think of it as a power ratio. The channel scatter function, s{T, V), is
also dimensionless, but it is useful to think of it as a power ratio per
unit time per unit frequency. It is the ratio of the channel output power
per unit time delay, T, per unit frequency offset, v, to the channel
input power. If the channel scatter function in {10) is integrated over

its domain, it is easy to show that

ff s(T, v) dT dv = R(0.0) . (11)

-]

11



and R(0, 0) is thus the ratio &f the channel output power to the

channel input power.
If the ratio of the channel output power to the channel input power is
set equal to one to define normalized functions, then the normalized

channel correlation function is

R(Af, At) = R(Af, At)/R(0, 0) (12)
and: the normalized channel scatter functions is
s(T,v) = s{T, V)/R(0, 0) . (13)
In addition to the previous functions that have been discussed by

other authors, some additional functions describing any stationary time

varying channels can also be defined. Define the channel time-scatter

function as

[--}
u{T) =f s{T, v} dv . (14)
-
When (10} is substituted in (14}, the latter becomes

- -] (22} -}
u(T} =fff R(Af, &t) exp(j2TTAf-] 2mVAL) dAF dAt dv . (15)
wm T Y

Equation (15) can be integrated with respect to Vv and At, in turn, to
obtain

©

u(T) =f R(Af, 0} exp(i2mTAf) dAf . (16)

-

12



Then
-1
w(T) = Fgf I:R(Af, 0)] , (17)

where F;; means the inverse Fourier transform on Af. The channel
time scatter function, u(T), has the dimension of frequency or inverse
time and can be viewed as a power ratio per unit time. It is the ratio
of the channel output power per unit time delay, T, to the channel input

power,
From (13) and (14}, the normalized channel time-scatter function is
-3
u(m) =f's'('r, v) dv = u(1) /R(0, 0) . (18)

-2

Define the channel frequency-scatter function as

v(v) =fs('r, vydT . (19)

To evaluate (19) for any stationary time-varying channel, substitute

{10} in (19) to obtain

e oo

v({Vv) =fff R(Af, At) exp(-j2TvAt+i2TTAL) dAat dAf AT . (20)

-0 . W

Now integrate (20) with respect to T and Af, in turn, to obtain

vv) ;fR(o,At) exp(-j2mvat) dat (21)
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consequently,

v(v) = F, [R(0,4t)] . (22)

The channel frequency-scatter function, v(v}, has the dimension of time
or inverse frequency and can be viewed as a power ratio per unit fre-
quency, i.e., it is the ratio of the channel output power per unit frequency
offset, v, to the channel input power.

From (13) and (19), the normalized channel frequency-scatter func-

tion is:

&

T{v) = S\ s{T, v} dT = v(V)/R{0, 0} . {23)

-0

Now define the channel time delay as the first moment of the normalized

channel time-scatter function,

- S'rﬁ('r)d’r, (24)

which has the dimension of time and is a measure of the average time
delay in the channel. To relate the channel time delay to the channel cor-

relation function, substitute (17} in (18) to obtain
FEX; [R{rf, 0)] = R(0, 0) G(T) . (25)

Then (25) can be written as the direct Fourier transform
(o]

R{af, 0} = R{0, 0) SG(T) exp(- j2mALT) 4T . (26)

-0

Now substitute {(26) in (12) with At = 0 and differentiate the result with

respect to Af to obtain
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w
dR(6£, 0) _

ETY; -jam S T 4{7) exp(-j2mAfT) dT , (27)

-0

If (27) is evaluated at AL = 0 and combined with (24},

A j [dr(af, 0)
T = . _ (28)
TT]: daf Af=0
Now define
JR(AE, 0) = tan ™t {Im['PZ(Af, 0)] /Re[ R{Af, 0)]} . (29)

It can be shown that Re[ﬁ(&f, 0)] is an even function with a derivative of
zero at AL = 0, providi‘ng (T}, the inverse Fourier transform of R(Af, 0},
decreases at a rate greater than 1/ |7 |‘? as IT] - o, Under this condition,
and since Im[R(af, 0)] is an odd function with a zero value at Af = 0 and
I_K(O, 0) = 1, (29) can be differentiated with respect to Af and evaluated at
Af = 0 to obtain

. [ dR(Af, 0)

d4R(Af, 0) ]
- -] (30)
dAf Af=0 L daf A£=0
Substitute {30) in {28) then to obtain
~ _ -1 T34R(0, 0) ]
T =3 SAE ' (31)

In a similar way, define the channel frequency shift as the first

moment of the normalized channel frequency-scatter function,

[=e)

5= gvV(v) dv , * (32)

-

which has the dimension of frequency and is a measure of the average

frequency offset in the channel. Relate the channel frequency shiit to
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the channel correlation function, in a manner analagous to the develop-

ment of equations (24) through (31), to obtain

3 E%F [‘a¢iiu>,0)] °

<>

(33)

Define the channel time spread as two times the square root of the

second central moment of the normalized channel time-scatter function,

:2[ S(T—?f‘d(ﬂ') d'r:]%, (34)

which has the dimension of time and is a single-number measure of the
time-scatter on the channel. To relate it to the channel correlation
function, differentiate (27) with respect to Af and evaluate at Af = 0 to

obtain

p

o0

& %A(ﬁef o) = -4m° 579 a(r) dr. . (35)
Arf=0

-0

Now square (34), expand the integrand to three terms, and substitute

(24), (28), and {35) in the result to obtain

(200 = =

{_ d®R{Af, 0) dﬁiﬂf,O)]z} (36)
m

2
dAf aaf A£=0

It can be shown however that the second derivative of the magnitude of

—R(Af, 0) with respect to Af, at Af=0, is

l‘dz R(af, 0) :l d®R(Af, 0) [df_{(Af,O) T} L (e
=0

L dafe dAf? dAf

We can then combine (37) with {36) to obtain
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Similarly, define the channel irequency spread as two times the

square root of the second central moment of the normalized channel

frequency-scatter function,

2o

=
2 [S (v=VF % (v) dv:)';? , (39)
which has the dimension of frequency and is a single-number measure

of the frequency-scatter on the channel. Relate it to the channel correla-
tion function, in a manner that is analogous to the development of
equations (34} through {38), to obtain

2R -
20’:%[— 3 tR(0,0)i

1
iz
3AAte J (40)

2.2.3 General Stationary Model

All of the preceding equations apply for any stationary time-varying
channel. To describe the general stationary tapped-delay-line model
with unequally spaced taps {fig. 1b}, le‘t us modify them to more explicit
forms. We see that the complex time-varying frequency response of

this model is 0

H(f, t) = Z G, (t) exp(-j2nT, 1), (41)
] .

where 'i" is an integer that numbers the tap or path, T, is the time
delay on the i-th path, and ''n" is the total number of paths, Each
exponential function defines the time delay of a path and is a function of
frequency only, since it does not change with time., Each tap-gain
function, G;(t), is a complex function that is constant in frequency but
varies in time; i.e., each tap-gain function varies the amplitude and
phase of each spectral component of the delayed signal at its tap by the

same amount continuously with time.
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]

Egquation (41) can be substituted in (9) to obtaih- :che channel correla-
tion function for the genefa.l stationary model of figure 1b,
t1/2 n n
lim 1 N 2 .
= — : j2rm(T -7 -jamT ]dt.
R(rf, At) t o T S L/ ZGI(t)Gi (t+ At)exp[_] ™ PRlE! Jf-j2rT Af

-ty /2 i=1f =1 (42)

The order of integration and summation can be changed to give

n n ty /2
N . . lim 1 %
R(Af, At) = Z exp(-j2mT, Af) 2 exp[j2m(T - T, )] — S‘ GTl(t) G{t + At} dt .
‘ £ t, = t, .
i=1 £=1 -ty /2

(43)

Now assume that the crosscorrelations between all pairs of tap-gain
functions are zero., For such cases, where i # #, the crosscorrélation
integral in (43) is zero. For the terms where i = 4, the exponential

function preceding the integral becomes one. Then (43) becomes

n ' ty /2
N i 1 ' % .
R(Af, At) = Z exp{-j2mT, Af) thj‘;t— j G (t) G (t+At) dt . (44)
/ 1 1 -
j.:l —1:1/2 7

Because of its form, the integral in (44) is conveniently defined as

the tap-gain correlation function,

ty /2
C,(At) = tilj“; t—ll— S‘ GT{t) Gy (t+At) dt , (45)
-t /2

which differs from the one given by Gallager (1964). The latter function
is the single Fourier transform on Af of R{(Af, At) and a continuous func-
tion of T and At. It is applicable to a model with a large number of
equally spaced taps as the number of taps.approaches infinity. The
definition in (45} is more useful for models with a finite number of

spaced taps.
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f
Like R(Af, At), C;(At) is dimensionless, but it can also be viewed
as a power ratio with C,(0) the ratio of the i-th path output power to the
channel input power. The normalized tap-gain correlation function is

defined as
C,(At) = C, (At)/Cy{0) . (46)

To continue with R(Af, At), when (45) is substituted in (44), the
channel correlation function for the general stationary model of figure 1b

becomes
n

R(Af, At) =Z exp(-j21T, Af) C, (At) . (47)
i=1
The normalized channel correlation function, "P:(Af, At), can be obtained
by substituting (47) into {12).
For the general stationary model of figure lb, define the tap-gain
spectrum for the i-th path as the Fourier transform of the tap-gain
correlation function for the i-th path,

= o3

vi(v) = S C; (At) exp(-j2mvAt) dAt . (48)
-
The function v, (v) has the dimension of time or inverse frequency and
can be viewed as a power ratio per unit frequency, It is the ratio of
the i-th path output power per unit frequency offset, v, to the channel
input power. The normalized tap-gain spectrum, corresponding to the

normalized tap-gain correlation function, is
Vi(v) = v (v)/C(0) . (49)

To obtain the channel scatter function for the general stationary

channel model of figure 1b, substitute (47) in (10} to ohtain
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n ™ -

s(T, V) = Z ‘g daf exp[jam(r - T, )Af] g dat C; (At) exp(-j2TVAt) . (50)

i=] - ; ~

Equation (48) can be substituted in (50) and the remaining integration

performed to obtain
n

s(T, v) :‘Z (T =T, ) vy (V). (51)
i=1 ”
The normalized channel scatter function, s(T, v), for the general stationary
channel model (fig. Ib) can be obtained by substituting (51) in (13).
The channel time-scatter function for figure 1b is ohtained when (47),
at At = 0, is substituted in (16) and the integration performed to give
n
w(r) = Z C,(0) 8(T-T,) . (52)
i=1
The normalized channel time-scatter function is obtained by substituting
(52) in (18},
The channel frequency-scatter function for the general stationary
channel model of figure 1b is obtained when, at Af = 0, we substitute (47)
in (21) and then (48) into the result:

n

v(v) :Zvi(\)) . _ ‘ (53)

i=1

Substituting (53) in {23) yields the normalized channel frequency-scatter
function.

We can obtain the channel time delay for the general stationary
model of figure 1lb by substituting (52) in (18) and the result in (24). When

the integration is performed, the resulting channel time delay is
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T = [1/R(0, 0)] Z c o) T, . (54)
i=1

To specify the channel frequency shift, define for each path the

tap-gain frequency shift as the first moment of the normalized tap-gain

spectrum,

vy = S v vy (V) dv, {55)
-
which has the dimension of frequency and is a measure of the average

frequency offset on the path. For each path, the tap-gain frequency shift

is related to the tap-gain correlation function by

vi:%[ml

5
dAt (56)
It follows that the channel frequency shift is
n
5= [1/R(0, 0)] Z C.(0) vy . (57)
i=1

The channel time spread for the general stationary tapped-~delay-line
model (fig. 1b) can be written directly as two times the square root of
the difference between the second moment of the normalized channel time-
scatter function, (52) divided by R{0, 0), and the square éf its first
moment, the channel time delay,
n
_ N S e
2p = 24[1/R(0, 0)] ZJ Ci(0) 7y | -7 . (58)
: 1=1

ol

~

To specify the channel frequency spread, define for each path the

tap-gain frequency spread as two times the square root of the second

central moment of the normalized tap-gain spectrum,

21



® .
20, = 2 { 5 (v -y, )? (V) d\)}z , (59)
-
which has the dimension of frequency and is a single-number measure of
the frequency scatter on’the path. For each path, we can relate the tap-
gain frequency spread to the tap-gain correlation function by analogy to

(39) and (40) to obtain

20, :le [i@g—@l] . (60)

[SIE

dat

The channel frequency spread then can be written as two times the
square root of the difference between the second moment of the normalized

channel frequency-scatter function and the square of its first moment,

S

(61)

n n
20 =2 {E [C, (0}/R(0, 0)] (vE +012) - [z [Ci(0)/R(0, 0)] Vif
; i=1

i=1

The first summation in (61) is the second moment of the normalized
channel frequency-scatter function and is the sum of the weighted
second moments of the tap-gain spectrums in terms of their frequency
shifts and frequency spreads. The second summation in (61) is.the

corresponding first moment,

2.3 Specific Models
Specific channel models that have been used by others for the design
and construction of ionospheric channel simulators, with only one known
exception, have been based on the general bandlimited stationary model
shown in figure 1b. The single exception (Goldberg et al., 1965) used
50 taps equally spaced over a 5. 0-ms delay line (see fig. la), where the
bandlimited simulator was nonstationary. Actually, it was not a simula-

tor, if the definition of a simulator requires that all functions be
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synthesized, because tape r'ecordings 6f ionospheric signals were used
to supply the tap-gain functions. It could more properly be called an
ionospheric reproducer or, as described by the authors, a stored
ionosphere.

The other ionospheric simulators used a considerable variety of
specific models. The earliest simulator (Bray etal., 1947} provided
three paths with delay adjustments from zero to 2.0 ms in 30-4s steps.
One tap-gain function was a real constant; the other two were complex
and provided independent linear phase modulation that produced different
fixed frequency shifts in the signal over these two paths. This is
illustrated in figure 2a, where the tap-gain spectrum (the Fourier trans-
form of the tap-gain correlation function) for the second or third path,

v; (V), is shown qualitatively. The linear phase modulation results in a
single Dirac delta function of v whose shift from zero is adjustable, as
indicated by the horizontal arrows. Since this model,_as well as all
others to be described in figure 2, had individually adjustable path gains,
an ability to adjust the magnitude of the tap-gain spectrum is not indicated
or described. |

Another early simulator (Ross and Meyer, 1948) provided two paths
with delay adjustments from zero to 3.0 ms in 100-us steps. The tap-
gaiﬁ function for one path was a real constant, with a resulting tap-gain
spectrum consisting of a single delta function with zero shift. The .
second tap-gain function was a complex constant with a manually adjust-. -
able phase that, after being set, had the same tap-gain spectrum, as
shown in fipure 2b.

Law etal. {1957) extended the earlier work of Bray et al. {1947)
to develop a three-path simulator with delay adjustments from zero to
2.0 ms in 30-us steps. The tap-gain function for each of the three paths

consisted of two independent complex linear-phase-modulation terms;
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when two paths were used, each tab-gain function had three independent
linear -phase-modulation terms. The corresponding tap-ga‘in spectrums
consisted of either two or three delta functions with é.djustable shifts
(fig. 2c).

Freudberg (1965) developed a channel simulator having five paths

- with adjustable delays up to 3.0 ms. Each tap-gain function was a com-
plex bivariate Gaussian random function with a zero mean value and
.independent quadrature components with equal RMS values. Consequently,
each tap-gain function had a Rayleigh amplitude distribution and a uniform
phase distribution. The tap-gain spectrum for any path is illustrated in
figure 2d. No provision was made for frequency shifts of the spectrum,
Here, as in all the illustrations in figure 2, a dashed rectangle illustrates
a spread spectrﬁm when the shape of the spectrum is undefined.

Walker (1965) developed a simulator with eight paths with delay
adjustments from zero to 5.0 ms in 40-us steps. FEach pseudo-random
tap-gain function was real with a Gaussian amplitude distribution and
provided amplitude modulation only (fig. 2e). No provision was made
for frequency shifts of the spectrum.

In Clarke's (1965) water -tank simulator, a specular signal com-
ponent was produced by reflection of the sound wave from a metal red,
and scatter components were produced by ascending air bubbles. The
complex tap-gain function for the combination was a constant plusa base-
band bivariate Gaussian random function with quadrature components
with equal RMS values. In the tap-gain spectrum (fig. ’2£), the delta
function for the specular component corresponds to the constant term
in the tap-gain function. The spectrum could not be shifted. While the
simulator was not strictly a path of discrete delay, it presumably was
approximately so. Movement of the rod behind the bubble stream was

used to reduce the specular component and contreol the resulting
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Nakagami-Rice amplitude distribution (Nakagami, 1940; Rice, 1944)

of the tap-gain function. | The tap-gain spectrum could be controlled to
’sorne degree by adjustment of the bubble size and, while several measure-
ments of the tap-gain spectrum were obtained, nc attempt has been

made to illustrate them in figure 2f, _

Zimmerman and Horwitz (1967) developed a simulator with three
paths with delay adjustments from zero to 10 ms in 500-us steps. A
choice of several complex tap-gain functions was provided: linear phase
modulation corresponding to the irequency-shifted delta function in
figure 2g, sinusoidal frequency modulation (not shown), a transient fre-
quency shift (alsc not shown), and a constant plus a baseband bivariate
Gaussian random function with a zero mean value and independent
quadrature components with equal RMS values shown in figure 2g. With
the exception of the spectrum for the linear phase modulation, none of
the tap-gain spectrums could be shifted.

A simulator developed by Klein (1968) provided five paths with delay
adjustments from zero to 21. 3 ms in 20. 8-us steps. Each compléx
tap~gain function contained a constant plus a baseband bivariate Gaussian
random function with a zero mean value and independent quadrature
components with equal RMS values. An adjustable linear phase-modula-
tion factor was included in the tap-gain function to produce a frequency

shift of the total tap~gain spectrum (fig. 2h).

