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ABSTRACT

The metal vapor from a wire exploded in a gas is assumed to be

contained between the walls of a hollow cylinder which has boundaries

that are linear functions of time. It is shown that the presence of

the ambient gas can be ignored in the qualitative descriptions of the

flow determined from interferograms. Studies of the single and

multiple fringe interferograms expected from such a cylindrical flow

are made. Graphical plotting techniques are developed to obtain these

expected interferograms, and supplementary mathematical relations

describing the interferograms are demonstrated. Finally, comparison

of interferograms obtained by these methods is made with those inter-

ferograms obtained during actual exploding wire experiments.
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I. INTRODUCTION

Single and multiple fringe interferograms have been in use in

recent years to obtain gas and electron distributions about an
1*

exploding wire . Until recently not much quantitative evidence has

been obtained about the flow of the metal in these exploding wires.

The purpose of this paper is to establish some geometrical techniques

and mathematical relations upon which subsequent analyses of this meta~

flow, seen in the existing interferograms, may be based. This paper

offers certain flow hypotheses, shows the resulting fringe contours for

both the single and multiple fringe cases, and compares these fringe

contours with some actual interferograms.

11. FLOW HYPOTHESES

A. Outer Zone Cases.

Figure 1 represents the expansion as a function of time of the

boundaries of the metal vapor from a wire exploding in the presence of

a low pressure gas. We assume this flow to be cylindrically symmetric

about the wire axis. Gas density, Po, is assumed constant for r > rM.

In the shocked ambient gas such that ‘M ~ r > rN the aPProximate~

constant value 4p. is assumed. For rN >r>r ~ the metal vapor is

represented by constant density pH ; and for the innermost region,

where r~>raO , density is taken to be zero. Note that all of

the boundaries are assumed to be linear and intersect the r axis at

time zero. This approximation fits the observed flow boundaries fairly

closely and presents no serious problems except near t = O. Thus pH

can be represented approximately as a hollow cylinder of metal vapor

of inner radius r
P

= az and outer radius r
N

= bz. Axial distance is

related to time through the equation z - 2 jwt, w being the angular

velocity of a mirror making the streak photograph of the event repre-

sented in Figure 1, ~ is the optical lever arm, and t is the time

elapsed since the initiation of the

@eferences are listed on page 30.

explosion2e If mass is conserved,



and the original radius and density of the wire are represented by rw

and p respectively, then PH = pWrW2/(bp-a2) Z2, for rw < r. The ex-W
pression for a fringe shift 6 at radius ri, for rays which are normal

to the r - z Plane Of a cylindrically s~metric disturbance of outer

radius ro, is given by 3

‘o (n-no)sds

rb(ri,z) ‘R ~

‘r. (
~2-r2 -2-

1 i )

(1)

where s is the radial distance to a point on the ray passing through

the disturbance at ri, n is the index of refraction at s, no is the
aindex of refraction of the medium in the reference beam , and A* is the

vacuum wavelength of the light used. For the disturbance assumed in

Figure 1, n is not a function of s, and the integration may easily be

carried out between the limits indicated in Figure 1, with the result

(
pwrw2

- po’)[(b’-dj - (a2+ ~]~b(ri>z) ‘$ ~~-az)zz ,

+ KSpo[3(c2-&)+ - 3(b2-$ )+- (a’-$ )$] (2)

where in each zone the Dale-Gladstone approximation relating density

and index of refraction has been made. The Dale-Galdstone constant

used for the vacuum and ambient compressed gas zones is
% , and % is

used for the metal vapor zone. The parameter a = r/z has been intro-

duced for convenience. Assuming that p. is the density of 1/16 atm

argon, that ~ =
%

, and that the values for a, b, and c are as shown

in Figure 2, one may plot the (r,z) contour for a given fringe shift,

e.g., 6 = 6, by solving Eq. (2) for z, calculating z as a function of

ats of interest (c > a > O), and recalling r =CYz. This procedure

results in the solid curves of Figure 2 for an r~ of 5 roils. The inner

solid curve represents the negative root of z, the outer the positive

root.

10



B. Approximation to Outer Zone Case.

Because pw@/(b2-a2)z2 > p. and the bracketed radicals are all of

the same order of magnitude for the experiments performed, we might

reasonably assume that the effect on b of the outer zone and inner

vacuum zone is small. With this assumption, Eq. (2) may be written

2 rw2pw
8=

%
~*(bz-aa)z [(b2-& )$- (a2-# )]+ . (3)

Following the same plotting procedure and using the same numerical

fringe shift number as before, Eq. (3) yields the dashed curve in

Figure 2. The adjacent solid curve is quite similar in shape to the

dashed curve, differing only in magnitude. Defining the difference

between ordinate values for the two lower curves as Ar, it can be shown

that at a fixed z as b + m, Ar monotonically approaches O. Because the

5 chosen in the figure (8 = 6) is small compared to those likely to

occur in actual experiments, the difference between the lower curves is

about the largest that might be expected. Since this difference is

reasonably small, the use of Eq. (3) in place of Eq. (2) is assumed to

be justified in representing the lower curves. The (r,z) contour from

Eq. (3) does not have an outer curve to compare with that fromEq. (2).

