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FOREWORD

Although circular piling is a much-used structural element in shore
protection, harbor, and other maritime structures, only recently have
significant advances been made toward gaining a quantitative understand-
ing of the forces developed by wave action against piling. The present
report deals with this subject.

The report was prepared at the University of California, Berkeley,
California. The work on which the report is based was sponsored by the
Office of Naval Research, U. S. Department of the Navy. The authors of
the report are R. C. MacCamy and R. A. Fuchs of the Institute of
Engineering Research, University of California. Because of its appli-
cability to the researchl and investigation program of the Beach Erosion
Board, and through the courtesy of the authors, the report is being
published at this time in the technical memorandum series of the Beach
Erosion Bosrd. Views and conclusions stated ir the report are not
necessarily those of the Beach Erosion Board.

This report is published under authority of Public Law 166, 79th
Congress, approved July 31, 19L5.
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WAVE FORCES ON PILES: A DIFFRACTION THEORY

, by
R. C. MacCamy and R. A. Fuchs

Y

Introduction. This report contains two main results. ' In the first
section an exact mathematical solution is presented for the linearjzed
problem of water waves of small steepness incident on a cirtular cyl--
inder., The fluid is assumed to be frictionless and the motion irro-
tational. This section includes, in addition to the formal mathematical
treatment, some simple deductions based on the assumption of very
small ratio of cylinder diameter to incident wave-length. The prin-
cipal results of the theory are summarized, for convenience .in calcu-
lations, in the second section. Also presented are some suggestions
as to pos%ible extensions of the theory to take care of more extreme
wave conditions and other obstacle shapes. , - ,

The second result is an attempt to .apply the theory to the com-
putation of actual wave forces on cylindrical piles. .The basis of
comparison is a series of tests performed in the wave channel. The ..
agreement is found to be quite good in the region in which the as-
sumptions of the theory are fairly closely realized.

Theory. The problem of diffraction of plane waves from a circular
cyli%er of infinite extent has been solved both for electromagnetic
and sound waves. Only alight modifications are necessary to optai.n a
corresponding solution for w ten waves incident on a circular pile,
Reference is made to Morse(1)¥ especially for the expansions in
equations 2, 3, 5, and for a survey of the asymptotic developments of
the Bessel's Functionsa,. .

The following assumptions are made. The flunid is frictionless
and moving irrotationally. The ratio of the height of the waves to
their length is sufficiently small so that all quantities involving
the parameter (H/L) in the second or higher powers may be neglegcted
without sensible error, thus giving rise to the so-called linear
theory. The waves are indident on a vertical circular cylinder which
extends to the bottom. The depti of the water is d, finite.,

A set of axes x , y, z is chosen with 2 directed positively up-
ward from the still-water level. The cylinder of radius, a, is
assumed to lie along the s-axis and cylindrical waves are incident
from the negative x-direction. The velocity potential of the inci-
dent wave then may be written,

R I

#Numbers in parentheses refer to list of references on page 11.




It is understood here that the actual potential is the real part of
this oomplex expression, and that in order to find the physical
solution in what follows, it is necessary to teke real parts.

Introducing polar co-ordinstes r and 0, equation 1 admits of
an expansion in c¢ylindrical harmonics, having the form:

¢4, _? %‘.ﬂ [:yo(kr) - ’.'21"003 m @ Jy(kr) O'M}

The assumption is now made that the reflected wave admits of a
sinilar expansion, The particular combination appropriate to a wave
moving ouhurds amtrica.uy with respect to 0, that is such that

g(-0)afp (0

G Mm cOB m 0 @m(kr) + 1 Yy(kr)} 07Ot (3)

This combination of Bzasol Functions is known as the Hankel function
of the firat kind, Hy\l/ (kr), and, for large values of r, has the
asymptotic form:

H, () (k,).,ggi(kr = 3%'—1 v) (L)

Hence equation ) has, for large values of r, the form of a periodic
disturbance moving outward in the r direction, with frequency ¢ and
wvave number k, and vanishing at r s .

For the total velocity potential, §, there is taken a super-
position of P (1) and an infinite series of terms like the quantities
are then determined by setting the particle velocity normal to the
oylinder, that is %2 , equal to zero at the surface, r s a,
r

T result of this calculation is,

H =it . Jo'(ka) (2)
9o g3 eiot miblleen) o) ,ﬁz‘r‘(r) o™ (kr)

Im(ka)
02z‘ in(Jm(kr) -—(z-m)ﬂ‘(Z) (kr)) cos mO] (5)

whare Ba{2)(kr) 1s the Hankel Function of the second kind and equals
“l Yue This result is given by Hawelock 2) for the special case
o 33 S depth.




