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FOREWORD 

Although circular piling is a much-used structural element in shore 
protection, harbor, and other maritime structures, only recently have 
significant advances been made toward gaining a quantitative understand- 
ing of the forces developed by wave action against piling.    The present 
report deals with this subject. 

The report was prepared at the University of California, Berkeley, 
California.    The work on which the report is based was sponsored by the 
Office of haval Research, U, S. Department of the Navy.    The authors of 
the report are R. C. MacCamy and R. A. Fuchs of the Institute of 
Engineering Research, University of California.    Because of its appli- 
cability to the research and investigation program of the Beach Erosion 
Board, and through the courtesy of the authors,  the report is being 
published at this time in the technical memorandum series of the Beach 
Erosion Bo^rd.    Views and conclusions stated in the report are not 
necessarily those of the Beach Erosion Board. 

This report is published under authority of Public Law 166, 79th 
Congress, approved July 31, iyh$. 
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WAVE FOBCEß ON PILES:    A DIFFRACTION THEORY 

by 
R. C. MacCany and R. A. Fuchs 

Introduction.    This report contains two main results.    In the first 
section an exact mathematical solution is presented for the linearized 
problem of water waves of small steepness incident on a circular cyl- 
inder.    The fluid is assumed to be frictionless and the motion irro- 
tational.    This section includes, in addition to the formal mathematical 
treatment, some simple deductions based on the assumption of very 
small ratio of cylinder diameter to incident wave-length.    The prin- 
cipal results of the theory are summarized, for convenience in calcu- 
lations, in the second section.    Also presented are none suggestions 
as to possible extensions of the theory to take care of more extreme 
wave conditions and other obstacle shapes. * 

The second result is an attempt to apply the theory to the com- 
putation of actual wave forces on cylindrical piles.    The basis of 
comparison is a series of tests performed in the wave channel.    The 
agreement is found to be quite good in the region in which the as- 
sumptions of the theory are fairly closely realized. 

Theory.    The problem of diffraction of plane waves from a circular 
cylinder of infinite extent has been solved both for electromagnetic 
and sound waves.    Only slight modifications are necessary to obtain a 
corresponding solution for water waves incident on a circular pile. 
Reference is made to Morse (l)* especially for the expansions in 
equations 2,  3»  5» and for a survey of the asymptotic developments of 
the Beasel^ Functions. 

The following assumptions are made. The fluid is frictionless 
and moving irrotationally. The ratio of the height of the waves to 
their length is sufficiently small so that all quantities involving 
the parameter (H/L) in the second or higher powers may be neglepted 
without sensible error, thus giving rise to the so-called linear 
theory. The waves are indident on a vertical circular cylinder which 
extends to the bottom.    The deptii of the water is d, finite.  v 

A set of axes x , y, z is chosen with z directed positively up- 
ward from the still-water level.    The cylinder of radius, a, is 
assumed to lie along the z-axis and cylindrical waves are incident 
from the negative x-direction.    The velocity potential of the inci- 
dent wave then may be written, 

SHU   -|H   cosh k Cd * z)      i (kx-at) Cl) 
-       To7       cosh kd v  ' 

♦Numbers in parentheses refer to list of references on page 11 . 



It 1« undamtood here that the actual potential la the real part of 
thin complex «xpreaalon, and that In order to find the physical 
aolutlon in what followa. It la necessary to trke real parts. 

Introducing polar co-ordinates r and 0, equation 1 admits of 
an expansion In cylindrical harmonica, having the formt 

The asetinptlon la now made that the reflected wave admits of a 
similar expansion.   The particular combination appropriate to a wave 
moving outward, symmetrically with respect to 0, that la such that 
0 (. 0) . 0 (0), la, 

A,, coa m 0   f m(kr) ♦ 1 Ym(kr)}   .'i9t (3) 

This oomblnatlon of Bessel Functions la known as the Hankel function 
of the first kind, HraU; (kr), and, for large values of r, has the 
asysptotle formt 

^(DCkr^^e^r-^T) 00 

Hence equation 3 haa, for large value a of r, the form of a periodic 
diaturbanos moving outward in the r direction, with frequency er and 
wave number k, and vanishing at r ■o> . 

