WAVE FORCES ON PIIISS: A IIIFRRACTION THEORY
R. C. Maccamy, clal

Corps of Engincer
Washington, I). (.
December 10.54

This document has been approved lor public release and sale.

oñ of print

FILE CUPY RETDRN TO CICH EROSIOM BOARD

This document has beon approved
for public releaso and sale;
its distribution if unlimited.

WAVE FORCES ON PILES: A DIFFRACTION THEORY

r.
. 1.

TECHNICAL MEMORANDUM NO. 69
BEACH EROSION BOARD CORPS OF ENGINEERS

FOREWORD

Although circular piling is a much-used structural element in shore protection, harbor, and other maritime structures, only recently have significant advances been made toward gaining a quantitative understanding of the forces developed by wave action against piling. The present report deals with this subject.

The report was prepared at the University of California, Berkeley, California. The work on which the report is based was sponsored by the Office of Naval Research, U. S. Department of the Navy. The authors of the report are R. C. MacCamy and K. A. Fuchs of the Institute of Engineering Research, University of California. Because of its applicability to the researct. and investigation program of the Beach Erosion Board, and through the courtesy of the authors, the report is being published at this time in the technical memorandum series of the Beach Erosion Board. Views and conclusions stated in the report are not necessarily those of the Beach Erosion Board.

This report is published under authority of Public Law 166, 79th Congress, approved July 31, 1945.
Page No.
Introduction 1
Theory 1
Summary 7
Comparison with Experiment 10
Conclusiors and Recomendations for Future Work 10
References 11
Tables 12
Figures 7.4

WAVE FORCES ON PIIES: A DIFFRACTION THEORY

by

R. C. MacCamy and R. A. Fuchs

Introduction. This report contains two main results. In the first section an exact mathematical solution is presented for the linearized problem of water waves of amall steepness incident on a circular cyl-. inder. The fluid is assumed to be frictionless and the motion irrotational. This section includes, in addition to the formal mathematical treatment, some simple deductions based on the ansumption of very small ratio of cy linder dameter to incident wave-length. The principal results of the theory are numarized, for convenience in calculations, in the second section. Also presented are same alaggestions as to possible extensions of the theory to take care of more extreme wave conditions and other obstacle shapes.

The second result is an attempt to apply the theory to the com-: putation of actual wave forces on cylindrical piles. The basis of comparison is a series of tests performed in the wave channel. The . agreement is found to be quite good in the region in which the assumptions of the theory are fairly closely realized.

Theory. The problem of diffraction of plane waves from a circular cylinder of infinite extent has been solved both for electromagnetic. and sound waves. Only slight modifications are necessary to obtain a corresponding solution for water waves incident on a circular pile. Reference is made to Morse (1) especially for the expansions in equations $2,3,5$, and for a survey of the asymptotic developments of the Bessel's Functions.

The following assumptions are made. The fluid is frictioness and noving irrotationally. The ratio of the height of the waves to their length is sufficiently small so that all quantities involving the parameter (H / L) in the second or higher powers may be neglected without sensible error, thus giving rise to the so-called innear theory. The waves are indident on a vertical circular cylinder which extends to the bottom. The deptin of the water is d , finite. is

A set of axes x, y, z is chosen with z directed positively upward from the still-water level. The cylinder of radius, a, is assumed to lie along the z-axis and cylindrical waves are incident from the negative x-direction. The veiocity potential of the incident wave then may be written,

$$
\begin{equation*}
\phi(i)=-\frac{g H}{2 \sigma} \frac{\cosh k(d+z)}{\cosh k d} e^{i(k x-\sigma t)} \tag{1}
\end{equation*}
$$

*Numbers in parentheses refer to list of references on page 11.

It is understood here that the actual potential is the real part of this complex expreasion, and that in order to find the physical solution in what follows, it in necessary to tike real parts.