2.4 Chosen Model
While the choice of the general model of figure 1b was relatively
easy, the best choice of specifications for the tap-gain functions and
their spectrums was less so. Over the years, many rﬁeasuremen‘cs of
the ionosphere have indicated that ionospheric signals suffer Rayleigh

fading, However, most of these measurements were made without
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adequate knowledge of the number of modes or paths present. Near-
Rayleigh fading of a multihop signal may be expected even if the fading

of the signal on each hop is not Rayleigh. A commonly held view of a
one-hop signal is that it consists of a constant-amplitude component

plus a Rayleigh-fading scatter component that results in a composite
Nakagami-Rice amplitude distribution. However, measurements by
Balser and Smith (1962) on individual one-hop modes showed that the
majority produced Rayleigh fading, and this is substantiated ‘by measure -
ments of Boys (1968). ‘While there is evidence that significant constant
amplitude cornponénts may exist in high rays (Balser and Smith, 1962),
the low probability of receiving high rays implies that signifiqant constant
amplitude components would rarely be seen, |

We believed, therefore, that the best choice for tap-gain functions
in the specific channel model would be independent baseband complex
bivariate Gaussian random functions with zero mean values and quadra-
ture components with equal RMS values, so that signals on each path in
the model would have independent fading with a Rayleigh amplitude dis-
tribution and a uniform phase distribution. As shown in section 5,
this specification for the tap-gain functions was valid for the measured
channels.

In addition to deciding that the tap-gain functions would have a Rayleigh
amplitude distribution and a uniform phase distribution, the spectrums
of the tap-gain functions had to be specified. Since the ionosphere can
introduce frequency shifts on signals, as well as fading that results in
frequency spreads, such shifts had to be included in the tap-gain spec-
trums. Also, two magnetoionic components of a mode can produce
different frequency shifts, and the difference of the two shifts can at
times be greater than the frequency spreads of the magnetoionic com-

ponents {Davies, 1962). We therefore decided that the tap-gain spectrums,

26



in general, would need two components--one for each magnetoionic com-
ponent., It was also necessary to specify the shapes of the tap-gain
spectrum for the two magnetoionic components, since it is known that
these shapes can have a considerable influence on the distortion char-
acteristics of a channel. Bello and Nelin (1962) did a theoretical analysis
on the performance of digital communication systems for a single-path
Rayleigh-fading channel with two different tap-gain correlation functions,
an exponential and a Gaussian, The corresponding tap-gain spectrums
were a single-pole-filter spectrum of the form 1/(1l + ¢, v¥)and a
Gaussian spectrum of the form exp{- (- Ve ),respectively. For constants
€, and {; that gave equal half-power spectrum bandwidths, they showed
that the single-pole-filter spectrum gave substantially greater signal
distortion and higher probability of error than did the Gaussian spectrum.
This is not unexpected, since the skirts on the single-pole-filter spec-
trum decay much less rapidly than the skirts on the Gaussian spectrum. ‘
The selection of the correct specification for the shapes of the magneto-
ionic components of the tap-gain Ispectrums therefore was quite important,
Because data were not available on the spectrum shapes of typical
magnetoionic components, we decided rather arbitrarily to specify that
the shape of the tap-gain spectrum for each of the two magnetoionic
components would be Gaussian. If subsegquent measurements and analyses
showed this choice to be invalid, a more suitable second choice could be
made, but as section 5. shows, our choice was a good one and did not
need revision.

To be explicit, the specific channel model that we selected had

independent tap-gain functions, each of which is defined by

G (t) = Gy, () exp(j2mvg, t) + Gl (t) exp(j2Tugpt) , - (62)

sia
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where the '"s" subscripts designate quantities for the statistical channel
model (as opposed to measured or other Quantities to be described later),
the '"i'" subscripts denote the path number, and the "a'' and "'b'" subscripts
identify the magnetoionic components, G} {t) and Gl (t) are sample
functions of two independent complex Gaussian stationary ergodic random
processes, each with zerc mean values and independent quadrature com-
ponents with equal RMS values, Specifically, if G, (t) is defined in terms

of its real and imaginary components by

Glia(t) = hua () +J ghia(t) (63)

then gg;, and g;;, have a joint probability density function

1 g;fa + E:iaa
L 1 T e— -—
p(gsia ’ gsib ) mC sia (O) e*p Cs!a(o) ._.l ’ (64)

where C,;, (0) is the autocorrelation function of G}, (t) exp (j2T v, t) at
zero displacement {At = 0) and specifies the ratio of the channel output
power delivered by the magnetoionic component to the channel input
power. With a suitable change in the '""a" subscripts, (63) and (64) also
apply to Gy (t).

To explain the exponential factors in (62), consider E [G':i (t) Gl (t+4t)] .
When this autoco-rrela.tion function is computed in terms of the real and
imaginary components in (63), the cross products will have zero averages
because the real and imaginary components are independent. The resulting
correlation function will be real and have even symmetry about At = 0.

Ité Fourier transform, the spectrum of G, (t), must then have even
symmetry about Vv = 0. The same is true for Gl;,(t), and the primes in
(62), (63), and (64) indicate the functions have spectrums with even sym-

metry about v = 0. Therefore, the exponential factors in (62) were
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incorporated to provide the desired frequency shifts, vy, and v.y, for
the magnetoionic components in the tap-gain spectrum.

The tap—gain correlation function corresponding to (62} is

Cora (0) expl - 2m° 03, (At)® + j2TIv 4, At] ,
CE,-_ (At) = ) (65)
+ C,4, {0) exp| - 2m? Ofib (At)z +32TV 4y At ]

and the tap-gain spectrum is

1
[ Caa (0)/(21105,,)2] expl - (V - v )2 /(205,,)]

Ver (V) = , (66)

1
+ [ Can (0)/(2110%,, )2 ) expl - (v - vapp)® /(2055)]

where

csi (O) = csia (O) + Csib (0) ' (67)

and 0., and T,y are the standard deviations of the two Gaussian com-
ponents of the spectrum. A graphical representation of a tap-gain spectrum
is shown in figure 3a. In general, the two Gaussian components in a tap-
gain spectrum have different power ratios, frequency shifts, and frequency
spreads. There are times, however, when the shifts and spreads of the
two magnetoionic components in an icnospheric channel are approximately
equal, when the two components are effectively one. For these times,

C;1p (0) becomes zero in (62) and (65) through (67), and the '"a' subscript

is dropped, causing the tap-gain spectrum to appear as in figure 3b.

Throughout the remainder of the report, the term statistical channel

model designates the specific channel model defined by figure lb and

equations {62) through (67) above. The term bivariate Gaussian hypothesis

refers to the assumption that each tap-gain function in this model is a
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complex bivariate Gaussian random function with a zero mean value and
quadrature components with equal RMS values, as defined by (62) through

(64). The term independence hypothesis refers to the assumption that

the tap-gain functions are independent, and the term Gaussian spectrum

hypothesis refers to the assumption that each tap~-gain spectrum in the
model in general consists of the sum of two Gaussian functions with dif-
ferent power ratios, frequency shifts, and frequency spreads, as defined

by (66) and (67).
3. MEASURING TECHNIQUE
3.1 Method

To experimentally confirm the validity and accuracy of the proposed
statistical channel model, we needed specifically designed measurements
and analyses to test;

(2) The validity of the bivariate Gaussian hypothesis for each

path in the statistical channel model,
{b) The validity of the independence hypothesis.

(¢) The validity of the Gaussian spectrum hypothesis.
(d) The bandwidth limitation on the statistical channel model
imposed by ionospheric paths with nonzero time sp‘reads; i.e.,

the accuracy of the statistical channel model.

One might attempt these tests by comparing statistical characteristics
of the statistical channel model with corresponding characteristics of
the measured ionospheric channel, Let the subscript "'m'' be used to
designate quantities in the measured ionospheric channel., One might
choose the parameters for each of the paths in the statistical channel

(time delays, power ratios, frequency shifts, and frequency spreads) so
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that R, (Af, At) was a best fit to R, (Af, At) and use the accurécy of the fit
on the Af axis to check (d) and on the At axis to check (c). The amplitude
and phase distributions of H, (f, t) could be examined to see if they were
Rayleigh and uniform respectively, as a check on (a). However, this
method would have serious limitations: it would not be possible to test
{b) and the accuracy of the test on (c) would suffer when several paths
existed because the individual tap-gain correlation functions in {47)
would be masked by each other; in the test on (a2}, near-Rayleigh fading
and uniform phase distributions for H (f, t) might easily be obtained when
several paths exist, even though one or more of the individual ionospheric
paths did not exhibit Rayleigh fading and a uniform phase distribution.

It can be seen that better tests could be made if the time-varving
characteristics of each ionospheric mode were available. Each G, (t)
could be examined to test (a) and they could be crosscorrelated to test
(b). The optimum tap-gain spectrums could be obtained by fitting their
inverse Fourier transforms, C, (At), to Cp (At) to satisfy {c¢), and
R, (2f, 0) could be compared to R, {Af, 0) to test (d). Unfortunately, it is
not possible to do this because {G,, (t)} do not exist. Since each path in’
the ionospheric channel always has some nonzero time spread (even
though it might be quite small), the time-varying response on each path
is a function of frequency, £, as well as time, t. However, the statit;;—
tical model in figure 1b has discrete paths whose tap-gain functions are
independent of frequency. To fit and test each path in the statistical
model by comparing it with the corresponding path in the ionospheric chan-
nel requires that the fit and comparison be made to an approximation of
the ionospheric path response that is independent of frequency. Thisu is
not a serious limitation, however, if the fits are made at one frequency
or over a band that is much smaller than the reciprocal of the time spread

on the mode, in which the ionospheric path response is nearly constant
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with frequencyf. The fact that the fit is restricted to some bandwidth
does not restrict the subsequent testing of {c) to the same bandwidth; it
can be made over any band.

If the measured response of each path in the ionosphere is approx-
imated by a function that is constant with frequency, the set of these

functions define a deterministic channel model with discrete paths.

Because the paths are discrete, the deterministic channel‘ meodel has the
same form as the statistical channel mc;del in figure 1b, and both are
specified by (41). Since {Ggy,(t)} are those deterministic tap-gain func-
tions that make Hy {f,t) an accurate deterministic approximation of Hy (f, t)
(for a sufficiently small bandwidth), {Gy,(t)} may be analyzed to test (a)
and (b). For each path, the statistical channel parameters can be selected
to obtain a best fit between C,,; (At) and Cg4, (At) (or the corresponding tap-
gain spectrums), and the accuracy of the fit used to test {c). The method
of testing (d) can vary according to the measuring technique.

We examined three measuring techniques which might be used to
obtain the data required to specify the deterministic channel and test the

validity and accuracy of the statistical channel model:

(A) Time-domain measurements. An accurate reference sinusoid

would be amplitude modulated to obtain coherent pulses {~ 50 us) with
Gaussian envelopes that would be transmitted at a regular rate (~ 200 Hz)
less than the reciprocal of the expected differences in the propagation
times of the modes but greater than the maximum frequency shifts.and
_spreads that might be expected on the modes. The pulses received over ‘
each mode would be separated by a time gate and the spectral component
at the ""carrier' (reference) frequency, f,, would be separated with a

- narrowband filter (~ 20 Hz wide). Thé filtered CW signal Wo.uld be

measured against an accurate local reference to obtain Gy, (t) exp(-j2mTi, T, ).
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Since T; would be known from the gate delay setting, the exponential
factor could be removed to leave Gy, (t}, which could be analyzed to test
{a), (b}, and (¢). For each mode, two or more additional narrowband
filters would be used to obtain similar measurements on spectral com-
ponents of the gated received pulses near the edges of the pulse spectrum
{(~ 10 kHz wide). The resulting functions could be crosscorrelated with
each other and the '"'carrier' function to test {(d).

(B) Frequency-domain measurements., A number of CW signals

with equal amplitudes and equal adjacent spacings over a 10-kHz band
could be generated from a common accurate reference and transmitted.
Each received CW signal would be separately {filtered with a narrowband
filter (~ 20 Hz Wide) and compared against an accurate local reference to
obtain H _(f,, t), the time-varying frequency response of the iocnospheric
medium at the frequencies of the transmitted signals. The subscript M
is an integer that numbers the transmitted signals, Now let a preliminary
deterministic channel be specified by
n
H, (£, t) = 2 Gy (t) exp[ -jamTi(t) £ ] , (68)
i=1

where TY{t)can vary with time. Equation (68) represents one equation for
each frequency of measurement, f,, The equations are nonlinear in the
unknown quantities, G} {t) and 7{(t}. If Zn or more frequencies of
measurement are used, the set can be solved simultaneously at any time,
t, by Prony's method (Hildebrand, 1956). If sets of sclutions are obtained
repeatedly at a regular rate greater than the maximum frequency shift
and frequency spread of the modes, the resulting solutions are time-
sampled versions of the desired solutions. For each path, the time-
varying solutions for T/'(t) could be averaged to obtain a constant T,.

Then for each frequency of measurement, f,, numerical values of
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H, (fy,t), {7, }, and i, could be used in

n
H, (fy,t) = ZGdi(t) exp(-j2mT, fi) (69)
i=1
to form a set of equations, one equation for each f;. The set of linear
equations could be solved repeé.tedly at equally spaced times to obtain
solutions for {Gy, (t)}. The latter solutions for the tap-gain functions in
the deterministic channel model could be analyzed to test (a), (b), and
{c). For each path, G, (t) could be autocorrelated at At = 0 to obtain
C4;{0). Then {C4; (0)} and {7, } could be used in (47) to obtain R, (Af, 0).
The parameters of the statistical channel model, which would he obtained
in testing {c), could be used to compute R, (Af, 0) which could be compared
with R, {Af, 0) to test (d).

(C) Hybrid time- and frequency-domain measurements, An accurate

reference would be amplitude modulated to obtain coherent pulses

{~ 50 us) with Gaussian envelopes at a regular rate (~ 200 Hz). The

same reference also‘would be used to generate a number of CW signals

of equal amplitudes with unequal adjacent frequency spacings that were
integral multiples of the pulse rate. The frequencﬁes of the CW signals
would coincide with the frequencies of socme of the spectral components

of the pulses, but would be considerably larger in amplitude. The phase-
locked pulses and CW signals would be added and transmitted. At the
receiver, a multiple-notch filter would remove the strong CW signals
from the pulse spectrum. The remaining slightly distorted pulse signal
would be envelope detected and compared with an accurate local reference
to measure {T,}, the time-delays of the modes. Each of the strong CW
signals would be separated in a narrowband filter {~ 20 Hz wide) ar:ld com-~
pared against the local reference to obtain H_ (fy,t) at each of the frequencies

of measurement. Then {7,]} and H_(f,, t) could be used in (66) to form a
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set of linear equations that could be solved simultaneously at equally

spaced times to obtain solutions for {G,,{t)}. The latter solutions for

~the tap-gain functions in the deterministic channel model and the time

delays, {T,}, could then be used as in method (B) to test (a), (b}, and
(c).

In selecting one of the three methods, (A), (B), or (C), we weighed
their relative advantages and disadvantages, All three would require
very accurate references at the transmitter and receiver. Since a spec-
trum resolution of 10~2 Hz or less was desired, measurements at an HF
frequency of about 107 Hz would require reference accuracies of 1x107%°

or better. The equipment complexity and specifications on accuracy and

stability were also comparable, and no one of the three methods was

’pa.rticula.rly advantageous in these respects. Their capabilities on

measured signal-to-noise ratios however did differ significantly. With-
out going into the details of the calculations, we estimated that methods

(B) and (C) had signal-to-noise ratio advantages over method (A) of about

'8 dB and 11 dB,respectively. Methods (B) and (C) would require repeated

solutions of simultaneous equations demanding additional computer time,
but the added computer costs would be negligible.

When methods (B) and (C) were compared, we found that method (C)
would be advantageous because half as many CW signals would be requiréd
for a given number of modes. More important, in method {C) the CW
signals do not have to be equally spaced in frequency, allowing a greater
number of difference frequencies between the various pairs of CW signal
freqﬁencies and allowing the channel correlation functions, R, (Af, At) and
R, (Af, At), to be computed at more values of Af. Also, if the smallest
adjacent spacing of the unequally spaced tones is less than the reciprocal
maximum differential propagation times of the modes, no ill-conditioned

coefficient matrices can occur in the simultaneous solutions. In method
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{B), an ill-conditioned matrix occurs when the uniform adjacent spacings
of the tones are equal to an integral multiple of the reciprocal of the
differential propagation times of any pair of modes.

Because we believed method (C) to be superior to methods {A) and
{(B), all factors considered, we selected this hybrid time- and frequency-

domain method of measuring ionospheric channels,
3.2 Equipment

With the choice of the hybrid time- and frequency-domain method of
making ionospheric channel measurements, selection of the pulse duration
and recurrence rate and the number, frequency spacings, and phasings
of the tones became neceséary. Because two 12-kHz channel assignments
were available, the Gaussian transmitter pulse duration was set at 53 Us
between the - 4. 35-dB points on the pulse envelope, corresponding to
the + one-sigma time values, The resulting transmitter pulse spectrum
was 12 kHz wide at the - 4. 35-dB values of the Gaussian spectrum. A
pulse rate of 200 Hz was selected, which allowed 5.0 ms between suc-
cesive pulses, more than the expected differential propagation times of
the modes. While it was desirable to use as many tones as possible to
maximize the detail in the measurements, the complexity of the equip-
ment increased with the number of tones, and a practical compromise
was required. Because each of the received tones had to be tape recorded
at a low intermediate frequency {IF), and a l4-track analog tape recorder
was available, 11 tones were ulsed. Two of the three remaining tracks
were used for reference signals and the third for the detected received
pulses,

In selecting the frequencies and phases of the 11 tones, we imposed

several restrictions:
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() The tone frequencies each had to coincide with a spectral
component of the pulses; i.e., be spaced at an integral multiple
of 200 Hz from the carrier frequency, £f,.

(b) The amplitude spectrum of the 11 tones must be symmetrical
about the carrier to simplify the generating process,

(c) Adjacent spacings of the tones should be lowest near the center
of the band and greatest toward the edges of the band. If poor

fits of H, (£, t) to H  (f, t) occured when all 11 tones were used, be-
cause of excessive time spread on the modes, fits at reduced
bandwidths with fewer tones could be accomplished with a mini-
mum sacrifice in the number of tones used.

(d) Consistent with requirement (c), tone spacings should be
chosen to maximize the number of different frequency spacings,
when all combinations of the tones taken two at a time were con-
sidered.

() The phasing of each tone relative to the central carrier tone
should be restricted to plus and minus cosine functions, measured
relative to the peaks of the pulses, so that intermodulation pro-
ducts generated in the slightly nonlinear transmitter would either
be in phase or T radians out of phase with respect to the desired
tones. This restriction was imposed to minimize phase dis-
tortion of the multiple-tone spectrum.

{f} Tone and pulse phasings should be chosen, consistent with (e),

to maximize the average-to-peak power ratio.

