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VALORIZATION WAVE TRANSITIONS*

ABSTRACT

A vaporization wave analogous to the unsteady simPle WaVe in an

expanding gas is proposed to account for phenomena observed in the

evaporation of superheated metals. The vaporizing model is visualized

on thermodynamic grounds as carrying the liquid metal through a

continuous succession of states either on or near the liquidus line in

the two-phase region. On this line, the adiabatic sound speed for wet

vapor will limit the rate of propagation of the vaporization front

*This report conta-b?8 the e88ence of tio bctures @Ven by the author
to the International school of Phy8ic8 “Enrico Fed” Cour8e on
Phy8ics ofllighEnergy Density, 19693 varenna~ Ita~Y.
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into the liquid. Experimental data for wire explosions of Al, Ag, Cu,

Au, Pb and Hg (frozen) are analyzed for wave s~eds. While the in-

fluence of thermal expansion of the liquid can be accounted for the-

oretically, insufficient thermal data are available for the metals to

permit correction of the wave speeds for this effect. The experimen-

tally derived wave speeds are compared with theoretical values of the

adiabatic sound speed in the wet vapor obtained from a modified van

der Waals equation of state. At low velocities, the agreement is

satisfactory but higher values deviate considerably from theory.

Possible causes of the deviations include the crudity of the fluid

dynamic model, neglect of thermal expansion, lack of information about

the relationship between density and electrical conductivity and the

approximation imposed by the van der Waals equation.
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1. INTRODUCTION

We outline here some theoretical and experimental aspects of the

dynamical process by which an impulsively heated fluid makes the

transition from liquid to vapor. Our interest is in the initial

stages of the expansion as it occurs in the vaporization of super-

heated metals.

For polytropic, non-reacting fluid the head of an expansion wave

proceeds into the compressed region at the local velocity of sound and

the ensuing expansion is a simple wave.
1* When the fluid can be con-

densed, the first expansion will also be limited by the speed of sound

in the liquid; but the vaporization which follows may take place

either from the bounding, external surface or by cavitation with vapor

bubble formation. Since formation of internal cavities is limited by

inertia and nonequilibrium effects, and may require a considerable

time interval for bubble formation, we shall consider only experimental

situations where vaporization takes place from the exposed surface.

In this case the evaporation will be limited by some maximum speed with

which the head of the wave travels. Because a phase change occurs and

because the resulting damp vapor is more compressible than the liquid,

one would expect the limiting wave speed to be much slower than that of

sound in the homogeneous liquid. In other words, the rate at which a

uniform vaporization phenomenon should occur will be much slower than

the rate at which a purely liquid expansion is propagated.

*References are l{sted on page 29.
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2. WAVE HYWITI’ESIS

We wish to test the hypothesis that the limiting upper velocity

of a dynamic vaporization process will be a sound speed characteristic

of the two-phase region of the fluid. In particular the chosen speed

will be that of the coexistence side of the liquidus line which is the

low volume boundary of the two-phase region, represented as the 10CUS

V8(T) in Figure 1.

For a substance characterized by an equation of state P = P(V, T),

where V = l/p is specific volume and P, p, T refer to pressure,

density and temperature respectively, one can readily show
2,3

that the

speed, c, of a small disturbance is given by C2 = (bP/3p)~ , or equiv-

alently by

c’ = (@p)T + (T/p2CV)(~p/~T)2
P

where Cv is the specific heat at constant volume. We note that within

the two-phase region the number of free variables is reduced to one

and P = P(T), the vapor pressure; thus, only the second term of

Equation (1) remains and,

c = (T/CVp2)$ (dP/dT) ● (2)

On the boundary given by the liquidus line two values of sound speed

occur, viz , those for the liquid and liquid plus damp vapor. Sound

speed is double valued on the loci where slope discontinuities occur

in the adiabats.

We refine the wave hypothesis slightly, to state: dynamic

vaporization phenomena in superheated liquids move into the undisturbed

fluid no more rapidly than the liquid-vapor sound speed characteristic

of the liquidus line. A more detailed development of the thermo-

dynamical model will be given in 5 6 below.
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While our main experience with the vaporization waves comes from

experiments with metals, one would expect the hypothesis to apply

equally well to a broader class of liquids including elements, com-

pounds, solutions and mixtures. Necessary conditions for any liquid

to exhibit vaporization wave phenomena can be tentatively stated as

follows. Such a substance should have 1) a piecewise continuous

equation of state relating pressure, specific volume and temperature,

2) a change in phase with a large increase in specific volume, 3) a

latent heat of vaporization large compared with the specific energy

at the boiling point; and, for practical reasons, 4) a temperature

high enough so that specific energy exceeds a certain threshhold.