Introducing polar comordinates r and θ, equation 1 admits of an expanaion in cyilndrical harmonics, having the formi

The asaumption in now made that the reflected wave admita of a nimilar expanaion. The particular combination appropriate to a wave moving outward, nymetrically with respect to θ, that in nuch that $\theta(-0)=(0), 18$,

This combination of Bessel Punctions is known as the Hankel function of the firat kind, $H_{m}(1)(k r)$, and, for large values of r, has the asymptotic formi

$$
\begin{equation*}
\left.H_{m}(1)(k r) \infty \sqrt{\frac{2}{k r}} e^{i\left(k r-\frac{2 m-1}{4}\right.} \tau\right) \tag{4}
\end{equation*}
$$

Hence equation 3 has, for large values of r, the form of a periodic disturbance moving outward in the r direction, with frequency σ and wave number k, and vaniahing at $r=\infty$.

Por the total relocity potential, ϕ, there is taken a superposition of (1) and an infinite seriss of terms like the quantities A_{m} are then determined by eetting the particle velocity normal to the osinder, that is $\frac{\partial \delta}{r}$, equal to zero at the surface, $r=a$.

The romult of this calculation is,
$1 \cdot \frac{A}{i t} e^{-1} \frac{\cosh k(d+z)}{\cosh k d}\left[J_{0}(k r)-\frac{J_{0}(k a)}{H_{0}^{(2)}(k a)} H_{0}^{(2)}(k r)\right.$

$$
\begin{equation*}
\left.+2\} \quad i^{m}\left(J_{m}(k r)-\frac{J_{m}(k a)}{H_{m}(2)(k a)^{H_{m}}}(2) \quad(k r)\right) \cos m 0\right] \tag{5}
\end{equation*}
$$

where $H_{m}{ }^{(2)}(k r)$ is the Hankel Punction of the second kind and equals $J_{\text {moi }}$ In This result is given by Hawlock(2) for the npecial case of infinite depth.

The pressure exerted on the cylinder is computed fron Bernoulli's equation,

$$
\begin{equation*}
\left.p=f \frac{\partial \zeta}{\partial t}-\frac{f}{h} \quad\binom{\partial \phi}{\partial}^{2}+i \partial \phi\right)^{2}-g f Z \tag{6}
\end{equation*}
$$

where, in the lir,ar theory, the squared terms are neglected.
The x-component of the force, per unit length in the s-direction, 1s,

$$
F_{2}=\operatorname{Re} 2 \int_{0}^{\pi} p(\theta) a \cos (\pi-\theta) d \theta
$$

Only the term in cos θ will contribute to this integral and the result after taking the real part may be written an,

$$
\begin{equation*}
F_{z}=\frac{2 \rho_{\mathrm{g}} H}{k} \frac{\cosh k(d+z)_{A}}{\cosh k d}(k a) \cos (\sigma t-\alpha) . \tag{7}
\end{equation*}
$$

where

$$
\tan a=\frac{J_{l} I^{\prime}(k a)}{Y_{1}{ }^{\prime}(k a)} \quad ; \quad A(k a)=\frac{1}{\sqrt{J_{1}{ }^{2}(k a)+Y_{1}{ }^{\prime 2}(k a)}}
$$

These functions are plotted in Figures 1 and 2, ka being equal to $\pi \mathrm{D} / \mathrm{L}$ 。

The moment about a point $z=u$, on a cylinder extending to depth v below the still-water level may be easily computed from equation 7 , assuming that the motion of the fluid is the s ame as if the cylinder extended to the bottom. The expression for the moment is,

$$
\begin{equation*}
m_{u, v}=\int_{-v}^{\eta}(z-u) F_{z} d z \tag{8}
\end{equation*}
$$

To be cusistent with the innear theory the integration need only be carried up to the still-water level $z=0$, the result being

$$
\begin{align*}
m_{u, v}=-\frac{2 g \rho H}{k^{3}} A(k a) & {\left[\frac{u k \sinh k d-\sinh k(d-v)-v k \sinh k(d-v)+\cosh k d}{\cosh k d}\right.} \\
& \left.-\frac{\cosh k(d-v)}{\cosh k d}\right] \cos (\sigma t-\alpha) \tag{9}
\end{align*}
$$

