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PREFACE 

• 

The problem of heat exchange during laminar flow of a liquid in 
a tube has recently received considerable development. While 10-15 
years ago only isolated theoretical results were known, with few 
experimental data, questions of heat exchange and hydrodynamics in 
laminar tube flow have now moved to the point at which it is neces- 
sary to systematize all the available material, and to treat it 
from a unified viewpoint. Such a product is also useful since pub- 
lications on heat exchange and hydrodynamics in laminar tube flow 
are scattered through numerous periodicals. Thus there is no doubt 
that the lack of generalizing studies hampers practical utilization 
of the results attained. 

Interest in problems of heat exchange and hydrodynamics in lami- 
nar tube flow and intensive cultivation of such topics are a natural 
response to the rising demands of practice. There is ever more fre- 
quent need to design heat-exchange systems in which laminar motion 
of the fluid predominates. This is associated with the ever-wider 
utilization in technology of gases at high temperatures (i.e., in- 
creased viscosities) and viscous liquids, as well as with the de- 
velopment of compact heat-exchange systems. In addition to practi- 
cal needs, the development of the theory of heat exchange in laminar 
tube flow of liquids has undoubtedly been facilitated by the appli- 
cation of new mathematical methods in this field, in particular the 
broadscale employment of computers. 

This book represents a systematic treatment of theory and 
methods for determining heat exchange and resistance in laminar 
f'low of incompressible fluids, in tubes. The discussion is restrict- 
ed to analysis of flow and heat exchange for Newtonian fluids in 
the absence of flew interaction with electric or magnetic fields. 
There are two reasons for this: monographs have recently been pub- 
lished on the mechanics of non-Newtonian fluids and magnetohydro- 
dynamics; it is impossible to cover all aspects of the problem 
within the framework of a single book restricted in size. 

The following organization has been adopted. After brief in- 
formation on the basic equations pf dynamics for a viscous fluid 
and tha boundary and initial conditions (Chapter l), we consider 
methods for determining the heat flow at a wall, the heat-transfer 
coefficient, and the hydraulic resistance (Chapter 2). Such data 
as is required for the subsequent analysis is given for the change 
in physical properties of liquids and gases as a function of temp- 
erature id pressure (Chapter 3). The examination of general ques- 
tions t -minates with an analysis of flow and heat exchange, in. 
tubes tj  the similarity method; this is used as a basis for classi- 
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fying possible cases of flow and heat exchange (Chaptei* M). 

The laws of Isothermal fluid flow, which form the basis for 
the subsequent analysis of heat-exchange processes where the physi- 
cal properties of the fluid are constant,are discussed in Chapter 5. 
Here results are given for determination of stationary and nonsta- 
tionary flows in tubes differing in geometric shape, with fully de- 
veloped velocity profile and in the Hydrodynamic entrance section. 
This chapter has been condensed (ir.ost proofs are omitted) since 
it basically represents auxiliary(reference) material. When the 
physical properties of the fluid are variable, the motion problem . 
is inseparable from the heat-exchange problem. Here the two prob- 
lems are considered together. 

The next nine chapters (Chapter 6-l4) deal with problems of 
heat exchange and flow in tubes under stationary conditions when 
the flow has no internal heat sources or energy dissipation, and 
there is free convection. In these chapters, heat exchange is con- 
sidered in round, flat, annular, prismatic, and cylindrical tubes, 
with wall boundary conditions of the first, second, and third kinds, 
for developed flow and in the hydrodynamic entrance section. In 
addition to heat exchange with constant physical properties, con- 
siderable attention is also devoted to heat exchange and friction 
when the liquid and gas properties vary (Chapters 7 and 9 and in- 
dividual sections of other chapters). In particular, in Chapter 9 
we consider heat exchange and friction in the supercritical region 
of state parameters for the material, and when there is equilibrium 
dissociation in a high-temperature gas flow. 

In Chapter 15, we study stationary heat exchange when the flow 
contains internal heat sources and there is kinetic-energy dissi- 
pation, while in Chapter 16 we consider the Joint action of forced 
and free convection both with and without heat sources in the flow. 

The last chapter (17) contains a discussion of heat-exchange 
problems under nonstationary conditions. Here we consider the in- 
fluence of nonstationarity produced by time-varying boundary con- 
ditions at the wall, by the variation in fluid velocity with time, 
and with simultaneous operation of both these factors. 

Numerous studies by Soviet and foreign researchers, published 
in the periodical literature, are employed in the book. It also 
reflects work performed by the author together with his associates 
at tho Mosoow Power Institute. Chapters 7 and 9, as well as many 
sections of other chapters, are based almost completely on these 
studies. 

Mathematical methods are widely employed in accordance with 
tl? nature of the topic, and in the interests of clear and con- 
vir \g exposition. As a rule, after a problem is formulated, it 
is solved, and the results then analyzed. It is only in isolated 
cases requiring cumbersome computation that we have merely formu- 
lated the problem and given the computational results, completely 
or partially omitting intermediate calculations. In addition to 
uiie theoretical analysis, there are experimental data, particularly 
when the possibilities of theoretical analysis are restricted. Con- 



I 
siderable attention is giver to the physical Interpretation of the 
results obtained. All solutions are carried through to computation- 
al relationships suitable for direct practical application. The 
tables and graphs required for calculation are given. 

The author wishes to thank his colleagues of the engineering 
thermophysics department and the heat-exchange section of the Scien- 
tific Research Institute of High Temperatures [SRIHT](HMMBT), who 
participated actively in discussion of the manuscript, and aided 
in selecting material, performing calculations, and preparing cer- 
tain illustrations. The manuscript was read by K.D. Voskresenskly, 
who made several useful comments. V.N. Popov did much work to edit 
and prepare the book. The author also wishes to extend his sincere 
thanks to them. 

B. Petukhov 
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Chapter 1 

BASIC EQUATIONS 
1*1. Preliminary Remarks 

A phenomenological method of Investigation is usually employed 
in the theory of heat exchange and in hydrodynamics. Ignoring the 
microstruetures of the material, we assume that the medium is con- 
tinuous. The state of the continuous medium is characterized by 
macroscopic parameters. For a single-phase chemically homogeneous 
moving medium, such parameters are the temperature, pressure, and 
velocity. The physical properties of the medium (density, heat con- 
tent, viscosity and thermal-conductivity coefficients), which in 
general depend on the temperature and pressure, are assumed to be 
known. By neglecting the microstructure of matter, we Introduce cer- 
tain restrictions on application of the phenomenological method. In 
the ensuing discussions, however, we shall only consider those prob- 
lems in heat exchange and dynamics of a viscous fluid for which this 
method is fully applicable. 

