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ABSTRACT

5 gtandard reliability prediction formulas for multi-coupoacit systens nake
the assumption of statistical independence of the conditions of the conpoucnts
after a fixed period of tine in a hypothesized eavironent., Although labora=
tory and ficld experience shows that this assumption is not always valid it
persists as a basis for reliability wodeling amonz practitioncrs of the art,
The most relevant reason for this is that englneers senerally are not notcd
for their knowledge of the wmathenatics of probability and one soon discovers
that the assunption of statistical indcpendence among components usually leads
to the simplest mathenatics. A second rcason why the indcbendcnce assunption
is so predonminant 15 "that cngincers and analysts are not clear on what alterna-
tives should be pursued or cven what the alternatives night be so there would
be little point in making assunptions the modeling implications of which arc
simply not understood. There is another justification for the statistical
independence agsuaption, that being the fact that such an assumption ylelds
nodels that can provide bounds on systenm feliabilities. Analytical models
which attcn&t to account for environmental effects on component failure rates
show that the statistical independence assumption often lcads to gross over-
estinates or undercstimates of systenm reliability., Evans [1] argucs that it
is almost never the case that this assumption is correct, but also points out
that other rodels which attempt to quantify or correct this error have their
own limitations., If, on the other hand, it could be showm that an alternative
model even though an approxination is indeed a closer representation to the
true state of the vorld and is at the same time practical to use in a computa-
tional sense then it should be used. The question of validity lies with the

basic assumptions underlying the nmodel and not with the mathenatics itself,

I




If a set of assumptions alternative to the assumption of statistical
independence are accepted as more closely characterizing an environmental
situation then the resulting mathematical predictions gould be tentatively
preferred, subject to experimental verification,

' This paper reviews some previous explorations of the question of
otatigticnl dependence of operating components and the effects on system
reliability and presents some results not previously worked out, In particu-
lar there is shown to exist a connection among tﬁtee models that do not re-
quire the assumption of statistical independence of components. Under certain

conditions these nodels ‘can generate the same reliability prediction even

though they appear to be derived under different assumptions.




T - —

TABLE OF CONTENTS

Page

ABSTRACT v vvveseretosronsrosesosssrssossosasossosasossoseresosonsnsns I
CHAPTER
I. DEFINITIONS .....cieeneensnsncorosaresossnssosenecosocasnnennas 1
I, THE ENVIRONMENTAL PROFILE MODEL OF RELIABILITY ....vcovecencns 4
- i1T. A STRESS-STRENGTH MODEL OF RELIABILITY ....ccevctevensnansnnns 10
IV. A MULTIVARIATE BERNOULLI MODEL OF RELIABILITY ....ccoc0eeenaes 13
CONCLUSIONS ...ivececeerososcsssosasoorasvsssnssosnsosassosnsns 18
BIBLIOGRAPHY ....ivieececncrsnsosorossnssssosososnsoassoosssnes 19

~II1




CHAPTER 1

DEFINITIONS

For what follows it is necessary to distinguish among the notions of the
physical dependence of two events (or tvo random variables), the conditional
stochastic independence of two events given a third event, and the unconditional

stochastic independence of two events,

Definition 1 If two events A and D are unconditionally statistically in-

dependent then P(AB) = P(A) P(B).

The question of the conditional statiséical independence of two events
A and B given a third event E arises when components are placed into a random
operating environment, The events A and B represent the cénditions of two
components after ; suitable period of time when operated in the presence of a

randomly selected environmental condition L,

Definition 2 If two events A and B jointly conditioned with respect to an

event I are statistically independent under F then
P(AB/E) = P(A/E) P(B/L),

Let 83 = {Ei‘ i € 1} be a collection of mutually exclusive and exhaustive

events called an environmental profile. If A and B are statistically indepen=-

dent under the environnmental profile £ , then P(A,B/E]) = P(A/Ei) P(B/E{) for

all E; ¢ f « Thus if AB occurs only in the presence of an Ej € E and A and

B are statistically independent under all E, € £, then~

é P(An/ni)df(ui) = é P(A/ii;) P(B/E)AP(E).
i 1




If, in addition, A and B are unconditionally statistically independent

t hen

]
I

P(A/E;) P(B/C )dP(E)) = {

P(A/E;)dP(E;) [ P(B/L;)AP(E;) = P(A) P(B).
' E
i

i "1

The intuitive notion of the physical independence of two components is
that the condition of cach component neither affects nor is affected by the
condition of the other, Following Evans (p. 348) this idea is restated

quantitatively as follows,

Definition 3 Two events A and B are physically independent under an environ=-

mental profile 5 if and only if they are statistically independent under 8.

