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PREFACE

The problem of heat exchange during lamirar flow of a ligquic in
a tube has recently received considerable development. While 10-15
vears ago only 1solated theoretical results were known, with few
experimental data, questions of heat exchange and hydrodynamics in
laminar tube flow have now moved to the point at which i1t is neces-
sary to systematize all the avallable material, and to treat it
from a unified viewpolint. Such a product 1s also useful since pub-
lications on heat exchange and hydrodynamics in laminar tube flow
are scattered through numerous periodicals. Thus there 1s no doubt’
that the lack of generalizing studies hampers practical utilization
of the results attailned.

Interest in problems of heat exchange and Hhydrodynamics in lami-
nar tube flow and intensive cultivation of such topics are g natural
response to the rising demands of practice. There is ever more fre-
quent need to design heat-exchange systems in which laminar motion
of the fluild predominates. This 1s assoclated with the ever-wider
utilization in technology of gases at hign tumperztures (i.e., in-
creased viscosities) and viscous 1liquids, as well as with the de-
velopment of compact heat-exchange systems. In addition to practi-
cal needs, the development of the theory of heat exchange in laminar
tube flow of 1liquids has undoubtedly been facilitated by the appli-
cation of new mathematical methods in this field, in particular the
broadscale employment of computers.

This book represents a systematic treatment of theory and
methods for determining heat exchange and resistance in .aminar
flow of incompressible fluids 1in tubes. The discussion 1s restrict-
ed to analysis of flow and heat exchange for Newtonlian fluids in
the absence of flcw interaction with electric or magnetic flelds.,
There are two reasons for this: monographs have recently been pub-
lished on the mechanlcs of non-Newtonlan fluids and magnetohydro-
dynamics; 1t 1s impossible to cover all aspects of the problem
within the framework of a single book restricted in size.

The following organization has been adopted. After brief in-
formation on the basic equations pf dynamlics for a viscous fluid
and the boundary and initial conditions (Chapter 1), we consider
methods for determining the heat flow at a wall, the heat-transfer
coefficient, and the hydraulic resistance (Chapter 2). Such data
as is required for the subsequent analysis 1s given for the change
in physical properties of liquids and gases as a function of temp-
erature 1d ressure (Chapter 3). The examination of general ques-
tions t 'minates with an analysis of flow and heat exchange in
tubes t the similarity method; this 1s used as a basis for classi-

FTD-HT=-23-757-68 =1 =




fying possiole cases of flow and heat exchange (Chapter U4),

The laws of 1lsothermal fluld flow, which form the basis for
the subsequent analysis of heat-exchange processes where the physi-
cal properties of the fluld are constant,are disc¢ussed in Chapter 5.
Here results are given for determination of statioanary and nonsta-
tionary flows in tubes differing in geometric shape, with fully de-
veloped velocity profile and in the Hydrodynamic entrance section.
This chapter has been condensed (rost proofs are omitted) since
it basically represents auxiliary(reference) material., When the
physical properties of the fluid are varlable, the motion problem
1s inseparable from the heat-exchange problem. Here the two prob-
lems are considered together,

The next nine chapters (Chapter 6-14) deal with problenrs cf
heat exchange and flow in tubes under stationary conditions when
the flow has no internal heat sources or energy disslpation, and
there 1s free convection. In these chapters, heat exchange 1s con-
sidered in round, flat, annular, prismatic, and cylindrical tubes,
with wall boundary conditions of the first, second, and third kinds,
for developed flow and 1n the hydrodynamic entrance secticn. In g
addition to heat exchange with constant physical properties, ccn- Ao
siderable attention 1s also devoted to heat exchange and friction |
when the liquid and gas properties vary (Chapters 7 and 9 and in-
dividual sections cf other chapters). In particular, in Chapter 9 o
we conslder heat exchange and friction in the supercritical region ‘
of state parameters for the material, and when there 1is equilibriunm ‘
dissoclation 1in a high-temperature gas flow.

In Chapter 15, we study stationary heat exchange when the flow
contains internal heat sources and there 1s kinetlc-energy dissi-
pation, while in Chapter 16 we consider the Joint action of forced
and free convection both with and without heat sources 1n the flow.

The last chapter (17) contains a discussion of heat-exchange
problems under nonstationary condlitions. Here we conslider the in- .
fluence of nonstationarity produced by time-varying boundary con- i
ditions at the wall, by the variation 1n fluld velocity with time, )
and with simultaneous operation of both these factors.

Numerous studies by Soviet and foreign researchers, published
in the periodical literature, are employed in the book. It also
reflects work performed by the author together with his assoclates
at th~. Moscow Power Institute. Chapters 7 and 9, as well as many
sectlons of other chapters, are based almost completely on these
studiles.

Mathematical methods are widely employed 1in accordance with
ti'» nature of the topic, and in the interests of clear and con-
vir- . g exposition. As a rule, after a problem is formulated, 1t
1s solved, and the results then analyzed. It 1s only in 1solated
cases r=quiring cumbersome computation that we have merely formu-
lated the problem and given the computational results, completely
or partially omitting intermediate calculations. In addition to
.ne theoretical analysis, there are experimental data, particularly |
when the possibilities of theoretlical analysis are restricted. Con- :
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siderable attention 1s giver to the physical interpretation of the
results obtalned. All solutions are carried tarough t¢ computation-
al relationships suitable for direct practical application. The
tables and graphs required for cal.culation are given.

The author wishes to thank his colleagues of the engineering .
thermophysics department and the heat.-exchange section of the Scien-
tific Research Institute of High Temperatures [SRIHT](HMWMBT), who
participated actively in discussion of the manuscript, and aided
in selecting material, performing calculations, and preparing cer-
tain illustrations, The manuscript was read by K.D. Voskresenskiy,
who made several useful comments., V.N., Popov did much work to edit
and prepare the book. The author also wishes to extend his sincere
thanks to them,

B. Petukhov
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Chapter 1
BASIC EQUATIONS

1-1. Preliminary Remarks

A phenomenological method of investigation is usually employed
in the theory of heat exchange and in hydrodynamics. Ignoring the
microstructures of the material, we assume that the medium is con-
tinuous. The state of the continuous medium is characterized by
macroscopic parameters. For a single-phase chemically homogeneous
moving medium, such parameters are the temperature, pressure, and
velocity. The physical properties of the medium (density, heat con-
tent, viscosity and thermal-conductivity coefficients), which in
general depend on the temperature and pressure, are assumed to be
known. By neglecting the microstructure of matter, we introduce cer-
tain restrictions on application of the phenomenological method. In
the ensuing discussions, however, we shall only consider those prob-
lems in heat exchange and dynamics of a viscous fluid for which this
method is fully applicable. :

Thus the state of a liquid op gas flow will be specified if we
kno# the fields for the velocity w, pressure p, and temperature T,
i.e., if we know the relationships

;=;(x. Y 2, %) -
P=p(x, g 2, %) } (1-1)
T=T(x, g, 2, %),

where z, y, and 3 are the coordinates of the point and t is the
time,

Equations (1-1) refer o nonstationary velocity, pressure,
and temperature fields. If w, p, and T are stationary filelds, then
in place of (1-1) we have

(1-2)

1

;"':;’(xv y, Z); )
p==p(x. 9. 2);
T=T(x,¥ 2).
‘“he theoretical study of heat exchange and fluid motion re-
duces primarily to determining (1-1) or (1-2). Knowing the ¥, p, and
T fields, as well as the way in which the physical properties depend
on T and p. we can determine all quantities characterizing heat ex-
change and fluid motion (heat flows, hydraulic resistances, etc.).

)
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To determing the five unknowns (the three components of the
velocity vector w, p, and 7), we must have five equations. They
are obtained from the basic conservation laws of physics (of mass,
momentum, moment of momentum, and energy) in accordance with the
generalized law of Newtonian viscous flow and the Fourier heat-
conduction law. The equations thus found are called the equation
of continuity, equations of motion, and energy equation, These
equations, supplemented by relationships for the physical proper-
ties of the fluid as functions of temperature and pressure, form
a closed equation system describing the process of convective heat
exchange and fluid motion. Solution of this system in accordance
with the boundary conditions permits us to determine (1-1) or (1-2).

In succeeding sections of this book, we shall give the equa-
tions of continuity, motion, and energy without derivation for
single-phase chemically homogeneous and isotropic fluids in the
abrence of heat transfer by radiation. The derivations of these
equations can be found in many courses in the mechanics of liquids
and gases [1, 2, 3, U].

As in hydrodynamics, we shall henceforth use the word "fluid”
to mean both 1liquids and gases. ©

1-2. EQUATIONS OF CONTINUITY, MOTION, AND ENERGY

!. The equation of continulity, which expresses the law of con-
servation of mass for a moving fluid, has the following form in
the general case:

o(pw, A
g 2 2, (1-3)

where v, uy, and w, are the projections of the velocity vector on

the axis of a rectangular coordinate system; p 18 the fluid density,
which depends on T and p.

For stationary flow, 3p/3t = 0, and (1-3) takes the form
a (P:-! +0 (rwy) +0 (5.')"6' (1-4)

If the fluid density 1s independent of pressure and tempera-
ture (p = const), we then have in place of (1-3)

T+ S+ 5 =0,  (1-5)

2. The equation of motlon for a viscous Newtonian fluid®! with

variable physical properties has the following form in rectangular
coordinates:

i
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=t teptm (1-7)

Fz,ry, and P' are the proJectiong of the mass-force stress vector

on the coordinate axes; p is the pressure at the point under con-
sideration; u 1s the dynamic viscosity coefficient.

The density p and viscosity coefficient u depend on tempera-
ture and pressure, so that they will vary in time and along the
coordinates when there are temperature and pressure fields in the
flow. Here (1-6) and (1-3) are insufficient to determine the six
unknowns (wz, wy, Wes Ps Py and y). To close the system we must

bring in the energy equation, describing the temperature field, and
the equations establishing the relationship between the physical
properties and T and p.

If p and u are constant, then (1-6) reduces to the form

a—%‘—-k » gradw; =F. ,——:—-%d-vv’-,; )
ow, , [
wtogadm, =F—F v | (1-8)
g:—;'—-+; grad w, = F.--—:—~%‘:—+ wW'o., |}
where v = u/p 1s the kinematic viscosity coefficient.

We shall henceforth consjider just one mass force, namely the
gravitational force. Here F=g. The gravitational force exerts an
influence on fluid motion only when there are free surfaces or a
nonuniform density distribution in the flow. When there is con-
fined flow (i.e., no free surfaces) and the density distribution -
is uniform, the gravitational force acting on a fluid element is
balanced by the Archimedean displacement force. Thus the fluid
moven as if it were welghtless, which confirms the possibility of
eliminating the gravitational force from the equations of motion,
8o that they can be writtzn in the Helmholtz form. Here, conse-
quently, the gravitationai force can be neglected in determining
the velocity field.*

With a nonuniform pressure distridbution in a confined fluid
flow, the action of the gravitational force is not balanced by the

2
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Archimedean force. To introduce tre resultant of these two forces,

the 11ft, we transform the first two terms on the right sides of
the equations. Since here F=g, we have in projection on the z axis:

tFe—B=—r)es— (L —nas).

where p, 1s the density at constant temperature 1'0 for some ti.xed'
point 18 the flow.

Assuming the variations in p and T to be small as compared
with the absolute values, we can let

’_'o=—”(r—r|)o

where p-;~+(-g7'r) is the coefficlent of volume expansion for the
fluid. ’

The quantity pg.can be represented as pg.=dp/ox (and analo-
gously for P.gys~ipg;), Where P is the hydrostatic pressure, computed

on the assumption that the fluid has density Po everywhere, Letting
P =Py = Pys We obtain

F s b (T —T— 32,
Oy — o= &ofe (T —T)—f; -9
oFs— = — g0 (T — T —2L2.,

The first terms on the right side of (1-9) are the projections
of the 1ift —gfe(T—T,) (referred to unit volume of a liquid parti- .

cle)? on the axes of an arbitrarily oriented rectangular coordin-
ate system. If the z axis 1s opposite in direction to g, then the
projections of the 1lift on the x and y axes will vanish, while
the s-axis projection g, = —g. Here, naturally, dpfoz=—pg. We

also note that in (1-9), it is convenient to replace 8p by Bpo="Pe
(see §3.2). P

3. The energy equation for a single-phase chemically homogen-
ecous 1sotropic fluild whose physical properties are arbitrary func-
Ltions of temperature and pressure will have the following form
when there 18 no heat transfer by radiation in the flow:

p-Go-=div (Agrad T) +q,+ &+, (1-10)

or in different form,

0y e =t Agrad )+~ (3) Lot (1-11) |

where n 1s the enthalpy, referred to unit mass; T is the temperature;

’p 1s the 1sobaric heat capacity, referred to unit mass; A is the

S/14 = A=
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thermal-conductivity ccefficieat; q, 1s the strength of the internal

heat sources (amount of neat liberated by the sources per unit volume
in unit time); & is the dissipation function:

o=r{e[(2)+(3)+ (52 +
() + (T )~ @y},

Expressions can be written on the basis of (1-7) for the total
derivatives dh/dx, dT/dx*~ dp/dx

We shall study heat exchange for flow of liquids and gases mov-
ing at veloclities considerably below the speed of sound.

The quantity -':‘(g'i‘) =f 18 usually very small for a liquid and,

4

moreover, the pressure in the flow varies negligibly. Thus the third
term on the right side of (1-11) is small as compared with the other
terms and can be dropped. For an 1deal gas 8 = 1/T and the same term
becomes equal to dp/de. At gas velocities not exceeding ~0.3 the
speed of sound, dp/dv 1s small as compared with the other terms of"
the equation, and it can also be dropped.

Thus in either case, the flowing medium (liquid or gas moving
at moderate speed) can be treated as if it were lnconprzss!ble, i.e.,
we can assume that its density does not change substantially owing
to a change in pressure. Since in either case the relative change
in dgnsity produced by the dependenc2 on T and p will not be large,
div v will be small as compared with the other terms of the expres-
sion for the dissipation function, and 1t can be neglected. As a '
result, the energy equation takes the form

0y ST =div (1grad T) + gy 1S, (1-12)
where usS 1s the value of ¢ at div ;=0.

If A 1s constant, then (1-12) reduces to the form

F=apT+- 2t s, (1-13)
where a=4/pc, 18 the thermal-diffusivity coefficient for the fluid.
1-3. SYSTEM OF EQUATIONS DESCRIBING HEAT EXCHANGE IN A FLUID FLOW

The process cf heat exchange in a flow of viscous incompres-
sible f{luid whose physical properties depend arbitrarily on the
ten,crature® 1s described by the following equation system, which
we write in rectangular ccordinates:

PO ) .
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=p(T); ep=2ey(T); 2=2(@A); p=p(T). J

The specific relationships for p, ap, A, and yu as functions of
T 1s determined by the nature of the fluid (see Chapter 3).

Equations (1-1#4) contain nine dependent variables T, w,, w, @,
p. 0 cpnh and u), We have nine equations to determine them. Thus
the equation system describing convective heat transter in the mov- :
ing medium is closed.

System (1-14) 1is extremely complex, and very difficult to
solve in general form. These difficulties are caused by the non-
linearity of the equations of motion and energy, introduced by
the convective terms on the left sides, and the fact that the
physical properties of the fluid depend on the temperature. Since
u and p depend on T, the velocity and temperature fields are in-
terrelated. Thus the equations of motion and continuity. cannot be
solved in isolation from the energy equation.

*

The problem 1s simplified considerably if we assume that
the viscosity and density are constant. Here the equations of mo-
tion remain independent of the energy equation, and the tempera-
ture fleld has no influence whatsoever on the velocity field. The
la-ter fact can be shown by solving the equations of motion and
continuity.

If the veloclity distribution found is substituted into the
energy equation, the nonlinearity of this equation, introduced
by the convective terms on the left side, will vanish together
with the dependence of p on 7. The nonlinearity associated with
the dependence of A and o¢_ on T remains, however, The next step

in simplification lles in the assumption that e_ and A are also
constant. P

If all physical properties are constant, System (1-14) will
take the orm
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The assumption that the physical properties are constant sub-
stantially simplifies the equation system, so that it becomes pos-
sible to solve many problems in convective heat exchange. In addi-
tion, this assumption restricts the applicability of the results
obtained to those real processes in which the physical properties
of the fluid vary negligibly. Nonetheless, problems involving heat
exchange under constant physical properties are of great interest,
since they permit us to understand the basic laws characterizing
various heat-exchange processes.

In the discussion to come, we shall require the energy, mo-
tion, and continuity equations in cylindrical coordinates. We let
z, r, and ¢ represent the axial, radial, and azimuthal coordinates,
respectively, and Wps Wys and wb the velocity compornents along
these coordinates. Going from the rectangular system to the cylin=’
drical, in place of (1-14) we obtain

(_%1"__'_'”: ox +w' ar +:} %c—)=707' (z.“;—z—)-l-
+3 (A5 ) a4 -;r-%(z-g‘t-)+q,+w.

-Where
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If all the physical properties of the fluid are constant,
(1-16) takes the form .
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1-4. INITIAL AND BOUNDARY CONDITICNS

To solve specific problems of fluid motion and heat exchange,
vwe must add the so-called initial and boundary conditions to the
basic equations,

1

The initial conditions consist in the specification of the
velocity field, temperature field, and other dependent variables
over the entire system volume® at the initial time (i.e;, the time
beginning at which we investigate the process occurring in the
system). If fluid motion and heat exchange are stationary, there
is -no need to specify the initial conditions.

The boundary conditions reduce to specification of system
geometry and the conditions for fluld motion and he&t exchange at
the system boundaries. The latter may be solid (surfaces of solids
washed by a fluid) or fluid (for example, entrance section of a
tube, outer boundary of a boundary layer, etec.).

A fluid flow in a tube 1is bounded by the inside surface of
the walls, and by the entrance and exit sections. The boundary
conditions must then be specified at these surfaces. We usually
assume that the tube 1s a semibounded cylinder, i.e., that it ex-.
tends to infinity in the direction of the flow. Here there 1s no
need to specify the boundary conditions for the exit section.® The
wall surfaces washed by the flow are ordinarily taken to be smooth.

The boundary conditions for the velocity at the surface of an
impermeable wall are specified on the basis of the assumption that
a visncous fluid will adhere to the wall surface. Accordingly, the
normal and tangential components of the velocity vector with reg-
pect to the wall are assumed to be zero at the surface of a sta-
tionary impenetrable wall. The boundary conditions for the temper-
ature at the wall are based on the assumption that the temperature
field is continuous at the fluid-wall boundary.’ Consequently, the
fluid temperature at a given point on the wall surface must equal

the temperature of the wall surface at this same point. This assump-

tion is well confirmed by experiment for various fiuilds, other than
rarefied gases. In the latter case, as we know, slipping occurs,
and there is a temperature discontinuity between the gas and the
wall surface. We shall not consider this case, however,

There are various ways of specifying the boundary conditions
for the temperature fileld at the wall. Let us look at three very
characteristic types of boundary conditions, which we may call
bo :mdary conditions of the first, second, and third types in ac-
cordance with the practice in heat-conduction theory.

Boundary conditlions of the first kind are specified as the
dist-ibution of wall temperature (1.e., the temperature at the
fluid-wall boundary) over the surface, and its time variation:

Yomts(Xoy Yer Zer T)s (1-18)

where Zgs Y

and s, are the coordinates: of points on the wall sur-
face.

’
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Under stationary conditions, tg will naturally be independent
of the time. In the simplest case, t, = const, 1.e., 1t is constant
over the surface and does not vary in time,

Boundary conditions of the second type involve specification
of the distribution of heat-flow density at the wall over the sur-
face, and 1ts time variation. Since the fluid at the wall is sta-
tionary and, consequently, the Fourier law is applicable, specifi-~
cation of the heat-flow density g is equivalent to specification

of the temperature gradient at the wall. We thus have

Qc"-'—-""l(g":) ={q¢ (xc. Yeo Zes ")' P (1-19)

n=+o

where A 1s the thermal-conductivity coefficient for the fluid;
n 18 the normal to the wall surface, directed toward the fluid.

To determine the temperature field in this case, we must speci-
fy at least one value of the actual temperature at some point in
the flow.

Boundary conditions of the third type are used when the fluid
moving in the tube delivers heat to the ambient through the thin
separating wall, but the wall temperature at the fluid boundary
(tamo=tc) 18 not specified; instead we have the ambient temperature

typ Here we can make the elementary assumption that the heat-flo¥

density at the wall is proportional to the temperature difference
Enmeg—tep. Assuming a thin wall and neglecting its heat capacity

(for nonstationary heat exchange), we can write the boundary con-
dition of the third kind as

—2 ( dn)““ =K' (fop — I nae)s (1-20)

where X' is a coefficient of proportionality, called the coeff!-
clent of heat transfer between the wall surface on the fluild side
and the ambient. Here X' and *sr can be specified either as func-

tions of the distance along the tube axis and the time, or as
constants in the simplest case. When & -voo fpmpmlomlep 1.e., the

boundary conditions of the third kind reduce to boundary condi-
tions of the first kind.

At the entrance sectlon of the tube, the distributions of
velocity and temperature over the section are specified as time
functions, The transverse velocity components are ordinarily
takcn equal to zero, while the longitudinal velocity component
and temperature are assumed to be uniform over the section.

It is not always possible to specify the thermal boundary
conditions at the wall surface in the form of certain functions:
te(Xey Yoo Zes 1) OP GelXe, Yoo 2c, 7). We encounter this situation, for ex-
ample, when the width and physical properties (A g, ¢ of the wall
maferial are commensurate with the tube radius and the correspond-
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ing properties of the fluid. Here the temperature fields in the
wall and the flow will differ substantially. Thus the temperature
distributi n on the rfluild-wall boundary will not be known in ad-
vance and, consequently, cannot be specified beforehand.

Solution of such problems requires simultaneous consideration
of the heat-exchange process in the fluid flow and the heat-conduc-
tion procees in the wall. For this purpose, to the equation system
describing the temperature field in the flow we must add the heat-
conduction equation describing the temperature fleld in the wall,
and at the fluld-wall boundary, we mist specify the conditions for
contact of these filelds (such problems are thus often called con-
tact problems), The contact conditicns reduce to the following
equations:

tn'=+.= tcln:-.;
ot ot
l (7’;)-=+ o=le (Tn)l=-0.

where ¢ is the fluid temperature; t, 1s the wall temperature; A and
xs are the thermal-conductivity coefficients for fluid and wall,

The first equation follows from the assumption that the temp-
erature field 1s continuous at the fluid-wall boundary, and the
second from the law of conservation of energy.

Joint analysis of two or, even worse, three? contacting flelds
consliderably complicates the problem. In practice, however, we most
frequently have to do with fairly thin walls that are good heat
conductors; in most cases (particularly under stationary conditions)
this permits us to reduce the problem to consideration of the temp-

~ erature field in the fluid flow alone.

Manu-

sceript

Page Footnotes

No.

5 1By a Newtonian fluid, we mean a fluid for which the
relationship between the stresses (normal and tangen-
tial) and resulting strains for a 1iquid particle are
described by the generalized Newton law,

6 2Naturally, in this case as well the pressure field will
depend on the gravitational force.

7 3We note that this 1ift force introduced into the equa-
tion of motion is arbitrary, since |1t is represented on
the assumption that the density of the fluid surrounding
a fluid particle with density p 18 constant and equal to
Py

8 'Hor an incompressible fluid, p 1s independent of the:pres-
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10

12

12

12

14

Manu-
script
Page
No.

12
13

sure; the dependence of ¢_, A, and u on p is in general .

negligible, and is disregarded in heat-exchange calcu-
lations, as a rule (see Chapter 3). The region near the
saturation curve and the supercritical region represent
exceptions.

*In writing the equations of motion we drop the terr con-
taining div w, since it is small as compared with the
other terms for an incompressible fluid.

#Here the symbol p represents the difference between the
actual pressure at a given point in the flow and the hy-
drostatic pressure at the same point. In $§1-2, this dif-
ference was represented by the symbol p, = p — p, (here
grad p, = pg). Here and in the ensuing &1scussiog, we

drop the subscript 1.

We also note that here the temperature is represented
by the symbol ¢, ordinarily employed when the temperature
is measured in °C. If the temperature is measured in °K,
however, we then generally employ the symbol T. It is
convenient to measure temperature in °K, for example, for
heat exchange when the moving gas has variable physical
properties.

$That 1s, regions within which the process under study
takes place,

‘In applying the solution for a semibounded tube to tubes
of finite length we naturally neglect singularities in
flow and heat exchange near the exit section that are

determined by the state of the flow beyond the exit sec-
tion.

’In the sense that there are no discontinuities in the
values of the temperature, rather than its derivatives.

SFor example, the temperature fields in the flow within -
the tube, in the tube wall, and in the flow washing the
wall from the outside.

Transliterated Symbols

c= 8 = gstenka = wall

e¢p = 8r = sreda = medium
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Chapter 2

DETERMINING THE HEAT FLOW. HEAT-TRANSFER COEFFICIENT, AND HYDRAULIC

RESISTANCE
2-1. HEAT FLOW AT FLUID-WALL BOUNDARY

Solving the equation system for convective heat exchange for
performing measurements, we can find the temperature and velocity
fields in the fluid flow. Assuming these Tields to be known, let
us consider methods for determining the amount of heat transferred
from the wall to the fluid.

The fluid jis stationary at the wall surface and, consequently,

heat 1s transferred only by heat conduction. Thus according to the
Fourier law, the heat-fiow density at the wall is

o=—2(3)_, (2-1)

where n 1s the normal to the inside wall surface, directed toward
the fluid; A is the thermal-conductivity coefficient of the fluid.

In the general case, q_ varies along the surface and in time.
Thus the heat flow at the wiil , 1.e., the amount of heat trans-
ferred in unit time from a wall with surface F to the fluid is

@ foedrm={i(E)_ o (22

The amount of heat transferred from the wall to the fluid in
time 1 13

Q“=SQed1=§dt Sq,dl". (2-3)

As we can see from (2-1) and (2-2), to determine q., ¢ , and
Qar we need only know the temperature field in the flow and the
thermal-conductivity coefficient for the liquid.

The heat flow at a wall can also be found from the'energy-
balance equation for a fluid element of length dz bounded by the

tube walls and two sections normal to its axis. It is not difficult
£o obtain the energy-balance equation for such an element by inte-
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grating the energy equation over the tube cross section. Let us do
this for an incompressible fluid with variable physical properties,
flowingz in a round tube; for simplicity, we assume that the velocity
and temperature fields are symmetric about the z axis of the tube,
Going from temperature to enthalpy in the left side of (1-12)

and transforming it with the aid of the continuity equation, we
obtain

TG G (1)
+Lg () Hetes. (2-%)

We multiply this equation by 2wr dr and integrate it with respect
to r from 0 to r, (where ro 1s the tube radius):

I%'f-’zww]’%"-’zw&z:}amh
; : .
=J_;;(z -:%-)hrdr-l-kjd (rl-g-)-l-!(q.-l-pS)hdr. (2-5)

The third integral on the left side equals zero, since v =0
vhen r = rg. The second integral on the right side 1is

o () ] (), e,

If in (2-5) we change the sequence of differentiation with
respect to Tt or z and integration with respect to r, we obtain

L7 [/ o [/
= p@vdr+-£— S n,hhdr—d’-'- !z.z_z-a+

+quwr, 4 S Gt 200, (2-6)

We let f be the area of the tube cross section normal to
the axis, and s the tube perimeter in this section. Then from
(2-6) we find

) L] ot
4c=+ [-;SP*“"'"}?S(P'JI—‘-W df —
! !
o
—{ Go+esa]. il
3
It 1s not difficult to see that although Expression (2-7)
for the density of the heat flow at the wall has been derived
for a round tube, i1t 1s actually valid for a tube of any cross-

rectional form that remains unchanged along the axis. If the
:.2at-low density at the wall varies alcng the perimeter, then
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by ¢4 in (2-7) we should understand the heat-flow density in the
given tube section averaged over the perimeter.

For stationary flow and heat exchange, (2-7) will take the
form

4c=—:-[{;'f(mh— 135) di—"(v.+p3) d4f]. (2-8)

The change in heat-flov density along the axis owing to heat
conduction is usually small, and can be neglected in most cases
(see §6-1). The same may be said of the heat liberated by dissi.
pation. If, in addition, the flow has no internal sources (q, = 0},
then (2-8) 1s reduced to the form L

D 5 pw.hdf, (2-9)

For a tube section of length'l, the heat flow from the wall
to the 1liquid will evidently be

Q. -.=5 gesdx. ( 2-10i

In the simplest case, where g is determined by (2-G), we
have g

Qc=[§thd!]..‘ —[’ pw A df ].-.' ' (2;.11.)

For computational simplicity, we introduce the mean mass en-
thalpy and mean mass temperature of the fluid, The mean mass en-
thalpy 1s defined as the ratio of the amount of heat passing
through a given cross section in unit time owing to convective
transfer to the fluid flow rate through this section:

meAd]
h= T (2-12)

!

By the mean mass temperature, we mean the temperature corres-
nonding to the mean mass enthalpy. We represent it by % or T,
measured respectively in centigrade or absolute-temperature units,

If the heat capacity e_ 1s constant, then from (2-12) we 6b-
ta'n the following expressibn for the mean mass temperature of,

the fluid:
!P'l“f.
(= ' (2-13)

;"ld' )
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If p and °p are constant, from (2-13) we have:

wt df
{e= .
, d’ ) ( 2-1“)

The physical meaning of k' and £ 1s easily understood if we ima-
gine that the fluid in the given tube section is mixed in some way
that its enthalpy and temperature have become identical. over the
section., This constant enthalpy and temperature will he the mean

- mass values, If Was P and o_ are all constant over the section

then, as we can see from (2-14), ¥ will be the mean fluid tempera-
ture over the section.

Using the concept of the mean mass enthalpy, we can write
(2-9) and (2-11) as

Go= -03;‘0 (2-15)

Qc=G (Re—Fs), . (2=16)

where G= | pw. df 18 the mass fluid flowrate; k, and k, are the values
of hat x = 1 and =z = 0.

Ir ey is constant, then in place of (2-15) and (2-16) we have

qc "",G‘E' (2-17)
Qe=cpG (ti—1). (2-18)
2-2. LOCAL HEAT-TRANSFER COEFFICIENT

The heat-transfer coefficient is an important characteristic
of the process of heat exchange between a wall and a fluid flow.
The local heat-exchange coefficient 1s introduced by definition;
it is the ratio of the heat-flow density at a given point on the
wall surface to the difference between the wall temperature at
this point and the fluid temperature. Depending on how the fluid
temperature is selected, there are two ways of defining the local
heat-transfer coefficient:

Q== Qe_. (2-19)
lo—t

o=t (2-20)

fo—1,

where qq is the heat-flow density at the given point on the wall
surface; t, 1s the wall temperature at this same point; £ 1s the
mean mass temperature of the fluld at the considered section; *0

-18 the temperature of the fluid at the entrance to the heated

length of tube, and is constant over the section,

In the first case we say that o refers to the local tempera-
ture head, and in the second to the initial temperature head. The

: - 18 -
/21

()




particular method chosen to define a depends on the nature of the
problen, and is based solely on considerations of convenience (we
obviously should pick the method for which the relationship des- . .

cribing the variation in a will be simplest and most convenient
for calculation).

Substituting q, from (2-1) into (2-19), we obtain the follow-
ing expression for the local heat-transfer coefficient:’

A ot 2-21
=== (). (2-21
In the simplest case, where ag, can be represented in the form
(2-17), we obtain .
___ G df, (2-22)
= ‘(‘e—-f-)a;

Analogous equations can also be written when a refers to ts - to.

In the general case, like q, and t_, the local heat-transfer

coefficient may vary along the perimeter and length of the tube, If
g and ts are constant over the perimeter, a will vary only along

the length, We can use (2-21) to determine the local heat-transfer
coefficient at each point on the wall surface. We can also use (2-22)"
to compute just the mean heat-transfer coefficient over, the perimeter
in the given section. If the wall temperature varies along the peri-
meter, we then substitute the mean wall temperature over the peri-
meter into (2-22). :

To conclude, we note that the numerical values of the heat-
transfer coefficient and the way in which it changes along the
length will depend not only on the flow and heat-exchange condi-
tions, but also on the method used to define a, i.e., on whether
we use (2-19) or (2-20).

2-3. VARIATION IN HEAT-FLOW DENSITY, FLUID TEMPERATURE, AND WALL
TEMPERATURE ALONG TUBE LENGTH

In determining heat exchange in tubes, Wwe ordinarily face two
problems: determination of the variation in ¥ and g along the
tube length when we know a(xz) ‘and t (z), and determination of the
variation in ¢t and t, along the tube length when we know qs(z) and

u{x). We consider both these problems for the elementary case in
wnich the physical properties are constant, there are no internal
heat sources, and the axlal heat conduction and dissipation have
negligible influence.

1. We begin with the first problem. Since we know the relation-

ships a(z) and t («), to determine ¥(x) we can make use of (2-22).
We write i¢ as

ar




o

& =g (),
where
f (x)=%: g(x)sa:—’t..

Solving this equation under the boundary condition ¢ = tq at.

z = 0, we obtain

t-=e""’[t.+jg(x)e""dx]. (2-23)

‘

where
?(x) '=If (x)dx,

If the wall temperature is constant along the length (ts =
= const), then

f—e™" (t. +1, S ¢'e’ dx) =e~? (t, +t, ;c' d,),

from which it follows that
f=to+(t,—tc)e™". (2-24)
If, in addition, a is constant along the length, then

T=tot(ty—te)e Fr . (2-25)

( ?he heat-flow density at the wall is found directly from
2=19):

Ge=a (‘tc—i) .

2. When we are given the distribution qs(x) and a(z), the
variation in the mean mass temperature of the fluld along the

length is found from (2-17). Integrating the latter with respect
to 2 and using the boundary condition ¢ = to at = 0, we obtain
.-_=!.+a%’-qu (x)dx. (2-26)
Thus, for example, if 95 = const, then
-E=a4+5£:x.: " .
i.e., T varies linearly as a function of =.
The wall temperature will evidently equal
o= 2. (2-27)
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With g, = const and a = const, both tg and t will vary linearly;
here ts - t"= const,

2-4, MEAN HEAT-TRANSFER COEFFICIENT AND TEMPERATURE HEAD

I
The mean heat-transfer coefficient along the tube length, like
the local coefficient, can be defined in different ways. Let us look
at the principal methods.

Mean integral heat-transfer coefficlent:
- I 4
CBT adx, (2—28)

Heat-transfer coefficlent referred to msan Integral tempera-
ture difference:

!
= e Bly= J (bs —D)dx, (2-29)

Heat-transfer coefficient referred to arlthmetic mean tempera-
ture difference:

e, v By =Ty~ a0, (2-30)

The mean heat-transfer coefficlient referred to the Inltial
temperature difference:

;=—_—Qf—-—. (2-31)
F(te—ty) :

Here Qs is the heat flow along the tube length from & = 0 to

x = 1; F =gl 18 the inside surface of the tube segment’' of length
l; o 1s the local or mean-perimeter heat-transfer coefficient a
distance z from the entrance; ts is the constant or mean-perimeter

wall temperature a 'distance z from the entrance; ? is the mean

wall temperature over the surface for the tube segment of length
{5 to and tz are the mean mass fluid temperatures at 2z = 0 and’

x =7,

The choice of a particular method for defining & is in general
arbitrary. Nonetheless, for simplicity and clarity in representing
the 1¢sults of a theoretical or experimental investigation, and
convenience 1n practical calculaticns, the method selected should
agree with the nature of the problem under study.

Defining the mean integral heat-transfer coefficient in ac-

cordance with (2-28), we substitute the value of a from (2-22)
into this expression:

]




Integration is simple only if ts = const., In such case, we have

;.,55"_1“ :°-,,:_° ] (2-32)
{ D 1 ]

Multiplying and dividing this equation by %

1 to and remem-
béring that ¢,G{fi—!)=Q., we can write it as

= (2-322)
where
v Tl"“o ‘
Ma=imi (2-33)

to—1

Thus if we use the mean integral heat-transfer coefficient
when t = const for any type of variation in a along the length,

and with the restrictions associated with the derivation of (2-22),
we arrive_at the concept of the_mean logavrithmic temperature dif-
ference Atl. Here to determine a we need not know the law govern-

ing the variation in a and ¥ along the length.
For fluild moving in tubes, if the 1local heat-transfer coef-

ficient is found in accordance with (2-19), it will usually vary
along the length for the segment between £ = 0 and z = Zn t,’ while

for z > Zn £ i.e., over the rest of the tube, it will remain con-
stant. We let a_ represent this constant value of a,

At = < zn.t’ let a = f(x), and at = > Zn.t,.let a =a = const.

Let us see how the mean heat-transfer coefficient will vary for
values of z >> Ln £ This question 1s significant when we process

experimental data and compare the results of different experimental
investigations,

The mean integral heat-transfer coefficient when = > Zn ¢ can
be represented as

:--}‘-Sadx;-}‘-(,radfq- é.“ dx).

if we let

il [ e

represent the mean heat-transfer coefficient at the thermal initial
segment, then the preceding equation can be written as

.‘E 1;. (".: - 1)+1. (2-34)

228 = 22| %
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from which it follows that when x-seo(when z >> ln g, in practice),

a + a_. We note that this holds for various boundary conditions.

For example, ir c.../u =13, then to within 3% @ will equal o, When
x = 101 .
n.t

The heat-transfer coefficient, reférred to the mean integral
temperature difference at = > ln t will equai, by definition,

ny
W 5-(:.—7)¢x+-.ja.—oa

“' | -
[ ] --;;‘.;;-=3 [ . ( 2 35)

5 m-qa-u S (".""“

l-!

Using the relationships

'..'
5 (Y ‘—?) dx,"= El.!’l.!?
L

5 (e _-i) dxs= ;l.jq.fl-.!o

where Atn ¢ is the mean temperature difference at the thermal ini-
tial segment, we can reduce the expression for a to the form

L
- TEFIm
where
P (H)ms s (te—0)dx.

When t_ = const, we can use (2-25) to evaluate the last inte-
gral., We thin obtain

@(x) m—Ae-**+B,
where 4, B, and k are constants,

Thus for constant wall temperature,




it s0becl
e

i i

iaias o n die ol

Since in the general case a,.fa 1 for any values of z, a
will differ from a_ . It is only in the special case for which
Gueft, —1,that a = a,

With constant heat-flow density at the wall (¢, = const), the
numerztor in (2-35) will equal q4%, while the second integral in

the denominator will equal % (x—{,.). Thus the expression for a
can be written as: *0

4

i %o

“m— —  dux Je [ )
bue =+ °l,( —'x_)

It follows from this equation that vhen x-.e0a=a,,

1
In like manner, we can follow the leugthwise variation in
the mean heat-transfer coeffilclents reierred to the mean-arithme-
tic and initial temperature differences. When ts = const, these

heat-transfer coefficlents approach zero when z + «,

The mean_heat-transfer coefficients, referred to the mean-
logarithmic (a ), mean-integral (a ), mean-arithmetic (a ), and

initial (an) temperature differences are assocliated by the self-

evident relationships
'-;INJI =EIEI =—“IA7| =;.A_t., ( 2—36 )

With the ald of these expressions, it is not difficult to
go from values of a defined by one method to values cefined by
another.

2-5, HYDRAULIC RESISTANCE

In practice, we very often must determine the pressure drop
when a fluld moves 1n a tube, 1.e., the hydraulic resistance.

Assuming the velocity field and temperature field to be
known, we find the pressure variation along the tube length. Let
us do this for an incompressible fluld with variable physical
properties flowing in a round tube; for simplicity, we assume
that the velocity and temperature fields are symmetric about the
x axis. Here the equation of motion for the longitudinal velocity
component will have the form

dw. +wx dw, +w'dw.)‘ pgy — T+T (2!.00.)_'_
+—:'"307["" (dw. dw, \]

The -~dei of magnitude of the term 7—(&: )13 small as com-
pared with the last term on the right side of the equation, and

ow,

- 24 -

i i

B

e

!
I
!
\




e TN s e e e M P i

[ ———LC
ET ————

,,,,,

can be dropped. The left side of the equation can be transformed
by using the equation of continuity. As a result we obtain

AL st
g [ (FH5)): (2-37)

We apply (2-37) to a fluid element of length dz, bounded by
the tube walls and by two sections normal to its axis. We multi-

ply goth sides of this equation by 2#r dr, and integrate between
0 and r,:
0.

S‘!ﬁn) 2,4,.*.31(%::—) 2vdr+2l'§d(m=.r)==
¢
_ ” —' d '. ow, , Ow,
=0 [t swart3u d [ (5o )] (2-38)

The last integral on the left side equals zero. The integral
on the right side 1is

e (45 o (). =t

where
=)~

is the tangential stress at the wall; n 1s the normal to the in-
side surface of the wall.

In the appropriate terms of (2-38).we change the sequence of
differentiation with respect to v and z and integration with resx’
prct to r, As a result, the equation takes the form

-g‘- {pw,2wdr+£— Spw: 2wdr=g.592vdr— -:;(;fzvdr—o.zw,. (2-39)
0 0 0

We let
— — l .
p=—{pdf = r=—|odf
! !
be the mean pressure and mean fluid density over a section: f, s

are the tube cross-sectional area and perimeter; ¢ is the angle

Letween the z axis and the gravitational acceleration vector g.
(We note that . gemgcosy). y

Then from (2-39), we find
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R n.dl+§;’~:li]+itmt. (2-h0)

Although E¢. (2-40) was derived for the example of a round
tube, it actually is valid for a tube of any shape, provided the
cross-section remains constant along the axis. In the general
case, ¢, can vary over the tube perimeter. Thus we include in

(2-40) the mean-perimeter value of tangential stress at the wall

(S W S

It is clear from (2-40) that the change in pressure along
the tube length is produced by the expenditure of energy on fric-
tion between fluid and wall, by the change in velocity with time
and in the flow kinetic energy along the tube length (owing to
rearrangement of the velocity profiie), and by the action of the
gravitational force.

The quantity p geoev is the pressure gradient in the liquid .
at rest when there 1s the same distribution of p along the length 1
as in the flow. We let po represent the pressure in the quiescent

'1iquid, i.e., the hydrostatic pressure. Then

0, -
E=rgcos¢
and
dp,__(p—ps)__ dp__-
2R B (2-42)

where py=(p—po) 18 the difference between the actual pressure in the
moving fluid and the pressure in the fluid at rest.

As we can see from (2-U40), the pressure Ei is independent of

the gravitational force, so that it can be interpreted as the pres- 2,

sure in a flow of weightless fluid.

In our further study of fluld flow, we shall not consider the
effect of the gravitational force (except for special cases, where
particular stipulations will be made), and in place of the pressure

p, we shall consilder pq- Where necessary, it 1s not difficult to

go from the distribution of pi(x, ¥)that has been found to the dis-
tribution of the actual pressure j(z, t). Integrating (2-42), we find

P(x, =P, (% D+ P\ 0, ~>+geos¢§'p<x. %) dx. (2-43)

Henceforth, for brevity we shall write p rather than pi.

Using our notation (p=p=jp—p,), wa rewrite (2-40):
) - ) )
Pt — [WSpw,df-l--&jpw:df]. (2-44)
f ' '
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For stationary flow and heat exchange, (2-44) takes the form
E=—ta—T{mq. (2-85)
i

If o and v, do not vary along the length, as occurs for an

incompressible fluid with constant physical properties moving far
from the tube entrance, the second term on the right side of (2-45)
vanishes. In such case, the pressure gradient is determined com-
pletely by viscous friction, and does not vary along the length:

P2 = conmt. (2-46)

"In other words, the pressure p decreases linearly along the
Jength,

Integrating (2-45) between x = 0 and = = 1, we find the pres-
sure drop for the tube segment of length 1:

bp=pO)—p)=- ';e dx-i- -‘,-[( ;p.: d[)”- (Jp.: a)_. ] (2-47)

If the fluld properties are constant and v, does not vary
along the length, then LIE will also be constant™along the length.

In such case, integrating (2-46), we find
p=3t, (2-48)

From all of this it follows that to determine the hydraulic
resistance by computation we must know the velocity field in the
fluid flow and, in the general case, the temperature field (to
determine the density field and the viscosity). We can then use
(2-41) to determine og» and (2-47) to find the pressure drop. To

determine Ap experimentally, we must measure the pressufe fields
at two low sections. Averaging these flelds over the section and
taking the difference of the mean values, we obtain Ap. In the
elementary case where the pressure does not vary over the section,
Ap is found by direct measurement of  the pressure difference in
two tuve sections.
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18 lAccording to the Newton-Rikhman law, the density of

the heat flow at a wall is proportional to the differ-
ence between the wall temperature and the temperature
of the fluid far from the wall, Here a is a coefficient
of proportionality and, consequently, must nog depend
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t, — t. This holds provided the physicsl properties of

the fluid do not depend on the temperature. By definition,
we introduce a as the ratio of qq to tg — t. In such case,

no restrictions are imposed on the relationship between

iThis segment is called th2 thermal initial segment

(see §6-1, etc.).

Transliterated Symbols

stenka = wall

= arifmeticheskiy = arithmetic
integral’nyy = integral
logarifmicheskly = logarithmic
n.t = [.temperature head]

n = nachal'nyy = initial
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Chapter 3 |

PROPERTIES OF LIQUIDS AND GASES ESSENTIAL TO HEAT-EXCHANGE
CALCULATIONS
3-1. GENERAL INFORMATION

As we can see from Chapter 1, in determining convective heat ex-
change for a single-phase chemically homogeneous medium, the follow-'
ing physical properties of the medium, i.e., liquid or gas, are of
importance: the density p, the specific heat capacity at constant
pressure c¢,, the dynamic viscosity coefficient u, and the thermal—
conductivi?y coefficient A, .

To characterize the relative variation in specific volume or
density with a change in temperature, we use the volume expansion

coefficient
=4 (3),==1(5);

where v 1s the specific volume and T the absolute temperature,

14

We also require composite quantitles formed from these physical
parameters:

the kinematic viscoslty coefficlent

”=-F—.

’
the thermal diffusivity coefficlent

A

~ cpp
and the Prandtl number

Yy _Pea
Pr= A =

1

Thus if a temperature fleld and pressure field are present in
the flow, the physical properties will vary from point to point,
which may have a substantial influence on the nature of flow and

heat exchange.

The physical properties of liquids (1.e., condensed media)
will depend little on the pressure far .from the critical point.
“loreover the velocity of liquids will not be large in most cases,
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L so that the pressure variation in the flow will usually not exceeé
several atmospheres. With such a pressure variation, the physical
properties of the iiquid will vary negligibly. Thus we can always
neglect the relatlonship between physical properties ard pressure.
H for liquids.

H

The physical properties of gases at fairly high temperatures
and moderate pressures (more accurately, far from the saturation
point and the near-critical region) will depend only slightly on
the pressure, except for the density and kinematic viscosity. If
the gas velocity 1s not large so that the pressure variatior. ir. the
flow will be small as compared with the absolute’ pressure, then p’
can be assumed to be independent of the pressure; this is even truer
of the other physical properties of the gas. In such case, like a
liquid, the gas can be treated as an incompressible medium. When
the gas moves at high velocity, the pressure variation in the flow
can be quite considerable. Here the compressibility of the gas,
i.e., the relationship between p (and thus v) and p can be neglected.
As for the other properties (°p’ U, A), they are usually assumed to

be independent of p. .
Thus the nonuniform distribution of physical properties in

a flow of incompressible fluid is determined in the main by the
way in which they depend on the temperature.

3-2. LIQUIDS

For liquids, the viscosity coefficwent varies particularly
strongly with temperature; the density, specific heat content,
and thermal-conductivity coefficient vary far less. This is clear
from Table 3-1, which gilves the ratios of the corresponding physi-
cal parameters at 10 and 100°C for certain liquids.

TABLE 3--1 For a theoretical determina-
katio of Physical Parame- tion of heat exchange, in most

° cases we can take p, ¢,, and A to i
ters at 10 and 100°C be linear functions’ofp%emperature. }
1 ,, . “ince p and A decrease with tempera-
Moxwoers | 22 ol = e ture for most 1liquids,! while e¢_ in-
10
E creases, the interpolation equations
; 2Pyn .. .. 102 | 1,02 | 113 | 1.25 have the form '
Boaa..... 1,04 | 1, , , P __ 3-1
: L=l —B ((—1t,), @1
TP::eet!:‘o.p;a;T?p. 1.02 8' gg ll' (1)4 5833 Pe Bp ( *
LI T '0 ’ ’
S Casuepym 1 _%:_' =1+Be (£ — )i (3-2)
A !
o=1=h (1), (3-3)

1) Liquidj 2) mercury; 3)
watcr; 4) transformer oil;

5) glycerin. where pg, Opo, and A, are the values

of the physical parameters at a fixed
temperature {,; B,, fc «p, are con?tants depending on the type of 1liquid

and the temperature range (found from experimental data).