The special case of a pile hinged about the bottom is evaluated by setting $u=-d, v=d$.

$$
\begin{equation*}
m_{0}=\frac{2 g \rho H}{k^{3}} A(k a) \frac{(k d \sinh k d-\cosh k d-1)}{\cosh k d} \cos (\sigma t-\alpha) \tag{10}
\end{equation*}
$$

The ruction $D(k d)=\frac{1-\cosh k d+k d \text { ninh } k d}{\cosh k d}$ giving the dependence on depth is plotted in Figure 3.

An estimate of the effect of second order terms on the moment miv may be immediately obtained from equation 8 by evaluating that portion of the integral from zero to η. To the second order, for,

$$
\begin{equation*}
\eta=\frac{H}{2} \sin \sigma t \tag{12}
\end{equation*}
$$

$\Delta m_{u}-\int_{0}^{\eta}(z-u) F_{z} d s=\frac{\rho_{g} H^{2} u}{k} A(k a) \sin \sigma t \cos (\sigma t-a)$
This calculation onits that portion of the second-order terms arining from the second term in the velocity, but this latter tern may be expected to be small. It is noted that the result (12) may be obtained by assuming that the force and lever arm are constant over the range $0 \leqslant 8 \leqslant \eta$, having the value at $2-0$ and multiplying these constant values by the length, η. For the special cane of a cylinder hinged at the bottom the total moment becomes
$A_{0}+\Delta_{0}=\frac{2 \rho}{k^{3}} A(k a) D(k d) \cos \sigma t\left[1+\frac{k^{2} H d}{2 D(k d)} n \ln \sigma t\right]$
From equation 13 it is seen that the maximum moment occurs for,

$$
\begin{equation*}
\sin \left(\sigma t_{\text {ax }}=\frac{1-\sqrt{1+2\left[\frac{k^{2} H d}{D(k d)}\right]^{2}}}{2 \frac{k^{2} \mathrm{Hd}}{D(k d)}}\right. \tag{山}
\end{equation*}
$$

and has the value obtained by substituting $(\sigma t)_{\text {nax }}$ into equation 13.
For cylinders, the diametars of which are amall compared to the length of the waves, the foregoing theory adaits of eeveral aimplifications. Asyaptotic values of the Bessel's Functions and their derivatives are presented for reference in Table IV. Thece lead immediately to the approximate formulan,

$$
\left.\begin{array}{l}
A(k a) \cong \frac{\pi}{2}(k a)^{2} \tag{16}\\
a(k a) \cong \frac{\pi}{4}(k a)^{2}
\end{array}\right\}
$$

In parilcular, equalion 7 may thon be roplaced ty

$$
\begin{equation*}
\nabla_{8}-\pi r k k e^{2} \frac{\operatorname{conh} k(d+8)}{\operatorname{conh} k d} \text { coere } \tag{7.}
\end{equation*}
$$

In thin form the force F_{8} adalte of a much aimpler derivation. Por a wav incldent on vertical vall at an arbitrary angle there io complete reflection without lose of emercy, rooulting in a total proesure equal to twice that of the incldent wave. lasuaing thet this reault holde for the calinder aleo, an incident vaw with viocity potential dven by equation 1 vill dveriee to a real prensure,

$$
\begin{equation*}
P=-P G H \frac{\cosh k(d+z)}{\cosh k d} \ln (k \times-\sigma t) \text {. } \tag{27}
\end{equation*}
$$

The renulting force, F, in then obtained by integration as for equation 7, ciring the rolationehlp

$$
\begin{equation*}
F_{8}-2 \in f\left(\frac{\operatorname{conh} k(d+z)}{\operatorname{conh} k d} \int \sin (k e \cos \theta--i) \cos \theta d \theta\right. \tag{18}
\end{equation*}
$$