For the total velocity potential, 0, there la taken a super- 
position of 0 (1) and an infinite series of terms like the quantities 
A,! are then determined by setting the particle velocity normal to the 
cylinder, that la   jd£ * equal to aero at the surface, r ■ a. 

The result of this calculation la, 

0(kr) - iS^ 
(fee) 

^(ka) 

,.   jj^t    ^jc^   [U^.io^   Ho(2)(kr) 

^, H,,,^' (ka)1*» J 

where Hm^  '(kr) la the Hankel Function of the second kind and equalt 
J.-i Ta«    This result is given by Havalock") for the special case 
of Infinit« depth. 



The pressure exerted on the cylinder Is computed fron Bernoulli's 
equation j 

where, in the li- ar theory,  the squared terms are neglected. 

The x-component of the force, per unit length in the s-direction, 
is, 

Fz • Re 2 j  p (6)    a cos (TT - 0) dfi 

Only the term in cos 0 will contribute to this integral and the result 
after taking the real part may be written as, 

N-^^A^^McC^t..). (7) 
where 

«V  (ka) ,    , i 

Yl,   (ka) A|j1.
2(ka)+T1.

2(ka) 

These functions are plotted in Figures 1 and 2, ka being equal to 
ir D/L, 

The moment about a point z » u, on a cylinder extending to depth 
v below the still-water level may be easily computed from equation 7, 
assuming that the motion of the fluid is the same as if the cylinder 
extended to the bottom*    The expression for the moment is, 

n^ v -      I  (z - u) Fz dz (8) 

To be cv. isistent with the linear theory the integration need only 
be carried up to the still-water level z s 0, the result being 

, . 2g/PH A/ka\  fuk sinh kd-sinh k(d-v)-Tk sinh k(d-Y)*eoah kd 
* Ir •- cosh kd     " 

cosh k(d-v) I      m^m t~ *    ~ \ /n\ - TV . *       cos (O" t -a J (9) cosh kd J x  ' 

The special case of a pile hinged about the bottom is evaluated by 
setting u ■ -d, v s d. 



-   . ijSfH   KM    (k d Binh kd . coBh kd - 1)    ^ (<rt .tt)      (10) 
w j.j conn kd 

Th« fWictlon D (kd) .     1 - coah kd ♦ kd Binh kd   givlng ^ d.p.nd.no« 
coanka 

on depth la plotted In Figure 3« 

An eatimte of the effect of second order terma on the aoaent a^^ 
■ay be Innediately obtained from equation Ö by evaluating that portion 
of the integral from zero to f) .    To the »econd order, for, 

yfm^   nintf-t (11) 

A«u • f     (» - u) F, di -   ^6 H  u   A(ka) ain^t COB    (*t -a )    (12) 

Thia calculation omitn that portion of the  «econd-order tema ariBing 
from the second term in the velocity, but thia latter tens may be ex- 
pected to be amall.    It ia noted that the  result (12) may be obtained 
by aaauming that the force and lever arm are constant over the range 
o 4 t 4ij, having the value at s ■ 0 and multiplying these constant 
values by the length,!)   .    For the special case of a cylinder hinged at 
the bottom the total moment becomes 

mo^-i^fi   A(ka) D(kd) coacrt  [l ♦ j£«jl    ainrtl (13) 

From equation 13 it ia aeen that the maximum moment occurs for, 

(lit) 
1   -fl«2    fi-iBT «in(rti-üts     !    iinral 

k^Tdl2 

Ad 

and has the value obtained by substituting (ft)        into equation 13* 

For cylinders, the diameters of which are amall compared to the 
length of the waves, the foregoing theory admits of aevmral aimplifi- 
catxona.    Asymptotic values of the Bessel's Functions and their 
derivativas are presented for reference in Tsbls IV.    These lead 
immediately to the approximate formulas, 