'
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T\BLE 3-2
Physical Properties of Water at Saturation Curve

pios, 0y, [N A & 10°, | pe108, v-109,
t,C "P-‘ a ) o sdm_ om M twneces o Pr
a0 | xe-2pad 7] b ' cox. | T cg
1 12 3 5 T
0 99,8 |—0.7] 4.216 0 0,55 | 13,3 |1788 | 1,788 15,5
10 999,6 | 0,95 4.1M 42,04} 0,579 ! 13,8 |1305] 1,308 ’
20 998,2 2,1 4,183 83,90 | 0,59 14,3 |1004 1,008 o
0 5,6 | 3.0 | 4,178 125,69 | 0,613 | 14,7 801 § 0,808 5,46
40 992,2 | 3,9 | 4,178 167,51 | 0,627 | 15.1 653 | 0,688 4,35
50 938,0 | 4,6 | 4,18 209,30 } 0,639 | 15.5 549 | 0,55 3,60
60 3,2 | 5,3 4,18 251,12 | 0,650 15.8 470 | 0,478 3,02
70 977 .7 5.8 ‘.lgl 292.99 O.Gﬁl ’6.' m 0.“5 ,.57
&) 971.8 | 6.3 | 4,195 334,94 | 0,669 16,4 355 | € 368 2,22
20 %5.3 7-" 4.%4 376.!3 0.677 16.7 3'5 0.&6 1
100 98,3 | 7,5 | 4.216 419,10 | 0,683 16,9 282 | 0,296 1,74
120 943.] 8,5 4,245 503,7 0,686 17,1 237 00”2 1,47
140 926,1 9.7 | 4.7 589,1 0,685 17,2 21| 0,217 1s
160 97,4 110,8 | 4,342 675,3 0,680 17,3 174 1 0,191 1,11
180 83,9 |12,1 4,409 763,2 0,671 17,2 13| 0.172 1,00
200 864,7 13,5 | 4,497 852,4 0,657 | 16,9 |'136 | 0,158 0,925
220 840,3 15,2 | 4,614 943,7 0,640 16,5 124 | 0,148 0,897
240 813,6 |17.2 | 4,769 | 1037,5 0,618 | 15:9 115| 0,141 0,
260 784,0 (20,0 | 4,982 | 1135,0 0,592 | 15,2 106 | 0,135 0,801
280 750,7 (23,8 4,588 | 1236,8 0,564 14,2 %8| 0,131 ’
300 712,58 |29,5 | 5,757 | 13,8 0,532 | 13,0 911! 0,128 0,
320 667,1 |38,0 | 6,57 1462,0 0,493 | 11,2 8| 0,128 1,14
340 610,1 [47.,5 | 8,21 1694,8 | 0,447 ' | 0,127 1y

1) kg/m®; 2) deg; 3) ¢ps ki/kgedeg; 4) kI/kg; 5)
W/medeg; 6) m2/s; 7) Nes/m?; 8) mt/s.

In isolated cases, the linear interpolation equations may
prove inadequate to describe the way in which p, cp, and A ac-

tually depend on ¢. They then can be supplemented by terms con-
vtaining higher powers of the temperature. .

If we assume that p is a linear function of t, then the co-
efficient of volume expansion

==, =%

will increase with temperature, while the coefficient

= /oy
p' T (‘T)p— SOk
will remain constant. It 1s clear that Pp=p, Since p changes but

slightly with temperature, the coefficient 8 is frequently assumed
tc be constant and equal to the mean value in the given tcmperature

interval.

The coefficient of dynamic visccsity for liquids decreases
with temnerature, first rapidly and then more slowly. Its tempera-
ture dependence can be quite well approximated by the equation
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TABLE 3-3
Fhysical Properties of Transformer 01l
108, I e,, 2, a.100, B 108, v 08,
| 'm ‘ :.r ‘ '.I ' lO’x am . necew . Pr
Lz Thad irpas | wirno | e | W 1 e |
ﬁ o2 1 1L S _..> . T L -
i “ TR I A A RO 8%
10 88,4 | 6,8 PRCTRR IS R TR B X B - S - K 484
. 80,3 (4,90 1,67 0,111 7.56 198 29,5 208
0 874.2 | 6,95 1,73 | 0,10 | 7,28 128 14,7 202
40 83,2 | 7.0 1,79 | 0,109 | 7.03 59 10,3 140
50 862.1 | 7,05 1,85 | 0,108 | 6.81 65,3 7.58 | 1
60 856,0 7,10 1,91 0,107 6.58 49,5 5,78 87,8
70 X 7.15 1.9 | 0.106 | 6.3 38,6 45 | 11,3
80 843.9 7,20 2,03 0.106 6,17 30,8 3,66 59.3
0 8%7,8 7,25 2,09 0,105 6,00 25,4 3,03 50,5
lm “‘Do 7'” 2!" 01'0‘ 5.83 2l |3 21& ‘3-9
: 110 2287 | 7.3 | 2,20 | 0,103 | 5.66 18,1 2,2 | 38.8
120 81%6 | 7.40 2.2 | 0,102 | 5.5 15.7 1,92 | 4.9

1) kg/m'i 2) deg; 3) kJ/kgedeg; 4) W/m-deg; 5) m?/s;
6) Nes/m*; 7) m®/s. .

»

“

TABLE 3-4
’ Physical Properties of Sodium!
'3 €,, A | e-100 ] 5109,
t.°c| == whw | om M| & ipraes
ad |vs-2padin-zpad)l cex | cex
112 13 141 5] 3
100 | 928 I 1,39 | 86.1 | 66,91 77,0 1,15
150 | 916 | 1,36 | 84,1 | 67,8 59.4 | 0.88
200] %02 { 1,33 | 81,6 | 68,1 | 50,6 | 0,74
250 | 891 | 1,30 | 78,7 | 67.8 | 44,2 | 0.65
00| 878 | 1,28 | 75.5 | 67.2 | 39,4 | 0,59
350 | 866 | 1,27 | 71,9 ] 65,3 | 35.4 | 0,54
400 | 854 | 1,27 | 68,7 | 63,3 | 33,0 | 0,52 s~
450 | 842 | 1,27 | 66,1 | 61,7 | 30,8 | 0,50 7
500 | 829 | 1,27 | 63,8 | 60,6 | 28,9 | 0,48 b
650 | 817 | 1,27 | 62,0 59,71 27,2 | 0,46
600 | 805 | i,28 | 60,6 | 58,9 | 25,7 | 0,44
G50 | 792 1 1,28 | 59,7 | 68,9 | 24,4 | 0,41
700 | 7680 | 1,28 | 69,1 | 59,2 | 23,2} 0,39

T =m0 2C 4,,=m¢ (at atmo-

spheric pressure).

1) kg/m®; 2) kJ/kgedeg; 3) W/me
«deg; 4) m?/s; 5) m¥/s.
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b= R — 0 Bl — (3-4)

!
where m, ;,, =i, are constants determined experimentally. In the

?émg%est case, we need only keep the first two terms of Series

For the temperature dependence of the coefficient of viscosity,
we also use interpolation equations of the form

e [ t\®
B \t)’
p._e—c(l—l.)

F’ ’
where Wg, b, and ¢ are constants.

The kinematic viscosity coefficlent and Prandtl number for
liquids decrease as the temperature goes up.

The way in which v and Pr depend on ¢ is determined, in the
main, by the relationship between u and ¢, sincep, ¢, .aavary lit-
tle with temperature,

3-3. GASES IN A STATE CLOSE TO THE IDEAL

In the reg of state parameters far from the saturation
curve and the near-critical reglon, 1.e., at relatively low pres-
sure and fairly high temperature, gas density is relatively low.
Here the gas is in a state close to that of an ideal gas.! For
such a gas, the Clapeyron-Mendeleyev equation holds; it establishes
a simple relationship between gas density and temperature and pres-

sure: |
f=RT' A (3-5)

where R i1s the gas constant,
If the pressure in the flow 1s constant (p = const), then

Te '
f‘f" (3-6)

whore Py is the density at To.

As we can see from (2-5), the coefficient of volume expansion

for ar ideal gas is )
_ 1 fop\ 1
=—5 (%), =r

The specific heat content at constant pressure for a monatomic
gas in nearly ideal state is practically independent of temperature,
while for “latomic, triatomic, and multiatomic gases 1t increases
with temperature. Figure 3-1 gives an idea of the way in which ¢

depends on I for biatomic and triatomic gases (alr, carbon dioxide);
it 1s clear from the figure that when the temperature changes, ap_
varies far less than u or A, It is convenient to represent cp(T) as

- 33 -




ey

e
|

a power function,
.

&=(r) " (3-7)

Pe

where n, 1s a constant that depends on the type of gas and the

temperature interval. Thus, for example, for air between 0 and
1500°C, n, = 0.146; for carbon dioxide between 0 and 1000°C n.=033.
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Fig. 3-1. Functions A7), w(7)

ond &p(N for air (solid lines) and
carbon dioxide (dashed 1lines).
The values of A posnsc, correspond
to To = 273°K,

The ratio k=cp/c, between gas heat content at constant pressure
and constant volume decreases with temperature. For example, for
air at °C £=1,40, while at 1000°C k=132

The dynamic viscosity coefficient and coefficient of thermal
conductivity for gases in the nearly ideal state increase with
temperature. Figure 3-1 shows u and A as functions of T for bi-
atomic and triatomic gases. For mcnatomic gases, the relationship
is of approximately the same nature as for blatomic gases.

The change in the dynamic viscosity coefficlent with tempera-

ture is described by the Saterland equation, which is derived in
the kinetic theory of gases:

(1) Tte, (3-8)

where s 1s a constant determined experimentally for the given gas;
for example, between 0 and 1200°C & = 122°K for air, s = 102°K for
nitrogen, s = 233°K for carbon dioxide.
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TABLE 3-5

Values of Comnstants in Equations
for Viscosity and Thermal Conduc-
tivity of Gases in the 0 to
1000°C Range

; ti’wm 2108,
re nees | 2y | _em | m
x=f "
e I
s I\Pron « s 0 0 Ar 2l .2 0072 Iﬁls 0.”
efTeamii, . ... He ]18,4 ]0.G8 143 0,73
7Aswr .. ...| Ny |16,7 ]O,G8 24,2 | 0,80
] &,‘W‘ e o o 0 Hj arm 0.(378 !72 0.78
9Boaayx . ... — [17,1 10,683} 24,3 } 0,82
10 me‘ e s o 0, 19.‘ 0.093 24.5 0087

11 Bonswoit nap. .| HyO | 8,24 [1,20 15.1 | 1.48
12 lsyoKiech yrae-
.| COy lg.gx' 0,82 149 |1.3

Po)lﬂ LI I )

13 Amnmtax . . . .' NH. 1,06 " 21,0 1,53
The values of ¥o and XO corres-
pond to Ty = 273°XK.

1) Gas; 2) chemical formula; 3) Nes/m2?; 4) W/m-deg; 5) argon; 6)
helium; 7) nitrogen; 8) hydrogen; 9) air; 10) oxygen; 1ll) water
vapor; 12) carbon dioxide; 13) ammonia.

In many cases, in place of (3-8) it is more convenient to use
an equation of the form

= ()™  (3-9)

e .

In general, the exponent nu depends on the temperature. At

moderate temperatures it is close to unity; as the temperature in-
creases it decreases, approaching a value of 0.5 according to (3-8),
A constant value may be taken for nu for a given gas over a re-

stricted, although fairly wide, temperature range. For example, for
air between 90 and 300°K, n. = 8/9. Table 3-5 gives values of Mo
and n for certaln gases onthe basis of published data [1]. .

The relationship between the thermal-conductivity coefficient
and the temperature has the nature as u(7), and can be represented
by an equation of the same type:

{7=(,T:)"*. (3-10)

The exponent n, differs for different gases ant méreo?er,
is temperature-dependent. Like nu,'however, n, may be taken to

be constant over a'restricted temperature range. Table 3-5 gives
.2lues of i an, for certain gases. As the table shows, A >n,.
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The difference between them is not great, however, for monatomic
and biatomic gases.

For gases in a nearly ideal state, the Pr number depends
principally on the number of atoms in the molecule. For monatomic
gases, Pr equals 0.63 on the average; it is 0,72 for diatomic gases,
and 0,.75-0.9 for triatomic and multiatomic gases. Since ) increases
somewhat more rapidly with the temperature than does u, while ¢

increases little with the temperature, the number Pr = uc /A changes
slowly with temperature.

The information given here on the properties of a gas in near-
ly ideal state is valid provided the chemical composition of the
gas (or gases forming the mixture) does not change under variations
ir temperature and pressure. This condition is fulfilied if the
gas temperature at a given pressure does not exceed a specific value
at which complex molecules begin to dissociate. For air, the tempera-

ture corresponding to inception of component dissociation (primarily
0;) 1s about 2000°C at atmospheric pressure.

>~
TABLE 3-6 L)
Physical Properties of Air at Atmospheric Pressure
(A L A.108, a- 108, W 109, v. 109,
1,°C £ L. Lot 2| Heeex o 1 rr
- Ki-2pad | m-zpud cex ne Cox
-2 2 3 4 S
0 1,203 1,00 2,43 8,7 17,1 13,2 0,707
0. | 0,040 1.0 3,19 33,3 21,9 .| 23.2 0,696
00 0,7459 1,03 3,87 50,6 26,0 34,9 0,689
00 0.6157 1,05 4,45 69,5 29,7 48,2 0,695
400 0,5242 1,07 5,05 90,2 33,0 63,0 0,608
500 0,4564 1,00 5,62 o, 36,2 79.3 0,704
600 0,4045 111 6,15 137 39,1 9%,7 0,708
(] 0,328 1,13 6,66 162 4,7 15 - 0,710
800 0,3200 1,16 7,2 189, 44,3 135 0,712
900 0.3009 1.18 7,61 215 46,6 155 0,721
1000 0,2766 1,19 8.05 244 49,0 177 0,727
1100 0,2570 1,21 8,48 2713 51,2 199 0,731 -~
1200 0,2396 1,23 8,90 303 53.4 223 0,731 !
1300 0,2244 1,24 — — 55,5 247 —= buts
1 400 0,2110 1,26 — — 57,6 273 =
1500 0,1991 1,28 = — 50,6 | 209 —
1 600 0,1874 1,30 — - 61,6 329 =
1700 0,1780 1,33 = - 63,6 356 -
l m 0ll702 l-aﬁ e, = 65.5 %5 _—

1) kg/m s 2) kJ/kgedeg; 3) W/medeg; 4) m2/s; 5) Nes/
/m?; 6) m?/s.

3-4. REAL GASES

Near the saturation curve and, particularly, in the supercri-
tical region,® the properties of matter change substantially not
only with temperature, but also with pressure. In this parameter
region, the change in paysical properties with temperature and
rressure cannot be represented by relationships as simple as the
one applying to a liquid or a gas in nearly ideal state.
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It is convenient %o characterize the deviation in specific
volume or density of a real gas from the values corresponding to
the equation of state >f an ideal gas by the compressibility ccef-
ficient i

== (3-11)

For an ideal gas, z = 1. For real gases, s depends on tempera-
ture and pressure, If this relationship 1s represented as

z=f(x, 1), ' (3-12)

where n=p/pypemat=T/T\y are the reduced pressure and temperature, while
Pyrp and Tkr are the critical parameters; then by the law of corres-

ponding states, this relationship will be roughly the same for dif-
ferent substances.

Figure 3-2 illustrates Relationship (3-12); the figure is taken
from [9]. Using this graph, we can easily establish the region of
values of p and T within which the equation of state of an ideal
gas 1s valid. The real gas will obviously deviate more from an ideal
gas the more z differs from unity. If we know the values of Pyr and

T for a given substance, we can then use Fig. 3-2 to determine the

approximate value of p for the values of p and T.“ Naturally, for
exact calculations it is always preferable to use exaot 'tables and
diagrams compiled for the glven substance.

T [ie-0 fi# L TJ
o |’/" 4875
F 7 T
Co[FT=TT T T L T ; w1
T e |
50 e ot - =T T 4
2 £ =t L I.
as 20 - Lé B T
- - 7 -
a 1 RN 7 :
sl V-( gL P = )
o od N 5 I~
NS | (14 \ ;
O 1 \ N ] A
] o ' N Y
/r a ceas
a2 -
[ 14 . ]
a7 :
[ T 42 @ Q¢
Py ] llllJlJlllf[lH-'
a2 @) a¢  ai as w R ¥ » &0

Fiz. 3-2. Compressibility coefficient z of real gases as function
of reduced pressure and temperature,

The coefficient of volume expansion b=-—(%r) for a real gas

Jdepends essentially on temperature and pressure. In the supercritical
reglon, whcn p = const the coefficient B first increases and then
“screases ith the temperature.® The value of 8 at the maximum point

»+ 11 be higher the closer the pressure p is to Pyp* At the critical
DO.J.nu, B = oo
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Fig. 3-3. Heat content of water and water vapor in near-critical
region, 1) Saturation curve on vapor side; 2) saturation curve on
water side, a) kJ/kg.deg; b) at.

;o

+
L L4

9‘00 200 300 400 3500 600 °C

Fig. 3-U4. Thermal-conductivity
coefficlent for water vapor.
The dashed line shows the sat-
uration curve. a) W/medeg; b)
at.
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Fig. 3-5. Pr number for water
at saturatlion curve.
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The heat capacity cp of a real gas varies sharply with tempera-

ture and pressure changes near the saturation curve and, in particu-
lar, in the supercritical region.

Figure 3-3 gives some idea of the way in which heat capacity
varies with, t and p; it gives data for water and water vapor. In
the supercritical region, the heat capacity cp passes through a

maximum for certain temperature values, depending on the pressure.
At the critical point$ ¢,=c. At p>pp, the values of ° at maxi-

mums will decrease as the pressure increases, Near the maximum

points, the heat capacity may change by a factor of ten within a
narrow range of temperature and pressure.

The coeffliclents of dynamic viscosity and thermal conductivity
also experience substantial variations with temperature and pressure
at high pressures. Figure 3-4 gives an idea of the relationships ob-
served; 1t gives data on the thermal-conductivity coefficient of
water vapor at pressures between 1 and 500 at and temperatures bes
tween 100 and 700°C (the qualitative variation in the viscosity is
the same as that for the thermal conductivity).

The change in Pr near the saturation curve and in the super-
critical region is assoclated chiefly with the change in e,, since
u and A vary less, and in almost the same way. Thus the curves for
Pr will have roughly the same shape as the curves for e¢_ in Fig.

3-3. Figure 3-5 shows Pr for water at the saturation curve. For
temperatures between 0 and 180°C, Pr drops rapidly with the tempera-
ture; this 1s associated with the reduction in y and a certain in-
crease in A (here e, varies negligibly). Between 180 and 310°C, Pr

remains roughly constant, while above 310°C and up to the critical
point, it rises rapidly in accordance with the rapid growth of cp’

3-5. CLASSIFICATION OF HEAT-TRANSPORT MEDIA BY PRANDTL NUMBER

As we shall see later, the number'Pr=ﬁquis an essential char-

acteristic of a heat-transport medium (liquid, gas) from the view-
~ int of the features of the convective heat-exchange process. For
aj fferent media, Pr will vary widely. Depending on the value of Pr,
heat-transport media can be classified into three groups: media
with Pr <1, media with Pr = 1, and media with Pr>1.

The first group ineludes liquid-metal heat-transport media:
sodium, 1ithium, sodium-calcium alloys, lead-blismuth alloys, mer-
cury, etc. For the mecdia of thlis group, Pr varies between about
0.005 and 0.05. This very low value of Pr for liquid metals 1is

irsoclatled with their high thermal conductivity and relatively
iow heat capacity.

Thr sccond group of media includes gaces at moderate pres-
sures anu .iquids at hligh temperatures. For them, Pr varies within
fairly narrow limits, roughly from 0.6 to 1.

The third group of heat-transport media consists of the
.onmetallic liquids: water, varicus organic and inorganic liquids
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(retroleum products, molten salts, etc.). For media in this group,
Pr ordinarily ranges from 1 to 150-200. Certalin liquids (glycerin
and viscou: oils, for example) have & Pr number at low temperatures
that may reach several thousand or even tens of thousands. The

high values of Pr for the third group is explained chiefly by their
viscosity, in particular at low temperatures.

To conclude this chapter we note that the reference list in-
cludes several handbooks and monographs 1n which the reader can
find data on the physical properties.of 1liquids and gases that
are required for heat-exchange calculation.

Manu-
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Page Footnotes

No.

30 lFor water, glycerin, and other strongly associated
liquids, a different relationship is found between A *»
and t., Thus, for example, for water A first increases «r
with the temperature (at ¢ < 125°C), and then decreases.

33 2The region of applicability of the ideal-gas model
is more accurately determined in §3-4.

36 3The supercritical region is the region of parameters
of state corresponding to p > Pyp-

37 “For helium, hydrogen, and nitrogen, better agreement
with experiment is obtained if we add 8 to the values
of p, . and T .. ,

37 In the supercritical region, the nature of the change
in 8 1s similar to the nature of the change in e “~
(see below). P Lt
6 = = o

39 For water, p,., 225.65 at and thr 374.15°C.
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Page Transliterated Symbols

No.

32 iwi= pl = plavleniye = melting

32 Kun = kip = kipeniye = boiling

37 . Kp= kr = kriticheskily = critical
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Chapter 4

ANALYSIS OF FLOW AND HEAT EXCHANGE IN TUBES BY THE SIMILARITY METHOD
4-1. PRELIMINARY REMARKS

It is useful to begin the study of a given specific heat-ex-
change or fluid-motion problem with an &gnalysis by the similarity
method [1, 2, 3, 4]. Analysis of processes by the similarity meth-
od is based on reduction of the equations describing the investi-
gated process and the corresponding initial and boundary conditions
to dimensionless form. This reduction can be carried out either by
a change of scales, or by the dimensionality method. The number of
new dimensionless variables and constants occurring in the basic
equations and initial and boundary conditions will be less than
the number of dimensioned quantities essential to study of the pro-
cess; this offers significant advantages. For an experimental in--
vestigation, utilization of the similarity method makes it possible’
to minize the number of quantities that must be varied during the
experiments, and gives an efficient method for generalization of
experimental data. The similarity method also proves useful for
theoretical investigations; for example, it can sometimes be used
{0 reduce the problem of finding a function of two variables to
the problem of finding a function of one variable, or to finding
a function to within a numerical constant. With the similarity
method, it 1s convenlent to analyze limiting cases and to general-
ize the results of numerical solutions.

In the succeeding sections of this chapter, applicaticn of
.4 » similarity method to problems of fluid motion and heat exchange
ir pipes will be illustrated.

4-2, ISOTHERMAL FLOW

In a tube with cross section that is arbitrary (but unchanged
11nng the length) let an incompressible liquid filling the en-
t.re tube be at rest (Fig. U4-1). At the time taken as the initial
*nstant (r=0), a constant pressure difference pi—p: 1is instantaneous-
ly set up at the ends of the tube. At the next instant (¢>0), a non-
stationary fluid flow appecrs in the tube; later (as 1 + =) it be-
comes stationary. Let the mean velocity of the stationary flow be
Ziven over the section; it equals wwﬂ The fluid enters the tube

30 that the velocity vector in the entrance section is directed
long Lhe axis, while ¢he velocity is uniformly distributed over
1e section. The I luld temperature is the same everywhere, so that

> physical properties of the fluid are constant. We analyze this
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Fig. 4-1. Analysis of Problem of isc-
thermal flow in tube.
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problem by the similarity method. To do this, we set up iis mathe-
matical description.

Under the conditions considered, fluid motion is described
by equation system (1-5), (1-8) in which we must set Fi=Fy=F,=0:

ig} 4 wgrad w, = — %.%E+ who,;

ow, | = —_ 1o gy o
‘J,L"*‘Wg'ad"’v— ? "oy + w'o,; (4-1)
dw,

e -j—;grad w,=—--'|--g—f+vv'w,;

div w=20,

where p 1s the difference between the actual pressure in the flow
and the hydrostatic pressure (see the footnote to page 10 ).

The initial conditions are:
for 1 = 0 We=w,=w,=0, (4=2)
The boundary conditions are written as follows:
for +>0, 4 =0, byl <lye|™z| < | 2c| wx=1w,(z), w, =w,=0; }

for 1 o0, x=0, |y| < |Yebnef 2| < [2e W=, (00)=; 4 (4-3)

for >0, x:0, y::yc..naz-:'..zo wy=w,=w,; =0,

where y and z, are the cocrdinates of points on the inside sur-
face of the tube; Wy i1s the veloclty at the tube entrance; 1t 1s
constant over the section but variable in time (for T— 00, Wo— Wew).

The equation specifying the form of the tube inside surface

is

(P(!Ic. Zc, lOv llv LXRT) lﬂl) -0, ('l-'l)
where h. l. ... lw are the characteristic dimensions of the tube cross-
section.

We rcduce Egs. (4-1) and Conditions (4-2), (U4=3), and (4-4)
to dimensionless form, using the method of scale transformations

]
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[3, 4]. Selecting lo and w_ as scale ratios, we introduce the di-
mensionle: s coordinates, linear dimensions, and velocities:

T ] b,
=% r=4 z X

I
A
I~
I
s
)
I

T oy Wy .”,W, = W, w

In (4-1)-(4-b), we replace the dimensioned variables u, 4, ..., B
oy tne products of the dimensionless variables and the correspond-
ing scale ratios, Xl, Yk, ..., Wobe. In (4-1)-(4-4), we group the,re-
maining dimensioned quantities and their scale ratios into dimen-
sionless complexes; this yields a mathematical description of the

process in dimensionless form:
o, TV oree .t ] 0. .
7+ (W gid W,)Re=— 53 (EuRe)+ v'Wy;

Wy | (W grad W,)Re = — - (EuRe) + v'Wy;

o Zh 4-5
O -+ (Wgrad W,)Re = — 7 (EuRe) +y'W;
diVE’:O. .
for Zh=0 W,=W,=W,==0. (4-6)
for Zh>0, X=0, [V |<|Ve|wm|21<|Ze| W, =W,(zh), |
W. - W’ = 0. (4.7)
for Zh 00, X=0, |V |<| Ve lod Z|<|Zc| Wu=W oo)=1,
for Zh >0, X=0, Y=YcandZ=12, W,=W,=W,=O.
?(YCv ch Ln Lh cos y Lm)=0. ) (4‘8)

In (L-5)-(4-8):

Zh==%%—-Zhukovskiy number? :
q

Eu=-£- —Euler number;
P

I
Re=‘—03:’—'— — Reynolds number.

It foliows from Eqs. (4-5), iritial conditions (4-6), and
boundary conditions (N-7) and (5-8) that the dimenslonless dependent
rqpelables are functlons of the following dimensionles:: Independent
varfwoles and constant parameters:

W, W, W, Cu=fu(Zh, X, Y, Z, Re, Ly, Ly, ..., Ln). (4-9)

wherc the fk are unknown functions (k=W.. W, W. Eu), - depending on
the geometric shape of the tube cross section.

-
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For,suffilclently large values Of the Zhukovskiy number (Zh .oo)
stationary tlow will set in. In this case, in place of (4-9), we
have

va WI- le Eu"Fh(xo Yv .Z, Rep LI' L’v ccey Ll)' (u“lo)

Let us now assume that:sufficiently far from the tube entrance
(at X + =), the fluld velocity at each point in the flow will be
parallel to the z axis.® Consequently, in this flow region W,=0,
W, =0 and dW,/0X=0 (this last relation follows from the equation
of continuity). Thus for the case under consideration the distribu-

tion of velocity W, will be independent of X, and will be determined

completely by the geometric shape of the tube cross section. Such a
flow 18 said to be hycrodynamically stabiiized.

For a stabilized flow, the second term on the left side of the
first equation of (4-5) vanishes, whil’e the second and third equa-
tions of (4-5) reduce to the followirng:

0 Eu 0Eu
o7 =0 e 5z-=0.

Thus the number Eu=p/p#?, or the dimensionless pressure, does
not vary over the flow section,* so that in the case considered in
place of System (4-5) we have the equation

W, OW, . OW, J(EuRe) _ 411
—gm T e toz ="ox =1 (Zh). (3-11)

The left side 1s independent of X, and the right side of Y
and Z, so that both sides are functions of Zh alone.

From (4-11) and the corresponding initial and boundary con-
ditions, we find that for stablilized flow

W.=Wu(Zh, Y, Z Ly, Ly, ..., L), (4-12)
R W (Zh, Ly, Ly, ..y Lu). (4-13)
If, in addition, the flow 1s stationary, then
Wi=Wy(Y, Z, Ly, La, ..., Lm), (4-12a)
Y e AL Lo L), (4-13a)

where 4 1s a constant that depends on the geometry and relation-
ship of dimensions of the tube cross section.

Let us now obtailn dimensionless expressions for the hydraulic
resistance. The latter 1s determined by the longltudinal gradient
of the mniean pressure over the sectlion Jdpfix. The dimensionless
mean-presaurre gradient, taken with sign reversed, is called the
local coefficlient of hydraulic resistance:

i 0xX (4-14)

7

a ) dEu
e s

3=4/56 - 4l =
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where
E:}- Eudf =—£—i
] 5w

Here f 1s the area of the cross section normal to the tube
axis,

For stationary flow of an incompressible liquid in a tube,

we usually have dp/dx<0 and, consequently, the coefficient ¢ is posi-
tive.

The mean coefficient of hydrzultc rssistance for the tube
segment between £ = 0 and ¢ will obvicusly equal

1 X
Cme [ Q= [ Ltk = - (€0, — Eu, (4-15)

where Eﬁo is the value of Eu at X = 0,

If we substitute dp/dx from (2-44) into (U4-14), we obtain

;=g+..?.[d—:GSW,d[+§iSW:df]. (4-16)
!
while for a stationary ilow,
2 dCuw2 4:
:=a+.,..ﬁ$w‘d,. (4-16a)
where '
g_.Ehﬂ;E;
N At (4-17)

is the local coefficient of friction resistance; Ho = Hofﬁgf

s the homochroniclty number;® s 1is the perimeter of the tube
cross section normal to the axis; 0 i1s the tangentlal stress

at the wall, ‘averaged over the perimeter,

The first term in (4-16), 1.e., the quantity &, allows for
Lhe energy expended in frintion, while the second term allows for
the change in veloclty with time and in flow kinetic energy with
lengti (owing to rearrangement of the velocity profile). On the
basis of (4-9), (4-14), and the definition of Eu it 1is easy to
sve that ¢ is a function of the following dimensionless quantities:

;=‘;(Zh, X' Re, Llo L'h enep Lm). . (u-le)

If the flow 1s stabilized over the entire tube length then,
as we nan see from (4-1¢)% (4-14), and (4.15),

CRe=:CRe=®, (Zh, L,, Ly, . . .. L.). (4-19)
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If, in addition, the flow 1is stationary, it then follows from
(4-16) that ¢ = &, while

tERe=A (L, L,....,Ly,). (4-20)

In other words, for a stationary stabilized flow, ERe will
be a constant depending solely on the geometry and dimensional
relationships of the cross section.

The functions g, .C’ and the constant AE are found theoretical-
ly or experimentally.

If the resistance coefficients are known, it is not difficult
to determine the pressure variation along the length or the pressure
drop across a certain segment of the tube. Thus, for example, for
stationary flow we have from (4-14):

— pwt d
dp=—t5-F. (4-21)
Integrating this relationship over the length, we can find
plz). ;7

The pressure drop across the tube segment between 2 = 0 and
x, which we represent as Ap=p—p, 1s found from (4-15):

— P-';’

Ap= 5 (u"zz)

%

Relationship (4-22) 1s known in hydraulics as the Darcy-Weisbach
law, :

We have r~onsidered flow in a tube of arbitrary cross section
that does not change along the axis. If the tube 1s round, then
the only dimension determining ‘ine cross section is the tube dia-
meter, and this can then be taken as the characteristic dimension,

i.e., we let ZO = d. Here the relative linear cross-sectional di- e
mensions L;, Ly, ..., Lm are eliminated from the expressions found above. o

4-3. HEAT EXCHANGE AND HYDRAULIC RESISTANCE IN FLOW OF LIQUID

Let us consider liquid flow and heat exchange in a smooth
round pipe of diameter d = 2r0.° At the tube entiance section,

the velocity vector is directed along the axis, while the 1liquid
velocity Wy and temperature to are constant over the section and

invariant J° time, At times preceding the initial instant (1 < 0),
the liquid temperature throughout the entire volume and the wall
temperature are identical and equal to to; consequently, there is

no heat exchange, and there is isothermal flow of the liquid in

the tube. At the intial instant (1t = 0), the wall temperature

or densitv of the heat f{low at the wall will change instantaneously,
and take on values t, or q that are constant in time and over the

surface. "uring « certaln time interval, a nonstationary transient
will be observed in the tube; later (when T + =) a stationary state
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will set ‘n. For generality, we shall assume that the physical
properties of the liquid depend on the temperature.

Under these conditions, tie 1liquid motion and the heat exé¢hanhge
are described by equation system (1-16). Assuming that there are no
internal heat sources in the flow and neglecting the heat of fric-
tion, we drop the corresponding terms in the energy equation. We
introduce the 1ift (see § 1-2) into the equation of motion, letting

PR 22 — — gBp, (t — 1) cOs§ — o2 (p— ). (4-23)

where p 1s the actual pressure in the liquid flow; Po is the hy-

drostatic pressure, computed on the assumption that the liquid has
density o everywhere; y 1s the angle between the z axis, which co-

incides with the tube axis, and the vector representing the gravi-
taticnei Zorce. We shall henceforth simply use p to represent the
pressure difference p — p,. We shall use Relationships (3-1)-(3-4)

to allow for the way in which the physical properties of liquids
depend on temperature. Thus our problem corresponds to the following
equation system:’

pcyp (9-'-+58radt ) =div (lzrad f;
o (% +weradu, j=—ghp 1~
RRCAR Y ""+f)]
,,$+ div (pio) = 0;
=1—B(f—t) ==14Be(t—1)
%t“hﬁ —1+?“ to)

)t

(4.-24)

:1> wr»

)

where Po €po %smty are the values of the liquid physical parameters.
at the entrance temperature to.

On the basis of the earlier analysis [see (4-10)], we can
write the intial conditions as

for £ 0, x> 00 < r<r, 75, 1:-=Fu(-';—. T %) (b =wxr); as
iy (4-25)

The boundary conditions have the form
ror t 0, .\--».;Ouml0<f<f. Wy == 10,, wrr_—_w':o, =l
for 1;*0, x>0-mr=r, w,.—.—_w,.-:-.w'==-.0, t=1, or 1%:(]0_ (u_26)

l, Let us first analyze the problem of liquid motion and heat
exchange for the case in which the wall temperature ts is specified.

7-8
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To transform Eqs. (4-24) and Conditions (4-25) and (%-26)
to dimensionless form, we introduce the variable 8—¢.-¢,, and
select the following scales: d, w,, 4 =t.—1,, Por Coo Ao udpsy. Using these
scaies, we introduce the dimensionless quantities

E p_ I P " o Vi,
—d'R—T.W_ -'.o t:r._—;.-.
) _t. A
P_.'.' C, C-:.. [\.—.r ml—-".

After simple manipulations, we obtaln a mathematical descrip;
tion of the process in dimensionless form:

PC, [ 75 +Pe (P grad6)] = divigrad o) '

P [g% +Re(fV’grad)\?’]=——§; @cosy — 3;— (EuRe) 4 %\; (21[ %,-'-

+xal (T ) a(w a3 ) | e
o Z- - div (P =0; : N ()

P=1— p'ece; Cp=1+4Ppc3:0;
A=1—f88; 5 =1-0c8.

For Po<0, X>0 and 0<R<y

W:i WI=F l-xo ' 0W= b =V.
AKX, R.Re), W, =0, 80 iLoe7

for Fo>0.X=G-nd0<R<_%_ ]
We=1, ¥, =W, =0, 8=, ,
for Fo=0, X>0-MR_—_..;.. ~ (h.29)
We=W,=W, =0, 06=1,

In (4-27), (4-28), and (4-29), the symbols are as follows: e

Fo =-‘;L.' — Fourier numbers;

g,= -t —Coefficient of thermal diffusivity;

T hety,

Yot

Ih=gy — Zhukovskly ngmbe'r;

Ho="—;;—1 —Homochronicity number;’

-

Eu==--"; — Euler number;
Petty

!
Pe = %‘Z— -+ Peclet number;

Re =% - Reynolds number;

Ve

Deel)
Gr =E£"~:»“°“ -- Grashof number,
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The quant..ties 8%, Bede. ,8 2nd p,o'. can be represented in terms

2f the ratios of the corresponding physical parameters at tempera-
tures ts and to. Letting 6 = 1 in the last four equations of Sys-

tem (4-27), we obtain
p"e"-:l — P, pe’c=c,o— 1, }

p;.c=l'—l\c. B’.°=Dl:—l' (u-3°)

where

e (3 e
Pe ="'.-' C‘bc=;5i A‘=f: “n.=l‘—o..

It follows from (4-27)—(4-30), that the dimensionless dependent
variables are functions of the following dimensionless quantities::

0. w&o Wn V'. BII-'———IA (FO- Zh, l’b. x, R. L B Pe, k. Of.
1’- pcl C’Oo Ae. uc). (u-31)

where

k:_—_o. ’.. ". ". B'o

The Zh and Ho numbers appearing in (4-31) can ‘be represented
in temms of Fo, Re, and Pe:

Pel’o

Zh= Ho= Per.

Then (4-31) can be represented as .

e,v.Vv,V, Eu=fa(Fo. X, R, ¢, Pe, Re, Qr, &, Pg, Cpq, Ag, M), (4-22)

Naturally, in (4-32) we can introduce the ratio ;-:- Pr. i. e.,'

the Prandt| number, in place of one of the controlling parameters
'e or Re,

We now obtaln a system of dimensionless numbers for the heat
transfer and hydraulic resistance.

We find the local heat-transfer coefficient; in accordance
with (2-20),

A [t
a="“"(-‘)7)r-ro'
or in dimensionless form,
Nu—Ae ("R) -_| ’ (u-33)
2

where Nu=§gie the dimensionless heat-transfer coefficient, called
the Nusselt number.

Substituting the values of © from (4-32) into (4-33), we
see that Nu is a function of the fo%lowing dimensionless quantities:

T




S |

TP

T T e A e

Nu=Nu(l ., @ Pe, Re, Lr, ¢ Pe. Cpe, Aes Mo). (4-34)

In (4-33), the local heat-transfer coefficient pertains to
the intial temperature head ts - to. If we refer a tc the local

temperaturc head t_ — t (where t is the mean mass temperature of

the liquid in the given section), then Nu will depend on the same
dimensionless quantities, but the nature of the relationship wiil
be different.

The local resistance coefficient ¢ is determined from (N-lh),
in which

2= 112
=%§ S’EuRdR (4-35)

when we consider a round tube.

Substituting the values of Eu from (4-32) into (4-35), from
(4-14) ~e have

C‘c(Fo' x'.pe' Re' Grt wo Pc. Cﬂc: Ac: Mc)- (4-36)

Equations (4-32), (U4-34) and (4-36) are valid both for a
nonstationary transient and for the steady state. In the latter
case, the temperature field does not depend on the time and, con-
sequently, the Fo number on the right side of these equations must
be dropped.

The number of dimensionless quantities on the right side of
(4-32), (4-34) and (4-36) will be reduced significantly if we as-
sume that the physical properties of the liquid do not depend on
the temperature. In this case, the last four equations of System
(4-27) drop out. In the remaining equations of this system, P, cp,

A, and M will equal un.ty. The term aliowing for the influence of
the gravitational force will vanish in the equation of motion :
(since Bp = 0, and thus Gr = 0), so that the velocity and tempera-

ture fields will be symmetric about the axisj; the nonstaticnary
term in the equation of motion will also vanish, since under the
conditions considered the flow will be stationary when p and p are
constant. '
Under such assumptions, the problem of fluid motion reduces
to a special case of the problem considered in the preceding sec-
tion, As for the heat-exchange problem, after the indicated simpli-
fications are made in System (h-27), we find
6 =0 (Fo, x. R, Pe, Pr). : (4-37)
Substituting this expression into (4-33), we obtain
Nu=Nu(Fo, X, Pe, Pr). (4-38)

For a stationary state, the Fo numbe> will drop out of (4-37)
and (4-38).

2. Let us now consider the same problem, but for the case in
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which we are given the ha2at-flow density at the wall, q_ = const.
Thus in place of the condition t = t, at r = r,, we havd the
conditicn

2 (¥),_ = " (4-39)

In analyzing this problem we c&n use the same scales as in the
preceding case {see paragraph 1) with the exception of the scale
for the temperature. This scale must be selected as the difference
B to, since the wall temperature ts is not known in this case.

The scale for the temperature can be established from boundary
condition (4-39); to do this, we write the condition in dimension-

less forn:
A0 ft—t =
T[Fk‘( M)] =1 (4-40)
RE2 )
From thils 1t 1s clear that the quantity ,
. ved
o,==§%

should be taken as the scale for the temperature; it has the dimen-
sions of temperature,

If we introduce the dimensionless temperature

and replace the scale 08 by the scale ¥ , then the dimensionless

mathematical description of the process (4-27), (4-28), and (4-29)
also remain valid in the gilven case, with the exception of the
last condition of (4-29), which should be replaced by Condition
(4-40). Thus in the problem of fluid motion and heat exchange,

for a specified heat-flow density at the wall, we have the fol-
lowing system of dimensionless numbers: '

e' W" W" W"EuzF" (FO' X' R' ?o Peo Re. Gf' ‘{'- ppoﬂ pooﬂ px oﬂ pp")o (‘6-—“2)
W)“.el‘e k:-’-:o- w’x- Wr. W'. BII;

2By Ned® gy gt

W
Y v

Gr=

All the remaining quantities have the same values as in §1.

The dimensionless temperature at the wall is the reciprocal
of Nu, in which the heat-transferi coefficient, a refers to the

-emperature difference t  — ty:
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o1ty A
0. = -qTﬁa-ﬂ N—.
where

-
ta—1t,'

Letting R = 1/2 in the expression for ¢ (4-42), we obtain:

N“="6|:'-N“ (FO. X. Pe' Rel Grl ?' p"'i p"ﬂ ’1 ’ﬁ pp")' ( u-u3 )

The same system of dimensioriess numbers 1s also obtained
when a refers to the local temperature head ts -t.

From (4-14), (4-35) and (4-42) we find
t=L(Po, X, Pe,Re,Gr, ¢, 8,9, Bo%,, B, O, B, 80). (4-44)

If the physical properties of the fluid do not depend on
the temperature, then the system of dimensionless numbers will be.
exactly the same when g and ts are specified; here we need only

allow for the fact that the dimensionless temperature 6 will be
determined differently in each of these cases.

4-4, HEAT EXCHANGE AND FRICTION RESISTANCE IN FLOW OF A GAS

The sole difference from the preceding problem (see §4=3)
lies in the fact that it 1s not a liquid flowing through the
tube, but a slowly® moving gas. Thus in the mathematical descrip-
tion of the process, the last four equations of System (4-2%) must
be replaced by relationships describing the change in the physical
properties of the gas with temperature: )

bedm () A= BB 0w

vhere p,, c,, %0 eapo &re the physical parameters of the gas at the
entrance temperature To, n, n,san, are constants that depend on the

type of gas. Since the gas moves slowly, the relationship between -

the density and the pressure can be neglected (see §1-2, para-
graph 3).

1, Let us first consider the case in which the constant wall
temperature T = const 1s specified.

As we can see from (4-45), 1t 1s convenient to take Ty as
the scale for the temperature. Then the dimensionless temperature
can be written in the form

9”._

The previous scales are retalned for the other quantities,
After the equations and initial and boundary conditions have been
transformed to dimensionless form, we obtaln the same dimension-
less numbers as before (see §i4-3, paragraph 1), with certain ex-

5757
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zeptions. In place of the numbers B, f¥,, etc., from the boundary
condition at the wall (6 = 8, for R & 1/2), we obtain the number
8e=Teff,, ard the numbers a,,, 4, .aa from Relationship (4-45), To .
replace the Gr number _1n,'%h_q dimensionless equation of motion, we

d
introduce the number ‘—'?; 'multiplying it bdy 9' - 1, we obtain

the previous number Gr== 14 where $,=T,—T7,. As a result, we
arrive at the following system of dimensionless quantities:
eu wlp Wﬂ W' ’ Eu:"-i. (FO, x! Ru'.' peu Ré: Gru*i ,000 n."x '“p)' (“-“6)
The number 8,=7,/T, 1s called the temperature factor.
Referring the local heat-transfer coefficient a to the tempera-
ture head 3, we obtain a relationship of the type (4-33) for Nu,

but with 6, — 1 in the denominator. Substituting © from /#-46) into
this relationship, we obtain

N“=NII(P0.'X, Q.PE. Re, Gr, *oo.u'kunv.nb). (n"u.,)

On the basis of (4-14), (4-35), and the expression for Eu,
from (4-46) we obtain .

. (=C(Fo.X.Pe.Re.0r,¢,0..n..u‘ |n.). (u'ue)
When the temperature heads are not very great, the relation-
ship between ¢ and T can be neglected, and we can take ne = 0.
Moreover, in most cases we can let n ma, ma
2. If we are given the constant heat-flow density at the wall,
qgq = const, then determining the dimensionless temperature in the
form 6 = T/To , We obtaln the same system of dimenslionless numbers

as with (4-46), (4-47) and (4-48), with the soie difference that
from the ooundary condition, in this system we replace es by the
dimensionless number

9'=€;;|

The dimensionless wall temperature 8,=T7./T,, which in our ocsze

is the dependent variable, will be a function of the following
quantitvies:

0.=9° (FO. x.’n Pe'Reoor.".e.'nQi Il‘.n.). (u'ug)

Naturally, the number

__4d e
Nt=ror =& =1

also depends on these quantities.
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Finally, if it proves convenient, we can treat 8.(X, ¢)as an
independent variable,'®and Nu or © as dependent variables. In

such case, we arrive at the system of dimensionless quantities
(4-47). It is natural that the functions will in general differ
in form for T, = const and q, = const,

Comparing the systems of dimensionless quantities for a gas
and- a liquid, we see that the scle difference lies in the dimen-
sionless quantities allowing for the way in which the physical
properties of the gas and liquid depend on the temperature. If
the physical properties of the gas and liquid are constant, then
their dimensionless systems and the relationships among the di-
mensionless quantities will be 1dentical, "

4-5. LIKITING CASES OF FLOW AND HEAT EXCHANGE

To keep the ensuing discussion simple, we shall assume that
-all physical properties of the liquid (gass are constant, with the
exception of the density. We consider the dependence of p on ¢ only
since this 1s assoclated with the appearance of 1ift forces. In all
other respects, we shall also assume that the density is constant.
Then for the fluid-motion and heat-exchange problem considered in
the last two sections, we obtain the following system of dimension
less equations:'! :

- FortPe (7 grad) = v

it Re@ant) P« — 0cony —z BuRe)+ VWi (4-50)
diviv=0.

To this system, we must add the initial and boundary conditions, (:}

which have the same form as before [see (4-28), (4-29), and (4-40)].

We have the following relationships for the local values of
the Nusselt number and hydraulic-resistance coefficlent, according
to (4-33), (4-14), and (4-35):

= (38),.. (4-51)

™ 12 '
;=__:_-a‘3TSdQSEuRdR. : (4-52)
] 0 ’

In the general case, the viscosity, inertial, and gravitation-
al forces will be commensurate in the fluid flow. Thus we say that
such a flow 1is viscous-inertial-gravitationa!. In analyzing it, we
must take into account all terms of the equation of motion. Here
we find from (4-50), the initial and boundary conditions, (4-51),
nd (4-52) that Nu and O depend on the following quantities:
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Nu=Nu(Fo, X, ¢, Pc, Re, Gr, $); (4-53)
{={(Fo, X, Pe, Re, Gr, ¥). (4-54)

Let us now consider certain limiting cases for flow and heat
exchange.

a) A viscous-inertial flow corresponds to negligibly small in-
fluence of gravitational forces (l1ift forces) as compared with the
viscosity and inertial forces. If we drop the first term on the
right side of the equation of motion ani recall that in the absence
of 1lift forces Eu, "z’ and H; will not depend on 6, i.e., the flow

will become stationary'? and symmetric about the axis, we obtain
the following system of dimensionless numbers for this case:

Nu=Nu(Fo, X, Pe, Re); (4-55)
=L(X, Re). (4-56)

b) Viscous-gravitational flow corresponds to negligible influ-
ence of inertial forces as compared with the viscosity and gravita-
tional forces. Dropping the left 'side in the equation of motion,
we find

Nu=Nu(Fo, X, ¢, Pe, Gr-Pr, $); {(4-57)
CRe=[, (Fo, X, Pe, Gr-Pr, ¢). (4-58)

Thus Gr and Pr enter into (4-57) and (4-58) as a product,
while the resistance coefficient {~1/Rz. ~
!
"e¢) A viscous flow corresponds to negligible influence of
inertial and gravitational forces as compared with the viscosity
forces.