The pressure exerted on the cylinder is computed from Bernoulli's
equation,

; Ae g P2 .
pardi -f 37V 137 -z (6)
where, in the lir.ar theory, the squared terms are neglected.

The x-component of the force, per unit length in the s-direction,
is,

™
Fz-Rezfop(O) a cos (T - Q) do

Only the term in cos © will contribute to this integral and the result
after taking the real part may be written as,

o PR RS G o (s b0 (D)
vhere
tang = Jl. ___(ka) 3 A (ka) = 1 = S
Y, (ka) Ay 12 (xa) + 1112 (ka)

Thea;ttunctions are plotted in Figures 1 and 2, ka being equal teo
T D/L.

The moment about a point z = u, on a cylinder extending to depth
v below the still-water level may be easily computed from equation 7,
assuming that the motion of the fluid is the same as if the cylinder
extended to the bottom, The expression for the moment is,

n
My,v = [v(z -u) F, dz (8)

To be c..usistent with the linear theory the integration need only
be carried up to the still-water level z = 0, the result being

cosh kd

cosh k(d-v
-ms:‘m—l] cos (ot -a) (9)

The special case of a pile hinged about the bottom is evaluated by
setting u s -d, v = d.

My,y = - 25::3!_!{ A(ka) uk sinh kd-sinh k(d-v)-vk sinh k(d-v)+cosh kd

e

R




o LR sy (LUK oo (gt -a) (0)

The fuction D (kd) « 1.—cO8h ::5]: {g ainh kd oiving the dependence

on depth is plotted in Figure 3.
An eatimate of the effect of second order terms on the moment m,,,

may be immediately obtained from equstion 8 by evaluating that portion
of the integral from zero to 7) . To the second order, for,

11-% sing t (11)

"
An, -_[ (s = u) Fg d8 » ’_ET“?_‘.‘ A(ka) sinet cos (ot -a ) (12)

This calculation omits that portion of the second-order terms arising
from the second term in the velocity, but this latter term may be ex-
pected to be small. It is noted that the result (12) may be obtained
by assuming that the force and lever arm are constant over the range
063 &7, having the value at z « O and mul tiplying these conatant
values by the length,?”) . For the special case of a cylinder hinged at
the bottom the total moment becomes

oDy = %ﬂi A(ka) D(kd) coset [1 * %)sm't] (13)

From equation 13 it is seen that the maximum moment occurs for,

sin (@ ), -

T 52
1 -d1e2 [k H d
75(“) (1)
o k°Hd
D (kd]

and has the valus obtained by substituting (tt)m ilnto equation 13.

For cylinders, the diameters of which are small compared to the
length of the waves, the foregoing theory admits of several simplifi-
cations. Asymptotic values of the Bessel's Functions and their
derivatives are presented for reference in Table IV. These lead
immediately to the approximate formulas,

Ake) T ¥ (ka)?
a(a) YL (ka)? (16)




In particular, equation 7 may then be replaced by

2 coah k (des (1)

Poov/ gl ka ol cosct

In thin form the force Fg adaits of s much simpler derivation.
For a wvaw incident on » vertical wvall at an srditrary angle there is
complete reflection without loss of energy, resulting in s total
pressure equal to twice that of the incident wave. Assuming that this
result holds for the cylinder also, an incident vave with welocity
potential given by equation 1 will give rise to s real pressure,

pe-PgH cosh k (des) gin (kx -ot). (17)
cosh k d

T™he resulting force, F, ia then obtained by integration as for
equation 7, giving the relstionship

P, o -2, ¢H %’-’1 fﬂn (ka cos @ - ~t) cos @ “(18)

But nv. %or mmall values of ks, expanding the integrend in equation 18
given

-

?,7-&.;;)! %_"tsgﬂ). f;ouh—'t ke con’0 @, (19)

which leads agein to equation 7'. It is W be noted in connection
vith this equation, that the force K is to the so-called
“virtual nass force® in Morison's result provided the expsrimsntal-
ly determined constaat is taken as two. The result is to be ex-
pected aince an essential ansumption of Morison'as theory is that the
form of the incident wave is 1ittle affected by the presence of the
cylinder. From equation 2] it is seen that this assumption is
equivalent to the smallnees of the ratio of pile diameter to wave
length. It is o be noted in this coansction that the exact theory of
the present report represents an extenaion since its accuracy does
not depend on the relstive size of the cylinder. The value of Cy
quoted bty Morison for a series of model studies is nearly 1.S.