In any case the outer curve does not occur at z values of current

interest (z < 5 cm), nor has it been observed experimentally. Conse-

quently, the fact that Eq. (3) yields no outer curve is not considered

a serious shortcoming in its use in preference to Eq. (2). We will use

Eq. (3) therefore in subsequent discussions.

111. GEOMETRICAL CONSTRUCTION

A. The Function G(a)

Defining the bracketed term of Eq. (3) as G(a), we recall how the

function is generated. In Figure 3 for O < a < a, G(cY)is represented

as the length of the line cd, which is the difference in ordinate

values for two circles of radius a and b and abscissa CY. Fora<a<b,

11



G(a) can be represented as the ordinate distance to the radius b circle.

Hence

G(cY) = (b2-$)$ - (a2-$)+,

= (bz. $)$,

G(cY)versus a ~s also shown in Figure 3

G = (b2-a2):, G(O) =b - a, amd G(b)
max

G’(a) =+~, G’(b) = -~, and G’(0) =0

B. Single Fringe Construction.

(4)

a <a s b.

as the heavy curve. Note that

= o. One can easily verify that

as shown in the figure.

From Eqs. (4), Eq. (3) maybe written as

z= KG(a)/& (5)

where the definition of K is evident by inspection. Keeping b fixed,

one may plot the lines r = az and z = KG(cY)/b for all CYISof interest.

Where these curves intersect for the same u is a point in the r - z

plane for the chosen fringe shift b. The locus of intersection points

therefore describes the fringe shift contour in the r - z plane. Such

a geometrical procedure is followed in Figure 4, where the bottom

abscissa represents the quantity KG(a)/d. The fringe shift contour is

traced out in the top half of the figure. Fringe shift patterns of this

type are frequently observed experimentally. Figure 5 is a single

fringe interferogram of a copper wire exploded in 1/8 atm. argon. The

wing-like structure of Figure 4 is apparent in the region of Figure 5

close to the r = O axis.

Interferograms of wires exploded in a vacuum indicate the absence

of the inner boundary defined by the line r = az, i.e. , the expansion

takes the form of a solid cylinder with a radius that is increasing

linearly with time. Figure 6 is an interferogram of this vacuum

explosion. It should be compared with Figure 7 which is a plot of

Eq. (3) for a = O, b = 1.

12



c. Multiple Fringe Interferograms.

The fringe shift 8 is given by b = r/W - ro/W where r is the

radius of the fringe in the disturbed region, and r is the radius of
o

the same fringe in the undisturbed region. Fringes in the undisturbed

region are aligned parallel to the z axis and equally spaced a distance

W apart. Then fromEq. (5)

(r- ro)z = KWG(a). (6)

Dividing Eq. (6) by Irol and defining ; s r/~rol and ; = z/lrol, yields

(? F l)Z = KWG(a)/ro2. (7)

The upper sign represents the case where r. > 0, the lower where r. < 0.

Also

i =*X;, (8)

where HX=Q’.

Eq. (7) represents equilateral hyperbola with origins at ~ = + 1,

;=0. Note that with such hyperbola the radial distance between the

origin and the hyperbola measured along the (? T 1) = ~ line is given

by (2KWG/ro2)+ . Thus for r. > 0, one may plot Eq. (7) for a given a,

ro, K md W and obtain a hyperbola in the ; - ; plane. One may also

plot Eq. (8) and the intersection point of this straight line with the

hyperbola corresponds to the value of (r, z) for the a chosen. Select-

ing all a’s of interest, one may thus determine the contour of a fringe

as it passes through the region of disturbance. This procedure is

followed in Figure 8. On the inclined axis the radial distance is

plotted versus a. Figure 9 is a multiple fringe interferogram taken in

the presence of argon at 1/16 atmosphere. The hook-like

the fringe in Figure 8 can be seen in the fringes of the

of Figure (9).

13
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A similar plotting treatment for r. < 0 is carried out in Figure

10 ● In this case there are two branches of the fringe contour corre-

sponding to two points of intersection of Eqs. (7) and (8). For some

values of u these two branches may intersect as shown in Figure 11 to

form an “excluded region*l, i.e., a region where for a particular range

of a, no fringes can occur. Geometrically, this results from the

abscissa values of a set of hyperbola being everywhere greater than

those for the corresponding set of ; = - XE lines, i.e., no inter-

section occurs. Evidence of this excluded region has not been found

experimentally.

Iv. MATHEMATICAL RELATIONSHIPS

A. Single Fringe Case.

From Eqs. (4) and (5)

dr =

+

drti=a+l
G ‘dzda

– [(b2-$)(a2 -$)]%,
(Y

= (20?-b2 )
a Y

Hence for single fringe interferograms

dr
z

= a, b, + ~, at a = a, b, 0, respectively.

These slope values correspond qualitatively to those of the single

fringe interferogram of Figure 5.

B. Multiple Fringe Case.

From Eqs. (7) and (8) one may solve for ; and obtain

(-l)i + @ p+i=
(-l)k2x ‘

(lo)

14



where P = 1 + (-l)k 4GWl@/ro2. The values for the possible fringes,

seen in composite in Figure 12, are given in Table I.