*

i.e.,, that
P(A,B/E;) = P(A/E)) P(B/E) forallE e§.

Thus, 1if the malfunction of component i necessarily destroys component j,
intuition states that they are certainly not physically independent under
such an environmental circumstance. If such an event were included in E as
Ei with positive probability mass assignment then a calculation will also
show that the events A and B representiny the conditinrs of the components
are not statistically independent under Ei and hence not physically indepen-
dent under E;.

The next definition characterizes the notion of "associated random
variables" introduced by Esary, Proschan, and Walkup (2] in 1966. This
definition is relevant to what follows because¢ Pollvak (3] showed in 1962
that under a random environmental profile as specified by Definition 2 the
individual component reliability functions are random variables which under

certain conditions are associated in the sense of Lsary,

Definition 4 Random variables X1s Xy eee o X are associated if
Cov [U(X), V(X)) 2 O for all pairs U,V of bounded continuous nondecreasing
*It is also the case that 1if P(AB/Ei)-- P(A/Ei)P(Blﬁi) and P(A/Ei) = P(A) for

all E; then P(AB) = P(A)P(B). ?




functions where X = (X,, X5, 22 4 X ). Esary, et al., showed that association

has the following properties:

Property 1 Any subset of a set of associated random variables is also
a set of associated random variables.

Property 2 If two sets of associated random variables are independent
of one another then their union is a set of associated random variables.

Property 3 The set consisting of a single random variable is
associated.

Property & 1If xl, xz. ves XN are associated then any set of non=-
decreasing functions Sl(f), sz(i'). cee o SM(Y) are associated,

. The concept of equally ordered functions will be of use and is specified

by the following definition,.

Definition 5 Let F(t,X) and G(t,X) be functions of a parameter t and a
vector argument X = (Xys oo o X ) where X, is a real nusber, F and G are
said to be equally ordered with respect to the variables xl. cee xk if

for any values of X, and X, of the vector argument X the inequality
[F(e,X)) = F(£,Xp)I(6(8,X)) = G(t, X)) 3 0

is satisfied. Monotonic nonincreasing or nondecreasing functions of a single
scalar argument defined on the real line belong to this class as well as
certain convex functions.

If F and G in Definition 5 are functions of a random vector X = (xl, veo

xk), then the variables X,, ... , X, are associated in the sense of Definition 4.,




CHAPTER II

THE ENVIRONMENTAL PROFILE MODEL OF RELIABILITY

It is evident that most components of any system function within an
environment that is "uncertain" in the sense that the intensity of its
defining variables exhibit statistical fluctuation over time. Lxamples of
environmental variables are temperature, pressure, humidity, vibration
frequency, salt content, and radioactive emission level.

Let the environment be characterized by a random vector Xs= (xl. eee xk)
where xi represents the i-th environmental variable defined over a suitable

range of values., The environmental profile is specified by the set
8 '{(Xl, Xl .' Xk): Qi<xi<81. 1-1. see .k) .

Let the joint probability density of X be w(X) = w(xl. see xk)

Let P.i(t.'f) be the conditioned reliability of the i-th system component
where t denotes time and X indicates that reliability is a function of (or
conditioned upon) X. Pollyak's model of component reliability is obtained

as an average over the environmental profile e .