Wave-like vaporization phenomena are encountered in the steam

shock tube. Here, water contained at temperatures and pressures

higher than its normal boiling point is suddenly released, by breaking

a diaphragm, into a driven section containing air or other gas at lower
4

pressure. Experiments of this kind have been performed by Brown and

by Terrier.
5

Brown treats the expansion wave traveling into the driver

by assuming a two-stage process. In the first stage the water over-

expands to a lower-pressure> metastable state. In the second it

undergoes an exponential relaxation with increase of specific volume

to its final equilibrium state. The connection between metastable and

equilibrium states is found by using certain additional assumptions

and the conservation laws of fluid mechanics in their “jump” form.

While there is some arbitrariness about choosing the metastable state,

Brown’s experimental data appear to agree somewhat better with the

results of the two-stage theory than with those of an equivalent

equilibrium expansion.

11
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3* EXPIQDINGWIRE EXPERIMENTS

From the point of view of historical order, the vaporization wave

hypothesis was first developed
3 to account for some of the peculidr

phenomena observed when wires are exploded by a condenser discharge.

Somewhat later
6 it was proposed as a more general concept applying to

the explosive expansion of superheated liquids in general.

In an exploding wire experiment a long, thin, conducting cylinder

is impulsively heated by an energetic condenser discharge. Depending

on the choice of the conductor and the initial conditions a variety of

complex phenomena occur in the ensuing expansion. We shall not

describe the entire process here but for a more complete discussion
7

refer the reader to a recent review. What will interest us are the

early stages of the explosion as depicted in Figure 2. There one sees

a streak camera record of the expansion of a cylinder of copper cor-

related in time with simultaneous oscilloscope traces of the current

passing through the wire and the voltage measured across it. The

small ramp in the voltage curve represents melting of the wire.

Shortly thereafter the streak photograph shows a haze of vapor expand-

ing about the more-dense> interior

the current decays rapidly to zero

goes through a peak, which in this

as the initial condenser voltage.

of the wire. During this process

in the same interval that voltage

case is about four times as high

For the example chosen, the wire is

so well matched to the condenser that nearly the entire initial energy

is deposited during the first pulse. The physical evidence for a

vaporization wave is contained in the interval of wedge-shaped expan-

sion terminated by the zero of the current pulse.

An interpretation of the exploding wire data can be obtained as

follows. To first approximation we suppose the wire material to

exist in two states only, viz. ~ (1) fully conducting metal not yet

affected by the expansion wave, and (2) expanded, nonconducting, wet

vapor ● Thus, for a vaporization wave propagating with velocity v(t)
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inward from the wire periphery, the radius of the conducting core

diminishes with time as r = rO [1 - ~~ (v(5)/rO) d~] , where tO is
o

the time chosen to represent the start of the expansion. In the

example of Figure 2, tO would be a little more than 4 ~sec. With

this model, conduction will cease when r = 0. Thus, the model

provides an interpretation of the current shut-off; and, in fact,

initiates an explanation of dwell.

4. CONSTANTVEIOCITYVALORIZATIONWAVES

Since wire resistance, R, varies inversely with area of cross

section we can write

-2

R= @)[l -J; (@/rJ ml
o

. (3)

If, for simplicity, we neglect temperature effects and assume the wave

/speed to be constant; then> with T = r. v and ST = t - to j

Equation (3)becomes

R= Ro/(1-s)2 . (4)

As Figure 2 shows, the expansion takes place in a short time

interval near the maximum of current. When current is at its maximum

the charge on the condenser is zero and the energy supply is stored

in the magnetic field. If we assume condenser voltage to be negligible

during the current decay, the circuit equation becomes

L(di/dt) +Ri = O; and, with the previous work, can be written

di/ds +ai/(1-s)2 =0 Y (5)

where a = (ro/v)(Ro/L) isthe ratio of thetime constant of the wave

to that of the circuit. Integrating Equation (5) yields

i = i. exp[- as/(1-s)] ) (6)