Thus the state of a liquid o$ gas flow will be specified if we 
know the fields for the velocity w, pressure p, and temperature f, 
i.e., if we know the relationships 

w=w(x, y, z, t); 
P=P(x, y. z, *); 
T=T{x,y, z, %), 

(1-1) 

where xt y,  and z  are the coordinates of the point and T is the 
time. 

Equations (1-1) refer £o nonstationary velocity, pressure, 
and temperature fields. If w3  p, and T  are stationary fields, then 
in r^ace of (1-1) we have 

t» = te(x, y, z); V 
p=p(x,y,z); (1-2) 
T — T(x,y,z).   ) , 

The theoretical study of heat exchange and fluid motion re- 
duces primarily to determining (1-1) or (1-2). Knowing the iJ, p, and 
T  fields, as well as the way in which the physical properties depend 
on T  and p, we can determine all quantities characterizing heat ex- 
change ano fluid motion (heat flows, hydraulic resistances, etc.). 

- i» - 
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To determine the five unknowns (the three components of the 
velocity vector v,  p, and 7), we must have five equations. They 
are obtained from the basic conservation laws of physics (of mass-, 
momentum, moment of momentum, and energy) in accordance with the 
generalized law of Newtonian viscous flow and the Fourier heat- 
conduction law. The equations thus found are called the equation 
of continuity, equations of motion, and energy equation. These 
equations, supplemented by relationships for the physical proper- 
ties of the fluid as functions of temperature and pressure, form 
a closed equation system describing the process of convective heat 
exchange and fluid motion. Solution of this system in accordance 
with the boundary conditions permits us to determine (1-1) or (1-2) 

In succeeding sections of this book, we shall give the equa- 
tions of continuity, motion, and energy without derivation for 
single-phase chemically homogeneous and Isotropie fluids in the 
absence of heat transfer by radiation. The derivations of these 
equations can be found in many courses in the mechanics of liquids 
and gases [1, 2, 3, 1]. 

As in hydrodynamics, we shall henceforth use the word "fluid" 
to mean both liquids and gases. 

1-2. EQUATIONS OF CONTINUITY, NOTION, AND ENERGY 

I. The equation of continuity, which expresses the law of con- 
servation of mass for a moving fluid, has the following form in 
the general case: 

5T+-3T—I—Sr-T—3to~ *"0, (1-3) 

where w , w, and wg are the projections of the velocity vector on 
the axis of a rectangular coordinate system; p is the fluid density, 
which depends on T and p. 

For stationary flow, 3p/3x ■ 0, and (1-3) takes the form 

q^2£)+!£2.a (1-4) 

If the fluid density Is Independent of pressure and tempera- 
ture (p ■ const), we then have in place of (1-3) 

£+^+£-0. (1-5) 

2. The equation of motion for a viscous Newtonian fluid1 with 
variable physical properties has the following form In rectangular 
coordinates: 

>14 
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(1-6) 

where 

(1-7) 

****** 
and ?s are the projections, of the mass-force stress vector 

on the coordinate axes; p Is the pressure at the point under con- 
sideration; u Is the dynamic viscosity coefficient. 

The density p and viscosity coefficient u depend on tempera- 
ture and pressure, so that they will vary In time and along the 
coordinates when there are temperature and pressure fields In the 
flow. Here (1-6) and (1-3) are Insufficient to determine the six 
unknowns (w > w , p, P, and u). To close the system we must 

bring In the energy equation, describing the temperature field, and 
the equations establishing the relationship between the physical 
properties and T and p. 

If p and M are constant, then (1-6) reduces to the form 

*£-+ w grad w,=F.- -J~g-+*V»,; 

^+;grad», = /v—L.^-+Vv^; \ (1-8) 

^•+;grad », = Ft—J-JE-+V«.. 

where v ■ u/p is the kinematic viscosity coefficient. 

We shall henceforth consider Just one mass force, namely the 
gravitational force. Here F=g.   The gravitational force exerts an 
Influence on fluid motion only when there are free surfaces or a 
nonuniform density distribution in the flow. When there Is con- 
fined flow (i.e., no free surfaces) and the density distribution 
is uniform, the gravitational force acting on a fluid element is 
balanced by the Archimedean displacement force. Thus the fluid 
movers as if it were weightless, which confirms the possibility of 
eliminating the gravitational force from the equations of motion, 
so that they can be written in the Helmholtz form. Here, conse- 
quently, the gravitational force can be neglected in determining 
the velocity field.* 

With a nonuniform pressure distribution in a confined fluid 
flow, the action of the gravitational force is not balanced by the 

0 
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Archimedean force. To Introduce the resultant of these two forces, 
the 11 ft, we transform the £l?pt  two terms on the right sides of 
the equations. Since here F-g,   we have In projection on the * axis: 

where pn is the density at constant temperature 7A for some fixed 
point ifl the flow. ° 

Assuming the variations in p and T to be small as compared 
with the absolute values, we can let 

p-*.—p>(r-r.), 

where p=—Z-CTT) 
1S
 
the coefficient of volume expansion for the 

fluid.    9 \orh 

The quantity p«g,can be represented as ?ji,~dpjdx (and analo- 
gously for Mb«»>•£«). where pQ is the hydrostatic pressure, computed 

JJ   on the assumption that the fluid has density pn everywhere. Letting 
P   ~Pi we obtain 

(1-9) 

The firsfc, terms on the right side of (1-9) are the projections 
of the lift -£p>(r—JT.) (referred to unit volume of a liquid parti-. 
cle)3 on the axes of an arbitrarily oriented rectangular coordin- 
ate system. If the a axis Is opposite in direction to g>  then the 
projections of the lift on the * and y  axes will vanish, while 
the a-axis projection g   - - g.  Here, naturally, dpjd* =*—9Jt.   We 

■v 

also note that in (1-9), it is convenient to replace 8p by P-p,= ft» 
(see §3.2). ; • 

3. The energy equation for a single-phase chemically homogen- 
eous Isotropie fluid whose physical properties are arbitrary func- 
tions of temperature and pressure will have the following form 
when there is no heat transfer by radiation in the flow: 

P-^=div(igra<ir)+^+4j-+«, (1-10) 

or in different form, 

K,-£--div<*grsdr>+f.—L^^+*,      (1.u) ' 

where h  is the enthalpy, referred to unit mass; T is the temperature; 
9   is the isobaric heat capacity, referred to unit mass; A is the 
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thermal-conductivity coefficient; qtf is the strength of the internal 

heat sources (amount of heat liberated by the sources per unit volume 
in unit time); * is the dissipation function: 

•Hj [(w)'+(^),+(^n+(^+^),+ 
+(£+&)*+(&+$.)'~i-(«.i»;>',i. 