When all the above requirements were considered and an optimum
selection was made, the power spectrum of the combined pulse and tone
signals was that in figure 4a, where the power levels of the spectral

components are shown relative to the peak power of the composite signal.
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The tone frequencies relative to the central carrier tone are 0, = 0.2,
+1.0, £1.6, £3.2, and £+ 4.8 kHz. Ifk = 1, 2, 3, ... 11 are the num-
bers designating the 11 tones from the lowest to the highest frequency,
then all were plus cosine functions except tones 3 and 9, which were
minus cosine functions. The pulse was alsc a minus cosine function

with a peak power abeout.6 dB greater than the peak power of the com-
posite waveform, Figure 4b is a photograph of an oscilloscope display
of the total composite transmitter signal as a function of time; the trans-
mitter pulse occurs at’t = 0 and 5 ms.

Figure 5 is a block diagram of the transmitting 'equipmént. A cesium-
beam frequency standard with an accuracy of about 1 x 107* drove a
specially built reference chassis that divided the 1-MHz reference fre-
quency to develop three accurate pulse trains with recurrence rates of
0.2, 0.2, and 1. 6 kHz. The first of the two 0, 2-kHz pulse trains drove
two bandpass filters centered at 0.2 and 1.0 kHz, each of which separated
a spectral component at its center frequency. Each filter delivered a
cosine function with adjustable amplitude and phase. The l. 6-kHz pulse
train was used to generate adjustable cosine functions at 1. 6, 3.2, and
4.8 kHz in a similar manner. The second 0.2-kHz pulse train drove a
baseband seven-pole filter that delivered negative near-Gaussian pulses
of adjustable amplitude at a 0.2-kHz rate. The timing of the first
0.2-kHz and the 1, 6-kHz pulse trains were delayed from that of the sec-
ond 0. 2-kH=z pulse train by an adjustable amount, so that the baseband
Gaussian pulse could be synchronized with the concurrent peaking of the
five baseband cosine functions. The pulse signal and four of the five
baseband cosine signals were summed with' a DC signal for the carrier
tone at one input of an operational amplifier. The 1. 6-kHz cosine func-
tion drove the other input, which provided summing with a phase reversal.

The summed baseband signals then drove a multiplier (double-balanced
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modulator), which was also driven by a signal at the RF carrier fre-
quency. The cesium-beam standard drove a frequency synthesizer that
delivered either of the two required carrier frequencies. The product

of the baseband and carrier signals was the desired composite RF signal.

After initial adjustment of the pulse timing and the tone amplitudes,.
no additional calibrations of this type were necessary. Periodic calibra-
tions of the tone phasings was done by swiiching on succ‘es‘sively larger
numbers of tones. For each combination, a phase adjustment was made
to the last tone added to obtain the required time symmetry in the envelope
of the composite RF signal as a function of time. It is estimated that the
error compenents in each tone were at least 30 dB below the magnitudes
of the tones.

The composite output signal from the multiplier drove two cascaded
untuned linear distributed amplifiers. These in turn were followed by a
two-stage 500-W linear ampliﬁér and a high-power (FRT-22) linear
transmitter. However, the expected 50-kW peak power was not available
during the ionospheric channel measurements because of a defective
component in the final amplifier that could not be replaced in time for
the measurements, The peak power of the signal delivered to the antenna
during the measurements was about 5 kW,

The antennas at the transmitting and receiving sites were identical,
except that the transmitting antenna could handle greater power. Both
were sloping-V antennas whose specifications were selected to obtain a
main lobe with a vertical angular width as large as practical for the two
frequencies of operation, to obtain all modes of propagation that the
medium could sustain. The theoretical vertical patterns near the two-
frequencies of operation are plotted in figure 6, with typical elevation

angles for several modes,
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Figure 7 is a block diagram of the réceiving system designed and
built for the present task. In the RF chassis, the composite received
signal was passed through a three-pole maximally flat-amplitude band-
pass LC filter with a 3-dB bandwidth of 200 kHz. The LC filter was
followed by a wideband amplifier with a 23-dB gain and a crystal filter
having a near-Gaussian :Erequéncy response (and impulse response) with
a bandwidth of 20 kHz. A rubidium frequency standard having an accuracy
of about 1 x 107" drove a frequency synthesizer that delivered an accurate
first-local-oscillator signal to the balanced mixer in the RF chassis, con-
verting the RF signal to an IF signal with a carrier frequency of 100, 080
kHz.

The 100-kHz first IF signal followed two paths. In the first path
through the pulse chassis, an ll-notch filter supressed the 11 strong
tones to deliver slightly distorted received pulses. The distortion ap-
peared as spurious pulses at various time delays with amplitudes about
25 dB below the true pulses and did not cause any significant difficulty,
The pulses were then filtered in a five-pole LC bandpass filter with a
near-Gaussian response and a l2-kHz bandwidth between the - 4. 35-dB
points. The resulting filtered near-Gaussian pulses, which had been
stretched to about 75-uUs duration by the filtering, were amplified and
detected. The detected pulses were fed to an oscilloscope with a much
shorter calibration pulse, where an intensity presentation was recorded
on continuously moving 35-mm film. The detected pulses with the cali- .
‘brating pulses were also fed to a second oscilloscope, not shown in
figure 7, for a conventional amplitude vs. time display that was used to
obtain periodic measurements of the pulse delays.

The second path followed by the 100-kHz first-IIF signal was through
the second-mixer chassis. The composite signal was passed through a

low-pass filter with a 300-kHz cutoff frequency, which suppressed the
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already reduced first-local-oscillator signal. The unmodified composite
signal was then added to a second-local-oscillator signal that consisted
of a nurnber of equal-amplitude sinusoids with frequencies that were
integral multiples of 0.2 kHz. To generate the spectrum, a 1-MHz sig-
nal from the rubidium frequency standard was passed through a continuously
adjustable phase shifter to a chain of dividers in the reference chassis
which delivered short pulses at an accurate recurrence rate of 0.2 kHz.
The timing of this receiver reference waveform could be adjusted rela-
tive to the transmitter timing by adjustment of the phase shifter, The
spectrum of the 0. 2-kHz pulse train consisted of discrete components at
integral multiples of 0.2 kHz from zero to more than 1 MHz. This local
oscillator spectrum was added to the composite signal spectrum and the
sum passed through a two-pole maximally flat-amplitude filter with a
16-kHz bandwidth centered on 100 kHz. The filter output was amplified
and fed-to 11 parallel second-mixer channels. Since the composite
received signal was heterodyned in the {irst mixer so that the carrier
tone (k = 6) had a frequency of 100. 080 kHz and the local oscillator spec-
trum components had frequencies that were integral multiples of 0. 2 kHz,
each of the 11 tones in the composite IF signal was located 80 Hz higher
than a component of the local oscillator spectrum. KEach of the 11 signal
tone-local oscillator component pairs, with their 80-Hz spacings, were
separated from the total spectrum by a single bandpass crystal filter
with a bandwidth of about 150 Hz, A single filter was used for each
signal tone-local oscillator pair to minimize the differential phase shifts
caused by changing filter temperatures. Had separate signal tone-local
oscillator filters been used, considerably tighter filter specifications
would have been required, Each crystal {filter suppressed unwanted
components by more than 60 dB. Each signal tone-local oscillator pair

was fed to a second mixer that multiplied the pair. Each 80-Hz difference
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component was separated with a two-pole maximally flat-amplitude

bandpass filter with a 35-Hz 3-dB bandwidth centered at 80 Hz. Each

of the 11 resulting 80-Hz second-1F tones was then amplified and delivered
to 11 channels of a 14-channel tape recorder for FM recording at 7. 5 in./sec.

For final detection of the 11 recorded tones when the tape was played
back, 80-Hz "'sine' and ""cosine' square waves were also generated from
the rubidium freguency standard in the reference chanssis., The 80-Hz
""sine'" and ""cosine' square waves were added to form a composite ref-
erence signal that was FM recorded on two of the 14 channels of the tape
‘ recofder, Since the tape recorder had two record heads, one for odd-
numbered tracks and one for even-numbered, the composite reference
signal was recorded near the center of the tape on both an odd-numbered
track and an even-numbered track. On playback, to minimize wow-and-
flutter distortion, the odd-numbered reference signal was used for
detecting tones from the odd-numbered tracks and the even-numbered
reference signal for detecting tones from the even-numbered tracks.

The rather low second IF of 80 Hz was chosen with this requirement in
mind.

Upon playback, ''sine" and '"cosine' reference square waves were
reconstructed from each of the two composite reference signals. Each
of the 11 played-back tones was fed to two switching detectors via a very
broad bandpass filter (3-dB peints at 20 and 300 Hz), which eliminated
the higher requency noise from the tape recorder. The switching de-

tectors were driven by the appropriate "

sine' and '""cosine' square waves.
The ocutput signal from each switching detector passed through a three-
pole maximally flat-amplitude low-pass active RC filter with a 7. 7~Hz
3-dB cutoff frequency. For each tone, the two baseband output signals

from the active filiers were the real and imaginary components of

H, (£, t).
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The 80-Hz IF signals delivered by the second-mixer chassis also
were fed to 11 parallel channels in the amplitude-monitor chassis. Each
of the 80-Hz signal tones was amplified and hali-wave rectified. The
magnitude of each rectified signal, averaged over a fraction of a second,
was monitored by a separate panel meter. Each rectified signal tone
also drove a single-pole low-pass RC filter with selectable time constants
of 100 and 1000 sec, A single high-impedance electrometer was used
during the ionospheric channel measurements té measure and chart-
record the long-term (1000 sec) average of the magnitude of one signal
tone to obtain a visual record of slow channel-gain changes. Periodically,
the electrometer was used to measure similar quantities for all 11 tones
for a written record., One of the 11 signal tones was also envelope de-
tected and passed through a three-pole, low-pass LC filter with a 10-Hz
cutoff frequency.to a chart recorder to obtain a visual record of the short-
term fading conditions on the ionespheric channel.

The 0.2-kHz second-local-oscillator pulse train was also used to
synchronize the oscilloscopes and to trigger a 2-ns pulse generator (not
shown in fig. 7). Since the 2-ns pulses occurred at the 0. 2-kHz reference
rate, they contained spectral components at integral multiples of 0.2 kHz
over the entire HF spectrum. 7This signal was fed to the receiver input
at a suitable level to periodically calibrate the receiving system. Calibra-
tion adjustments included the amplitudes of the first- and second-local-
oscillator signals, the amplitude of each first-IF signal tone, the amplitude
and phase of each second-I1F signal tone, the tape recorder, and the
amplitude and phase of each of the 22 low-pass post-detection fiitefs.

For each tone, the level of the error component was about - 55 dB rela-
tive to the magnitude of the signal tone at the time of calibration and was
found to hold over long periods (many days) to better than - 45 dB. When

tests were originally made to determine the wow -and-flutter error
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introduced by the tape recorder, the error components were at a - 45-dB
level relative to the tones at the time of the recording. We subsequently
found that with repeated playback of the tape, stretching and permanent
deformation of the tape caused the error components to increase to
nearly - 30 dB. Had a digital tape recorder been available for use at the
receiving site at the time of the ionospheric channel measurements, the
11 second-IF signal tones could have been fed directly from the second-
mixer chassis to the detector chassis, to eliminate the analog tape
recorder. The 22 baseband output signals could then have been con-
verted to digital form and recorded at the time of the measurements to
maintain a - 45-dB error level. However, the - 30-dB limitation imposed
by the analog tape recorder did not significantly limit the accuracy of the
channel measurements, as will be seen later, since the errors in the
fits of Hy(f, t) to H, (f, t) were nearly always higher than the receiver
. errors because of the nonzero time spreads on the ionospheric modes.
Before making ionospheric channel measurements with the specially
designed transmitting-receiving system, we tested the accuracy of the
entire system (excluding the higher level linear amplifiers in the trans-
mitter) in?the laboratory. Two discrete nonfading paths with different
propagation times were simulated by adding the receiver calibrating
signal to the low-level transmitter output signal to form a simulated two-
path received signal. An analog recording of the second-IF tones was
made and subsequently fed through the detector chassis whose 22 baseband
output signals were converted to digital form and tape-recorded in a
computer -compatible format. The digital tape was then processed in the
same way as subsequent measurements of the ionospheric channel. From
the results of these analyses and a prior knowledge of the simulated
channel, we could determine the overall accuracy of the measuring system.

Overall errors were below a level of - 30 dB relative to the true values,
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3.3 Measurements

Following the laboratory test on the accuracy of the transmitting-
receiving system, the transmitting system was installed at the ESSA
field site at Long Branch, Illinois (40°13'N, 90°01l'W). Tests were made
with the receiving system a* the transmitting site to insure that the com-
plete transmitting system, including the high-level linear amplifiers and
antenna, was operating satisfactorily. Nonlinearity in the higher level
amplifiers did not measurably degrade the performance of the system.

The receiving system was then installed at the ESSA field site at Table
Mountain, about 10 miles north of Boulder, Colorado (40°08'N, 105°14'W),
which provided a great-circle distance of 1, 294 km between the trans-
mitting and receiving sites.

Following a brief period of familiarization, the transmitting-receiving
system was operated on the two assigned frequencies of 5. 864 MHz and
9.259 MHz. The lower frequency was used at night and the higher fre-
quency during the day. In both cases, the operating frequency was
sufficiently below the predicted maximum usable frequency to make it
probable that both one- and two-hop modes would be seen,

The transmitting -receiving system was operated continuously during
the three periods shown in table 1. During each period, both the trans-
mitter and receiver were calibrated about once every hour. Between
calibration periods and times required for tape rewinding, tape recordings
of the ionospheric channel measurements were made; the total recording
times are shown in table 1. Over 7 hours of recorded measurements were

obtained at night on 5.864 MHz and nearly 10 hours in daytime on 9. 259 MHz.
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Table 1. Summary of Measurements

Date Frequency Hours MST Record Time
1967 MHz

7 November 9.259 12:10-19:07 ‘ 5:09

9-10 November 5.864 22:05-08:50 7:18

30 November 9, 259 07:25-15:40 4:43

The continuous strip-film photographs of the oscilloscope intensity
display of the received pulses, chart recordings of tone amplitudes, and
written data taken at the time of the measurements were analyzed to
determine what porticns of the data appeared most suitable for analysis,
Twelve intervals were chosen that seemed most nearly stationary in terms
of fading rates, modal time delays, and average powers in the modes.
The analog tape recordings for these intervals weére fed to the receiver
detector chassis (fig. 7). ‘The resulting 22 baseband analog output sig-
nals were then converted to digital sequences by the Ionospheric Tele-
communication Laboratory's analog-to-digital (A-D) converter and tape
recorded in a digital format suitable for the ESSA CDC-3800 computer.
The sequence rate was either 3,125 or 6,25 Hz and was well above the
Nyquist rate in all cases, Portions of three of these converted intervals,
from both day and night measurements, were subsequently analyzed with
computer programs prepared for this purpose.

" In the remainder of the report, the portions of the intervals that
were analyzed will be called samples, and will be designated I1, 12, and
I3, In the analyses, values of the modal time delays for each sample -
were constant and were obtained from the puise measurements of the

ionospheric channel,
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4. ANALYTICAL METHODS

Since the A-D conversion process changed H_ (f,,t) from a set of
continuous functions in time to a set of sequences in time, it is desirable

to change the notation. In each of the samples, I1, 12, and I3, let

t, = time duration of the sample, and
m,= actual number of values of H, (fy,t) that are obtained

in the A-D conversion for each f,.

Then the values of time, t., for which values in the sequence have been
obtained are

te =rty/m, , r=12,3 ..., m (70)

It is convenient to divide the analyses of each sample into three
parts: |

() The deterministic fit, in which the frequency response of

the deterministic channel, H,(fy,t;), was fitted by least squares to

the frequency response of the measured ionospheric channel,

H,(f;,t.), repeatedly for successive values of t;, to obtain solu-

tions for the optimum tap-gain fum-:tions, {Gy {t: )], in the

deterministic channel. We also examinéd the accuracy of this

fit.

(b) The statistical fit, in which each tap-gain correlation func-

tion for the statistical channel mo'del, C,; {At), was fitted by least

squares to the corresponding tap-gain function for the deterministic

channel, C4,(At), to obtain solutions for the optimum parameters

in the statistical channel model. To test (d) on page 30, we then

examined the resulting accuracy with which the statistical chan-

nel model fit the measured ionospheric channel.
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(¢) The hypothesis tests, in which the amplitude and phase dis-
tributions of the deterministic tap-gain functions, [Gdi (t, )},
were submitted to suitable statistical tests to determine the
validities of the bivariate Gaussian hypothesis and the inde-
pendence hypothesis, The error in the fit of C,; (At) to C,, (At)
was also tested to determine the validity of the Gaussian spec-
trum hypothesis. These tests satisfied (2}, (b), and (c) on

page 30,

The methods used in these three parts of the analyses are described

below,
4,1 Deterministic Fit

The deterministic fit of Hy (f,, t;) to H_(f,, t. ) in frequency at each
time, t,, was done by least squares as described in appendix A. In gen-
eral, not all the 11 frequencies of measurement, f,, were used; better
fits could be obtained over a limited central portion of the frequency
band than over the entire band, and the bandwidth over which a good f{it
could be achieved depended upon the time spread on each of the modes
in the ionospheric channel. For each time, t., the fit proyided numer -
ical solutions for '""n'" values of Gy (t,), one for each path ''i'"; all the
successive sets of solutions provided ''n'' sequences in time, {Gy, (t, Y-
one sequence for each path "i' for values of 0 <t, <t_.

The solutions for {Gy,(t;)} were used to compute the frequency
response of the deterministic channel from a minor modification of (41),

n
H, (fy, t,) = Z Gy, (tp ) exp(-j2TT, £ ) . (71)

i=1
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The accuracy with which the deterministic channel was fit to the
measured ionospheric channel was then determined in two ways. In the

first method, an error function was defined by and computed from
E(fk’tr) :Hd(fk!tr) -Hm(fk’tl‘)' (72)

For each frequency, f;, we computed the ratio of the RMS value of

|E(f, t; )| in time to the corresponding RMS value of |H, (f, t;}] in time

' my 1

-1 e :

L’; z E (fk:tr)E(fk-tr)]
r=1 i

m, 1 ,
1 . 2
[rn_'— z Hf-(fk’tr)Hm(fk’tr)]
a
r=1

which served as a time average of the accuracy of the deterministic fit

from

E{fy) _
Hm (fk)

(73)

with frequency.

In the second method for determining the accuracy of the fit, we
compared the channel correlaition functions for the ionospheric and
deterministic channels. An estimate of the channel correlation function
for the ionospheric channel, along the frequency and time axes, Af and

At, were obtained irom modifications of {9),

ma
1 sk
R,(86,0) = = ) H¥ G, 1) By (6 +668,), (74)
a
r=1
wherér
M= (fy-f), 2=k (k+1), ..., 11, (75)
and
my
1 o
R-m(O) At) = m! Z Hm(fsltr) Hm (fGJtr + At) y (76)
a
r=1
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where

mi =mg[1 - (At/t,)] , : (77)

At = integral multiple of t, /m, .