A(ka)rf. (ka)^ 

a(ka)rj-(ka)2J (16) 



la particular, «quatioo 7 M/ UMH b« rvplaoad tagr 

'.•"••»•' "^.i: ft'* -'» (TO 

In thla for« tlw fore« F, MteiU of • much «i«pler darlTation. 
for a tfav« incidant on a vartical wail «t an arbitrary angla thara la 
ooaplata raflaoiion without loaa of aatror, raaultlng la a total 
praaaura aqual to Wlca that of tha Incidant wava.   AaauHiag that thla 
raault hold« for tha cylinder alao, aa laoldtnt «a«a with valoclty 
potantlal glfan tagr oquatioa 1 «ill giv« rlaa to a raal praaaura, 

PB-fgH   oo* \ (d*t)    ala(ki-(Tt). (17) 
ooah k I 

TSa ramUtlag fore«, F, la thaa ohtalaad by intafratlon aa for 
oquatioa 7* clvlag tha ralatloatfilp 

fK • -2 a/ f H    !I^Ü| .^*^^    f aia (ka ooa 9 - -1) coa 6   69 t coah H        J (lfl) 

But nu    'or aaall ^aluaa of ka, axpondlm tha latagrand la aquation 16 
Clvaa 

fu7'k»fgH   cg^k^d#,J       Joo*~t     kaeea26   6»,   (19) 

which laada again to aquation T,    It la to ba ootad la ooonoetlon 
with thla aquation, that tha foroa %ia Nval to tha »o-callad 
"Ttrtual naaa foroa" la Horlaoa'a raault'*/ prowldod tha «aparlnantal- 
1/ dataradaad eonatant CM la takan aa two.    Tha raault la to ba as- 
pactad alnea an aaaantlal anauaptlon of Horlaoa'a theory la that tha 
for» of tha lacldant wava la Ilttla affactad by tha prwaanoa of tha 
cylindwr.    fro« oquatioa 2} It la aaaa that thla aaauaptloa la 
aqulvalant to tha aaaUaaaa of tha ratio of pila dlaaatar to «ava 
lanfth.    It la to ba notad la thla ooonaetlon that tha axact thaorjr of 
tha praaaat raport rapraaanta an «xtaaalon alaea Ita accuracy doaa 
not dapand on tha ralatlaa alia of tha qjrlladar.    Tha valva of C)| 
quotad öy Noriaen for a aarlaa of aodal atudlaa la naarly 1.5. 

Thla typ« of anal/ala adalta of oartala axtaoalona.    for axaapla 
tha aaaa taehnlqua night ba uaad to obtain foroaa on aora ooapl'oatad 
ahapaa,  tho dljwnaloaa of «dilch ara «all ooa^arad tr tha WMO .angth, 
alnra a knowladfa of tha for« of tha raflactad waf* la not naoaaaary. 
It la alao ahown In tha naxt aaetloa ho« aa aatlaata of tha «ffact 
of ataapar wataa maj ba obtained in a alallar aanaar. 



A more exact analysis of the relativ« effects of the incident 
and reflected waves in possible from the small cylinder theory and 
will offer Justification for the development« of the preceding para- 
graphs.    The surface profile may be obtained from the velocity 
potential, 0, given by equation 5 from the formula, 

s  at 
s ■ 0 (20) 

this gives 

• •as 
1 

(ka) 
COR nO 

(21) 
■] 

where use has been made of the identity, 

(2) Jm(x) H,,^    (x) - Jn'  (x) H,^' (x) . - (2) 2i 
(22) 

Using the asymptotic formulas for the Bessel Functions for small 
values of ka, equation 21 becomes, on taking the real part. 

(tJ^.aV   J   ^1 ♦ h (ka)2 cos2©   sin    (rt-f )        (23) 

where 

tan f i 2ka cos 9 

In the name notation the pressure, at the surface of the pile, in. 

^H 
r    iTKa 

H0
(2),Ck.) 