Expressions can be written on the basis of (1-7) for the total 
derivatives dhldx, dTldx"* dpldx 

We shall study heat exchange for flow of liquids and gases mov- 
ing at velocities considerably below the speed of sound. 

The quantity —-~(%)  =p is usually very small for a liquid and, 
moreover, the pressure in the flow varies negligibly. Thus the third 
term on the right side of (1-11) is small as compared with the other 
terms and can be dropped. For an ideal gas 3 ■ 1/7 and the same term 
becomes equal to dpldx.   At gas velocities not exceeding ~0.3 the 
speed of sound, dpldx  is small as compared with the other terms of 
the equation, and it can also be dropped. 

Thus in either case, the flowing medium (liquid or gas moving 
at moderate speed) can be treated as if it were Incompressible, i.e., 
we can assume that its density does not change substantially owing 
to a change in pressure. Since in either case the relative change 
in density produced by the dependenca on T  and p will not be large, 
div w will be small as compared with the other terms of the expres- 
sion for the dissipation function, and it can be neglected. As a 
result, the energy equation takes the form 

9Cp-$r=&y(lVBAT)+q.+p3t (1-12) 

where u£ is the value of * at divw=0. 

If X is constant, then (1-12) reduces to the form 

^~«v'r+-£+& * (i-i3) 
where a~X/fcpis the thermal-diffusivity coefficient for the fluid. 

1-3. SYSTEM OF EQUATIONS DESCRIBING HEAT EXCHANGE IN A FLUID FLOW 

The process of heat exchange in a flow of viscous incompres- 
sible fluid whose physical properties depend arbitrarily on the 
temperature% is described by the following equation system, which 
we write in rectangular coordinates: 

- 8 - 
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9 

(l-u) 

The specific relationships for p, o  , X, and u as functions of 

2* is determined by the nature of the fluid (see Chapter 3). 

Equations (1-1*) contain nine dependent variables T, »*, »* «», 
p. p. c,. A. and u). We have nine equations to determine them. Thus 
the equation system describing convective heat transfer in the mov- 
ing medium is closed. 

System (l-l*) is extremely complex, and very difficult to 
solve in general form. These difficulties are caused by the non- 
linearity of the equations of motion and energy, Introduced by 
the convective terms on the left sides, and the fact that the 
physical properties of the fluid depend on the temperature. Since 
ii and p depend on r, the velocity and temperature fields are in- 
terrelated. Thus the equations of motion and continuity cannot be 
solved in isolation from the energy equation. 

The problem is simplified considerably if we assume that 
the  viscosity and density are constant. Here the equations of mo- 
tion remain independent of the energy equation, and the tempera- 
ture field has no influence whatsoever on the velocity field. The 
latter fact can be shown by solving the equations of motion and 
continuity. 

If the velocity distribution found is substituted into the 
energy equation, the nonlinearity of this equation, introduced 
by the convective terms on the left side, will vanish together 
with the dependence of p on T.  The nonlinearity associated with 
the dependence of X and o    on T  remains, however. The next step 

in simplification lies in the assumption that a   and X are also 
constant. " 

If all physical properties are constant, System (1-1*) will 
take the Torm 

V15 - 9 - 
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The assumption that the physical properties are constant sub- 
stantially simplifies the equation system, so that it becomes pos- 
sible to solve many problems in convective heat exchange. In addi- 
tion, this assumption restricts the applicability of the results 
obtained to those real processes in which the physical properties 
of the fluid vary negligibly. Nonetheless, problems involving heat 
exchange under constant physical properties are of great interest, 
since they permit us to understand the basic laws characterizing 
various heat-exchange processes. 

In the discussion to come, we shall require the energy, mo- 
tion, and continuity equations in cylindrical coordinates. We let 
x, r, and 9 represent the axial, radial, and azimuthal coordinates, 

o 

'» *» 
respectively, and wx, w and w    the velocity components along 
these coordinates. Going from the rectangular system to the cylin* 
drical, in place of (l-l1») we obtain 

#-%)-M>&)+ 
+£('£)+f*-£+^Hi£)+"+>s' 

where 

K / •> C 

-ID - 
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I» 

»-• [(fe)+(*)'*(+^yM*+*>* 
+(f-£+&)'+(-^+£-# 

.   »(^^N*+Mtf-»-*+ 

+*[> (*+*)]+ *(**)+4> fr-9-4*)* 

If all the physical properties of the fluid are constant, 
(1-16) takes the form 

+v ^l?r+Tpr+T-Tr+7r-^r;» 

+v VTOF+TP'+T- -ar-TT+TT-Tfr—F-jf-/ 

"ar+TT-l-T "3T+7—°- 

(1-17) 
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1-4. INITIAL AND BOUNDARY CONDITIONS 

To solve specific problems of fluid motion and heat exchange, 
we must add the so-called initial and boundary conditions to the , 
basic equations. 

The Initial conditions consist in the specification of the 
velocity field, temperature field, and other dependent variables 
over the entire system volume5 at the initial time (i.e;, the time 
beginning at which we investigate the process occurring in the 
system). If fluid motion and heat exchange are stationary, there 
is no need to specify the initial conditions. 

The boundary conditions reduce to specification of system 
geometry and the conditions for fluid motion and he&c exchange at 
the system boundaries. The latter may be solid (surfaces of solids 
washed by a fluid) or fluid (for example, entrance section of a 
tube, outer boundary of a boundary layer, etc.). 