The corresponding normalized functions were obtained from modifica -

tions of (12),

R,{Af, 0) = Ry (AL, 0)/Ry (0, 0) . (78)
and

R, (0, At} = R, (0, At)/R, (0, 0) . (79)

‘Equations (74) through (79), with subscripts '"d" replacing subscripts
"m!', were also used to compute similar values for ﬁd (Af, 0) and f{d (0, At).

Then the definitions

|ARy (1) | = |Ry (AL, 0) - Ry(Af, 0)] y (80)

and

|ARq: (At)] = |R4 (0, At) = R, (0, At)] , (81)

were used to compute a measure of the accuracy of the fit, The fre-

quency pairs used in {80) are tabulated iﬁ table 2 below.

Table 2, Frequencies Used to Compute R(Af, 0)

Frequency Frequency Frequency Frequency
Separation Numbers Separation Numbers
A, kHz k Af, kHz k
0 6,6 3.0 2,5
0.2 56 ;3.2 2,6
0.4 5,7 3.4 2,7
0.6 3,4 3.8 1,4
0.8 4,5 4,2 2,8
1.0 4,6 4,6 1,5
1.2 4,7 4.8 1,6
(continued)
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Table 2 {continued)

Frequency Frequency Frequeancy Frequency
Separation Numbers Separation Numbers
Af, kHz k Af, kHz k

1.4 3,5 5.0 1,7
1.6 3,6 5.8 1,8
1.8 3,7 6.4 1,9
2.0 4,8 8.0 1,10
2.2 2,4 9.6 1,11
2.6 3,8

4,2 Statistical Fit

Using the computed values for {Gy;(t;)}, we computed estimates of

the tap-gain correlation functions for the deterministic channel from

1
m,

l e

Cas (A1) = == Y Gi (ty) Ga(t: + At) . (82)

m, : :
r=1

The normalized tap-gain functions then were obtained from (46),
Cai (B) = Gy (A1)/Cy; (0) (83)

Similarly, the normalized tap-gain correlation function for each path in

the statistical channel model is

1

C,; (At) = Cgy (At)/C oy (0) (84)

where Cg; (At) is specified by (65).
We fit the statistical channel to the deterministic channel by first

equating path power ratios, i.e., by specifying for each path that
Cq:(0) = Cyy (0) . | | (85)

Then Esi (At) was {it to Edi([lt) for each path by least squares, as described
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in appendix B, to obtain numerical values for C,,,(0), C,,(0), C.(0),
Vijas Vetbs Ogins and Og . Equations (54), (57), (58}, and (6l) were then
used to compute the statistical channel quantities 7_, ¥,, 2p,, and

20,. A measure of the accuracy of the statistical fit for each path was

computed from

[AC,; (at)]| = [Cay(at) - Cyy (at}] . (86)

To obtain a measure of the accuracy of the fit between the statistical
channel and the measured ionospheric channel, the channel correlation
function for the statistical channel was computed on the basis of the
optimum numerical parameters. When the tap-gain correlation functions
for the statistical channel model in (65) are substituted in (47), the lat-
ter becomes the channel correlation function for the statistical channel,

0| €, (0) exp(- j2nT Af - 2102, AP + j2Tv,,, At)

R, {Af, At) =Z . (87)
211 + Conn (0) exp(-j2nT, af - 212 02, AtD + 27TV, At)

For paths where the two magnetoionic components are merged into one
component, C,;,(0) becomes zero, and the "'a" subscripts are dropped
in (87). The normalized channel correlation function for the statistical

channel model from (12) becomes

R, (af, At) = R, (Af, At)/R, (0, 0) . ‘ (88)

The optimum numerical parameters for the statistical channel
obtained from the least-sqﬁares fits of E“ (At) to E“ (at) were used to
compute {(88) along the Af and At axes. We then compared the results,

EE (A1, O) andEE(O, At), with the corresponding functions for the measured

ionospheric channel, R, (Af, 0) and R_ (O, At), using
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|AR g (Af}] = |R,(Af, 0) - Ry(af, 0)] - (89)
and

|aR,. (at) | = |R.(0, At) - R (0, At)] . (90)

Equations (89) and (90) provided a final measure of the accuracy of the
fit of the statistical channel model to the measured ionospheric channel.
Recalling from (52) that the channel time-scatter function, u{7), for
both the deterministic and statistical channel models is the sum of "n"
delta functions with different delays, and from (17) that R(Af, 0} is the
Fourier transform of u(7) for any stationary time-varying channel, we
see that R, (Af, 0) and R, (Af, 0) are both the sum of ''n'"' vectors of con-
stant amplitude rotating at different rates with increasing Af. Equation
(87} at At = O states this specifically for R,{Af, 0). Consequently,
R, (Af, 0) and R, (Af, 0) both oscillate indefinitely with increasing Af and
do not damp out, On the other hand, each mode in the ionospheric chan-
nel will always havé at least a small amount of time sp:gead; thus, while
R, (Af, 0) will also oscillate with increasing Af, because the differential
propagation times of the modes are large compared to the individual
time spreads on the modes, the oscillation will damp out, and lRm (Af, O)l
will approach zero with increasing Af because of the nonzero time
spreads. As a result, the differences speci.fied by (80) and (89) will be
almost entirely caused by the differences in the damping. Therefore,
it is possible to use either of these differences to estimate the time
spreads on the ionosphéric modes. If we assume that each ionospheric
mode has the same Gaussian time spread, 2p,, the channel time-scatter
function for the ionospheric channel in this temporary representation

can be defined by

uy {T) = Z C.y (0) (21pE)™% exp[ -(1 - 7,)7/(205)] . (91)

i=1
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Equation (91) can be Fourier transformed to obtaip
i} ,
R} (Af, O)Z C, (0) exp(- 27 p, 2 Af% ~ j2miT,Af), | (92)
i=1
and when (47} at At = 0 is substituted in (32}, the result can be normalized

to give NS
R!(Af, 0) = R, (Af, 0) exp(- 21° p, 2 0f%) . C(93)

Now let

IR, (a5, 0) - RL(A%, 0)] = |, (a5, 0) - R, (21, 0)] . (94)

When (93) is substituted in {94), the latter can be solved to obtain
) _ o _ n
20, = [1/{mAf)] [ - 2 In(1 - |R,(Af, 0) - R, (Af, 0) [/ [R.(af, 0)[ )] . (95)

Equation (95) was used in the analyses as an estimate of the time spfea.d
on the modes in the ionospheric channels, |

For convenient presentation of the results of our measurements and
analyses in section 5, we rated the magnitudes of the differences of the
correlation functions as specified by (80), (81), (86}, {89), and (90) in
qualitative terms. A somewhat arbitrary assignment of these qualita-
tive ratings vs. the magnitude of the difference (error} is listed in
table 3 below. | -

Table 3. Ratings of Correlation Errors

Size of Error | ‘ Rating
Error < 0.05 Excellent
0.05 < Error < 0. 10 Good
0.10 < Error < 0, 20 Adequate
Error > 0. 20 Poor
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4.3 Hypothesis Tests

In the statistical channel model, we hypothesized that each of the
tap-gain functions, G, (t), should be an independent baseband bivariate
Gaussian random function with a zero mean value and quadrature com-
ponents with equal RMS values {the bivariate Gaussian hypothesis), that
the tap-gain functions should be independent (the independence hypothesis),
and that each tap-gain spectrum, v,(v), should in general consist ofrthe,
sum of two Gaussian function’s of frequency {the Gaussian spectrum
hypothesis). The statistical tests that were performed on the data to
accept or reject the hypotheses are described below. |

For the bivariate Gaussian hypothesis to be valid, each deterrﬁinistic
tap-gain function, Gy (t;), within the limitations imposed by the finite
sample size, should have a Rayleigh amplitude distribution and a uniform
phase distribution. While it is conceptually possible to have functions
with Rayleigh amplitude distributions and uniform phase distributions
that are not bivariate Gaussian, the probability of such functions in any
natural physical process is extremely small. If a natural process exhib-
its a Rayleigh amplitude distribution and a uniform phase distribution,
it may be considered almost certain that the process is bivariate Gaus-
sian. Therefore, to test the va.l.idity of the bivariate Gaussian hypothesis,
we performed suitable tests on each Gy; (t;) in each sample to determine
if it had a Ravyleigh amplitude distribution and a uniform phase distributipn.

For each path, an amplitude-density histogram was directly com-
puted from |Gy (t.}|. For a reason given in appendix C, exp(j2mv,;t),
the factor in 4Gy, {t;) ‘corresbonding to the f_req_uency; shift vy, , was
removed, and the resulting modified function, chi (ty), was used to

compute the phase-density histogram,
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To compute the amplitude-density histograms, ‘the domain
0 < |Gyy(t. )| <= was divided into a suitable number of subintervals of

various sizes that were numbered 1, 2, 3, ... 4, ... Ay, and
o}: {#) = my, #)/m, (96)

was computed, where m,, (£) was the number of values of |Gy (t;)|
observed to fall in the {-th subinterval, and m, was the total number of
values of Gg, (t,) in the sample,

Similariy, for each phase-density histogram, the domain 0 < ¢ G, (t;)
< 21 was divided into a suitable number of subintervals of equal size and

numbered 1, 2, 3, ... £, ... X5, and

ola(t) = mys(2)/m, (e

was computed, where m;(#) was the number of values of §Gj§, (t,)
observed to fall in the £-th subinterval.

To test the bivariate Gaussian hypothesis, we compared the values
computed in (96) and (97) with the expected values for a valid hypothesis,
which are the values for the statistical channel model. The Rayleigh
amplitude -density function for each tap-gain function in the statistical

channel model can be written
p( IGEi ‘) = [2 ]Gsi |/C’e1 (0)] eXP[ - |Gai |'8 /Cai(o)] . {98)

C.;(0) was set equal to the numerical value for Cy, (0), and the probability
in each subinterval of an amplitude density histogram for the statistical
l model was computed from
“s
el:(g) = S (|G [)d[Gs |, (99)

“(2-1)
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where

0;(1_1), % = bounds on the f-th. subinterval. £

The probability in each subinterval of a phase-density histogram was

computed from

els () = 1/ Xz : (100)

Since each histogram had a number of subintervals, it was desirable
to use a hypothesis test that simultaneously evaluated the differences
between the computed and the expected values in all subintervals in each
distribution. The chi-square test (Bendat and Piersol, 1966) was chosen,
by which the statistic

Ay
XZ = ) [oytt) - e 0] /ey (t) (101)
=1

is computed, where

04 (#) = the number of independent values of |Gy, (t,)]| or
JG!, (t;) that fall in the £-th subinterval,
e, {2} = the expected number of independent values in the

£-th subinterval.

Since successive values of each Gy, (t,) were highly correlated, it was
necessary to estimate m,;, the effective number of independent values
of each Gg,;(t;) in 2 sample. This number was different for each path
and always considerably smaller than the actual number of values, m,.
The method by which m,; was estimated for each path is described in
appendix C.

Then, for both the amplitude- and phase-density histograms,

o;(2) =m.; ol(2), o,(8)>5. (102)
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The restriction on (102) was imposed to insure accuracy in the chi-
square test and was met for each distribution by suitable selection of

the number and sizes of the subintervals. Similarly,

e, (£) = m,y el(f) . (103)
Then (101) becomes
Ay
Xig = mg, Z [O'i(f) - el (1)} z/e;(f) . {104)
=1

For each path, (104) was used to compute two values, Xi? for the
amplitude distributicn and xi: for the phase distribution. In both cases,
the number of degrees of freedom was equal to the number of subintervals,
Ay OT Ayp, minus the number of different independent linear restrictions
imposed upon the observations. Both were reduced by one because the
computed probability for the last subinterval is determined when the
probabilities in the first A; - 1l subintervals are determined. For the
amplitude distributions, the number of degrees of freedom was reduced
by an additicnal one because C,, (0) was set equal to C,, (0); consequently,
the number of degrees of freedom used were X;; - 2 for the amplitude
distributioﬁs and A, - 1 for the phase distributions.

For each path, a table of chi-square distributions was used to obtain
X?u and x?ie, the tabulated values of chi-square at a2 significance level of
0.1 for the appropriate numbers of degrees of freedom for the amplitude
and phase distributions, respectively. Normalized values of Xeu and

\

%7» were obtained from \
X5 = xE I (105)

A value of ;(_12 < 1 was used as a criterion of acceptance of the bivariate

Gaussian hypothesis for that particular distribution.

58



To test the independence hypothesis, it was necessary to determaine
whether each tap-gain function, Gy;({t,), was independent of all other tap-
gain functions in the sample. This we did by taking all possible com-
binations of normalized tap-gain functions, two at a time, and obtaining

an estimate of the magnitude of their crosscorrelation from

mB.
LN =, = i=1,2, ..., (n-1),
lr‘ul - lmaz Gdi(tr) Gd,ﬂ(tr) 2 f = (]‘_+l), (1_&2)’ .., (106)
r=1

If the modes in the ionospheric channel were independent, the estimate
from (106) would still be greater than zero because of the finite number
of values in the sample, For independent bivariate Gaussian tap-gain
functions, it is shown in appendix D that |1"1y_| would have a Rayleigh dis-
tribution for a large number of samples, and that a conservative estimate

of the RMS value of this distribution would be

€~ Lmay , ‘ {107)

where m, is the larger of m,; and m.g, the effective number of inde-
pendent values for paths "i'' and '"#'" as derived in appendix C. Since
T would 'be expected to exceed 1.5 €, for 10 percent of a large number
uf p 1 P g

of samples,
Tyl = [Twl/(1.5 ey (108)

was computed for each of the combinations of path pairs. If the tap-gain
functions had previously been accepted as bivariate Gaussian functions, a
value of [ifl £ 1 was used as a criterion of acceptance that the tap-gain
functions were uncorrelated and consequently independent.

In the computed amplitude and phase distributions for each path that
are presented for each sample inl section 5, the amplitude distributions

are presented as cumulative distributions plotted on nonlinear '"Rayleigh'
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paper. In these plots, an ideal Rayleigh cumulative distribution is a
straight line with a unit slope., It is interesting to show the distribution
that the points computed from IGcu {ty) l "would be expected to have about
the Rayleigh line for an infinite number of samples, Strictly speaking,
because of the finite number of values in the samples, this would be a
binomial distribution, but the binomial distribution can be approximated.
by a Gaussian distribution if the restriction imposed on (102) holds. |
Curves of the standard deviation of the Gaussian spread of the computed
points, 0,(®, m,,}, as a function of the amplitude level, @&, and the
effective number of independent values, m,;, -are plotted in figure 8
over the portions of the domain for which the Gaussian approximation
holds. The plus and minus one-éigma bounds on the curnulative distri-
bution for m,; = 300 are also plotted. As ¢~ 0 or as o —* =, the spread
of the computed points on the Rayleigh paper also increases, particularly
as o= 0.

To test the validity of the Gaussian spectrum hypothesis, a statistical
test was performed on (86}, Since the tap-gain spectrums in both the
deterministic and statistical channels are Fourier transforms of the
corresponding tap-gain correlation functions and C,, (At) is obtained
indirectly from measurements of the ionospheric channel, (86) is a
measure of the accuracy with which each tap-gain spectrum in the sta-
tistical channel fits the corresponding estimate of the spectrum in the
. ilonospheric channel. However, even if the path spectrums in the iono-
spheric channel were composed of two truly Gaussian components, as
was assumed in the statistical channel model, a nonzero difference would
be expected in (86) because of the finite number of values in the sample.
The distribution that (86) would have for a large number of samples,
assuming the bivariate Gaussian and the Gaussian spectrum hypotheses
were both true, was derived in appendix D. The approximate RMS value

of this distribution is
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€y = I/Vmei » (109}

which applies for all At., For each path, we compared (86) with (109) to
decide if the Gaussian spectrum hypothesis in the statistical channel
model was valid, under the restriction that the bivariate Gaussian

hypothesis was also shown to be valid for the path.
5. RESULTS
5.1 Sample Il

The first sample of data, I1, was taken from daytime measurements
on 9.259 MHz on November 30, 1967 from 10:15 to 10:28 MST. During
this 13-min interval, the ionosphere supported three modes, a 1E mode,
a lF mode, and a 2F mode. The time delays on the modes or paths
relative to the arbitrary 200-Hz receiver reference were 40, 290, and
1139 ps. The power ratios for the three paths relative to the power
ratio of the channel, as determined from the analyses, were - 1,2, - 7.2,
and - 13,5 dB,respectively. These data, as well as other pertinent
results obtained in the analyses of sample Il, which are discussed below,
are tabulated in table 4.

In the deterministic fit of H, (fi,t,.) to H,(fx,t,), the fit was made at
seven central frequencies (k= 3, 4, 5, 6, 7, 8, and 9 in fig. 4a). Values
of H (f,t,) for the two outer tones on each side of the band (k= 1, 2, 10,
and 11) were not used in the fit, but the solutions for {Ggy (ts )}-Were used
to compute H, (fy, t;) at all 11 frequencies, so that the error in the {it
could be examined at all 11 frequencies.

The RMS error in the fit, as defined by (72) and (73), is presented
by the dashed lines in figure 9. The errors at the seven frequencies

used in the deterministic fit are shown as unfilled circles; the filled
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Table 4,

Summary of Sample 11 Results

Frequency

Date
Time

9.259 MHz

November 30,

1967

. 10;15 - 10:28 MST; t, = 780 s

Number of paths n=23 ‘
Measurement rate f, = 3.125 Ha
Actual number of values m, = 2437
Channel time delay T, = 137 us
Channel time spread 2p, = 478 us
Channel frequency shift U, = 0.0013 Hz
Channel frequency spread 20, = 0.123 Hz
Estimate of path time spreads 20, = 20 us
Path Values
Rel. Eff. Normalized
Time | Power Freq. Freq. | Number|Correl.} Chi-square
Path | Delay | Ratio Shift ]Spread | Values | Spread Values
- C,.(0) - —
1 T1 RSS(O’ 0) Vi ZOSI Mey €ci X?I > X1z
Us dB Hz H=
la 40 - 4,1] 0.0022]0,0073
1b 40 - 4.3] 0.017010.0318
1 40 - 1,2} 0,0094}10.0272 30.3 0,181 0.04, 0. 47
2 290 - 7.2 0.0089]0.144 198.5 10.071 0.24,0.25
3 1139 -13.5}-0,167 ]0.340 | 469.4 | 0.046 | 0.14,0.26

circles are values

deterministic fit.

of the error at the four frequencies not used in the

As expected, the error levels at the latter four {re-

guencies are higher than at the seven central frequencies. Since the

errors that were introduced by the measuring system were known to be

below - 30 dB, the errors plotted in figure 9 are almost entirely caused
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by the limitations of the deterministic channel model; i.e., the discrete
paths in the deterministic channel model only approximate the nonzero
time spreads of the ionospheric modes.