♦2 I- (2)' 
Hn        (ka) 

con n w 
cosh k (d»z) 

cos or 

or for snail piles, the  real part of equation    2U   given 

p 7 gPH (sincrt ♦ 2ka cos 0 cos^-t) SSI^JLS^) 
conn ka 

•i«t 

(21*) 

(25) 

It can easily be shown that the pressure due to  the incident wave 
only is to the same degree of approximation, 

pW . gpH (nin^t > k a coe 0 cos r t) ^K ^     (26) 

no that the pressure due to the reflected   wave is, 

pW . g/iH ka con 9 cosrt   "^ ^ (27) 



i 

L 

It is observed that the first,  and largest, terra of equation 26 
la Independent of 6 and hence will contribute nothing to the force, 
Fz.    Hence the "effective" pressures due to the Incident wave and 
the reflected waves are Identical.    This Is In contrast to the effect 
on the surface elevation, since equation 23 shows that the deviation 
from that of the incident wave alone is small. 

Summary.    The diffraction of long-crested waves incident on vertical 
circular cylinders extending from above the water surface to the 
bottom is treated exactly within the framework of the linearized 
irrotatlonal  theory.    The essential results are summarized below. 

Letting z be the distance along the cylinder, in the direction 
of its axis, with positive direction upward from the still-water 
level,  the x-component of the force on the cylinder per unit length 
in the z-direction and at depth z. Is, 

P, = J?JLH      S2g|jy^    A(g) cos ((Tt - a ) (28) 

where 

Il' (rg ) 
D,        L A tfJ Vvz ('?)♦»/eg) 

when the surface elevation is given by, 

7). £ sin (k x - tf-t) (29) 

J^ and Y-y are the Bes.sel's Functions of the first and second kinds, 
respectively, and primes indicate dlfferentation.    The functions A 
and a  are plotted in Figures 1 and 2.    Additional values can be ob- 
tained from a set of tables published by the Mathematical Tables 
ProJect(U). 

The corresponding movement on a cylinder extending to depth v 
below the still-water level and hinged at depth u relative to the 
still-water level is given by 

-2a ^H ./Dv   fuk sinh kd - sinh k(d-v) - vk sinh k(d-v) nU'V   • -=jjf- A(f)  |_ ^S-fe » L 

co.-h kd - cosh k(d-v) |        /-♦    - i fin) +    cosh kd    N—^cos(<rt-a) (30) 



In the special case of a cylinder extending to the bottom and 
hinged at the bottom, u ■ - d and v - d and equation 30 becomes 

mo - LSI!      D (kd)     A   (?) cos (<rt - o ) (31) 
k3 A 

where 

D (kd)        1 - cosh kd •*• kd sinh kd 
'^  H cosh kd 

The function D (kd) is plotted in Figure 3.    The moments in this case 
may be easily computed through the use of Figures h and 5.    Asr.uming 
H, T, d, D to be known, the ratio D is found from Figure h and then mo 
computed from Figure 5. E 

For the case of small cylinders, that is,  such that the ratio 
of the diameter to the wave length is small, these formulas may be 
greatly simplified.    This appears to be the most important case as 
is seen by considering Fifmre 2.    For a 1^0 foot ocean wave,  the 
cylinder diameter could exceed fifteen feet without appreciable de- 
viation from the approximate  formulas.    For this condition the functions 

A {£)    anda(^)    may be replaced by 

ACS)S-^£,2    ,       B(g)lJf      (S)2 (32) 

The  force, F2,  then becomes 

F, ^    T 2 ^ tS   P2  ( £ )     cosh j (<* + z)    Co8<rt (28') 1 <r^ L cosh kd 

and the surface elevation at the circumference of the pile may be 
written. 

V z   f  M 1 *   "r   C082 ö sin (^t " f ) (33) 

where 

tan ^   .1«.   cos 6 , 

while the prersure, at depth z, as A function of 0, is 

P.&JIL    5g^|^5lvji Jtx!^    cos2© sin (<rf8) (A) 
L 



where 

tan g =   ^f£      cos 0 

A comparison of equations 29 and 30 indicates the maximum force and 
moment occur almost ninety degrees out of phase with the crest of the 
wave,  that is approximately at the time the wave is passing through 
the still-water level. 