A fluid flow in a tube is bounded by the inside surface of 
the walls, and by the entrance and exit sections. The boundary 
conditions must then be specified at these surfaces. We usually 
assume that the tube is a semibounded cylinder, i.e., that it ex- 
tends to infinity in the direction of the flow. Here there is no 
need to specify the boundary conditions for the exit section.6 The 
wall surfaces washed by the flow are ordinarily taken to be smooth. 

The boundary conditions for the velocity at the surface of an 
Impermeable wall are specified on the basis of the assumption that 
a viscous fluid will adhere to the wall surface. Accordingly, the 
normal and tangential components of the velocity vector with res- 
pect to the wall are assumed to be zero at the surface of a sta- 
tionary impenetrable wall. The boundary conditions for the temper- 
ature at the wall are based on the assumption that the temperature 
field is continuous at the fluid-wall boundary.7 Consequently, the 
fluid temperature at a given point on the wall surface must equal 
the temperature of the wall surface at this same point. This assump- 
tion is well confirmed by experiment for various fluids, other than 
rarefied gases. In the latter case, as we know, slipping occurs, 
and there is a temperature discontinuity between the gas and the 
wall surface. We shall not consider this case, however. 

There are various ways of specifying the boundary conditions 
for the temperature field at the wall. Let us look at three very 
characteristic types of boundary conditions, which we may call 
bo >r.dary conditions of the first, second, and third types in ac- 
cordance with the practice in heat-conduction theory. 

Boundary conditions of the first kind are specified as the 
distribution of wall temperature (i.e., the temperature at the 
fluid-wall boundary) over the surface, and its time variation: 

0 

■>. 

o 

tfe~'M*(* Jfci 2e, T)< (1-18) 
i i 

where x, 
face. 

and a are the coordinates of points on the wall sur- s 

5-6-7 /15 
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Under stationary conditions, t3  will naturally be independent 

of the time. In the simplest case, *g « const, i.e., it is constant 

over the surface and does not vary in time. 

Boundary conditions of the second type involve specification 
of the distribution of heat-flow density at the wall over the sur- 
face, and its time variation. Since the fluid at the wall is sta- 
tionary and, consequently > the Fourier law is applicable, specif lo- 
cation of the heat-flow density q   is equivalent to specification 

of the temperature gradient at the wall. We thus have 

where A is the thermal-conductivity coefficient for the fluid; 

n  is the normal to the wall surface, directed toward the fluid. 

To determine the temperature field in this case, we must speci- 
fy at least one value of the actual temperature at some point in 
the flow. 

Boundary conditions of the third type are used when the fluid 
moving in the tube delivers heat to the ambient through the thin 
separating wall, but the wall temperature at the fluid boundary 
(/n-o=*c) is not specified; instead we have the ambient temperature 

sr' Here we can make the elementary assumption that the heat-flow 
density at the wall is proportional to the temperature difference 
tf„-o—/cP.   Assuming a thin wall and neglecting its heat capacity 

(for nonstatlonary heat exchange), we can write the boundary con- 
dition of the third kind as 

ig 
-*(£)„.♦.-*'«*-<->• (1-20) 

where X' Is a coefficient of proportionality, called the coeffi- 
cient of heat transfer between the wall surface on the fluid side 
and the ambient. Here K'  and *gr can be specified either as func- 
tions of the distance? along the tube axis and the time, or as 

constants in the simplest case. When £' ~» oo <»«#-<c-<op. i.e., the 

boundary conditions of the third kind reduce to boundary condi- 
tions of the first kind. 

At the entrance section of the tube, the distributions of 
velocity and temperature over the section are specified as time 
functions. The transverse velocity components are ordinarily 
taken equal to zero, while the longitudinal velocity component 
and temperature are assumed to be uniform over the section. 

It is not always possible to specify the thermal boundary 
conditions at the wall surface in the form of certain functions: 
M*c, Vu *c, t) or <M*c, ye zr, T). We encounter this situation, for ex- 
ample, when the width and physical properties (*,, p, cv) of the wall 
material are commensurate with the tube radius an^ the correspond« 
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ing properties of the fluid. Here the temperature fields in the 
wall and the flow will differ substantially. Thus the temperature 
distribution on the fluid-wall boundary will not be known in ad- 
vance and, consequently, cannot be specified beforehand. 

Solution of such problems requires simultaneous consideration 
of the heat-exchange process in the fluid flow and the heat-conduc- 
tion process in the wall. For this purpose, to the equation system 
describing the temperature field in the flow we must add the heat- 
conduction equation describing the temperature field in the wall, 
and at the fluid-wall boundary, we must specify the conditions for 
contact of these fields (such problems are thus often called con- 
tact problems). The contact conditions reduce to the following 
equations: 

'n=+t = 'clns-»"i 

*(*)-.-• (*)-• 

where * is the fluid temperature; t    is the wall temperature; A and 
s 

\a  are the thermal-conductivity coefficients for fluid and wall. 

The first equation follows from the assumption that the temp- 
erature field is continuous at the fluid-wall boundary, and the 
second from the law of conservation of energy. 

Joint analysis of two or, even worse, three8 contacting fields 
considerably complicates the problem. In practice, however, we most 
frequently have to do with fairly thin walls that are good heat 
conductors; in most cases (particularly under stationary conditions) 
this permits us to reduce the problem to consideration of the temp- 
erature field in the fluid flow alone. 

?SePt Footnotes 

Vl5 

!By a Newtonian fluid, we mean a fluid for which the 
relationship between the stresses (normal and tangen- 
tial) and resulting strains for a liquid particle are 
described by the generalized Newton law. 

2Naturally, in this case as well the pressure field will 
depend on the gravitational force. 

3We note that this lift force introduced into the equa- 
tion of motion is arbitrary, since jit is represented on 
the assumption that the density of the fluid surrounding 
a fluid particle with density p is constant and equal to 

'^or an incompressible fluid, p is independent of the pres- 
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sure; the dependence of a  , A, and u on p is in general. 

negligible, and is disregarded in heat-exchange calcu- 
lations, as a rule (see Chapter 3). The region near the 
saturation curve and the supercritical region represent 
exceptions. 