But no. :or mall value of ke, expanding the integrend in equation 18 given

$$
\begin{equation*}
F_{z}=-40, E H \frac{\cosh k(d+z)}{\cosh k d} \quad \int_{n}^{-} \cosh -t \quad k=\operatorname{con}^{2} \theta d \theta, \tag{19}
\end{equation*}
$$

which leeds again to equation 71 . It is to be noted in connection vith thla equation, that the force fis ggual to the moecalled "rirtual mana force" in Morimon'n roaul (3) provided tho experimentalif deternined constagt C_{y} is taken as two. To rosult is to be oxpectod aince an easantial ansumption of Morison' a theory 10 that the form of the incident vave is iftele affocted by the prosence of the cylinder. From equation 23 it is oeen that this asounption is equivalent to the nanlimes of the ratho of plle dianter to vave length. It ia to be noted in this connection that the exact theory of the present roport reprecente an extonalon alnce lte eceuracy does not depend on the relative aize of the cylinder. In value of C_{h} quoted by Morison for a ceries of model studiea 10 nar2y 2.5 .

Tris type of enalyala edalta of certain extenalone. For example the same techaique alcht be uned to oblain forcen on more compl'cated chapen, the dimialons of Wilch ore mill compered ic the meve.encth, alnce a knowledey of the form of the reflectod wate is not necessary. It in 200 show in the mext nection how an eatime of the effect of steoper vaves may be obtained in a aivilar manner.

A more exact analysis of the relative effects of the incident and reflected waves is possible from the small cylinder theory and will offer justification for the developments of the preceding paragraphs. The surface profile may be obtained from the velocity potential, \varnothing, given by equation 5 from the formula,

$$
\begin{equation*}
\eta=\frac{1}{g} \quad \frac{\partial t}{\partial t} \quad z=0 \tag{20}
\end{equation*}
$$

this gives
$\left\{\eta \psi^{2}=a=\frac{H e^{-1 \sigma t}}{n k a}\left[\frac{1}{H_{0}^{(2)^{\prime}}(k a)}+2 \sum_{n=1}^{\infty} 1^{n} \quad \frac{1}{H_{n}^{(2)^{\prime}}(k a)} \cos n \theta\right]\right.$
where use has been made of the identity,

$$
\begin{equation*}
J_{m}(x) H_{m}^{(2) \prime}(x)-J_{m}^{\prime}(x) H_{m}^{(2)}(x)=-\frac{21}{W x} \tag{22}
\end{equation*}
$$

Using the asymptotic formulas for the Bessel Functions for small values of ka, equation 21 becomes, on taking the real part,

$$
\begin{equation*}
(\eta)_{r}=a \simeq \frac{H}{2} \sqrt{1+L(k a)^{2} \cos ^{2} \theta} \sin (\sigma t-\psi) \tag{23}
\end{equation*}
$$

where

$$
\tan \psi=2 k a \cos \theta
$$

In the same notation the pressure, at the surface of the pile, 18 , $P=\frac{g \rho H}{\pi k a}\left[\frac{1}{H_{0}^{(2)^{\prime}(k a)}}+2 \sum_{n, 1}^{i^{n}} \frac{1}{H_{n}^{(2)^{\prime}(k a)}} \cos n \theta\right] \frac{\cosh k(d+2)}{\cosh k d} e^{-1 \sigma t}$
or for small piles, the real part of equation 24 giver

$$
\begin{equation*}
p \cong g \rho H(\sin \sigma t+2 k a \cos \theta \cos \sigma t) \frac{\cosh k(d+z)}{\cosh k d} \tag{25}
\end{equation*}
$$