Had fewer than seven central tones been used in the {it (say five, for
k=4, 5 6, 7, and 8), the average of the errors at these frequencies
would have been lower than the seven-tone average in figure 9, but this
result would have been obtained at the price of a higher average error
for the outer tones not used in the fit, On the other hand, had all 11
tones been used, the average error for the four outer tones (k =1, 2,

10, and 11) would have been lower than in figure 9, but the price for this
would have been an average error higher than that of figure 9 for the'
seven central frequencies. The choice of the number of frequencies
used in the deterministic fit is, therefore, a compromise. The choice
of seven central tones for the deterministic fit of sample Il was believed
to be about optimum,

We examined the error in the deterministic fit also by comparing
E_{d (AL, 0) with E_{m(Af, 0) and ﬁd {0, At) with ﬁm {0, At), in the manner described
by equations (80) and (81). Figure 10 is a plot of the amplitude and phase
components of R-m (Af, 0) and id (Af, 0), as well as the magnitude of their
difference, Computed values were obtained at the 25 values listed in
table 2 and are indicated by the junctions of the line segments in figure 10.
lines were used in the plots because the separation of adjacent computed
points in frequeﬁcy at larger values of Af was too great for a meaningful
curve. Smoothing the error curve in figure 10 and using the ratings of
table 3, we see that the deterministic fit in frequency is excellent for a
bandwidth up to 3.0 kHz, good to about 6.0 kHz, and adequate to about
12 kH=. /

The periods of the cyclic variations in both the amplitude and phase

plots in figure 10 are determined by the differential time delays of the
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paths. As the time delays in table 4 show, the two stronger paths, i =1
and i = 2, have a diffelrential delay of 250 us, whose reciprocal of 4, 0 kHz
agrees with the period of the strongest oscillation in figure 10. The time
difference of the next strongest pair of modes, i = 1and i =3, is 1099 us,
whose reciprocal of 0.9! kHz is also seen in figure 10.

Figure 11 shows R, (0, At) and Ed (0, At) plotted with the magnitude of
their difference; the error is excellent, averaging about 0.01, The
results are considerably better than in figure 10 because the error in
figure 11 is in no way limited by the deterministic channel model; all the
deterministic tap-gain functions can be nonstationary and have whatever
tap-gain correlation functions and tap-gain spectrums are required to
obtain an excellent fit. The fit in figure 11 lacks perfection because of
the least-squares method of obtaining the deterministic fit, and the error
is a direct result of the RMS error in figure 9 at k = 6. On the other hand,
as mentioned above, the discrepancy in figure 10 is almost entirely
caused by the approximation of‘the time-~spread ionospheric modes by
discrete paths in the deterministic model.

In figure 11, as well as in subsequent figures, computed correlation
functions of time, Em (0, At), ﬁd {0, At), and Edi (At), never completely go
to zero as At increases. Even though the functions that are numerically
correlated have true zero correlations for large values of At, the com-
puted correlation functions are based upon a finite amount of data and,
consequently, have nonzero residuals. Therefore, in figure 11 and each
subsequent time-~correlation plot, the computed function is plotted approx-
imately over that portion of the domain where the function exceeds the
residual magnitude and has significance.

Figure 12 presents plots of the tap~gain correlation functions for the
deterministic channel and the statistical channel for path i = 1, as well

as the magnitude of their difference, Figures 13 and 14 are similar
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plots for paths i = 2 and i = 3, In each case, the parameters in the sta-
tistical channel model were determined from a least-squares fit of

C,. {At) to C,, (At) at the indicated data points in the error plots of figures
12, 13, and 14, In figure 12, for path i = 1, two magnetoionic components
were used in the statistical channel model. In figures 13 and 14, for
i=2andi =3, only a single Gaussian spectrum component was used in
the s;:atistica.l channel model, since the deterministic tap-gain correla-
tion functions were both near-Gaussian in shape. From the error curves
in the three figures, we see that the fits were good.

The time delays, frequency shifts, and frequency spreads that were
obtained for each path in the statistical channel, as well as the similar
channel values, are listed in table 4. The resulting tap-gain spectrums
for each of the three paths in the statistical channel are presented in
figure 15, after they had been scaled toc make the channel power ratio,

R_ (0, 0), equal to one. Because of the logarithmic ordinate, the Gaussian
tap-gain spectrums appear as parabolic curves. The frequency spread
on the first 1E mode, 00,0272 Hz, was much less than the 0, 144-Hz
spread on the second 1F mode and the 0, 340-Hz spread on the third 2F
mode, corresponding to its lower fade rate and lenger correlation time.
The third 2F mode has a larger frequency spread than the second 1F
mode as one would expect hecause of the double reflection. For vertical
incidence, it is known that the frequency spread on a two-hop mode will
be greater than the frequency spread on a one-hop mode from the same
layer and reflection point by a factor of »\/E- (Essex and Hibberd, 1967).
However, when the one- and two-hop modes have different oblique inci-
dences and reflection poihts with large geographical separation, as in
the present case, a different ratio of frequency spreads would generally
result, Even for fixed angles of incidence, the ratio of the frequency

spreads would be expe'cted to vary considerably with geography and time,
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but one would usually expect the two-hop path to exhibit a greater fre-
quency spread than a one-hop path in the oblique case. In sample Il, the
ratio of the 2ZF frequency spread to the 1F frequency spread was 2. 36,

A direct measure of the acéuracy of the fit of the statistical channel
to the measured ionospheric channel was made by comparing ﬁs (af, 0)
with R, (af, 0) and R, (0, At) with R_(0, At). Plots of R, (Af, 0) and R, (Af, 0)
are presented in figure 16 with the magnitude of their difference, The
accuracy of the fit of the statistical channel in figure 16 is essentially
the same as the corresponding fit of the deterministic channel in figure
10; based on smoothed error values, the fit in figure 16, as in figure 10,
is excellent to about 3.0 kHz, good to about 6.0 kHz, and adequate to
about 12 kHz. This is not surprising, since the deterministic and sta-
tistical channel have identical delays and power ratios on each discrete
path and, consequently, have identical channel time-scatter functions.
Since ﬁ(ﬂf, 0) is the Fourier transform of the channel time-scatter func-
tion, u(T), E_{d (Af, 0) and EE (Af, 0) are nominally the same. The differences
between figures 16 and 10 are caused by -f{d (Af, 0) being computed by
crosscorrelating H, (f;, t;) according to (74) with "'d" subscripts and
ﬁE(Af, 0) being computed from the statistical channel time-scatter func-
tion via (87) and (88). The RMS values in time of |H, (f,t,)] vary
slightly with '"k'' because of the finite sample size, making R, (Af, 0} differ
from Es (Af, 0), which is based indirectly on all values of "k'". 8Since
figures 10 and 16 are nominally the same, figure 10 is actually redundant.

Based on-averages of values from figure 16 in (95), a rough estimate
of the effective time spread on the ionospheric modes, 2p,, was 20 ps.

If
B =1/[4(2p.)] (110)

is used as an estimate of the bandwidth over which the fit is adequate,
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B = 12,5 kHz results, which agrees with the previous adequate qualita-
tive rating.

Plots of —E_{B(O, At) and ﬁm(o, At) are presented in figure 17 with the
magnitude of their difference. Unlike _I-{d (Af, 8) and —I—is (rf, 0), which are
nominally identical, TR_d (0, At) and Rs (0, At) would be expected to differ
considerably. A comparison of figure 17 with figure 11 confirms ‘this;
the error in figure 17 for R, (0, At} is considerably larger than the error
for ﬁd (0, At) in figure 11. It is greater because the tap~gain spectrums
in the statistical channel are restricted to either one or two Gaussian
functions, while the corresponding tap-gain spectrums in the deterministic
.channel model are unrestricted, Although the error in the statistical fit
in figure 17 is considerably greater than the error=in the deterministic
fit in figure 11, the error averages about 0.06 in the statistical fit,
which is good. When figures 16 and 17 are considered together as a
measure of the accuracy of the fit of the statistical channel to the measured
ionospheric channel, the fit can be ra,téd good for bandwidths up to about
6 kHz and adequate up to 12 kHz,

| Amplitude- and phase-density histograms for each of the tap-gain
functions in the deterministic channel, Gy (t;), were computed and used
in chi-square tests of the bivariate Gaussian hypothesis. Figure 18 is
a plot of the cumulative distributions of {[Gg,(t:}]}, whose computed
values are shown by the circles, The solid lines are the corresponding
distributions for the statistical channel. Also shown, but not used in the
chi-square tests, are the cumulative distributions of |[H, (fy,t.)] for all
11 values of f;, and the corresponding distribution for the statistical
channel. All plots in figure 18 are for R{0,0) = 1, a channel power ratio
of one. As we see, the computed data points for P( ]dei |) for each path
diverge from the ideal Rayleigh lines for both high and low probabilities,
but particularly for the low probabilities, as expected from the theoretical

curves in figure 8,
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Figure 19 shows plots of the distributions of §G{; (t.) for each path
with the corresponding uniform distributions for the statistical channel
model, Also shown, but not used in the chi-square tests, was the distri-
bution of §H} (fy, t;) for all 11 values of £, and the corresponding uniform
distribution for the statistical channel. For pathi =1, p(4 Gy, ) differs
from p(4Gl,) by rather large values bhecause of the small effective numbcr
of independent values, m,, = 30 (table 4). For the second and third paths,
the differences are less because of the larger effective number of inde-
pendent values. For all three paths, the effective number of independent
values was considerably less than the actual number obtained in the A-D
conversion, 2437, The resulting normalized values of chi-square for each
of the 2n = 6 distributions are tabulated in table 4 for a significance level .
of 0.1, Since none of the normalized chi-square values was excessive {> 1),
we concluded that the bivariate Gaussian hypothesis was valid for all 3 paths.

ITo test the independence hypothesis, we computed the magnitude of
the crosscorrelations between the various deterministic tap-gain functions
according to (108), These values are listed in table 5, Since all three
combinations of path pairs had normalized crosscorrélation values less
than one, we concluded the tap-gain :Eunctions,' {Gdi {t; )}, WEere uncor -
related and bhecause they had been accepted as bivariate Ga.ussi;a.n, inde -
pendent.

Table 5. Sample Il Crosscorrélations

Path Pair ] Crasscorrelation
i, 1 ITwe]
1, 2 0. 65
1, 3 0.59
2, 3 g 0. 68

68



To test the Gaussian spectrum hypothesis, (109) was used to com-
pute the approximate RMS value of |C,,(At) - Cy; (At)] for each path, oy -
For paths i = 1, 2, and 3, these values were 0. 181, 0,071, and 0, 046,
respectively, as listed in table 4, Since the error curves in figures 12,
13, and 14 were less than these RMS values over all or most of the three
domains, we concluded the Gaussian spectrum hypothesis was valid for

all paths in sample Il.

5.2 Sample 12

The second sample of data, 12, was taken {rom daytime measure-
ments on 9.259 MHz on November 30, 1967, from 11:10 to 11:20 MST,
approximately 1 hour later than I1. During this 10-min interval, the iono-
sphere supported four modes, a lE mode, a lF mode, an M mode, and
a 2F mode. (An M mode consists of a downward reflection from an F
layer, an upward reflection from an E layer, and a second downward’
reflection from the F layer.) The time delays on the modes or paths
relative to the arbitrary 200-Hz receiver reference Were 40, 290, 590,
and 1126 ps, The power ratios for the four paths relative to the power
ratio of the channel were - 1.7, - 5.9, - 17,6, and - 12. 6 dB,respectively.
These data as well as other pertinent results obtained in the analyses of
sample 12 are tabulated in table 6.

The deterministic fit of H, (fy, t;) to H,(f¢, t; ) was made at seven
central frequencies (k= 3, 4, 5, 6, 7, 8, and 9). The RMS error in the
fit is presented in figure 9 and is roughly the same as for sample I1;
the error is less at the seven central frequencies that were used in the
fit than at the four outer frequencies that were not used in the fit. Again,
the limitation in the accuracy of the fit was almost entirely due to the
limitations of the deterministic channel model; i.e., the discrete paths
in the deterministic channel model only approximate the nonzero time

spréads of the ionospheric modes.
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Table 6. Summary of Sample I2 Results

Frequency 9.259 MHz
Date , November 30, 1967
Time : 11:10 - 11:20 MST; t, = 600 s
Number of paths n=4
Measurement rate f, = 6.25 Hz
Actual number of values m, = 3750
Channel time delay T, = 173 us
Channel time spread 20, = 520 us
Channel frequency shift U, = 0.0171 Hz
Channel frequency spread 20, = 0.140 Hz
Estimate of path time spreads 2ps = 30 Us
Path Values
Rel, Eff. Normalized
Time | Power Freg. Freq. |Number|Correl.| Chi-square
Path | Delay | Ratio Shift Spread | Values| Spread] . Values
i Ty %:—1(—8?—)0) Vi 204, mgy, ey Y1 xfz
LS dB Hz - Hz
la 40 - 4,1 |-0.0008 | 0.0064
1b 40 - 5, 5]0.0127] 0.0084
1 40 - 1,7 10.0071 § 0.0153 15.0 {0.258 | 0.06,0.03
2 290 - 5.9 10.0159]10.180 191,4 10.072 | 0.12,0.23
3 590 -17.6 10.108 0.334 354.7 | 0.053 | 0.48,0.16
4 1126 -12.6 }0.118 0.336 356.8 | 0.053 | 0.42,0.18

Although of no importance in achieving the goals of the present task,
the amplitude and phase distributions of the error in the deterministic
fit, E(fy,t.), were cozhputed and examined as a matter of curiosity, The
amplitude distributions were computed for each of the 11 frequencies,

but, for clarity, only seven are presented in figure 20a. All 11 frequencies
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were used to compute the phase-density histograms in figure 20b. No
chi-square tests were performed on the distributions, but rough estimates
showed that the plots were sufficiently close to the ideal Rayleigh and
uniform distributions, considering the effective number of independent
values, to conclude that E(f,, t.) at each frequency is a bivariate-Gaussian
function with 2 zero mean value and quadrature components with equal
power ratios.

In the regular analyses, we also examined the error in the determi-
nistic fit by comparing f{-d(Af, 0) with E—{m {rf, 0} and E—{d (0, At) with _E_{m (0, At).
Figure 21 is a plot of R, (Af, 0) and R {Af, 0) and the magnitude of their dif-
ference. Smoothing the error curve, we see that the deterministic fit in
frequency is excellent for a bandwidth up to 2.0 kHz, good to about 4.0 kHz,
and adequate to about 8.0 kHz. The bandwidth over which sample I2 had an
adequate deterministic fit, consequently, was about 2/3 of the bandwidth
obtained for sample Il1. The periods of the two strongest cyclic varia-
tions in figure 21 are the same as for sample I1; they should be since the
differential delays of the three strongest modes are essentially the same.

Figure 22 shows _li.d {0, At) and ﬁm(O, At) with the magnitude of their -
difference. The error averages about 0.01, which is excellent. As with
sample I1, it is not perfect because of the small RMS least-squares
error in the deterministic fit at k = 6 in figure 9.

Figure 23 presents plots of the tap-gain correlation functions for the
deterministic .channel and the statistical channel for path i = 1 and the
magnitude of their difference. Figures 24, 25, and 26 are similar plots
for paths i = 2 to 4,respectively. In figure 23 for the 1E mode, path
i =1, two magnetoionic components were used in the statistical channel
to obtain the least-squares fit of Esl (At) to Edl(.&t). The error curve
shows that while the fit is good over most of the domain, it is not as

good between 3 and 25 sec, probably because the effective number of
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independent values was only 15, corresponding to the long correlation
time. As shown in figures 25, 25, and 26, only a single Gaussian-
spectrum component was used in the least-squares fit for the second,
third, and fourth paths, i = 2, 3, and 4. The error curves in all three
cases showed good fits,

The optimum time delays, frequency shifts, and frequency spreads -
for each path in the statistical channel, as'well as similar channel values,
are listed in table 6. .The resulting tap-gain spectrums for each of the
four paths in the statiétical channel are presented in figure 27, which
shows that the 1E mode had a considerably smaller spread than the I
modes, as was the case for sample Il. It is interesting to note that the
ratio of the frequency sprea.ci on the 2F mode to the frequency spread on
the 1F mode is 1. 86, and that the ratio of the frequency spreads on the
2F mode to the M mode is 1.01; i.e., they are essentially the same.
This may be typical, as the F-layer reflection points for the M mode are
geographically close to the F-layer reflection points for the 2ZF mode,
and the E-layer reflection in the M mode contributes negligible spread
compared with the F-layer reflections.

A direct measure of the accuracy of the fit of the statistical channel

to the measured ionospheric channel for sample IZ2 was made by comparing

R, (af, 0) with R, (Af, 0) and R, (0, At) with R, (0, at). Plots of R, (Af, 0) and
R, (2, 0) and the magnitude of their difference are presented in figure 28,
where the accuracy of the fit of the statistical channel is apéroximately
the same as the corresponding fit of the deterministic channel in figure
21, as we would expect, Based on smoothed error values, the statistical
fit is excellent to about 2, 0 kHz, good to about 4.0 kHz, and adequate to
about 8.0 kHz, as it was with the d,eterministic fit. From averages of
values from figure 28 in (95), a rough estimate of the effective time

spread on the ionospheric modes, 2p,, was 30 us., When this value is
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useﬂ in (119), B = 8.3 kHz results, which agrees with the above adequate
qualitative rating. -

Plots of R, (0, At) and R, (0, At) for sample 12 are presented in figure
29 with the magnitude of their difference. Unlike R, (0, At), which is
nearly identical to im (0, At), -ﬁs (0, At} differs significantly from I_K'm {0, At)
because the tap-gain spectrums in the statistical channel model are
restricted to Gaussian functions, Even so, the error curve in figure 29
shows the fit to be adequate over the entire domain and good over most
of the domain. However, from (47) at Af = 0,

‘ a _
R(0, At) = z C,(At) . (111)

i=1

Therefore, the small effective number of independent values in the
strongest first path, which limited the accuracy of the fit of EEI (At) to
-(—Zdl (At), also limited the accuracy of the fit of ﬁs (0, At) to l:_{m (0,7 At); the
largest error in figure 23 between 3 and 25 sec corresponds to the
largest error in figure 29 over the same interval. When figures 28 and
29 are considered together as a measure of the accuracy of the fit of the
statistical channel to the measured ionospheric channel, the fit can be
rated adequate up to bandwidths of about 9 kHHz. However, had the dura-
tion of sample I2 been longer, with a corresponding larger effective
number of independent values for path i = 1 and the channel, the errors
in figure 23 and 29 very probably would have been smaller, allowing a
good rating for bandwidths up to 4. 5 kHz.