In the formulas thus far presented the linear theory has been 
strictly followed.    Approximations to the effects of steeper waves may 
be obtained by making some additional assumptions.    It has been shown 
previously that in the case of small piles the force, Fz>  given by 
equation 7'   is exactly twice that of the incident wave alone.   Assuming 
that this is a general result,  the second and higher order terms in 
the parameter (Jt) may be introduced into the force calculations.    To 

the second order,  the force obtained in this manner is, 

2 Fz cosh k (d»z)   JTDv    lmm4, ^ jrH, A cosh 2 k (d»z) 

raarra  ' «T
2
' »ln J" * w 

for the surface elevation of, 

^/H = L cos a t ♦ i IT   (?) ctnh kd (1 ♦ ) cos 2v t 
^ ^ L 2 sinh2 ' kd 

(35) 

For purpose of calculation a set of force distribution curves 
has been presented in Figures 6 and 7.    The corresponding monents may 
be computed graphically according to  the following procedure«   For 
the moment about a hinge  at depth z-j   compute Zi/d on the vertical 
scale.    A new curve  then may be plotted with abscissa      z      z-, 

(3 - r'd 

times the old abscissa» and the corresponding moment will be equal  to 
the area under this curve, after multiplication by the respective 
numerical  factors.    The coefficients of the sin  <rt. and sin 2 ff t 
terms in the force equation have been designated FtCl) and Fz^', 
respectively. 

The finite height of the waves introduces a second correction to 
the calculated moments, namely the contribution to the total moment 
of that portion of the wave above or below  the still-water level. 
For a pile hinged at position    u    this correction term is, 
approximately, 



2 
Am,, »  /3g "    u     A ( ? )  cos (<r t - a)  sin (T t (36) 

Comparison with Experiment.    A series of experiments has been carried 
out by Morison^)  in the wnve channel  to measure moments on cylindrical 
piles under varying sets of wave conditions.    The cylinders were 
hinged at varying depths and subjected to regular wave trains which 
were of essentially three typesj moderately steep waves in shallow 
water, steep waves  in deep water and low waves in deep water.    In Table 
are      presented the results of these experiments for piles hinged on 
the bottom in low waves in deep water.    The  theoretical moments, mo, 
computed from the  graphs of Figures k and 5,  are corrected for the 
finite height of the waves by adding   A m j  as given by equation 36, 

In Table II the results Tor the largest cylinder in the same 
wave conditions are presented with the pile hinged at varying depths, 
z.    It is seen that in both of these  tables,  in vhich the actual 
conditions  approximate  the assumptions made  in solution,  the agreement 
is good. 

In Table III  the results for the  first two types of waves are 
presented.    The first three entries correspond to moderately steep 
waves in shallow water,  and the last three  to steep waves in deep water. 
The deviations here are seen to be quite largt-, reflecting the  fact, 
that the waves cannot be closely approximated by sine waves in this 
range of H    and    d  , 

L L 

Conclusions  and He commendations for Further Work,    The rather large 
deviations of the experimental results from calculated values, which 
are indicated in Table III, give rise to the need for a consideration 
of possible  sources of error together with possible modifications. 
In order to obtain agreement with experiment Morison(3) »ias intro- 
duced a second component of force on the pile which he designates as 
a "drag" force.    It has been previously pointed out that his accelera- 
tive  force,  in the   special case of small piles, may be  identified 
with the diffraction theory of this  report,  provided C_ is taken 
equal  to two.    The  introduction of the drag force is tnen equivalent 
to the assumption that drag and diffraction forces may be separated, 
each being considered to act independently of the other, an assumption 
which may not be well justified. 

The force attributed to "drag"  is essentially of two part«.    One 
arises from  the viscosity of the fluid and the corresponding 
frictional drag exerted by the  fluid moving pnst the cylinder.    This 
problem has been considered approximately using Schlicting's  theory 
of periodic boundary layers and the resultr. indicate that frictional 
efects «re unimportant.    The second part of the drag force is due 
to the separation of the line« of flow, with the resultant decrease 

10 



in pressure behind the cylinder.    The wake behind the cylinder is 
then essentially a region of no-motion except for the possible forma- 
tion of vortices.    The exact nature of this wake is not well under- 
stood even for the case of steady flow and very little is known 
about periodic motion,  for then there is continual change with in- 
creasing and decreasing velocity. 