»In writing £he equations of motion we drop the tern con- 
taining div w, since it is small as compared with the 
other terms for an incompressible fluid. 

•Here the symbol p represents the difference between the 
actual pressure at a given point in the flow and the hy- 
drostatic pressure at the same point. In fl-2, thid dif- 
ference was represented by the symbol p, * p — pQ  (here 
grad PQ - pff). Here and in the ensuing discussion, we 

drop the subscript 1. 

We also note that here the temperature is represented 
by the symbol t,  ordinarily employed when the temperature 
is measured in °C. If the temperature is measured in °K, 
however, we then generally employ the symbol T,  It is 
convenient to measure temperature in °K, for example, for 
heat exchange when the moving gas has variable physical 
properties. 

'That is, regions within which the process under study 
takes place. 

'in applying the solution for a semlbounded tube to tubes 
of finite length we naturally neglect singularities in 
flow and heat exchange near the exit section that are 
determined by the state of the flow beyond the exit sec- 
tion. 

7In the sense that there are no discontinuities in the 
values of the temperature, rather than its derivatives. 

8For example, the temperature fields in the flow within ■ 
the tube, in the tube wall, and in the flow washing the 
wall from the outside. 
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Chapter 2 

DETERMINING THE HEAT FLOW, HEAT-TRANSFER COEFFICIENT, AND HYDRAULIC 
RESISTANCE 
2-1. HEAT FLOH AT FLUID-HALL BOUNDARY 

Solving the equation system for convective heat exchange for 
performing measurements, we can find the temperature and velocity 
fields In the fluid flow. Assuming these fields to be known, let 
us consider methods for determining the amount of heat transferred 
from the wall to the fluid. 

The fluid Is stationary at the wall surface and, consequently, 
heat Is transferred only by heat conduction. Thus according to the 
Fourier law, the heat-flow density at the wall Is 

«• -»(8L- (2-1) 

where n  Is the -normal to the Inside wall surface, directed toward 
the fluid; X Is the thermal-conductivity coefficient of the fluid. 

In the general case, q   varies along the surface and In time. 
Thus the heat flow at the will , I.e., the amount of heat trans- 
ferred In unit time from a wall with surface F to the fluid is 

<H*"—W*L* (2-2) 

V****' 

O 

The amount of heat transferred from the wall to the fluid in 
time T Is 

9        0   P 
(2-3) 

As we can see from (2-1) and (2-2), to determine qat  fl , and s  s 
we need only know the temperature field in the flow and the 

thermal-conductivity coefficient for the liquid. 

The heat flow at a wall can also be found from the energy- 
balance equation for a fluid element of length dx bounded by the 
tube walls and two sections normal to Its axis. It is not difficult 
to obtain the energy-balance equation for such an element by inte- 



grating the energy equation over the tube cross section. Let us do 
this for an incompressible fluid with variable physical properties, 
flowing in a round tube; for simplicity, we assume that the velocity 
and temperature fields are symmetric about the * axis of the tube. 

Going from temperature to enthalpy in the left side of (1-12) 
and transforming it with the aid of the continuity equation, we 
obtain 

We multiply this equation by 2vr dr  and integrate it with respect 
to r  from 0 to rQ (where rQ  is the tube radius): 

The third integral on the left side equals zero, since tf - 0 
when r « rQ. The second integral on the right side is 

If in (2-5) we change the sequence of differentiation with 
respect to T or x  and Integration with respect to r, we obtain 

3 
+«.2«;+j(*.+|tf)2«r*. (2'6) 

We let / be the area of the tube cross section normal to 
the axis, and 0 the tube perimeter in this section. Then from 
(2-6) we find 

-r«*+*4 (2'7> 

It is not difficult to see that although Expression (2-7) 
for the density of the heat flow at the wall has been derived 
for a round tube, it is actually valid for a tube of any cross- 
•ectional form that remains unchanged along the axis. If the 
i.eat-flow density at the wall varies along the perimeter, then 
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by a   in (2-7) we should understand the heat-flow density in the 

given tube section averaged over the perimeter» 

For stationary flow and heat exchange, (2-7) will take the 
form 

*-■f[-=rf(»,,^-iTr)«-f«fc+i**]-    (2-8) 

The change in heat-flow density along the axis owing to heat 
conduction is usually small, and can be neglected In most cases 
(see §6-1). The same may be said of the heat liberated by dissi- 
pation. If, in addition, the flow has no Internal sources (q   * 0), 
then (2-8) is reduced to the form v 

fr-i£JfM4 (2-9) 

For a tube section of length I,  the heat flow from the wall 
to the liquid will evidently be 

-I Qc=[qcsdjc. (2-10) 

have 
In the simplest case, where q_  is determined by (2-9), we 

S 

Qc=rrPa>,Ad/]   -[jixMrf/]   , (2-11) 

For computational simplicity, we Introduce the mean mass en- 
thalpy and mean mass temperature of the fluid. The mean mass en- 
»thalpy is defined as the ratio of the amount of heat passing 
through a given cross section in unit time owing to convectlve 
transfer to the fluid flow rate through this section: 

lrm'hdf. 
(2-12) 

By the mean mass temperature, we mean the temperature corres- 
ponding to the mean nass enthalpy. We represent it by For F, 
measured respectively in centigrade or absolute-temperature units, 

If the heat capacity o    is constant, then from (2-12) we ob- 
ta'n the following expression for the mean mass temperature of, 
the fluid: 

r«4 ." (2-13) 
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If p and o    are constant, from (2-13) we have: 

The physical meaning of XT and t  is easily understood if we ima- 
gine that the fluid in the given tube section is mixed in some way 
that its enthalpy and temperature have become identical over the 
section. This constant enthalpy and temperature will be the mean 
mass values. If w.  p, and a are all constant over the section x p 
then, as we can see from (2-14), t will be the mean fluid tempera- 
ture over the section. 

Using the concept of the mean mass enthalpy, we can write 
(2-9) and (2-11) as 

ft—fzT (2-15) 

Qc-G(fc-St). (2-16)      Q 

where 0« f p», df is the mass fluid flowrate; £*, and JtQ  are the values 
of W at x* I  and * » 0. 