Amplitude- and phase-density histograms for each of the tap-gain
functions in the deterministic channel, Gy, (t;), were computed and used
in chi-square tests of the bivariate Gaussian hypothesis. Figure 30

presents plots of the cumulative distribution of |G, (t, )] and figure 31

73



of the phase-density histograms for § Gg, (t,) for each of the four paths,
as well as the lines that represent the corresponding distributions for
the statistical channel. The corresponding amplitude and phase distri-
butions of the rheasured ionospheric channel response, H_ (f., t.), for
11 frequencies, are also presented in the two figures but were not
used in the chi-square tests. All amplitude distribution plots in figure
30 were scaled for a channel power ratio R(0, 0) = 1. The effective
number of independent values for each path, m,;, were 15,0, 191, 355,
and 357 for i = 1 to 4 respectively (see table 6). For a significance level
of 0.1, the resulting normalized values of chi-square for each of the
2n = 8 distributions are tabulated in table 6. Since all of the computed
normalized chi-square values were less than one, we concluded that the
bivariate Gaussian hypothesis was valid for all paths.

To test the independence hypothesis, we computed the magnitude of
- the normalized crosscorrelations between the various deterministic tap- -
gain functions, The values are listed in table 7. The crosscorrelations
for path combinations (1, 3), (1,4), (2,4), and (3, 4) were sufficiently
large to indicate crosscorrelations, but it appears fairly certain that
these indications are false, except possibly for (3, 4), for the following
reason: we know that a '"cross-talk' condition exists in the multitone
method that was used for making ionospheric channel measurements and
subsequentlf obtaihing solutions for {Gy;(t,)}. When any ionospheric
mode has a nonzero time spread, the resulting least-squares fit of
Hy (fy, tp) to Hy(fy, t.) will be less than perfect (|E(fk, ty )[ will be greater
than zero), because the deterministic channel/model has discrete paths,
and errors will appear in the solution for each tap-gain function, Gy, {t;}.
If we assume that a nonzero time spread occurs con only one of the iono-
spheric modes, the error in each tap-gain solution at any instant of

time will be proportionali to the magnitude of that mode, as well as
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Table 7. Sample I2 Crosscorrelations

Path Pair . Crosscorrelation
i | |Tur |
1,2 1.11
1,3 3.74
1,4 2. 88
2,3 0. 83
2,4 1. 62
3,4 5, 59

dependent upon the time spread on the mode. Consequently, the error
component in each tap-gain solution will vary in time according to the
magnitude of the mode with the nonzero time spread; i.e., the error com-
ponents in the tap-gain solutions for the zero-spread modes will be very
highly correlated with the tap-gain function for the mode with the nonzero
time spread, If more than one ionocspheric mode has a nonzero time
spread, components of each tap-gain function will appear in the solutions
for the other tap-gain functions to an extent dependent upon the relative
strengths of the modes. Asg a result of this érossrtalk, tap-gain solutions
for weak modes contain the largest fractional amounts of undesired cross-
talk from other paths, and the strongest cross-talk would be from the
strongest paths. GSince the three highest crosscorrelations in table 7 for
sample 12 were between the strongest mode and the two weakest modes,

(1, 3) and (1, 4), and between the two weakest modes. (3, 4), it appears
fairly certain that the high correlation values are caused by the high
correlations between the relatively strong common cross-talk components.
This probably occurred in sample 12 but not in sample I1 because of the

presence of the very weak M mode {i = 3) in sample 12, which was not
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present in Il, and because the time spfead on the modes was greater in
sample I2. One might argue that the highest crosscorrelation for path
combination {3, 4) may not be entirely fictitious, that the M and 2F rﬁodes
involved have F-layer reflection points that are not widely separated
geographically and that they truly may be correlated to some extent. Un-
fortunately, the cross-talk effect in the multitone method of obtaining
deterministic tap-gain solutions can prevent an accurate determination
of the path crosscorrelations when a weak mode is involved, as in this
sample. Therefore, because it appeared very probable that the high
crosscorrelations in table 7 were caused by cross~talk, we concluded
that it was not possible to say whether the assumption of independence
between the tap-gain functions was valid or not for this sample.

To test the Gaussian spectrum hypothesis, (109) was used to com-
pute the approximate RMS value of |Esi (at) - Edi(At)l for each path,
€. For pathsi=1, 2, 3, and 4, these values were 0,258, 0.072,
0.053, and 0. 053,respectively, as listed in table 6. Since the error
curves in figures 23, 24, 25, and 26 were less than these RMS values
over all four domains, we concluded the Gaussian spectrum hypothesis
was valid for all paths in sample I2.

In concluding the discussion of the sample I2 results, we may note
that had fewer tones been used in the deterministic fit (say k = 4, 5, 6,
7, and 8 over a 2,0-kHz band, rather thank = 3, 4, 5, 6, 7, 8, and 9
over a 3, 2-kHz band), the magnitude of the error in the deterministic
fit, |[E(f,,t.)], woﬁld have been less at these frequencies. The resulting
cross-talk in the deterministic tap-gain functions would have been less,
making the crosscorrelation results more reliable. In general, the
smaller the bandwidth of the fit, the smaller the error of the fit. There
is, however, a lower acceptable limit to the bandwidth occcupied by the

tones used in a deterministic fit: the minimum bandwidth should not be
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much less than half of the reciprocal of the smallest of the differential
propagation times between adjacent modes. For sample 12, this would
be 2.0 kHz as specified by half of the reciprocal of the 250-us differential
time delay between paths i = 1 and 1 = 2. If this condition is viclated too
severely, the measurements lack sufficient time resolution to resolve
the two _closely spaced paths, As a result, additive noise or other errors
of measurement will introduce sizable errors in the tap-gain functions
for the two closely spaced paths, but the error in one tap-gain function
will be the negative of the error in the other so that the time-varying
frequency responses for each of the two paths, Gy, (t.) exp{- j2rT,f), will
when summed provide an accurate time-varying frequency response for
the pair of paths., Since the other tap-gain functions are still accurate,
an accurate channel response, H, ({fyx,t,), is obtained. Even so,’the two
closely spaced paths will have tap-gain functions with large highly cor-
related efrors, and statistical analyses of each of them, such as C,, (At),

will have correspondingly large errors, making the results unacceptable.
5.3 Sample I3

The third sample of data, 13, was taken from nighttime measure-
ments on 5, 864 MHz on November 10, 1967, from 04:17 to 04:30 MST.
During this 13-min interval, the ionosphere supported three modes
whose identification is not certain. The time delays of‘the modes or

- paths relative to the arbitrary 200-Hz receiver reference were 445, 750,
and 1088 us, The power ratios for the three paths relative to the power
ratio for the channel were - 1,63, - 7,65, and - 8,47 dB,respectively.
These data, as well as other pertinent results obtained in the analyses of

sample I3,are tabulated in table 8.
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Table 8. Summary of Sample I3A Results

Frequency 5,864 MHz

Date November 10, 1967
Time 04:17 - 04:30 MST; t, = 780 s
Number of paths n=3

Measurement rate f, = 3.125 Hz
Actual number of values m, = 2437

Channel time delay T, = 589 us
Channel time spread 2p, = 464 us
Channel frequency shift ‘?)B =0.110 Hz
Channel frequency spread 20, = 0.0666 Hz
Estimate of path time spreads 2p, = 100 us

Path Values

Rel. Eff. Normalized
Time | Power Freq. Freq. [ Number | Correl.] Chi-square
Path | Delay | Ratio Shift Spread | Values | Spread Values
i Ty joi('(%(’l%) Vi 204 Mgy Ccy ﬁl’ X3z
MS dB Hz H=z
la 445\ - 3.8 . 0764 . 0360
lb 4451 - 5.7 . 134 . 0320
1 445 | - 1.6 . 0989 . 0658 88.3 .107 ]0.39,0.08
2a 750 | -10.8 |.l121 .0104 .
2b 750 { -10. 6 141 . 0130
2 750 | - 7.7 131 . 0229 30.5 181 ]10.47,0.08
3a 1088 | -12.9 121 . 0149
3b 1088 | -10.4 . 151 . 0206
3 1088 | - 8.5 . 140 . 0335 45,4 .148 10.68,0.11

Two deterministic fits of H; (fy, t,) to H, ({,, t, ) were made from
sample 13 measurements and differed in the number of frequencies that

were used in the least-squares fits, The results obtained from these two

fits were designated I3A and I3B,respectively. In the first deterministic
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fit, I3A, seven central frequencies (k= 3, 4, 5, 6, 7, 8, and 9} were
used; the RMS efror is presented in figure 9. It can be seen that this

fit is not as good as those obtained for the same seven frequencies in
samples 11 and I2. Since, as with the previous samples, the limitation

in the accuracy of the fit is almost entirely due to the discrete-path
approximation in the deterministic channel model, the poorer fit indicates
that the time spread on the nighttime modes in sample I3 was greater
than the time spread on the daytime modes in samples Il and I2.

We also examined the error in the I3A deterministic fit by comparing
R, (Af, 0) with R, (Af, 0) and R, (0, At) with R, (0, At). Figure 32 is a plot of
ﬁd (Af, 0) and ﬁm (rf, 0) and the magnitude of their difference. We see from
the curves that _Iim (Af, 0) decays more rapidly and the error increases
faster with increasing Af than do the corresponding curves in figures 10
and 21 for the daytime measurements, because of the greater time spread
on the modes. If the error curve in figure 32 is smoothed, the determin-
istic fit for sample I3A can be rated good to about 1.2 kHz and adequate
to about 2.4 kHz. The major oscillation in figure 32 has a period of
about 3, 3 kHz, which agrees with the reciprocal of the difference of the
time delays of the first and second paths, 305 us. The 643-us differential
propagation time between the first and third modes produces the oscilia-
tion with a period of 1, 55 kHz in figure 32.‘.

Figure 33 shows E—{d (0, At) and ﬁm(O, At) for sample I3A with the
magnitude of their difference. The error in the {fit is not nearly as good
as the corresponding results for samples Il and I2 in figures 11 and 22, -
because of the greater error in the deterministic fit at k = 6 in figure 9,

Figure 34 presents plots of the tap~gain correlation functions in the
deterministic channel and the statistical channel for path i = 1 in sample
'I3A and the magnitude of their difference. Figures 35 and 36 are similar
plots for paths i = 2 and i = 3, For each of the three paths, two magneto-

ionic components were used in the statistical channel to obtain the
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least-squares fit of Esi {At) to Edi (At). Figures 34 and 35 show that the
fits for paths one and t§vo are excellent. The error for the third path in
figure 36 is rather large between 3 and 10 s; it is very probably caused
by cross-talk from the strong first path that has a correlation time in
figure 34 of about 10 s, |

The optimum time delays, frequency shifts, and frequency spreads
for each path in the statistical channel, as well as similar channel values,
are listed in tabie 8 for sample I3A. The resulting tap-gain spectrums
for each of the three paths in the statistical channel are presented in
figure 37, For each path the power ratios and frequency spreads on the
two fnagnetoionic components are approximately the same and that their
differential frequency shifts are somewhat greater than their frequency
spreads,

A direct measure of the accuracy of the fit of the statistical channel
to the measured ionospheric channel for sample I3A was made by com-
paring R, (Af, 0) with R, (Af, 0) and R, (0, At) with R (0, At). Plots of R, (Af, 0)
and ﬁm (Af, 0) with the magnitude of their difference are presented in
figure 38. The accuracy of the fit of the statistical channel in figure 38
is very nearly the same as the corresponding fit of the deterministic
channel in figure 32, as one would expect; based on smoothed error
values, the statistical fit is good to ahout 1.2 kHz and adequate to about
2.4 kHz, as it was in the deterministic fit. From averages of values
from figure.38 in (95), a rough estimate of the time spread on the iono-
spheric modes was 100 us. When this value is used in (110), B = 2, 5 kHz
results, which agrees with the above adequate qualitative rating.

Plots of I-{d (0, At) and Em {0, At) are shown in figure 39 with the magni-
tude of their difference, In previous samples, Il and 12, ﬁa(O, At) fit
Rm (0, At) less accurately than Ed (0, At) fit im(O, At), because the tap-gain

spectrums in the statistical channel were restricted to Gaussian functions,
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while the deterministic tap-gain spectrums were unrestricted. In sample
I3A, however, the larger time spreads on the modes resulted in greater
error in the fit of R, (0, At) to R, (0, At) (see fig. 33}, Thus, the fit of
ﬁs {0, At) to E_{m(O, At) in figure 39 is not poorer than figure 33; it is some-
what better. When figures 38 and 39 are both considered as a measure
of the accuracy of the fit of the statistical channel to the measured iono-
spheric channel, the fit can be rated as good up to 1.2 kHz and adequate
up to 2.4 kHz., It is considerably more limited in bandwidth than samples
Il and IZ because of the greater time spread on the ionospheric modes.

Amplitude- and phase-density histograms for each of the tap-gain
functions in the deterministic channel, Gy, (t;), were computed and used
in chi-square tests of the bivariate Gaussian hypothesis for sample I3A,
Figure 40 presents plots of the cumulative distribution of |Gys (t:}] and
figure 41 of the phase-density histograms for JG{, (t, } for each of the
three paths, as well as lines for the corresponding distributions for the
statistical channel, The corresponding amplitude and phase distributions
of the measured ionospheric channel response, H, ({f;, t.), for all 11 fre-
guencies, are also presented in the two figures but were not used in the
chi-square tests. All amplitude distribution plots in figure 40 were
scaled for a channel power ratio R{0,0) = 1. The effective number of
independent values used for each path in the chi-square calculations were
88.3, 30,5, and 45.4 for i = 1 to 3,respectively (see table 8), For a
significance level of 0, 1, all the resulting normalized values of chi-
square for each of the 2n = 6 distributions (also tabulated inl table 8) were
less than one. We therefore concluded that the bivariate Gaussian hypoth-
esis was valid for all paths, »

To test the independence hypothesis for sample 134, the maghitude of
the normalized crosscorrelations among the various deterministic tap-

gain functions were computed and are listed in table 9. The probability

81



of one br more of the three being greater than one is 0. 27 when the
paths are truly independent. In addition, the normalized crosscorrela-
tion for path combination (2, 3) was between the two weakest paths and,
even though neither of these paths was extremely weak, the fime spread
on the modes was very large and it appeared fairly certain that the high
correlation was partly the result of cross-talk., We therefore concluded
that the modes in sample I3A were uncorrelated and, because they were

shown to be bivariate Gaussian random functions, also independent.

Table 9. Sample I3A Crosscorrelations

Path Pair . Crosscorrelation
i1 [Ty |
1,2 0.95
1,3 0. 97
2,3 1. 39

To test the Gaussian spectrum hypothesis, (109) was used to com-
pute the approximate RMS values of IEM (at) - (—3di (4t)| for each path &;.
For paths i = 1, 2, and 3, these values were 0. 107, 0.181, and O. 148,
respectively, as listed in table 8. Since the error curves for the first
two paths in figures 34 and 35 were less than these RMS values and the
error curve for the third path in figure 36 exceeded the RMS value only
slightly between 3 and 10 sec, we concluded the Gaussian spectrum
hypothesis was valid for all three paths in sample I3A.

Because the deterministic fit of H, (f,, t; ) to H, (fy, t; ) in sample I3A
resulted in relatively large RMS errors, as shown in figure 9, a second

fit based on fewer frequencies was made to verify that the error would
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be reduced and that the fit of ﬁd (0, At) to ?{m (0, At) would be much better.
Five central frequencies (k =4, 5 6, 7, and 8) were used for the second
least-squares fit of H, (fk, t:) to Hy(fx, t;). The resulting RMS error at
the various frequencies is shown in figure 9 as plot I3B. The error at
the central five tones used in the fit in I3B is much lower than the err0r<
obtained iﬁ the seven-tone fit, I3A, as expected. Although not inéluded
in this report, cornputa.tioﬁs and plots were also made of -I_{d (Af, 0) with
R, {Af, 0) and R, (0, At) with R, (0, At) for I3B. The magnitude of the dif-
ference between ﬁd (Af, 0) and ﬁm (Af, 0) was considerably smaller below
Af = 2.5 kHz for I3B than for I3A in figure 32, and somewhat smaller
above this frequency. The magnitude of the difference between ’—lid (0, At)
and f{m(O, At) was an order of magnitude less for I3B than for I3A iﬁ
figure 33; as with Il and 12, this error averaged about 0. 01 over the
domain. A time limitation prevented additional analyses on samplle 13B;
however, had such analyses been done, the comParison of the statistical
channel with the measured ionospheric channel probably would have

resulted in somewhat lower errors than were obtained for I3A in figures

38 and 39,
6, CONCLUSIONS

An experimental study of the validity and accuracy of a proposed
stationary ionospheric communication channel model has been described.
Reasons for selecting the proposed channel model have been discussed
and methods presented of mathematically characterizing time-varying
channels in general and the proposed channel model in particular.