]
i

Looking at the facts noted in paragraph "a," we find it ob-
vious that the inertial forces are unimportant as compared with
the viscosity forces when W = 0 and, consequently, oW./oX=0,

i.e., when hydrodynamic stabilization sets in. Dropping the cor-
responding terms in the equation of motion, we obtain

Nu=Nu(Fo, X, Pe); * (4-59)
.
O (4-60)

If we also assume that the variation in heat-flow density
owing to heat conduction along the axis is small as compared with

the variation along the radius, i.c,, a‘;’;—<%, then in place of
(4-59) we obtain

: Nu==Nu(%o.$%). : (4-61)

After the stationary state has commenced, the Fo number van-
.shes from all of the equations given here,
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Viscous and viscous-gravitational flow can only occur in lami-

nar flow of the ligquid, 1.e., for Reynolds numbers below ¢he criti-
cal value. But viacous-inertial and viscous-inertial-gravitational
flows are observed with both laminar and turbulent flow regimes.
Although the system of dimensionless numbers (4-53)-(4-56) was ob-
tained by analyzing the basic equations for laminar flow, they al-
80 are valid in turbulent flow. The reason is that transfer of
ﬁaqentun and heat by turbulent exchange (i.e., by velocity and

’m

b
- alee

serature pulsations) depends on the same Re and Pe numbers that
5ady occur in Systems (4-53)=(4-56).

+ t

The influence c¢f free convection on forced flow is reflected

.4n Gr (or Gr.Pr). If it is small, the flow will be viscous or vis-
eaus-inertial For sufficiently large values of Gr, we observe a -
‘transition to viscous-gravitational or viscous-inertial-gravita-
tional flow.

To conclude we note that the results given in this chapter

.were obtained solely with the aid of an analysis of the mathema-
tical description of the process by the similarity method.

R
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Footnotes

lWe note that specifying 5; i1s equivalent to specifying
Py — Pp. We shall henceforth assume that w_ has been spe-
cified, since this is more convenient for analysis.

2Phe number w/, expressing the dimensionless time in

problems on nonstationary flow of a viscous fluid, is
called the Zhukovskiy number, and represented by the
symbol Zh in honor of the outstanding Russian mechanics
Scholar Nikolay Yegorovich Zhukovskiy (1847-1921), whose
contributions to the development of hydrodynamics and
aerodynamics are generally recognized.

SThis assumption finds good confirmation, as we shall
see later.

“Here and in the ensuing discussion, we shall use v ra-
ther than w_Z to represent the mean velocity over a sec-

tion in stationary flow.

*We note that the Ho and Zh numbers are associated by
the relationship Ho=ReZh, so that it is easy to go from
one to the other in the equations.

$The tube is assumed to be round only for purposes of
simplification. The results of the subsequent analysis
are Just as valid for tubes of arbitrary cross section,
provided the system of dimensionl 'ss numbers is supple-
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mented by the relative linear dimensions characterizing
the cross section.

"The equations for the projections of the velocity w

¥y, are omitted to reduce the bookkeeping.

The term odw./or is retained in the equation of motion,
since owing to the d2pendence of p and y on the tempera-
ture, the flow durinz a transient will be nonstationary,
even though by hypothesis W does not change in time,

*That is, the gas velocity is small as compared with
the speed of sound.

04ere 6, should be specified by a function of the coor-
dinates X and o at the tube wall.

11 The equations are obtained directly from (4-27) 1if

we use the assumptions made. Here the equations for the
velocity projentions v, and v are also omitted,

12 {§e recall that in this problem (see §4-3), nonstation-
arity results solely from the time variation of the
thermal boundary conditions. If the physical properties

of the fluld are constant, this will not result in dis-
turbance of the stationary nature of the flow.

Transliterated Symbols

¢ = 35 = stenka = wall

= Bl =




Chapter 5

ISOTHERMAL FLOW
5-1, GENERAL INFORMATION ON STATIONARY STABILIZED FLOW

In this chapter we shall consider i1sothermal flow of an in-
compressible fluld, 1.e., a flow such that the temperature field
in the stream is uniform and consequently, the physical properties
of the fluid are constant.

As theory and experiment have shown, the nature of fluid
flow near the entrance section of a tube depends essentially on
the entrance conditions. At a sufficient distance from the en-
trance section, however, this relationship vanishes. Far from the
entrance the fluid moves so that the velocity vector at each point
in the flow is parallel to the tube axis.! As we have already noted
in §4-2, we say that such a flow is hydrodynamically stabilized.
If the tube is sufficiently long, then, beginning at a certain
distance from the entrance, the flow can always be assumed to be
stabilized. For fairly short tubes, it is necessary to allow for
the features of flow in the initial segment (see §5-4).

Let there be a stationary stabilized flow of fluid in a
tube of arbitrary cross section, whose axls coincides with the
x axls of a rectangular coordinate system In this case dw,/dr=0, w,=

-w,~0and, consequently, =% =0and T=O(here p is the differ-

ence between the real pressure in the flow and the hydrostatic
pressure). Thus in stabilized flow, the pressure is constant over
a section and varies only with the length, while the veloclty w
changes only over a section and 1s constant with length. Takingx
this into account, we write the equation of motion as

'w, , 0'w,
( o:: + o;) ZE=const.

Since W, is a function of y and s alone, while p 1s a func-

ticn of x, the right and left sldes of this equation equal the
same constant, In particular, this implies that p varies linearly
along the tube. We let

_dp__
-""T == const,

where 4p 1s the pressure across the tube segment of length L. Then
the preceding equation can be rewritten as

'
!
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=it . (5-1)

To find the distribution of velocity w_, we must solve.(5-1)

under a boundary condition at the wall that requires the velocity
w, to equal gero. )

Equation (5-1) i1s a Poisson equation, which can.be solved by
various mathematical methods. Exact solutions can be obtained, for
example, with the aid of functions of a complex variable. The approx-
imate methods used include the method of finite differences, as well
as variational methods that make it possible to obtain an approxi-
mate solution in analytic form. From the mathematical viewpoint, the
problem considered is equivalent ;0 the problem of torsion in a long
beam., Thus with certain modifications, the solutions known in elas-
ticity theory for problems involving torsion in beams of various-
shapes can be used to determine velocity profiles in tubes with the
same cross-sectional form. There are many studies containing solu-
tions of Eq. (5-1) for tubes of various shapes [1-7]. Some of them
will be given in subsequent sections. :

After the velocity distribution has been found, it is not

difficult to calculate the tangential stress at the wall. The lo-
cal stress is '

()

where n is the normal to the inside surface of the wall. The mean
tangential stress over the perimeter is

= 0..
°°=HF ('azr ds,
< =
where s 1s the tube perimeter.
It 1s convenient to use the hydraulic-resistance coefficient
. to determine the pressure drop; in the present case, it coincides
with the friction-resistance coefficient £ (see §4:2). By defini-

tion, § equals the dimensionless pressure gradient, taken with
reverse sign:

S dp_ U bp | |
b= p;. ds = ';. N ’ (5-2)

where ZO is one of the cross-sectional dimensions, selected as

a scale ratio; w 1s the mean fluid velocity over the section.

The quantity £ is assoclated with G; by Relationship (4-17):
' s
ST e

where f 1s the cross-sectional area of the tube.
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The choice of scale lo is arbitrary, and is still not fixed.

Thus we can take any nvantity as a scale that has the dimensions
of length, being guided by considerations of convenience. Let us
take 1, = bf/s. This is called tha2 equivalenf diameter of the tube.

Thus we take ae the scale ‘

d.=%"-

[

Utilization of this scale offers the following advantages:
a) it simplifies (4-17); b) the scale is determined uniquely for
tubes of different geometric form; c¢) for a round tubeé (the most
common case), de simply equals the tube diameter d. The choice of

de as the scale may prove desirable for other reasons as well; more
of this later.

After we introduce d,, (5-2) and (4-17) will take the form

=22, (5-2a)
- (5-3)
Substituting the expression for Eé into (5-3), we find
o=t (477), 0 51
where

If the change in velocity from zero at the wall to the value
at the flow core were to take place in a thin layer at the wall
(far thinner than the cross-sectional dimensions), then the flow
conditions at the wall, i.e.,(0W./dN)y=0o Would be the same at dif- -
ferent points on the perimeter even for tubes of different shapes,

.Then, as (5-4) shows, owing to the utilization of d,, we would

obtain the same value of ERe for tubes differine in shape. In ac-
tuality, however, in laminar flow Wz varies over the entire section,

and the velocity profile depends essentially on the cross-sectlonal
geometry. Thus despite the utilization of de, the value of ERe will

also dgpend on the shape and relationship of cross-sectional dimen-
slons,

If we know the velocity distribution in a tube of specified
geome-cy we can use (5-4) to calculate 1ts resistance coefficient
£ (see §§5-2 and 5-3). Using the value found for £ and (5-2a), we

can easily find the pressure drop across a tube segment of length

(5-5)
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5-.2. STABILIZED FLOW IN CYLINDRICAL AND PRISMATIC TUBES
1. For flow in a round tube, Eq. (5-1) is conveniently writ-

ten in cylindrical coordinates. Since the flow is symmetric about’
the 2 axis, the equation takes the form

1 d dw,
+ar(ra)=—4
where r 1s the running radius.
Integrating twice, we find the general solution:
w,=— 2B tc lnr e, (5-6)
The boundary conditions have the form
torr=0 %eq;
for F="r, Wy=0,
where rg is the inside radius of the tube.

Using these conditions, we find the constants:

c,-..-_,O. Cy= -i-:&:-.

Substituting in (5-6), we obtain the equation for the veloeity
distribution:

w= g5 (= 7). (5-7)

The mean fluid velocity over a section is
4 rq
=] Ca — = ‘P(:
W—;-rz—-yswz2ifdf—;3%;(f: r’)rdr -w—. “

The maximum velocity is

Apry -
Wuane =g = 2w,

Equation (5-7) can be written as

w,=25(1 ._."7;). "~ (5-8)
or as
. —— =

i

ere ry — r 1s the distance from the wall to the point considered.
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Thus tiic fluid velocity for motion in a round tube is dis-
tributed parabolically (Fig. 5-1).

The volume flowrate of the fluid is
o '
Verle="0r. (5-9)

This equation represents the Poiseullle law.

We use (5-U4) and (5-8) to determine

20 3. the friction-resistance coefficient:
wh ERe=64, (5-10)
where Re=id/v.
u;-
The velocity distribution (5-8) and
ast resistancé law (5-10) have received good
- £ experimental confirmation,

'tﬂ as 0w W , Thg d%stribution of velocity in a- )

t tube (i.e., between parallel plates
Fig. 5-1. Velocity fla :
profile in round of width 2r0 = ﬁ can be found by solving
tube with stabil- (5-1) (without the second ter® on the left
ized flow. side) under appropriate boundary conditions.

As a result we obtain
. 3= v o, )
w:::-;W( —-—,,—)_ﬁ Gw['.h __(f.’l’ )‘]’ (5-11)

where y is the distance along the normal from the tube axis to the
point under consideration.

Itis clear from (5-11) that the velocity on the axis of the
flat tube 15 wuuuc-g‘a-

Using (5-4) and (5-11), we find’ that for a flat tube
tRe~==96, (5-12)
where Remivdy/v, da=2h.

3. For the velocity distribution in a round annular tube
(i.e., in the region between two coaxial cylinders), the general
solution of (5-6) is valid. Determining the constants of integra-
tion from the boundary conditions (w_ = 0 when v = ry and »r = iz),
we obtain the velocity-distribution "law:

In ;':'
| w,::—f;ﬁ-[(r; - ’3 )—‘;r—_"—-(f’ - I'T )]'

ry ‘

where r, and r, are the radii of the inner and outer c¢ylinders.
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From the last equation we find the radius corresponding to
the maximum value of velocity:

[

f.=
s
2 "

The mean veloc¢ity over a section 1is

a=1‘;",(,:+r:- ’3;,:’ )

e

Thus the velocity distribution in an anrmlar tube can also be
represented as: ;
r
_B-A)m == |
=20 © —. (5-13)
A=A+EG+) e

r-n
Wt

0 @ 4+ a4 a w

Fig. 5-2. Velocity profiles in
annular tube with stabilized
flow.

Figure 5-2 represents the dimensionless velocity w./# as a
function of the dlmensionless distance from the wall » - r-l/r2 -r

for various values of hir.. As n/ra decreases, the veloecity maximum
shifts toward the inside wall of the tube. For values 0,1«

1 <‘
[ )

this shift is relatively slight. In Fig. 5-2, the dashed line shows

the positions of the velocity maximums.
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TABLE 5-1

Values of ERe for Tubes of Annular, Elliptical
‘and Rectangular Cross Section
Kpayrlni woaskessx TPYGa. 7, % 00011 001 | cos] et 102 |04 ]os o8 to

8 f—PeANyCH SmyTpeswero
B WAPYMNOTO KEASNADOS

L Re|74,08 80,11 } 06,27 | 89,37 [ 92,95 | 94,7] | 95,85 | 96,92 | 98,00

woyea b u| o] 00 | 0203 |ea]os [os |07 lon{on |10

tRe|77,25 | 74,43 | 71,85 | 69,18 { 67,26 | 65,92 | 64,96 | 44,9 | 64,13 | 64,00

by=—RORyOCR

"¢ )

Mpamoyroassasn wpyde. buh—| % | ' | "B 181 2 |28 3 | 4 | 5 {10 o
TORD

ERe| 56,90 | 67,47 | 58,82 [ 62,14 [ 64,00 | 65,35 | 72,90 | 76,29 | 84,81 | 96,00

a) Round annular tube, r, and r, are the radii of the inner and
outer cylinders; b) elliptical tube, b, and b, are the semiaxes of

the ellipse; c) rectangular, b and h are the lengths of the rec-
tangle sides.

When r drops to zero, corresponding to flow in a round tube,

(5-13) reduces to (5-8). In the other limiting case in which r;—r, < r
(flow in a flat tube), (5-13) reduces to (5-11).

The friction-resistance coefficient for an annular tube is
found from the relationship

(5-14)

where Re=dyv; dy=2(rs—n1).

Table 5-1 glves values of ERe for an annular tube as a func-
tion of ry/r,.

i, The velocity distribution in a tube of elliptical oross
gseotion 1s described by the equation

u.=2i;(1 -"T f’;) (5-15)

where b1 and b2 are the semimajor and semiminor axes of the ellipse.
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TABLE 5-2 |
Equations for Velocity Profiles in Prismatic Tubes

1 m‘-&".;..m 2 Vrewmewme s w,
2 = 4 ® ® mry nxz
! . sin —— sin ——
2 mnz1,3,8..8m),8,8.. .m0 (“r"“‘r i ]

3 lpasoysansmun

I< L .,-3;%&[({_)._',_4'. - %

s . :
L pacnaa,:m,5 e B']/ 4+T(W—|
mpeyeossnun . |
<) 1,7 .
ﬁ [} S JL = p,-‘ﬁ{(.%__l) [(%).—-;r(-%-).]} —
5 Pal.mcmopumyo
mpeygsonsnun
¥ . “ nsin E—-:—'y sin mT

N e Y y

m=),3,5..8=2,4,6...

mE—an e

<3

ta-o—-ﬁ - = msin MT” sin %
"~ fip ¢ + (5-18)
6 Mnsgrized, w—mew |
mpeysossms , mm2,4,8...n=1358..
b cos2y \ _ 163 2y}
0 r e {,.(._m,,.) enr,
!»l 3 0

1) Cross-sectional shape; 2) equation for w5 3)

rectangle; U) isosceles triangle; 5) equilateral
triangle; G) 1sosceles right triangle; 7) sector
of circle,

The velocity reaches its maximum on the tube axis (i.e.. for
y = 0 and z = 0); as for a round tube, this maximum is 2 times

the mean velocity.

The friction-resistance coefficient is found from the rela-
tionship

=65 =
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tRe=8 (3 [x+ ',’%)'].

Table H-1 gives the values ol £Re as a function of the b2/bl.

5. Table 5-2 gives equations for the velocity profiles in
prismatic tubes with cross section in the shape cf a rectangle,
triangle, and sector of a circle, As an example, Fig. 5-3 shows
veloclty profiles in a sector tube for various sector flare angles.
As we might expect, as the angle decreases, the velocity maximim
shifts toward the cylindrical wall,

NI \!

o

LY 45

() ]

ae

<l

TR e v u

Fig. 5-3. Velocity profiles along central line of sector tube for
various sector flare angles (stabilized flow).

g
T3

35

{
] —
so} £

\7

“

9 20 0 60 wtpaad

Fig. 5-4, Values of £Re for
tubes with cross section in
form of sector of circle, isos-
celes triangle, and right tri-
angle. a) deg.

Table 5-1 glves values of ERe for tubes of rectangular cross
section, calculated in terms of the equivalent diameter. For tubes
with cross section in the form of isosceles triangles [9]

v BB 2) _
ERe= B--2(¢gb+ V1 +‘gg'i")|' (5 20)

|
where B 1s half the vertex angle of the 1sosce1es‘tr1angle; and
B is the perimeter, found from the equation given in Table 5-2,.
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56.0%: &% —=0 for r= I~ (v 1s the normal to plane BC).

URIV— ewrrom » T R 4 R

‘
ly

For example, for 8 = 30° (equilateral triangle), £Re = 53.33.
For B = U5° (isosceles right triangle), Eq. (5-20) gives an indef-
inite result; expanding i1t, we sece that here ERe = 52.71.

Figure 5-4 shows £Re as a function of flare angle for tubes
with cross sections in the form of a sectcr of a circle, isosceles
triangle, or right triangle.

It i1s noteworthy that for tubes of various profiles ERe var-
ies within fairly narrow limits: roughly from 48 to 96 or from 0.75
to 1.5 times the value of £Re for round tubes.

5-3. STABILIZED FLOW IN BANK OF ROUND CYLINDERS IN LONEiTUDINAL.FLOH

Flow along a bank of circular cyliinders (tubes or bars) 1s
encountercd in many heat-exchange systems. The cylinders are or-
dinarily positioned in the bank at the corners of equilateral .
triangles or at the corners of a square (Fig. 5-5). If we assume
that the bank consists of many cylinders, while the cylinder dia-
meters and positions are identical, we need only consider the
flow in an element ABCD of this system. .

Fig. 5-5. The problem of longitudinal flow past a bank of circular
cylinders. a) Cylinders located at corners of equilateral triangle;
b) cylinders located at corners of square.

The two-dimensional velocity field in the systems shown in
Fig. 5-5 1s described by the equation

Mw, , | dw, 1 O'w, 4
et ==

The boundary conditions have the following form:

We=0 Uor r=r,; Q;-,‘f:- =20 for ¢==0 anti 9==30° (Fig.5-5.8) or. ?=45° (Fig.

An approximate solution of this problem has been obtained by
Sparrow and Loeffler [10]. The velocity distribution is described
by the following equations:

- 67 -




LAy

I T gy o T ——— 1 T T e ——r

TABLE 5-3

Values of Constants 6j and eJ

in Equation for Velo-

city Profiles with Longitudinal Flow Past Banks of
Circular Cylinders!?

1 Uwasnapu pacunaomesst RO Yraan PEIHOCTOPORNETO TPEYTOAMNNNE

]

= , .\ 8 & » )
1.0 —0.0305 0.0053 | —0,0003 | —0,0002 0.0000 -
1.01 ~0,0319 0,0052 —0.0001 —0,0002 0,0000 -
1.02 —0,0332 0,0051 0,0000 —0,0001 0,0000 -
1,03 -0,0345 0,004% 0,0002 —0,0001 0,0000 -
1,04 —=0,0357 0.,0046 0.0002 —0,0001 0 0000 -
1,08 —0,0368 0,0043 0.0003 —~0,0001 0,0000 -
1,10 ~0,0416 0,0028 0,004 0,0000 - -
1.2 0,049 0,0007 0,0002 0,0000 - -
l-m -—0.050‘2 -0|m7 O.Wn - -d -
2om —0.0&5 —O-N Oom -t -> ->
4,00 —0,0505 ~0,0008 0.0000 - - -

2 Unmnaps pacnosowenst N0 yraaMm Ksaapata

»

o o L3 [} o L L)
1,05 ~0,0004 0,0073 0,0032 0,0002 —0,0001 0,0000
1,10 —0,0987 0,0036 0.0029 0.0005 0.0000 -
1.2 —0,1104 —0,0024 —0,0015 0,0003 0,0001 0,0000
1,50 —0,1226 —0,0001 —0,0002 0,0000 - -
2,00 —0,1250 —-0,0105 —0,0006 0,0000 - -
4|m —001253 —0.0]06 _OQN O.MO -d -

TThe arrows in the table indicate that zeros

follow everywhere.

1) Cylinders located at corners of equilateral tri-
angle; 2) cylinders located at corners of square,

i

\ .

g 58388

e

x
0 a2 Q¢ @6 Q8 0

Fig. 5-6. Function F(x) for

bank of cylinders in longitudi-

nal flow. 1) Cylinders located '
at angles of equilateral tri-

angle; 2) cylinders located at
corners of square,
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for ~ylinders located at the corners of an equilateral tri-

ingle,
(a4 (- (e
(5)" 1= ()" men}:
for cylinders located at the corners of a square,
S e (OO
R (51 () o)

In these equations, cj and ej are constants depending on b/ro.
Their values are given in Table 5-3.

m

2

(5-21)

\.

(5-22j

The friction-resistance coefficient £ is found from the re-
lationship .

tRe'—'-'—"-TtRe.==F(—) (5-23)

In (5-23) we have: Re-._'_; Re¢=--'-= de is the equlvalent dia-

meter, calculated from the wetted perimeter of the bank flow sec-
tion; d = 2r0 is the cylinder diameter; « is the ratio of the bank

flow-section area to the area of the entire bank (i.e., the ratio
of the area of quadrangle ABCD to the area of triangle 0BC);

With cylinders located at the corners of a triangle. go=/6,
while with cylinders at corners of a square, go=x/4.

Figure 5-6 shows F as a function of b/r or, what is the same

thine, as a function of k, for the two types of cylinder configura-
tlon considered For a bank of specified geometry we first ‘find
f and)then use Fig. 5-6 to find F(x); we finally calculate § from
5=23
Figure 5-7 shows the distribution of the tangential stress
4% the cylinder surface as .a function of the angle for various
voones of b/rO. For b/rO close to unity, the tangential-stress

distribution 1s extremely nonuniform. At b/ 51,56 for cylinders at
Fis apeer of a triavgle, however, and for b/ 2 for cylinders

at the corners of a square, the tangential stress is nearly uni-
formlr distributed over the circumference, Thus for sufficiently
vlde barks (5/r, greater than the values indicated), the velocity

an be assumed to be a function of the radius alone.
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An approximate determination of the flow in such banks can
be made by the method first proposed by Leybenson [11]. If we
replace triangle 0BC (see Pig. 5-5a, b) by a sector of a circle
with radius »r; so that the sector and triangle are of equal area,
we can use the general solution (5-6) for a round annular tube.

Determining the constants oy and e, from the boundary conditions
u.},_,.-o and a—;;'-L’ =0, we obtain the equations for the velocity

profiles. These equations have the same form as (5-21) and (5-22),
but without the last terms contalning the series. We obtain the
following expression for the r<sistance coefficient:

s[G)-

tRe=‘(_::_)',,%_3(%)‘+4(:_: =

(5-24)

N

2 5 w5 22N
a

Fig. 5-7. Distribution of tangential stress at wall over cylinder
circumference with cylinders located at angles of equilateral tri-
angle (a) and at corners of square (b).

()
With the cylinders located at the corners of an equilateral
triangle

ro=(22)"

=2 [ () =)

‘ With the cylinders located at the corners of a square" with
gides 2b1 and 2b2,

Ty =2 Vb—_';‘l-o

d.=2r,(-,‘7"—'r,:u—1)._ T :
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5-4. HYDRODYNAMIC INITIAL SEGMENT .

If a certain art '%rary velocity distribution is specified at
the entrance section of a tube, then as we move away from the en-
trance, under the action of the viscosity forces, the velocity
profile will tend to take on a shape corresponding to stabilized
flow. Thus the latter can be trecated as a limiting state to which
the flow changes in the initial segment at a sufficient distance -
from the entrance. As is proven in the dynamics of a viscous
fluid, a flow with steady velocity profile corresponds to minimum
energy losses to friction. i ‘ ’

Wo i
‘\E"‘T __ Uiy - ’ '
: i —=—£
o — = é = l

i

Fig. 5-8. Development of velocity profile in ini..
tial segment of round tube, '

If the fluid is delivered to the tube from a sufficiently
large reservoir, and the tube edges are well rounded, then the
velocity distribution in the entrance section will be uniform
(Fig. 5-8). Owing to the action of friction forces and adhesion
of the fluid to the wall, a layer of retarded fluid will appear
in the flow near the wall; this is called the dynamic boundary
layer. For sufficiently large Reynolds numbers, near the entrance
thls layer willi be thin as compared with the tube radius. In the
direction of the normal to the wall, the fluid velocity/ in the
boundary layer will vary from zero at the wall to the velocity
at the flow core. Since the core does not experience the retard~
ing effect of the friction forces, the velocity distribution will
remain uniform here. As we move away from the entrance, the bound-
iry layer becomes thicker, the flow-core section contracts, and
the core velocity increases (since the flowrate through any tube
section is constant). This process continues until the boundary
‘rver developing at the walls fills the entire tube cross sec-
t'on, at a sufficient distance from the entrance. In the sec-
tion where this occurs, formation of the velocity profile is .
finished, and the profile will no longer vary with length as we
move away from the entrance (for isothermal flow of an incompres-
sible fluid).

ie s naration of the flow into two reglons, the dynamic
boundary layer within which the action of the friction forces
"5 concentrated, and the flow core where the friction forces
e negligibly small, permits us to construct an approximate
metnod for determining the flow in the initial segment. There
are nther methods for solving this problem that do not require
inuruductica of the boundary-layer concept.

4 4.t us consider flow in the initial segment of a round

“ube witi a uniform velocity distribution at the entrance. Such
flow "3 been determined on the bqsis of the boundary-layer

=71 =
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notion by Shiller [12], with later improvements by other investi-
gators [13, 14]. We let §(x) represent the thicknegs of the bound-
ary layer and, following [12], we assume that the fluid velocity
in the core is constant over the section:

Wy ™ ) (x).

while the velocity in the boundary layer is distributed parabolical-

1y
We__o¥_ B __offe—=r\_[ro—"\
e =—F=2("")-(%)-

‘A8 a consequence, for § = rgs the veloci®y profile in the
initial segment will go over to the velocity profile for stabilized
fiow,

We write these equations in dimensionless form:

W,.=W,(X) (for0SR<1-=T); l

We=W, [2 ('—';.—"-)—(?—;—R-)'] (for 1 —T<R<1), (5-25)

where W,=2%, W,=2, R=L-.- '8'==L. w, 1s the constant velocity of the
Wy W Ty [ (Y
fluid at the entrance.

The relationship between "1 and E can be establislked from
the condition requiring that the flowrate be constant:
re—d

[(
2z )‘ w,rdr--2x S’w,r dr=uw,sr;
re—3

Substituting the expression for v, into this equation and
integrating,we find

S (5-26)

To find the way in which § and the mean pressure p over the
section depend on 2, we require two more equations. One of them
can be the conservation of momentum equation (2-45). For the case
under consideration, it is written as

'.. 2
pa‘é—} . rdr+4 -ri"--g%+f.oo =0, .

0= —‘p '-)-‘-,"’7'-)’:'.= 2 I;:,

or, in dimensionless form

where

- |
d 1 d - L4
H;W:RdR——;'-H(EI'—-&)-}-&%‘-.:O. (5-27)
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I I | . wed — Gywe
X=pea+ R =5 d=2

here p, is the pressure at the tube entrance section; the quantity
L 3 ]
X is called the reduced distance to the entrance.

As the second equation, Shiller used the Bernoulli equation,
written for the flow core; he simultaneously assumed that the
pressure in the given core section equals the mean pressure in
the same section of the tube. This assumption is quite jJustified
for small x, but becomes less and less accurate as z increases,
owing to the increased thickness- of the boundary layer, i.e.,
tne reglon of viscous dissociation. As a result, the Shiller solu-
tion hecomes inaccurate when we move far enough awey from the
entrance, Thus, following [14], in place of the Bernoulli equa-
tion we shall use the approximate equation for the mechanical
energy balance of the entire flow, also taking into account the
energy loss caused by viscous dissipation. We write this equation
for the flow segment from the entrance section to a certain sec-
tion located a distance x from the entrance. On the assumption that
wh > v, and that all derivatives of the velocity can be neglected
except for awz/ar, we obtain J

4

e
+p 5 de (‘-;',—f)'zwdmo.
or in dimensionless form

jwnan—%—-;(ﬁg)+sdeS(%)'RdR=o. (5-28)

Solving (5-25)-(5-28) simultaneously, we can find the way in

which & depends on X and %F:L depends on §. Omitting the inter-
T
maijate manipulations, we give the final result:

[336'8'-— 26 In (1 — 3)+3181n(2—¥) - 14810 K @) + 27__(;“‘(_:;-3)_

T_ 'y
1 m,g( ﬁ2)]o=1saox. (5-29)

where K(§=6—4843,

)

oo L [38161:1(2—'8')—41610(1 —~%—17001nK & —
e .
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—_— - ared, —
K@ om0 vECSTE 5K+ (1)

Using (5-29) to find the way in which 5 depends on X (this
relationship 1s srhown in Fig. 5-9), 1t is aot difficult for us
to determine the remailning flow characteristics in the initial
segment. From (5-25) and (5-26), we find the velocity distribu-
tion W,=W.(R, X), while (5-30) yields the variation in pressure

%iif as a function of X. For sufficiently large X, the solu-
J ‘

tion found goes over asymptotically to the solution for stabllized
,rlow.‘The computational results are in good agreement with experi-
ment. ‘

Numerous investigators have solved
the problem of fluid motion in the ini-
tial segment of a round tube by direct
integration of the equation of motion,

1.2

. under various simplifications introduced
) X for the purpose of linearization. It was
‘ ; ; ; ;~1—? precisely in this way that the problem

was first solved by Bussinesk, whose

results, refined by Atkinson anda Gol'd-
gi‘;r5§gic§§2§ga§§' shteyn [15], are in good agreement with
fug t1 sy . experiment at a sufficient distance

SEKON: OF & from the entrance but are inaccurate

near the entrance section. This problem
has alao been considered by Targ [16], Langhaar [17], and others
(18, 19]. Their results more properly describe the variation in
velocity with tube length.

TABLE 5-4
Values of Constants Bn in
(5-31)

R ENENEEERS

b 15,1 |8.a7] 1.62] 14,80 |,,n,7_._93§|2l-l_'{

Al T 1L 8 o0 nge

| ‘ 24.27'27.42'5!).57 33.72I3(i.mi|»|(l.(ll

]

Targ obtained the following equation for the distribution
of the longitudinal velocity component and the pressure drop in
the initial segment for a uniform velocity distribution at the en-

trance:
W’,_—=2(1—R')—4ET',-[1—!,—‘.-((!"'§2 exp(— 482 X), © (5-31)
n-l L] .
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‘ABLE 5-5 ®
alues of ¢ as a func- "’,":L=54X+%—82—';exp(—4p’x), (5-32)
.lon of X for Initial 5 " & b, -

Segmient of Round Tube where J, s a Bessel function of order

x= 2tk o) zero; Pu(a=1, 2, 3...) are the successive
roots of a Beasel function of second
0.,000208 20,0 order, J2. Thelr values are given in
0,00033 11,0
0.001805 8.0 Table 5-4,
" 0,003575 6.0 .
0 o e The Langhaar equation for the °
0.0137 3.0 velocity profile under the same condi-
Dplle -2 tions has the form
0,U341 1.4 1 OO — LR 25
0,0449 { —Llex)— -% X .
0,0620 &2 Ve=- Is 2 (5 33}
0.0760 0.4
where IO and 12 are modirigd Beegel

functions; ¢ 1s a certain function

of X whose values are given in Tablg

5-5. The pressure variation can be com-
puted by substituting (5-33) into (5-28). .

Figure 5-10 shows the velocity distribution over the tube
section for various values of X, while Fig. 5-11 gives the varia-
tion in axial velocity with length.® As we can see, the uniform
veloclity profile at the entrance becomes parabolic as we move
toward greater X.

The distance from the tube entrance at which the influence
of the initial velocity distribution ceases to influence. fluid
motion is called the length of the hydrodynamic initial segment,
Zn g For isothermal flow, the reduced length of the hydrodynamic.

initial segment can be found as the value of x_—_-k‘;%: = B for

which the axial velocity differs by no more than 1§ from the axial
velocity for stabilized flow. Thus the relative length of the hy-
drodynamic initial segment 1s

et _BRe, | (5-34)

where B 1s a constant,

Calculations carried out with (5-31) give a value B = 0.04;
(5-33) ylelds B = 0.0575. The value closest to the actual figure
i:. apparently B = 0,065, calculated on the basis of the Bussinesk
solution, which 1s in good agreement with experiment for large
:educed lengths. It fcllows from (5-34) that the length of the
dyvnamic initial segment may be considerable; for example, when
Re = 2000, Zn g = 130d.

Table 5-6 shows the results of a determination of the pres- -
sure variation in the initial segment of a tube. For X < 0.0075,
the Shil.er method was used, while for X > 0.0075, the Bussinesk
method was used (at X = 0,0075, there is roughly a 2% difference
" ‘tween the results computed by these two methods). It is conven-
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Fig. 5-10. Velocity distribution in initial segment of round tube
) X = 0 (entrance section); 2) x =
3) X = 0.00357; 4) ¥ + @ (parabolic profile).
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TABLE 5-6

Fig. £-11. Variation of axial
velocity in initial se
round tube,

gment of

Values of ;L;’:- in Initial

270

Segment of Round Tube

. 1 ox "T,’,’. I x !.'._"'..
S I B R
0 0 0,075 [
0,006 0,32 0,0100 63
0,0010 0,46 0,025 1.88
0,0015 0,56 0,0150 2.10
0,0020 0,65 0,0200 2,51
0,0025 0,73 0,0250 2,88
0,0035 0.87 0,0300 3,24
0,0045 1,00 0.0350 3,59
0,0055 1] 0,0400 3,93
0,0065 1,22 | 0,0450 | 4,2
0,0075 1,33 | 0,0500 4,59
0,0550 4,92

'
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ient to represent the pressure variation in the initial segment in
terms of the local and mean resistance coefficlents:

dp:-fc#o‘jx-.
po—p=TE 2, (5-35)
Wwhere v = ¥y in the case under consideration.
Using (5-32), for example, we find:

cRe=64+32\2exp(-4p:x). (5-36)

Computational results with good experimental confirmation

have shown [13] that at values X < 0.001, the following simple
relationships are valid:

CRe==6,87 (".- %-)‘".’,

- (5-37)
TRe==13,74 (.';5.) n
W emin
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Fig. 5-12., Local and mean resistance co-
efficients in initial segment of round tube,

Figure 5-12 shows {Re and {Re as functions of X. When X + 0,
tRe and {Re approach a constant value corresponding to stabilized
flow. To within 1%, { takes on a constant value at a distance
z = ~ln g from the entrance, while { takes on a constant value

at a far greater distance equaling ~lIOIn g

For x» 4, 1t 18 convenient to write (5-35) as

= 3 (" == in,p
&l__e-=""-.rT+&x_a‘—"
T
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where t=04/Reis the friction-resistance coefficient, constant over
the length, for z > Zn g’ Since

Temt,, Re=const aes oL f22 — const,

then

po_P=(E% +k)!-f;*:- (5-38)

where k is a constant. According to the data of various authors,
k ranges from 1.040 to 1.159. A value k = 1.12 is apparently clos-
est to the true figure,.

We note that in the general case (for z < 1, g)’ the local

friction-resistance coefficient £ will also vary with the length.
Here £ < ¢, and only at = 0 and = > ln will these coefficients
coincide. -8

2. The flow in the initial segmert of a flat tube (i.e.,
between parallel plates) has been studied by Leybenzon [22], and
later by Schlichting [15], Targ [16], and others [23]. Targ ob-
taired the following equations for the velocity distribution and
pressure drop in the initial segment for a uniform velocity dis-
tribution at the entrance:

W,=%(1—Y')—22-1-[l—%ﬁ-y—)]exp(_]sﬁ.x). (5-39)
n=l o
=2 _ 96X + 2 —4 Y Jrexp (— 1672 ) C (5-40)
7 a=t ® .

where
s ¥ 1 x
‘=7.'. Y=-;.—, x::-R-e-'_?.—,

and Re-.='—'fl; d.=2h is the equivalent diameter; 2 = 2r0 is the
tube width; Y, are the successive roots of the equation tan z = z.

The relative length of initial segment for a flat tube, cal-
culated with the aid of (5-39), equals

f,"—:'f:0.0IIBRc. (5-41)

The value of the constant in (5-41) is very close to the
value obtained by Schlichting (0.01). For a flat tube, if we
use d,, the value of k in (5-38) lies 1in the 0.601-0.626 range

3. The flow 1n the initial segment of an annular tube has
been consiuered elsewhere [24, 25, 26] for a uniform velocity
distribution at the entrance. According to the data of [25],
the reduced length of the initial segment will have the follow-
ing values, depending on r,/r,:
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Fig. 5-14. Resistance coeffi-
clent ¢ for tubes of rectangu-
lar cross section.
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Here Re=wod.fv, dy=2(r2—n).:

The pressure drop in the initial segment of an annular tube
cag be calculated from the equation proposed by Sparrow and Lin
rog: 0 i
L - .

2

Bl £ L K(X), (5-42)
7 Mo .

where £ is the friction-resistance coefficlent for stabjlized
flow (see Table 5-1); K(X) is a funiction allowing for the change
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in flow kinetic energy and for the additiunal energy expended on

frictior in the initial segment as cormpared with z stabilized )

flow. Fiure 5-13 shows values of X(X). When X = 0, X(X) = 0, |
while when X + » (for z > ln g in practice), X(X) approaches a !

constant value that depends solely on rl/rz.ln tne latter case,
K(») = k, and (5-42) reduces to (5-38).

4. The flow in the initial segment' of a rectangular tube
has been 1nvestigated by Prankl' and Baklanov [27], as well
as by Han [28]. The reduced lengths of the initial segment are
shown for tubes with various ratios of sides in Table 5-7 [28].
These lengths are determined, as usual, from the condition re-

~ quiring that the velocity on the tube axis at x = ln £ differ
"by no more than 1% from the velocity on the axls for the fully
developed flow.

TABLE 5-7 T?e pressure drop in the initial seg-
3 ment of a tube of rectangular cross section
R;dggigiginggg can be calculated from (5-35), and for z > 7}
' P R
ment and Value > 1, rom {5-38) (if we replace d by d,
of Constant k in the equations), Figure 5-14 shows the
for Tubes of resistance coefficient 7 in (5-35) for tubes
Rectangular Cross of rectangular cross section, while the con-
Section stant k in (5-38) is given in Table 5-7.
The Feynoilds number in Table 5-7 and Fig.
Al Lae |, 5-14 was calculated on the basis of the
“ equivalent diameter.
b | Same | MO 5-5. CRITICAL REYNOLDS NUMBER. INFLUENCE
0.75 ! 0,075 | 2,00 . .
0,50 | 0.0660 | 1,80 OF ROUGHNESS
AR AR
8" 0,009 |0.88 1. As we know, there are two basic
forms of motion for a viscous fluid, lami-
nar and turbulent. Laminar {low becomes (”)

turbulent at a certain value of the Rey- ~
nolds number, called the critical value.

wd,
Re"p =~ (_'T)up )
If for a given flow of fluid in a tube the Reynolds number
Re < Rekr’ the flow will be laminar; if Re > Rekr’ it will be turbu-

lent. The critical Reynolds number depends essentially on the tube
entrance conditlions and the conditions in the fluld flow ahead of
the entrance. The smaller the disturbances in the fluid flow en-
tering the tube and in the entrance section (for example, owing

to flow separatlon from the walls when flowing past sharp edges,

the higher the critical Reynolds number. Thus special measures
aimed at reducing disturbances have made it possible to obtain
laminar flow in a tube for Reynolds numbers of up to 40,000, It

is apparently possible to obtaln still higher values of critical
Reyrolds number by carefully eliminating disturbances. In practice,
however, it 1s more important to know the lower bound for the criti-
cal Reynolds number than the upper bound. The existence of such a
bound has been established in numerous 'experimental studies. Hence-
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forth, when we speak of the crit.cal Reynolds number Re, .., we
shall mean the lower bound, If Re < Rekr, then any strong dis-

turbance at the tube entrance will be damped at a sufficient dis-
tance from the entrance, and the flow will remain laminar. If Re >
> Re, ., however, then under ordinary conditions (i.e., for the

disturbances observed in practice), the flow will become turbulent.
Leaving aside the question of laminar-flow séability and'%he-'

processes involved in the transition to turbulent flow, we shall

only give certain data on the critical Reynolds numbers. Numerous

experimental investigations have shown that for isothermal flow .
in round tubes, Re, = 2300. PFor tubes whose cross section is not

!
round, the value of Rekr calculated on the basis of the equivalent

diameter will have roughly the same value as for round tubes. Thus
for annular tubes, Re,, = 2000-2800; according to data in certain

older studies, Rekr depends on ’1/’2’ increasing as the ratio\da-;\
creases [12]). For rectangular tubes, including flat ducts, Re,, =

3 2000-2300. For tubes of triangular cross section, if the angles
are not too acute (about 45° or more), Reqe~2000.

'p]f T
\

ale

osT‘

Ll

04 L1
memmn
0.2 e 2l 9 Re= #" !
0 2000 4000 L &0

Fig. 5-15. Laminar- and turbu-
lent-flow regions in triangular .
tube with acute angle. 1) Turb- :
ulent region; 2) laminar region.

In tubes whose cross section includes narrow corner zones,
both laminar and turbulent flows may exist simultaneously. This
is quite clear from Fig. 5-15, which shows the results of vis:al
observations on flow in a triangulay tube with a vertex angle of
11.5° for the isosceles~triangle section [29]. It turned out that
whtn a smoke probe was moved along the centerlinez from the vertex
to the base, the stream of smoke was first completely quiescent,
i.e., the tlow was laminar, Next stability was lost (waves tra-
veled along the smoke stream; their amplitude increased with dis-
tance from the vertex); turbulent flow finally set in (the smoke
stream became blurred a short distance fror: the probe). The curve
of Fig. 5-15 was obtained by such observations at various Reynolds
numbers and fixed values of z/k (points on the graph) at which.
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stability ioss first occurred. Below this curve there ie a region
of lamirar flow; above there 1s a region of transiticn and devel-
0: <2 tu julent flow., The Reynolds number at which tre flow remains
laminar over the entire cross section turns out to be considerably
below the critical Reynolds number for rcund tubes. As Re in-
creases, the laminar region contracts, but even at quite high Re,
it ayes not vanish completely; the flow near the angle remains
lamipar

The critical Reynolds numbers given here are precisely the
values such that a sufficient distance from the tube entrance a
deviation from laminar-flow laws takes place owihg to the first

" appearance of turbulence. If the entrance dises not produce flow

separation (the flow enters, for example, through a nozzle with
smooth outline), near the tube entrance section the flow may re-
main laminar even for values Re >> Rekr. The segment over which

laminar flow is preserved decreases as Re increases. Beyond the

laminar-flow section there is a reglon of transition from laminar
to turbulent flow, and beyond this a reglon of developed turbulent
flow.

Under heat-exchange conditions, fluid flow may be signifi-
cantly nonisothermal. Owing to the relationship between the physi-
cal properties of the fluld and the temperature, the velocity dis-
tributicn may differ from that accompanying isothermal flow. Here,
the critical Reynolds numbers may also have values differing from
those indicated above (see, for example, $§16-1).

Data on critical Reynolds numbers for flows in bent tubes
and for nonstationary flows in tubes are given in §5-6 and 5-7.

2. Theoretical calculations for laminar flows are carried
out on the assumption that the tube 1s smooth. Real tubes are
rough, however, We thus must face the question of the degree to
which computational results for smooth tubes can apply to actual,
i.e., rough, tubes, This question has been answered by the well-
known experiments of Nikuradze, in which a study was made of the
hydraulic resistance of tubes with artificial roughness. (sand).
The relative roughness of tubes (ratio of projection height to
tube radius) varies widely from 1/15 to 1/507. Experiments have
shown that in laminar flow, all rough tubes possess the same
hydraulic resisteance as smooth tubes. It also turns out that
the critical Reynolds number does not depend on the roughness,
These experimental facts can be explained as follows. The fluid
in the depressions is practically stationary, while under the
conditions considered, the fluld flows past the projections with-
out separation and, consequently, without the formation of vor-
tices. The reason is that the Reynolds number for the projections
(calculated from the projection height and the velocity of the
flow incident on the projections) proves below the value at which
flow separation occurs. Since »ith unseparated flow at the projec-
tions, the pressure resistan. is very low or even zerc, the re-
sistance of rough tubes 1s the same as that of smooth tubes. Since
no vortices appear, the critical Reynolds numbers also prove iden-
tical. '
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Naturally, as the relative roughness grows, a value will be
reached, called the critical value, at which the foregoing condi-
tions ceuse to be sutisfied. On the assumption that vortex foraa-
tion begins at a Reynolds number of 50 for a projection, Shiller
obtained the following expression for the critical value of rela-
tive roughness:

(s

Thus if the relative tube roughness is less than the critical
value, the results obtained for smooth tubes can be used for rough-
tube flow calculations,

5-5, FLOW IN BENT TUBES

Everything that has been said above is valid only for fluids
flowing in straight tubes. In practite, we often use tubes bent
nlong a spiral (coils). Several turns of such a coil are shown in
vig. 5-16a. A centrifugal force acts on each particle of a fluid
moving in a curved tube. This force will be greater the greater’
the velocity of the particle. Thus greater centrifugal forces will
act on fluid particles located at the center of the tube than on
particles near the wall vwhere the flow velocity is small. The
centrifugal forces cause the fluid particles at the cénter of the
tube to move away from the center of curvature of the tube, while
the particles at the wall, forced out by the particles, coming
from the center of the tube, move toward the center of curvature.
As a consequence, a transverse circulation appears in the tube
(Fig. 5-16b, c); the particles participating in the circulation
also move along the curved axis of the tube., Thus the resultant
motion can be imagined to take place along two flattened spirals
with different directions of rotation, filling the tube cross sec-
tion. The velocity profile will not be axisymmetric for such a
flow; the maximum of the longitudinal velocity component will be
shifted away from the center of curvature. Figure 5-16d4 shows
velocity profiles in the cross section of a coil for D/d = 40 and
Re = 4000;” the measurements were reported in [30]. The profile
has well-defined asymmetry in the AB plane (Fig. 5-16b); in the
€D plane, the velocity in the core is nearly constant, while it
¢7ops raplidly near the walls.

As theoretical and experimehtal investigations have shown,
the factor determining the influence of curvature in laminar flow

‘s the parameter K =Reﬁ. introduc.d by Dean. Here Remwd/v, D=2R,
d 1s the tube diameter, R 1s the coll radius of curvature,

For values X < 13.5, the tube curvature £till has no influ-
> on the nature of fluid flow. In this case, the streams of
1iuld move parallel to the curved tube axis; there is no trans-
verse eirculation in the flow, and the velocity distribution and
resistance law in bent tubes turn out to be the same as in straight
tubes. The limiting Re number at which such flow is still maintained

will evidently equal
Repp=13,% Vg:

/94 =83




Fig. 5-16. Flow in bent tube. a) Coil diagram; b) transverse cir-
culation for large values of X; c¢c) the same, for small X; d) velo-
city profiles in 4B plane (1) and CD plane (2), and Poiseuille
profile (3).

For values X > 13.5, although the flow will still be laminar,
transverse circulation will appear. Thus the velocity distribution
and resistance law will change.

Dean has made a theoretical study of fully developed flow in
round bent tubes (coils) [31]. His results, however, obtained by
a perturbation method, are valid only for small X (X < 36). Figure
5-16c shows the pattern of secondary flows for this case. This
problem has been studied by other authors for large X, A very com-
plete analysis was recently given by Mori and Nakayama [30]. As
in certain earlier studies, in [30] it is assumed that the flow in
the tube consists of a core within which viscosity forces can be
neglected, and a thin boundary layer. The solutions for the velo-
city field in each of these regions are joined by the boundary
conditions. The calculations are carried out by successive approxi-
mations. Figure 5-16b shows th» pattern of secondary flows for
large values of X. In second approximation, the following equation
is obtained .for the resistance coefficient in a bent tube:

Lo QKT (5-43)

d
Here !-—%f-r:'. ; p is the pressure at a given point in the
T

flow;® z is the longitudinal coordinate, coinciding with the curved
axis of the tube (the calculations are carried out on the assump-

-

tion that é;;kgé,where 9 1s the longitudinal angular coordineste);
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Fig. 5-18. Re,, and Repr as

functions of D/d for coils.