If o    is constant, then in place of (2-15) and (2-16) we have 

Qc-cpG(it-h)- (2-18) 

2-2. LOCAL HEAT-TRANSFER COEFFICIENT 

The heat-transfer coefficient is an important characteristic 
of the process of heat exchange between a wall and a fluid flow. 
The local heat-exchange coefficient is Introduced by definition;      ( \ 
it is the ratio of the heat-flow density at a given point on the 
wall surface to the difference between the wall temperature at 
this point and the fluid temperature.depending on how the fluid 
temperature is selected, there are two ways of defining the local 
heat-transfer coefficient: 

• =-*», (2-19) ! 

•=r=p (2-20) 

where a is the heat-flow density at the given point on the wall 

surfice; * is the wall temperature at this same point; t  is the s 
mean mass temperature of the fluid at the considered section; tQ 

is the temperature of the fluid at the entrance to the heated 
length of tube, and is constant over the section. 

In the first case we say that a refers to the local tempera- 
tare head, and In the second to the initial temperature head. The 
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particular method chosen to define a depends on the nature of the 
problem, and is based solely on considerations of convenience (we 
obviously should pick the method for which the relationship dee- . 
cribing the variation in a will be simplest and most convenient 
for calculation). 

Substituting qa  from (2-1) into (2-19), we obtain the follow- 
ing expression for the local heat-transfer coefficient: 

~*M*L- <a-a) 

In the simplest case, where a    can be represented in the form 
(2-17), we obtain *s 

crG      at (2-22) 

Analogous equations can also be written when a refers to t   - tQ, 

In the general case, like q    and t  , the local heat-transfer 
coefficient may vary along the perimeter and length of the tube. If 
<?_ and t are constant over the perimeter, a will vary only along s     s 
the length. We can use (2-21) to determine the local heat-transfer 
coefficient at each point on the wall surface. We can also use (2-22) 
to compute just the mean heat-transfer coefficient over,the perimeter 
in the given section. If the wall temperature varies along the peri- 
meter, we then substitute the mean wall temperature over the peri- 
meter into (2-22). 

To conclude, we note that the numerical values of the heat- 
transfer coefficient and the way in which it changes along the 
length will depend not only on the flow and heat-exchänge condi- 
tions, but also on the method used to define a, i.e., on whether 
we use (2-19) or (2-20). 

2-3. VARIATION IN HEAT-FLOW OENSITY, FLUIO TEMPERATURE, AND WALL 
TEMPERATURE ALONG TUBE LENGTH 

In determining heat exchange in tubes, we ordinarily face two 
problems: determination of the variation in t    and q    along the 
tube length when we know ot(x) and tAx),  and determination of the 

S 
variation in t  and ta  along the tube length when we know qAx)  and a ^ s 
u(x). We consider both these problems for the elementary case in 
which the physical properties are constant, there are no internal 
heat sources, and the axial heat conduction and dissipation have 
negligible influence. 

1. We begin with the first problem. Since we know the relation- 
ships a(x) and *s(x), to determine T(x)  we can make use of (2-22). 
We write it as 

or 
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Solving this equation under the boundary condition t » tQ at. 
c ■ 0, we obtain 

r=^<4*,+J*(jc)«'««fcj, (2-23) 

where 

If the wall temperature is constant along the length (t. 
const), then 

f-«r* (*.+*. f ?ViteW»('.+'• f«f äf\ 

from which it follows that 

r=<c+(/.-/c)e-'. (2-2H) 

If, in addition, a is constant along the length,  then 

r=/c+(/.-<c)«"8^*. (2-25) 

The heat-flow density at the wall is found directly from 
(2-19): 

<7c»a(/c—?)• 

2. When we are given the distribution qa(x)  and a(x), the s 
variation in the mean mass temperature of the fluid along the 
length is found from (2-17). Integrating the latter with respect 
to x  and using the boundary condition t  - tQ at x  ■ 0, we obtain 

'«.+£j* '\qt(X)dx. (2-26) 

Thus, for example, if q    ■ const, then 

i.e., t  varies linearly as a function of x. 

The wall temperature will evidently equal 

1' 

*«=*• "US}- (2-27) 

0 

n 
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With a    « const and a ■ const, both t   and t will vary linearly; 
here * - ir*  const. '  ! 

s 

2-4. MEAN HEAT-TRANSFER COEFFICIENT AND TEMPERATURE HEAD 
I 

The mean heat-transfer coefficient along the tube length, like 
the local coefficient, can be defined in different ways. Let us look 
at the principal methods. 

Mean integral heat-transfer coefficient: 

i 

•wm^-UdjC (2-28) 

Heat-transfer coefficient referred to mean  integral  tempera- 
ture  difference: 

9 
"" F£t.' 

*-fj (tt-7)dx. (2-29) 

Heat-transfer coefficient referred to arithmetic mean tempera- 
ture difference: 

1 

•^TäT"*"* *•=*•-"r('»+F«>- (2-30) 

The mean heat-transfer coefficient referred to the  Initial 
temperature  difference: 

I—-& 
F {U-U) 

(2-31) 

Here QB  is the heat flow along the tube length from m  ■ 0 to s 
x - I: F « a I  is the inside surface of the tube segment'of length 
I; a is the local or mean-perimeter heat-transfer coefficient a 
distance x  from the entrance; t    is the constant or mean-perimeter 

wall temperature a distance x  from the entrance; * is the mean 

wall temperature over the surface for the tube segment of length 
l; tQ  and t, are the mean mass fluid temperatures at x  ■ 0 and' 
x  » 7. 

The choice of a particular method for defining a is in general 
arbitrary. Nonetheless, for simplicity and clarity In representing 
the results of a theoretical or experimental investigation, and 
convenience in practical calculations, the method selected should 
agree with the nature of the problem under study. 

Defining the mean integral heat-transfer coefficient in ac- 
cordance with (2-28), we substitute the value of a from (2-22) 
into this expression: 

-  1 f„j„  I e,0 f .dt 
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Integration is simple only if t • const. In such case, we have 
3 

r-**^ 
(2-32) 

Multiplying and dividing this equation by *- - tQ and remem- 
bering that  Crßfa—tJzaQ;   we can write it as 

f  ! 

Fdta' 

where 

(2-32a) 

i 

A/„ <!-/. 