This type of analysis admits of certain extensions. For example
the same technique might de used to odbtain forces on more compl’cated
shapen, the dimensiona of which are mmall compered tc the wawe .ength,
since a knowledge of the form of the reflected wvave is not nescessary.
It 1s aleo shown in the next mection hov an estimste of the effect
of steeper vaves may be obtained in a similer manner,




A more exact analyais of the relative effects of the incident
and reflected waves is possible from the small cylinder theory and
will offer justification for the developments of the preceding para-
graphs. The surface profile may be obtained from the velocity
potential, @, given by equation 5 from the formula,

1
". -‘- gt! ¢ s 0 (20)
this gives
<He" it Q
‘Q)'l as e L—-q-(g)-l—(—k—a—)—- ”.' in m) c:s 1)19]
2
where use has been made of the identity,
In() 1" (x) - 0t () #(® (x) & - B (22)

Using the asymptotic formulas for the Bessel Functions for smell
values of ka, equation 21 becomes, on taking the real part,

(N)paa¥ g- A[lob(ka)z con®® sin (et -y) (23)
vhere
uni' =z 2ka cos ©

In the same notation the pressure, at the surface of the pile, isa,

cosh k édoz)
cos g-iot

_EPHY 1 n__1_ o
P= 5-“ (2)' +2 " i ()" cos n

(ka) H' " (ka) (L)
or for small piles, the real part of equation 2L gives

gPH (sinot « 2ka cos @ coset) -ﬂg—:ﬁ-&d—‘ﬁ) (25)

It can easily be shown that the pressure due to the incident wave
only is to the same degree of approximation,

p(i) 2 gPH (sinot + k a cos @ cos & t) OBhak qes (26)

so that the pressure due to the reflectsd wave is,

p(i) s gpH ka cos @ coset ﬂ%ﬁ-ﬁ%ﬂ (27)




It is observed that the first, and largest, term of equation 26
is independent of 6 and hence will contribute nothing to the force,
F,. Hence the "effective" pressures due to the incident wave and
the reflected waves are identical. This is in contrast to the effect
on the surface elevation, since equation 23 shows that the deviation
from that of the incident wave alone is small.

Summary. The diffraction of long-crested waves incident on vertical
circular cylinders extending from above the water surface to the
bottom is treated exactly within the framework of the linearized
irrotational theory. The essential results are summarized below.

Letting z be the distance along the cylinder, in the direction
of its axis, with positive direction upward from the still-water
level, the x-component of the force on the cylinder per unit length
in the z-direction and at depth z, is,

P, s 2PEH coshklds) 4Py cos (0t -a) (28)
where
tan d = Jl' ("g )
I (ﬂg )
A P =

N PR 2 D
Nt (D) ex (D)
when the surface elevation is given by,
'n:gain (kx - ot) (29)

Jy and Y, are the Bessel's Functions of the first and second kinds,
respectively, and primes indicate differentation. The functions A
and @ are plotted in Figures 1 and 2. Additional values can be ob-
tained from a set of tables published by the Mathematical Tables
Project(y).

The corresponding movement on a cylinder extending to depth v
below the still-water level and hinged at depth u relative to the

still-water level is given by
-2gPH , /D uk sinh kd = sinh k(d-v) = vk sinh k(dev)
My,vy = —f;— A(f) f

coah kd

, Soch kdc; cosh k(d-v ] cos (0t -a) (30)




In the special case of a cylinder extending to the bottom and
hinged at the bottom, u = - d and v = d and equation 30 becomes

. 2gPH D -
Mo _153— D (kd) A (K) cos (ot -a ) (31)
vhere
D (kd) = 1l ~ cosh kd + kd sinh kd

cosh kd

The function D (kd) is plotted in Figure 3. The moments in this case
may be easily computed through the use of Figures L4 and 5. Assuming
Hy T, d, D to be known, the ratio D is found from Figure L and then m,
computed from Figure 5. L