It can easily be shown that the preasure due to the incident wave only is to the same degree of approximation,

$$
\begin{equation*}
p^{(1)}=\operatorname{g\rho H}(\sin \sigma t+k a \cos \theta \cos \sigma t) \frac{\cosh k(d \phi 2)}{\cosh k d} \tag{26}
\end{equation*}
$$

so that the pressure due to the reflected wave is,

$$
\begin{equation*}
p^{(1)}=g \rho H k a \cos \theta \cos \sigma t \frac{\cosh k(d+2)}{\cosh k d} \tag{27}
\end{equation*}
$$

It is observed that the first, and largest, term of equation 26 is independent of θ and hence will contribute nothing to the force, F_{z}. Hence the "effective" pressures due to the incident wave and the reflected waves are identical. This is in contrast to the effect on the surface elevation, since equation 23 shows that the deviation from that of the incident wave alone is small.

Summary. The diffraction of long-crested waves incident on vertical circular cylinders extending from above the water surface to the bottom is treated exactly within the framework of the linearized irrotational theory. The essential results are summarized below.

Letting 2 be the distance along the cylinder, in the direction of its axis, with positive direction upward from the still-water level, the x-component of the force on the cylinder per unit length in the z-direction and at depth $z, 18$,

$$
\begin{equation*}
F_{z}=\frac{2 \rho_{g} H}{k} \frac{\cosh k(d+2)}{\cosh k d} A\left(\frac{D}{L}\right) \cos (\sigma t-\alpha) \tag{28}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tan \alpha=\frac{J_{1}{ }^{\prime}\left(\pi \frac{D}{L}\right)}{Y_{l^{\prime}}\left(\pi \frac{D}{I}\right)} \\
& A\left(\frac{D}{I}\right)=\frac{1}{\sqrt{J_{1} \prime^{2}\left(\pi \frac{D}{I}\right)+Y_{1}{ }^{2}\left(\pi \frac{D}{I}\right)}}
\end{aligned}
$$

when the surface elevation is given by,

$$
\begin{equation*}
\eta=\frac{H}{2} \sin (k x-\sigma t) \tag{29}
\end{equation*}
$$

J_{1} and Y_{1} are the Bessel's Functions of the first and second kinds, respectively, and primes indicate differentation. The functions A and a are plotted in Figures 1 and 2. Additional values can be obtained from a set of tables published by the Mathematical Tables Project(4).

The corresponding movement on a cylinder extending to depth v below the atill-water level and hinged at depth u relative to the still-water level is given by $m_{u, v}=\frac{-2 g \rho H}{k^{3}} A\left(\frac{D}{L}\right)\left[\frac{u k \sinh k d-\sinh k(d-v)-v k \sinh k(d-v)}{\cosh k d}\right.$

$$
\begin{equation*}
\left.+\frac{\cosh k d-\cosh k(d-v)}{\cosh k d}\right] \cos (\sigma t-a) \tag{30}
\end{equation*}
$$

In the special case of a cylinder extending to the bottom and hinged at the bottom, $u=-d$ and $v=d$ and equation 30 becomes

$$
\begin{equation*}
m_{0}=\frac{2 \mathrm{~g} P \mathrm{H}}{\mathrm{k}^{3}} \quad D(\mathrm{kd}) \quad A\left(\frac{D}{\mathrm{~A}}\right) \cos (\sigma \mathrm{t}-a) \tag{31}
\end{equation*}
$$

where
$D(k d)=\frac{1-\cosh k d+k d \sinh k d}{\cosh k d}$
The function D (kS) is plotted in Figure 3. The moments in this case may be easily computed through the use of Figures 4 and 5. Assuming H, T, d, D to be known, the ratio D is found from Figure 4 and then m_{0} computed from Figure 5 .