U-T, 
(2-33) 

Thus if we use the mean Integral heat-transfer coefficient 
when * ■ const for any type of variation in a along the length, 
and with the restrictions associated with the derivation of (2-22), 
we arrive_at the concept of thejnean logarithmic temperature dif- 
ference At.. Here to determine a we need not know the law govern- 

ing the variation in a and t  along the length. 

For fluid moving in tubes, if the local heat-transfer coef- 
ficient is found in accordance with (2-19), it will usually vary 
along the length for the segment between * » 0 and x ■ l_  .s* while 

for * > ln  t, i.e., over the rest of the tube, it will remain con- 
stant. We let a,, represent this constant value of a. 

At « < l„  4., let a ■ f(x), and at x >  Z„ «., let a ■ a ■ const, 
n.w — n.w **' 

Let us see how the mean heat-transfer coefficient will vary for 
values of x » I- +.  This question is significant when we process 
experimental data and compare the results of different experimental 
investigations. 

The mean integral heat-transfer coefficient when x > I    .   can 
be represented as 

r-*j--+G''*+M 

0 

! i I 
j 

i 

n 

If we let 

•».?■ 

•H.I 

adx, 

represent the mean heat-transfer coefficient at the thermal initial 
segment, then the preceding equation can be written as 

(2-3*) 
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■-•■=rTTY^ ... 

from which It follows that when *-*<»( when x » I    . , In practice), 

a + a . We note that this holds for various boundary conditions. 

For example, if a,V««,= 1.3, then to within 3%  ä will equal am when 
x ■ 10i„ .. n.t 

The heat-transfer coefficient, referred to the mean Integral 
temperature difference at x > l    . will equal, by definition. 

r_ Q> _i £.  
*M    i   ;— fff. 

Using the relationships 

(2-35) 

0 

3 

where A*   is the mean temperature difference at the thermal ini- 

tial segment, we can reduce the expression for a to the form 

%.» 
+»(*) 

1+fW 

where 

f(x)~-~L-  f (/«-7)rfx 
•Wll.T««.?  J 

'■.f 

When t ■ const, we can use (2-25) to evaluate the last inte- 
gral. We then obtain 

<p(x) —Ae-k*+B, 

where 4, 19, and fc are constants. 

Thus for constant wall temperature , 

So. -.Ae~>» +B 

from which we see that when x + •, 

- % + * ■  V 
l + B ' 
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Since in the general case *n.rl*m + \ for any values of x, ö 

will differ from ctw. It is only In the special case for which 

With constant heat-flow density at the wall (qa  ■ const), the 
D 

numerator in (2-35) will equal ax, while the second integral in 

the denominator will equal &-(x—I,.,). Thus the expression for a 
can be written as:       •« 

CTftT «ü!» Äür^ + X t('-¥) 
It follows from this equation that when .*—opa=«Ä. 

In like manner, we can follow the lengthwise variation in 
the mean heat-transfer coefficients referred to the mean-arithme- 
tic and initial temperature differences. When t    ■ const, these 
heat-transfer coefficients approach zero when x ■*■   ». 

The mean_heat-transfer coefficients, referred to the mean- 
logarithmic (a,), mean-integral (ot^), mean-arithmetic (<*_), and 

initial (a ) temperature differences are associated by the self- 

evident relationships 

£,A/„ =äKÄ/. =ä,ÄF. =S.5T.. (2-36) 

With the aid of these expressions, it is not difficult to 
go from values of a defined by one method to values defined by 
another. 

2-5. HYDRAULIC RESISTANCE 

In practice, we very often must determine the pressure drop 
when a fluid moves in a tube, i.e., the hydraulic resistance. 

Assuming the velocity field and temperature field to be 
known, we find the pressure variation along the tube length. Let 
us do this for an incompressible fluid with variable physical 
properties flowing in a round tube; for simplicity, we assume 
that the velocity and temperature fields are symmetric about the 
x axis. Hero the equation of motion for the longitudinal velocity 
component; will have the form 

'(&+•■ &+*£).-«" -*+£ (*fe)+ 

The  'dei- of magnitude of the term -^(^^-Vs small as com- 

pared with the last term on the right side of the equation, and 

- 2H - 
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can be dropped. The left side of the equation can be transformed 
by using the equation of continuity. As a result we obtain 

(2-37) 

We apply (2-37) to a fluid element of length dx, bounded by 
the tube walls and by two sections normal to Its axis. Ve multi- 
ply both sides of this equation by 2irr drt and Integrate between 
0 and rQ: 

t'JgL 2**+?^ tordr+2, J^w*)» 

The last Integral on the left side equals zero. The Integral 
on the right side Is 

where 

-=("*L~(>*L 
Is the tangential stress at the wall; n Is the normal to the In- 
side surface of the wall. 

In the appropriate terms of (2-38) we change the sequence of 
differentiation with respect to T and z and Integration with res- 
poet to p. As a result, the equation takes the form 

to to to to 

■ft j (w,2wrfr+^-fpa^awrfr«^, f p2vrfr- -|f|/Ö«rrfr-«,2v,.   (2-39) 
i o Q 6 

We let 

^=^.Jprf/.-F=-J-j(»rf/ 

be the mean pressure and mean fluid density over a section; ft e 
are the tube cross-sectional area and perimeter; if» Is the ang^e 
between the x axis and the gravitational acceleration vector g. 
(We note that ,ff«-f costp). " /- 

Then from (2-39), we find 
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£ T* -T [ifadl+4*H«]+V«* t.     (2-110) 
Although Eq. (2-4o) was derived for the example of a round 

tube, it actually Is valid for a tube of any shape, provided the 
cross-section remains constant along the axis. In the general 
case, c can vary over the tube perimeter. Thus we include in 

(2-40) the mean-perimeter value of tangential stress at the wall, 

%-4-J**-4j(»&)L.*' (2-n> 

It is clear from (2-40) that the change in pressure along 
the tube length is produced by the expenditure of energy on fric- 
tion between fluid and wall, by the change in velocity with time 
and in the flow kinetic energy along the tube length (owing to 
rearrangement of the velocity profile), and by the action of the 
gravitational force. 

The quantity p5co»t is the pressure gradient in the liquid 
at rest when there is the same distribution of p along the length 
as in the flow. We let pQ represent the pressure in the quiescent 
liquid, i.e., the hydrostatic pressure. Then 

and 

where pi=(p—/>o)is the difference between the actual pressure in the 
moving fluid and the pressure in the fluid at rest. 