Table I. ~trix of Indices

-
Region i j k Fringe

ro>O, ?>O even even even I

ro>0,7>0 even Odd even not allowed

ro > 0, ;< o even even odd not allowed

>0,;<0‘o even odd Odd not allowed

ro<O, ;>O odd even even II

o < 0, ;> or odd odd even not allowed

ro<O, ;<O Odd even odd III

r < 0, ;< () Odd
o

Odd Odd Iv
.

When k is odd, Eq. (10) has imaginary roots when 1 < 4 G~/ro2. This

means no representation in the real ; - ; plane. These imaginary roots

correspond to the llexcludedregions” of Figure 11. Note that at the

boundaries of the excluded regions.

1 = 4GWKx/ro2 (11)

so that the upper and lower branch always intersect at ~ = - 1/2 .

The slope d;/d; can be determined as inEq. (9). The result is

d; . 2x?M

= (-l)k2xM -P+ (-l)i+j+lP= ‘
L (12)

where

M(x) E (KW/ro2) d(xG)/dx .

15
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The values for i, j, k for a given fringe are again fo~d in Table I“

Hence at the intersection of the upper and lower branches of the curve

below ; = O line, d~/d~ = - xl, - ~, where X1 and ~ are roots of

Eq. (11). Also d~/d~ = (-l)klal, (-l)klbl, at x = Ial, lbl, respectively.

Also for both curves II and III

(13)

Comparing this value with that of the slope for single fringe

interferograms, we see that the two slopes of the single and multiple -

fringe interferograms can never be equal at x = O.

c.

can

A~~ ptotic Behavior.

The shape of the fringe for large ; for the multiple fringe case

be seen from Eqs. (8) and (10). Combining these

(-l)i+(-l)h+
;(x) =

2
(14)

where i, j, and k are even or odd integers as given in Table 1, ;(x)

at ; = ~ is given by ~(o). For the curve of Figure 8> curve I)

(r > O) i and j are even integers hence ~(o) = 1. That is, the fringe
o

after passing through the region of disturbance will asymptotically

approach its initial configuration, i.e., a line parallel to the ; = O

axis at a distance of unity away from the axis.

Likewise for the lowermost curves of Figure 10, curve IV, (r. < O)

i and j are odd. Hence from Eq. (14), ;(0) = -1. The lowermost curve

thus approaches its initial position with increasing ;. This asymp-

totic behavior for r. ~ O is discernible in the multiple fringe

interferogram Figure 9.

We examine the behavior of the closed branch of Figure 10 made up

of curves II and III for the case where 1~1 K 1. From Eqs (14)s and

the definition of P, asserting Irl < 1 imPlies 1 ~ 4~K/ro2= Thus P+
*



may be expanded and only the first few terms need be retained. Eq. (14)

then becomes

xGWK 2X?W2G2I@
G=*’~- ~ 4 ●

o 0
(15)

The upper sign refers to the portion above the ? = O axis, the lower

sign to the portion below. From the definitions of ~, and ;, one may

write for curves II and III

(16)

for I;l 4 10 Hence, Eq. (15) may be written

From Eqs. (5) and (8) the ; variation of a fringe of the single fringe

type is given by

Note that a comparison of Eqs. (17) and (18) shows that

on x of the first terms of both equations is the same.

small ;’S5 the inner closed branch should be similar to

(18)

the dependence

That is, for

the single

fringe in appearance. This resemblance is seen in Figures 4 and 10.

The higher order terms of Eq. (17) cause the distortion noted in Figure

10, making the ; values above the axis less ~sitive, and those below

more negative. There is some suggestion of this single-fringe-like

closed loop near the axis at the beginning of the expansion in Figure 9.

However, the processes occuring there may be very complex, and the

simple assumptions resulting in the closed loop of Figure 10 are very

tenuous.

17



V. CONCLUSIONS

In flow studies of metal vapor from a wire exploded in argon at

low density, the effect of the shocked gas outer regions can be neg-

lected in the qualitative analysis of the resulting interferogram.

Single fringes of the type depicted in Figure 4 are similar to

those obtained experimentally and shown in Figure 5. Thus, the asswwp-

tion that the vapor expands in a hollow cylinder with boundaries that

are linear functions of time is sufficient to explain the single fringe

behavior observed for wires exploded in low density argon. Likewise

the fringes of Figure ~ are very similar to those obtained experimentally

and shown in Figure ~, and it is sufficient in explaining the behavior

of the interferograms of the wires exploded in a vacuum to assume a

solid cylindrical expansion with an outer boundary that is a linear

function of time.

Multiple fringes of the type seen in Figure ~ are similar to those

obtained experimentally and shown in Figure y, lending further credence

to the expanding cylinder model for the explosion.

Fringes of the multiple interferograms may have closed inner loops

similar to those of the single fringe type, and Figure 9 may show some

evidence of this similarity.

18
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Figure 5. Single Fringe Interferogram of Cu Wire
Exploded in 1/8 atm Argon

Figure 6. Single Fringe Interferogram of Cu Wire
Exploded in a Vacuum
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