For the case of small cylinders, that is, such that the ratio of the diameter to the wave length is small, these formulas may be greatly simplified. This appears to be the most important case as is seen by considering Figure 2. For a 150 foot ocean wave, the cylinder diameter could exceed fifteen feet without appreciable deviation from the approximate formulas. For this condition the functions
$A\left(\frac{D}{L}\right)$ and $Q\left(\frac{D}{L}\right)$ nay be replaced by
$A\left(\frac{D}{L}\right) \cong \frac{T^{3}}{2}\left(\frac{D}{L}\right)^{2} ; \quad a\left(\frac{D}{L}\right) \cong \frac{\pi^{3}}{4} \quad\left(\frac{D}{L}\right)^{2}$
The force, F_{2}, then becomes

$$
\begin{equation*}
F_{2} \cong \frac{\pi^{2} \rho\left(\underline{D^{2}}\right.}{2}\left(\frac{H}{I}\right) \frac{\cosh k(d+2)}{\cosh k d} \cos \sigma t \tag{281}
\end{equation*}
$$

and the surface elevation at the circumference of the pile may be written,

$$
\begin{equation*}
\eta=\frac{H}{2} \sqrt{1+\frac{\pi^{2} D^{2}}{L^{2}} \cos ^{2} \theta} \sin (\sigma t-\psi) \tag{33}
\end{equation*}
$$

where

$$
\tan \psi=\frac{T D}{L} \cos \theta,
$$

while the pressure, at depth 2 , as a function of θ, is
$p=\frac{\rho_{g} H}{2} \frac{\cosh k(d+z)}{\cosh k d} \sqrt{1+\frac{4 \pi^{2} D^{2}}{L^{2}}} \cos ^{2} \theta \sin (\sigma t+\delta)$
where

$$
\tan \delta=\frac{2 \pi D}{L} \cos \theta
$$

A comparison of equations 29 and 30 indicates the maximum force and moment occur almost ninety degrees out of phase with the crest of the wave, that is approximately at the time the wave is passing through the still-water level.

In the formulas thus far presented the linear theory has been strictly followed. Approximations to the effects of steeper waves may be obtained by making some additional assumptions. It has been shown previously that in the case of small piles the force, F_{z}, given by equation 7^{\prime} is exactly twice that of the incident wave alone. Assuming that this is a general result, the second and higher order terms in the parameter ($\frac{h}{I}$) may be introduced into the force calculations. To the second order, the force obtained in this manner is,
$\frac{2 F_{z}}{\rho \pi_{E} D H}=\frac{\cosh k(d+z)}{\cosh k d}\left(\frac{\pi D}{I}\right) \sin \sigma t+\left(\frac{\pi}{I}\right)\left(\frac{3 \cosh 2 k(d+z)}{4 \sinh h^{3} d \cosh k d}\right.$

$$
\begin{equation*}
\left.-\frac{1}{2 \sinh 2 k d}\right)\left(\frac{2 \pi D}{L}\right) \sin 2 \sigma t \tag{34}
\end{equation*}
$$

for the surface elevation of,
$\eta / H=\frac{1}{2} \cos \sigma t+\frac{1}{4} \pi\left(\frac{H}{L}\right) \operatorname{ctnh} k d\left(1+\frac{3}{2 \sinh ^{2} \ldots k d}\right) \cos 2 \sigma t$

For purpose of calculation a set of force distribution curves has been presented in Figures 6 and 7. The correaponding moments may le computed graphically according to the following procedure. Fo: the moment about a hinge at depth z_{1} compute $\mathrm{z}_{1} / \mathrm{d}$ on the vertical scale. A new curve then may be plotted with abscissa $\left(\frac{2}{d}-\frac{{ }^{2}}{d}\right) d$
times the old abscissa, and the corresponding moment will be equal to the area under this curve, after multiplication by the respective numerical factors. The coefficients of the sin σt and sin $2 \sigma t$ terms in the force equation have been designated $F_{2}(1)$ and $F_{2}(2)$, respectively.