R(t) = [ R(t,X) du(X) , Xef. (1)

s

The reliability of n components in series, assuming mutual statistical

independence of the components under £ is

ni(c,'i) dw@® , Xefg. (2)

[ I I

Ry(t) = /
X

Ri(t,i) is usually assumed to be monotonic nonincreasing in t but what is
more interesting is the effect on P‘l(t) of averacing the product of the component

reliabilities over the sample space of environmental possibilities., Pollyak
4




sred this question by proving the following theorem.,

‘heorem 1 Let Ri(t;i) and R (tﬁi) be functions of the k-dimensional vecior

h|
.- -ument X that are equally ordered in the sense of Definition 5. Let X
eleng to a set 5 and let w(X) be a weight function defined on E which is

-verywhere nonnegative and f w(X)dX = 1,

: X

Ifhen

J R R w®dX - _J R w®dX R wXJX =0 (3)
Lef Xeg Xef

Lauation (3) implies that Cov(Ri.Rj) 2 0. Consequently the effect of im-
bedding component reliabilities within a random environment and averaging over
the environmental possibilities with respect to a distribution to obtain the
inconditional reliability is the following:

(a) For serial systems reliability is at least as high as the value
sredicted by making the assumption of unconditional statistical independence
/ith respect to the failures of the compoments.

(b) For parallel systems reliability is at least as low as the value
sredicted by making the assumption of unconditional statistical independence
:mong the conditions of the components.

In other words, if the environmental profile model as defined by Equation
(2) is a more realistic reflection of physical reality and if component failure
laws satisfy conditions of Theorem 1 then standard prediction formulas for
serial reliability give underestimates and for parallel system reliability they
~ive optimistic results. (This interpretation follows since pairs of products
of equally ordered functions are equally ordered. for an alternate justifica-
tion see Theorem 2.)

It seems plausible that the assumption of monotonicity of the component

failure law with respect to the degree of severity of the environment X

5
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sculd be satisfied in most problem situations. Tne environmental variables
»~ '1d be represented either directly or implicitly in terms of the moments of
tae Ri(t,i). For example 1if Ri(t,f) = e-uit then ei depends upon'f perhaps
as a linear regression upon (xl, ss% 'y xk). Equation (3) does not imply that
onec needs to imbed components in a random operating environment which pro-
uuces a positive correlation among component conditions in order to increase
system reliability. To attempt to do so to an extent greater than what is
usually the case anyway may impair system reliability. Equation (3) does
imply however that components operating in a random environment and having
failure laws that are monotonically related to the environmental parameters
tond to fail together or function properly together. That is, if the
environmental model applies, knowledge that a component has either failed

{cr survived) increases the betting odds that another component also failed
.or survived).

The fact that the environmental profile model is a more accurate re-
ficction of reality means not that correlated conditions among components
produces higher reliabilities, but rather that the assumption of unconditional
statistical independence of failures was not realistic to begin with,

It is possible, on the other hand, to conceive of a situation in which
the environmental profile is altered by placing components in a state of
physical dependence. The effects are reflected in correlated failures and
serial system reliability is actually increased over what it would be had
the components not been placed in such a state of mutual phys cal dependence.
i, example is the case where two transistors are mounted on a common heat
:ink. The assumption of statistical independence of components under the

environmental profile would not be justified and Equation (2) would have to

be modified. Thus, correlations among component conditions can be present




with or without the assumption of their statistical independence under an
environmental profile but the interpretation of these correlations depends

upon which conditions hold.

A second order approximation of the difference between the reliability
estimates given by Equation (2) and the model R(t) = (p(t))N can be obtained
Ly the use of Taylor's series. When the environment is specified in terms of
a scalar x the difference is calculated as follows for an N component serial
cystem,

Let RN(t,x) = (R(t,x))N and let w(x) be the probability density of the

environmental variable x. Equation (2) gives the system reliability as
= E = E N
RN(t) = (RN(t,x)) x [(R(t,x))"]).

The Taylors series approximation is

2 2
Ry(£) 3 <n<c.x>l>“ + 2 L (R(t.x)')N -
Xy x xsy
N °x2 N=2 2
= R (t,\l) + —Z_.N.R (tHJ)'[(N"l) (R'(to\-')) + R(toU)Ru(tQU)l

where primes denote differentiation with res-zct to x.

The difference A& in the estimates is

2
A= i’;—-.N-RN-Z(t,u)-{(N-l)(R'_(t.u))Z + R(t,u)R"(t,u)] (4)

PROOF OF AN IMPORTANT INEQUALITY

The conclusions drawn in the previous section depend in part upon the

validity of Equation (3). This inequality for the general case follows from:

Theorem 2 Let n = (nl, Ngs oo s nk) be a vector of random variables having

7




finite moments and having a joint density function w(n), n is assumed to
define an environmental profile é . Define N characteristic random variables
as follows:

1 if i-th component survives in 8 for time t.