€,p 15 the resistance coefficient for a straight tube at the same

Re value as in the bent tube.

The results of experimental investigations into hydraulic
resistance of coils of round tubing in the 135 .<X <5000 range are
well described by the empirical eguation proposed by Ito:

. 21.5K _
b (1.50+ log KPS * (5-44)

Wigure 5-17 shows the ratio t;/cpr as a function of the para-

meter K (curve 2). When K <135, the ratio {ip=l, while with a
~urther increase in K, the ratio rises continuously. Thus £ is
larger the smaller the radius of curvature of the tube. The re-
lationship between § nd Re will be different than for a straight

tube: while ¢ . ~ Re™!, t~Re™, where n < 1, To® theoretical equa-
tion (5-43) (curve 1) is in good agreement with experimental data
for X > 100; for smaller values of X, it gives incorrect results.
Natura:ly, Eqs. (5-U43) and (5-44) are valie only for values of

Ros Reyy

- 85 -

. : . : . : "“1’ '?_.’
) Y é?ﬁh s
A . 3 : ' ¢ Bkt &%




The ¢ %I7al Reynoids number for colls depond. on t.e coll
radius of curvature, with the number incrcasing s ¢n» radius
decreases. Figure 5-18 shows experimental data oo "e = f(2/d).
They show that in bent tubes when D/d is not large, “ekr will be

significantly greater than for straight tuves. This is apparently
connected with the stabilizing influence of the centrifugal force
and the transverse circulation that it excites for the flow at
the wall.

The experimental data shown in Pig. 5-18 can be represented
by the empirical equation [32]

Rewp = 1500(-)‘” (5-45)

which is suitable for values 3<k 7 <200, whiere R=—-D

Figure 5-18 also shows Repr as a function of 0/d. The curves
for Repr and Rekr divide the entire flow region into three char-
acteristics zones: the first (I) corresponds to laminar flow with-
out transverse circulation, the second (II) to laminar flow with
transverse circulation, and the third (III) to iurbulent flow. We
also note that the transition from laminar to turbulent flow is

accompanied by a monotonic decrease in the resistance coefficient. -

for bent tubes.
5-7. NONSTATIONARY STABILIZED FLOW IN TUBES

In this section, we confine the discussion to stabilized non-
stationary flows, which are realized in practice in long tubes.?

‘Let there be confined flow of a fluid in a long cylindrical
or prismatic tube. Neglecting the entrance and exit effects, we
assume that at any point in the flow and at any time, the vector
representing the fluid velocity will be directed along the z axiz
of the tube., Consequently, w,=w,=0snadw./dx=0.

Then the first equation of System (4-1) takes the form

n 19
e —W=— 5o (5-46)

while the other two equations yield 5 ap 35::0. ,

Since wy=w:{y. 2, Ty while p=p(x, v), it then follows from (5-"6)
that the pressure gradlent is independent of the coordinates, and

can just be a specified function of the time: —32={(s),

Thus the equation of motion for nonstationary stabilized flow
will have the form

ow
e =W L (%), (5-47)
Intaegeart»m oF thils aquation requires Shas tre folli-caling e
¢ l. [N
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a) the initial condition in che form of a function specifying
the velocity distribution at the initial time, w.=@(y, 2) for t=0;

b) boundary conditions, in a form requiring that the velocity
v equal zero at the inside surface of the tube, and symmetry con-

ditions for the types of flows to be considered later;

c) the law governing the change in pressure graaient with time,
i.e., the function f(r) iror v >}

The problem of nonstationary fluid motion in a round cylindri-
cal tube was solved in 1882 in a fairly general formulation (for
ary initial conditions and a specified law governing the variation
in pressure gradient with time) by the well-known Russian mechanics
scholar I.S. Gromek [33]. This problem was later studied with ag- -
plication to various specific conditions by numerous authors [34-40].

Equation (5-47) has the same form as the heat-conduction equa-
tion for a nonstationary temperature field in a solid with inter-'
nal heat sources whose strengths vary in time. If the geometric
form of the flow in the tube and the geometric shape of the body
are identical, if the laws governing the time variation of the pres-
sure gradient and of the internal-source strength of the body coin-
cide, and if the initial and boundary conditions are jdentical for
both problems, then the solution to the heat-conduction problem can
also be treated as the solution to the corresponding problem of flu-
1d motion in a tube. Since solutions are known for several appropriate
problems in heat-conduction theory [41], these solutions can be used
directiy or after some modification (for example, if the initial
conditions do not match) to determine nonstationary flows in tubes.

Here we give solutions for certain problems of nonstationary
fluid flow in long tubes, since they subsejuently will be used in
analyzing nonstationary heat-exchange processes.

l. Flow in a flat tube with step variation in pressure gradient.
In a flat tube of width 2r0, let there be stationary stabilized flow

of a fluild with a mean veloclity over a section of ;,=—,£'. 5’5—)’ where
‘. [}
- g%) is the pressure gradient, which is constant in time. At a
certain time taken as the origin (t = 0), the pressure gradient
changes instantanecusly (i.e., in a steps and takes on another con-

stant value-—(%%). After a certain time has elapsed (when T + =),

a new stationary regime is established in the tube; it is character-

ized by a mean velocity 5,:—%)((;})’.

Under these conditions,
tion during the transient 1is

[36’ 37]:

the nonstationary velocity distribu-
represented by the following equation

‘;' =2 (1 —¥)—6 (1 — "’) 2 =D cos(E7)exp(—E? 2h),

. Wy E'
i-:0

(5-48)
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where Y = y/ry 1s the dimensionless coordthate of the point, meas-
ured from the tube axis; Ei=(i+'Y))x: Zh=vifrh 18 the 2nhukovskiy [Joukow-
sky] number.

Equation (5-48) holds for all cases_of step variation in the
pressure gradient, except for the cases ”1 = 0 (1.e., the initial
pressure gradient equals zero and the fluid is initially station-
ary) and v, = 0 (the pressure gradient drops to zero). In the lat-

ter case, if we multiply (5-48) by Eélﬁi and let ¥, = 0, the equa-
tion reduces to the form

;—:=6§“: " cos(EiY) exp(— E; Zh), (5-48a)

Figure 5-19 shows velocity profiles
for various values of the Zh number, com-
puted with the aid of (5-i8a).

We find the mean velocity over the
section by integrating (5-48) with respect
to Y between 0 and 1:

=146 ('-';-_'-'— )g;"-exp(—b‘fzm- (5-49)

0 & &6 o5 asYy
or in more convenient form,

Fig. 5-19. Velocity

profile for decel- ; 2 i
eration of flow in i-.—;. -‘52 -exp(— E;zh).  (5-U49a)
flat tube, im0 ' -

Using (5-49a), we can evaluate the
time Tg required to estgblish a new sta-

tionary state after a step variation in the pressure gradient., If
we determine Tg fromthe condition requiring that the change in

mean velocity 51 - 4 be 95% of the total change Fi - w,, 1.e.,
if we let

-

._."'_._ 2= m 6 ' exp (— " Zh-)'

== l-o

and find Zhs from this, we then obtainim,w'3}=12|.wor example, for
0

water at room temperature, in a tube 6.36 mm wide, it takes t.~:12s
to reach the stationary state. For air under the same conditions,
T, 1s iess by a factor of nearly 15, since the kinematic viscosity

coefficient for air is so much greater than for water.

It is interesting to see how the tangential stress at the wall
changes for an unsteady flow (as) as compared with a steady rlow

(V)
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(os a) foi exactly the same mean velocity. For tais purpose, we
compute the ratio

where oq=—p (%)‘m; a,,=3':z:.; » is the ihstantaneous value of
mean velocity.

L
Using (5-48), we find

o [ .}
of 1 "0 L . ,
1—2(1 ;’);E? exp(— E2 Zn)

L E . (5-50)
1—6(1—%:-)2—5% exp(—Ej} Z¥)

Figure 5-20 shows the way in which °s/°s e depends on Zh for

various pressure-gradient ratios —-:’,' —:’, » or what 1s the same thing
s ?
for various wz/wl.
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For fl ws with acceleration (@>w;), tle rarl, sy 0., Tirst rises
rapidly as Zh increases, passes through a maximum, and tron drops to
the init al constant value of unity. For decelerafed fows (6:<i0,),
we find the reverse pattern, although 1t 1s not az proaocunced. This
behavior of 00« is explained by the fact that at low Zh, the velo-
city gradient at the wall changes more rapidly than the mean flow
velocity, while the opposite situation prevails for high values of
the number.

V)
2. Flow in a round tube under step variation im preesure grad-
ient. Stationary stabilized flow in & round tube with mean velocity

E—_é’g%) 1s disturbcd owing to a step change in pressure gradient
from (dp/dx), to the value (dp/dx)s. After a certain time, a new station-
ary regime 1s established in the tube; 1t 1s characterized by a mean
veloclity

The solution obtained for this problem by Gromek [33] leads
to the following expressior for the velocity distribution during
the transient:

s a
Ys o1 _ RYW_ 1= Jo (MR 2 513
=2(1—RY 15( ;’)'Eilala)exp( 22 Zh), (5-51)

where the A are the roots of a zero-order Bessel function Ig5

R = »/p Zhsvﬁﬁ%, r, is the tube radius; J 1 is a first-order Bessel
functiog

Equation (5-51) 1is valid both for flow_acceleration and de-
celeration, including the cases wl = 0 and w2 = 0, It can also be

written in a form resembling (5-48a).

Figure 5-21 shows velocity profiles at different times; they

are found from Eq. (5-51) for the case in which the fluid is sta-
tionary at the initial instant (w = 0), and then accelerates under

the action of an abruptly appearing pressure gradlent [(tanpiix), It 1s
characteristic that during the 1nitial perlod of acceleration, the
velocity has tdentical values over almost the entire tube cross
section, and the influence of friction becomes noticeable only near
the wall, It is only after a certain time has elapsed that the in-
fluence of friction extends all the way to the center of the tube.
As the time increases, the velocity profile goes over asymptocally
to a parabolic Poiseullle profile.

Multiplying (5-51) by 2RdR and integrating between 0 and 1,
we obtain an expression for themean velocity over the section:

=_1+32( 1\2 —rexp(—2; Zh), (5-52)

glis:
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The -angentlal stress at the wall is
ow, » |
G -=—p —,,—,—-)'_'.=“—,":ill— ( )Z—exp( l’Zh)]. (5-53)

3. Pulsating flow of fluid in flat tube. Let there be pulsat-
ing flow of a fluld in a flat tube owing to sinusoidal oscillations
superposed on the stationary pressure gradient. Thus the instantan-
eous pressure gradient will be the following periodic time function:

e (£) (14 omer), (5-54)
where ("” =3 '*.;,‘-"-_ is the stationary component of the pressure grad-

ient; w is the flow velocity averaged over time and over the sec-
tion; 2r, is the tube width; y/2 is the dimensionless amplitude

of pressgre oscillations; @ 1s the oscillation frequency. The oscil-
lation period will obviously equal T = 2r/w.

As before, the flow 1s assumed to be stabilized, 1.e., the
velocity v, is independent of the coordinate z.

Solution of this problem [40] 1eads to the following equation
for the velocity distribution over the section and over time:

%-:.—.-;-[(1 —Y)4-1U). (5-55)

The first term on the right side, [7(1—1)} 1s the stationery

component of the velocity; the second, (%10?, is the nonstationary,
i.e., pulsating component. We obtain the following expression for U:

u__L;".ﬁ,ﬁ+ﬂm‘m|mmmchm—8smmshmmu-
— (Bcos MY ch MY - Asin MY sh MY)sin es], (5-56)
1
vhere A=sinM-shM; B=cosM-chM; M-.-.(_‘i.':) : y...;':..

The independent. varlable wt can be represented in terms of
the Lhukovakly number: we 28F7h, where Zh=~t/r?,. .

Figure 5-22a, b, ¢, d show the distribution of velocity U over
the tube section ror various values of wt and M. The value of U
varies periodically as wt varies from 0 tc 360°, The graphs show
curves just for wt < 180°, since by symmetry U(wr+n)=--U{wr). For
M = 0.1, the frequency 1is so small that the profiles of the pul--
sating velocity component are quasistationary, i.e., for each
value of wt the velocity profiles will be the same as for station-
ary {low with the same instantaneous value of pressure gradlent.
As M increases, the profiles of the pulsating velocity component
become ever less parabolic, while the amplitude of the velocity
oscill”' ons decreases. Thus for-M = 5, the amplitude 13 lens
than 1/20 of the amplitude at M =2 0,1,

- 91 =




0,5
T
I

[ (AL
] =0 . |
04 \\; : . v o= 80’
il Yr N, v ol
03 ey i I
o) I ]
60 o o _

Lo\ -
02
2 <
5 NN\ o,
0 X 0.08
0.t o 7 4 a0
0.2 1A
i )4 02—
wesgl” 0 >
04
? Y Y
s M:ﬂ
0 &2 ab a5 a8 w 22 o6 05 o8 w0
: . R
0,025
v «m'-m'
' 0,02 L _
04 S ;
) 7 w't=30' L}
03 — 0.015
———— -
L4 « T oom 150°
0.1 - 00 \ -
< §H Qa0sf—
. 0 I e wTs
0, 1}— wrs150} =1 C O —
22 o l y
o a2 06 05 08 "0 a2z oé as os 10
. b d
Fig. 5-52. Distribution of pulsating velocity component over tube
sgction for various values of wt. a) ¥ = 0,1; b) ¥ = 1; ¢c) ¥ = 2; {:3
d M = 5- {

085 -‘r-"'-“
o4l m-ar| || AL

o bk ) S B '
02 & 21 e
a" o fmdiifend K- ). .o

o1 - ~N: 4 1
0211 N\ |- #%f
i

0.3 -
04
E W a0 260 apes 1

Fig. 5-23. Pulsating velocity
component averaged over section
for various values of M. 1) deg.

wT
A

- 92 -

R




e Bl

We find the mean flow velocity over the section by integrat-
tng (5-55) with respect to Y between 0 and 1:

= . (5-57)
where * .
— (sh2M 4-sin 2M) sin ws), (5-58)

Figure 5-23 shows U as a function of wt for various values of
M. When ¥ = 0,1, the nleart pulsating velocity over the section will
follow the pressure gradient. As X increases, the maximum of U will
shift more and more with respect to the pressure-gradient peak,

and at the same time the amplitude of the velocity oscillations
will decrease.

The critical Reynolds number for pulsating flow, calculated
from the velocity @ averaged over time and over the section will
be less than for stationary flow. Thus, for example, measurement
results [42] yield the following values of critical Reynolds num-
ber for pulsating flow in a round tuoe:

e, Hz 0 5 10 15 20 )
Rcup=‘—,,i 2310 1730 1610 150 1510

These results are understandable if we remember that at cer-
tain times, when the instantaneous value of mean velocity w passes

through a maximum, the number %L;>§£ 8o that in actuality the

transition to turbulent flow occurs at a higher keynolds number,
equaling wd/v. During the rest of the cycle (until the new w peak),
che turbulence appearing evidently cannot be damped.

rianu-

script Footnotes '

Page

No.

58 'This is true only for 'isothermal flow in straight

tubes with arbitrary cross section that does not change
along the tube axis.

00 2For turbulent flow at large valu:s of Re, the change
in velocity basically occurs within a thin layer at the
wall. Thus if we use de as the characteristic dimension,

the resistance law will be roughly the same for tubes
differing in shape, A large difference in resistance
laws 1s often observed, however, for individual geome-
tric forms with turbulent flow.
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‘It 1s sometimes stated that for laminar flow in prisma-
tic tubes, as in turbulent flow, there != transverse cir-
culation in the corners. Actually, therc !s no circulation
for laminar flow. This has been shown experimentally for

a triangular tube [8]. i

*Equation (5-24) can be use¢ not only for cylinders lo-
cated at the corners of triangles aind squares, but also
at the corners of rectangles.

$Velocity profiles in the initial segment of a round tube
have been measured by Nikuradze [20] and Reshotko [21].:

‘The curves of Figs. 5-10 and 5-11 were plotted from Eq.
(5-33). Other equations for W_ yield similar results.

‘At this value of Re, flow in a coil with 95/d = 4D is
still laminar (see below).

®Since the flow 1s stabilized, dpids=const. However, dplor #0
owing to cthe presence of secondary flows.

ol
-

*Existence of such a flow can be demonstrated by quali-
tative investigation of theproperties of the generalized
solution to the nonlinear Navier-Stokes equation. Such

a solution has been constructed and certain of its pro-
perties ’nvestigated [U43].

Transliterated Symbols

¢ = 8 = stenka = wall _ !
3 = e = ekvivalentnyy = equivalent
Makc = maks = maksimal'nyy = maximum

H.T = n.g = gldrodinamicheskily nachal 'nyy = hydrodynamic

initial
Kp = kr = kriticheskly = critical
np = pr = predel'nyy = limiting
np = pr = pryamoy = straight

- 94 -

25 i b

5 i AT RIS




Chapter 6

HEAT EXCHANGE IN ROUND AND FLAT TUBES WITH CONSTANT PHYSICAL
PROPERTIES OF THE FLUID AND BOUNDARY CONDITIONS OF THE FIRST KIND

6-1. HEAT EXCHANGE IN A ROUND TUBE WITH CONSTANT WALL TEMPERATURE

Let us look at heat exchange with viscous flow of a fluid in

a round tube for the case of constant wall temperature. We make
the following assumptions:

1) the confined fluid flow and the heat-exchange process are
stationary;

2) the fluid is incompressible; its physical properties are
constant (i.e., do not depend on temperature or pressure);

3) the fluid flow is stabilized, 1.e., the velocity profile
does not vary along the length (the heat-exchange segment precedes
the isothermal damping segment over which the velocity profile 1is
formed); the fluid flowrate is specified or, what 1s the same, we
know the mean fluld velocity over a section;

4) the fluild temperature at the entrance section to the heat-
exchange segment is constant over the section and equal to to;

5) for the heat-exchange segment, the temperature of the in-
side wall surface of the tube 1s constant and equal to t
ty 7 to,

6) there are no internal heat sources in the flow, and the
amount of heat liberated owing to energy dissipation is negligible,

7) the changein heat flow along the tube axis owing to heat
conduction is small as compared with the heat-flow change along
the axls caused by convection.

This problem was first solved by Graetz (1885)[1]. It was
1pa’r solved independently by Nusselt (1910) [2]. A somewhat dif-
fcront solution was obtalned by Shumilov and Yablonskiy [3]. We
shall consider the Graetz-Nusselt solution, using values of the
cons. ..L: suter refined by several investigators [4, 5, 6].

We write the energy equation for an incompressible fluid
with constant physical properties when the flow has no internal
1eat sources and there 1s no energy dissipation. In cylindrical
coordinates, this equation has the form

L1137 = 1o =




wxd +wr e 0r + .,’ g: (dx'+ T ';‘* ;{"‘} ,l: %l!). (6-1)

When the fluid has constant physical properties, the heat-
exchange process has no influence on fluid flow. In this case,
the fluid moves as 1f the flow were isothermal. For laminar stabil-
iged flow in a round tube, the veloclity component along the axis
is

m,=2-‘(1_%),

while the radial and circumferential components are
X
u»==15==Q

'

Here w is the mean fluid velocity over the section; r, is

the tube radius.

0

“ In virtue of the axial symmetry of the temperzture fleld,

According to Assumption 7,
[ 0 ol
eyt > o (335 )
or

?¢
Weox 0x >a o

since v, is independent of x. Thus the first term on the right sige
of (6-1) can be dropped.

" To understand the conditions under which Assumption 7 is
satisfied, let us make an approximate estimate of the quantities
in this last inequality:

= —_ _l.’_‘_ ‘:“. R oY ‘—-‘.
¥ We=W: S5 &% o = T

Consequently, this inequality can be rewritten as
we
“E‘ > ln
or
X |
o>
where Pc-wdfa;d 1s the tube diameter.
Thus 1f Pe > 100, Assumption 7 is satisfied for almost the

entire tube length (for xz/d > 1 in any case). For gases (Pr z 1)
and nonmetallic liquids (Pr=T-1000), this condition will almost
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rlways be satisfied. For liquid metals (Pr~0,005—-005) it may or mey

not be satisfied. In this last case, the term d%/dx»®* must be retained
n Eq. (6-1); it allows for the change in heat flow owing to heat
conduction along the axis (see Chapter 10).

Taking all of this into account and introducing & new variable
for the temperature, o=t—tf, (e 18 the wall temperature), we can
write the energy equation corresponding to our problem in the form

LT '5[1 r)']di

wtrs—5 w )l

The boundary conditions have the form

for x=0mi0<rr, $=9,,
for x>0 wmir=0 2 =0,

for x=0endr=r, § =0,

where =1, —te.

For convenience in the subsequent computations, we reduce
the equation and boundary conditions to dimensionless form. To
do this, we introduce the dimensionless variables

After elementary manipulations we obtaln

%%‘-3-+~R‘—-;,"%=(} —R) 2. (6-2)
for X=Oamlo<R<l 921; ‘ (6-3)
for X>0sR=0 2 _0;
R } (6-4)
for X=>QetR=1 @ =0,
where
a X 2 x
X o 7= T

The dimensionless coordinate X or, more accurately, the quantity
%;%, is called the reduced length of the tube.
vet us attempt to solve differential equation (6-2) by separat-
ing the variables. To do this, we represent the dimensionless temp-
~rature 0(X, R) as the product of two functions, one of which de-
pends solely on X and the other solely on R:

(X, R) e(X)$(R). (6-5)
Substituting (6-9) into liq. (6-2), we obtailn

P+ o = (1 — R .
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To separate the variables, we divide both sides cf the equa-
tion by e#(l—R"). Then the equation takes the form

Y V“+%FV .
I i

Since the left side of this equation depends on ‘X alone and
the right side on 7 alone, they can be equal only if the left and
right sides of the equation equal the constant —€2?. We note that
this constant must be negative, since 1if this were not the case
1t would turn out that as X increases the temperature 0 increases
without limit, and this contradicts the formulation of the problem
with ts = const. We thus have two ordinary differential equations:

=—dy {6-6)
R+ et —Ryp=0. (6-7)

A solution of the first equation is

where A4 is a constant of integration.

» We rewrite the second equation as

st 1~ oo -

The solution of (6-9) must satisfy the following boundary con-
ditions:

(6-4a)

for R=0 %;::0; ’
for R=1 ¢$=0.

] This problem is known in mathematical physics as the elgen-
function problem, or the Sturm-Liouville problem.

A solution of linear differential equation (6-9) cannot be
obtained in closed form. Nusselt suggested that i1t be sought as
a power series,

o
* == 2‘ bﬁ "”
=m0
where £ = eR. .
Subst ttut Ing this expression for ¢ into (6-9) and requiring
that (v=Y) be satlsfled for any £, we obtain relationships for

the coefficients # . Substituting this expression into (6-9), we
have '

ﬁn(n—l)b,.t""+§ nby n--+(1 --f-}) ﬁ bokh =0,

n=0 n=0 n=0
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2,;'0.9‘-'1-26.&‘ zl}e"_o

n=0 a=0

We renumber in the last equationj in particular, we reduce the
exponent for £ to the same value in all terms. To do this, we let
k =n —2 in the first term, Xk = n in the second, and k = n + 2 in
the third. As a result we obtain

2 (k+")'b.+.i*+zb.t' 2'%-;-»:0.

=—2 (2=

Taking some of the terms to the left of the first and second
summation signs, we rewrite the equation as

b8+ (46,400 + 9 +b)E+ Y] [(k42besa+-00 — 5] =0,
=2 .

Thls equation must be satisfied for any £, the coefficients
on terms containing different powers of §{ must equal zero, 1i.e.,

bk+r—-ﬁ' (b' = bn)(for k>2).

Thus the coefficlients on even terms are represented by the
two preceding even coefficlents, and those on the odd terms by
the corresponding two odd coefficlents. Since b1 = 0 and b3 = 0,

the coefficients on the series terms containing odd powers of £
will equal zero. Thus the solution for Y(R) can be represented
as a series contalning eR in even powers alone, 1.e.,

FOR)=Y, b (RI™, (6-10)

where
b,=1% (n-=0)

b.=i:—=——1- (ﬂ==l):

bm-—‘(‘z',:—)f( ! bm -4 bnl-n) (ll>2).

In expanded form, (6-10) 1s written as
$R)=1 =7 ORI+ (7+7) R +... (6-10a)

This serles converges for any €R and .
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Fig. 6-1, The function v, (R)

for heat exchange in a round
tube with ts = const.

The constant € is found with the aid of the second boundary
condition of (6-4a). Applying this condition to (6-10a), we obtain

{— ."!..-+.I_'6(;',.+%).~+, ..=0, (6-11)

Equation (6-11) has an infinite set of roots, called the ei-
genvaliues of Problem (6-9) and (6-4a). According to Nusselt's cal-
culations, the first three eilgenvalues equal: €=2705; & =6,66; e;=103.
To each elgenvalue there corresponds the eigenfunction

V(enR, &a) =¥a(R).

The first three functions ¢n(R) are shown in Fig. 6-1 for
n =0, 1, and 2.

Thus a particular solution of differential equation (6-2)
satisfying the boundary condition at the wall can be written as

—e2x
Oy =Ape " ¥a(R). ,
This solution is only valid for the special case in which
the temperature distribution at the entrance has the form 6o=Aspn(R)
however. Solution of the problem in the general case, where an
arbitrary temperature distribution GO(R) is specified at the en-

trance must be sought as the sum of all special solutions:.
@ —-2 X
9=2An€ . q’n(R). (6—12)
n=z0
' Only the coefficients 4, are unknown in (6-12). They are

found from the boundary condition at the entrance. Let the temp-
erature distribution at the entrance,i.e., at X = 0, be described

g d
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hy the function 6,(R) [in our case, 69(R) = 1]. We can then write

8 R)=Y Ada(R). (6-13)
a=0 J

The coefficients A, are determined from (6-13) with allowance

for the orthogonality property of the eigenfunctions. Let us prove
this property.

Since the function yaed¥m (ms=n)are solutions of (6-7), we
can write

(R G )+ RU—RY$a=0,

= (R %—)+-:R (1= RY) gm=0, $a

Multiplying the first equation by *m and the second by v”,
and subtracting the first equation from the second, we obtain

i:l’

. d dba
b (R4) = i (R4 = = DRA =R .
The left side of this equation can be represented as
d d¥m dén
ﬁ' [R (‘?a'zﬁ‘ == ‘Pm'zﬁ')]'

Integrating this last equation with respect to R between 0
and 1, we obtain

1 . !

(€ =) [ enpmR1 —R‘)dR=R(¢.f‘;‘i-—v..%§'-)l. (6-15)
0 H

The right side of (6-15) vanishes when R = 0 and R = 1 [since

¥n(l)=y¢m(l)=0]. Since en*em, we obtain the orthogonality property
for the eigenfunctions:

3

S! $nduR (1 — R*) dR ==0 for m=fn.

On the basis of this relationship, we can calculate the coef-
ficients 4, of the series in (6-12). To do this we multiply both

sides of (6-13) by $aR(1—R?).dR and integrate between R = 0 and 1.
Making allowance for the orthogonality property, we cbtain

1
(Ss. (R) ¥a (RYR(1 — RY) dR

Ap= 5 (6=-16)

1
§¢ﬁ(R)R(l —RYdR

We cvaluate the integral in the numerator of (6-16) for our
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case, 1.,e,, for 00 = i, To do this, we rewrite the first equation
of (6-14) as

{aR(1—RY) dR=——r-d (R Z2).
L]

Integrating this expression between 0 and 1, we find
]

5?-(R)R(l—R‘)dR=——.%-(%)hsl : (6-17:

L}
The integral in the denominator of (6-16),
1
Na= ‘g $.(R) R(1—RYdR

can be evaluated on the basis of (6-15). We drop the subscript m on
the quantity e 1iu (6-15), and treat € as a continuously varying

quantity that awproaches €, in the limit. Then Nn will be the 1limit

of the integrzl, which in virtue of (6-15) can be represented as b’
follows:
1 .
dé dve
! . (*- ar —*'.m‘)
sl S«p,;;;le(i — R dR == lim ——— %,
.-0.. l-... n -8

0

When ¢ + €_, this fraction exhibits an indeterminacy of the
0/0 type. Remov?ng this indeterminacy, i.e., differentiating
numerator and denominator with respect to e, letting R = 1 and
R = 0, and recalling that ¢(l)=¥a(l)=0, we obtain

e )% (e

No=lim — =3.‘.'."‘7Ld:r_ {0
and, finally,
!
Nos [ RO—RYR= - [Ge (G ] - (6-18)
0

Substituting (6-17) and (6-183) into (6-16), we obtain the
final expression for the coefficients Ayvkere §,=1:

PSS B
Sn

2
({,"%)m_ ' (6-19)
Rt

o .
The derivatlve (",,.')' _1s found from (6-10a).
RT

The calculations yield the following values for the first three
coefficients: Ao=1477; A, =—0810; A;=0,385.
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Elgenfunctions in BrgBlem of Heat Exchange in &
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Fig. 6-2. Temperature ddetrdhudion dn filwdd flow slang duhe raddps
.nd length with constant wall fempenatune.
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Thus by these calculations we have datermined the constants

C T e T R TR T ki s A G
»

en and An needed to determine the temperature distriovution with A
Eq. (6-12). We again write this equation in somewhat different ;
form:
P
;;7:‘5,;=2 Anpn (,’—.) exp ("2',2. ﬁl':‘;—) (6-12a)

The values of the eigenfunctions, eigenvalues €y and the
constant 4, 1in (6-12) or (6-12a) are determined from (6-10),

(6-11), and (6-19), respectively.Their values, computed by Nus- l
selt, are given below. More exact values for ¥a(R), e, s A, are
given in Tables 6-1 and 6-2 [6]. L

It 18 difficult to use this method to determine the eigen-
values and eigenfunctions for large values of n. In this connec-
tion, Sellers, Tribus, and Klein [7] have constructed an asymptotic

-

solution of Eq. (6-7), letting e, > =, The following expressions ~
obtained for the eligenvalues, eigenfunctions, and constants: A :
g ,
t}; A" = (_" l)’ 2.846@30:”3; ( 6-21) 1 ;
%ffor small R (near the tube axis) ,
'\
S ¥ (R) =Jo(eaR): (6-22)
Ay
é;f for moderate values of R

o8 | FRYVT=R 45 atcstaR—
‘Pn(R)—_—‘/-ﬁo [ =" _ ]; (6=-22a)

for R close to unity (near the wall),

W=y ZTa-R1,[=8a-a] . (6-220)

! 14 =
Bus =g (G ), =106, (6-23)

. where J1/3 1s a Bessel function of order 1/3.

The asymptotic solution also proves valid for finite values f
of €, A comparison of vesults for thls computation and the exact

solutlon (Tabley 6-1 and 6-2) shows good agrecment at bolh large
and small n. In any case, the approximate values of the constantu
and functions can be used for values n > 3,

Figure 6-2 shows the temperature distribution in the fluid
flow, calculated from (6-12a). For small values of the reduced ,

length (%qu<015), the fluid temperature near the axis will vary
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little along the tube radius and lengtah. It is only near the wall
ha* large changes in temperature both along R and X will be ob-
served,

The region of small reduced-length values is characteristic
in that it is here that growth takes place in the thermal boundary
layer within which the temperature varies. The temperature distribu-
tion in the flow core, whose cross section contracts with increasing
X, remains almost uniform (the temperature is approximately equal to
the entrance temperature).

Sufrficiently far from the entrance, the thermal boundary lay-
ers join, and heat exchange encompasses the entire tube cross sec-
tion. Beginning at a certain value of the reduced length, the temp-
erature profiles become similar, i.e., the temperacures in differ-
ent sections differ only in absolute value, while the law governing
the temperature variation over the radius remains the same, The so-
lution (6-12a) reflects this nature of the temperature field., Por
small reduced lengths, the temperature distribution is described by
a series. As X increases, the influence of the last terms of the
series rapidly decreases as compared with that of the earlier tems.
Finally, when the reduced length is sufficiently large, all terms
of the series, except the first, can be neglected. Here

= An (%) e (-2 4)- (6-28)

From this it is clear that the temperature variation along a
radius is cdescribed for any z is described by exastly the same
function ¥, (r/») (see Fig. 6-1), while for all values of », the -
variation aith length is exponential.

Let us determine the mean mass femperature of the fluid in
an arbitrary tube section. According to Eq. (2-1%),

. ' - N .
or in dimensionless form
]

it = SengdR.
{ R { ]

In our case, iV,=!|_:-=2(l—k')’and, consequently,

5=4 5' 8 (i — R") RMR,

Substituting the value of 6 from (6-=12) into this'expression,
we find
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Fig. 6-3. Variation in & over
tube length. 1) Flat tube; 2)
round tube (in the latter case,
h corresponds to d).

"=42 A.exp( — 2 —j‘,)f #a(R)R (1 — R')dR.

Taking (6-17) into account, we finally obtain

‘:‘;‘_Sb—exp( 2.:1':.‘_:.), (6-25)

where

b =—%A" (:—:!)Rﬂ

Figure 6-3 illustrates the function (6-25). When X=0,6=8,=I.
As the reduced length increases, 0 decreases; beginning at a cer-
tain value, it decreases exponentially. For X —e0,§ —0.

Let us now determine the local heat-transfer coefficient,

referring it to the difference between the mean mass temperature
of the fluid and the wall temperature:

ot
\@)
_u% (w’ﬂL

Here q  Is the density of the heat flow at the wall, A iu
the thermal-conductivity coefficlent of the fluid or, In dimenslon-

less form,
ad 2 10 ; Q f1--t
el S =-—2[ "
Nu A [\ (‘)R)R.—.' 20 (l—'l‘)]l\’:l .

_ Substituting tre derivative found from (6-12) and the value
of © from (6-25) into the above equation, we obtain an expression
for the local Nusselt number:
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22 %exp(-—&z ﬁ!'%—) . (6-26)

Figure 6-4 shows Nu as a function of X. When X + 0, i.e.,
at the entrance to the heated segment, Nu + @, The reason 1s
that the derivative of the temperature at the wall, (dfdrn),_, .,
becomes infinite at the entrance section, while the temperature
head ¢t — ¢t 1s finite. The infinite value of (dfdr),., results from

the computational scheme adopted for the process, according to
which when £ = 0 the fluid temperature is uniformly distributed
over the radius, and equal to tgs but when r» = rqs it changes

abruptly from t, to ¢_. In fact, owing to heat transfer in the

wall and the fluid by heat conduction, in the axial direction
trhe derivative (d//dr), , and, consequently, Nu will have large, but

finlse values at X = 0.

sor M S i

7

i :
| nl "\-..__

20— ]

[~ | '-'_h"‘--. 2

1 l: * L\Ht_

: '_1'_ RN G ~

s - H4H-H— 4t - H

6 ——1

: |
|

g 1 1]

Pe

b d 1
W 2 34568100 2 J4S568K° 2 3456807 2 345684 2 345680

Fig. 6-4, Variation in local (1) and mean (2)
Nusselt numbers over length of round tube with
ts = const.

As X increases, Nu decreases, asymptotically approaching a
constant value. This occurs since beginning at a certain value of
X the temperature profiles in different sections become similar,
and the temperature field is described by just the first term of
the series In Eq. (6-1la), t.e., Eq. (6-24). Here the dimension-

lonag oxeess Lemperature, represented as the ratio ?:? will

*

coase to vary with Lhe length, Since Nu is uniquely.aétermined by
ey 1t will also take on a constant value. In other words,

f._

the field of the dimensionless excess temperature t=f and the
Nusselt number will become selfsimilar with respect to the coor-
dinate X¥. As we shall see later, the property of temperature-field
selfsimilarity at large values of X 1s characteristic of many heat-
2xchange problems for fluid flow in tubes.
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This constant value of the Nusselt number 1is calléd the limit-
ing value, and represented by Nu_. Letting X go to infinity in

(6-26) and considering only the first terms of the series in the
numerator and denominator, we have

2
Nu°=7°=3.65?~3.66. " ! (6-27)

From this it follows that the limiting heat-transfer coeffi-
cient is

¢°=3.66m, .

Thus a_ depends only on the thermal-conductivity coefficient
of the fluid and the tube diameter,

(] Il e
1”2 ~ B
™——
[ \\\
lf )
nd I
§ A\ =
]
4 LM\
2
:

0 20 0 60 80 100 120 MO 180 100 200

Fig. 6-5. Variation in Nu over
length of round tube with Re =
= 2000 and various values of
Pr.

It is clear from what we have said that the entire iength of
the heated (cooled) tube can be divided into two segments. The
temperature profile is formed in the first segment, i.e., the law
describing the radial temperature distribution changes with length
from the initial form (at X = 0) to some limiting form wO(R), while

Nu decreases wlth the length. In the second segment, the radial
temperature distribution does not vary with length (although the
absolute temperature values do change), and Nu remains constant.
The first segment 1s called the thermal initial segment, and the
second the stablllzed heat-exchange segment. While the tempera-
ture field and heat exchange in the thermal initial segment depend
substantially on the temperature distribution at the entrance,
there is no such influence in the stabilized heat-exchange seg-
ment.

The length of the thermal initial segment Zn ¢ can arbitrarily

be defined as the distance from the entrance section at which Nu
takes on a constant (limiting) value, to within a speeified ac-
curacy. Taking 1% accuracy, on the basls of (6-26), we find that

the reduced length of the thermal initial segment 1s 5';%—':--0.055.
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dhile the relative length 1s
Bt <0055 Pe, (6-28)

For a specified Reynolds number, the length of the thermal
initial scgment 1u determined by the Prandtl number (Fig. 6-5).
Thus for liquid-metal heat-transport media, having values of Pr
from roughly 0.005 to 0.05, ln ¢ will not exceed several diameters;

for gases with Pr = 1, Zn ¢ reaches ~1004; for nonmetallic liquids

(water, mineral oils, and other viscous liquids) with Pr from 1 to
100 or more, Zn ¢ may vary from several hundred to several thousand

or even tens of thousands of diameters. In particular, this shows
that in tubes of heat exchangers used for heating or cooling flu-
ids with Pr > 1, heat exchange 1n viscous flow takes place over
the entire tube length in the region of the thermal initial seg-
ment.

Direct utilization of (6-26) 1s extremely inconvenient in
practical determination of heat transfer near the tube entrance,
since here it 1s necessary to compute many terms of the series.
For small reduced lengths, however, the solution (6-26) can be
simplified by substitution of the asymptotic values of ex ssslfiyfrom
(6-20) and (6-23), and substitution of an integral for the sum.

Using this method, Lipkis [5, 7] has shown that for 3 <10

(6-26) takes the form
-3 L
Nu=1077(5-F)"" —1.7. (6-26a)
For p—'e--%'>10", we can use the interpolation equation [8a]
0.2355
Nﬂ=3.655+ 1 0,488 1 ’
(-P—e.% exp(57.2l-,—e°-:—) (6-26b)

which describes the results of a computation performed with high
accuracy by a numerical method, with no more than 0.5% deviation.

The mean heat-transfer coefficlent and, accordingly, the mean
Nusselt number for a tube segment of length I (from = = 0 to = = 1)

can be determined in different ways (see §2-4). We first find an
expression for the mean integral heat-transfer coefficient:

a= -;—jadx.

From thr heat-balance equation for an element of length dx
a¥2zr, dx = — »r; wpc,, d¥,
where §=7—t;, we 1'ind

adx'—_—-—w”’ ‘go
4
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Consequently,

== \ 7 al 7
'8
and
o= ad 1 d
Nu==—2Pe— 1008
Substituting in @,.; from (6-25), we finally obtain
ﬁTx—_.—-—-Pe ln[& -—exp( _Pe d)] (6-29)
At the entrance to a heated segment, Nu, like Nu, approaches
infinity; far from the entrance, i.e., for-lniu~c,.ﬁitakes on a

Pe d
constant value equaling Nu_ = 3.66 (see Fig. 6-4). The distance

from the entrance at which Nu becomes constant, to wiinin 1%, will
be substantially greater than for the local Nu number, however.
This distance 1is called the_lengfh of the thermal initial segment
or the mean heat transfer, Z . Calculations show that

_‘5;_1 ,365 Pe, (6-30)
l.e.;
Tl.'l' = 25[-.1'. |

Wor approximate calculations, we can replace (6-29) by the
interpclation equation [8b] _

0,0668 Pe—d-

140, 04(Pe ‘;)2” (6-31)

Nu — 3,66+

For Pc-—"°d) this equation ylelds a deviatlor of no more
than +414 from thie exact solution,

The mean heat-transfer coefficient a calculated here should
Le referred to the mean logarithmic temperature head. This 1is
shown by the expression given above for o, from which it 1s easy
to obtain the following equation for the amount of heat. trans-
ferred from the wall to the fluid:

Qu-- -wpv.. ¥yt — ) =2 alblymdl,

whele

\ 7 __nr'l _') - (r"".)—(’i"—‘"-;?..l) .
-\tn I ‘"Q_—- ’r"‘fg T
T oy In =

Vat le — 1524

=i =

ey




It 1: not difficult to write equations for a and Nu, referred
to other temperature heads (see §2-4). Naturally, they will differ

S o alee, <Ot Nl

P T T I

A

A

e

AR s

from (6-29).

Thus, for example, referring the heat-transfer coefficlent
to the mean arithmetic temperature difference, i.e., letting

a2,
FAt,
where
Qe="Lwpc, (Brai—8); F=2dl wma
a, ="‘% (8, 8.0
we obtain
NV pad 18,2,
SRt o & (6-32)

Substituting 6,_, from (6-25) into (6-32), we obtain

1—8 go”— exp (—2-2%%) (6-32a)

For large reduced lengths, where the fluid temperature at
the exit 1is close to the wall temperature so that ©,.,=0, the Nu
number approaches the following limit, as (6-32) shows:

Sﬁ;c=.;..pe7“., (6-33)
which in the given case is no longer constant, but varies in in-

verse proportion to the reduced length. We note that Eq. (6-33)
can be obtained directly from the heat balance.

NN

{
Yo 6807 2 30 681070 2 36

Fig. v-.. Comparison of theoretical results and experimental data.
Solid line) Graetz-Nusselt solution; circles) experiments of Ya.
M. Rubinshteyn.
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The results ofthe theoretical computaticn are well confirmed
by experiment when the experimental conditions correspond to the
assumptions used in solving the problem. Figure 6-6 compares the
theoretical relationship (6-26) with experimental data of Ya.M.
Rubinshteyn, obtained by the diffusion-analogy method [9]. These
experiments are characteristic in that they were a practical
realization of all the basic assumptions underlying the theoreti-
cal calculation. As the figure shows, within the limits of experi-
mental accuracy, the empirical daota are in good agreement with
the results of the theoretical calculation,

In making practical application-of the theoretical equations,
we must remember the restrictions formulated at the beginning of
this section (Assumptions 1-7). Later we shall consider problems
in which some of these restrictions are removed.

6-2. HEAT EXCHANGE IN A FLAT TUBE WITH CONSTANT WALL TEMPERATURE

While retaining all the conditions and restrictions of the
preceding problem, let us change the system geometry alone. Let
the liquid flow in a flat tube, 1 e., between two infinite plates ™
separated by a distance h = 2ro. .

s

We locate the origin at the center plane of the tube. The
x axis 1s directed along the flow, and the y axis perpendicular
to hhe wall. the values ¢ < 0 correspond to the damping segment,
within which the temperature field is uniform. Values z > 0 cor-
respond to the heat-exchange segment; at the .entrance to this
segment, the fluid temperature is constant over a section; the
wall temperature in this segment is constant over the surface.

With allowance for the restrictions formulated at the be-
ginning of the preceding section (Assumptions 1-7), we write
the energy equation for the problem in the form

ot a%
Wy ox —03—.

Since the flow is stabllized, then according to (5-11)

# g
.

Al

w,—:—}w{l—-v

\ %}
where y 1s the distance from the tube axis to the point under
conslderation.

We substitute the expression for W, into the energy equation.
After conversion to dimensionless form, we obtain

A =a—m, ' (6-34)
where
=1, _ 81 x wh
=i Y=g X=gi Pe=T

The boundary conditions are written as

. .
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TABLE 6-3

Eigenfunctions in Problem of Heat Exchange in Flat
Tube at ts = const

i 4 [N () [ ) [ N £
0,00 1,000000 1,000000 1,000000 1,0C0000 1,000000 3 AN
0,0% 0, 90469 0,%0101 0,885460 0.775528 | 0,634685 | 0,468544
0,10 (0, 985018 0,R43772 0,568534 0,203664 | —0,193675 | —0,5(0642
005 0, 6874 0,760 | 0,122495 { —0,459406 | —0,568289 | —1,000849
0N O 1420158 | —0,351208 | —0,921270 | —0,'M41399 | —0,3085%8
0, (L3800 0, 108843 | —0,748049 | —0,985885 | —0,317119 0,615439
0,4 087720 | —0,120471 | —0,98408 | —0,6:4258 0,501492 1.000012
0,35 O, 835000 | —0,3M132 | —1,015180 | —0,021446 1,007459 0,424512
0,40 0, 787600 | —0,634506 | —0,841406 0,601586 0,863177 | —0,573740
0,45 0,735544 | —0,835425 | —0,504825 0,997970 0,181310 | —1,057742
0,5 0,679:03 | —0,983217 | —0,074980 1,035010 { —0,612118 | —0,627170
0,55 0619481 | —1,072154 0,368669 0,719609 | —1,06 0,323114
0,60 0,536603 | —1,101348 0,753970 0,174334 | —0,971307 1,036029
0,65 0,491205 | —1,074172 1,028753 | —0,424459 | —0,406126 1,022016
0,70 0,423798 | —0,997324 1.166876 | —0,914201 0,340922 0,350528
0,80 0,284819 | —0,731087 1,049901 | —1,232895 1,270307 | —1,165137
0,85 0,214048 | —0,561247 0,844080 | —1,068439 1,231402 | —1,329442
0,90 0,142850 | —0,378731 0,583116 | —0,765623 0,928494 | —1,071986
0,95 0,071454 | —0,3190228 0,295444 | —0.393116 0,485424 | —0,573428
1,00 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000

1.2
1,0
)
0.8
oo 1 \
NN
0.2
AR
0zl 1\
-0'4 \ I /
/
0.8 % '
Wy
-1,2
"0 02 0% 06 08 10

Plg. 6-7. Function wn(Y) for
heat exchange in a flat tube

at

N

t . = const,
3
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for X==0ed—-1<¥Y <1 B==1;

00
for X=0mY =0 55=0; (6-35)
for X=20mY =21 6=0,

1. As in the case of a round tube, we solve this problem by
separation of variables, To do this, we represent 0 as

8(X, =2 (X)¢(Y).

Substituting this expression in:o (6-34) and separating the
variables, we find that (6-4) corresponds to two ordinary differ-
ential equations:

glx'i'.’?:-ot
% , ., '
pte(1—=rY)¢=0,
where €2 is an unknown constant.
gib
The integral of the first equation 1s i ‘
%
qa=Ae""x, |
where 4 1s a second unknown constant.
The solution of the second equation can be represented as the
following series:
0
¢¥)=Y bl
X (6-36)
Substituting this expression into the second equation, we
obtaln recursion relationships for the coefficients bzn:
E b0=1. (n=0); '
b
b,=—-%¢’ (n=1); 1,
2 4
‘ bm:m;n—_T)(bm-c—bm-a) (n=2), .
Satisfylng the condition at the wall, 1.e., the third bound- I
ary condition of (6-35), we obtailn
= 4
Ebm:'o- 1

n=0 i

From this we can find the elgenvalues k. (n=0, |,2 ..)) of the
problem; to each elgenvalue there corresponds an elgenfunction
WY, ea)= Pu(Y). Tables 6-3 and 6-4:show the values of ¥, (¥) and i
€, according to published data [6]. The first three eigenfunc-

tions are shown in Wig, 6-7. |

As was shown In [7], for sufficiently large €,» the follow- '
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Ing relationship holds:
w=drt+3 @=0,12..,),
which can be used in practice when n > 3,

Thus the general solution of the problem will have the form

0=y Atnewp (=3 &/ F)- (6437)

n=0
The coefficlents A, of the series are found from the boundary
condition at the entrance section, (6-35):

00.7)=Y Adu(=1.