The finite height of the waven introduces a second correction to the calculated moments, namely the contribution to the total moment of that portion of the wave above or below the still-water level. For a pile hinged at position u this correction term is, approximately,

$$
\begin{equation*}
\Delta m_{u}=\frac{\rho g H^{2} u}{k} A\left(\frac{D}{\mathrm{~L}}\right) \cos (\sigma \mathrm{t}-a) \sin \sigma_{\mathrm{t}} \tag{36}
\end{equation*}
$$

Comparison with Experiment. A series of experiments has been carried out by Morison(5) in the wave channel to measure moments on cylindrical piles under varying sets of wave conditions. The cylinders were hinged at varying depths and subjected to regular wave trains which were of essentially three types; moderately steep waves in shallow water, steep waves in deep water and low waves in deep water. In Table I are presented the results of these experiments for piles hinged on the bottom in low waves in deep water. The theoretical moments, m_{n}, computed from the graphs of Figures 4 and 5, are corrected for the finite height of the waves by adding Δm_{-d} as given by equation 36 .

In Table II the results for the Jargest cylinder in the same wave conditions are presented with the pile hinged at varying depths, z. It is seen that in both of these tables, in which the actual conditions approximate the assumptions made in solution, the agreement is good.

In Table III the results for the first two types of waves are presented. The first three entries correspond to moderately steep waves in shajlow water, and the last three to steep waves in deep water. The deviations here are scen to be quite large, reflecting the fact that the waves cannot be closely approximated by sine waves in this range of $\frac{H}{L}$ and $\frac{d}{L}$.

Conclusions and Hecommendations for Further Work. The rather large deviations of the experimental results from calcul ated values, which are indicated in Table III, give rise to the need for a consideration of possible sources of error together with possible modifications. In order to obtain agreement with experiment Morison(3) has introduced a second component of force on the pile which he designates as a "drag" force. It has been previously pointed out that his accelerative force, in the special case of small piles, may be identified with the diffraction theory of this report, provided C_{m} is taken equal to two. The introduction of the drag force is then equivalent to the assumption that drag and diffraction forces may be separated, each being considered to act independently of the other, an assumption which may not be well justified.

The force attributed to "drag" is essentially of two parts. One arises from the viscosity of the Muid and the corresponding frictional drag exerted by the Iluid movins past the cylinder. This problem has been considered approximately usinf Schlicting's theory of periodic boundary layers and the resulti indicate that frictional effects are unimportant. The second part of the drag force is due to the separation of the lines of flow, with the resultant decrease
in pressure behind the cylinder. The wake behind the cylinder is then essentially a region of no-motion except for the possible formation of vortices. The exact nature of this wake is not well understood even for the case of steady flow and very little is known about periodic motion, for then there is continual change with increasing and decreasing velocity.

For the diffraction theory presented in this report the motion is symmetrical around the cylinder. Hence no separation occurs and the wake drag must be zero. In light of this result it seems doubtful that the correction due to drag could be made simply by addition of a term corresponding to a wake while still maintaining the same diffraction force.

Drag forces are determined experimentally for the case of steady flow past a cylinder in the following manner. The assumption is made that the drag force is proportional to the square of the velncity, the diameter of the sylinder and the density of the fluid. The constant of proportionality, called C_{D}, is cisen determined empirically for various values of the Reynolds numuer. Dorison has assumed that this result will also hold for periodic motion, an assumption which needs considerable investigation, since the flow behind the cylinder may not be able to adf ust rapidly enough to maintain steady state conditions. Some calculations have been made, however, using Moriscn's assumptions and it is found that the introduction of drag does not appreciably improve the resul to.

The results of this report indicate that a great deal of additional work might profitably be carried out. In particular a detailed experimental study, with photographs, of the actual state of motion behind the cylinder would be of considerable value in estimating the effect of drag. It might be expected that for moderately small velocities the motion up to a certain point on the cylinder is well approximated by the diffraction heory, while beyond that point the flow separates leavine a dead water region. If this should prove to be the case, additional theoretical results are possible.