13



and with the definitions for voltage~ VR and power~ pR 3

v~ = ROiO (1-s)-2 exp[- as/(1-s)] > (7)

and

-2

PR = Roi~ (l-S) exp[- 2as/(1-s)]. . (8)

Differentiation shows that VR and pR have ~xima at 1 - a/2 and 1 - a

respectively. Furthermore, these maxima have their minimum values, as

functions of a, at a = 2 and a = 1 respectively. A variety of dif-

ferent pulse shapes can be interpreted
8
with this elementary calcula-

tion. Broadly speaking, if the time for e-fold decay of current is

small compared with the time of wave passage, i.e., a > 2, the current

and voltage decay curves have exponential shapes without pe~s. Con-

versely, if a < 1 and the wave is comparatively fast, then the current

decay is quite flat at first and steepens rapidly as the wave approaches

the center. Voltage passes through a peak whose height increases as ~

gets smaller. The present treatment can be generalized to any portion

of the current cycle providing only that the vaporization wave relax-

ation time is much smaller than a quarter period of the undamped

circuit so that the condenser voltage can reasonably be taken constant.

The analysis of the constant speed vaporization wave shows clearly the

interrelation between circuit and wave speed parameters; and shows,

tithermore, the possibility of a unified discussion of a wide variety

of pulse shapes. It fails to provide an accurate method of calculating

actual wave speeds.

5. WAVE SPEEDS FROM EXPERIMENTS

If one abandons the program, initiated with the discussion of

constant speed waves, of attempting to provide a wave-speed theory of

current and voltage pulses, a considerable shift in point of view

becomes possible. We regard the i-VR curves as the raw data, the

physical evidence of the vaporization wave, and attempt to deduce wave

14



speeds from them.

order to provide a

Several additional

rational reduction

assumptions must be made in

scheme. We outline it here; the

details may be found elsewhere.
3,9

If we neglect all work and heat terms except Ohmic heating, con-

servation of energy allows us to equate rise in specific energy of the

current-carrying core with the electrical energy deposited. From the

corrected voltage V~

resistance R = V~/i,

write

and current i curves one can calculate

power P~ = V~i and energy E =
J

V~idt. We can .

de = i2 R dt/m > (9)

where e, m are respectively the specific energy, and the mass heated

during interval dt. The quantity Rm is an invariant under the

vaporization wave. The factor (r/rO)2 cancels out of the product;

however, temperature variation remains and must be accounted for.

To this end we further assume that resistance is linear with

specific energy above the melting point. This assumption can be ex-

pressed by writing

R= RO [1 +~ (e-eO)](rO/r)~ Y (11)

where ~ is a constant to be determined from the experiment. If

specific heat s is constant in the interval, then @ = a/s, e = ST and

Equation (11) contains the usual statement that resistance increases

linearly with temperature. Using Equations (10) and (11) and inte-

grating, we find

(e-eo) + (@/2)(e-eo)2 = (l/KRo)j’t V; dt . (12)
J_

l’j



To determine time t~ when the vaporization wave begins, one plots

scaled resistance, or resistivity, against apparent specific energy

E/mO . Before vaporization, the radius is taken to be r = rO and the

constant ~ in Equation (11) can be determined from the linear portion

of the resistivity data above melt. After vaporization commences, R

rises steeply away from the linear law and this law is extrapolated

to account for the effects of temperature variation. The point at

which R departs from the line determines R. and e. ● Since R is al-

ready known as a function of time to is then determined. True (e,t) ●

values may be obtained by integrating V? as in Equation (12); and

(e,R) values by comparison with the (R,t) data. With (e,R) data

Equation (11) may be solved for (r/ro)2. The resulting points are

fitted to an interpolation curve and differentiated numerically to

obtain wave speed. The initial radius rO is taken nominally to be

that of the cold wire. A more elaborate reduction method has been de-

9vised to correct for thermal expansion of the liquid cylinder; but,

because thermodynamic data for metals at high temperatures are lacking,

has not yet been used. The correction if it could be made would tend

to increase the values of wave speed deduced from measurement by a

variable factor which increases approximately from 1 at room tempera-

ture to 1.’7at the critical temperature.

The assumption of a linear dependence of resistivity on specific

energy is crucial to the reduction. Without it no account can be taken

of the effects of temperature rise, and these are known to be too large

to neglect. Certain metals, e.g., Fe, Ni, W show anomalous decreases

of resistance above the melting point in an exploding wire experiment.