The preoposed channel model incorporates a delay line fed by the
input (transmitted) signal. Undistorted delayed versions of the input

signal are delivered at a limited number of a,dj_usta,ble‘btaps on the delay
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line, with delays corresponding to the relative propagation times of
typical 1onospher1c modes Each delayed signa.l is fnultiplied by‘ aﬁ
independent baseband complex bivariate Gaussian random function with
a zero mean value and quadrature components having equa.l RMS values
. that produce Rayleigh fading. In general, Aeach random tap—.gain‘function
has a spectrum that is the sum of two Gaussian functions with different
adjustable magnitudes, frequency shifts, and freq{lency spreads. The
two Gaussian spectrum co‘rnbone‘nts represent the two megnetoionic com-
ponents present in ionospheric modes, A si_ngle Gaussian spectrurﬁ can
be used when the magnetoionic conﬁponents have essentially equal fre-
quency shifts and frequenc? sprea.ds  The delayed a.nd mu1t1p11ed s1gnalsl
are summed to form the output (recelved) 51gna1

Various experlmental teehmques were conmderled,. and a description
was given of the methodland specially designed equipment for obtaining
ionospheric channel measurements over a 1294-km mldlatltude path at
two high frequenc1es. Measurements from three per:r.ods or samples of
10- to 13-min duration were analyzed to determme the validity and
accuracy of the statlona.ry cha.nnel model under typ1ca.1 daytime and nlght-
time propagation conditions. The purpose of the analyses was to determlne
the validity of (a) the bivariate Gaussian hypothesis, (b) the hypothesis
of independence between the tap-gain functions, and {(c) the Gaussian
spectrum hypothesis for the tap-gain spectrums; and to determine the
accuracy and bandwidth lirmitation that is imposed on fhe channel model
by nonzero time spreads on the ionospheric modes, which are approxi-
mated by the discrete paths iﬁ the channel model, Based on the statistical
tests, we concluded that the bivariate Gaussian, independence, and
Gaﬁssian spectrum hypotheses Wer‘e valid, confirming the validity of the
proposed ionosp‘heric channel model, We also showed in all three

samples that the bandwidth over which the channel model is reasonably .
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accurate is about one-fourth of the reciprocal of the effective time
spread on the ionospheric modes,

For the samples analyzed, tap-gain functions with single-Gaussian
spectrums could accurately model daytime 1F, M, and 2F modes and
such modes had frequency shifts (positive or negative) up to 0.2 Hz with
two-éigma frequency spreads from 0.1 to 0.4 Hz. In .both daytime
samples, the 1E mode required tap-gain functions with double-Gaussian
spectrums for the {requency-separated magnetoionic components, where
the frequency shifts on the magnetoionic components ranged up to 0. 02 Hz
and the two-sigma frequency spreads fell between 0.005 and 0. 05 Hz.

All modes in the one sample of nighttime measurements required tap-
gain functions with double-Gaussian spectrums, where the shifts on the
magnetoionic components ranged up to 0.2 Hz, and the two-sigma fre-
quency spreads were between 0.01 and 0.1 Hz. The estimated efféctive
time spreads on the modes during the daytime were about 25 Us, which
limited the channel model to a bandwidth of about 10 kHz, For the night-
time sample, the effective modal time spreads were about 100 us, which
limited the channel model bandwidth to about 2. 5 kHz.

A set of recommended specifications for ionospheric channel simula-

tors based on this model is presented in appendix E.
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APPENDIX A
Least-Squares Deterministic Fit

The least-squares method that was used to deterministically fit
H; (fx. t.) to H,(fx, t. ) was applied repeatedly at a regular rate at times
t,, as defined by (70). Therefore, for the present analysis, let the time

notation be dropped and fo;' any time, t,, let

Hy(k) = Hy{fy, t; ), S (112)
Ho (k) = Hy (£, t, ), (113)
E(k) = E(fy, t; ), (114)
Ga; = Gy, (t2) | : (115)

Zy (k) = exp(- j2mT, £, . (116)

Using these definitions in (71) and (72), we have

n
E(k) =Z Gay Zy(k) - Hy(k) . {117)
i=1 ’
Now define :
N :Z RéE E(k) , 7 - {118)
X ‘
by =Z Ik E(k), S {119)
” ,

where the summations over "k mean summations over the frequencies

used in the fit - not necessarily all 11 frequencies.
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To obtain a {fit in an unconventional way, let §, be differentiated with
respect to ReGyy, let 8; be differentiated with respect to ImG,y and set

the results equal to zero to obtain

n
ZRe Gy ZRe Z, (k) Re Zy(k)
i=1 k '

n

~Z Im Gy, Z Im Z, (k) Re Zp(k) =Z Re H, (k) Re Zy(k) , (120)
i=1 k k

$=1, 2, , n,

and. .
n
i=1 k

n

+ Zlm Gq: Z Re Z,(k) Re Zﬁ(k) = ZItn H (k) Re Zﬂ(k) R (1;1)
i=1 k k

£=1,2, ..., n.

pl

Then (120} and (121) are each sets of ''n" equations, one for each value
of "#" in each set. Together they are a set of 2n linear equations in 2n
unknown quantities, the ''n'" values of Re G,, and the '"n"" values of
Im G;;. For each time, t;, the 2n equations were solved simultaneously
on the basis of the Crout algorithm (Crout, 1941) and the solutions were
combined to form the "n'" values of Gy, (t; ).

The above least—square§ method is not conventional, since the
‘derivatives ofz |E(k) IB were not taken with respect to Re Gy, and

k
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Im Gy, to form 2n equations for simultaneous solution, but it resulted in
considerably simpler equations, and computer tests of the method

showed the fits to be comparable to those obtained by-the more involved

conventional method,
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APPENDIX B

Least-Squares Statistical Fit

For each path in each sample, a least-squares fit of C,, (At) to
C41 (At) was made in the following manner. Let
Mg,

5as zz |C, {tet, fm,) - Cg ety /m, ) |2, (122)

1

¢ = integer controlling abscissa spacing of values, and

number of values used in the least-squares fit,

g
1l

and where, from (65), (84), and (67),

_ [Cera(0)/C,y(0)] exp(-ZTrgUfmAtg + J2TN g AL)
C.;(at) = ) (123)
+[1-Caia(0)/C i (0)] exp(-2M7 0%y, AT + j2Tv,y; At)

and

Capp(0)/Cy(0) = [1 - C,p, (0)/C (0)] (124)

Optimum values of V,,, Ve, Ouqas Capr and Cg, (0)/Cyy (‘O) were then
defined as those values that would minimize (122). However, if (123) is .
substituted in (122) and the result is differentiafed with respect to fhe

five unknowns, Vi, Vep: Ogias Ostps anld Cgy, (0)/Cyy (0), with the deriva-
tives being set equal to zero in each case, the resulting five simultaneous
equations are nonlinear and do not lend themselves to analytic solutions.

A program was therefore written for a time-sharing computer that com-
puted numberical values of 85, given numerical values of the five unknowns
and computed values of C,, (At). Typical values of 15 <m, <20 were

used with the integer ''c'" chosen to use values of Cg, {At) over the

significant portion of its domain. (The values of At that were used in
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the least-squares computations are plotted as data points in the various
figures that present plots of Cy,; (At) and C,; (At.) Initial values of the
five unknowns that approximated the optimum values were obtained hy
examining the amplitude and phase plots of Cy; (At); approximate values
of the frequency shifts, v,, and Vg,,, were obtained from § Gy, (At), and
the approximate values of Og,, CTgp, and C4:a (0)/C,, (0) were obtained
from |Cy (At)|. Starting with the initial approximations, solutions for
63, were obtained for a number of equally spaced values of v, that
bracketed the initial approximation. Keeping that value of vg,, that pro-
vided a minimum value of 65, the procedure was repeated for each of
the other four unknown values. The entire process was then repeated
several times until sufficiently accurate estimates of the optimum
values of the five unknowns had been obtained. From (124), C,;,(0)/C,,(0)
was then obtained; since C,; (0) was known from (85), numerical values
for C;,,(0) and C_,;, (0) followed.

Where only one magnetoionic component was used for a path in the
statistical model, the number of unknowns was reduced to two, and the
process was quicker, Even for five unknowns, however, accurate
estimates could be obtained rather quickly. Since relatively few sets of
solutions were rvequired, no attempts were made to prepare a more

involved computer program that could iteratively obtain the same results,
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APPENDIX C
Effective Number of Independent Values

Because successive values of each'detelrrministic tap-gain funetion,
G,; (ty ), were highly correlated in each of the three samples, it was
necessary to compute an effective number of independent values. For
each path, the effective number of independent values was used in the
chi-square tests of the bivariate Gaussian hypothesis, crosscorrelation
tests of the independence hypothesis, and a test of the Gaussian spectrum
hypothesis. _

For any path with a normalized tap-gain correlation function,
Edi(At), the effective ﬁumber of independent values, m,,;, would equal
the actual number, m,, if successive values were spaced by an amount
greater than the time required for the correlation function to fall
essentially to zero. As the adjacent time spacing of the values is de-
creased, however, causing the correlation between successive values
to increase above zero, the effective number of independent values be-
comes less than the actual number of values, As the adjacent spacing is
reduced to a fraction of the decay time of the correlation function, the
effective number of independeht values approaches a constant limit. For
any fixed measurement time, t;, this limit is inversely proportional to
the decay time of the tap-gain correlation function and, therefore, directly
proportional to the effective bandwidth of the tap-gain spectrum. One
can define B,,, the effective bandwidth of the tap-gain spectrum for the
with

i-th path, in terms of m,,

m,, = 2B,,t, . (125)

The factor of two is included to make B,; correspond to the conventional

method of defining bandwidth in terms of the width of the positive half of

g5



the spectrum. Now it is necessary to specify B,; in terms of the
normalized tap-gain spectrum parameters.

Siddiqui {1964) coﬁsidered the problem of the effective number of
independent values for random functions and used an equation that he
considered a reasonably good estimate of the effective number of values.

With the notation used here, this equation is
_2 -1
Mgy = My, [: A (z/fm)] , (126)
. : f =am '

where Z(At) is the normalized real correlation funcfion of a réndorn func -
tion, and l/fm is the time spacing of successive values. To apply this'
equation to the present case, let each normalized tap-gain correlation
function in the statistical channel, E“-(At), be used as an approximation
of the corresponding tap-gain correlation function in the deterministic
channel, Edi’(At). Tvc" keep the é.nalysis simple, let the normalized tap-
gain spectrum, v, {(v), be restricted to a function with even symmetry
about v = 0. This impiies that vy, (v) has a frequency éhift of zerc and
that its two Gaus sian magneto-ionic cdmpohents have equal power ratios,
frequency shifts of the same magnitude but opposite sign, and equal fre-

quenéy spréads. Specifically, the restrictions are

Vg =0, {127)
Csi,a (0) = Caib(o) ! (128}
Vate = “Vaip » (129)

Ogia = Oayp - {130)

From (65) and (84), it follows that
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Eali (At) = GXP(' Zﬂz GE Atz) COS(ZﬂvBia At) ! (131)

sia

where the prime indicates that restrictions (127) through (130) apply.
Because of these restrictions, the tap—gain correlation function in (131)
is real. Now let it replace #(At) in (126) and let the numerator and de-

nominator both be multiplied by (t, /m,) = (1/£,) to give

m,, =t, [ Z CL2 (1t fmy )t /ma]-1 . (132)
-

In computing each Edi (At), successive values of Gy, (t.) had spacings
that were a small fraction of the decay time of Edi (At). Consequently,
since EH(At) is being used as an approximation of Edi(At), the summation

in (132) can be replaced by an integral with good accuracy to give

[=¢]

J -1 )
S mg, = t, [S exp(-4T 05y, At?) cas®(2Tvg,, At) dAt] .- {133)

-0

Equation (133) can be integrated to obtain

myy = Hﬁ Ogra ) [1 4 exp(‘Viin/foa)] . (134)
Note from (125) and (l34) that
Boy = (247 050 ) [1 + expl-V3, /03,0177 (135)

As seen from (135), B, varies from S Oa;s When the two magnetoionic
components have spectrums that are comi;:letely overlapped to Zﬁ Ogia
when their frequency shifts are large compared to their frequency spreads.
Equation (135) can also bé derived I/Jy using the tap-gain spectrum cor-
responding to (131) in the definition for equivalent statistical bandwidth

given by Bendat and Piersol {(1966) in their equation 6. 40c.
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Had restriction (127) not been imposed, the normalized correlation
function in (131) would have had an additional factor of exp(j21 v, At),
causing E;i (At) to be co'mplex with a linear phase component., In this
case, iC;i (At)l could have been substituted in (126) to obtain the same
results in (134). Since the presence or absence of a frequency shift,
Vg, in a tap-gain spectrum does not change the amplitude distribution of
the tap-gain function, (134) is a reasonable estimate to use in the chi-
square tests on the amplitude-density histograms for each deterministic
tap-gain function (even though condition (127} is not met), provided
restrictions {128) through (130) hold. However, it is not reasonable to
apply (134) to chi-square tests of the phase-density histograms unless
restriction (127) is also met. If the tap-gain spectrum, v, (V), has a
sizable frequency shift, this will have been brought about by a corre-
spondingly large linear phase component in the tap-gain correlation
functi'on, _C-ai(At), as specified by {(56). Because Esi (At) is a reasonably
accurate approximation of Edi (At), the phase component of the deterministic
tap-gain function, § Gy;{t.), also has an appreciable linear component.
This will cause Gy, (t;) to move over a 27 interval more rapidly than it
would without the linear phase component, causing the effective number
of values to be greatér. Therefore, restriction (127) was imposed in
order that m,, might also be used as a reasonable estimate of the number
of independent values in the chi-square tests of the phase-density histo-
grams of the deterministic tap-gain functions. Because Gy, (tr) always
had a linear phase component, and quite often a sizable one, G, (t;) had

to be modified to meet the restriction in (127). Specifically,
Giy(tr) = Gyult,) exp(-j2mvayt;) (136)

was computed to cobtain a modified deterministic tap-gain function whose
spectrum had essentially zero frequency shift. The phase-density histo-

grams were then computed from G}, (t, ).
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While restriction (127) was satisfied in the computation of GJ, (t,),
¥*estrictions (128) through (130) remain unsatisfied, For those paths
requiring only a single Gaussian component in the tap-gain spectrum,
v;i(v), restrictions (128) through (130} did not apply. For the remaining
paths, where two magnetoionic components were used in the statistical
fit of (_ZSi(At) to Edi(At), the power ratios and frequency spreads were
usually comparable, making (130) approximately true after the removal

of v,; via (136). Therefore,

[N

Vete = [(Vor = Vita WVate - Vi )] (137)

and

(ML

Tgte = (Osia Gsib) (138) .

were used as averages to replace v,;, and T4, respectively,in (134) to

obtain

Mgy = (4'\/-1'F Cote to} [1 + exp('\)zsie lciie )]-.1 . {139)

Equation (139) was used as an estimate of the effective number of inde-

pendent values in the chi-square tests of the bivariate Gaussian hypothesis,

crosscorrelation tests of the independence hypothesis, and tests of the

Gaussian spectrum hypothesis.
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APPENDIX D
Tests of Correlation Estimates

To test the validity of the Gaussian spectrum Hypothesis for each
tap-gain spectrum, a rough measure was obtained of the distribution that
|T,, (At) - Cyy(At)| would have for a large number of samples under the
same ionospheric channel conditions when the hypothesis was true. Also,
to test the validity of the hypothesis that the tap-gain functions were
independent, an analysis was made to determine the distribution that
|Typ| would have for a large number of independent bivariate Gaussian
tap-gain functions. Derivations for these two distributions are presented
below.

To derive the distribution that [C,, (At) - C,, (At)| would have for a
large number of samples, it is necessary to assume that the bivariate
.Gaussian hypothesis has been shown to be valid and also to derive the
distribution in terms of independent quadrature components in the tap-
gain functions. However, the quadrature components of a bivariate
Gaussian tap-gain function are not independent unless the tap-gain spec-
trum has even symmetry about v = 0. As dis;cussed in appendix C, this
condition can be approximated quite well for any path when the magneto-
ionic components have approximately equal power ratios and frequency
spreads if the linear phase component in the deterministic tap-gain
function is removed according to {136). Equation (136) can be rewritten

’
as

Gyy(tr) = Gy (tr) exp(j2mve t.) , (140)

where the quadrature components of G}, {t.) are effectively independent..

Substitute {(140) in (82) to aobtain
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'
Ina

. l sk
Cqy (At) = exp(jem Vg At) Y z Gii(ty) Gi, (t, + At) . (141)
a

r=1

If Ci, (At) is defined as the autocorrelation of Gf,(t,) according to (82),
then (141) becomes
C.y (At) = exp(j2m v, At) C}; (At) . (142)

To describe the tap-gain and correlation functions in terms of their

real and imaginary (quadrature) components, define

Glylte) = ghslt) + gl (t) (143)
and

ClL(8t) = gy (at) +j ¢!, (at), O (144)

where the single and double bars under the functions indicate real and
imaginary components,respectively,

Using normalized values as defined by (80), substitute (143) in {(141),
perform the multiplication, and equate the real and imaginary parts of

the resulting summation to their counterparts in (144) to obtain

m,

- 1 - - - -

Cay (Bt) =— Z [ggi(tr) gy (te +4t) + gdi(tp) gc'u (t. + 4t)] {145)
r=1

and

m,

— 1 - - — —_

Ci. (At) = -~ [%"ii(tr) ggu(tr + At) - géi(tr) géi‘(tr + At)] ,  (146)
r=1

where the bars above the functions indicate normalized values.
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Under the condition that C—};n (t;) has been shown to be a bivariate
Gaussian random function, each of the components gc{i (t;) and s;g‘('n (t.) are
independent real Gaussian functions with zeroc mean values, Rl\_/IS vah;es
of I/ﬁ, and identical spectrums. Each of the two summations in {145)
and the two summations in (146) are estimates of autocorrelations or
crosscorrelations of the independent quadrature components of E},ii(t,).
While each term in each summation has a non-Gaussian distribution,
this is not true for the surmmation. The effective number of independent
values in each summation, m,; from appendix C, is sufficiently large
to allow the central limit theorem to apply and each summation has a
distribution that is very nearly Gaussian, The variances of the sum-
mations can be conservatively approximated from (Bendat and Piersol,
1966)

Var [ &, (At)] %?]%T [c(0) + c2(At)] (147)

n

and

Var[ € (at)] ~ —=— [c1(0) c5(0) + ;2 (at)] , (148)
2Bt,
where €, (At) is an estimate of ah‘autocorrelation function and cq (At) is
the true correlation function. Similarly, ¢&;5(At) is an estimate of a
crosscorrelation function and ¢, (At) is the true crosscorrelation function.
Both functions that are correlated have spectrums with a common band-
width, B. ’

Apply (147) to the two summations in (145), each of which is an
estimate of an autocorrelation function. Recalling that g&i {t:) and g¢, (t;)
each have RMS values of l/JE, their true autocorrelations at At = O—a.re
1/2 and ¢ (0) = 1/4 for each estimate. Since g('ﬁ (t,) and Bas ({t,) have
identical power ratios and spectrums, let their commeon Tcrute autocor -

relation function be Ti,{At), so that c,(At) = T}, (At) for each estimate.
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Also, since g,(t.) and g};(t,) are independent, each of the two estimates
in {145) will be independent and their variances can be added directly to

obtain the variance of ¢}, (At):

1

2Bt

Var [&],(at)] ~ [-;-+ 2 T2 (at)] . (149)

