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QUALTTATIVE INTERFEROMETRY OF
EXPANDING METAL VAPOR

ABSTRACT

The metal vapor from a wire exploded in a gas is assumed to be
contained between the walls of a hollow cylinder which has boundaries
that are linear functions of time. It .is shown that the presence of

T
&)

.
he ambient gas can n th

e ignored in the quali
flow determined from interferograms. Studies of the single and
multiple fringe interferogrems expected from such a cylindrical flow
are made, Graphical plotting techniq
expected interferograms, and supplementary mathematical relations
describing the interferograms are demonstrated. Finally, comparison

of interferograms obtained by these methods is made with those inter-
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I. INTRODUCTION

Single and multiple fringe interferograms have been in use in

recent years to obtain gas and electron distributions about an

exploding wire'¥. Until recently not much quantitative evidence has

been obtained about the flow of the metal in these exploding wires.

The purpose of this paper is to establish some geometrical techniques !
and mathematical relations upon which subsequent analyses of this meta.

flow, seen in the existing interferograms, may be based. This paper

offers certain flow hypotheses, shows the resulting fringe contours for

both the single and multiplie fringe cases, and compares these fringe

contours with some actual interferograms.

A. Outer Zone Cases.

Figure 1 represents the expansion as a function of time of the

boundaries of the metal vapor from a wire exploding in the presence of

a low pressure gas. We assume t

¥
about the wire axis. Gas density, Py is assumed constant for r > r

In the shocked ambient gas such that ry 2 r > Tn the approximate,

1 Timad Tar » > S ¢ +ha moat
Q T < U

- 3a aagime S
po LS OO WLIC . Pla vy J.N - L = .LP (VL

for
m
1

a
represented by constant density Py 3 and for the innermost region,
where r., > r 2 0 , density 1s taken to be zero. Note that all of
re assumed to be linear and intersect the r axis at
time zero. This approximation fits the observed flow boundaries fairly
closely and presents no serious problems except near t = 0. Thus PH
can be represented approximately as a hollow cylinder of metal vapor
of inner radius rp = az and outer radius ry = bz. Axial distance is
related to time through the equation z = 2 gwt, ®w being the angular
velocity of a mirror making the streak photograph of the event repre-
sented in Figure 1, g is the optical lever arm, and t is the time

] nserved,

e
aQ

elapsed since the initiation of the explosion . If mass

*References are listed on page 30.



and the original radius and density of the wire are represented by r.

and p_ respectively, then p, = p r 2/(b”-a2) 23, for r < r. The ex-
w o a W w7 w
B " A £ n Aavra vl 1. o s
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where s is the radial distance to a point on the ray passing through
the disturbance at r;, n is the index of refraction at s, n, is the
index of refraction of the medium in the reference beama, and A¥ is the
vacuum wavelength of the light used. For the disturbance assumed in
‘igure 1, n is not a function of s, and the integration may easily be

carried out between the limits indicated in Figure 1, with the result

%; 6(ri,z) = Ky ( Uw-z° - - Oo>[(b2'dz)%'- (az—aa)%]

o~

1 1
s s
[3(c* 2 )7 - 3(02-02)7 - (e2-07)7]

* sPo b2 - <

~—~~
\V)
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¥

where in each zone the Dale-Gladstone approximation relating density
and index of refraction has been made. The Dale-Galdstone constant
used for the vacuum and ambient compressed gas zones is KS’ and KM is
used for the metal vapor zone. The parameter o = r/z has been intro-
duced for convenience. Assuming that p_1is the density of 1/16 atm
argon, that Kg = KM’ and that the values for a, b, and ¢ are as shown

in Figure 2, one may plot the (r,z) contour for a given fringe shift,

e.g., 8§ = 6, by solving Eq. {2) for z, calculating z as a function of
a's of interest (c = @ 2 0), and recalling r = wz. This procedure

an r of 5 mils. The inner
+

10



B. Approximation to Outer Zone Case.

Because pwrz/(bz—ae)z2 > p_ and the bracketed radicals are all of
the same order"of magnitude forvthe experiments performed, we might
reasonably assume that the effect on 6§ of the outer zone and inner
vacuum zone is small. With this assumption, Eq. (2) may be written

2K,r. %o

1L W

8 = sxrroaeys [(0P-0?)° - (a%-0?))° . (3)