Using arguments completely analogous to those of §6-1, and
the condition for orthogonality of the eigenfunctions, which in
this case will have the form

+1
s $ubm (1 — V") dY =0,
-

we obtain an expression for the coefficients of Series (6-37):

+1 ‘
So(o. Y)én(Y) (1 —Y¥)dY

A.,="' (6-38)

+1
[ wma—rar
=t

TABLE 6-4

Eigenvalues and Constants in Problem of Heat Ex-
change in Flat Tube for T 1 const

n L ";’, An "u
0 1, GRIDONGS 2,8277628 1, 2008:303 0, 85808660
1 H,066U85673 32,147282 —0, 201606 0,56046270
2 9, 008405 93,474 Y 40, 16082640 0,47606545
3 13, 667061 186, 8040 —0, 1074464 0,42807375
4 17,667474 312, 13610 +4-0,0704607 0,389108665
H 21, (67200 469,16777 —0,06277505 0, 36346500
0 20, 6670% GOR, 7U9R2 +4-0,05151921 0.34347645
7 29, 667001 880, 13214 —0,0435107 0,32726570
3 33, 606066, 1333, 4646 +40,03754180 0,31373925
9 37.,606924 1418,7972 —0,03203327 0,30220410

It can be shown that

for © (0, ¥) = 1,"
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. (g).z... - : (6-38a)

Calculating the derivatives with the aid of (6-36), we can
use (6-38a) to find the values of 4, (Table 6-4).

Ap=—

AR - e bt oy -G 2y

We determine the mean mass temperature of the fluid:

.
= ]
t== —;T‘wa;dy.

Taking (5-11) into account and reducing the expression for t
to dimensionless form, we obtain

- 1
N ‘—‘e 3
Substituting in the value of 0 from (6-37), we obtain 0 i
oo ! .
T 8 o
| 8=3 Y Avep (5 € 7 ) [t -7y, i
sz0 0 i

Integrating the differential equation for ¢ and allowing
for the second boundary condition of (6-35), we find

.{'¢,(Y><1—Y')dr=—-—‘, (@),

0 *n

5 i
Nu r

.
¥
e
5 9 {
‘ ! "
71 Nugg=3,770 —]
NS S —
2 Nu.-.‘!,ﬁir_!_f
|

k] -
"0 oad a0 a7 G5 (X oM

Fig. 6-8. Variation in Nu along
tube length. 1) Flat tube; 2)
round tube (in this case h cor-
responds to d).

Thus the final expression for T can be written as

Lt o]
nr-

83 on(—5 ) (6-40)

0
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where

Ba=—3 4, (‘%)m,

Table 6-4 shows the values of Bn.

Relationship (6-40) 1s 1llustrated in Fig. 6-3, which also
gives the curve for a round tube. The flat-tube ~urve is not as
steep as the one for the round tube. The reason is that the ratio
of perimeter to tube cross-sectional area is smaller in the first
case than in the second; thus the fluid i1s cooled more slowly in
the flat tube than in the round.

Let us determine the local Nu number, referring the heat-_

transfer coefficient to the local temperature difference t - t.
Then
ak 2 /00
Nu T_ f(ﬁ)r=l.

Substituting the value of © from (6-37) and @ from (6-40)
into this expression, we obtain

Nu= p=9 = (6—"1)

Letting & : go to infinity, we fird the limiting Nusselt
number:

Nu,,—3 ¢ =370, (6-42)
If we find the length of the thermal initial segment from the
condition Nu,_ _.IOlNu the value will be
Ir2 — 0,065 Pe.

Relationship (6-41) is shown in Fig. 6-8., This figure also
shows the corresponding curve for a round tube, The two, curves
are quite close. Thus for a flat tube Nu, is 3% greater than for
a round tube. The lengths of the thermal initial segments are also
nearly the same,

Let us deternine the mean integral heat-transfer coefficient,
or the corresponding mean Nusselt number:

_ ]
No= =l JNudx

carrylng out calculations similar to those for a round tube
(see §6-1), we cbtain
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Na = T'Z-Pe—ln()“;

Nu~~——(’c ln][ EBECXP( 2 Wlt)]

2. We cai. also construct another (approximate) solution for
the heat-exchange problem in a flat tube. For flow with a velocity
profile that is uniform over a section (bar #low) the energy equa-
tion will be similar in representation to the heat-conduction
equation, and the problem of heat exchange in a flat tube recduces
to the problem of unsteady heat conduction in an infinite plate at
ts = const. As we know, the eigenfunctions of this problem have

the formm{(Zm+l)3—2Y]- where the m are integers from 0 to . On the
basis of this result, we can represesnt the eigenfunctions *n of
(6-34) as the following series in cosines, as was proposed in [15]:

or

(6-43)

o~

¢,.=fJb,,..eos[(2m+ 153 4 ]

By an appropriate choice of series coefficlients, we can allow
for the change in velocity over a section, 1.e., for the presence
of the function Y? in (6-34).

Then the general solution of the problem will have the form

e=§[f]b,.mcos‘-’-’"-+§-'ﬂ]exp(—-im. (6-44)

A=0 m=0
We keep only five terms of the series, i.e., the of m
and n will vary from 0 to 4. Substituting (6-44) into .. _-), after =5
regrouping of the terms we have {

e

1= b buco bt ()
Xbuso T H{EE) tmon®f 4.+ (G2) b =0 71

) '
-8 We separately multiply Eq. (6-45) and cos_.,cosﬁ”f,_“'c(,s%’f, and

in each case integrate the equation with respect to Y from 0 to 1.
Performing this operation for each harmonic of the cosine, we ob-
tain the following system of five equations:
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(<5145 ot bt A=t
_‘2‘0-0+ (—%'—%-+?§';)b-. —gbn+%‘~—rljb~=o$
%"-—}2%+(-'§-£s+:‘i—{)b~-§b~e+%"u=¢ (6-46)
—,%bu.+%b..—§§bm+( —%}—;‘;+f‘;‘,"1)b..—'§o..-o:-

ut
%bu-flgbm'*‘]%bn-gbn"' (—-"—&4'!:—.?)5..0.

]

TABLE 6-5

Values of Constants in Eq. (6-47) (Problem of Heat
Exchange in a Flat Tube with t, = const)

2 " Par bz bus ae
n Sn ®e by [ . L by
0 2 8776 1,17776 0,0°11834 —0,001 149 0,207037 . 10-0 ~0,583707.10°¢
1 2,475 0,0579M15 —5,371% —0 83T 0,02%0768 - ¥ N
o ) ,477 0,0654%; —4 00640 9,45008 3, 31526 a,101483
k] 187 iR 0.00706881 1,573 7.%4700 —~12,0113 -7, -
4 414,761 0.0138:77 ~3,32432 6,61 —11,0745 13,7624

Since these are homogeneous equations, bnm can be nonzerc

only if the determinant for their coefficients equals zero and,
consequently, the e; are the roots of the coefficient determinant.

Table 6-5 shows values of e;, determined by computer. They are in
good agreement with the values obtained for e; by another method

(see Table 6-4), with the exception of ef. The discrepancy in e
1s explained by the fact that only a five-term approximation was
used in the computations.

Since the e; are known, we can now determine the values of bom

It turns out that System (6-46) cannot be solved so as to determine
all the values 2 . By dividing each equation of System (6-46) by

bno and solving any four of the five equations, however, we can
find the ratios byi/buo, basfbne , €etc.; the values of bnO will still be
unknown. The solution of (6-44) can now be written as

e=2b,,; [cos-';-'-l-ﬁ::—'.”cos ""'—sz‘ﬁ‘-”_] exp(—¢ X), - (6-47)

m=:1

f’nm

where the by are unknown.
"

To determine the bnO’ we use the boundary condition at the
entrance(8=1 for X¥=0),; this leads to the equation
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. T 8y | ¥Y0um 2m 41
1== r‘obn.lws'y'i’.e.qcos———; RY].

Multiplylng this equation separately by each of the values
cos[(%+l)x !'-2"] and integrating them with respect to ¥ from 0 to 1,
we obtain a system of flve equaticns:

3 4
b=
n=0
‘

E('%i)bm__z(_ 1)mm—$-|-)-:; m=1,223 4.
=0 *

Solving this system, we find the bnO' The numerical values of

the constants occurring in (6-47) are given in Table 6-5. By using
(6-47), it 1s not difficult to compute all the other heat-exchange
characteristics, including the Nusselt number.

6-3. HEAT EXCHANGE IN THE THERMAL INITIAL SEGMENTS OF ROUND AND L
FLST)TUBES WITH CONSTANT WALL TEMPERATURE (APPROXIMATE SOLU-
TION

As we have already noted, for fluids with Pr >> 1, the reduced
length of a tube 1in actual equipment will usually be less than the
reduced length of the thermal initlal segment. For this case 1t 1s
possible to obtain an approximate solution to the problem of heat
exchange in round and flat tubes in finite form, as has been done
by Levequa [15].% All the restrictions 1-7 (see §6-1) are retained

Fig. 6-9. Solution of the Leveque
problem. 1) Damping segment; 2)
heated segment; A) width of ther-
mal boundary layer.

in solution of this problem, and still another 1s added: the width

A of the thermal boundary layer appearing at the wall i1s assumed

to be small as compared with the diameter of the round tube or the

width of the flat tube (Fig. 6-9). In other words, the temperature

in the flow core 1is assumed to be coastant along the radius’ and

length, and equal to the fluid temperature at the entrance to the

heated segment. This condition 1s clearly satisfled only for small

values of reduced length (smaller than the reduced length of the f
thermal initial segment). ' .

The energy equation for this problem is easily found from

oS a
(6=1), 1ettinguu=m;:-0wg%==%%==oin accordance with the conditions
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dopted. Tf, in alddition, we replace the coordinate r» by the coor-
«inate y = ry — 1 (1.e., the coordinate measured from the wall),

s then ohtain

Since A <r, then within the thermal boundary layer (0<y < 4)
the quantity y in the cnergy equation can be neglected as compared
with ry. Then this equation will look like this:

«f J%
Ky e =a -‘-’F‘.

This equation will be exact for heat exchange in a flat
tube (the wall radius of curvature rg * w); 1t will be approximate

for heat exchange in a round tube, since we have replaced the cylin-
dri cal boundary layer by a flat layer, which is permissible when
the layer 1is thin.

The velocity distribution in a round tube is described by the

equation
91—\ (LY
mezlﬂ(l ’g)_&z'(d d'i)'

and in a flat tube by the equation
— ]
w;=6w (%,"%{)o
where 4 = 2r0 is the round-tube diarmeter and h = 2r0 1s the fiat-
tube width.

For values y << rq, we can neglect the quadratic terms in
the expressions for w, as compared with the linear terms, 1.e.,

we can assume that the veloclty distribution in the thermal bound-
ary layer 1s represented by a straight line tangent at the wall
to the Poiesullle parabola. We can then let

wy=Ay,

in the energy cquation, where A=(dw,/dy),~0 is the velocity pradient
al the wall; for a round tube, A=38#/d , and for a flat tube A--6ii/h.

As a result, the energy equation takes the form

Ay =a s (6-48)

The assumption that the thermal boundary layer is thin permits
us to roruulate the boundary conditions in a form convenient for
integration:

for xz=0endy=o00 {=={" }

for x=0emdy=0 (={,, (6-49)
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where to is the fluid temperature at the entrance to the heated
segment; t is the wall temperatura,

ot ?quation (6-48) can be solved exactly for boundary conditions
(€-49

We introduce the new 1ndependené variable
\-(ﬁ)m
We now find the expressionn for the derivatives:
= =(sx)

'q -;(wbﬁi ( zng%

«_u._gf.«m _L(AyPyd
9nx) x dy

Substituting the last two expressions for the derivatives into
(6-48), we see that this equation reduces to the ordinary differen-

tial equation
" '
T+ ot =0, (6-50)
Boundary condittions {6-49) take the form

for g=o00 t=1, } ‘ .
for =0 t=ft,. (6-51)

Integrating (6-50), we obtain

and

TABLE 6-0

Values of Dimensionless Termpera-
ture As a Function of n According
to Eq. (6-52)

-1, 1—t, t-t,

E Tt L B vy il B
00 1o 0,701 0,7227 | 1,0 | 0,9807
0,05 | 0,0560 § 0,75 0,760 | 1,45 | 0,928

00 L 0. [ 0,8 | 0,792 | 1,50 | 0,995)
045 | 0,168 | 0,85 ] 0,8281 | 1,55 ] 0,9968
G20 02205 10,90 0,868 ( 1,60 0,979
0,08 | 0,2788 | 0,95 ¢ 0,882 1,65 | 0,9987
0,30 [ 0.3337 [ 1,00 ] 0,943 | 1,70 | 0,990
0,36 | 0,878 11,05 ] 0,0234 § 1,75 | 0,994
0,40 | 0,400 | 1,10 0,9305 | 1,80 | 0,07
.45 | 0,4927 151 0,9530 [ 1,85 ] 0,9998
|
1,

1,
0,5 | 0,6430.1 1,20 0,9%4) +90 | 0,999
0,55 | 0,595 11,25 ¢.9730 95 § 0,9999
0,00 | 0,6377 | 1,30 | 0,9801 '2.(X) 1,0000
0,65 | 0,6816 | 1,35] 0,9856

0




vnEE;m- The constants of integration are found
=3 from boundary conditions (6-51). The se-
&= cond condition ylelds e, = ts, and the
is first condition gives
wl y 6=zt
; Jd"d\
u
: b/ - .Thus the equation for the temperature
¢ o u u v o distribution has the form
Fig, 6-10. Dimen- Yy
sionless temperature

[ fd [ 5
te~—1le J‘_'“

as a function of n. (6-52) .

The denominator of (6-52) is a gamma function, whose values
have been tabulated:
o0

5 .-f'dq=r(-;-)=o.8sao. | »

Table 6-6 shows the values of the dimensionless temperature,
computed from Eq. (6-52)., Figure 6-10 shows a graph of this func-
tion.

Let us now determine the local heat-transfer coefficient,
referred to the difference between the wall temperature and the
temperature of the fluid at the entrance to the heated segment. This

is a convenient method for determining a in this case, since when
1 .
§g~§'1s small, the mean mass temperature of the fluld varies little
with the length,
4 A ot \
o b~ S = (37),_.'

Using the relationships obtalned previously, we find
[ ¢ AN\ 134y =ty
(8 )=o) " () =) "5

\

Consequently,

=g () (6-53)

Tlie mean heat-transfer coefficient 1is
!
_— 1 & - 3 A ln
“-—Tt)“odx—‘r'm(w) . (6-54)

Sub: ,1tuting the value A__Wr.into (6-53) and (6-5"), we obtain
«v~¢s8ions for the local and mean Nusselt numbers in the initial
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segment of a round tube:

d \I\13 = .
Nu,==1¥1==L077(ijr) ] (6-55)
Ru, =%2=1615 (Pe 1) » (6-56)

where (o= E:L

Substituting the value A==%%.1nto (6-53) and (6-54), we obtain
analogous expressions for a flat tube:

) (6-57)

13

Nuy=% = 1,467 (e )" (6-58)
where Pc=§:i'

To compare the approximate solutions obtained with the exact
solutions of the same problems (see §§6-1 and 6-2), in (6-55) and
(6=57) we must go from Nu,= l“ (for a round tube) to Nll—u—':d—-)—. —y

is the mean mass temperature of the fluid in the glven section.
Here Nu and Nuo are connected by the relationship

4 ‘—‘a
Nu=Nu,2—=.
! .“—‘.

The value of % is easily found from the heat-balance equation.
For a round tube we h-—e

dat
& = (’37 - Mlg—t) | [ A \IB
H=——ﬁr94=—1mrm(m)-

ﬂ’o”’w

Integrating this expression from 0 to x and substituting
A = 8w/d into it, we obtain

Ity —6as(peT)

fo—lc

Thus 1if the heat-transfer coefficient 1s referred to the local

temperature head (¢==hf:), then (6-55) will take the form

1,077 (.p_‘e..z.)"” |
!_6"6(??777’ (6-55a)

It 1s not difficult to obtain an analogous equation for a
flat tube,.

N“"'T"‘

In Fig. 6-11, Eqs. (6-55) and (6-55a) are compared with the
exact solution (6 26) for a round tube.

For values-— L-<omm5 . (6=55a) [which should also be comm

pared directly with (6- 26)] gives values of Nu that are no more
than 8-10% above those found with the exact solution. WhenlL £ 50,0005

- 124 -

W

oo




s

-
1

§
U

Byt @

s
&:
' i i  d
0 234680 2366808 2 5¢ ¢80 y

Fig. 6-11. The Nu number as a function of ﬁgug- for a round tube,.
1) Eq. (6-55a); 2) Eq. (6-55); 3) exact solution (6-26).

the difference between (6-55a) and (6-26) increases, since as the

reduced length becomes greater, the thermal boundary layer becomes
thicker, and hecomes commensurate with the tube diameter. The Lev-
eque solution then ceases to apply.

Thus Eq. (6-55a) can be used with an error not exceeding 8-10%
only wheni%.%<jamm5. In this region, the difference between the
initial (ts - to) and local (ts — %) temperature heads is insigni-
ficant, and thus the values obtained for Nu from (6-55a) and (6-55)
almost agree.

Equation (6-55) is in better agreement with the exact solution
over a wider range of i%-%-; this does not mean, however, that it is

more accurate or that it 1s applicable over a broader region. The
error in determination of the heat flow with (6-55) and (6-55a)

will naturally b- the same for any -

The fairly good agreement between the curves for (6-55) and
(6-26) 1in theih.§w<QOIregicn indicates that an equation of the

type (6-55) can be used for interpolation in approximate represen-
tation of the exact solution (6-25). The equation

8 R X
od 1 x\ ¥ "
can be used as such an interpolation formula, in particular; with
an error of roughly +3%, 1t describes the exact solution in the
1 >cilon of values p'—e- §-<0.0l and 1s in good agreement with the experi-
mental data (see §7-5).

The corresponding interpolation equation for the mean integral
heat-transfer coefficient has the form

m:%i:],ss.(_'__x_)—ln (6-60)




and 7iil be velld with the same accuracy for valuesikn%—-;oiﬁ.

The heat-transfer coefficients in (6-59) znd (6-6G) should
naturalliy refer to the local and mean logarithmic tempervature heads,
respectively; only when %-‘5—(0,0005 can they be replaced by the ini-
tial value.

We note that the lengths of tubes employed in heat exchangers
usually satisfy the inequality F'e--?f-<0,05, and even %-%—<0,01, prov-
ided the heat-~transport medium is a viscous fluld possessing a fairly
high value of Pr.

6-4, HEAT EXCHANGE IN A FLAT TUBE WITH ONE WALL HEAT-INSULATED
AND CONSTANT TEMPERATURE AT THE OTHER WALL

We shall consider heat exchange in a flat tube for which the
temperature of one wall is held constant; the other wall is heat-
insulated. All other conditions are the same as in §6-2.

.M&
We locate the origin at the tube wall through which heat ex- L
change takes place and, as usual, direct the x axis along the flow
and the y axis along the normal to the wall.
Remembering that the veloclty distribution i1s represented by
the equation
Te=6(Y—1),
' -
Wwe can represent the mathematical expectation for the heat-exchange
process under these conditions as '
00 o8
for X=0m0Y<LI8=1;
for X>0ml=0 8=0; (6-62) )
for X>0andY =1 3—;,’-.:0.
Here
(—=te, vy | X v §. p._®h
e=l.-—_—‘;' X-_-p? g Y———,-'-, Pe= T

The solution of this problem 1s fully analogous to the solution
given in §6-2; thus we at once give the final results.

The fluid temperature at an arbltrary point in the flow is
0
‘—fe__ I_ I 21 X
fAm H )

The wesan mass temperatui: of the fluid is

,...v'_e"-"_._';;\)_ (,-64)




TABLE 6-7

Eigenvalues and Constants in Problem
of Heat Exchange in Flat Tube with

Constant Temperatuie in One Wall and
Heat Insulation ac the Other

[ ] ®n .3 A, 3,

0 3.818667 14,5822 2,178 2,176545 .
| 11,89723 141,544 1,427 1,427232

2 19,9241 4 971 1.2 1,193603

3 27,93835 780,55 . - 1,063782

4 38,9473 1292,21 - 0,9763008

5 43,95364 193,92 - 0,9129374

6 51,96837 2699,67 - 0,8630460

7 | 59,9211 145 - 0.8228616

a 670%5'9 45!9.27 bt o. ‘
¢ 75,96784 8,1 -— ¢,

TABLE 6-8
Values of Eigenfunctions wn (Y) in Problem of Heat

Exchange in Flat Tube with Constant Temperature at
One Wall and Thermal Insulation at the Other

Y * L L Y L * &

0 0,0000 0,0000 0,0000 £ 10,5079 | —0,0128 | —0,1320
1| 90,1001 13.0989 +0,0669 1 0,7 | 0,5419 | —0,1378 -0,

41 03768 | 40,2053 | —0.0045 | j 0 | 0,573 | —0,2608 | 0,806
81 0484 | foiitez | —0,128

where B,=A4, (d;;, )r_o.

The local Nu number, referred to the local temperature dif-
ference ts -t 1is

i B exp ('——é- o ple--;f-)
Nu:%’i_gm:l

3 ' (6-65) -
62'?5 exp (_%_ K Fl?%) 5

The limiting Nusselt number is
2
Nu,,=—2=2,430, (6-66)

The length of the thermal initial segrent is
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-5~ 0,21 Pe. (6-€7)

The eigenvalues e¢ and constants A, and B are given in Table.

6-7, £2d the eigenfunctions ¥, (¥) for » = 0, 1, and 2 in Table
6-8; the data 1s taken from {38].

For the problem under consideration, the limiting value of
My, is roughly 35% less than for the problem of heat exthange
tnrough both walls of the tube (in this latter case, Nu_ = 3.77).

The reduction in Nu_ 1s natural, since with one-sided cooling,

heat exchange takes place through a *luid layer with thickness
2 times greater than for two-sided cooling. Fur the same reason,

the length of the thermal initial segment i1s significantly greater
for one-sided cooling than for two-sided.

The mean integral Nusselt number will obviously equal

Ni=$ta—Pe L ing,_, (6-68) &
where 5;_1,13 found from Eq. (6-64), . =

6-5. HEAT EXCHANGE IN A ROUND TUBE WiITH ARBITRARY, IN PARTICULAR
LINEAR, VARIATION IN WALL TEMPERATURE '

Let the wall temperature of a round tube vary arbitrarily with
the length, i.e., t (z) is a specified function of z. All remaining

conditions remain the same as for the problem of heat exchange with
t, = const (see §6-1).

oo o
T Re). (R>Ry) : {)
A i -
e |
|
. l x

Fig. 6-12. Problem of heat ex-

change in a round tube with

arpitrary variation in wall !
temperature,

Since the energy equation (€6-2) is linear, the solution of
the heat-exchange problem for ts = const can be generalized to the

case ts(x) by the method of superposition [7].

Solution (6-12a) for ty = const can be represented in the
form
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\ ;
Here, as in §6-1, X=—'5-. R=r]r,.

The temperature difference ¢t — to can be treated as a change R

in fluid temperature caused by a "source of thermal disturbance"
in the form of an abrupt change in wall temperature from t to tye

This "source™ is situated at the origin, i.e., at ¥ = 0,

If the source 1s located at the point with coordinate X = £ = .
(Fig. 6-12), then in place of the praceding equation we must write:

t—ty=(te —1;) {1—
~§ Ata R expl— (X —B).
Al - s

When there are several such "disturbance sources,” 1i.e,,
when there is a stepwise change in wall temperature (Fig. 6-12):

lon deg, -y tem (i=1, 2, 3, .., m) , the total variation in fluid tempera-

ture ean be represented as the sum of the changes produced by the
action of each "source":

t—t, =§ Aty {l — i-.M.(R)C‘Pl-.:(X—&)‘}o
S 1 [ ]

where AOfy=fo—due-j 18 the wall-temperature variation at the poini:
with coordinate Ei'

For a continuous wall-temperature variation, going from the.
>um to the integral, we obtaln

X @
ity {l—E-A,,q-,(R)exp[—c:(X—E)]}d-é'-dt, (6-70)
0 n=0 ‘

Thus, if we know the solution for t,. = const, -

8(X, R)= ﬁ Anpn (R) exp (—o? X),

then the solution for an arbitrary continuous wall-tempperature
change will look like this:

. ;
t—l.-:-_;[l —0(X =8, R)t's (M, (6-70a)

Let us consider the case of a linear change in wall tempere-
ture, ioh

to (X)==tyt-kx, OF o (X)=t,KX,

shere k and K== —-Pedare constants.
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Th n t; = K, and in accordance with (6-70),

X ® :
t=be=K{{1 =% Ata(Respl—, (X —5l} &,
a=0

; ldIntegrating, we obtain the final equation for the temperature
ield:

@ .
t—ty=KX—KY) Asta(R) 3y (1 —exp(—e! X)) " (6-71)
amd (]
The mean mass temperature of the fluid is

] 1
t‘—:.==45«—t.)(1 — RYRAR =KX ;[a ~RYRdR—

[ ’ '
-mgA.-.‘,—u-exp(—-:xnjv.(km—R-)m. 'y
] = -
Taking (6-17) into account, we obtain '
F—ty,=KX+8K J) % fexp (—e? X) — 1], (6-72)
Am0 3
F _ where B.=-7%A- %)R.I‘

The eigenvalues €, and the constants A, and Bn’ as well as
the eigenfunctions w (R) in these equations are the same as for

the problem of heat exchange with t, = const (see §6-1). They
are given in Tables 6-1 and 6-2.

Pach

The series 27 converges rapldly to a value of 11/768. Thus J
-t " .

Eq. ‘(6-72) can be written in the form
®
{ —1t. == _n By —_a?
r—t, K[X 8+ 8;}.?’.—?‘;( -“xy]. (6-72a)
The local temperature head 1is

to —7=K[ 2 exp(—c2 X)]

=0

The heat-flow density at the wall is

0= 5,y = 7 (3o

Substituting the value of t from (6-71) into this expression,
we obtailn
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- “ X iy St adaing |

=%V %1 —ep(— X)) (6-73)
e a

When X + =, as we see from (6-72) and (6-73), .

P
and
qo=2KL B-—'-=00M.

Te P
P

In addition, it follows from the heat-balance equation that
=

Substituting in the values of dt/dXY and qg from the preceding
relationships, we have

]
Ba-+

=0 "

Thus Eq. (6-73) can be represented as
Ar1 w8

Qo ==2K7.- [T—E:'-;-exp (— c: X)]. (-6-73&)

There now is no difficulty in determining the local Nusselt
number:
o B \
» E 3
-t 5% e catik3)
Nu gd n=h

A(te — _ﬂ_;oz 4'~‘xp(—2‘nl’c"7)-

Figure 6-13 showe the variation in tgs t, and Nu as a function

(6-74)

of X.

When X + =, the series in (6-71)-(6-74), which contain expon-
ential functions, vanish. Thus beginning at a certain value of X,
the temperature of the fluid at any point will vary linearly with
the length, together with %, while qs’ o — %, and Nu take on con-

stant values. The limiting value of Nu will equal

Nua,-.--.:—?.—:.“l.%. (6-75)

In this case, the thermal initial segment will be longer than
when ts = const.

Thus, in the problem of heat exchange with linear variation
in wall temperature, just as when there is a constant wall tempera-
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Pig. 6-13. Variation ‘s 20 2 4

in tete, It and Nu as
runeRion of Lt Fig. 6-14. The Nu number
etlion Pe d° in round tube for linear
variation in ts and var-

ious values of 90.

ture, we find stabilization of the heat-exchange process. Here the
same temperature profile will form in the region with incipient

thermal stabilization as when a constant heat-flow density 1s specil-
fied at the wall. Thus Nu, will have the same value as for the heat-

exchange problem with q = const (see §8-1),

We have considered the problem of heat exchange with dts/dz =

= const Just for the special case in which there i1s no wall-temper-
ature jump at z = 0 (;.e., t, = tg). If there 1s a jump in ¢, at

z = 0, then the problem can be solved by the same method. Grigull

and Tratz [8a] recently determined the heat transfer for this case
by a numerical method. Their results are shown in Fig. 6-14. Here

the quantity '

— (fe_"o)o )
e e

was used as a parameter, 1.e., the ratio of the wall-temperature

jump at # = 0 to the difference between the wall temperature and

the temperature on the tube axls in the reglon of stabilized heat
exchange. The latter 1s easily found from Eq. (8-5) (see. §8-1) in
conjunction with the heat-balance equation

3 dt.
(tc — =°)w= mm.

As we see from Fig. 6-14, when 0<9,< 1, Nu decreases mono-
tonically, while when 6,> 1 , 1t passes through a minimum, in either
case approaching a limit of U4.36. As 00 increases, the thermal ini-

tial segment becomes longer. When 6—o0 , this problem degenerates
to the problem of heat exchange with ts = const, and Nu approaches
N u. - 3.“-

6-6. SOME GENERAL LAWS GOVERNING STABILIZATION OF HEAT EXCHANGE
WITH WALL-TEMPERATURE VARIATION ALONG TUBE LENGTH

The method considered in the preceding section can be used
to esamine the distribution of heat transfer along the length
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f a tube for a specified variation in wall temperature. The re-
:ults of such a determination show, in particular, whether self-
imilar ov stabilized heat exchange sets in for a specified dis-
trioution to(x). It 1s useful to investigate the question of self-
similar-regime inception for the Nusselt number when t, varies

along the length in more general form, as was, done recently by

V.D. Vilenskiy [19]. Let us analyze the case of stabilized flow

of a fluid with constant physical properties in a straigth tube

of arbitrary cross section. The heat flow along the axis owing to .
heat conduction i1s assumed to be small as compared with the heat '
flow caused by convection. It is also assumed that there are no
internal heat sources, and that the influence of dissipation is
negligible,

, Under these assumptions, the temperature field in the fluid
flow 1s described by the equation

V., D=3+ (6-76)
where
o X=%-7‘:—; Pe='%‘-; Y=-z:'—/f; 2=7.£n.:

y and s are the coordinates in the tube cross-sectional plane;
de =‘Lf/e 1s the equivalent diameter; f and s are the cross-sec-

tional area and perimeter of this section; g i1s the temperature
of the fluid at the entrance, i.e., at X = 0, T

The boundary conditions are written as

ex.—.o=0' | , (6=77)

8;, =9 (X)"  (6-78)
2=Z, g .

We assume that the funetion ¢(X) describing the wall-tempera-

ture distribution along the tube length exceeds zero when 0 < X < w,'
and that 1t 1s contlinuous together with 1ts derivatives.

To analyze heat exchange far from the tube entrance, it is
necessary to consider the temperature field in the fluid flow when
X + o : :

It was shown in [19], that if the function 9(X) possesses th
property that the limits .

lim - She K yo®

Xseo An

exist, where the function X, 1s determined by the relationships
. Xn=d ")'{' —Kv;-:Xn-u
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while Ka>—m,»mre by, 18 the first eigenvalue of the problem

va(Y, D) +aW (Y, Z)=0;}

3(Ye, Zc)=0, (6-79)

then when X-—-o00 ® can be represented as the asymptotic series

p o
where the functions V, are solutions of the problems
V'Vo —K .W:V. = 05
VolWer Zo)=1;
.noncnnnocnnn.nn (6-81)

'Va = K uwsva — W:Vu- 3
Vﬂ (ycl zﬂ) —0

If for some a=n, E{T'%"K" , then Series (6-80) breaks off at
the nl-th term and the difference between the exact solution of

(6-76) and its asymptotic representation at X + = (6-80) will ap-
proach zero as exp(—mX).

If
1 d
}lm TO#=K..<-—F"

or

—:-.'?d)-'(—-o-—co “ X0,

then for X + =,
. X
O~ —1, (s%%ds) exp(—lb.X)§9eXp(p.E)d!. (6-82)

where n, 1is the first normalized eigenfunction of Problem (6-79),

while d/on' 1s the derivative with repsect to the normal n to the
tube surface, directed toward the fluid.

It follows from (6-80) and (6-82) that if when X + =, the
logarithmic derivative of 9 with respect to X has a finite limit
or approaches —», then the temperature fleld in the fluid flow ad-
mits of asymptotic representation as the product of & function of
Y and Z and a function of X. In this case, there will be stablliza-
tion of the temperature fleld in the fluid flow, completely analo-
gous to the stabilization (regularization) of the temperature
field in a so0lid during unsteady heat conduction, Here the tempera-
ture gradient in the fluid flow at the tube wall and the difference
between the wall temperature and 'the mean mass temperature of the
fluid will become proportional to the same function of X, 1nd1cat-
ing that heat exchange has been stabilized.
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If wien X—o0 -;-~73r—'+°° » then 6 cannot be represented as the |

nroduct of a funetion of Y and 2 and a funétion of X, i.e., the
vemperature field and,accordingly, the heat exchange are not stab-
i1lized. ' .
The value of the Nusselt number in the region of stabilized
heat exchange,Nu.——-Tf("'.L_"__‘-)- can be obtained on the basis of (6-80) and
(6-82), '

If the parameter K,>—#, (except for K,=0), saNu_ 1s determined

by the first term of Series (6-80), i.e., essentially by the function
Vy- The expression for Nu, will have the form

(*),.., ~
o (6-83)

1—-}-5 VW.dF
r

Nug (Ve, Ze)=—2

where N =75 18 the dimensionless normal to the wall, directed to-
ward the fluid; F=4f/d, is the dimensionless cross-sectional area.

It is clear from (6-83) that here Nu_ depends on the tube geometry,

the parameter KO, and the coordinates of the perimeter point under
consideration. ! '

If K,=0, weaV,=1. . In this case, Nu_ i1s determined by the se-
cond term of Serles (6-80): '
v,
W),_,.

Nug, (Yo Ze)=2W' . (6-84)

Thus when KO = 0, Nu_, 1s determined by the parameter K.==lim-¥-'.
_ Xae

If K,<—p, wenNu, 15 described by the expression

(e,

InZ,

Nu_ (YoZo) =—2HW' (6-85)

whe»e S-::.—égis the dimensionless perimeter of the section.

In this case, consequently, Nu; does not depend at all on
the law governing the variation in wall temperature, but is deter-
mined solely by the tube geometry and the coordinates of the peri-
meter point considered. In other words, whenk,<—p, Nu,will have

the same value as 1f the wall temperature were constant.
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We note that Kl can take on negative or zero values, When

~-m<K, <0, Expression (6-84) goes over to (6-83); in this case, -

we should replace V, by V;. If K,<w,, naNu_ 15 determined by (6-85).
!

To 1llustrate the foregoing general results, let us compute
the 1limiting Nusselt numbers for laminar flow of a fluid in a
-round tube. .

| 3t

L

N o .0\

Dl

4@?’: ) -,oi'-:—i' 2 6"0%'!

Fig. 6-15. The Nu, number in a

round tube for variations in
t, (curve 1) and q, (curve 2)

with length.

If Ky>—p (K, %0), , then to calculate Nu, we must determine

the function VO. The latter 1s a solution of the equation

T (RE =2 (1 =RV, = (6-86)
Here the boundary conditions are

=1, (), =0
where R = r/ro.

The solution of (6-86) has been investigated elsewhere [20, . -
21]. Using the results of these studies, we can represent Vv, as

PR, K
ror K,>0 V.==p-:r—,<f)3

R. K4)
for _P|<K.<0 g V.: "-'%:-l-'---K-.-)-'
where P(R, Ko) smap(R, Ks) are Poiesuille functions. In [20, 21], they

were represented as power series. Substituting these expressions
into (6-83), we obtailn expressions for Nu, as a function of the

parameter K, for Ko>Oumd—p; <Ko<0. ,

If Ky = 0, then, as we have already mentioned, Nu, is deter-
mined by the parameter X,. When m<K<0 , the results obtained
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vith the uid of (6-83) are valid for Nu,. When X, = 0, Nu, 1s found

“rom (6-8/). The function vy in this equation is a solution of the
problem ]

e (%85) =20

v'(|)=0; %‘)H=o. ,

From this we have
v.=-;-k'(1-1'-n-)-.:.,
and Nu°;=43Q

The computational results are illustrated in PFig. 6-15 (Curve
1). As the figure shows, the minimum value of Nu, corresponds to

a wall temperature that is constant along the length of the tube.
When K,>—p,, Nu, rises as the parameter ‘0 increases,

Manu-

;:Eépt Footnotes ,

No. - : \

95 1Phis last assumption 1s well confirmed in most cases.

The problem of heat exchange with allowance for energy
dissipation is considered in Chapter 15.

99 2The first coefficient b, of the series is arbitrarily
taken equal to unity, sigce it can be removed from the
summation sign in (6-10) and combined with the 'still
indefinite constant 4 in Expression (6-5) for O,

112 'This probleit has been solved by a numerical method
[10, 11]. An analytic solution using the Ritz method
was first obtained by Leybenson [12], and refined in
[3]. A solution based on power-series expansion of :
the function representing the temperature distribution
over the flow section has been given by May'yamov [13],
as well as in [14, 6]. i

114 *As in the case of a round tube, the coefficlent b, is
arbitrarily taken to equal unity.

L35 “ See the analogous proof in §6-1.

120 °The same solution was published quite a bit later in [17].

121 %#In solving the heat problem, we can eliminate the opposite
wall in our imagination, and assume that a medium with con-
stant temperature equaling the entrance temperature *0
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133

vanu-
script
Page
No.

95

108
110
133

extends to infinity.

#The subscript "s" is used with the tube-wall coordinates.

#%#0nly the case of real X is considered.

Transliterated Symbols

¢ = 8 = gstenka = wall
H.T = n.t = nachal'nyy termicheskiy = thermal initial
n =1= logarifmicheskiy = logarithmic

3 = ¢ = ekvivalentnyy = equivalent

-
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Chapter 7

HEAT EXCHANGE AND RESISTANCE IN FLAT AND ROUND TUBES WITH VARIABI£ ,
FLUID PHYSICAL PROPERTIES AnD BOUNDARY CONDITIONS OF THE FIRST KIND

~-1. PRELIMINARY REMARKS . i

Since the physical properties of a fluid depend on temperature,
they vary in time and along the coordinates in accordance with the
temperature variation. When the temperature differences in the flow
are small or the physical properties depend little on temperature,
these variations will not be great. Under such conditions, results
obtained under the assumption of constant physical properties will
be valid. If there are significant temperature differences in the
flow, the variation in physical properties with temperature will
have a significant influence on the velocity and temperature fields.:
Thus, for example, owing to the dependence of the viscosity coeffi-
cient on temperature, the velocity profile will not be parabolic
for viscous flow of a liquid in a rounda tube. The variation in velo-
city profile entalls a corresponding change in the temperature pro-
file. Here, naturally, the heat transfer and friction resistance
will change as compared with their values for constant physical
propertles.

Since the vel.ocity and temperature fields are interrelated
when the physical properties are variable, such problems require
Joint integration of the equations of motion and energ:. , As we
have already noted, this involves considerable difficulties, as-
soclated with the nonlinearity of the initial equations. For this
reason, theoretical calculations for flows and heat exchange with
variable physical properties are carried out chiefly by approximate
methods, and encompass a relatively small group of prcblems. Experi-
ment plays a significant role in study of these questions.

For liquids under ordinary conditions, the dynamic viscosity
varies most sharply with the temperature (see, for example, Table
3-1). Thus for a viscous flow of a liquid, we often consider only
the variation in the viscosity alone, assuming that the remaining
phvsical properties are constant,

The motion problem for a fluid with temperature-dependent
vis .. .8 first iormulated by L.S. Leybenson between 1922 and
1924 [1, 2]. He obtained an approximate solution to this problem
on the assumption that the fluid temperature and viscosity are
constant over sections and vary c<nly along the tube length. This
sprecific formulation of the problem is of interest in determination

i
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- of nydraulic. resistance for motion of a hot fluid (petroleum, for
3 example. in long pipelines. Here the intensity of heat exchange
between fiuild and wall is negligible, and the assumption of con-
stant cross-section temperature is satipfied in approximation.

When a fluid moves under conditions of falrly intense heat
exchange (in heat exchangers, for example), tbere is a very sharp
sadial variation in the temperature and, ronsequently, the viscosity,
-with relatively little lengthwise variatior, Thus the solution of
{ L.S. Leybenson is unsuitable for determination of hydraulic resis-
tance in heat exchangers and similar devices.

Attempts have been made to consider flow with variable vis-
cosity for a problem resemblinz the Graetz problem, with constant
wall temperature [3, 4, 5, 6]. In these studies, the simplified
equation of motion (with no inertial terms) is solved on the as-
sumption that the temperature distribution in the flow remains
the same as for constant viscosity. Using a linear relationship
to approximate the velocity profile found by this method in the
region of the thermal boundary layer, Jamagata [6] has calculated
the local heat-transfer coefficient for the front part of the
- thermal initial segment (i.e., near the tube entrance). It is un-
g derstandable that the results obtained in these studies shculd be
3 treated as a first rough approximation.

b In §§7-2 and 7-3, we present our approximate solutions for

| problems of fluid motlon and heat exchange in flat and round tubes
with allowance for the relationship between the viscosity coeffi-
cient and the temperature [7, 8]. These solutions are valid for
the thermal initial segment in viscous flow (i.e., when there 1is
no natural convection). In addition, in §7-4, we consider an ap-
proximate solution of the problem with allowance for variable vis-
cosity, obtained by Yang Van Tszu [9] for the entire flow region
in a round tube, In §§7-5 and 7-6, we give results of experimental
investigations.

7-2. THEORETICAL DETERMINATION OF HEAT EXCHANGE AND RESISTANCE IN
THERMAL INITIAL SEGMENT OF FLAT TUBE

E 1, Let us conslder motion of a 1li4juid and heat exchange in
the thermal initial segment of a flat tube. Here we shall allow
for the relationship between the viscosity coefficient andlthe
teilperature, assuming that the remaining physical properties are
constant. Naturally, the assumption that the density, which de-
pends little on temperature for most liquids, 1s constant elim-
inates the influence of free convection from consideration.

We assume that the velocity
profile 1s fully developed (parabolic)
in the tube entrance section, We also
assume that the {luid temperature at
the entrance 1s uniformly distributed
Fig. 7-1. Flow diagram over the section, while the wall temp-
for flat tube. erature is constant over the surface, -

We can 1solate two reglons in the thermal initial segment
of the tuh:: a thermal boundary layer of thickness A, and the
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core, wh. h 1s not involved in heat exchange (Fig. 7-1). For subse-
~uent simnlification of the equations, we make the basic assumption
1at the “hickness A of the thermal boundary layer is substantially °
iess than the tube width A. This means that we restrict the problem
to the region of small reduced lengths. We note, incidentally, that
reduced lengths are usually small for motion of wviscous fluids,

We neglect the heat transferred along the axis by heat conduc-
tion as compared with the convective transfer. For simplicity, we
shall also neglect the heat of friction, although it 1s not d4iffi-
cult to make allowance for this quantity, as we shall show later,

It is convenient to use an equation of the type (3-4) to ex-
oress the relationship between the wiscosity coefficient and the
«emperature; it permits good approximation to almost any experi-
mental curve for the viscosity coefficient.

As formulated, the problem corresponds to the following
equation system:

o to,p=alk (7-1)
o(n oy )=t (B (R
R mx = I (1-2) -
: o 4 9% o, (7-3)
%=a,+a,¢+u'+...+%t~. ©(7-4)

where gy, a, 01 ..., Gm are constants depending on the type of fluid
and the temperature interval.

System (7-1)-(7-U4) contains no equations for the projection
of the velocity on the y axis. The proposed method for solving
the problem makes 1t possible to do without this equation, pro-

vided we do not investigate the pressure distribution over the
“ube cross sectlon.

The v~riation in veloclty along the tube axis can be neglected, .
so that the next-to-last term in (7-2) can be dropped.

To solve the problem we must simplify (7-1) and (7-2) substan-
t'~1"y. To do this, we replace the convective terms in (7-1) by
thelr values averaged over the thickness of the thermal boundary
layer. Since A << h, this approximate way of allowing for the.con-
“~etive terms should not substantially influence the final results.

Thus in place of (7-1) we use the equation
a
| ot -t
“:WF’T_“ (w,&—-}-w,d—”-)dy. (7-5)
0
If the motion were isothermal, w,sd¢dw./dx in (7-2) would equal

= Al 4 :




e R TR T TR TR e

~

\
zcro, and p would not depend on y. These conditions are not satis-
fied for nonisothermal flow, when pn is a variable. We can state,
however, that here w,«dw,/0xr will be small as ompared with wesidw,/oy.
Thus we need only make approximate allowance for terms containing
w and dw,/3z; in (7-2) we use their values averaged over the tube

width A = 2r . This can also be done with 3p/3z. Thus in pl&ce of
\{=2) we use the equation

T [ re(erm )~
()3 %] ,

This way of making approximate &llowance for the inertial terms
in the equations of motion was proposed, insofar as we know, by N.A.
Slezkin, and later utilized by S.M. Targ [2].

(7-6)

The boundary conditions for our problem have the form

for X20 and y=0 =/, w,.=.,=0;]
for x>0 ear,>y>A t=t..%=0; (7-7)

for x>0 wiy=r, o:; =0,

We introduce the following dimensionless quantities for con- .
venience:

o :;‘LO vl-:"o wu=‘=’" Pe= 'Rei X—-;%-l
' Yﬂ-":' and kln;A:.
and write (7-3)-(7-6) in the dimensionless form
%,—?—=B(X » . . (7-8)
7 (5% )=Am. | (19)
—37’-+-,;7‘ =0, (7-10)
E=1+44'6+0,8"+...+a'nb", (1)
where . .’
B(X)y=-5F- 5 (W,-:-;--l- v, 7;‘;’-) a; ., (7-12)
1
0 Ty Wl WC
0= [ (3 e (7 )
0
9 o, o [p oW y
_W(&W)—W(iﬁ)] dy. (7-13)

!&
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The "oundary csnditions will pe

for X0l =0 0=0, W,=W,=0; (7-14a)
for X>0wmal>Y >k 9=1, §-=0; (7-1kv)

=1 s _q :

2, Let us determine the temperature and velocity distributions.

Integrating (7-8) with respect to Y and using the second boundary .
condition of (7-14b), we obtain 3

=BT -4,

Again integrating with respect to ¥ and taking into account

the first boundary conditions of (7-14a) and (7-14b), we determine
B(X) and the dimensionless temperature:

B(X)z-—p’-, (7"15)
e=’-{-—§‘,. (7-16)

Substituting © into (7-11), we find
by b 4 8 (5) by (;_)-.'2'@. . gan

where the bi are new constants; bo =],

Integrating (7-9) with respect to r and taking (7-14¢) into
account, we obtain

14

T=AXEr—1, o (7-18)

The solution of (7-18) will be different for the thermal

“cundary layer and for the flow oeore, which is not involved in
h~at exchange.

For the thermal boundary layer, 1.e., for ¥ < k, when /M
1s described by (7-17): : ;

=4 (x)z{'?om' — ).
=0

i

Integrating this equation with respect to Y and considering '
thcL when ¥ = 0, Vz = 0, we obtain an equation for w; when Y < k:

e by fYitt  piery
w,=A x — .
‘ ’g"“'(m- WFET, . (7-19)
We have the following expressions for Vx when Y = &
n
W,,,=A(X)zb‘ T?f'.!"ﬁ-"r) (7-20)
.o .
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Por the flow core, i.e., when Y>&, p= p.==eonst Here 1ntegra.-
tion of (7-18) yields .

',=A(X)E(¥-;-r)+¢.

Determining o from the conditionW,=W. for ¥V =k we Obi:ain an
equat:lon for W, er>T

Vo= AR B[40 w)—(v—»]+A(x)po. (r—rty). (720

The function A(X) is found from the condition requiring that
' the flowrate be constant:

:{-.dv-F'i-.dv-:;.-
or, in dimensionless form,
[ 1
;V,dl' +,;V.dr=1. (7-22)

We evaluate the first integral using (7-19), and the second
using (7-21); this yields

(7-23)
where

n b o
P'S%_2§7T‘§;' ; (7-24)

For brevity, we henceforth let

R Pyt Pk Poht 4 Poht, . (7-25)

Substituting the value of A(X) into (7-19) and (7-21)
. obtain the final equatiovs for the distribution of velocit w :
for Y <4k

v yu—n YH-I (7-26)
-=Tﬁvrﬂ-r1
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for Y>k
W,=-7'e-{$‘: [(Y—k)—.;.(y-_k-?]+§b‘(,%—,: } (7-27)

When p=y,=po=const, Eqs. (7-26) and (7-27) go over to the
familiar equation

V,=3 (Y:E;). '

which describes the velocity distribution in a flat tube with stabdb-
1lized isothermal fluid motion. The same result is obtained if we

let k = 0 in (7-27). Thus Eq. (7-27) satisfies the apecified velo-
city distribution at the entrance.