For the diffraction theory presented in this report the motion is 
symmetrical around the  cylinder.    Hence no separation occurs and the 
wake drag must be zero. In light of this result it seems doubtful  that 
the correction due to drag could be made simply by addition of a term 
corresponding to a wake while still maintaining the same diffraction 
force. 

Drag forces are determined experimentally for the case of steady 
flow past a cylinder in the following manner.    The assumption is made 
that the  drag forct is proportional  to  the square of the velocity, 
the diameter of the cylinder and  the density ol  the fluid.    The con- 
stant of proportionality, called Cp,  is tnen determined empirically 
for various valuet, of the Reynolds numuer.    Prison has assumed that 
this result will  also hold for periodic motion,  an assumption which 
needs considerable investigation,  since  the flow behind the cylinder 
may not be able  to ac^j ust rapidly enough to maintain steady state 
conditions.   Some calculations have been made, however, using   Morincn'a 
assumptions and it is found that the introduction of drag does not 
appreciably improve the results. 

The results of this report indicate  that a  great deal of additional 
work might profitably be carried out.    In particular a detailed ex- 
perimental study, with photographs, of  the actual state of motion be- 
hind the cylinder would be of considerable value in estimating the 
effect of drag.    It might be expected that for moderately «nail 
velocities the motion up to a certain point on the cylinder is well 
approximated by the diffraction   theory, while beyond that point the 
flow separates leaving a dead water region.    If this should prove to 
be the case, additional  theoretical results are  possible. 
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• TABLE I 

D              d              H (O  exp. 
(in,)          I              f (ft. lbs.) 

i O.UO 0.037 0.0207 

i o.ia 0.038 0.0203 

1 0.1*0 0.036 0.0903 

1 0,1*0 0.037 0.0998 

2 O.liO 0.037 0.2yl0 

2 O.i*0 0.037 0.290$ 

TAflUlI 

(mo) theo. 
(ft. lbs.) 

mo ♦A mo 
(ft. lbs.) 

0.0202 0.0205 

0.0207 0.0211 

0.080li 0.0816 

0.0813 0.0825 

0.311* 0.320 

0.310 0.315 

D • 2   inches 

1 d 
r f (■0)  exp. 

(ft.  lb«.) 
mj  than, 

(ft? lb«.) 
(mo ♦Awo) 
(ft. Ibn.) 

0.25 0.39 0.037 0.0335 0.0311 0.0373 

0.1*2 0.1*0 0.039 0.0836 0.0808 ' 0,0891* 

o.$2 0.1*0 0.037 0.112 0.110 0.120 

0.68 0.1*0 0.038 0.151* 0.176 0.187 

0.78 0.39 0.037 0.205 0.221 0.232 

0.98 C.1*0 0.037 0.291 0.315 0.320 

0.98 0,1*0 0.037 0.291 0.310 0.315 
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TAdLü; III 

(in.) 
d 
r 

H 
E 

(mo) exp. 
(ft. lbs.) 

(mj,) theo. 
(ft. lbs.) 

(n ♦ Am) 
(ft. lbs.) 

i 0.15 O.OWi 0.1158 • 0.0650 0.0703 

i 0.16 O.OUi 0.0785 0.0Ü08 0.0U28 

i 0.39 0.093 0.3900 0.2065 0.22U0 

2 0.16 o.oii5 0.2205 0.1530 0.1610 

2 0.1*0 C.090 0.962 0.822 0.886 

TABLE IV 

Anymptotic Expansions for Beesel's Function« ana Th«ir 
Uerivatlres for Small x. 

J0 (x)   ^    1 J0«   (x)   A/     - J 

Ji  (x)   ^     \ Jj'   (x)   -^     i 

Jm (x)- *,    (f)" J..   (xK TrlTTf  (|) 

To  (x)^ ^ (In x - r ) lo'   (x^ r z 0.1159 

h   (») ^   - ~ Ii'  (x)'v-^ wx 

«-1 

▼ X 

m - 1 
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