Xi =
0 otherwise

Let the xi's be mutually independent under E .
Let RN(t) = P. (N components survive 6 for time t).,
Then

Rh+k(t) - Rh(t) Rk(t) for h, k positive integers.

Proof By definition,

Ry(t) = E(X; X, ooo X =EE(X) .00 Xo/m) = E{E(X, /mE(Xy/n).¢ .E(X/n)}
n n

- ﬁ(RF(t.n)) - E N Where o = R(t,n) = E(X,/n)

(0 s a . 1).

Thus RN ig the N-th raw moment of some distribution defined on [0,1].
For any positive integers h and k and independent random variables ) and

a, defined on [0,1] and having the distribution of a, it follows that

h hy,o k_ Ky 2
(al s )(a1 a, ) 0
so that
h+k . h k h+k
E(a1 ) - ZE(a1 e, ) + E(u2 ) =

2Ea™®) - 2E(MEWX) &0 .

Thus E(ah+k) 2 E(ah)E(ak).

Rewriting the last inequality in terms of reliabilities

Rh+k(t) a R, (t) R (t)

8




Lsary et al. proved a th=orem analogous to Theorem 2 in terms of associated

raudon variailen no, .. 5, N as well as proving ancthier ineguality of

i k

greater genorality,
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CHAPTER III

A STRESS-STRENGTH MODEL OF RELIABILITY

The environmental variables model has appeared in the literature in a
somewhat different form., Lloyd and Lipow [4] as well as others have con-
sidered the "chain' or "weakest link" model, nlsa called ;he "gtress-strength"
model, A generalized version of this model for the reliability of an
n-éompouent serial system follows,

Conponents are assumed to function in a random environment characterized
by & sequence of stress 'pulses", random in number ovc; a timc interval of |
fired length and each following sone distribution of stress intensity. Thus
the environment is defined in terms of a discrete variable,

N(t) = number of stress pulscs in a time interval of
length ¢t
and a distribution of stress intensity
F(x) = Py (a randomly selected stress pulse does not
exceed x in intensity)

Each component is assumed to possess a '"strength" selected at random
from a distribution G(x), Reliable opcration of the n -component systen over
a time interval of length t occurs whenever the minimun componcnt strength

exceeds the maximun stress intcusity occurring during the period.

Let Yn denote the maximum stress intensity in a time interval of length
t given that n stress pulses occur.

Then, assuming independence of the pulse intensities,

P(Y, S x) = (PGN)" (h=0,1,2 ...)

10




Assuming N(t) and Yn to be statistically independent,
P(N(E) = m, ¥ S x) = PONCE) = ) (F(x))T  (n =0, 1, .00)

The marginal disctribution of the maximum stress intensity in a time interval

of length t, Y(t), is therefore
PCY(e) S x) = [ P(N(E) =n)(F(x))" .
n=0
For example, assume that {N(t); t 2 0) is a stationary Poisson process of
intensity ),

Then

L od ]
B(Y(e) S x) = io‘iﬁ%l- e (F )"
ns

o ~SM=F() 'z' (At :glxn“ - P o

n=0
Thus,

- -A -
Hxse) 5 PCE(E) & x) = o E7FD)

(6)

1f each component streagth follows the distribution G(x) and component
strengths are independent, the distribution function Gn(x) of the minimum

component strength x(n) is therefore

n
Gy(x) =1 - P(x(n)> x) =1-(1-0G(x)).

The n-component serial reliability is defined as

R,(8) = P(X ) > Y(8)) = g (1 = G_(x))dH(x;t) (7

Thus, in the special case given by Equation (6) and by making the plausible

assumption that F(0) = 0,

] Rn(t) = e-At + ! a- G(x»nd e‘kt(l-l’(x)) (7")
O+

11




i | The similarity between Equation (7) and Equation (2) is obvious,
Recalling that R, from Equation (2) can be interpreted as the n-th rav

i moment of a dirtribution defined on [0,1] it is also clear that Rh(t) from
Equation (7) can be interprcted in the same manner, The model defined by
Equation (7) can be generalized to the case of k distinct stress and strenpgth

, variables,

—

12
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CHAPTER IV

A MULTIVARIATE BERNWOULLI MODEL OF RELIABILITY

A sonewhat different approach toward accounting for dependencics among
component conditions was taken by Patterson and Khanna [5] in which the basic

result is stated as

Theorem 3 Let Xl, vee xn be n Bernoulli random variables each having

parameter p and possessing a joint probability function p(xl, Xoy ese o xa).