REFEREICES

(1) Morse, P. M. Vibration and Sound. First Edition 1936
(2) Havelock, T.H. The Pressure of Water Waves on a Fixed Obstacle. Proc. Koy. Soc. of London, A, volume 175, pages 409-421,1940
(3) Morison, J. R.;O'Brien, M.P.; Johnson, J.W.; Schaaf, S.A. The Force Exerted by Surface Waves on Piles. Petroleum Transactions, A.I.M.E., vol. 189, 1950
(4) Mathematical Tables Project and M.I.T. Underwater Sound Lab. Scattering and Radiation from Circular Cylinders and Spherer. July, 1946.
(5) Morison, J. R. The Forces Exerted by Waves on Marine Structures. Wave Project Report. Series 35, Issue 3, Oct. 1950.

TABLE I

$\begin{gathered} D \\ \text { (in.) } \end{gathered}$	$\frac{d}{I}$	$\begin{aligned} & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \left(m_{0}\right) \exp \\ & \left(f t_{0} \quad 1 b s_{0}\right) \end{aligned}$	(m_{0}) theo. (ft. lbs.)	$\begin{gathered} m_{0}+\triangle m_{0} \\ (f t .1 b s .) \end{gathered}$
$\frac{1}{2}$	0.40	0.037	0.0207	0.0202	0.0205
$\frac{3}{2}$	0.41	0.038	0.0203	0.0207	0.0211
1	0.1 .0	0.036	0.0903	0.0804	0.0816
1	0.40	0.037	0.0998	0.0813	0.0825
2	0.40	0.037	0.2910	0.314	0.320
2	0.40	0.037	0.2905	0.310	0.315

TABLE II

D. 2 inches

$\frac{2}{d}$	$\frac{\mathrm{d}}{\mathrm{~L}}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{I} \\ & \hline \end{aligned}$	$\begin{aligned} & \left(n_{0}\right) \text { exp. } \\ & \left(f_{t}\right) \text { lbs. } \end{aligned}$	$\begin{aligned} & \left(m_{0}\right) \text { then. } \\ & \left(\frac{1}{2} .268 .\right) \end{aligned}$	$\begin{aligned} & \left(m_{0}+\Delta m_{0}\right) \\ & \left(f t_{0} \quad 1 b s_{0}\right) \end{aligned}$
0.25	0.39	0.037	0.0335	0.0311	0.0373
0.42	0.40	0.039	0.0836	0.0808	0.0894
0.52	0.40	0.037	0.112	0.110	0.120
0.68	0.40	0.038	0.154	0.176	0.187
0.78	0.39	0.037	0.205	0.221	0.232
0.98	0.40	0.037	0.291	0.315	0.320
0.98	0.40	0.037	0.291	0.310	0.315

TABLE III

TABLE IV

Asymptotic Expansions for Bessel＇s Functions and Their

Derivatives for Small x ．

$$
\begin{aligned}
& J_{0}(x) \sim 1 \\
& J_{1}(x) \sim \frac{x}{2} \\
& J_{m}(x) \sim \text { 市 }\left(\frac{x}{2}\right)^{m} \\
& Y \circ(x) \sim \frac{2}{\pi}(\ln x-Y) \\
& y_{1}(x) \sim-\frac{2}{\pi x} \\
& Y_{m}(\bar{a}) \sim-\frac{(m-1)!}{\pi}\left(\frac{2}{x}\right)^{m} \\
& J_{0}{ }^{\prime}(x) \sim-\frac{x}{2} \\
& J_{1}{ }^{\prime}(x) \sim \text { 立 } \\
& J_{m}^{\prime}(x) \sim \frac{1}{(m-1)!}\left(\frac{x}{2}\right)^{m-1} \\
& Y_{0} \text { (xijemx } \quad r=0.1159 \\
& Y_{1^{\prime}}(x) \sim \frac{2}{\pi x^{2}} \\
& Y_{m}{ }^{\prime}(x) \sim \frac{m 1}{2 \pi}\left(\frac{2}{x}\right)^{m-1} m>0
\end{aligned}
$$