For this reason no wave speeds have yet been obtained for these metals

or for others like them. If, as suspected, the cause lies in early

voltage breakdown and associated current conduction in paths external

to the wire there is some hope that a dense ambient fluid may prevent

the charge leakage and enable wave speed measurements to be made.
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Wave speeds for Cu have been deduced from electrical measurements

as described above and compared with theoretical values calculated

from Equation (2). Values of liquid density, specific heat and vapor

pressure were obtained from tabulated values as described in Reference

6. Owing to the scarcity of measured values of these quantities at

the desired specific energies) various approximations> e“g”> constancY

of liquid density and specific heat, had to be made. Nevertheless,

3
agreement between measured and calculated wave speeds for Cu , in the

temperature range from the boiling point to the critical temperature;

is quite satisfactory and a considerable encouragement to further work.

Accordingly, similar measurements were made on metals Al and ~o The

experimental values may be seen in Figure 3; the theoretical curve

shown there comes from a thermodynamical model and assumed equation of

state, see Q 6.

When the tabulated data were used to calculate theoretical values
6

for wave speeds in Pb, poor agreement with experiment was obtained and

the absence of reliable high-temperature vapor pressure data for this

element was thought to be responsible. Since, generally speaking, Hg

is the only metal for which measurements exist of pressure, density

and conductivity up to the critical temperature, there is not much

hope that expected values of vaporization wave speed can be calculated

for other metals with sufficient precision to provide a correct trend

of the function for comparison with experimental values.

6. THERMODYNAMIC MODEL

Accordingly, we develop here a simplified fluid model to repre-

sent the transient behavior of a material heated rapidly from the

solid state up through its critical temperature. Our motivation is

to supply a simple yet reasonably accurate basis for describing the

state and dynamical behavior of superheated liquids. In order to make

any further detailed flow calculations an equation of state is needed;

accordingly, the goal will be to find an approximate equation of state

17



which is capable of representing what is known about liquid metals and

capable of filling in the large gaps where no data are available.

Agreement will be sought with vaporization wave speeds, for example,

even though detailed internal checks with other quantities are impos-

sible. Our model is based on the following hypotheses: 1) the tem-

perature rise and transitions take place under conditions of local

thermodynamic equilibrium, 2) a form of van der Waals equation ap-

plies, 3) realistic specific heats can be assigned the liquid and

vapor states and 4) the liquid expansion takes place along the
.

liquidus line, V3(T) of Figure 1.

The first assumption is one mainly of simplification although a

plausible argument can be given3 that vaporization from the free

surface should occur nearly at equilibrium conditions.

Van der Waals equation is representative of a class of state

equations which are reasonably accurate) though not precise, and yet

embody the main features of most condensable gases> viz., a hard core

repulsion and a weak, long-range attractive force. With the modifica-

tions to be discussed below van der Waals equation allows different

and realistic specific heats to be assigned the liquid and vapor

phases, a matter which improves later agreement with experiment.

Choice of the liquidus line as the thermodynamic path is somewhat

arbitrary although it appears to be reasonable, as may be seen from

the following argument. For most physical examples, the isotherms and

adiabats in the liquid phase are very steep compared to those of either

the coexistence or vapor regions, except very near the critical point.

Slope magnitudes of the adiabats are proportional to sound speed

squared; consequently the sound speed in the liquid is much higher

than in either of the other regions. We may then argue that heating

moves the thermodynamic state along the saturated liquid line. Any

compressive tendency to drive the expanding system into the all-liquid

state will be rapidly counteracted by liquid thermal expansion, which

is dominated by the fastest speed of sound. The liquid expansion

18



lowers the pressure to that of the liquidus boundary where any further

expansion must be accompanied, under the assumed equilibrium condi-

tions, by partial vaporization, which is governed by the slower

vaporizing wave speed. For interior parts of the system where in-

ertial confinement prevails, premature expansion via incipient cavi-

tation will cause local pressure rise which will force the fluid

element back toward the liquidus line. This process of excursion

about the liquidus continues during the electrical heating pulse

until the fluid particle evaporates from the surface by expansion ‘

through the vaporization wave.

In what follows we take the thermodynamic system of interest to

be a uniform, molten cylinder of metal to which heat is being added

and from whose surface partial vaporization occurs. The speed of the

leading edge of the vaporizing wave is assumed to proceed with the

wave speed of the saturated wet vapor at absolute temperature T, as

given by Equation (2) evaluated on the liquidus line.