Let all pairs xi, xj have linear correlation”, Let all conditioned pairs

(xil’ X4 Ix13 =1, oo xin = 1) also have linear correlationp .
Then
n 1_1
P(Xl - 1, see xn == 1) L n [1 - (1-9) (1-?)] (8)
I 0ses1 (n=1,2,3,...)

If P(x1 = 1) denotes the reliability of the i-th component then the model
given by Equation (8) gives the n-component serial reliability of a system in
which component conditions exhibit a statistical dependence. The reliability of

an n component parallel system can be obtained from (8) by the expression

n
i-1
1= P(X; =0, X, =0, i00 , X = 0) = 11r1 (1 «(1-p)" “p] (8")
From Equation (8) it 1is seen that
R SR SR (05p S1)
n 1 4

WhP.T.'F'Rn = l‘(}ll - 1. X Xn - 1)0




Geometrically the probabilities P(xl. vee xn) are mass assignments to the
vertices of an n-dimensional unit cube that sum to unity, For the n = 2
case Equations (8) and (2) are equivalent if
P(X, = 1) = [ R(t,Du@dX . (1 =1, 2).
X

Nothing is assumed, however, in the dcrivation of Equation (8) about the
cause mechanism either with respect to the enviroument or possible physical
connections among the components that have the effect of producing correlations
between component failures., The assumption is, simply, that it is possible to
express total serial system reliability as a product of conditional probabilities
such that the probability of survival of a given cosmponent increases when it is
known that increasing numbers of the other n - 1 components of the system
survived, Since each conditional probability is of the form

PX, = il% =1,% =1, .., X =D=1-aw
k+1 1 2 k

the additional knowledge that the (k+l) st component survived increases the
conditional probability that one of the remaining n-(k+l) components survived
by the amount oq(l-p)k.

Although the multivariate Bernoulli model given by Equation (8) represents
a different approach to the problem the sequence

a :
®} = (1 (-88"1Q)) (8=19) , 05851
(p=1=qQ)(n = 1,2, ... )

represents ths moments of a probability distribution defined over the elosed
unit interval., This fact was demonstrated in a corollary proved by John Saw

which dcpendoﬁupon a theorem due to F. Hausdorff and discussed by Feller (6].

14
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The statements of the theorem and corollary follow.

Definition Let F be a probability distribution concentrated on the interval

(0,1}, The k-th moment u, of F is

1

Ky o k
u = E(X5) (f) X* dF.

Let E(XM(1 = X)) = = Au.
Then by induction
-0)f, = EX*(1-X)%).

Theoren

A sequence of numbers ub. Bys oo represents the moments u, of some
of some probability distribution F concentrated on {0,1] 1f and only if

(-A)Ek 20, b = Lo

Corollary

Let 0 < up ¢ Uy, € ees § 1 be a nondecreasing set of positive values

bounded above by unity and satisfying
r
(-A)uk €0

k
and define y_ =1 , 4 =17 u ,
1

0 k

Then uys Hyy eoe 8TG the moments of some probability distribution concentrated

on [0,1].
k 1-1
By letting uj = 1, b =T (1L=8 9q)
1l
so that {=1
ui-l-e q. (1-1.2.000)
then 0 < Yy £u, S ,..%1
r k=1
and  (-b)y =-8 (- 8)"q < 0.