For the case of small cylinders, that is, such that the ratio
of the diameter to the wave length is small, these formulas may be
greatly simplified. This appears to be the most important case as
is meen by considering Fipure 2. For a 150 foot ocean wave, the
cylinder diameter could exceed fifteen feet without appreciable de-
viation from the approximate formulas. For this condition the functions

A (%) andd(-g) may be replaced by

2
Dy~ ¥ /D : Dy~ ¥? D,2
A(L)z T‘L) ; d(r)-—r (L) (32)
The force, F,, then becomes
2 2
v~ WC P g D° H cosh k (d + z) % 281
Fa 2 T (f) ~coshkd S (281)

and the surface elevation at the circumference of the pile may be
written,

2
n - g-\[1+ ﬁ:ﬂz_ coszesin(O’t-*) (33)

where
tan ¢ -IID cos & ,

while the precrsure, at depth 2z, as a function of @, is

2
Ps eﬁ?}-l— %ﬁl\/} +ILLL2.D_2 cos%® sin (ot +d) (34)




where

tan § = 2mD cos ©

L

A comparison of equations 29 and 30 indicates the maximum force and
moment occur almost ninety degrees out of phase with the crest of the
wave, that is approximately at the time the wave 1is passing through
the still-water level,

In the formulas thus far presented the linear theory has been
strictly followed. Approximations to the effects of steeper waves may
be obtained by making some additional assumptions. It has been shown
previously that in the case of small piles the force, F,, given by
equation 7' is exactly twice that of the incident wave alone, Assuming
that this is a ﬁeneral result, the second and higher order terms in
the parameter (f) may be introduced into the force calcuwlations. To

the second order, the force obtained in this manner is,

2 F
2 cosh k (d+z) (ﬂD (H 3 cosh 2 k (dez)
- = singt ¢
PTgDH =  coshkd )( ainh’kd cosh kd

1 ) (ZID)

“ 3 ainh 2 kd sin 20t ()

for the surface elevation of,

1 3

H
=w (=) ctnh kd (1 ) cos 20t
L L 2 ainh® ' kd

N/H = %_ cos gt ¢+
(35)

For purpose of calculation a set of force distribution curves
has been presented in Figures 6 and 7., The corresponding moments may
te computed graphically according to the following procedure, For
the moment about a hinge at depth 27 compute zy /4 on the vertical
scale, A new curve then may be plotted with abacissa 2 3
(3 =3
times the old abacissa, and the corresponding moment will be equal to
the area under this curve, after multiplication by the reapective
numerical factors. The coefficients of the sin ot, gnd sin 2 t
terms in the force equation have been designated F, 61 and F
respectively.

The finite height of the waves introduces a second correction to
the calculated moments, namely the contribution to the total moment
of that portion of the wave above or below the still-water level.

For a pile hinged at position u this correction term is,
approximately,




PE H2 D
Amus__T(_“ A(-f)cos(O't-O.) sin ot (26)
Comparison with Experiment., A series of experiments has been carried
out by Morisonl>) in the wave channel to measure moments on cylindrical
piles under varying sets of wave conditions. The cylinders were

hinged at varying depths and subjected to regular wave trains which

were of essentially three types; moderately steep waves in shallow

water, steep waves in deep water and low waves in deep water. 1In Table I
are presented the results of these experiments for piles hinged on

the bottom in low waves in deep water. The theoretical moments, my,
computed from the graphs of Figues L4 and 5, are corrected for the

finite height of the waves by adding Am_d as given by equation 36.

In Table II the results ror the largest cylinder in the same
wave conditions are presented with the pille hinged at varying depths,
z. It is seen that in both of these tables, in yhich the actual
conditions approximate the assumptions made in solution, the agreement
is good.

In Table III the results for the first two types of waves are
presented. The first three entries correspond to moderately steep
waves in shallow water, and the last three to steep waves in deep water.
The deviations here are seen to be quite large, reflecting the fact
that the waves cannot be closely approximated by sine waves in this
range of H und d .

L L

Conclusions and Recommendations for Further Work. The rather large
deviations of the experimental results from calculated values, which
are indicated in Table I11I, give rise to the need for a consideration
of possible sources of error together with possible modifications,

In order to obtain agreement with experiment Morison(3) has intro-
duced a second component of force on the pile which he designates as

a "drag" force. It has been previously pointed out that his accelera-
tive force, in the special case of small piles, may be identified ,
with the diffraction theory of this report, provided C_ is taken

equal to two. The introduction of the drag force is J\‘en equivalent
to the assumption that drag and diffraction forces may be separated,
each being considered to act independently of the other, an assumption
which may not be well justified.