The transverse velocity component ¥ 'is found from (7-10)
when we g’low for the fact that ¥ = 0 at ¥ = 0O:

«

Me gy,

Vi=— G

Sy

Using (7-26), we calculate the derivative

b

o, Yi#s  yi+t\ (R4-T db
W=—zbt(m—m TR (7-28)
=0 |
where
T =P+ 2Pk 3P 0.
Substituting (7-28) into the expression for W , after inte-
gration we obtain ¥
]
dk by IR4T Yi¢r  pide
V=% Y)W R [GEn a5 T TS’ (7-29)

{=0
It follows from (7-29) that Vy'- 0 for isothermal flow;

The equations for the temperature and velocity distributions
sti1ll contain the unknown k, which is a function of X.

3. We determine the thickness of the thermal boundary layer
and compute the heat transfer and frictlion resistance. To do this,
we use (7-12) to determine the way in which k depends on X. Sub-
stituting B(X) from (7-15) into this equation, we obtain

[
2 P 00 - 09
We evaluate the integrals in (7-30):

(Vo g il )3 (Fr—Tern) () =
I
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"‘T'W["'L (S TE TEs "L u+|m+a)a+4)]
[] n
2 dk 4 (R+-T) Yi+s  Yise
5" or = 'E"'Jx" ‘+.“+z)5(‘+.-4+a)><

1 ) 4 2 ]
. (,7 "’) e 2"‘ RN TrnrrsersrTn —
A®
L E T

Substituting the values of the integrals into (7-30), after
certain wanipulations we find

[(2“ R)x (ESTES e E

(3—7) 2 (:+2)(c+3;<‘t+4)u+5)] db = - dX. X

Integrating this equation from 0 to k and 0 to X, respectively,
we cbtain an equation representing the dimensionless thickness k of
the thermel boundary layer as a function of X/Pe:

5[ s B'(3"T) ]u‘dk-——"p;o (7-31)
1 where '
t
2 (ETES S e (7-32) B
)
0O
b‘ o Y
B"”'E TFDEHICF DO+ (7-33)
: =0
1 The left side of the equation cannot be integrated analytically,
' and numerical integration methods must be used to determine the way .
in which k depends on X/Pe.
Having determined the relationship between k and X/Pe we can
use (7-16) to determine the temperature field, and (7-26), (7-27),

and (7-29) to determine the veloecity field; it is also simple to
i calculate the heat transfer, since the Nusselt number is uniquely
| determined by k.

The local heat-transfer coefficient, referred to the initial
temperature difference, is

G—‘—'—\— ot
- """'(-aF II-O'

or in dimensionless form,
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Nu=%= . (%%)r =0 '

Determining the derivative from (7+16), we find

£ 4 ‘4 .
The mean Nusselt number over the length 1is
B . - P 4
Ni=S=+ 5 NudX. (7-35)

If the fluid viscosity 1s independent of the temperature, then
(7-31) can be integrated analyctically. Here (7-31) takes the form

[(4-3)eamgs

which yields'

ks 2
-ﬁ--—lw=P—;'x.

On the basis of (7-34), after replacing X by 2z/h, we obtain

Nu'=g Pe (1—33)- (7-36)

For small k, we can neglect %’%5“7“ as compared with unity; then

Nu=1,1(Pe )" (7-37)

and

Nu=1,65 (Pe )", (7-38)

'hese relationships agree with the Leceque equations (6-57) co
and (6-58) with the difference that the coefficlents in the Leveque .
equations are 11% less than the values computed by us. This differ-

ence is apparently explained by the different degrees of approxi-

mation in volved in the basic assumptions used in our solution and
the Leveque solution.

Let us calculate the local friction-resistance coefficient.
For constant density, this will be determined by (4-17) or, after
‘ntroduction of the equivalent diameter, by (5-3):

=N
= ';‘.1

The tangential stress at the wall 18 oo==p, ("-:'4) ; with al- . :
y=e

lowance for (7-26), it can be represented as

p T

%= Fr "
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Cc isequently,

(7-391
where

\

Equation (7-39) represents the relationship between the local
friction-resistance { and the thickness k of the thermal boundary
layer., Pirst determining the relationship between k and X/Pe, we
can use (7-31) to determine £ as a function of X/Pe.

- The mean friction-resistance coefficient for the tube segment
between 0 and X equals

4
i=-‘,l‘—sid4\'. (7-40)

If we let p=mo=pc=const in (7-39), we obtain Eq. (5-12) for the
resistance coefficient with 1sothermal flow in a flat tute.

The resistance coefficients £ and £ found here only allow for
energy losses to friction. In determining the pressure drop along
the tuoe length, in addition to friction we must also consider the
change in flow kinetic energy crused by the variation in the velo-
city profile with the length. Ti.i1s 1s not difficult to do, since
the velocity distribution is known.

Let us 1llustrate the computational method with a specific
example.

4, Sample caloulation. Grade MK oil moves in a flat tube.
The oll temperature at the entrance is £4=150°C; the wall tempera-
ture is (=328"C. The relationship p=[(f) between the o1l viscosity
and the temperature is specified as an experimental curve.

TABLE 7-1 :
1 Y ¥ t—t, ) 4 a—
150 5,96.10- 68 1,00 140
95 23025' lo.. 14'2 0'51 0.3
38 32916"0-. I.O 0.m 0.0

1) u, Nes/m?,

a) Taking a polynomial of degree two as (7-17), we determine
the coefficlents by, L, b To do this, we take three values of
u on the curve a=f({): the values at temperatures tg>s ts’ and some

intermediate temperature t’, for example, =95°C. For these values
of t, we Jetermine us/u, 0, and ¥Y/k [from Eq. (7-16)]. Table 7-1 )
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shows the results of the calculations.

The solution of the equations (7-17) set up for the three se-
iected points yields: bo=1, b;=39,2anaby=178.

b) We find the coefficienss of Polynomial (7-25). Using (7-24),
we obtain Py=193; Pj=—3146; Py=22,0 cacP3=—58.

By (7-32) and (7-33), the coefficients b5, «ib; will have the
following values: b5;=0419; %,-0.139.

¢) Evaluating the integral on the left side of (7-31), for
arbitrarily selected values of k, we determine the valueq of the
group l—,'e-.%. corresponding to the selected values of k. For these

same values of k, we use (7-16), (7-26), and (7-27) to determine
the temperature and velocity profiles, and employ (7-34) and (7-39)
to determine Nu and fRe,. Table 7-2 shows the results of calcula-

tions for Nu and §{Re, in condensed form. Using the relationships

found for Nu and ERe  as functions of g .%, We calculate i and
tRe_ (Table 7-3).

’

TABLE 7-2
A -,':.-:-nm- Nu tRe, Y -ﬁ---{—-w Nu the,
; '
0 0 @ 0,829 0.10 4,30 40 0,978
H 0.0' 0. m 008‘2 o.” ﬂ.s m lo'“
0.02 0. 200 0,856 0.50 29 8 1,908
0,05 0.54 80 0,922 1,00 11932 4 ,700 .
TABLE 7-3
-,!.—-'T‘--w- Nu e,
0.1 207 +86
1,0 97,0 90
10 45,3 0,97
100 21,7 1,17
1000 10,9 1.61
10000 6,78 2,

Let us look at the results of the theoretical calculation and
¢ npare them with experimental data. Figure 7-2 shows the distribu-
Lion of temperature and velocity over the section of a flat tube
for various values of the reduced length. The curves for © show

that as [;'6..,'} increases, the width of the thermal boundary layer

inere:cses considerably more slowly. (Curve 1 for W corresponds to
1sothermal flow, and also gives the velocity Aist¥ibution at the
iabe entrance.
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Pig. 7-3. The Nu number as a function of %fh' for the data of the

theoratical calculation. 1) %am 2) oy 3) Leveque equation
for flat tube.

ro ., ,
It 1s clear from the graph that the variation in viscosity
with temperature has a significant influence on the velocity profile,

Thus, for example, with cooling of the fluid (pc/p.=58 ""’"1156% z0.00l),

the velocity is less by roughly a factor of 5 at a distance Y = 0,1
from the wall than for isothermal flow, while the velocity on the
axis 1s roughly 25% greater. Conversely, with heating of the fluid,
the velocity at the wall will be greater, and the velocity at the
' core smaller than the velocity for isothermal flow. This type of
velocity variation accounts for the influence of variable viscosity
on the heat. exchange and hydraullc resistance.
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Figu = 7-3 shows the local Nu number as a function of égLé. o
'or grade MK oil at “s/“o = 58 (see the example). It also gives
curves for Eq. (7-36) with u /uy = 1 and for the Leveque equation

(6-57). The last two curves are nearly parallel. As we have roted
earlier, the difference in the Nu values calculatéd from these
equations amounts to about 10%. The curve for usluo = 58 first runs

sarallel to the other two curves (for -P'T-%<IO"); its slope then

gradually decreases as the thickness of the thermal boundary layer
I

increases (at 5;~§4§0bh k 1s close to unity). Pigure 7-4 shows
Nu as a function of Pe h/x for trensformer oil and grade MX oil
for various values of “s/“O' For comparison, the graph shows curvese

for u /v, = 1, plotted from (7-38) and the Leveque equation (6-58).

The data shown in Figs. 7-3 and 7-3 indicate that the relationship
between u and ¢ has a substantial influence on heat transfer. Thus
wiaei us/uo changes roughly from 0.2 to 1000, all other conditions. -

being eqmal there 18 a reduction by a factor of 3 in the heat trans-
fer. With cooling of the fluid, heat transfer will always be less
under these conditlions than for heating, since at the same value

of Pe h/x, the velocity near the wall will be greater for heating
than for cooling.

Figure 7-5 compares results of a theoretical determination of
heat exchange in a flat tube with experimental data. Since there
are no such experimental data available for comparison purposes,
the data of E.A, Krasnoshchekov and the author [12] are given; they
apply to heat exchange in a tube of rectangular cross section with
side ratio b/k = 5 and relative length I/h = 226. The physical
properties at t =(1/2) (¢, + ts) were selected for the determination

of NU and Pe h/1 from the experimental data. The latter correspond
to fairly small values of Pe #/l, where the width of the thermal
boundary layer 1s commensurate with /2 and the theory is inexact.

It is for this reason, most llkely, as well as differences in geo-
metry, that the experimental points lay 13-15% below the theoreti--
zal curves. ;

Figure T-6 shows the results of a theoretical friction-resis-
.ance determination for grades TM and MK oils moving in a flat tube,
for var!ous values of u_/u,. The axis of ordinates shows the ratio :
cf the mean friction-regisgance coefficient in nonisothermal flow
> the friction-resistance coefficient Ei g for i1sothermal flow.

The latter 1s computed on the assumption that the fluld tempera-
ture everywhere equals the wall temperature. It follows from (7-39)
md (7-40) that for the same value of Reg,

-E-
o3

o

— 5 -,‘E-dx,

where
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The »rizontal 1line ‘2 corresponds to isothermal flow at a
.luid ven erature t = t_. Curves 1, 3, 4, and 5, which correspond

+ flow v th heat exchange, show that the relationship between u
and t has a great influence on the resistance factor. In the final
analysis, £ also depends on Pe h/x owing to the variation in vis-

rosity with temperature. At Pe—z——ooo‘ér ;-6', the coefficient

T=ltee L=, 1.e., 1t equals the resistance coefficient in iso-
chermal flow, computed from the entrance temperature. When Pe h/z

is small, E will approach g, .. Thus, E wiil always lie between
51 5 and 510’ and 1t may vary widely for the same Reynolds number
at the entrance. '

The theoretical curves of Fig. T-6 coincide with experimental
“ata obtained for grades TM and MK oils flowing in a‘rectangular
tube with a side ratio b/h = 5 [22]. As the graph shows, the ex-
perimental data are in quite satisfactory agreement with the theo-
retical results. Under the least favorable conditions (small Pe h/z),
the experimental points do not deviate by more than 10-12% from the
theoretical curves,

7-3. THEORETICAL DETERMINATION OF HEAT EXCHANGE AND RESISTANCE IN
THERMAL ENTRANCE SEGMENT OF ROUND TUBE

1. All the conditions and assumptions formulated in the preced-
ing section for flow in a flat tube are retained in this problenm.

For flow of a fluid with variable viscosity in a round tube,
the initial equation system will have the form

e R it PR

L ()~ o (s o ) - () . T4
%'k_:"?qf("')f"p‘ , " (7-43)

F=ctaitalt ... faum (7-4)

In contrast to the preceding problem, here we allow for the
i at of friction in the energy equation to illustrate the general-
ity of the method.

As in the preceding section, we reylace the exact equations
(/- sjand (7-42) by approximate relationships in which the right
sides are averaged over the thickness of the thermal boundary layer
and the tube radius, respectively. Moreover, we replace the coordin-
ate r by the coordinate y = r, — r, measured from the wall (ro is
the tube radius), and wy ==, '
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~ After the approximate- equations have been reduced to dimension-
less form, following certain manipulations we obtain the equation

system

= (1= N3y | =80 =2t
=ra[0-nE-F]=am Groes
Tt -nvi=0 i1=26)
-'F:-=l+a',0+a’,6‘+...+a’..8". (7447)

Here we let

]

s (R wF) bt (Fe) ), -am

A(X) is a certain function of X, which shall be defined below;

K]

e

t—t. o, _w, __ w2,
9=‘.—_‘-.. Vs—‘-'—."’ Wu——;L » Pe= a '
® ;’! L 5 Y=—’- udk=—A"

=P"(‘o—"e)'o' =T . e e
The boundary conditions will be the same as for the problem
of heat exchange in a flat tube. They are determined by equation
sysvem (7-14a)-(7-1l4c). ;
2., We compute the temperature and velocity distributions.

Integrating (7-44) with respect tp Y, and taking the second bound-
ary condition of (7-14b) into account, we obtain

F¥Y —_k ) A
ﬁ7==B(X7[T:37-?UT£%F'

or '
3_0,;_.:';9_)[",-_____’;23-(1—)') ) (7-49)

: Again integrating (7-49) with respect to Y and taking into
account the first boundary condition of (7-l4a), we obtain

e="—‘2’f-’[—(1 —kpin(l—Y)— (y—-','-)]

Using the first boundary condition of (7-14b), we find an
expression for B(X) and the final equation for ©:

2
B(X)=— — (7-50)
(=R —k+ (k—"T)
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hte L4

_u-krnna-m(r-!,'-)
-fu—wuu—n+0-%).

(7-51)

Since the thickness of the thermal boundary layer is assumed -
to be small as compared with the tube radius, in calculating the
thickness, and in determining the viscosity variation over the bound-
ary-layer thickness in (7-48), we can neglect Y as compared with
unity (i.e., the curvature of the tube surface). In such case, in
place of (7-50) and (7-51) xe obtain the equations

B(X)=-—-$-. (7-50a)
o=21-1, (7-51a)

which coincide with the corresponding flat-tube equations. ,
Substituting the value of 6 from (7-51a) into (7-47), we obtain

=2m
Be Y \¢ &
=l
where the bi are new constants; bo =1,

Integrating (7-45) with respect to Y and noting that (-L;z " =0,
we find Yel

F=rAnL =, (7-53)

Integrating (7-53) for ¥ < k [in this case, ug/u 1s described

by Eq. (7-52)] and Y > k (here u = p, = const), we obtain the fol-
lowing equations for Wz: .

“for Y<k
Ws=-i-4(x)z%‘r =) (7-54)
=0
‘for Y=~% _ : , LA
n : © (7-55)
ht [ ]
7m0 P e —rh)
im0 ,
{for Yok |

Wy e -;-A(X) {.‘.':_ [.;_(yn_k-).._(yf_k)]_'.gb‘ (IT:-"!-T.:TI)} (7-56)

The functicn A(X) 18 determined from the condition req'uiring
that the flowrate be constant: .
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Going from the coordinate r to the coordinate y, after this
equation has been reduced to dimensionless form we obtain

5 W.(l —Y)dr+ j V.(1l—NdY =1.
]

Using (7-54) to evaluate the first integral and (7-56) for
the second, gnd performing certainr manipulations, we find

2 2
AN = P PR T PR TP =T St
where
1 )
P.=T'%'
” &
Pi=—ft+Y Fr
i=0
=38 _an b
P=zi YT (7-58)
=0
P=—f 43V 2,
I=6
1 )
b=k
i=0 ]
R=Py+Ph+Ph*+ P+ Pk, (7-59)

Substituting A(X) from (7-57) into (7-54) and (7-56), we obtain
the final equutions for wz:

“for Y<k ,
Vo= Y (Fer-Fen); (7-60)
. () :
forYa>¢k

W.=-,';{%[(v—k)—-é—(v'—k'>]+2"b.. (,,,Ll—,-g)}. » (7-61)

=0

For isothermal flow, (7-60) and (7-61) yield the familiar
parabolic velocity distribution: '

Wem2Y(2—Y),

or
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We determine Hb from the continuity equation (7-46). Within

the thermal boundary layer we neglect Y as compared with unity;
this yields

i
v,=-5%'x;¢v.
S
Substituting in ¥, from (1-60) and integrating, we obtain

V-=u}] . ‘“’m%%'-s- TR (7-62)

where |
Tu=Py 2Pk 4 3P3-1-4P it

3. We find the thickness of the thermal boundary layer and
compute the heat transfer and friction resistance. The relationship
between k and X is determined from (7-48). Substituting B(X) from
(7-50a) into this equation, we have

-2l f [(v.;‘}+v,§}) +'-‘h' -‘,,!-)‘] a. '(1-633

Using the equations for Wos W, and 0, we evaluate the inte-

grals: ¥

.S s'a'x"”'='r'7x [ k'pmm
-*ﬂmﬁmzrr]
=0
j‘*’d‘;’r” -%'-é'frﬁ"'(‘k +n [ wrversrrvrEe—
’ im0 .
[ - .
~ TR TFRUES )

Sw—- -5,-) dv...-k.-( X -u'g +r§,—§,)

Substituting the values of the 1ntegrals into (7-63) and
integrating from 0 to k and from 0 to X, respectively, we finally
obtain
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AN A Y ’ ‘
5, (zl 7‘2 s.t(a T)ik' =g, (T=6h)
1 43 # 77 (Ds — 2Dgk -+ Dph)

where

5=' by .
' z‘l"ul)'li—ﬁ‘l_‘v_a- FHu+n’
=0

. y (7-65)
B5,= b —:
= ] * -)J
1 e .
'.=-flk‘l=—(-"::‘¢)o (7&66)
" “. n . n 5
D=Yr57 B=Y 5y D=Yrg5 . (71-67)
=0 =0 =0

’

Equation (7-64) establishes the relationship between the di-
mensionless thickness k of the thermal boundary layerr and X/Pe.
The second term in the denominator of the integrand allows for
the heat of friction. The integral on the left side of the equa-
tion must be evaluated numerically.

The only structural difference between (7-64) and the cor-
responding equation for a flat tube lies in the term allowing for
the heat of friction. It should be noted, however, that the func-
tions T and R differ in the equations for the round and flat tubes.

Evaluation of the influence of the heat of friction shows that
in many cases it can be neglected. Thus, for the conditions of the
example given in the preceding section ltlow of grade MK oil at
ug/uy = 58), the term allowing for the heat of friction amounts to

only 0.7% of the denominator.

Referring the local heat-transfer coefficient to the initial
temperature difference ts - to, we obtain the following expression

for the Nusselt number:
od 00
Nu= T'—‘—' 2(57-)V=o »
where d = 2p0.

Substituting in ¢ from (7-51), we find

Nu= : -68
l+2——1—;: :) In(l—k) (7 )

If we replace (7-51) by (7-5la) (i.e., we neglect the curva-
ture of the tube surface), then

Nu==-z-, (7-68a)
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which coincides with the corresponding flat-tube equation.

For constant viscosity, (7-64) takes the form 3
1 &
('5—76) # !
dk=d (7-69) "o
|+a-.(» »+-§-u) (WT) S :

Integrating this equation and neglecting the heat of.friction,
we obtaln

%(1—wh)=p1 | -(1-70)

Solving (7-68) and (7-70) simultaneously, we can find the
relationship Nu__f(-1r)for the constant-vliscosity case;

If we use (7-68a) rather than (7-68), i.e., if we negIecf‘the
curvature of the tube surface, then for u = const we have '

Nu' =5 Pe - (1— ). (7-70)

For large values of Pe d/x, where k is small and Nu large,
(7-71) will take the form

Nu=121 (pei)"’. (7-72)

This coincides with the Leveque.equation for a round tube,
with the sole difference that the constant coefficient in (7-72)
. 18 11% larger than in the Leveque equation (6=55).

Using Eq. (7-60) for W,, as in the prev’ousl} considered flat-

tube case, it 1is not difficult to obtain an expression for the lo-
cal friction-resistance coefficient:

16 1 S .
- E=E.T' . (7 73)
where Reg —%-
For isothermal flow, R = 1/4 and (7-73) go2s over 'to the famil-
i1ar formula (5-10) for the resistance coefficient of a round tube.

4, Let us look at the results of the theoirstical computation
and compare them with experimental data. Figure 7-7 shows the temp-
erature distribution over the cross section of a round tube for
various values of k [the solid lines correspond to Eq. {7-5la),
and the dashed lines to Eq. (7-51)]. When k¥ = 1, the computation-
al results agree for both equations, When k = 0.5, the dashed
curve 1s somewhat lower. As k diminishes, the distance between
the curves 1s reduced, and at k = 0,2 and 0.1 they nearly coincide.
For very small k (about 0.01 or less), the dashed curve should run
somewhat above the solid curve. Thus tube curvature has relatively
little influence on the temperature field.

%
)
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Figu ‘e 7-8 compares the different equations for the local Nu
number at constant viscosity. Equation (7-72) and Leveque equati n
(6-55) are represented by the horizontal liner 3 and 4 in the se-
lected coordinates. As we have already noted, the difference be-
tween them does not exceed 11%. The curves corresponding to the
other equations lie between curves 3 and 4 for the most part.

Figures 7-9 and 7-10 show the velocity profiles for h 1ing
and cooling of the fluid. For heating, as compared withthe veloclty
for isothermal flow, the velocity 1s nigher near the wall and lower .
at the center of the tube. Thus the veloclty profile becomes more
rounded. For cooling, the reverse effect is observed, and the velo-
city of profile takes on a characteristic elongated shape. It is
interesting to note that for the same values of k and us/uo, the

velocity variation at the axls is sharper for a round tube than for
a flat one (compare Figs. 7-2 and 7-10).

Figure 7-11 shows theoretically computed curves for the local
Nu numbers as a function of Pe d/x or a flow of grade MC oil. Curve
1 corresponds to oil heating at us/u0 = 0.78; curve 2, constructed

from Eqs. (7-68) and (7-70) refers to the case in which Ug/ug = 1;
curve 3 corresponds to cooling of the oil with us/uo = 58 Re fluid

velocity at the wull 1s higher for heating and lower for cooling
than the isothermal-flow value; thus curve 1 is above, and curve 3
below curve 2. As the graph shows, as us/uo varies from 0.078 to 58,

heat transfer 1s reduced by roughly a factor of 3. .
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Fig. 7-10., Veloelty profiles in round tube for cooling of fluid
(flow of grade MC oil at t; = loo°c, t, = 20°C, and ng/ug = 58) .

1) k = 0, isothermal flow; 2- ¢=os: Pe%:m-lb-: 8—k=0,2;Pe-;i=|0,9-|0':4—k==0,5:Pe{—:tll.
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Figure 7-11 also gives experimental data [13] for lLieat transfer
in a round tube during flow of grade MC oil; the data were obtained
under the same conditions as the theoretical curves 1 and 3. As we
can see, the experimental data are in satisfactory agreement with
calculation. It 1% only for the case of fluid cooling at Pe d/z >
> 7¢10* that the experimental curve is somewhat steeper. This is
caused by the influence of the hydrodynamic initial segment, which
in these experiments formed part of the heat-exchange segment.

Figure 7-12 shows the results of a theoretical determination
of the mean I'riction-resistance coefficient. The horizontal line
corresponds to isothermal flow (ZRe = 64), the upper curve to flow
of grade MC o1l with heating (u /uy = 0.078), at the lower curve to

cooling (us/uo = 58). The experimental data [22] plotted on the same
graph are in good agreement with the theoretical results.
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/-4. THEO ETICAL DETERMINATION OF HEAT EXCHANGE AND RESISTANCE FOR
. A ROUND. TUBE

1. In contrast to the preceding section, we shall consider flow
and heat exchange along the entire tube length, anld nqt just in the
thermal initial segment. As before, we shall assume that the fluid
viccosity depends on the temperature, while the ot :r physical pro-
perties are constant. The velocity profile at the-en:irance is taken
to be parabolic, the temperature distribution at the entrance uni-
form, and the wall temperature constant. Following [9] 12 the analy-
sis, we assume that the temperature differences in the tlow are not .
too large. This permits us first to assume a linear relationship be-
tween 1/u and ¢t and, second, to assume that the radial velocity com-
ponent 1s small as compared ’with the axial component.‘ ;

Letting v, ® 0, we obtain awz/az = 0 from the equation ol

continuity. Using these assumptions and neglecting the hettuof
friction, we reduce (7-41) and (7-42) to the form

- (7-74)
L ”,«1,’J y
| _'.T( ),L = ~ (7-15)
where p is a function of z alone.

Integrating (7-75) t&ibé“with.gnspect to », we find
7 - .
oot (e, (7-76)
r

Substituting W, into the expression for the mean velocity over
the section,

r
6::-:2’- ( Wyl df.
0
b
we represent the pressure gradient as follows:

oo wi - (71T
X

=

Substituting this expression into (7-76), we obtain

o’ 7

Wy 'g STdr J

T R ' (7-78)
, S(r‘f—;-dr)dr

Using (7-78) and going over to dimensionless independent var-
iables (in (7-T4), we write the last equation as :
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=1
5 L .
I T — Damae o of (LB 5 (2 )
85(!-—”)[‘-—7—4}']4)’ .
0
vi.re X=%--‘;—: Pe=s!:;; Y=-"T==l._.’_.

(] -
We introduce the dimernsionless temperature 0:=£:f;

Tollowing equation to represent the relationship between viscosity
and temperatu-e:

and use the

} i
-'-.‘"-=-=1+10. (7-80)
where ¢ 1s a constant parameter.
Tetting © = 1 in (7-80), we find

l*o_l.

Y==;;

where ug and Uy are the values of the viscosity coefficient for

the wall temperature and the fluid temperature at the entrance.
For cooling of the fluld, pe/po>1eay>0; for heating, me/mo<lendy<O0.

Substituting u from (7-80) into (7-79) and going over to the
dimensionless temperature, we obtain

) 4

§(I—Y)(l+10)a"’ .
00

=

[] Y *
85 (=) L[ -1 +10)dY]dY

= [1-N5F]- (7-81)
This equation must be solved under the following boundary

conditions.

for X=0m0 <L Y<10=1;
for X =0 amY =06=0,

o
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Fig. 7-13. The Nu number in a round tube as a funccilon of ﬁrﬁ}.
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. We scek separate solutions of (7-81) for. the thermal initial
segment and the region of stabilized heat exchange; we then join
~hese solutions, In first approximation, both the first and second
sclutions are obtained by means of the Kaiman-Pohlhausen integral
method. The solution found 1is substituted into the initial differ-
ential equation, which is then transformed into an ordinary linear
second-order differential equation in 6. Solution of the latter
gives the final expression for the temperature profile. The temp-
erature profile found by this method is in significantly better
agreement with the exact solution (for constant viscosity) than
the arbitrarily chosen profile (first approximation for 6) in
the usual integral method. Knowing the temperature profile, it .
is not difficult to compute the Nusselt number, velocity profile,
and resistance coefficient., 2

TABLE 7-U4
The Nu Number for a Round Tuhe as a Punction of
—p'e—{- for Various Values of u,/u, When t_ = const

L Nn s e e W
ﬁ%:ou L 04 %}-oa
0,00075 16,004 0,0005 15,470 0,004 15,194
0,0047 ,685 0,0038 7,310 0,00335 7.172
0,0130 5,317 0,0117 5.118 0,0110 4,973
0,0247 4,447 0,0234 4,320 0,0227 4,217
0,0500 3,912 0, 3,829 0,0500 3,760

0.0750 3,820 0,0750 3,781 0,0750 }
0,1000 3,781 0,1000 3,752 0, 1000 3,725
0,1250 3,752 0,1250 3,734 0,1250 3,717
0, 1500 3,73 0.,1500 3,722 0,1500 3,711
e B Be
et w7 pe 10
0,0002 14,427 0.0002 14,274 0,0002 14,293
0,00235 6, 0.0022 6,440 0,00215 6,382
0.0091 4,425 0,00875 4,294 0. 4,231
0,0208 3,737 0,02045 3,600 0,0203 3,531
0,0500 3,353 0,0500 3,200 0,0500 3,115
0,0750 3,432 0,0750 3,284 0,0750 3,193
0,1000 3,500 0,1000 3,368 0. 1000 3.276
0,1250 3,555 0,1250 3,445 0,1250 3,360
0,1500 3,508 0,1500 3,511 0,1500 3,438
0
Roe |
wl\ 2 b= 01
34
7
‘80
w ya
10 Py

Q 001 gor Q03 004 Q05 008 807 G08 009 010

Fig. 7-14, Values of ERes for

a round tube as a function of
1 x
Pe "d
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Numer’ :al calculations were carried out by digital computer
for values of us/u0 from 10 to 0.1. Some results o these zalcu-

lations are shcin in Table 7-4 and Figs. 7-13 and 7-14.

The relationship between Nu = ad/A* and X is shown in Fig.
7-13 for us/uo = 0.1 and 103 the curves indicate that the change

in viscosity with temperature has a stronger influence on heat ex-
change in the thermal initial segment thar in the thermal-stabiliza-
tion region. It 1s also interesting to note that at us/u0 > 1, Nu

passes through a minimum as X increases, while it decreases mono-
tonically when us/u0 < 1. This results from the joint action of

two factors, the reduction in heat transfer in the thermal ini-
tial segment, which oceurs for all values of "s/"O’ and the in-

crease (for'us/u0 > 1) or decrease (for ug/ugy < 1) in heat trans-

fer resulting from the change in velocity near the wall with tube
length caused by the variation in viscosity.

Thus when the physical properties of the fluid. in particular $
the viscosity, are variable, Nu will vary along the length in the
thermal-stabilization region as well, although far less strongly
than in the thermal initial segment. Naturally, when X + =, Nu
approaches its limit, Nu, = 3 This constant value is attained

only a certaln distance away from the entrance, where the tempera-
ture differences in the flow become sufficiently small. It is un-

derstood that this difference by no means correspond to the length
of the thermal initial segment,

When the physical properties of the fluid are constant (see
Chapter 6), the length of the thermal initial segment is defined
as the distance from the entrance beginning at which Nu takes on "
a constant value., It 18 quite obVvious that with variable fluid
physical properties, this definition is unsuitable. For this more
general case, by the length of the thermal initial segment we
should mean the distance from the entrance beginning with which
the temperature fleld and, consequently, the Nusselt number cease
to depend on the initial temperature distribution (i.e., the dis-
tribution at x = 0).

r As we might expect, the frict10n-resis§pnce coefficient

-% (Fig. 7-14) depends not only on Rc,—?. but also on X and
Hg/Hg e For the limiting cases, 1.e., when .%"~1 or X + », the quan-
tity ERe approaches a constant value corresponding to isothermal

flow (ERe = 6l4), i

2. The results given here and in the preceding sections hold
only for liquids. For a gas flowing at high temperature heads, we
must consider not only the way in which u depends on T, but also
the dependences of p, A, and ¢_ on T. Some heat-exchange and fric-

tion calculations have been published for air under cooling condi-
tions far from the tube entrance with T = const [10]. They show

®/178 ' ' - 166 =
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hat i1f ) ir the expression for Ku_ 1s selected for the mean mass
*emperatusre T, then as rsﬁi decreases from 1 to 0.25, Nu_ will rise

when the physical properiies are varisble. This increase is not
great, however, not exceeding 6% of tne Nu_ value for constant phy-

sical properties. The registance coefficient under these conditions
varies as a function of rs/?'in'?Oughly the same way as when q_ =
= const (see §9-4). 8

Worse-3chmidt and Leppert [11] have made a more detailed in-
vestigation of heat exchange and resistance in a round tube for a
flow of a gas with variable physical properties. The system of equa-
tions of motion, energy’ and continuity, describing the boundary
layer in approximation,® were solved numerically by finite differ-
ences. The calculations were carried out for air with allowance
for the way in which p, ¢, pemd¢d depend on T as well as the relation-
ship between p and p, in accordance with (3-5), (3-7), (3-9), and
(3-10) for values n=0,12; n, =067 «an, =071, Pr = 0,72 (for the gas
temperature at the ertrance). The flow parameters were so chosen
that the influence of energy dissipation, work of gas expansion,
and free convection would be negligible. The paratolic velocity
profile and the uniform temperature distribution (7 = 7,) were spe-
cified at the tube entrance, while a constant temperatuge (T = rs)

was given at the wall.

The calculations were carried out for T./Te=05; |; 2.5 They
show that the variable physical parameters have relatively little
influence on heat transfer,.and quite significant influence on the
resistance. A somewhat unexpected type of variation in Nu as a

fvaction of TS/T was also found. For small values of the reduced
length (Pel% <10-%), Nu increases, while at still higher values it
decreases as Ts/To becomes larger. For all values of X, the resis-
tance coefficient increases as TS/T0 increases. These features are

associated with the way in which the longitudinal and transverse -
velocity components and physical properties are distributed over
*he tube cross sections at differént’ distances from the entrance. 1 .
The variation in Nu and § as a function of TS/T0 is observed chiefly

w’thin the thermal initial segment, whose length is roughly the same
&as for constant physical properties. For x>k., these relationships

t1egenerate rapidly, and Nu and £ approach the corresponding values

tor constant physical properties., The reason is that at the fairly

i.w gas flcwrates corresponding to laminar flow, with large temper-
ature differences at the entrance, the mean mass temperature of the
1s varies rapidly along the length, and 7.) - |. The distance from

Lo envrance at which T_/T takes on a value ciose to unity will

rough.y coincide with the length of the thermal initial segment.
For the local Nu number and local resistance coefficient §,

interpolation equations describing the computational results to
which +3% have been proposed [11l].

S /ellT8
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Por 0,5 <§:_<2 waa X > 0,0005

Nu=3,66{1 — exp(—27X)]+ aX " exp (—5X), (7-82)
where
\ a=0,905+ 0,128 72; -
b= 16.2+3.90%;

'Od s s | x. __;.d . '
N\l=(r—_._r)l- X—W'T’ Pe——a—‘—o

Here T is the mean mass temperature in the given section (found from

the mean mass enthalpy for this section); Azh 1s the thermal-conduc-
tivity coefficient of the gas at T; Eb is the mean gas velocity over
the section at the entrance (i.e., for = = 0); a; 1s the coefficient
of thermal diffusivity for the entrance temperature To-
For o.5<-;:-<3--«x>0.0005
Te\™

ERe=A T) (7-82a)

where

A=64um m=0,81 for o.s<-’fa<1;

A=64emam=1,0 fori<-?-<1.5;

A=62emm=1,1 ror 15<1,:-<3;

'E=$1.=3 Rczﬁd-?
w

P

here pw 1s the mean mass gas velocity; w 1s the mean gas velocity
in the given section; Mon is the dynamic viscosity coefficient of

the gas at T.

Equation (7-82a) has also been confirmed for helium and car-
bon dioxide (for T I'>i)with the difference that for 002, when
1,2 <ZT- 52 A 620ndm = 25, /

Equations (7-82) and (7-82a) are valid for T, = const, values
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>fp¢,.=.!'ai >§00and riegligible influence of free convection., The last
sondition will be satisfled 1f :.'__ <20.

7-5. RESULTS OF EXPERIMENTAL INVESTIGATIONS INTO HEAT TRANSFER

Several investigators have carried out experiments on heat
transfer with viscous flow of a fluid in tubes [11, 13-19]. The
mean heat transfer in tubes of various diameters and lengths was
measured in the earlier studies [16, 17, 18]. The measurement meth-
od was imperfect, so that the medsurement reésults occasionally con-
tained significant errors. The empirical formulas for mean heat
transfer based on these measurements either neglect or make improper
allowance for the influence of several factors. Thus, for example,
the formulas of Kraussold [16] and Boehm [18], cften recommended

’.4~
[ 4
-
i
” \
” \KQ
S<
» 2 —
J !
I I I R B AT R A 7 ]
Fig. 7-15. Number Nu = f(z/d)
for various values of us/uzh
with constant Pe,
Be . | J o5 Be g .
- g 0,09 —0,1; :-ﬁ- 031-03¢; :—z-u-u.
P Pe
) s = 9 20 —~ 30; §——— = 250 — 600,
8§ » Ly
0 » -

.n the literature, do not properly allow for the influence of'Pe
and the ratio of tube length to dlameter, and totally neglect the
influence of the relationship between viscosity and temperature.

Measurements of local heat transfer have been carried out by
the author together with Ye.A. Krasnoshchekov and L.D. Nol'de [13,:
14, 15]. The heat transfer was studied for viscous flow of grade
MC 01l in a round tube; the physical properties of the oil were
f++:t determined experimentally. The o0ll was supplied to the tube
from a stilling chamber through a nozzle of smooth configuration;
there wis . mixing device at the tube outlet. The local values of
heat-flow density were found from the temperature drops in the .
thick wall of the tube, which was externally heated cr cooled. :
The temperature of the outside tube surface was held constant,
while the temperature of the inside surface varied along the length
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in accordance with the nature of the change in the heat-transfer
-coefficlent. The experiments encompass the following ranges: Re
betweeen 44 and 2100, Pr between 130 and 3900, &and us/uzh between

0.07 &and 1500,

.L

H i—_
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Pig, 7-16. Number Nu = f(z/d) for various values of Pe at Hg /My =

{=Pem 10:100; 2—Pe=<6:10; $—Pe:==3.10; ¢—Pem
=230, §~Pe == 1,5:10%,

Figures 7-15 and 7-16 show the change in local Nusselt number
along tube length for certain characteristic ,experiments. Near the
tube entrance, Nu is proportional to (z/¢)-!/2%, while a certain
distance from the entrance it is proportional to (z/d)~!/*. When
we consider that the velocity was distributed nearly uniformly
over the entrance section, this type of variation in heat transfer
near the entrance can be explained by the simultaneous development
of velocity and temperature profiles with the length. Veloclity-pro-
file development terminates at the end of the hydrodynamic initial
segment, and the —=1/2 power law becomes a —1/3 law. The latter cor-
responds to the relationship usually observed for the thermal ini-
tial segment with stablilized flow.

Heat exchange with simultaneous development of velocity and
temperature profiles along the cube length 1s considered in Chapter
.12. Here, therefore, we shall only give measurement results for val-
ues of z/d exceeding the length of the hydrodynamic initial segment.
These results will clearly be valid for the entire thermal initial
segment as well if the entrance velocity 1s parabolically distributed.

Looking at Figs. 7-15 and 7-16, we also see that when Pe is
constant, heat transfer drops as u_/u,, increases (Fig. 7-15), while
when us/uzh stays the same, neat t ana?er rises with increasing Pe

(Fig. 7-16). Here Nu~Pe'® sufficiently far from the entrance. Thus
in complete agreement with theory, Nu is proportional to(ggﬁ;)””
1:.. the thermal initial segment for flow that 1s being stabilized.

To account for the influence of the variable viscosity, the .
experimental data was represented as

Nu _ o Be
m-;_?(l"m)'
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where Nu 's the experimentally determined Nussel‘ number; Nuo is
+*pe Nusselt number (for the same value of E'Z) calculated on the
assumption of coratant fluid physical properties, us and U,y are

the dynamic viscosity coefficients at wall temperature and at the
mean mass temperature of the fluid in the given section. We can

use (6-59), which is valid p-¥<00l as the simplest relationship

for Nuo.

M
L !

o - = .Y

v i
e =
G G) Q2 0v088081 2 o 6810 20 o0 40000 200 800N 10N W
Fig. 7-17. Ratio Nu/Nuo as function of "a/"zh with
developed velocity profile at entrance.

This treatment of the experimental data shown in Fig. 7-17

leads to the following interpolation equation for local heat trans-
fer in the thermal initial segment of a round tube:

Nu==1,08 (- 4)""(-.:)""“- (7-83)

The heat-transfer_coefficient in (7-83) refers to the local :
temperature head t - t. The fluid physical properties entering 1nto',

Nu and Pe are chosen for a temperature t—-—-a,4—o

Equation (7-83) 1s valid in the region of values F?‘1F<:001
and 0,07<-X= "‘ <1500 both when the wall temperature is constant and
vhen it varies along the length (if the variation is fairly small).

We integrate (7-83) over the length, assuming that Mg Mgy 18

constant, since the mean mass temperature t varies 1little along the

‘ength. As a result, we obtaln an equation for the mean Nusselt
LJumber over the length:

Nu=185 (g ) () - (e

.n (7-84), the mean heat-transfer coefficient refers to the . -
mean logarithmic temperature head (since t varies little with the
length, so that the temperature head can ordinarily be repldced
by the orithmetic mean). In the expressions for ﬁ_yand Pe, the
physic .. properties of the fluld and the value of M, are selected

for a temperature tgi;-% At,. Equation (7-84) can be used for
7alues FI"":_<O'05' ’
€
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Equation (7-84) differs from the familiar formula of Sieder
and Tate [17] only in a constant coefficient (1.5 rather than
1.86), Taus this formula gives values of heat-transfer coeffi-
clents tiiat are 20% too high, which 1s not surprising, since it

18 based on experimental data that deviate by as much as 1090%
from the average curve.

0.1b

The ratio (us/uzh)' can validly be used to allow for the

i.fluence of variable viscosity in (7-83) and (7-84) for 1liquids
(petroleum products, water, etc.) whose dynamic viscosity coeffi-
clent decreases in roughly the same way with temperature as for
the 1liquids employed in the experiments. Naturally, this way of
allowing for variable viscosity 1s riot suited to gases whose vis-
cosities increase with temperature.

To conclude, we note that (7-83) and (7-84) refer to the
case of vis mus flow of a fluid, where free cnnvection does not
have a substantial influence on forced flow and, consequently,
on heat transfer. This‘:éﬁﬁ¢ion 1s satisfied in approximation
1f Gr-Pr<8.10° where Gr=03"; At=|f; —¢,; ¢, 18 the fluld temperature

at the tube entrance; and the physical properties in the Gr-Pr
expression are selected for a temperature of ¢t = (to + ts)/z.

7-6. RESULTS OF EXPERIMENTAL INVESTIGATIONS INTC HYDRAULIC RESISTANCE

It was shown 1n the preceding sections of this chapter that the

relationships between viscosity and temperature has & significant
influence on the veloclty profile and the resistance coefficient.
Thus the relationships obtained for isothermal flow cannot be used

directly in calculating the hydraullc resistance when there 1s heat

exchange.
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FPig. 7-18. Relationship between £ and Re,, = Edp/uzh for noniso-

thermal flow of viscous flulds according to data of Kivel, MacAdams,

et al.
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The “irst experimental investigations into hydraulic resistance
with noni-othermal flow of water and air were carried out by M.A. °
Y kheyev [20, 21] and by several American authors for rlow.oﬁ oils
LLT]. The data obtained in these studies (somé of them aré shown in
Fig. 7-18) cover a fairly narrow region of variation in physical .
properties, chiefly .viscosity. In this connection, together with
Ye. A. Krasnoshchekov, we performed new measureménts of hydraulic .
resistance for nonisothermal flow of oils [22]. The experiments were
carried out for grade MC oil ir a round tube and grade MK oil and
trensformer oil in a tube of rectangular cross section.

The round tube had a relative length //d~83;the rectangular tube
had a side ratio of b/h=52 for the :.cross section, and a relative

‘length (/h=227, In neither case was there a damping segment, and

the oil entered the experimental segments through noggles of smooth
configuration. The static pressure in the experimental segments was
measured near the oll entrance and exit, and for the round tube,

at the center as well,

The mean resistance coefficient is found from the experiment
by means of the relationship

)

F=( g 4T  (a-8s)

where Ap is the difference in static pressures for a segment of
length 7 (measuring from the entrance); vy and p, are the fluid

velocity and density at the tube entrance; d is the diameter or
equivalent diameter of the tube; k ib a correction for the hydro-
dynamic initial segment (based on the data for isothermal flow).
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Flg. 7-19. Relationship between t and
; Re for a round tube with various temp-
, erature regimes. 1) Symbols,

1

- 173 -

=



The method used ir computing 7 for introducing the correction
to the hydrodynamic initial segment 1is valid, strictly speaklng,
only for isothermal flow." Its application to nonisothermal flow
is in great measure arbitrary, and the ,coefficient £ found on the
basis of experimental data and (7-85) makes allowance not only for
the friction resistance, but also for the rearrangement of the
elocity profile in the stabilized-flow reglon. Processing of
the experimental data has shown, however, that when such a correc-
“ton 1s introduced the relationship for the resistance coefficlent
is simpler and more general.

Relationship (7-85) 1s valid provided the length of the tube
segment [ >y wherefr 18 the length of the hydrodynamic initial seg-
‘ment. This condition was ordirarily satisfied in our experiments
(the few experiments in which 7 < 1 g Were disregarded).

Pigures 7-19 and 7-20 show £ as a function of Re for round
and rectangular tubes. The individual lines on the graphs corres-
pond to specific temperature regimes, each of which 1s character-
ized by roughly identical values of tos the fluld temperature at

the entrance, and tys the wall temperature. Thus the ratio us/u0

is roughly constant for each regime., The dashed lines pertaln to
isothermal flow (us/uo = 1), The lines corresponding to fluid

heating are located below, and the lines corresponcing to fluid
cooling above the dashed lines. It is clear from the graphs that
for identical Re, the resistance coefficlent will be greater the

greater us/ﬁo.

It 1s noteworthy that the lines for di ferent regimes have
different slopes in logarithmic coordinates. This 1s understandable
if we consider the results of the theoretical determination of hy-
draulic resistance for variable wviscosity (see §§7-2, 7-3, and 7-4).

When ne/p,=1, the product ERe=const, So that the lines for isothermal

flow have a slope n = — 1. For pe/s, 71, the product ERe deperds not
only on u /uy, but on Pe d/1 as well, Here if p/p,<1(fluid heating),

then LRe rises as Pe—‘,‘- increases; i1fme/ny>1(fluid cooling), then
ERe decreases as Pb-%-increases. Thus the lines for fluid heating

will have slope #>—Il, while for fluid cooling, n<—1l. The prod-
uct TRe varies more as a function Pe d/1 the more ug/uy departs

from 1. Accordingly, the slopes of the lines in Figs. 7-19 and
7-20 will depart more from -1 the more u /u, differs from 1.°

Analysis of the experimental data indicates that the influence
of variable viscosity on the resistance coefficient is roughly the
same for tubes differing in shape of cross section, and it can be
taken into account by the parameters ug/uy and Pe do/1l. This leads

to the following interpolation formula for the mean resistance
coefficient for viscous nonisothermal flow:

.ET:(!‘:-)", (7-86)
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of rectangular cross section for
ture regimes, 1) 01l; 2) symbols,

where fo=64¢p/R¢ 1s the resistance

stant ¢ depends on the shape of the tube cross

coefficient for isotherm

computed for the fluid temperature at the tube entrance,
section, and is

determined from the data given in §§5-2, 5-3, and 5-4,

TABLE 7-5
Values of Exponent n in Eq. (7-86)
Pe %o LY
0, t | 100 1000
601 0,776 | 0.673 | 0,583 | 0,505 | 0,44
100 1 0,667 ( 9,578 | 0,502 | 0,435 | 037"
1000 | 0,334 | 0.200 | 0,25 | 0,218 | 0’18,
10000 | 0,246 ( 0,213 | 0,185 | 0160 0,139
30 000 0,220 | 0,191 0,165 0,144 | 0,125

The equation

7-20. Relationship between F and Re for tube
various tempera-
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Pig. 7-21. Tue group F(-E)'",--has a function of Re
for round and rectahgular tubes.
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1) Channel shape; 2) direction of heat flow; 3)
symbols; 4) round; 5) cooling; 6) heating; 7) rec-
tangular.

was selected for the exponent n, where C and m are constants;

for Pedt <1500 C:=230; m=—03;
for Pe4t>1500 C=-0535; m= 0,1,

The Re and Pe numbers in (7-86) and (7-87) are computed from
the equivalent diameter and values of the physical properties at
the temperature of the fluid at the entrance, Table 7-5 shows
values of n calculated from (7-87).

Flgure 7-21 shows results obtained by generalizing the ex-
perimental data on the basis of (7-86). As we can see, for the

vast majority of experimental points (more than 95%) the devia-
tion from the curve corresponding to (7-86) dces not exceed 12%.
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Fig. 7-22. Ratio E/E, as func-
tion of us/uo and Pe de/l on
basis of Eq. (7-86).

Equation (7-86) is valid for 1liquids in the region of values
Re<2 300; 0.08<m/uo<l200.60<Pe +<3:10* and, naturally, when free con-
vection has no influence (see §7-5).