15




The conditions of the corollary are satisfied and therefore the sequence

Mg = 1

k 1=1
=n1(l-8 q)

u
k

are the moments of a distribution F defined on (0,1}, Following Feller (p. 222,

223) the distribution F is constructed as follows,

Let -
P =@ o™ R
where
k 1-1
Rk - I (1 -8 q)o
Then o
(n+l)
Parl Ratl

ntl K n- 1 (n-3)
p£n+1) =9 % 320 (P 8 "-87p (k= 0, 1, ¢osy 1)

laving computed the pé-) through this recursion formula for each x, define

(n)
F (x) = P
n kgnx k
and let
lim Fn(x) = F(x),
nie
Then 1l ' n -
[ x"dF(x) =R = 1 (l-q gt 1)
0 B el
Exanples

10 (B -_1 - p = 0)

For B=0,Ry=1, R =p (k 2 1)

16




and
pgn) -q, p:") =0 (0 < k <n)
™ =y
Then > ) (@) q30 S x<}
F(x) = P @
B kSax K lgx =1
and q: 0 S x ¢
F(x) =
1¢xe=1
2, (8= 1)
k >
Rep K20
so that -
p:.n) - ® Pk a-p° k
and
- n, k - oy-k
F (%) Sox e Q-9
. p \l(”l-ljl_-; !):-laxl
0 B((nx); n -[ux] + 1)

where [nx] is the largest integer satisfying [nx] < nx and B(r,s) is the Beta

function with arguments r and s.

Thus 0 x
F(x) =
1: x

The preceding theory shows

<P

>

-P

that the R, given by Equations (2), (7), and

(8) can each be interpreted as the n-th rav moments of & probability distribu-

tion defined on (0,1].

17
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CONCLUSIONS

The models given by Equations (2), (7), and (3) represent three retloc.
of eli..aating the necessity of the assumption of unconditional statistical
indep.nd nce among components operating jointly in a common ervirounent, 1t
has been si.own that Rn can be interpreted as the n=th raw moment of a
probability distribution F(x) distributed over [0,1]. It was showr that tlc
assumption of the unconditional statistical independance of component con-
diticas results in an underestimate of serial system reliability and an over-
estima.c of the reliability of a system of components in parallel.

The environmerital profile vector X= (X1, essy Xi) constitutes a set of

as3oc.ated random variables whenever the reliasbilities piff) and p, (X) change

k|
monot mn’cally with respact to X.

Finally, the environmental profile and Bernoulli models represcnt what
right prcperly be called static models in the sense .hat none of thc random

varitoles involved represent stochastic processes. The stress—-stireag*lh model

is dyaanic o far as the representation of stress is concerned,

‘he author expresses his gratitude to John Saw for helpful criticisms

and sug.estions in the preparation of this paper.
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¢ tixed period of time in a hypothesized environment. Although laboratory and field
cxperience shows that this assumption is not always valid it persists as a basis
for reliability modeling among practitioners of the art. The most relevant reason
for this is that engineers generally are not noted for their knowledge c: the
mathematics of probability and one soon discovers that the assumption of statistical
independence among components usually leads to the simplest mathematics. A second
reason why the independence assumption is so predominant is that engineers and
analysts are not clear on what alternatives should be pursued or even what the
1lternatives might be so there would be little point in making assumptions the
riodeling implications of which are simply not understood. There is another justifi-
cantion for the statistical independence assumption, that being the fact that such
an assumption yields models that can provide bounds on system reliabilities. Ana-
lytical models which attempt to account for environmental effects on component
failure rates show that the statistical independence assumption often leads to gross
overestimates or underestimates of system reliability. Evans [1] argues that it is
almost never the case that this assumption is correct, but also points out that
other models which attempt to quantify or correct this error have their own limita-
tions., If, on the other hand, it could be shown that an alternative model even
though an approximation is indeed a closer representation to the true state of the

: .
DD %2 1473

Securitv Classification




Abstract (continued)

world and is at the same time practical to use in a computational sense then it
should be used. The question of validity lies with the basic assumptions under-
lying the model and not with the mathematics itself. If a set of assumptions
alternative to the assumption of statistical independence are accepted as more
closely characterizing an environmental situation then the resulting mathematical
predictions would be tentatively preferred, subject to experimental verification.
This paper reviews some previous explorations of the question of statistical
dependence of operating components and the effects on system reliability and
presents some results not previously worked out. In particular there is shown
c0 exist a connection among three models that do not require the assumption of
ctatistical independence of components. Under certain conditions these models
can generate the same reliability prediction even though they appear to be
Inrived under different assumptions.