7

r\)[b—‘
[\

Following the same plotting procedure and using the same numerical
fringe shift number as before, Eq. (3) yields the dashed curve in
*igure 2. The a
dashed curve, differing only in magnitude. Defining the difference
between ordinate values for the two lower curves as Ar, it can be shown
h

that at a fixed z as § - o, Ar monotonically approac

8§ chosen in the figure (6 = 6) is small compared to those likely to
occur in actual experiments, the difference between the lower curves is
about the largest that might be expected. Since this difference is
reasonably small, the use of Eq. (3) in place of Eq. (2) is assumed to
be justified in representing the lower curves. The (r,z) contour from
Eq. (3) does not have an outer curve to compare with that from Eq. (2).
In any case the outer curve does not occur at z values of current
interest (z < 5 cm), nor has it beer 1

quently, the fact that Eq. (3) yields no outer curve is not considered

a serious shortcoming in its use in preference to Eq. (2). We will use

ITI. GEOMETRICAL CONSTRUCTION

A.fmemeﬁDnG@)
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function is generated. In Figure 3 for O < o < a, G(&) is represented
as the length of the line cd, which is the difference in ordinate

a <« v < h
U = & = v



G(a) can be represented as the ordinate distance to the radius b circle,

Hence
1 1
G(a) = (BP-a?)? - (a2-0?)7, Osasa
)
i
= (b%-07 )<, a<a<hb.
f‘_{N\ TrarcIlc A a alaean chAaum in B 19 2 aca Yhea haasrir Anivra NAa+a +hat
u\d,; Versus S aisC Snown 1in o 5 as Trhie fieav curve. WO TUe TlaT

= 0. One can easily verify th

)
= - @, and G’(0) = 0 as shown in the figure.

B. Single Fringe Construction.

From Egs. (4), Eq. (3) may be written as

z = KG(a)/8 (5)

T . . . . P

where the definition of K is evident by inspection. Keeping 6 fixed,

one may plot the lines r = oz and z = KG(a)/G for all o's of interest.

Where these curves intersect for the same o is a point in the r - 2z
f

€~
1

E hif+ 8§ MMh
I Luv v

~Taora Toenie o
plalic . LT Luvulus U

therefore describes the fringe shift contour in the r - z plane. Such

a geometrical procedure is followed in Figure h, where the bottom

o}

recents the ouantit y ( Y/8§ The fringe shift contor
resents the quantlty G\@)/0. he Tringe snlit contou

o]
fode
0n

<
|0 X R0

traced out in the top half of the figure. Fringe shift patterns of this

type are frequently observed experimentally. Figure 5 is a single

fringe interferogram of a copper wire exploded in 1/8 atm. argon. The

$

explosion. It should be compared with Figure 7 which is a plot of
Eq. (3) fora =0, b = 1.
12



C. Multiple Fringe Interferograms.

The fringe shift 8 is given by § = r/W - rO/W where r is the
radius of the fringe in the disturbed region, and ry is the radius of
the same fringe in the undisturbed region. Fringes in the undisturbed
region are aligned parallel to the z axis and equally spaced a distance

W apart. Then from Eq. (5)

(r - r)z = KWG(a). (6)

o~ e e - 17\ - | | 3 4 ne_ . - _ /1 | .= _ _ /1 1 P
Dividing Eq. (0) by [r | and defining r = r/ir | and z = z/|r,[, yields
(r ¥ 1)2 = KWG(er)/r2. (7

The upper sign represents the case where r, > 0, the lower where ry < O.

Also
T =4 XZ , (8)

where x = !a!.

Eq. (7) represents equilateral hyperbolae with origins at r = + 1,
z = 0. DNote that with such hyperbolae the radial distance between the

"

a b 2 1iva da oi<a
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hyperbola corresponds to the value of (r, z) for the a chosen. Select-

ing all o's of interest, one may thus determine the contour of a fringe

[
(]

as it passes through the region of disturbance. This procedure

[N
72}

R T R Y
181l alsivallce

jol]

ne ra

plotted versus @. Figure 9 is a multiple fringe interferogram taken in

the presence of argon at 1/16 atmosphere. The hook-like behavior of
+he 'Pr'? noe in Ficure 8 can ha cean in tha frincas of +tha 1mnar nortion
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sponding to two points of intersection of Egs. (7) and

(8)
values of @ these two branches may intersect as shown in Figure 11 to

form an "aveluded re 1.0 a veocion where for 2a
4 WL LAV-L\.A-\I.\_‘\A. 4 id , .J-O\-l, L i = B LN S N P ="

S

o
of o, no fringes can occur. Geometrically, this results from the

absciss
those for the corresponding set of r = - xZ lines, i.e., no inter-
section occurs. Evidence of this excluded region has not been found
experimentally

IVv. MATHEMATICAL RELATIONSHIPS

A. Single Fringe Case.

From Eqs. (4) and (5)

dr _ dr/do L (2 0? ) (8202 ) TP o
&Il s L) (2 ?) T cas<a
(9)
(20” -1°)
——-—\—Q,——'L, a<ao<hb.