Figure 7-22 shows the ratio E/E, calculated from (7-86); 1t
clearly demonstrates that E varies sgbstantially not only with
changes in us/uo, but also in Pe d_ /1; the irfluence of us/uo

drops as Pe de/z increases.

Equations of type (7-86), but with constant n, have been
proposed before. Thus, according to the data of [17], n»n = 0.25,
while according to [21], n = 0.33. In the last case, moreover,
the ratio Pr /Pr zh 18 used in place of u /uo, for most fluids

under ordinary conditions, this r tio deviates only slightly from
Mg/ Hap .% As Table 7-5 shows, the exponent n varies widely (from

0.776 to 0.125). It 1s thus clear that these relationships are
more speclal in nature, and correspond to narrow ranges of varia-
vlon in Pe de/l and us/uo.
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Page Footnotus
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163 'In this case, w, 1s aonzero only as a result of de-
formation of the velocity profile along the length
owing to the dependence of viscosity on temperature.

165 2For more detalls, see [9].
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't > heat«transfer coefficient o 1is referred to the
local temperature difference ts - ¢t.

SThat 1s, neglecting molecular transfer of heat and
momentum in the axial direction, as well as all forces
acting radially. This means that the radlal velocities
are assumed to be small as compared with the axial
velocities, :

*With nonisothermal fluid flow, where the viscosity
and other physical properties do not remain constant,
the actual concept of the length of the hydrodynamic
initial segment requires refinement. In the general
case, it is desirable to take as the length of the
initial segment the distance from the'tube entrance

at which the boundary layer developing at the walls
fills the entire tube cross section and the influence
of the initial velocity distribution vanishes. It fol-
lows from this definiticn that the velocity profile
and resistance coefficient will remaln constant beyond

the initial segment for isothermal motion, while there . .

may be a variation along the lengtn for nonisothermal
motion. In the latter case, full stabilization of the
velocity profile can set in only after there has been
full equalization of the temperatu:*e over the flow
cross section.

SThe slopes of the 1lines in Fig. 7-19 vary within nar-
rower limits than in Fig. 7-20. The reason 1s that the
experiments with the round tube correspond to higher
values of Pe d/l1, where ERe depends little on Pe d/l.

‘The values of Ug and Uoh also differ negligibly, since

the fluid temperature varies little along the length in-
the thermal initial segment.

Transi{terated Symbols

C =3 = gtenka = wall

u.c = 1,8 = igotermicheskiye soprotivleniye = isothermal
resistance

H.T = n.t = nachal'nyy termicheskily = initial thermal

x = zh = zhidkost' = fluid

n= 1= logarifmicheskiy = logarithmic
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174 Hur = n.g = nachal tnyy gldrodinamtcheskiy = tnitial
- ) | hydrodynami e |
174 A =emn ekvivalentnyy = equivalent
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Chapter 8

HEAT EXCHANGE IN ROUND AND FLAT TUBES WITH CONSTANT PHYSICAL
PROPERTIES OF THE FLUID AND BOUNDARY CONDITIONS OF THE SECOND
KIND

" 8-1, HEAT EXCHANGE IN A ROUND TUBE WITH CONSTANT HEAT-FLOW DENSITY

AT THE WALL

We first assume the following conditions: )
1) the flow and heat-exchange processes are steady;

2) the physical properties of the fluid are constant;

3) the velocity profile is parabolic over the entire length
of the heat-exchange segment;

4) the temperature at the entrance to the heat-exchange seg-
ment is constant over the cross section;

5) a constant heat-fiow density is maintained at the inside
surface of the tube walls; .

6) there are no internal heat sources in the flow, while
the heat of friction is negligibly small;

7) the variation in heat-flow density owing to axial heat
conduction is slight, and can be neglected.

Conditions 5, 6, and 7 show that the mean mass temperature
of the fln1d varies linearly along the length of the tube. In fact,
from the heat-balance equation we have

Pt 20X
pepwry’
or, in dimensionless form,
§= T—ty 4 x
qd Pe d' (8-1)

w
where Pe=wd/a; {p1s the constant for mean mass temperature of the

- fluid at the entrance,

Thus the mean mass temperature of the fluid is given in this
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case whi’=2 the wall temperature ind heat-tranafer coefficient must
be deternined,
! !
The problem formulated corresponds to an energy equation
analogous to (6-2), except that the dimensionless temperature is
defined differently in this equation:

La LS.y DN (8-2)
The boundary conditionz are
: . [ 0® 90 I
80, =0 (5x), =0 (3¥),_, = (8-3)

Here

t-—1{, r ?2 x
e‘-'-‘-Tﬁ-‘-:—, R=r—.-, X=‘l',e—'7-

1. We first consider the solution of this problem for the
region far from the tube entrance, where the influence of the
specified temperature distribution in the entrance section be-
comes unimportant [1]. We can assume that here the excess-temp-
erature field ¢t — ¢ (or 6 — ©) will be selfsimilar with respect
to the X coordinate. Thus the solution 1s representable as

8=AX+f(R), (8-4)
where A 1s a constant and f(R) i1s an unknown function.

Substitution of the expression for 06 into (8-2) yilelds

%(R%)-_-Au—m)k.

Integrating this equation from Q0 to R and considering that
f'(0) = 0, we have

R 1]
%n%J(x—R-)RdR=A(-’§-—%-).

Using the third boundary condition of (8-3), we find 4 = 2,
A second integration ylelds
[(R=%—%+cC,
wrere ¢ 1s a constant of integration.
Substituting the expression for f(Rl into (8-4), we obtain
o=2x+2—-2+c.

Evaluating the mean mass tempe}ature by means of the equation
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6=4$ (1 —RY)RdR

and comparing the result with (8-1), we find ¢ = — 7/48.

Thus the temperature fleld far from the tube entrance is des-
cribed by the equation

t— 4 x4, 1 N 7
°='—,x7_"=ﬁ.-f§'+TR'-TR'-T (8-5)
The wall temperature 1s
B0 =0y g5+ 75 (8-6)
while the 1limiting Nusselt number is
-8
N“.,,‘-'-‘-m--—(oe —8)'=17 =~ 4.36. (8-7)

The results obtained correspond to a region, far from the tube i
entrance, characterized by identical radial temperature distribu-
tions in different tube cross sections, a linear variation in
temperature with length, and a constant value of Nu. Expression
(8-5) 1s thus a particular solution of differential equation (8-2)
for the region of stabilized heat exchange.

e
A4

2. We now turn to a study of heat exchange in thz2 initial tube
segment [2, 3]. To do this, we must find a general solution of (8-2)
that will satisfy both the boundary condition at the wall and the
boundary conditior at the tube entrance section.

In (8-2) and (8-3) we go from the temperature 6 to the tempera-
ture g

el‘_"e_egv

o n
<,

where 0, 1s the known particular solution of (8-2) for the region
of stabilized heat exchange:

8, =2X+—5- R'— - R'— .

Then the mathematical description of the process will take
the form

SR+ == R g3 5.6
Q&Rh—CLm_Lm_%)]
(%%!)R =0 (dR) =0. [ (8-9)

A solution can be constructed for this problem with homogen-
eous boundary condition at the wall in analogy to the solution of
the problem considered in §6-1.
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The particular solution for 8, can be represented as

8, =¢(R)9 (X)=A¢(R)exp (—'X),

where A and € are unknown constants, and ¥(R) is an unknown func-
tion. T

Substituting this expression into (8-8) and going from the
variable R to the variable eR, we obtain

) 1 dé (eR)
Representing y(eR) as a power series

 { (sR)= i bun (‘R)"»

we determine the series coefficients from the preceding equation.
The relationships for the coefficlents by, (n=0, 1,2..Jprove to be
the same as the relationships found earlier for the coefficients
b,, in the problem of heat exchange at ¢t = const (see §6-1).

1.0 -
ﬂ.lm
0,6

by BAN

N
04 -
" W)

.0
0 02 0% 46 a8

Fig. 8-1. Punection wl(n) in

problem of heat exchange in
round tube with g = const.

Satisfying the condition(d6/dR)a=i=0,0r, what is the same,
¥ (eR)In=1=0, we obtain

;]
2"(’".'"'-':-"-0!
A=y
Thls equation has an infinity of roots (eigenvalues) ei(.i =

=1, 2, 3...). The first seven of them, found by computer [2] are
shown in Table 8-1, The limit!ng values of €;s corresponding to
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Q - , 4
large 4, equa. e=4i+'—5--

The eigenvalues &{i=l, 2 3 ...)correspond to the eigenfunctions
V(eR,e) =%i(R). Figure 8-1 shows the graph for the first of these,

wl(n).

Thus the general solution has the form

9, =§ Awpi(R) exp (— s:*X),

i=1

(8-10)

The coefficients 4 { can be computed from the known distribu-
tion of el at the entrance on the basis of the orthogonality pro-
perty of the eigenfunctions,

)‘o.(b. R) % (R)R(1 — R*) dR
A‘—- .

5% (RR(1 —RYdR

Pl
Y

The ultimate equation for the temperature field can be written
as

t—t, 4 | 1 7
O‘E?=F%+Tw“7wfw+

+Y At R esp (—257)-

im)

(8-11)

B s e S oo

12 : 12

=1 -1,

-3 - )
10 N 10—
0..'.\1k \/":% 08 - Y / 59 “
a.s\\"yA\Xb 06 / t“')7
DA 4z
NN |~ Vv
02 \\ J / .| '-'-ﬁ
ol NG R _1Pe
0 a5 0 45 10 0 005 a0 G5 QX QN N

Pig. 8-2. Temperature distribution in flu-
id flow along radius and along tube length
with q5 = const,
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TABLE 8-1

Values of Constants for Problem of
Heat Exchange in Round Tube with

=
qs const

! o A A

1 95,6796 —0,49257 0.20174]
2 83,8618 0,395508 —0,087555
3 174.167 ~—0,345872 0.052797
4 296,536 0,314047 —0,0365402
5 450,947 —0,291252 0,0275178
6 637,387 0,273808 —0,02174156
7 856,850 -0,260852 0,01779886

Figure 8-2 shows a graph of this relationship.
The wall temperature 1is

'—“ 1r4' 4‘-
'T‘
- 21 x
+ Y AwWen (—25-5)- (8-12)
i=1
The values of Ai and wi(l) are given in Table 8-1.'
The Nusselt number, found from the relationship
Nu= (h_ o = (8 — 0)-*.
will equal
Nu=—o ! v (8-13) .

. ':‘!""z A(*( (l)exp (—2.?5‘:"%‘)
al
Figure 8-3 shows the relationship between Nu and = {}
For sufficiently large values of the reduced length, the sum
of the terms of the series in (8-11), (8-12), and (8-13) approaches
zero, and the equations go over to the relationships found previous-
ly for the region of stabilized heat exchange.

Determining the length of the thermal initial segment from
the cordftion Nu -lOlNu... we obtaln ~

12 220,07 Pe.

Thvs for the heat-exchange prohlem, when qg " const the values
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#1g, 8-3. Variation in Nu along length of round tube with qg = const
(s01id 1line) and t, = const (dashed line).

!

Of Nue=4,36 snd ly,/d prove larger than for the problem with ty = const
(see §6-1).

Por small reduced lengths, it 1s inconvenient tc use (8-13)
in practical computations, since many terms of the series must
be computed. For small X, 1t 1s far mcre tonvenient to use the
approximate solution for the problem of heat exchange in the
initial segment q, = const [3]. This solution, similar vo the Lev-
eque solution for™ t_ = const (see §6-3) leads to the following

equation for the local Nusselt number:

Nu= 1,301 (i:‘i"%‘)“%' (8-14)

According to data of another approximate calculation (see
§12-4), the coefficient in (8-14) equals 1.31 rather than 1.301.

Equation (8-14) can be used for values of ;;'-:“0'001‘

For values of i:‘lé"%' >0,001, the following interpolation equation
is valid: :

' 10,2633 '
Nu=4,364-+ ( T -—j—)""'exp (4} p%'%) 2 (8-143)

which describes the results of calculations carried out with high
accuracy by a numerical method, with no more than 0,5% deviation.

The following interpolation equation can be used for almost
the entire reglon of the thermal initial segment (for i,-’;-%-<0,037)

_
Nu=131 (p-5) (14255 ), (8-15)

which yields an error not exceedirg +U%. For F';..'.E->o,037we can take
Nuw~ Nu,=4,36 with an error of about 5%.
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8-2. HEAT EXCHANGE IN A FLAT PIPE WITH CONSTANT HEAT-FLOW DENSITY
THAT IS THE SAME FOR BOTH WALLS

Let us look at the problem of heat exchange for a fluid flow-
ing between parallel plates; the heat-flow density is maintained
constant and identical for both plates, In all other respects, the
problem is analogous to the one considered in the preceding section.

In this case, the mean mass temperature of the fluid will also
be given by the equation

=t "f .
.+P‘"o
or, in dimensionless form,
8="rl=pt i (8-16)
x :
- ghere k= 21-9 is the distance between the plates; Pe = wh/q is the
&5 eclet numbep, :

The wall temperature and heat-transfer coefficient must be
determined.

For fluid fiowing in a flat tube, the temperature field is
described by the following equation, with allowance for Conditions
1, 2, 3, 6, and 7 (see §8-1): '

.
=t (1 =) e (8-17)

The boundary conditions for constant fluid temperature at the
entrance and constant heat-=flow density at the walls is wricten
as .

80, N=0; (§7)  =0w (57) =+ (8-18)

4o
A 4

Here

t—1t !ox y _ %
0=—6—-h—'-. X=P—Q.T and Y=T.-=T.

The asymptotic (particular) solution of (8-17), satisfying
the second and third boundary ccnditions of (8-18) and valid in
the reglon of stsbilized heat exchange, has the form®

fp—ter 2 X | 3y 1 gy 39 2
e’=_!i_T..=p?..—h—+-r y? ITY‘ 556" (8 19)

To obtain a general solution of the problem that will also
satisfy the boundary condition at the entrance, in (8-17) and (8-18)
we go from © to 6,==6—9,. Then in place of (8-17) and (8-18), we.

obtain the following equation and boundary conditions:
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The general solution of the problem formulated
[4] by the usual method of separation of variables,

'%;¥=‘ﬁ?“" BT
0,(0. Nem—(5- V'L Y
) =0 (%) -
'(,i)nu o;(’f%hs %
TABLE 8.2
Values of Constants in Problem of
Heat Exchange in Flat Tubé for q_ =
= const . B
o o " 0 A,
1 4,38122 | 18,3803 | —1,26070 0,087512
2 | 8,272 | 68,918 1,4022 ,025862
S | 12304 | 1506708 | —1.4911 0,01253

9,;2Aﬁg(Y)exp (—.g_cfX). )

8

(8-20)
(8-21)

(8-22)

found in
has the form

(8-23)

where s mepi(Y) are the eigenvalues and eigenfunctions of the equation

Substituting $(Y¥) as the povwer series

under the boundary conditions

V' +e(1—P)pm0

1

V' (0) =0 enay’ (1) =0

$()=

)
Ezbuf“

(8-24)

(8-25)

into (8-24), we see that the relationships for the coefficients

bsa (n=0,1,2..) are identical to the relationships obtained earlier
for the coefficients of the same series in the problem of heat
exchange for t, = const (see §6-2).

s(i=1,23..)), that are roots of the equation

The expression for Y(Y) satisfies the condition ¢'(0) = 0.
Expression (8-25) satisfies the condition y'(1) = 0 for eigenvalues

where b.=1'. b,.:-.--','-, ete.

*/210

§ mln = dv
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The *irat thiee valuem of €, are given in Table 8.2, B
The coefficients 4; 1n Serles (8-23) are found from the rela-
tionship )

, - |
! 0,0 1) &(N(1 —rar
Apme

]
fema-—ma
[ ]

With the aid of the Graetz method (see §6-1), the expression

for the A, can be reduced to a form more convenient for computa-
tion: .

A ! ' | '(8-26)
“%gg;;-th{

From (8-19) and (8-23) we obtain the finel equation for the .
temperature field: 3

= Pt
o ’ ‘. (8-27)
+Y An e (—g ol ). -
i=| .

-

The wall temperature is

‘f—l.

2 . 17
B = ach — Pe -:-+W+
i :

(8-28).

+ﬁ Aidi (1) exp (—-3-03 pl;":')

The local Nusselt number is

qﬁk - — -y
Nug-—“.__m (8 — 6)-*,

Taking (8-16) and (8-28) into account, we find

1
) .

%v‘] A yexp (~-f p'r-‘,,’-) (8-29)

Nums

she values of the constants e, Aj«¥i(l) are given for ¢ = 1,

2, and 3 in Table 8-2, For ¢ > 3, the values of the constants
can be found from the following equations': .

o =dit,

Ar=(—1y+.1,2363 ¥,
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1
(1) =(—1)"-09710%7 ,

obtained with the ald of the asymptotic solution for large ¢, [43.

The limiting Nusselt number is
Nu=T0= 412 (8-30)

The length of the thermal initial segment found, as usual,
from the condition Nug.,,=1,0INu, is

2 =0,079Pe. (8-31)

8-3. HEAT EXCHANGE IN A FLAT TUBE WHEN THE HEAT-FLOW DENSITY IS
CONSTANT BUT DIFFERENT FOR EACH WALL

The sole difference between this problem and the preceding
is that the heat-flow densities are not the same at the walls of
the flat tube (nonsymmetric boundary conditions). Let the heat-
flow density be q,, at one of the walls and q,, at the other;
(olﬂdn

We find the mean mass temperature of the fluid from the
heat-balance equation:

T—t, &
Z%I 4:|)" F‘- T (8 32)
If we introduce the dimensionless temperature

e : temty ™
TN
Hari?

then the nonsymmetric boundary conditions at the walls are written
as

()=t (F)mate 0

Under boundary conditions (8-33), the asymptotic solution of
(8-17) for the region of stabilized heat exchange will have the
following form:

(l.—l.)ﬂ 2 2 x 3 ve_

8, = =Wer ek Pe T+T r (8-34)
Gey = §e

—6- Yi— 560+ iq:: +q:l

when ¢u=9a, Eq. (8-34) goes over to (8-19).

A general solution of the problem has been obtained ir [5];
it satisfies not only the conditions (8-33) at the wall, but also
the condition ©(0, Y) = 0 at the entrance.

As in the preceding sections, we introduce the dimensionless
temperature 6 — Oy. This new 1ndepepdent variable 1s conveniently
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represented 2s the ::um of two functions:

8=6.=0,x N1z tr0.a, 1), (8-35)

It 1s not difficult +o see that the probiem now oplits into
two problems.

e alh e i ARt Y W ————_ YT 4

e e g 8

To determine the function 91(1; Y) we have the equation

T=—ga—-m (8-36)
and the boundary conditions
8.0 Nu—(¢ r<i ) | des
() =0 (7).~

for the function 8,(X, ) we have the equation

Tt 1= . (8-38)
and the boundary conditions
p —y: [ : ,
%0 Nm—; (T)r-r-p; (#-)'_._.-0. (8'3-9)
TABLE 8-3
Values of Constants in Heat-Exchange
Prodlem for Flat Tube with Nonsymme-
tric Heating (g.i#ea)
‘ e . o D, 0,(1)
0 20263]“ 50]2]6‘9- —1.33&17 0.4%29
1 6,29768 39,6608 0,64548 | —0,212:4
! 2 | 10,3077 106,249 -0,35880 0, 14038
3 | 14314 204,003 . - 0,2710 =0,1068

The even function ©, 18 a solution of the symmetric problem
(gg7 = qg4o) Which was obtained in the preceding section:

oS |
e.=z Adi Nexp (=6} X). o (8-23)
-
Similarly, for the odd function ©, we obtain the solution

[

e.-xo.a‘ (Y);xp( ~— .:x), (8-40)

im0
where
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om-i aY*, (n=1,3, 5...)
r 1

o
a,=1, t=——¢,

ol
G=FE=T7 Gn-s—n-o)i

a0
here the w, are roots of the equation 2na,=0(u=l. 3,5..).
sl

The first four values of w, are given in Table 8-3 together

with the corresponding values of 5, and 61:( 1) . The following equa-
tions are valid for ¢ > 3:

=it

I
Di=(—1)"*1.2472Te, * ;

]
Gi(1)=(—1)".0,97103«_°*

Thus on the basis of (8-35) we can use the expressions found
for 04, el, and 62 to determine the temperature at any poinc in

the flow:

O=—o~ =0, (X, )+
(4:1'*‘%:)"'{ (8-—353)

+8, (X, N+l 6,(x, 1),

Substituting the velues of 0,, ,, and 6, from (8-34), (8-23),

and (8-40) into this equation and letting Y = 1, we obtain an ex-

pressionfor the temperature of the first wall (at which the heat-
flow density equals qsl):

foy—1
: ) Pn T+ +

(@cr + dar) wn

+ Y A e (= X)+ofemlas X

I3l

X[l +£]D,a‘(1)exp(—§_a3x)]. (8-41)
=0 ,
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Subtracting (8-321 from (8-41), we can ohtain tlLe difference
between he temperature of the first wall and the mean mass temp-
crature of the fluld in a given section, as well as the Nusselt
mmber for the first wall. Multiplying this difference by (qu +
+ qu)/Z and dividing 1t by q,1» Ye finally obtain

l ‘f. ‘—"-

o+ 2 B

x):‘M‘mexp(--37-2;',-'{-)+1'-(1-1;7)x

(1]
x[n+£}oﬁ.(l)m(-§-~2p%?%)]- | (8-42)
=l

Similar expressions are obtained for Nu, and t,, (second wall)

simply by replacing the subscript "sl" by "s2" aad vice verea in
\8-42). When q,, = q,,, Eq. (8-42) goes over to (8-29),

Figure 8-l shows the change in the dimensionless temperature
difference ('"T:'?—" (the reciprocal of Nul) along the tube lonzgh. ‘
The curves for the various values of 432/431 correspond to the fol-

lowing conditions: gedu=—I: the heat supplied to_the first wall -
equals the heat taken from the secord wall (here  remains constant
along the tube length); ge/ge=0: th: second wall is heat-insulated,
i.e., heat 18 neither delivered nor removed through 1t; . gefge=1:
heat 1s identically supplied (or removed) through both walls;

Gealqor=2: the heat supplied to the second wall is 2 times that
supplied through the first,

':I""b("‘u)
1
) g B el ‘
o ] b
0.2 = : | .

fmesmesnet [ 1)
¥ i f 4 o)
0 a0 of om 2 2 o o0 1 2 3
Fig. 8-4, Variation in Fig. 8-5. Numbers Nu,
(“—l"q—/:H’ﬁ'u—, along tube and Nuz., as functions of
length, qBZ/qsl .

When X=%---‘,§--»oo, the series on the right side of (8-42)
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approach zeru, and we arrive at the following expressions for the
limiting Nusseit numbers: -

Nog=— e
" =) l (8-13)
-9 'u)

Nu, = - o

These relationships are shown in Fig. 8-5. Thus both Nu_ and

" the length of the thermal initial segment depends on the relation-

ship between the specifled values of heat-flow density at the walls.
Por symmetric heating (q,, = q4,), 88 we can see from Fig. 8-4, the

thermal initial rfegment will have minimum length.

8-4. HEAT EXCHANGE IN A ROUND TUBE WHEN THE HEAT-FLOW DENSITY
: VARIES ARBITRARILY AT THE WALL WITH THE LENGTH

l., The prchlem of heat exchange in a round tube with q_ = const (tQ
(see §8-1) can be generalized to the case of arbitrar{ variB8tion in
qg With tube length, as was done in §6-5 for heat exchange with ty =

= const. This problem has been considered elsewhere [2, 6].

When s " const; the solution for the wéllltemperature of a
round tube has the form |

to—t,=32 [;,—--j;r+%+§Ama)exp(—%?p',—'%)]- (8-12)
(=

Now let the heat-flow density qg be a specified function of z.
The qs(z) curve can be represented as the result of summation of

unit disturbances dq, (Fig. 8-6). If a finite unit disturbance )

Aqs takes place at a point with coordinate £, and this disturbance

remains unchanged when x > £, then the wall temperature occasioned
by this disturbance will equal, in accordance with (8-12):

d 4 x—k 1
lo—ty =484, - [ﬁ"{-&i‘l':;g‘l'

+§j Agu(erp( 20}k 228)]. (8-44)

If a series of unit disturbances takes place, since the energy
equation is linear in the temperature, we can represent the solu-.
tion for the wtll temperature as a sum of expression of the type
(8-44) ; replacing Aqq by the differential dg, and going over from

this sum to the integral [the right side of (8-44) is integrated
by parts], which corresnonds to continuous variation in q. with
the length, we obtain an expression for the wall temperatﬁre in
this case:
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Pig. 8-6. Heat exchange in 5
round tube with arbitrary var.

iation in heat-flow density at
the wall,

fo—tym }‘ [-P2ase

im|

Xexp(—2¢! p:-‘-'ii)] % M & (8-45)

Introducing the dimensioniess quantities

where q, and 4 are the local and length-averaged values of heat-

flow density at the wall, 7 1g thelength of the heated segment,
and letting Niwm—20A0(1), we write (8-45) 1n the form

eca"—;“;T-‘.B%-é-x
e | - o 8-46
X {4+2N.exp[—2cf "T(x-'ﬁ]}?(‘)d& (8-46)
0 iml
From the heat -balance equation for the tube segment of length
T, we find an expresson for the mean mass temperature of the riuid:
%
Tty 4 | i
=T [ra (8-47)

Since by definition the Nusselt numbep equals

od qcd ;cﬂ
Nu“—'-l-rﬂa“._.‘.)xﬂ .._ »

on the basis of (8-46) s1a (8-47) we obtain

9&)'

(8-48)
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To.evaluate the integral in (8-48), we
limits 0<x<1} the function ¢(Z) is continu

together with its derivatives, so that it ca
Maclaurin series:

ous and differentiable
n be expanded into

-%—:-:9(;)=b.+b.;+bl;+--'+bﬂ;n=z b";,' (8-49)

=0

where m can take on values between 0 and =,

Substituting Series (8-49) into (8

~48) and evaluating the in-
tegral in the denominator term-by-term,

we finally obtain

Nﬂr = 1 ' - - (8—50)
Lo —x3+W -
m‘f-, G §A.¢¢(l) [b.exp( kix) +,zf 153P; - (%) ]
where k‘=2c"p£-.-£-; P,(})-__—..';"M; p,(;)=£_—IP‘:-.(x).

<4

assume that within the {J
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It mw @, then ¢(¥)=by~12and (6-5Q) goes cver to (8-13) for
e * const.

As an example® we consider a specific distribution of heat-
flow density over the length, in the form of the following poly-~
nomial

;1:.=7(§)=0.885—0.1275-!—2.9871'-—3,209;'. (8-51)

8 This relationship is represented by the dashed line in Pig.
= & '

Substituting the values of the coefficients b, b, by .u by from
(8-51) into (8-50) and performing the appropriate ccmputations, we
obtain a family of curves (the solid lines in Fig. 8-7), whose

parameter is the number Fle'é' For ;,'7-5-—-00, the coefficient A— oo,
and the exponential term and the function PJ(E) in (8-50) approach
zero, so that Nu approaches Nu.---g- =436, This result is explained

by the fact that in a very long tube the per-unit variation in qg
is small.

N
T r
L]
o
P
5
L}
3
?
f
, : X
PE23 4 866 04 (52 3§ @ [ N 1]

Fig. 8-9. Number Nu-f(,,'?%) for q, ~ sin (nz/1) and pl'-v-g-o.lz.
Solid line) Theoretical computation; points) solution using hydrau-

lic integrator.
|!Nu
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Flg. 8-10. Number Nu = f(x2/1) with truncated-sinusoid variation
of q . - BT e e w00 sm g Lm0t L nou(80lution obtainéd iith
hydraulic integrator).

W B G O Ny

5/210 = 297




This way of determining the heat exchange can be used for var-
ious laws governing the variation in qg with length. In addition,

a method has been proposed [7, 8] for determining heat exchange in
round and flat tubes (in the latter case, for one- and two-sided
heating) where the heat-flow density varies in accordance with a
sinuscid and a sinusoid truncated at the ends. These cases are of
particular intere:st in nuclear-reactor engineering, since these
are roughly the laws cgoverning the heat-flow distribution along
the axes of the fuel elements.

Pigure 8-8 shows tne variation in the local Nu number along
the tube length with a sinusoidally distributed heat-flow density
[q, ~ 8in (x£/1)]; the curves were found by the method of [7]. For

comparison, this figure also gives the corresponding relationships
for qg = const. When qq 1s distrib>uted sinusoidally, Nu is higher

in the thermal initial segment than when g = const. At the end of

' the tube, Nu drops off rapidly, approaching zero. When the reduced

length is sufficiently great, Nu remains nearly constant and equal
to 4.36 at the center tube segment; this segment will obviously be
N 1 1
longer the greaier P B .
As in certain other cases of convective heat exchange, to solve
problems involving heat exchange with arbitrary variation in q_ or

tg with the length, we can successfully employ analog computers,

in particular hydraulic integrators. Pigure 8-9 compares the results
of a hydraulic-integrator solution to the problem of heat exchange
in a round pipe with sinusoidal variation in dq with length and

the resulta of a theoretical calculation by the method of [7]. The
good agreement of these results confirms that hydraulic integrators
can be used for such computatioqs.

Pigure 8-10 shows the results of a hydraulic-integrator solu=
tion of the heat-exchange problem for a round tube when there is
a truncated-sinusoid variation in ¢ :

Je~vsinx ‘-'-'-'-;%l

Each curve of Fig. 8-10 corresponds to a specific value of
ﬁ;.éu The curves are the same in nature as for a sinusoidal var-
intion in q , but when z = 7, Nu is finite.®

2. In a previously cited stﬁdy (see §6-6), V.D. Vilenskiy
has investigated the influence of the way in which g varies

along the tube length on the onset of selfsimilar heat exchange
and on the limiting Nusselt number in fairly general form. The
analysis was carried out for flow in a tube of arbitrary cross
section under the same conditions as in §6-6, with the sole dif-
ference that in place of the distribution ts(z), the distribution .

qg (z] of heat-flow density at the wall was specified. In this case,

¢/210
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che temperature field in the fluid flow is described -by (6-76) with
condition (6-77) at the entrance and the following condition at th
wall: .-

o._—-—(-;‘})m.-ﬂ(x). ‘ (8-52)
=2,

Here Qe.=qcdufMs; 9(X) 1= a specified function characterizing the
length distribution of S the remaining notation is the same as

in §6-6. We assume that the function (X} exceeds zero (for 0 < X <
< »), and that 1t is continuous together with its derivatives. For
the case under consideration, it has been shown that if ¢ possesses
the property such that the limits

Xo=*¥:
‘ia=£§=x:"'—ka-an-n

and Ka>> —p, wwrep, 920 18 the first eigenvalue of the problem

o) (Y. 2RV (Y, 5)=0, (8-53)

oy =
(:’-N. =¥y = o'
=

then when X + ®», 6 can be represented as the asymptotic series

X o °
O~ F 3{ tOa+ Y 7.0, 250, (8-54)
a=0

where the V, are solutions of the problems
V.'Vo - E .W’,V. = _i" W:;

dp'. o ln
- EN— )':;)',— '
=2,

.............. 1 , (8-55)
V'Vn == RMW:V0= sta- 1;

oV,
W)v:v, =0,
2=y

When l\".=0, the corresponding function of V, is determined
only to within a constant. The constant is found from the condi-
sion
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Ir exact analogy to the case in which the wall temperature is
specified, Series (8-54] terminates if,for a certain n==n“7%-g;==k
here the difference between the exact golution and its asymptotic
representation approaches zero, since exp(~—p,X),

If

.
ne

i 3¢ =K,<F.
or
ol 5 X,
then for ¥ + =,
s ¢ ~ 7~ O - (’}
9~TJ?(‘)“+"-(§%dS)W(—F.X)J?G)ﬂp(p.Gm. (8-56)

where ny is the first normalized eigenfunction of (8-53).

It foilows from (8-54) and (8-56) that when the heat-flow den-
sity is specified at the tube wall, stabilization of the tempera-
ture field in the fluid flow and, consequently, stabilization of
the heat.transfer coefficient, will take place under the same
conditions as when the wall temperature 1s specified (except that
restrictions are imposed on the law governing the variation in
heat-flow density at the wall) (see §6-6).

H . ...
Prom (8-54) we find that when ~p<Ki<+o

2 0

Nuw(Y°Z°)= = . (8"57)
.z:};: .
Trhus in the case under consideratlion, Nu_ 1s determined by
' the tube geometry, the coordinates of the per?meter point considered,
and the value of the parameter X, ,

When Ko< —pyNue=0, which is not difficult to show, using Ex-
pression (8-56). Physically, the explanati.: is that in our case
for large X the heat-flow density at the wall approaches zero more
rapidly than does the difference between the wall temperature and
the mean mass temperature of the fluid,

Figure 6-15 shows Nu_ as a function of the pérametér Ko for
heat exchange in a round fuve (curve 2). It 18 interesting to note
that 1if Ko and Ko> --j;, then when KO and 1(0 have 1dentical values .

(and also when Ko=Ro=0for X, = 0), the values of Nu_ will be identi-

cal, regardless of which varies, the wall temperature or the heat
flow at the wall (see §6-6).
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8-5., HEA. EXCHANGE IN A ROUND TUBE WHEN THE HEAT-FLOW DENSITY AT
THE WALL VARIES ARBITRARILY OVER THE CIRCUMFERENCE

So far, we have studied heat-exchange problems under boundary
conditions symmetric with respect to the axis (uniform distribu-
tion of t, or g, over the circumference). In this case, naturally,

the temperature field will also be symmetric about the axis. Pol-
lowing [9], let us look at an elementary problem with asymmetric
boundary conditions. Let the heat-flow density at the wall be con-
stant over the length, but variable over the circumference. Elim-
inating the thermal initial segment from the analysis, we shall only
consider the region of stabilized heat exchange. All other condi-
tions are the same as in §8-1.

With allowance for these assumptions, the energy equation will -

take the form
(s rER)=E(-F)  @®

Since the heat-flow density at the wall is constant with length,
while the heat-exchange process i1s stabilized, at every point in
the flow

o __ di __
a——-a—-m.

1. Let the circle segment with angle 28 (Fig. 8-11a) be heated
with constart ¢, and let the entire remaining tube surface be heat-

insulated (q, = 0). We then have from the heat-balance equation

dt 2r.m
ax - wige,w

We introduce the temperature
o(’v Q’) =y ('o P x)'—'t(‘)

and the dimensionless radius R = r/ro. Then with allowance for the
relationships given abcve, Eq. (8-58) can be written as

m+'§ cTR'+k_ Q—g—k(l—R). (8-59)

where

__4rdq.
R= -t

For the case shown in Fig. 8-1la, the boundary conditions
will have the form

for —p<e¢<P (Eokt)kﬂ ==!°;‘5'-;

ror p<e< =B (3¢ ),_, =0

(8-60)

To simplify the analysls, we represent 3 as
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V=F (R, 9)+k(33'~--‘%). (8-61)

Suibstituting (8-61) into (8-59) and (8-60), we see .t the
function F(R, 9l must satisfy the Laplace equation

Rt =0 (8-62)
and the boundary conditions
6; L, =i (1—-}) for.—p<'9<p;l

(8-63)
(&’ n.-""”"""} for 9<9_<2-—9.]

Solving (8-62) by the usual method of separation of variables,
we obtain

F==C;4-§2€&R'uxum {3

Using the boundary conditions, we have
Co=—p— Tt sinng, =1, 2..

Thus for the case shown in Fig. 8-11a, the solution will
have the form

.=,,(§z'__% +c.+2l;’,§?sinnpk'cosnv. (8-64)

The remaining unknown constant Co is found from the equation
determining the mean mass temperature of the fluid: l

2 r
T 1

==—;7 ¢h5!wgwh,

2s ]
§49§o(1—m)kdk=o.
Substituting in O from (8-64) and integrating, we find

14Bgcre
C.== -‘_“"'-;A .

The expression for the difference between the wall temperature
and the mean mass temperature of the fluid, ¢.(p)=¢tc—Z, is found
from (8-64) when we let R = 1:

- 202 -




P YT TR S Y e Y. T SO F

@

— B e e e A i e AL A T S
s T

. - .¢~' L -
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) -T-L asl ) )

This expression i1s the reciprocal of the local Nu_ number,
If we let B = v, which corresponds to a constant heat-Flow density

aer ghe circumference, we obtain thé usual value Nu, = 48/11 =
= 4.36.

2. Let us now consider the wall-temperature distribution
when a narrow circular segment with angle Aw is heated; this seg-
ment 1S an angular distance ¢ = w away from the origin (Fig. 8-11b).
The h:at-flow density at the surface of the circle segment is con-
stant and equal to q_(w); the remaining tube surface is heat-insu-
lated (qs = 0). Here the expression for the wall-temperature in-

crease Gﬁs can be written on the basis of (8-65) by a simple change
of coordinates: : = i

e -

i A ST

ot =2 [11 20 S (M (9~ )], (866)

Fig. 8=11. The problem of heat
exchange 1n a round tube when
the heat-flow density at the
wall varies over the circumfer-
ence,

I" *here are several circle segments along the tube circum-
“apenc:, and constant heat-flow densities are maintained at each
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sircle segr n* . with the densities differing from segment to seg-
ment (Pig. d-lic), since Eq. (8-58) is linear in the temperature,
ti.ie solvtion for this case can be constructed as the sum of solu-

tions of (8-6€). Here the boundary conditions at the wall.will also
be satisfied., Thus for the case shown in Fig. 8-1llc we have

M o .
;.(9)=§|ﬂ:§&c[3.9,';_-+§;'.;.:n("‘-,'=)mu(,-..-_‘;.-.)], (8-67)
where m = 1, 2, ..., M; N is the number of segments.

Pinally, for an arbitrary varlationin the heat-flow density
over the circumference (Fig. 8-11d), if we replace Aw by the in-
finitesimal dw ana sum the elementary circle segments in (8-65)
by integrating over the circumference, we obtain

2w )
din=[EQRIn ) mat—ue (8-68)
The series in (8-68) converges to the finite expression
ﬁ:"’-‘-"—.(}:-'-')s—ln (2:1113—"51)-
aml .

Thus the general solution of the problem with arbitrary dis-
tribution of ¢q, over the cilrcumference can be written as

% (é)'=’1’=3'qc' @G, -'). = | (8-69)
where !
aw, .)=1-;+§ =a(=e), (8-70a)
=
or
G(p, o) =5 — In(2sin 13=). (8-70Db) .

Knowing the distribution gq,(w) of the heat-flow density over

the circumference and evaluating the integral in (8-69), we can
compute the wall-temperature distribution o.(¢)=t.—7, and then

Nug (@) =g, - 2rg)Och. Convenie:}ce dictates the choice of expressions
for the function ¢ to be used in the computations. For example,
if the problem dnes not admit of analytic integration then, in-
tegrating numerically, we find it more convenient to use (é-?Ob).

3. Let us look at two examples.

a. Let g be constant over the circumference, 1.e., o(w)=

- 204 -

3




i b it s Bbtan L Eieatind st

S At o s .
N a
»

w—.—...,

| Y

5 =9 . N . P AR
= s sk S ceenans - o T AR T TR \ ST AR E it o

=¢ey=C0n . Here integration of (8-69) yields

% (7) ='—“‘2'—'-%%—eoutw Nu,(9)=‘r?==com!. |
b. Let q, be cosinusoldally distributed, i.e.,
Go(®) =gea (1 +bcos 6).

|
|
Using (8-69) and (8-70a), we find the wall-temperature dis-
tribution over the circumference:

% (’)=!='§’-°:f (14bcosw) [g+f: Ll ‘9]‘.5

Integrating, we obtain

% (=2 (3 +555L).

The distribution of the local Nu_ number over the circumfer-
ence 1s

Nuu(9)= ._'_‘ﬂm__'_t._,
B+

Figure 8-12 shows the results of this computation for b = 1,
They show that Nu_ varies substantially over the circumference,
and differs signi?icantly from Nu_ when qs ™ const, when the value

1s 4.36. At the point where fc=f, 1.e.0.=0, Nua—xo, when ¢_ < ¥, it
becomes negative. The local difference between the wall Eemperature
and the mean fluid temperature ﬁs also varies substantially over

circumference., Thus when ¢ = 0, the local value of this dif-
ference is roughly 3 times the mean value over the circumference
(Ué). It is clear from the figure that significant errors will re-

sult if we determine 08(¢) as the quotient resulting from division
of q,(®) by the constant value a = 4,36 A/d.

The same problem has been considered in [10], but with allow-
ance for heat conduaction in the wall. Naturally, as the thermal-
conductivity coefficient and the wall thickness increase, the non-

iformity in temperature distribution over the circumference is

noothed. If the medium flowing in the tube 1s transparent to
“a’lation, then heat exchange by radiation between wall elements
at different temperatures will leud to the same effect.
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%L on the assumption that ¢ =gw, While ‘hugp=4%; 5) asymptote.

8-6. INFLUENCE OF RADIATION ON HEAT EXCHANGE IN FLAT TUBE

Under boundary conditions of the second kind, the tempereiure
distribution at the inside surface of the tube wall will be nonuni-
form: the temperature can vary both along the length and the peri-
meter. If in this case the medium flowing in the tube is transparent
to radiation, heat will be exchanged by radiation between surface
segments at different temperatures. This leads to a reduction in
the temperature differences between individual surface segments,
i.e., there i1s a certain equalization of wall temperature, which
in turn will usually promote 1mgroved heat transfer.

The treatment of heat exchange with joint transfer of energy
by convection and by radiation is still not very advanced. We shall {*\
not consider such problems in detail., To form an idea as to the in- vy
fluence of radiation on convective heat exchange, we shall analyze
an elementary case, flow of a diathermal medium in a flat tube far
from the entrance [11]. The heat-flow densities are specified for
each tube wall, The densities are constant over the surface, but
do not equal one another (q 4 # qg5).

If the medium is diathermal, the energy equation has the same
form as for purely convective heat exchange, i.e., Eq., (8-17) is
also valid here., Assuming that the condition£§-==%%- =constis also

satisfied, let us determine this constant from (8-32), and substi-

tute it into (8-17). As a result, the energy equation takes the
form

Fr= (=P, (8-11)

where

™, oy W, gyl o p W
e=(4e|+¢lel)h' Y—T_T' X_"W'T' Pe = 3
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The radiation exerts fts irfluence through the houndary con-

_dit*ons. Each surface element délivers heat. to the -fluid .flow owing

to convective heat e&xchange and to colder cegments of the surface

.owlng to radiative heat exchange. For simplicity, we shill formulate

the boundary conditions in approximation, on the assumption that
heat transfer by radiation takes place only in the plane of each
cross section. This means that heat generated in the walls at a
given section will be delivered to the flow in this section alone.
This assumption will be closer to the facts the l2ss the relative
tube width k/7 and the smaller the wall-temperature variation along
the axis as compared with the mean temperatures. Thus we write the
boundary conditions in the form

=3 (), e T T (8-72)

()T

where o 18 the Stefan constant; epr is the reduced emissivity;

o1 1 1 .
=Sy I ¢ -5 .
here € and €, are the emissivities of the tube walls.

If the wall-temperature difference (Tsl -182) is small as

compared with 7 s1 and Tsz, we can then assume, in approximation,
that

T:l = T:’= 47‘: (To. — Tc.). (8"'73)

where

To ='i‘ (Tm + Tcs)-
Using (8-73) and reducing (8-72) to dimensionless form, we

obtain
(7)., =3~ 20 (0 — 8

(), =~ — 20 0e — o)

where p-—“‘ is the ratio of the heat-flow densities at the walls;

(8-74)

m==-x—- s a dimensionless parameter allowing for the influence
of heat exchange by radiation,

We represent 0O as
0=0,4AX+f(V),
where O, is the dimensionless temperature at the entrance; 4 = 2,

as we cin see from (8-32). Substituting this expression for ©
into (8-71) and integrating the latter twice, we find

- 207 -




prom

t=5(r—5)+er+e.
where ¢ and o, are constants of integration. .
Thus
0=0,+2U+3(P— ) +ar +e, (8-75)

Using the first boundary condition of (8-74) and the condition
0 ==0,,tor F==—1, wve determine the constants., After they have been sub-
stituted into (8-75), we have

8 —On= ('~ T )—g+ x5y — 20— 0]+ 1.

Letting ¥ = 1, we find

9ea*ee;= ﬁh- (5-76)

Substituting this value into the preceding equation, we
finally obtain -

60— Oc.—%(y'—%)"'[z(ll:-’n (l+§|\l_+' )]y+
' a—po +zo)] (8-17)

+ [t
BAEHT T-h0+#)

The expression for 6 — 981 is easily found by subtracting
(8-76) from (8-77).

There is no difficulty in computing the differences between
the wall temperatures and the mean mass temperature of the fluid,
and the limiting Nussel:t numbers at each wall:

+1 ’ '
80 —B="7 [(@u—O)1 —Y)ar, (1=1; 2

4:{"‘__ 2D,

Ta—T (14D (O — 8) '

Nu’w=
where D;=1 wlhon i=1unaD; =P when i=29,

Performing the computations, we obtain

A—HES+C)) .
8us—B =g TR (8-78)
2n
Ny == = H BT’ (8-79)
R 1 440

where C;=0 when {m]andCi=] when =2,

When ¢ = 0, 1.e., when there 18 no heat exchange by radlation,
Eq. (8-79) reduces to (8-43).
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Fig. 8-13. Influence! of radia-
tion on dimensionless wall-
temperature difference for
flat tube,

Figure 8-13 shows the change in the dimensionless tube-wall
temperature difference as a function of 8 for various values of the
parameter &, As ¢ increases, the influence of radiative heat ex-
change rises; this substantially reduces the wall-temperature dif-
ference., Thus when $=025.«®=05, the wall-temperature difference
decreases by a factor of 3 as compared with its value in the ab-
sence of radiative heat exchange.

Manu-
script
Page . Footnotes
No
183 ‘If we seek a solution by applying the met..od of seﬁara-
tion of variables directly to ©, rather than to e,=0-—e,,
then in satisfying the boundary condition %—)hu --;-.
we would have obtained a different relationship:
o 1
?(X) ), 2nbyuetnct =g,
2
In other words, the method of separation of var-
iables 1s unsuitable for this case. Thus we see that
it 1s necessary to isolate one particular solution
(6,), since this eliminates the inhomogeneity from
the last boundary condition of (8-3), and the sclu-
tion for 0, can be found by separation of variables.
186 ’See [8a] of the refevences fos Chapter 6.
187 ‘This solution is found in analogy with the solution

for a round tube (see §8-1).
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*3e= the analogous solution for the case in which i, "
= const, $6-2, ’

SThe example is taken from [6].

‘The hydraulic-integrator calculations whose results ape
shown in Pigs. 8-9 and 8-10 were carried out at the
Moscow Pcwer Institute oy I.V. Kurayeva.

Transliterated Symbols

¢ = 3 = stenka = wall

H.T = n.t = nachal'nyy termicheskiy [uchastok] =
initial thermal Ssegment]

da -de = [equivalent diameter

O =p = [not identified]

np = prr = privedennyy = reduced
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Chapter 9

HEAT EXCHANGE AND RESISTANCE IN ROUND TUBE WITH VARIABLE FLUID
PHYSICAL PROPERTIES AND BMINDARY CONDITIONS OF THE SECOND KIND

9.1, HEAT EXCHANGE AND RESISTANCE IN THERMAL INITIAL SEGMENT

1, We consider liquid flow and heat exchange in the thermal
initial segment of a round tube; the viscosity coefficient is
assumed to be toemperature-dependent, while all other physical
properties are t:aken to be constant. A similar problem was in-
vestigated in §7-3 for constant wall temperature. Proceeding in
similar fashion, we can also solve this case without difficulty
when the heat-flux density is constant at the wall; this was
done in [1]. Since the remaining conditions and the solution
method are the sameé as in §§7-2 and 7-3, we shall only give the
initial equations and the computational results.

We introduce the following definitions for the dimensionless
variables:

.

Y (e 1) LS ST I
o=l v, =% w,=—%; M=L,
wd . X, Y r.
Pe—.._—-a. X—.——,.-- Y—l—, ’ k=,.'

The definitions of the dimenéioned variables are the same
as in §§7-2 and 7-3.

!
I
|
|
|
!
!
\
|
|

If we neglect energy dissipation, the problem reduces to

Joint integration of an equation system that takes the following
form with our notation:

ey [0=n]=8w. L=
=y | A="ugFE]=A. (9-2)
Rt (=W, =0, | (9-3)
T=1+68+a0+. . +cadm, (9-4)

where

8 =35(W‘3;+W”§)” ‘ (9-5)
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H:re A(X' s . certain function of X,

-The solution of this system must satisfy the following
boundary conditions:

for X>0 se¥ =0 g-a;]. ',-:’,-0;

LT X>0ml>V>k 00, 33=0; (9-6)

for X>»0amuY =1 ‘w'f-=0.