For unit mass of fluid, pressure P and specific volume V are re-

lated by the van der Waals equation in the form

PM = ~T/(V-b) - a/V2 > (13)

where the constants a, b are given in terms of values at the critical

point by

a = 3PCV: , b = vc/3 , iTC = (8/3)P,v, . (14)

Inequalities T > 0, V > b are understood to hold. When T < TC the

van der Waals equation of state describes a two-phase region where

both liquid and vapor phases coexist, as in Figure 1. In the co-

existence region, vapor pressure PA is not derived directly from

Equation (13) which has the form of a cubic, but rather from a gen-

eralization of the Maxwell, equal area rule which replaces the two

loops by a horizontal line cutting equal areas from the loops.
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G. D. Kahl10 has proven the remarkable result that the equal area

condition is not necessary, but defines only one of a continuum of

possible choices. For T < TC he writes

J
VI (T)

PH dV = PA(T) [VI(T) -V3(T)] +@(T) , (15)

Va (T)

where

TC
.

O(T) =~ [C,(?,liq) - Cv(~,vap)](l - T/’r)d~ . (16)
T

Specific heat at constant volume Cv is a function not only of temper-

ature but also the state of the fluid> whether liquid or vapor. As

Kahl shows, the features of equilibrium thermodynamics are preserved,

the main one being the stationary property of the Gibbs function as

the system passes from liquid to vapor on an isotherm. If Cv is the

same for both liquid and vapor, then O(T) = O and Equation (15) gives

the Maxwell result. If the two specific heats are not the same, then

O(T) # O, the areas are not equal and some further, useful flexibility

is available in making a realistic choice of the two specific heat

functions.

To evaluate Equation (2) for the vaporization sound speed on the

liquidus line, PA and V~ = l/p3 can be found numerically from Equations

(15) and (16). The specific heat for the coexistence state> CVA ~

must also be found formally and then numerically. To do this one

finds the internal energy E~ and differentiates, using CV~ = (bEA/~T)vo

E~ may be determined from the general relation

(aE/aV), =T(~P/3T)V - P 9 (17)

and noting

ent of V.

from Equation (15) that M(T) = T(~P~/~T)v - pA is independ-

Direct integration of Equation (17) gives

E~ =EW +M(T)[V - Va(T)] > (18)
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where Ew = EW(V~, T) is the internal energY on the liquidus given bY

the van der Waals function. One finds

c,, = (aEN/aT), + LWWV-VJ -M kw’dT)

and

(aEM/aT), = (aE,/W@T (d-@T) + (~E@)v

> (19)

; (20)

finally, on the saturated liquid line

cVA = [(aEJaQ - M] (dVa/dT) + (?)EW/aT)v ● (21)

The last term is Cv(T,liq) and may be taken from experiment or rePre-

sented approximately in some chosen functional form. Van der Waals

equation gives no further information. Putting PW in Equation (17)

gives 3EW/bV3 = a/V~ . With these results, Equations (15), (16), (21)

and van der Waals equation, the vaporization wave speed can be numer-

ically evaluated on V3(T). In the liquid the more general definition

of Equation (1) must be used.

While the equation of state is expressed in terms of absolute

temperature, the independent variable one obtains more easily from

experiment is the added specific heat content Aq. One can make the

connection between q and T by integrating dq = dE + pdv along V~(T)

from the melting temperature TM to T using computed values of

EW(V~,T) and pA(T). For any T < TC a correspondence is thus given

between Aq(T) and T. One then writes q(T) = q(T~) + Aq(T) where

q(TM ) = qM is the heat content of the liquid at melt, assumed known

from other sources. Clearly the scaled variable ~ = q/~TC depends

upon the specific heats of the liquid and vapor phases through

Equations (15) and (16), as well as on qN/~TC* This latter quantity

has a value near 0.60 for a number of metals. Both scaled wave speed

5= ??
Cw/(~TC) and scaled heat content are functional of the specific

heats for liquid and vapor. When one can approximate both of the

specific heat functions by constants, the parametric dependence of

the wave speed curve on the choices of specific heats can readily be

shown as in Reference 9.
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7. COMPARISON OF THE THERMODWIC MODEL WITH EXPERIMENT

Wave speed data for six metals, Au, Ag, Cu, Al, Pb, Hg, are

displayed in Figure 3. While a somewhat similar plot appears in

Reference 9 where cross-hatched areas are used to represent the more

abundant data, here the individual data points are included for a

range of variables which includes most of the two-phase field.