The force attributed to "drag" is essentially of two parts. One
arises from the viscosity of the fluid and the corresponding
frictional drag exerted by the fluid moving past the cylinder., This
problem has been considered approximately using Schlicting's theory
of periodic boundary layers and the results indicate that frictional
effects are unimportant., The second part of the drag force is due
to the separation of the lines of flow, with the resul tant decrease

10




in pressure behind the cylinder. The wake behind the cylinder is
tnen essentially a region of no-motion except for the possible forma-
tion of vortices. The exact nature of this wake is not well under-
stood even for the case of steady flow and very little is known
about periodic motion, for then there is continual change with in-
creasing and decreasing velocity.

For the diffraction theory presented in this report the motion is
symmetrical around the cylinder. Hence no separation occurs and the
wake drag must be zero. In light of this result it seems doubtful that
the correction due to drag could be made simply by addition of a term
corresponding to a wake while still maintaining the same diffraction
force.

Drag forces are determined experimentally for the case of steady
flow past a cylinder in the following manner. The assumption is made
that the drag force is proportional to the square of the velocity,
the diameter of the cylinder and the density of the fluid. The con-
stant of proportionality, called Cp, is then determined empirically
for various value: of the Reynolds numuver. ‘orison has assumed that
this result will also hold for periodic motion, an assumption which
needs considerable investigation, since the flow behind the cylinder
may not be able to adjust rapidly enough to maintain steady state
conditions. Some calculations have been made, however, using Moriscn's
assumptions and it is found that the introduction of drag does not
appreciably improve the resul ts.

The results of this report indicate that a great deal of additional
work might profitably be carried out. In particular a detailed ex-
perimental study, with photographs, of the actual state of motion be-
hind the cylinder would be of considerable value in estimating the
effect of drag. It might be expected that for moderately small
velocities the motion up to a certain point on the cylinder is well
approximated by the diffraction ‘heory, while beyond that point the
flow separates leaving a dead water region. If this should prove to
be the case, additional theoretical resul ts are possible.
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(ng _L T
4 0.4L0 0.037
$ 0.l 0.038
1 0.L0 0.036
| 0.40 0,037
2 0440 0,037
2 0.40 0,037
i T
0,25 0.% 0,037
0.u2  0.LO 0,039
0.52  0.LO 0,037
0.68 0.L0 0,038
0,78 0439 0,037
0.98 0L 0.037
0.98 0440 0,037

* TABLE 1

(ft.)1§:p5 é‘t.)lg}:()’. (?‘%fﬁ?)
0.0207 0.0202 0.0205
0.0203 0.0207 0.0211
0.0903 0,080k 0.0816
0.0998 0.0813 0.0825
0.2910 0,314 0.320
0.2905 0,310 0.315
TABLE II
D s 2 inches
et S ot i AT
0.0335 0.0311 0.0373
0.0836 0.0808 " 0,089
0.112 0.110 0.120
00154 0.176 0.187
0.205 0.221 0,232
06291 04315 0.320
0.291 0.310 0.315
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TABLE III

D d H (mg) exps (my) theo. (m+Am)
(4n.) I L (ft. 1bs.) (ft. 1bs.)  (ft. lbs.)
% 0.15 0.0lL 0.1158 - 0,0650 0,0703
1 0,16 0.0LL 0.0785 0,0L03 0.0u28
1 039 0.093 0. 3900 0.2065 0.2240
2 0.16 04045 042205 0.1530 0.1610
2 0.L0 0.090 0.562 0,822 0.886

TABLE IV

Asymptotic Expansions for Bessel's Functions ana Their
Derivatives for Small x.

Jo (x) ~ 1 o' (x) ~ -3
Jy (x) ~ 3 ' (x) ~ %
m=1
In ()~ gy (B It (O~ =2y, ()
Yo (x)~ 3 (lnx -Y) ' (xk;—;': Yy = 0,1159
2 , 2
Yl (x) ~ e !1 (X)NJ
- m m-1
Y, ()~ - 2L 1, (o~ B (&)
m>o0
13
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