Integrating (9-1) and using the temperature boundary condi-
tions, we fingd

a(x)=,ﬁ.. . (9-7)
0--‘-(,.‘:5).[—(15&rm}§’;—r'(1--;-)+k(z--})]. (9-8)

Since the thickness of the thermal boundary layer is sub-
stantially less than the tube radius, when 0 <Y<k, we can neglect
k and ¥ as compared with unity. Here Expression (9-8) becomes
simpler, taking the form

On -’lr()’—-k)'. _ (9-8a)

Substituting (9-8a) into (9-4), we determine the law govern- -
ing the variation in viscosity over the thickness of the thermal
boundary layer:

TG0 -+ GOy o ipm

In most practical cases s the relationship between the vis-
cosity and temperture will be described with sufficient accuracy
by a second-degree trinomial, Thus we only keep the first thpee
terms of the last equation. Then after certain manipulations we
obtain

.;.,.(x+g.a+‘+v)-<c.+c.k)l’+-i-(‘7'+3c-)*"—%‘-Y'-Fz’;'r”‘- (9-9)

We integrate equation of motion (9-2) separately in the
thermal boundary layer region where M is described by Eq. (9-9),
and in the flow core, where M = l; determining the function 4A(x)

tor Yk s =
W"=ﬂ!'2 T-::_l i, (9-10)
forY>k : N . :
L ve Y.
Vemg [+ 0¥ ~8) = (-t Y ], (9-11)
im0

0~

W
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where
. $ .
R=—g+git—trtpe—tetla -brg-,-:ﬁ-v“+

- + +8

Br(E-t5)
== (A8
b=lte+(F+a)e+5 e | ,
nfot (e L
b=gat+(F+e)t: - |
bh==(F+@) b= . _ i

For constant viscosity, Eqs. (9-10) and (9-11) yield a para-
bolic velocity distribution. ;

Using the continuity equation (9-3) and Eq. (9-11) for L/
we obtain an expression for the transverse velocity component; :

V=g x[—+ (c.+c.k)Y'+-}(%}-+c.+%--b)v-|-.;(§._¢,)i-_ 1t
—w(FHE)rHaErEr-griy
L

1 _dR dk )
oo : Yits,
twa -ngm (9-12)
When p=const,c;=c,;=0, R=-. ,', ot Wy =0,

The relationship between the thickness k of the thermal bound-
ary layer and X is determined from (9-5). Substitutin in the
value of B(X) from (9-7), as well as o, W, «W, from (9-8a), (9-10),
and (9-12), we have .

& (] 8 .
__:_J {fk[gﬁmk"._-‘l’ gm‘ﬂim’kﬁc].l_

]
I dR[1 b !
+‘R"75[Tzo ENEHT "”"‘Z}oﬂw e =l
1 7 1 3 1 X :
. +':r(‘m‘-*'+m‘-"‘—m‘s*‘+m‘-"‘)}'”"_'w' (9-13)
A numerical method is used to integrate (9-13).

For constant viscosity, ¢,=¢,=0, by=~1, by==1, R"‘-'&" and
drR/dk = 0. In this case, (9-13) takes the form
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As a result of integration we obtain

r(1—-§-)=24,';-.;. (9-14)

After the relationship between k and ,}-{- has been found, we

can calculate the velocity and temperature profiles, as well as

the wall teuperature, heat-transfer coefficient, and resistance
coefficient.

. We obtain the expression for the dimensionless wall tempera-
ture from (9-8), letting ¥ = 0:

e.=m-':_-5((1-k)'1no—é)-§-k(1-§)]. (9-15)
If we use approximate equation (9-8a), then C}
=t | (9-15a)
Determining the local heat-transfer coefficient in the form
=i qe
te—t'
we oblain the following expression for Nu:
Nu-T_ o (9-16)
The dimensionless mean mass temperature of the liquid in the
given section is .
g .
6=26[ew',(1—¥)d¥, . O

or, since when £<Y<1,6=0,

. ] . .
6=2‘[,9W.(1f—}')d}'. ‘

If we now substitute in the value of 0 from (9-8a) and W,
from (9-10), we obtain

& =) R L itey 2k | . be e
=3[ ~w Yawntwnt+ 55 Y et
{0 1 120 (9-17) :
b ] by '
T+ I)‘(i+ ;i)k‘"‘+T 4201‘ + ) +2) < ] '

24k
: ‘E
i

=)

- 214 -




. The Nu number can be determined diffétently by representing a
a8 .q./t, = tq. Then using (9-152], we find

Nu=%=-;-. .. ’ (9-16a)

TABLE 9-1

Comparison of Results of Theoretical
Heat-Transfer Calculation with Experi-
mental Data for Flow of BM-4 01l in
Tube 10 mm in Diameter at ¢, = 35.5°C
and qe * 20.8.10% kW/m?

-&--5— ) fe °C .:.L Nayoop | Nugquy
4,55. 10~ Guo‘ 53.0 o.”' 98,3 - 9.3
1.14.10-¢ 0.10 79.3 0.131 38,8 3.9
1,18.10-* { 0,20 123 0,0827 | 2,8 2.4

When the viscosity is constant, F‘.—ﬁ'—’ is sufficiently small,
and k/5 << 1 1in (9-14), we have

Nu= 140 (i) "

This 1s nearly the same as Eq. (8-14). The sole difference
lies in the value of the constant, which is 8% greater here than
in (8-14). We also note that in (8-14), Nu refers to the differ-

ence t; - t rather than tg = tp- When ,';--;- is small, however, this
is of no great importance.

The local friction-resistance coeffic:lent is

%:'%:% (a:; )0==0 =='%(%;E)m )

Finding the derivative from (9-10), we finally obtain

t=

8 b,
‘=T T (9-18) - .
where Rec= pd/p..

Fgﬁ constant viscosity, Eq. (9-18) gives the usual value
ERe = .

The results of a thecretical determination of heat transfer
using the foregoing method are compared in Table 9-1 with experi-
mental data. For this table, Nuopytn was computed from (9-19).:
Comparison shows good agreement of the calculated and experimental
values of Nu, ' \
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2, Az w can see, It 1g a quite complicated matter to make
a theoretical determination of heat exchange and hydraulic resis-
tance with aliowance for the relationship between viscosity and
semperaiure, Each specific cass requires a great deal of computa-
tional effort. In practice, therefore, if we do not need to know
the detailed process characteristics (velocity field, temperature

field, etc.), preference is given to the simplest possible empiri-
cal equations.

) I ! | B 1 |
1

-

§6 500K

UIRABSAN ANE (5 &2 L MBS B W

Pig. 9-1. Relationship between
Nu/Nuo and "s/“zh for g, = const,

based on experimental data for
type BM-U 01l (circles) and wa-
ter (squares). (T;

M.A., Mikheyev, S.S., Filimonov, and B.A. Khrustalev have meas-
ured heat transfer for viscous flow of water in round tubes [2];
Ma Tun-tsze has performed such measurements for viscous flow of
‘type BM-4 011 [1]). In these experiments, the heat-flux density at
the wall was held constant by passing an electric current directly
through the tube wall, or by means of an external electric heater.
In most cases, the liquid was introduced into the working segment
through a nozzle of smooth outline so that the velocity and temp-
erature profiles developed simultaneously along the tube length. - -
Here stabilization of the velocity profile terminated a certain
distance from the tube entrance, while, as a rule, the tempera-
ture profile did not become stabilized within the limits of the
working segment (except for some of the water experiments). (:)

Here we shall only consider experimental data pertaining to
the flow region far from the entrance, at a distance exceeding .
the length of th: hydrodynamic initial segment (z > I g).' Figure
9-1 shows these experimental results in power treatment. The axis
of ordinates shows the ratio of the local number Nu = iagéﬁ- found
experimentally to the value of Nu, computed from (8-15) on the

assumption that the physical properties of the liquid remain con-
stant. The axis of abscissas shows the ratio of the dynamic viscos-
ity coefficients at the wall temperature ts and the mean mass temp-

erature t of the liquid. The curve of Fig. 9-1 corresponds. to the
équations

Nu=131 (ge) "1 +2§---j,‘-)(§)"f“. (9-19)

wWhich, as we can see, 1s a quite good description of the experi-
mental data. Approximate allowance is made for the dependence of
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A and a 'n the temperature by choosing the values of these para-
meters in the expressions for Nu, Nuo, and Pe for a temperature

t=35 (t‘,+t)

. Equation (9-19) 1s valid for heating of liquids (their vis-
cosity decreases with temperature) with constant heat-fiux den-
sity at the wall and, of course, with no influence of e eon-
vection. It covers the region of values of Re < 2300, n<o£u
-m-om< =<1,

Comparing Eq. (9-19) with (7-83) (for the case in which ty

* const), we find that the influence of variable viscosity on
heat exchange is roughly the same for C const as for f = const,

We can therefore assume that, first, Eq. (9-19) will bé valid not
only for heating, but also for cooling of the liquid (at least to
values y /uzh < 10) and, second, that the influence of the yvariable

viscosity on heat exchange can be taken into account with the aid
of the ratio (pc/pw)" wheren=0,14-0,16 both when the heat-flux’ density
at the wall is constant along the length and whén it varies with
the length,.

3. In the study of Worse-Schmidt and Leppert, cited in §7-4,
paragraph 2 (see [11] of the references for Chapter 7), a nuneri-
cal method was used to solve the problem of heat exchange and re-
sistance for air flowing with variable physical properties 1n the
thermal initial segment of a round tube. The calculations were car-
ried out toth for constant wall temperature and with constant den-
sity of heat flux at the wall. All remaining conditions were the
same in the two cases (see s7-u paragraph 2).

The computational risults show that the influence of variable
physical properties on heat exchange and resistance for de * const
is roughly the same as for ts = const. For small values of the re-
duzed length G%n$<l0*), Nu increases slowly, while for high values
it aecreases slowly as qg (or Ts/ﬁU increases. The friction resis-
‘ance coefficient £ increases as T /? inc.eases for all values of

Y; the rise is far sharper than for Nu. The variation in Nu and §
“Ith g (or T /@5 is greater in the thermal initial segment than in

.he region or stabilized heat exchange. When the physical properties
n»e variable, the thermal initial section is roughly as long as for
« stant properties.

When Qe = const, an interpolation equation was proposed in

tire above-cited study for the local Nu numbers; the equation des-
crioes the computational results to within +3%:

Nu==4,36{1 — cxp (- 34.X)] 4 aX~"P exp (— bX™). (9-19a)

The values of the parameters a, b, and m depend on the para-
meter Qc-.={-.‘;;:
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for 0<Qe<20 a=12140,0661Q, 6=47,648,42//T., m=>5/4;
for 20< Q. <40 a=1,3840,00429Q,, b==20+3,82)/ 0, m =1,

Here xo is the thermal-conductivity coefficient of a gas for
an entrance temperature TO' The remaining symbols, as well as the

ilmits of applicability of (9-19a) are the same as fopr the case
in which T, = const (see §7-U, paragraph 2).?

When q. = const, Eq. (7-82a) holds for the local resistance
coefficient”

9-2. HEAT EXCHANGE AND RESISTANCE FAR FROM THE TUBE ENTRANCE.
THEORETICAL -COMPUTATION METHOD -

We shall investigate flow and heat exchange in a round tube
at a distance from the entrance such that the velocity and tempera-
ture fields have become stabilized, i.e., where the fields have
ceased to depend on the boundary conditicns at the entrance sec- (:i
tion. Let the heat-flux density at the wall be constant along the
length. In §7-1, this problem was solved on the assumption that
the physical properties of the fluid remain constant. Here this
restriction is removed: the fluid physical properties are treated
as arbitrary functions of the temperature, but, as before, the
fluid 1s assumed to be incompressible. The problem has been con-
sigered in this formulation by V.N. Popov and the present author

We make the following assumptions:

1, The fluid velocity is not large, so that energy dissipa-
tion can be neglected. ;

2. The mass-force influence occasioned by the variable density (“}

is small as compared with the influence of the viscosity forces and —
the inertia.

3. The change in heat-flux density produced by heat conduction
along the axis is small as compared with the variation along the
radius,

4. The axial component of the mass velocity varies little
along the tube axis, i.e., d(pw,)/ox=~0. As a consequence of this
assumption, we find that the radial velocity component equals
zero (wr = 0), while the pressure p 1s constant over a section.

With allowance for these assumptions, the energy equation
and equation of motion will take the form

Py 3—:=+-£— (rg), (9-20)

i o4ed) =22 (), (9-21)
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Here h 1s the enthalpy, T the temperaturé, p the pressire, w, the

longitudinal velocity, component, q the heat-flux density, and ¢
the tangential stress. ' i v

To simplify the simultaneous solution of (9-20) and (9-21),
42 make two more assumptions. We assume that the derivatives with
respect to x occurring on the left sides of (9-20) and (9-21) do
not vary over a section, 1.e.,

5. oe-=h(x).

0
6 2ot hw.

When the heat-flux density at the wall is constant with length,
assumption 5 should be sufficiently well satisfied. The same can
be sald of assumption 6, since for a gas flowing at moderate sub- .
sonic velocitlies, and even more certainly for a liquid, the_ pressure
gradient produced by the longitudinal density variation duufﬁlm
will be small as compared with the resultant pressure gradient dp/d=
which, as we have already noted, does not change over a tube cross
section. Nonetheless, by introducing assumptions 4, 5, and 6 we make
the problem solution approximate.

On the basis of (9-20), (9-21), and assumptions 5 and 6 we can
obtain equations for the distribution of heat-flux density, tangen-
tial stress, temperature, and mass velocity over a tube section,
as well as expressions for the Nusselt number and the friction re-
sistance coefficlent.

Multiplying (9-20) by r dr, using assumption 5, and integrat-
ing over the radius between 0 and Pos We have

dh  2¢,' =
ook (9-22)
‘here q  1s the heat-flux density at the wall; pw is the mean mass .
velocity of the fluld over a section, énd'ro is the tube radius.
Substituting (9-22) into (9-20) and integrating the latter

hetween 0 and r, we obtain the distribution of heat-flux density
«ver the radius:

R
q 2 We -
’37=T§';a RdR, (9-23)

where R = r/ro.
Since the pressure is constant over a tube section,

gg:c‘,%, (9'21‘)
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We can uie thls relationship to represent the heat-flux den-
sity in the form

=% (9-25)
From (9-23) and (9-25) we find
)

R
=94 % -Eandk. (9-26)

Integrating (9-26) from R to 1, we obtain the enthalpy distribu-
tion cver the radius:

R
2 (1% par
hc—h=ch _l_—dR' (9"27)
-;R
where k_ 1s the enthalpy at the wall. (J

We can now obtain the temperature distribution if in (9-2¢)
we represent 9h/9R in terms of 3T/3R with the aild of (9-2U4) an3i
integrate the resulting equation between R and 1:

.
'j%m
Te— =%Y—T—dk, (9-28)
[ _r.k

where Ts is the temperature at the tube wall; xs is the thermal-
conductivity coefficient of thefluid at temperatura 7.

By definition, the heat-transfer coefficient equals O

=S 0y x
e (9-29)

where T and % are the mean mass temperatures and the enthalpy of
the fluid;

r.
E;.=E;,!= | 50,”

T.— T. ) r

is the mean integral value of heat_capacity for the temperature-
variation interval between Ts and T,

In turn,

1
he — h ,szs(hc—lz)%kdk. (9-30)
0

Multiplying (9-27) by 252 RdR and integrating with respect to
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The integral on the right side of this expression is evaluated
by parts. Integrating, we obtain

R  §
(-
- (J e m) (9-31)

Using (9-29), on the basis of (9-31), we obtain an expression
for the Nusselt number:

. j‘ (j %"-m)' (9-32)

e 9 0 ~—x————dR,
Ny, o . ¢y L R i
0 L P

where Nuco=ad/Acis the limiting Nusselt number, computed from the

value of the thermal-conductivity coefficient at the wall tempera-
ture; cps is the fluid heat capacity at the wall temperature.

It is easy to see that when the physical properties of the
fluid are constant, Eq. (9-32) reduces to the familiar Layon inte-
gral.

We now turn to equation of motion (9-21). Integrating this
equation between 0 and », making allowance for assumption 6, and

elimtnating Hz_ (p+pwi) by means of the boundary condition at the
wall, we obtain

_:'::::Rl (9"'33)
where g is the tangential stress at the wall.

Relationship (9-33) follows from assumption 6. Introduction

¢. ‘uls assumption means that the actual radial distribution of
tangential stress is replaced, in approximation, by a linear
distrivution. '

Substituting the valued=h—pawd?r1nto (9-33) and integrating
between F oand 1, we find the velocity distribution:

o the (B "
w.-;,—}' - RdR, (9 34)
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Multiplying this equation by p and dividing by

po=2 5' pw,R dR,

we obtain the mass-velocity distribution:

[ 4 |
-;: -;RJR
e _ (9-35)

5-'{-(5 dn) RdR

The friction-resistance coefficlent can be determined in the
form

ey _,

1|1=

.. S (9-3€)

Representing o in terms of the veloclity gradient at the wall
and finding the latter from (9-35), on the basis of (9-36), we ob-
tain an equation for the friction-resistance coefficient:

) 1
AL U (9-37)
LAY 9=31
2 (f4 eaw) rar
1] :R
where Re,—gwdfp. 1s the Reynolds number, calculated from the value
of the dynamic-viscosity coefficient at the wall temperature,

When the physical properties of the fluid are constant, Egs.
(9-23), (9-32), (9-33), (9-35) and (9-37) take the familiar forms

-;':=2R_(l--%.-). (9-23a)
Tc'—T— (3 4R.+R‘)o (9—283.)
N“co::":'?" (9-32a)
LR (9-33a)
©s 2(1 —-R') ] (9-35a)

4 "
E:"Ré— (9-373.)

Equations (9-28), (9-32), (9-35)and (9-37) permit us to determine
the heat transfer and friction resistance, and incidentally the
temperature and velocity fields when the fluld physical properties

(p. n. A ¢p) vary arbitrarily with the temperature.

As we can see from (9-32), (9-37) and (9-35) to determine
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Nucw and &, /e must know the radial distribution of the fluid physical
properti.s or of the temperature (since we assume that we know the
way in which the physical properties depend on the temperature..
Since the temperature distribution (with variable physical proper-
ties) is not known in advance, a successive-approximation method
must be used.

The calculations are carried out as follows:
1) the values of Ts and qsd/xs are specified;

2) the temperature profile is calculated in first aporoximation
on the assumption that the fluid physical properties are constant
and equal to the values of the physical properties at the wall temp-
erature; Eq. (9-28a) 1s used for the computations; the radial dis-
tributions of the fluid physical properties are determined, and
Eqs. (9-35) and (9-28) are used for the initial determination of

the mass-velocity profile and then for the second approximation to
the temperature profile;

3) the mass-velocity profile and the third-approximation temp-
erature profile are determined, and so cn until the difference in
the temperature distribution for the (n + 1)st and nth approxima-
tion becomes less than some specified amount within which the var-
iation in fluid physical properties is negligible;

4) the distributionof fluid physical properties correspondiqg
to the temperature profile found in the last approximation is used
to evaluate the integrals in (9-32) and (9-37); we then determine

Nu.» ged
e ] - — orul Ce.
c,n Al‘ (" C—"') ec R e

Since the values of ¢.d/hcw Tcare specified, it 1is easy to find
the mean mass enthalpy h and the corresponding mean mass tempera-
ture 7. After this, we calculate the Nusselt number:

e At
Nu, == T

After appropriate modification, this method of determining
heat exchange with variable physical properties can be extended
to the case of friction in flat and annular tubes,

In the succecding sections, we s..all give results of heat-
exchange and friction-resistance calculations for flow of fluids,
Jlatombe gacses, and hydrogen and carbon dioxide in a condition of
caulllbelium dissoclation for the supercritical region of the state

caranet erg,

9-o. i'LAV EXCHANGE AND RESISTANCE FAR FROM THE TUBE ENTRANCE FOR
FLOW OF LIQUIDS

deat-cxchange and friction-resistance calculations have been
carried out [3] for water ata wall temperature t, between 0 and
300°C, transtormer oil with ty between 0 and 120°°C, =nd type
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Y. 9=3, Results of heat-transfer calculations for water, trans-
frmer oll, and type MC-20 oil flowing in a round tube. The curve
sorresponds to the equation ‘

Nuy, - ‘:.*l‘(_:: )o.zs (:_.)

A) Water; B) transformer oil; C) type MC-20 o1l (all physical
propertles variable); D) type MC-20 o1l (only viscosity variable).
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MC-20 o1l with ts between 20 and 150-°C, with both neating and cool-

ing of the liquids. The ratio of dynamic viscosity coefficients at
te wal". temperature and at the mean mass temperature us/uzh of the

liquid varied from 0.426 to 12,6 for water, from 0.356 to 18.5 for
t-ansformer oil, and from 06.163 to 5..3 for type MC-20 oil, The
remaining physical parameters varied negligibly, as we can see from
Table 9-2, which glives certain data for water. Nonetheless, allow-
ance was made for the variation in all physical properties during
the calculations.’ Naturally, for liquids the relationship between
u and ¢t has the greatest influence on heat exchange and resistance.
Moderate variations in the otherphysical parameters may only have
a slight influence, To check this, additional calculations were
carried out for type MC-20 o0il; only the viscosity-temperacure re-
lationship was considered. As the graphs given show, for Nu and §,
variations in p, e¢_, and A have negligible influence on heat trans-

fer and resistance during flow of oils.

TABLE 9-2
Some Calculated Data for Water
'f' *c ': oc fo. °C* _:_:L- _'_'-"_ _::_ T“_:_
300 132 % 1,34 0,764 | 0,787 0,426
0 193 295 0,941 1,17 0.826 | 12,6

't; is the temperature on the tube axis.

Pigure 9-2 1llustrates the influence of the variable physical
properties (viscosity, in the main) of type MC-20 oil on the radial
distribution of temperature, velocity, mass velocity, and heat-flux
density. As the curves show, the dependence of the viscosity on the
temperature has the greatest influence on the velocity profile (or
on the mass velocity, which i1s almost the same thing in this case).
The velocity-profile variation entalls a corresponding change in
the distribution of heat-flux density, as follows from Eq. {9-23).
For cooling of the liquid, the velocity near the wall decreases
as compared with the isothermal case. This leads to a reduction
in the convective trunsport of heat along the axia in this region,
and to a corresponding increase in the density of the radial heat
flux.* In heating of the liquid, the reverse effect is ol -~erved.

Figure 9-3 shows computed heat-transfer results for water
and the oills as theoretical points. The following equation is a
good generalization of the calculated data:

N“m?{?(ﬁ)”"“(.%)", (9-38)

where

U
Nu = ol =
«© Ar(fr. "“l'
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" Here X. fs the thermal-conductivity ccefficient at the temperature
=% (o475 Pg 804 U are the values.of p and i at lipsand pm are
the values of p and u at the temperature t. _
The exponent has a value n = — 0.13 for heating of the liquid

and —0.14 for cooling. The coefficient 48/11 corresponds to the

value of the Nusselt number for constant physical properties of
vhe 1liquid. By introducing Ar into Nu_,we allow for the influence

of the variable thermal conductivity. For water, the correction

(Pcfes)™™,  which allows for the influence of density variability,
reaches 7%, but does not exceed 1.5% for the oils. The maximum
departure of the calculated points from Eq. (9-38) is 3% for water
and 2.3% for the oils.

Comparison of (9-38) with the empirical equation (9-195 for
heat transfer in the thermal initial segment shows that when 9 ®

= const, the influence of variable viscosity on heat exchange in
the region in which thermal stabilization sets in is scmewhat
less than in the thermal initial segment (in the first case n =

= - 0.13, in the second case A= —-- ~—0,166).

) ] |
?5%0_ i g~
23 '/d/
a2 a8 'Li
m4_\¢ s0W N W wew
as
/!

Fig. 9-4, Results of friction-resistance calculations for water
and oils flowing in round tube. The curves correspond to Eq. (9-39)
with the following values of the constants:s—a-1m a-em2 -4-ms a-so{ the
symbols ave the same as in Fig. 9-3).

Figure 9-4 shows the results of the friction-resistance cal-
culations. They are well described by an equation of the form

ok |A[(l5:) -1]. | (9-39)
In this equation

Mo o e
Em = (aw), ] R‘m—— P .

As we can see from Fig. 9-U4, the calculated points for water
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ard the ol 3 lle on the same curve for heating. With cooling the
points repicsenting water lie somewhat below the points for the ofls.
For oil= in cooling and heatinz and for water in heating, the con-
stants :a (9-39) have the following values: 4 = 1,38 and n = 0.38.
Here the maximum deviation of the calculated points from Eq. (9-39)
does not exceed 3.5%. To within 1.5%, the computational results

for water with cooling are also described by (9-39) with 4 = 38.8
and n = 0,016.

Equations (9-38) and (9-39) will obviously be valid rot only
for water, transformer oil, and type .MC-20 oil, but for other
liquids for which the nature of the relationship between the physi-
cal properties and the temperature is not too different from the
corresponding relationships for the investigated liquids. It is
understandable that the applicability of the 2quations is restricted

by the 1limits of variation in the ohysical properties encompassed
by the computation,

We also note that (9-38) and (9-39) only permit us to deter-
mine the local values of the limiting Nu_and £ numbers far from
the tube entrance, where the velocity and temperature profiles are
stabilized (i.e., where they cease to depend on the conditions at
the entrance). Since these physical properties of the liquid vary
with the length, Nu  and £ will also vary with the length.

9-4. HEAT EXCHANGE AND RESISTANCE FAR FROM THE TUBE ENTRANCE WITH
FLOW OF DIATOMIC GASES

tleat-exchange and resistance calculations have been given in
[3] for air and hydrogen both with heating and cooling of the gas.
For heating, the calculations were carried out at T_ = 1000°K for
air and Ts = 1000 and 2000°K for hydrogen; for cooling, they were

carried out at T_ = 300°K for both gases.® For both air and hydro-
gen, the temperature factor TS/T varied between 0.4 and 1.75.

The graphs of Fig. 9-5 illustrate the influence of the var-
iable physical properties of air on the radial distributions of
temperature, velocity, mass velocity, and heat-flux density in
the tube. The particularly sharp redistribution of mass velocity
over the tube section 1s striking. This is of course assoclated
primarily with the dependence of the density on the temperature.
In contrast to liquids, the mass-velocity profile (and the velo-
city profile to a lesser extent) is filled for cooling and elon-
gated for heating of a gas. Since the mass velocity near the wall
decreases when a gas 1s heated and increases during cooling as
compared with an isothermal flow, there will be a corresponding
increase or decrease in the heat-flux density near the wall,

Figure 9-6 gives calculated curves for heat transfer to hy-
drogen and air. The axis of ordinates shows the ratio of the Nus-
selt number for variable physical properties, with the thermal-
conductivity coefficient taken for the gas temperature T, to the
Nusselt number for constant properties, 48/11; the axis of abscissas
shows the temperature factor Tq/T. It is clear from Fig. 9-6 that
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Fig.9-6. Results of heat-transfer calculations for air and hydrogen
flowing in round tubes. Solid lines) Hydrogen; 1) TS = 2000°K; 2)

Ts = 1000°K; 3) Ts = 300°K; Dashed line) Air; U4) TS = 1000°K; 5)
Ty = 300°K; Dash-dot line) Deisler computations for air.

the calculated curves for air and hydrogen differ somewhat for iden-
tical values of Ts. This difference 1s slight, however, and lies in

the 1-2% range. It should also be noted that for hydrogen in the
heating case, the curves corresponding to Ts = 2000 and 1000°K also

diverge somewhat. Here too, the difference amounts to 1-2%.

TABLE 9-3

Values of Constants B and m
in Eq. (9-40)

1’23, NanpasIcHne TenI080r0 ROTORD B m

2Bonopon npn narpepamn (Te =
3B;=T&n23aﬁnm.. ;.. 0,0065 | 5
et i T 0= oom |
AOPOA H BOIA oxasuae-
m(c“m!xx)“':". ¢ e 0 0 o'ms '

1) Gas, direction of heat flow; 2) hydrogen with heating (Ts =
1000 and 2000°K; 3) Air with heating (Ts = 1000°K); 4) hydrogen
and air with cooling (Ts = 300°K).

>
The equation
Nug =gy L1481+ (7)) (9-40)

Lo a pood desceription of the calculated heat-transfer data for air
and hydrogen; here

o 0d
N“mao"")“ 5"

and A, 1s the value of ) at the temferature T.
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“Table 9-3 shows the values of the constants B and m in (9-40).

Equation (9-40) describes the computational rezults with aa error
not exceeding 1%.

Figure 9-6 also shows the calculated relationship obtained
by Deisler for air. The equation for this curve has been taken
from [7]. The difference in the absolute values of Nu_ obtained

with our data and by Deisler's calculations 1s not great, but
there is some difference in the nature of the relationship. J. is
difficult to account for this discrepancy, since we have not been
able to obtain information about the Deisler computation method.

Fig. 9-7. Results of friction-resistance calculations Tor air and
hydrogen flowing in round tube. 1) Hydrogen, Ts = 1000 and 2000°K;

2) air, T, = 1000°K; 3) hydrogen and air, T, = 300°K.

Figure 9-7 shows the results of friction-resistance computa- |
tions for alr and hydrogen. The relationship between the friction-
resistance coefficlent and the temperature factor turns out to be
the same for heating of hydrogen with Ts = 1000 and 2000°K. The

similar relationship for alir at Ts = 1C00°K differs only -lightly
(by roughly 2%). For cooling of hydrogen and air (at T, = 300°K
in both cases), the same relationship 1s obtained between £ and
T /T. .

s

The results of the calculation of friction resistance coeffi-:

cients for air and hydrogen are described by an equation of the
form

YL T, [(-’.';)'-1]. (9-41)

where

When the gas 1is heated, ¢ = 0,23 and k = 3/2; whén it 1s
coo'ed, € = 0.36 and k = 1,

It is Interesting that as the temperature factor increases,
the heat transfer decreases while the friction resistance increases.
The drop in heat transfer is associated with the fact that the re-

- 231 -




duction in iemperature gradient at the wall (see Fig. 9-5) is not
compensated by a corresponding increase in the thermal-conductivity
coefficient of the gas at the wall. The increased resistance is ex-
plained oy tne fact that the viscosity of the gas at the wall rises
faster than the velocity gradlent at the wall decreases.

As we have noted, the wall temperature has ver: little influ-
ence on the friction-resistance coefficient and the Nusselt number.
Thus Eqs. (9-40) and {9-4i) can be used for different wall tempera-
tures (at least htetween 300 and 2000°K) over the 0.4 to 1.75 range
of temperature-factor variation. ‘

Unfortunately, there still have been no reliable and systematic
measurements of heat transfer and resistance for laminar flow of
gases 1in tubes. Certain experimental data published for gas heating
£8] show that within experimental accuracy (+10%), Nu_ 1is indepen-
dent of the temperature factor. This does not contradfct the results
of the theoretical computation. As we can see from Fig. 9-6, when
TS/T varies from 1 to 1.8, Nu changes by no more than 10%. Naturally,

such a change in Nu is undetectable owing to the inadequate measure- —
ment accuracy. The same experimental data indicate that the resis- U
tance coefficient rises far more sharply as Ts/T increases than is

predicted by theory. Thus when TS/? 1.8, ERe/64 = 2,2 according

to the experimental data, while theory yields £Re/64 = 1,35, It is
apparent that the difference is associated with the approximate na-
ture of the theovry, which disregards the transverse velocity compon-
ents. Calculations based on the theoretically derived equation (7-82a),
which allows for the transverse velocity components, yield a value
ERe/64 = 1,85, which is much closer to the experimental data. The
definitive solution of the problem requires further development of

the theory and more systematic measurements.

9-5. HEAT EXCHANGE AND RESISTANCE' FAR FROM THE TUBE ENTRANCE WITH
EQUILIBRIUM DISSOCIATION OF HYDROGEN

=)

As sufficiently high temperatures, thermal dissociation takes
place - in diatomic and multiatomic gases. In this connection it is
interesting to investigate the influence of dissociation on flow
and heat-exchange processes. For simplicity, we chall henceforth
assume that the dissociation rate far exceeds the rates of convec-
tion and diffusion transport of matter. In this case, there will
be chemical equilibrium at each point in the flow, and the mixture
composition will depend solely on the pressure and temperature at
the given point. It is well known that if we have equilibrium dis-
sociation, the flow and heat-exchange processes are described by
equations of continuity, motion, and energy that have the same
form as for a homogeneous gas.® Dissociation makes 1its influence
felt only through the physical properties entering these equations.
We take as these physical properties certain effective values of
density, enthalpy, heat content, thermal conductivity, and vis-
cosity that are calculated with allowance for the dissociation
reaction. The boundary conditions for homogerneous equilibrium
dissociation are the same as for heat exchange and motion of a
homogeneou:: gas, provided the flow does not interact with the mater-

s /242 Stedels




ial of t+: wall, as we shall henceforth assume.

Figure 9-8 shows the effective physical properties for equili-
brium dissociation of hydrogen (reaction H;= 2H) at pressures of
1, 10, and 1C0 atm and temperatures of from 2000 to 5000°K [9].
The degree of dissociation a characterizes the fraction of atomic
hydrogen in the mixture for various T and p. The density p and dy-
namic viscosity u change not only as a result of variation in
temperature and pressure, but also in connection withl the fact
that the mixture composition varies together with T and p. In con-
trast to the situation for a homogeneous gas, the specific heat con-
tent and enthalpy of a dissoclating gas include the hecat of reaction.
Here the contribution made to the heat capacity by the therasal ef-
fect of the reaction far exceeds the heat capacity of a mixture
whose components do not interact. Thus the heat capacity of a dis-
sociating gas is far greater than that of a mixture with no chemical
reactions, and it varies sharply with the temperature and pressure
(since the proportions of the atoms in the mixture vary with P and
p). When there is dissociation, molecular transport of heat in the
mixture occurs not only through heat conduction (qtp = Atp grad T),

e 3

but also through the heat transferred by diffusion (;,-z h:f‘. where

hi is the enthalpy of the ith mixture component, with allowance
for the heat of formation; }i is the mass flow of the ith compon-

ent; N is the number of mixture components). For equilibrium dis- '
sociation, g4 can be represented as the Fourier law (gx=—0xgrad7).

Thus the total heat-flux density ;=Ammdr,mmea=wn+ﬁlis the effec-

tive thermal-conductivity coefficient for the gas in equilibrium
dissociation. Since Ad may be several times Atp for certain values

of T and p, for these same values of T and p, A can exceed xtp; in

such case, the pressure will also vary sharply with the temperature,
As we can see from Fig. 9-8, the presence of dissociation leads to
extremely varied changes in the physical properties as a function

of temperature and pressure; the heat capacity and thermal conduc-
tivity vary particularly sharply with the temperature, and have
pronounced peaks.

Thus the problem of heat exchange and resistance in equili-
brium dissociation reduces to the analogous problem for a chemical-
ly homogeneous gas with strongly temperature-dependent physical
properties. Thus the method discussed in §9-2 for determining heat
exchange and resistance far from the tube entrance can also be used
for equilibrium dissociation. This method has been used to deter-
mine heat transfer and resistance for hyd-ogen in equilibrium dis-
sociation at 1, 10, and 100 atm and tempsscatures from 2000 to 5000°K
{10]. For heating of the gas, the calculations were carried out at
T, = 3000, 4000, and 5000°K and a series of values of T petween

ry and 2000°K, and for cooling for T, = 2000, 3000, and 4000°K, and
T between T and 5000°K.

Figure 9-9 illustrates the influence of the variable physical
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Fig. 9-8. Physical properties

of hydrogen undergoing equili-
brium dissociation. 1) atmj 2)
g/cm; 3) cal/cm.s+°K; 4) cal/

/g-°K; 5) g/cm-s.

properties of hydrogen in equilibrium dissociation.on the radlal
distribution of the dimensionless values of temperature, velocity,
and mass velocity.’ The figure alzo gives profiles of the variables
for two computational points in heating and two poilnts in cooling.
for comparison, temperature and vcloclty proflles are alco glven
for constant physical properties. It is clear from Fig. 9-9 ihat
the variable physical properties exert the greatest Influence on
the temperature and mass-veloclty profilles.

Figure 9~10 shows the results of heat-transfer calcviations,
as Nu, = —i«ﬁﬂf:7)as a function of 0, /p (the subscripts "zh" and
s" jndicate physical parameters taken for T and T o respectively).
The points for pwfec>1 refer to the case of gas heating, and those
for pyfec<1 to the case of cooling. Aé we can see, with equllibrium

dissociatlion of hydrogen, the variation in phycical properties with
temperature has a consilderable influence on heat transfer, Thus with
variable properties, NuZhou may differ from Nu_ for ccnstant proper-

ties (equaling 48/11) by a factor of 2.5. A still greater difference
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Fig. 9-9. Distributions of temperature (a2), velocity (b), and mass
velocity (e¢) over tube radius for flow of hydrogen in equilibrium
dissoctation. The dashed line represents constant physical proper-
ties. a) Curve; b) p, atm,
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Fig. 9-10. Results of heat-transfer calculations
for flow of hydrogen in equilibrium dissociation.
a) p, atm; b) computational points.

% o R 5
iﬂ?p—f)(up to a factor of 10).

1t In (9-32), we po from Nu

T ffound for Numz .

to Nuzhm, replacing As and cps
by \”h and “p"h’ 1t 16 not difficult to see (remembering that for
Al ctooIng gag, e varies little with the pressure and tempe;a-
ture) that the difference between the product Nuxnfgi and the cor-

r
respouding value for constant physical properties (48/11) is caused

tasically by the temperature-dependence of the density and viscosity.
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Thus Nu, 5 - can be represented, in approximation, as a function
of hpmnmudbm Aialysis of the calculated data leads to the fol-
lowing interpolation equation, describing the computational results

to within +6%:
@) (“) (9-42)

1,0 for l%( 1

‘h;

where

0,5 1'or%> 1;

Q51pr1%<:h

0710rfi X9

T

L

‘r'n—r T.— f
T

!

is the mean integral heat capacity over the range of temperature
variation from T to T, )

h..r
b —— 2" 4'/" (I“ -t e

1.5

;!
[ 40“lq =
*%4;3

05

Fig. 9-11. Comparison of calcu-
lated heat-transfer data with
Eq. (9-42) (solid curve),

TR

0r
BELNNREYAL;

a9

Fig. 9-12. Comparison of calcu-

lated resistance data with Eq.
(9-13) (solid curve).
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The parameters occurring in (9-42) were varied in the calcu-

1ation:: over the following ranges: 0,38 < ;-’5:7 <15; 0.53'4{-'%:-"1.3«'-&0.-59‘: -:;—“:
"~2.9.

Figure 9-11 compares the calculated points with the interpola-
tion equation (9- 42),

The results of the friction-resistance calculations show that
for variable physical properties, EZhRezh differs from ERe = 64 for

i constant properties by no more than 20%. This différence amounts to
i a factor of 4.5 for £ Re_, however. As (9-37) shows, the change in

gthezh is caused by the fact that p and u depend on T, so that the
product can be represented as a function of the parameters p's/pzh

and w_/u,, . To within 3%, the computational results are described
by the interpolation equation

| b Rew =64 (152 [u(-'t':)'-i-d —%) ] (9-43)
| where
Em==%E$:lk.==§gd

Here %-=0 when ?v/?m < Land 3 = 0,008 whea PC/?m >1.

The ranges of variation for the parameters pc/pwsnd lic/pm are the

same for (0-43) as for (9-42). Figure 9-12 compares the calculated
points with interpolation equation (9-43).

9-6. HEAT EXCHANGE AND RESISTANCE IN THE SUPERCRITICAL REGION OF
STATE PARAMETERS FOR MATTER

In the supercritical region of state parameters, the physical
properties of matter (p. ¢p, p-mr)vary extremely sharply and differ-
ently with the temperature, and depend substantially on the pres-
~ure (see §3-4), Thus even for fairly small temperature differences
v the flow, the change 1n physical properties will have a great in-

fluence on heat exchange and resis-

R = 1 tance, 3

i

N | With supercritical state para-
" = Aawi oo meters for matter, theoretical cal-
ﬂ il R o' < [ culations of heat exchange and fric-
5 o i B gl tion far from the tube entrance

b s :_;;£\<' % = "~ (1.e,, for the tube segment where

J B s . g i i ‘the hydrodynamic and thermal bound-
: e ] = 1 =1 1™ ary layers merge) can be carried

- 'HE out by the method considered in

05 W 20 W0 000t §9-2. V.N. Popov [11] has used this

method to compute the heat transfer
and resistance for carbon dioxide

at a pressure of 100 atm® over the :
20 to 600°C temperature range with j

Fig. 9-13. Physical proper-
ties of carbon dioxide at

p = 100 atm.a) kJ/kg-°C; Db)
W/me°C; c) Nes/m?; d) kg/md.
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constant heat-flux dersity at the wall. For heating of CO,, the
calculations were carried out for ¢.=600. 400, 360, 200, 100, 70, 50, and
4§5°C, and a series of values of t between ts and 20°C; for cooling,

tc - 20, 45, 50, 70,100, 200, 300 and 400°C, with t ranging from tg to 600°C.

Figure 9-13 shows the physical properties of carbon dioxide
(o, €ps A, and u) for p = 100 atm [12, 13, 14, 15]. The computa-

tional results show that in the supercritical region, the variable
physical properties of carbon dioxide have a sharp influence on the
1 temperature and mass-velocity profiless (Fig. 9-14), and less influ-
ence on the velocity profile. The heat transfer and friction resis-
tance also vary sharply owing to the changes in the physical prc-

perties. Thus the ratio of N“zhw for variable propercties to Numz; &

= 48/11 for constant property varies from 0.5 to 2.5, while thre
ratio of the corresponding resistance coefficients £_. varies from

0.7 to 2 (Pig. 9-15). I
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a’' Kpusas fe, °C ty. °C 4. °C
1 20 86.7 196
2 20 I8 36
3 600 405 267
Y} 600 319 108

Fig. 9-14., Radial distributions of temperature (a) and mass velocity
(b) for carbon dioxide at p = 100 atm. Solid lines) Variable physi-
cal properties; dashed line) constant physical properties. a')

L

Curve.
TABLE 6=4
Values of Constants in Eq. (9-44)
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To within #10% the results of the heat-transfer calculations
are described by the interpolation equation
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Nu, =£{ (&) “l’f'}l‘(“-')'“] (9-4b)
Ay -

where

is the mean integral value of the_dynamic viscosity coefficient
in the temperature range between ¢ and t*°; 4, B, C, n, and k are

constants whose values are given in Table 9-&
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Fig. 9-15. Results of calculations for heat transfer (a) and fric-
tion resistance (b) for carbon dioxide at p = 100 atm. 1) t =

= 600°C; 2) ty = 4oo°C; 3) tg = 300°C; 4) ty = 200°C; 5) ts =
= 100°C; 6) ty = fwecy 7)) t, = 50°C; 8) ty = 45°C; 9) ty = 20°cC.

The right side of (9-ll) doer not contatn the thermal-conduc-

tivity coefflelent A. 'The reason 1 that, qualitatively speaking,
pand X depend in the same way on the temperature, and this wao
taken Into account Inthe cholce ol Interpolation equatlon. Intro-

duction of the mean 1ntegral parameter: e and g was dictated hy

the nonmon:atonic niture of the variation 1n heat content and vis-
cosity with temper:ture. The relatively low accuracy of (9-44) is
explained by the fuct that for simplicity and convenlence the para-
meters cufep, pop wnd fe/on were used to allow for the influence of the
variable physical parameters on heat exchange; these parameters re-
flect the variation in physical properties only over the tempera-
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ture range between t_ and t. Moreover, the heat transfer is natural-

ly influenced by the nature of the relationship between the physi-
cal properties and temperature over the entire range of variation
from t_ to t _,. While for turbulent flow, the ratio (. —i/fe—tr=

is close to unity, under our conditions, with laminar flow 1t var-
ies from 0.35 to 0.8 [for constant physical properties, ((lc—@/fe—lreo=

=%§aﬂ£lﬂ. Construction of a more exact interpolation equation at
the expense of substantial complication is hardly worthwhile when
we consider the approximate nature of the theoretical calculations
themselves.

Analysis of the calculated friction-resistance data shows that
if we substitute the mean integral valué of dynamic viscosity into
the expression for the Reynolds number, then with variable proper-
ties the product Ezhﬁs will differ litctle from the value of this

product, equaling 64, for constan: properties., For cooling of the
fluid, the difference amounts to +6%, and it does not exceed 10%
for heating. Here, therefore, cthe approximate equation

EmRe=64 (9-45)
is valid, where
Ko = Bod,
y

In the supercritical region, the physical properties of the
fluid depend on the temperature and pressure, while the latter
vary along the length of the tube; thus the heat transfer and re-
sistance will also vary with length. Using (9-44) and (9-45), we
can calculate a (or tg and O at each tube section,

Figure 9-16 gives a notion of the possible nature of the
variation in heat-transfer coefficient along the length of the
tube for carbon dioxide with supercritical parameters. It glves
the results of an approximate heat-transfer determination with
p = 77.3 atm for one special case.!® Near the tube entrance, the
heat-transfer coefficient drops rapidly, as must also be the case
in the thermal initial segment. Since as we move away from the en-
trance, t and t increase (tS > t), then at a certain distance

from the entrance, the heat capacity of the fluid for tg will con-

siderably exceed the heat capacity for t. The difference in the
values of cp leads to a slower increase in tq along the length

than in t and, consequently, to a slower increase in a. After ts

exceeds the temperature t corresponding to the point of maxi-

maks
mun cp, the pattern changes: t_ increases more rapidly than t;

s
thus a passes through a maximum and then decreases. When both ts

and t become considerably greater than tmaks’ the heat capacities
will differ little for t_ and t, and the curves for different g

'will draw together, as we see from Fig. 9-16. As qg increases,
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the minimum and maximum points for the curves a = a(x/d) shift to-
ward the entrance, since ¢t takes on a value unoroaching tmakq clos-

r to the entrance. Naturally, the way in which & changes with the
length 1s determir~d not only by the relationship between e¢_ and ¢,

but also by the way in which the other physical parameters depend
on the temperature. The data shown in Fig. 9-16 exemplify the great
diversity of heat-exchange phenomena in the supercritical region.
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Fig. 6-16. Variation in a along tube length for carbon dioxide at
p = T77.3 atm, tvkh = 21°C, Re - 100, and various values of g

(the dashed line represents constant physical properties). a) kW/m?s
*°C; b) qg = 116 kW/m?.

Manu-

script

Pags Footnotes

No.

216 1The experimental data for the entire flow region, in-
cluding the hydrodynamic initial segment, are given in
§12.4.

218 “The same authors have performed similar computations
for helium and carbon dioxide. The Nu number turned out
to be 3-5% lower for He and 18% lower for CO, than for
air [17].

RS 3The physical properties of transformer oil and type MC-ZO
oll are taken from the data published in [4].

26 “In the general case, q varies as a function of r owing
to the change 1n the surface through which the radial
heat flow passes and to the varliation in convective heat
transfer along the axis, which 1s associated with the
variation in velocity along the radius.
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228 A1l physical properties of air and e_, h, p,A up to
700°K and u up to 1100°K for hydrogen were taken from
[5]. The values of A for hydrogen at T between 1200 and
2000°K were computed from the empirical equation proposed
in [6], while for T between 700 and 1200°K, they were
found by graphical interpolation. The values of u for
hydrogen at T = 1100-2000°K were calculated theoretically
with the aid of the modified Buckingham potential.

232 $See, for example [9]. There is no need to solve the
diffusion equation for equilibrium dissociation, since
the gas composition at every point in the flow 1s deter-
mined completely in this case by the pressure and tempera-
ture at this point.

234 "The subscript 0 indicates the value of the correspond-
ing parameter on the tube axis.

237 'The critical parameters for CO, are: Pw=753 arantuy=31*".

239 SFor practical calculations it is convenient if we first

' -
construct u-judlas a function of t (where ta is a cer-
t, _
tain arbitrary constant temperature value) and find u
from the relationship
M (te) — M (1)

2lo 19Tn [16], the calculations were performed by numerical
integration of the energy equaticn on the assumption
that the profile for the longitudinal mass-velocity com-
ponent is parabolic over the entire length of the tube
(which is far from actually being the case, as we have
seen) and that the transverse velocity component equals
zero.

Manu-

;:;tpt Transliierated Symbols

No.

211 c = s = stenka = wall

215 TeOp = teor = teoreticheskly = theoretical

215 onuT = opyt = opytnyy = experimental

216 X = zh = zhidkostnyy = liquid, fluid

216 H.I' = n,g = nactal'nyy gldrodinamicheskiy = hydrodynamic

initial
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232
240
241

Tn = tp = teploprovodnost' = thermal conductivity
n=d = diffusiya = diffusion
MakKc = maks = maksimal 'nyy = maximum

BX = vkh = vkhod = entrance
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