In (149), T}, (At) will be one-half at At = 0 and approach zero as At

becomes sufficiently large; i.e.,

0
sufficiently large,

1/(2Bt, ), at
1/(4Bt, )}, At

Var [ €4(at)] ~ (150}

Now apply (148) to the two estimates of the crosscorrelations in
(146). Because gi,(t;) and §i,;(t;) are independent, their true crosscor-
relations are zero and Clz(ﬂ;-) in (148) is zero for each estimate; cy (0}
and ¢c;(0) are each 1/2, making their product 1/4 for each estimate,
Then the variance of each of the two estimates in (146)is 1/8]§tm. in
general, however, these estimates for any sample are not independent;
at At = 0, they will be completely dependent and cancel, making the
variance of gfu(O) equal to zero. As At increases, the two estimates in
(146) acquire an increasing degree of independence and when At becofnes
great enough tolma.ke cgy (At) decrease and remain close enough to zero,
the two estimates are effectively independent and their variances can be
summed, Then 7 -

’ At:O

0
=gl |
Var [gdimt)] ~ {l/(4}§tm) , At sufficiently large

(151)

Since the estimates of T}, (At) and c%;(At) will each have Gaussian
distributions for a large number of samples, a zero crosscorrelation

between the estimates will mean that the estimates are independent,
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The crosscorrelation between the estimates is obtained by multiplying

(145) and (146) and taking a statistical average:

Bio(te) Bho (o +0t) By (tg) Bl (tgt 1) ]

Mg My |y g (t, ) Bhy (te+ A) B (gt AL) L, (ty)

1
Saslat) &dy (At) = —3 Z Z 5 g g g
e SR B AUSD- LR UL ALY
=1l r= i

< Bhilte) Bh (6.4 A6 BY, (tg) By (g +AE)
(152)
The order of the averaging and summing can be changed so that an
average bar appears over each term in each double summation. In each
of these terms, there are three 'g';“ factors and one 'g_‘:ii factor, or vice-
versa, Since g, and g, are independent random Va.—r"lables, the average
of the product in each ;erm can be written as the product of two averages

to obtain

r = — = -
Blo (t:) By (to + At) Bl () Bl (tg +AL)

15,

g

+ gc'u (t:) gfn (t, +At) géi (tg+At) By (tp)

1

€. (at) —-E_-:ii(jm.:) = z

m

oo

Bhy (tr) Bl (t+0t) By (tg+ At) By (tg)

=1 1
- B (00 B (6 4200 Bl () Bl (g +00) |
- - - =
(153)
But the average or mean values of §;, and g;, are both zero, so
Cag(8t) Ty (at) = 0 (154)
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and the estimates of ¢, (At) and Tf; (At) are independent. Since these
estimates have Gaussian distributions, E’di (-At) will have a bivariate
Gaussian distribution with independent quadrature components about its
true value for any At, although the variances of the real and imaginary
components W;'Lll, in general, be unequal. If (_J‘Ei (At) is defined by (142)
with "s" subscripts replacing the '"'d"” subscripts, and E;l (At) is the true
correlation function for the tap-gain function, EL'U (t.}, then the same
unequal biva.riaté Gaussian distribution with its mean value removed
applies to E;i(at) - 6&1 (At). Because of the exponential factor in (142),
each esfimate of E&i(/_\t) must be multiplied by the exponential factor to
obtain a corresponding estimate of Edi (At). The bivariate Gaussian dis-
tribution with indepéndent unequal quadrature components that applies for
Cl, (at) - Cl(At) will, therefore, when multiplied by exp(j2mv,, At) be
suitably rotated and will specify the distribution of Eﬂi {At) - _C-Zdi (At). At
At = 0, the distribution Will be real and Gaussian with a variance and
mean-square value of 1/2@@,l . As At increases enough to make Esi(at)
approach and remain near zero, [E“ {At) - (_Jdi (At)l will have a Rayleigh
distribution for a large number of samples (because of the equality of
(150) and (151) for large At), with a mean-square value of 1/2]§tm. While
the mean-square value for intermediate values of At cannot be specified
without knowing the dependence between the two estimates in {146), it
appears likely that it cannot differ greatly from l/2§tm. Therefore,
using {125),

L
€cy ~ (2Bayty) 2 = 1/fmg, (155)

was used as the approximate RMS value of [Esi (At} - Edi (At)| for a large
number of samples for all values of At, where B,,; is the effective band-
width for the tap-gain spectrum and m,,; is the effective number of

independent values for the i-th path, as derived in appendix C.
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It can be argued correctly that ¢, is 2 measure of the RMS value of
the magnitude of the difference between Edi(At) and the true tap-gain cor-
relation function, rather than the RMS value of |Ea1 (At) - Edi(At) l; i.e.,
EM (At) is not the true tap-gain correlation function, but only an estimate
of it. Bwut it is not possible to obtain the true tap-gain correlation func-
tion, so Eai (At) was used in its place. While this undoubtedly degraded
the reliability of the Gaussian spectrum hypothesis tests, the tests were
still felt to be of value. _

To derive the distribution that |[T'yg| in (106} would have for a large
number of samples when the tap-gain functions are bivariate Gaussian
and independent, substitute (143) in (140) and the result in (106) without
the magnitude bars for both paths "i" and '"f". Perform the multiplica-
tion to obtain

1
Mg

1 ‘ [:g-:lii (tr) g:ﬂ(tr) + g'di (tr) gé_,ﬂ(tr )]
Til = m! 2 _ - - exp j2m{veg - Vg ttr -
CO | B Bt - B () Bllt)] s,

For the moment, let it be assumed that the frequency shifts on the
two paths, v, and Vg, are equal to make the exponential factor equal to
one. For a true hypothesis of independence, all four components of the
tap-gain functions, :g‘;-'l {t; ), R (t; ), 'éa&(tr ), and E;ﬂ_(tr ), are independent
and have RMS values of 1/,\/2_. Each of the four summations is an inde-
pendent estimate of the indicated crosscorrelations. The bandwidths for
the tap-gain spectrums for the two paths are generally different, how-
ever, so let B,,p be the larger of the effective bandwidths for the i-th
and £-th paths, B,; and By, as derived in appendix G, Using B,y for B
in (148), the latter can be used to show that the variances of the four
estimates in {156) are each 1/8B.yyt,. Since all four estimates are inde-
pendent, the varia‘nces of the two real estimateé and the variances of the

two imaginary estimates can be added to obtain 1/4B,yt, for the variances
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of the real and imaginary parts of (156). Since they are also independent
and each is the variance of a Gaussian distribution, |1"1£| in (106) will

have a Rayleigh distribution with an RMS value of
' :
e ~ (2Boygty) 2 = 1/4/m,; . (157)

Because B,y, the larger of B,; and By, was used for B in (148) to obtain
(157), any error introduced by this approximation would tend to make
|Tye| smaller than its true value and increase the probability of rejecting
a correct hypothesis of independence (i.e., make the test more difficult).
For this reason, (157) was felt to be a safe approximation.

In computing the estimate T’y for any pair of paths, one can view (156)
as a single summation where each term is a complex number. When
Vgl = Vg, as in the derivation of (157), the amplitude and phase of suc-
cessive terms in the summation differ by an amount that is dependent
upon Bg,g; i.e., the larger B,y the greater the magnitude of the dif-
fefence between successive terms in the summation and the greater the
effective number of independent values in the estirnate of the crosscor-
relation. For the general case, when vy # vy, the exponential factor
in (156) causes the magnitude of the phase difference between successive
terms to be greater on the average than in the special case when vy =
Ve - This causes the effective number of independent values to increase,

thereby making the RMS value of lTiﬂl smaller. However, if
Vet - Vo | << By . (158)

the fractional increase in the average magnitude of the difference be-
tween phase values for successive terms in (156) is correspondingly
small. This produces a very small increase in the effective number of
independent values in the summation and a sirnila.rrly small error in the

RMS value of |I'1£| as specified by (157}, In all three samples of datal
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that were analyzed in the present experiment, the magnitude of the dif-
ferential frequency shift, ‘Va.(l - Vo |, was less than half of B,y for all
path combinations. Since this did not increase the effective number of
indeperident values in (156) by any substantial amount, (157) was used

as a reasonable approximation of the RMS value of ,Tiﬂ in all tests of

the independence of the deterministic tap-gain functions.
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APPENDIX E
Recommended Simulator Specifications

Since the proposed stationary ionospheric channel model has been
shown to be valid and.accurate, it can be used as the basis for the design
of laboratory ionospheric channel simulators. Such a simulator has been
designed and built in the present program (Watterson. et al., 1269). The
use of a valid staticnary channel simulator in laboratory experiments
has several advantag_es (sec. 1) over similar experiments over actual
propagation paths: accuracy, stationarity, repeatability, availability,
range, and cost. However, for experiments to be repeatable when more
than one channel simulator is used, both should not only be based on the
same channel model, but both should be able to reproduce the same
numerical channel parameters. Therefore, we are presenting a set of
ionospheric channel simulator specifications, based on the validated
model of this report, that might be considered for use by others in the
design, construction, and use of ionospheric channel simulators. These
specifications are not being recommended withr the implication that -
improved ionospheric channel models are not possible or that improved
models should not acti%/ely be sought, but only as a suggested guide for
simulator design based on the present model.

The following recommended specifications for a stationary band-
limited icnospheric channel simulator are based on the model illustrated
in the block diagram in figure lb, Let the taps be numbered I, 2, ... i,

. n, and let 7, be the time delay of the i-th tap. Then it can be seen
that the complex time-varying frequency response of the channel model
1s n

H,(f, t} =Z G, (t) exp(-j2mT, {}, (159)

i=1

where G, (t) is the complex tap-gain function for the i-th path.
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For each path, the tap-gain correlation function is

t, /2
\ 13 1 %
C,, (A1) =tllT°° . X G, (t) G,y (t+At) dt, (160)
-ty /2

where the asterisk indicates the complex conjugate and C,.4(0) is the
ratio of the signal power delivered over the i-th path at the model out-
put to the signal power input to the model.
For each path, the tap-gain spectrum is the Fourier transform of
the tap-gain correlation function,
e
Vgy (V) g C,, (At) exp(-j2mvat) dAt . (161)

-

The function v,;{v) has the dimension of time or inverse frequency and is
the ratio of the i-th path output power per unit frequency offset, v, to
the channel input powér. . - . |

The description of the ‘channel model can be completed by specifyiﬁg‘
the characteristics of the tap-gain functions and the tap-gain spectrums.
These are included in the following list of numerical specifications that
are recommended for channel simulators that are based on the channel
model: |

(1) Range of delay, T;: 10 ms minimum in 20-us steps. The

differential delay between any pair of paths shall not differ from
the nominél value by more than 1 percent.

(2) Number of paths, n: Three minimum.

{3) Tavp-gain functions, Gg, (t): Each tap-gain function nominally

shall be an independent complex bivariate Gaussian random
function with a zero mean value and quadrature components

with equal RMS values. Each tap-gain function is defined by
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G,y (t) = Ggya (t) exp(32Tygat) + Gl (t) exp(j2TV 0 t) (162)

where the "a' and "b" subscripts identify the two magnetoionic
components that in general are present in each mode or path.

G |

t1a (£) @and G}p{t) are sample functions of two independent com-

plex bivariate Gaussian stationary ergodic random processes,
each with zero mean values and independent quadrature compo-
nents with equal RMS values. Specifically, if Gi,, (t) is defined

in terms of its real and imaginary components by

o (8) = ghaa(8) + 5 ghua (6, | (163)

then gl,, and gl,, have a joint probability density function

2 12
1 [ glﬁia +5913 ]
o, el = — T o L4
P(gsia gﬂiﬂ- } TC g1a (0) exp C.1.(0) ( )

where C,;, (0} is the autocorrelation function of G}, (t) exp(j2TVv . t)
at zero displacement (At=0) and specifies the ratio of the channel
output power delivered by the magnetoionic component to the chan=-
nel input power. With a suitable change in the '"a" subscripts,
(163) and (164) also apply to Gl (t).

To éxplain the exponential factors in (162), consider
E[ G;:fa (t) Gl (t+ At)] . When this autocorrelation function is
computed in terms of the real and im‘a.gina.ry components in
(163), the cross products will have zero averages because the
real and imaginary components are independent. The resulting
correlation function will be real and have even symmetry about

'

At = 0. Its Fourier transform, the spectrum of G[,, (t}, must

then have even symmetry about v = 0. The same is true for
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tn (t), and the primes in (162) through (164) indicate the func-
tions have spectrums with even symmetry about v = 0. There-
fore, the exponential factors in (162) were inéluded to provide
the desired frequency shifts, v, and vg,, for the magnetoionic
components in the tap-gain spectrum.
Each tap-gain spectrum, v, (v), nominally shall consist
in general of the sum of two Gaussian functions of frequency,

cne for each magnetoionic component, as specified by

1
[C’sia (0)/(2’”0’521& )2] exp[ ~(v - Vsig )2 /(2‘0521&)]
ver (V) = , (165)

1
+ [Con (0)/(2163,)2 ] expl (v - Vyun )7 /(20501 )]

where

Csi (0) = Csia(o) + Csib (0) (166)

and the frequency spread on each component is determined by
204, and 204, . Equation (165) is illustrated in figure 3a.

The tap-gain functions and tap-gain spectrums shall have
characteristics and independently adjustable parameters that
meet the following specifications:

(a) Power ratios, C.,(0) and C,;,{(0): 0to - 60 dB in

1-dB steps, with errors less than £ 2 percent of the
magnitude of the dB level or + 0.25 dB, whichever is
larger.

(b} Frequency shifts, v, and vgp: 0, £0.01, +0.02,

£0.05 £0.1, £0.2, £0.5, =1, £2, £5, £10, £ 20,
+ 50, =100, £ 200, and * 500 Hz with errors less than
+ 2 percent.

(c}) Frequency spreads, 204, and 2044: 0.01, 0.02,

0,05 0,1, 0.2, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, and
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500 Hz with errors less than £ 2 percent,

(d) Spectrum shape: For each magnetoionic component,

the tap-gain spectrum shall not differ from the ideal
Gaussian at any frequency by more than 1 percent of the
maximum value.

(¢) Distributions: The amplitude-density function for

each quadrature component of G!,, (t) and Gl (t) shall

not differ from the ideal Gaussian distribution at any

level up to three times the standard deviation by more
than 1 percent of the maximum (zero-level) value or by
more than the ideal density function itself at higher levels,

{f} Crosscorrelations: The four crosscorrelations be-

tween the quadrature components of Gy, (t) and G}, (t)
shall be less than 2 percent of C,,,(0) and C,,, (0) when
the latter are equal.

(4) Frequency response: The simulator shall have a nominal

bandwidth of 12 kHz. Any 3-kHz sub-band filtering incorpo?rated
to simulate transmitter and receiver RF -IF filtering shall meet
DCA amplitude and time delay responsé specifications for HF
systems (DCA, 1963),

(5) Additive noiset The average power of undesired additive

noise shall be - 55 dB or lower relative toc the average signal
power in the same band.

(6) Nonlinear distortion: The average power of undesired non-

linear distortion components shall be - 40 dB or lower relative

to the average signal power.

In selecting the specific numerical values of delay, frequency shift,

and frequency spread for the specifications above, the ranges of values
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were made large enough to cover those typically encountered in the
ionospheric medium. For the frequency shifts and frequency spreads,

the upper ends of the ranges were extended somewhat beyond the values
typically found in the ionosphere because the added simulator cost is
negligible and the extreme values might be useful in some simulator
experiments. A range of time delays greater than 10 ms was not chosen
because it was felt that the possible advantages would not be worth the
added simulator cost for most applications. While the 20-us a‘djacent
delay spacing is smaller than would usually be required, it is easy to
achieve and could be of value in simulating paths with significant time
spread. The 1, 2, 5 pattern in the frequency shifts and frequency spreads
was chosen because adjacent values have approximately the same separa-
tion on a logarithmic scale and their ratios are conveniently obtained in
digital dividers. The tolerances on the various specifications were made
as large as possible without incurring significant degradation in simulator
performance. 7

In general, the frequency shifts and frequency spreads of the two
magnetoionic components are unequal. However, for some ionospheric-
modes, the shifts and spreads are sufficiently close to being equal that
the tap~gain spectrum can be represented by a single Gaussian function.
In this case, C,(0) becomes zero (i.e., < - 60 dB) in (162), (165), and
(166), causing the tap-gain spectrum to appear as in figure 3b,

In the ionospheric channel model of this report, and in the above
specifications based on it, the specification that the tap-gain functions
are bivariate Gaussian with zero mean values implies that no constant-
amplitude component is present. However, specular components with
or without frequency shifts might reasonably be incorporated in a channel

simulator based on the validated model for two reasons:
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{2) While the measured ionospheric channels that were used
to validate the channel model had no detectable specular com-
ponents and very possibly no skywave ionospheric channels
have specular components (Boys, 1968), short jonospheric
links undoubtedly have a specular component in the ground-
wave.

(b) Specular components that appear in tap-gain spectrums
as Dirac delta functions with selectable frequency shift can
be incorporated with negligible additional cost in simulators

that are based on the validated model.

For these reasons, it is suggested that specular components might
be included in any channel simulator based on the validated model, but
it is recommended that they be excluded in any simulation of HF iono-

sphleric skywave paths.
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Figure 20, Distributions of the magnitudes and phases of the
errors in the deterministic fit in sample 12,
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Figure 22. Channel correlation functions on the time axis for

measured and deterministic channels in sample 12.
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Figure 23, Tap-gain correlation functions for deterministic and
statistical channels on path i=1 in sample I2. .
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Figure 24. Tap-gain correlation functions for deterministic and
statistical channels on path i=2 in sample 12,
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Figure 25. Tap-gain correlation functions for deterministic and
statistical channels on path i=3 in sample I2.
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Figure 26, Tap=-gain correlation functions for deterministic and
statistical channels on path i=4 in sample I2, -
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Figure 27. Tap-gain spectrums for the statistical channel in sai—nple 12,
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Figure 28. Channel correlation functions on the frequency axis for
measured and statistical channels in sample I2.
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Figure 29, Channel correlation functions on the time axis for
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deterministic and statistical channels in sample 12,
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Figure 34, Tap-gain correlation functions for deterministic and

statistical channels on path i=1 in sample I3A.
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Figure 35. Tap-gain correlation functions for deterministic and

statistical channels on path i=2 in sample I3A.
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Figure 36. Tap-gain correlation functions for deterministic and
statistical channels on path i=3 in sample 134,
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Figure 37. Tap-gain spectrums for the statistical channel in sample 13A.,
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