Dimensionless wave speeds 6 are plotted against dimensionless

specific heat content ~ . Because measured, thermal expansion data’

for liquid metals are lacking, no correction could be made for the

effects expansion prior to the passage of the vaporization wave.

Likewise, no measured values of critical point data are available for
11,12,13

any metal except Hg so the best recent estimates were used.

The scaling constants are summarized in Table I.

Metal

Al

Cu

Ag

Au

Hg

Pb

Table I.

~

‘K

933
1356

1234

1336

234

601

Scaling Constants

OK kJ/gm

8650 2.67

8500 1.09

746o 0.575

9500 0.401

1733 0.0718

5400 0.217

A

(R77,)+

m/see

1633

1043

758

630

268

465

The theoretical curve is computed from a modified van der Waals

model, in dimensionless form, with critical compressibility 3/8, and

with Cy(liq) = (5/2)iandcv(vap) = (3/2)~ . This choice of

specific heats, made possible by relinquishing Maxwell’s equal area

rule, is a better approximation to the known specific heat data than
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assumption of identical specific heats for liquid and vapor. In its

scaled form 6 is then a function of dimensionless variables only.

The scale of reduced specific heat content, ~, for the theoret-

ical curve is that computed from the van der Waals function, with an

added 0.1 unit to adjust the ~~ value so that it rePresents~ reason-

ably well, the corresponding values for the six metals which cluster

fairly closely to the nominal, empirical value of 0.60

As may be seen in Figure 3 the data and the theoretical curve ~

agree quite well on the point of inception of vaporization wave

speed, and on the early rise of the curve. The data points for the

noble metals fall below the theoretical curve and go out beyond the

critical point limit toward what appears to be a horizontal asymptote.

Handbook wave speeds for Cu
3 actually agree better with the plotted

data than does the van der Waals curve. Some recent unpublished data

on Cu taken in our laboratory, reduced by a finer-grained method of

reduction, adhere more closely to the van der Waals curve up to an

ordinate of 0.15 before bending away. If the correction for thermal

expansion could be applied, the wave speed values would be increased

by at least 20 - 7@0 depending on ~, the larger increases applying

near

ment

away

critical. Such a correction would somewhat improve the agree-

for Ag, Cu, Au and Al; but would move Pb and Hg points further

from the theoretical curve.

Some especial problems were encountered with the Hg wires which

had to be frozen in an acetone dry-ice mixture, kept in a cold box

and transferred rapidly to the test cell for explosion. Refinements

in this process might result in better reproducibility of the mercury

data.



8. DEVIATIONS FROM THE MODEL

If we confine our attention to phenomena below critical, two

deviations from the assumed model appear to be of primary importance.

The theoretical wave speed applies to the head of an expansion

wave traveling into the molten fluid. Of necessity the front across

which the conductivity drops to zero must come somewhere in the

region of reduced density behind the head of the wave. It may occur

across a narrow segment of the expansion fan and thus be representable

by a sharp front possibly resembling a “conductivity shock wave,” but

its speed of propagation will be less than that of the sound wave

which first travels into the interior. Because we know little about

the change of conductivity in the expansion wave we have no way of

estimating the decrement in wave speeds to be expected. The noble

metals and Al fall below the theoretical curve in the expected way

but Pb and Hg do not.

14
The x-ray pictures of Fansler and Shear demonstrate that for

wires 2 - 5 times larger and for somewhat slower rates of energy ad-

dition the expanding cylinder of molten fluid is not uniform but dis-

plays the transverse variations in density called striations. How

these striations are related to the expansion wave is not known at

present although some speculative hypotheses can be advanced. Their

presence in these cases appears to rule out the hypothesis that the

vaporization wave always proceeds uniformly through a cylinder of

uniform density.

The effect of unvaporized portions of the wire remaining in

striations appears to move all data points toward higher values of ~

by variable amounts. There is presently no method of estimating

this effect. Experiments now underway are directed toward determin-

ing the relationship between number of striations and rate of energy

addition during vaporization wave passage. The present x-ray

techniques are unable to resolve any striations in the smaller wires
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and faster explosions typical of much of the data plotted in Figure 3;

however, their presence in the larger, slower cases is a cautionary

warning that density variations somehow play an important part in the

heating and expansion of superheated metals.
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