- = g + o, 2t ov = 2 . resn r-'l"‘lchv

az 8, DOy ©, a7 s Dy Vs Trespectlivel
m. - TV mom m e Ve w o o o m merm 1 2L Al 2 e T er dm +lmman AL A aSrme~aTA
Jese si10ope values (,Uth:bl)Ull gualiLivgilivelry LU Ulouse 01 uLie s5l1iigle

B. Multiple Fringe Case.

From Egs. (7) and (8) one may solve for z and obtain

NE RN (10)

(-1)" 2x




where P = 1 + (-1)K LGWKx/r 2. The values for the possible fringes,
e "

“e

Table I. Matrix of Indices

Region i J k Fringe
r, > 0, r>0 even even even I
;;m$76;7§7>ﬂbm7 7révén odd even not allowed
r, >0, r<0 even even odd not allowed
r, >0, r<o0 even odd odd not allowed
ro < 0, r>0 odd even even II
rofk 0, >0  odd odd even not aiibwed
r, <0, r<o0 odd even odd IIT
r, <0, r<O 0dd odd odd v

means no re

correspond to the "excluded regions" of Figure 11. Note that at the

boundaries of the excluded regions.
— 2
1= uGWKx/ro (11)

so that the upper and lower branch always intersect at r= - 1/2.

The slope dr/dz can be determined as in Eq. (9). The result is

dr 232M
- E I > (12)
4z (C1)¥opM - p 4+ (-1)FHIHpE
where
M(x) = (k/r ?) d(xG)/dx .

15



The values for i, j, k for a given fringe are again found in Table I.

Hence at the intersection of the upper and lower branches of the curve
below r = O line, dr/dz = - X, - X, , where x; and %, are roots of

_ ki T sy
Eq. (11). Also dr/dz = (-1)"|al|, (-1)%|v]|, at x = |al, |b], respectively.
Also for both curves II and IIT

> -r
Qé = =2 7r£—v . (13)
dzx=0

interferograms, we see that the two slopes of the single and multiple
fringe interferograms can never be equal at x = O.

C. Asymptotic Be
The shape of the fringe for large z for the multiple fringe case
can be seen from Eqs. (8) and (10). Combining these
(1)t +(-1)p?
- -1)"+(-1)Jp2
7(x) = 2 (14)

where i, j, and k are even or odd integers as given in Table I, r(x)

at z = » is given by r(0). For the curve of Figure 8, curve I,
(r, > 0) i and j are even integers hence r(0) = 1. That is, the fringe

after passing through the region of disturbe
approach its initial configuration, i.e., a line parallel to the r=0

is at a distance of unity away from the axis.

Likewise for the lowermost curves of Figure 10, curve IV, (ro < 0)
i and j are odd. Hence from Eq. (14), r(0) = - 1. The lowermost curve

This asvmp-
hls asymp

totic ©behavior for r, S 0 is discernible in the multiple fringe

interferogram Figure 9.

We examine the behavior of the closed branch of Figure 10 made up

of curves II and III for the case where |T| « 1. From Eq. (14), and
T 3 !l"! € 1 implies 1 > U»YG—WK/I‘Ozg Thus P2

N - i -~ 7 TAYE NS



masr h
u (%)

then becomes

vl
3

The upper sign refers to the portion above the ¥ = O axis, the lower
below. From the definitions of 8, and r, one may
write for curves II and III
r 1 1
= =t = =
IEAIE A (16)

for |r| « 1. Hence, Eq. (15) may be written

- XGK 22 GRPK? (17)
r~+ 3 T - 35;;5—- . (17)

From Eqs. (5) and (8) the r variation of a fringe of the single fringe

type is given by
g o (18)

Note that a comparison of Eqs. (17) and (18) shows that the dependence
on x of the first terms of both equations is the same. That is, for

small r's, the inner closed branch should be similar to the single
fringe in appearance. This resemblance is seen in Figures 4 and 10.

The higher order terms of Eq. (17) cause the distortion noted in Figure
10, making the r values above the axis less positive, and those below
more negative. There is some suggestion of this single-fringe-like
closed loop near the axis at the beginning of the expansion in Figure 9.
However, the processes occuring there may be very complex, and the
simple assumptions resulting in the closed loop of Figure 10 are very

tenuous.

=
-~



V. CONCLUSIONS

In flow studies of metal vapor from a wire exploded in argon at
low density, the effect of the shocked gas outer regions can be neg-

lected in the qualitative analysis of the resulting interferogram.

milar to

T
(=N

Single fringes of the type depicted in Figure L are

[ = R

and shown in Figure 5. Thus, the assump-
tion that the vapor expands in a hollow cylinder with boundaries that

are linear functions of time is sufficient to explain the single fringe
the fringes of Figure 7 are very similar to those obtained experimentally
and shown in Figure ¢, and it is sufficient in explaining the behavior

to assu

o
h

the interferograms of the wires exploded i

a vacuu

solid cylindrical expansion with an outer boundary that is a linear

function of time.

WMV L oo LU TN & IR SUUL I U M SR
Muitlple lringe ure (| are similar TO Tnose

~f L
Ol T

m

g
obtained experimentally and shown in Figure ¥, lending further credence

to the expanding cylinder model for the explosion.

Fringes of the multiple interferograms may have closed inner loops

similar to those of the single fringe type, and Figure 9 may show some

18
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Figure 5. Single Fringe Interferogram of Cu Wire
Exploded in 1/8 atm Argon

Figure 6. Single Fringe Interferogram of Cu Wire
Exploded in a Vacuum
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