As we can see from (2-40), the pressure p, is independent of 
the gravitational force, so that it can be interpreted as the pres- 
sure in a flow of weightless fluid. 

In our further study of fluid flow, we shall not consider the 
effect of the gravitational force (except for special cases, where 
particular stipulations will be made), and in place of the pressure 
p", we shall consider p,. Where necessary, it is not difficult to 
go from the distribution of pt(x, t)that has been found to the dis- 
tribution of the actual pressure p~(x, t). Integrating (2-42), we find 

p(x, *)=pt{x,*)+P,(0,*)+gc<»1tj-t(x,t)djc (2-43) 

Henceforth, for brevity we shall write p rather than p~ . 

Using our notation (p-p\-p—po)$  we rewrite (2-40): 
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For stationary flow and heat exchange, (2-44) takes the form 

If p and v do not vary along the length» as occurs for an 
Incompressible fluid with constant physical properties moving far 
from the tube entrance, the second term on the right side of (2-45) 
vanishes. In such case, the pressure gradient is determined com- 
pletely by viscous friction, and does not vary along the length: 

g--f*=«* (2-16) 
In other words, the pressure p decreases linearly along the 

length. 

Integrating (2-45) between x » 0 and « ■ Z, we find the pres- 
sure drop for the tube segment of length I: 

Q *„=„«»-,</)=-}-^^+T[(Hrf/L""(Hrf0-.]- (2'*7) 

If the fluid properties are constant and w   does not vary 
along the length, then a   will also be constant along the length. s 
In such case, integrating (2-46), we find 

hpjtg., (2-48) 

From all of this it follows that to determine the hydraulic 
resistance by computation we must know the velocity field in the 
fluid flow and, in the general case, the temperature field (to 
determine the density field and the viscosity). We can then use 
(2-41) to determine a , and (2-47) to find the pressure drop. To s 
determine Ap experimentally, we must measure the pressure fields 

U at two low sections. Averaging these fields over the section and 
taking the difference of the mean values, we obtain Ap. In the 
elementary case where the pressure does not vary over the section, 
Ap is found by direct measurement of the pressure difference in 
two tube sections. 

Manu- 

%£* footnotes 
No. 

18      according to the Newton-Rikhman law, the density of 
the heat flow at a wall is proportional to the differ- 
ence between the wall temperature and the temperature 
of the fluid far from the wall. Here a is a coefficient 
of proportionality and, consequently, must not depend 
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t   — ft. This holds provided the physics1 properties of 
the fluid do not depend on the temperature^ By definition, 
we Introduce a as the ratio of qm  to ft. - t. In such case, 

So . * 
no restrictions are Imposed on the relationship between 
a and t - ft. 

o 

22      2Thls segment Is called tha thermal Initial segment 
(see §6-1, etc.). 

Manu- 
|^pt Transliterated Syabols 
No. 

15 -3*s» stenka ■ wall 
21 a » a » arifmetlcheskly » arithmetic 

21 H • i « integral'nyy ■ Integral ~-\ 
22 Ji ■ i « logarlfmlcheskly ■ logarithmic 
22 H.T ■ n.t » [temperature head] 
24 H ■ n ■ nachal'nyy ■ initial 

* f 
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Chapter 3 

PROPERTIES OF LIQUIDS AND GASES ESSENTIAL TO HEAT-EXCHANGE 
CALCULATIONS 
3-1. GENERAL INFORMATION 

As we can see from Chapter 1, in determining conveetive heat ex- 
change for a single-phase chemically homogeneous medium, the follow- 
ing physical properties of the medium, i.e., liquid or gas, are of 
importance: the density p, the specific heat capacity at constant 
pressure c„, the dynamic viscosity coefficient u, and the thermal- 
conductivity coefficient X. 

To characterize the relative variation in specific volume or 
density with a change in temperature, we use the volume expansion 
coefficient 

>=w).~m,- 
where v  is the specific volume and T  the absolute temperature. 

We also require composite quantities formed from these physical 
parameters: 

the kinematic viscosity coefficient 

,-f. 
the thermal diffusivity coefficient 

a = 
«PP 

and the Prandtl number 

Thus if a temperature field and pressure field are present in 
the flow, the physical properties will vary from point to point, 
which may have a substantial influence on the nature of flow and 
heat exchange. 

The physical properties of liquids (i.e., condensed media) 
will depend little on the pressure far .from the'critical point. 
Moreover the velocity of liquids will not be large in most'cases, 
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so that the pressure variation in the flow will usually not exceed 
several atmospheres. With such a pressure variation, the physical 
properties of the liquid will vary negligibly. Thus we can always 
neglect the relationship between physical properties ard pressure 
for liquids. 

The physical properties of gases at fairly high temperatures 
and moderate pressures (more accurately, far from the saturation 
point and the near-critical region) will depend only slightly on 
the pressure, except for the density and kinematic viscosity. If 
the gas velocity is not large so that the pressure variation in the 
flow will be small as compared with the absolute" pressure, then p 
can be assumed to be independent of the pressure; this is even truer 
of the other physical properties of the gas. In such case, like a 
liquid, the gas can be treated as an incompressible medium. When 
the gas moves at high velocity, the pressure variation in the flow 
can be quite considerable. Here the compressibility of the gas, 
i.e., the relationship between p (and thus v) and p can be neglected, 
As for the other properties (o , y, X), they are usually assumed to 

be independent of p. 

Thus the nonuniform distribution of physical properties in 
a flow of Incompressible fluid is determined In the main by the 
way in which they depend on the temperature. 

3-2. LIQUIDS 

For liquids, the viscosity coefficwent varies particularly 
strongly with temperature; the density, specific heat content, 
and thermal-conductivity coefficient vary far less. This is clear 
from Table 3-1, which gives the ratios of the corresponding physi- 
cal parameters at 10 and 100°C for certain liquids. 

TABLE 3-1 

ftatio of Physical Parame- 
ters at 10 and 100°C 

1 
XlAKOCTh Is. V 

'«•,.. 

git 

2PTVTB      ... 

\ TpaiictyopMaTop- 
Hoe Macao. . 

5 TvumepMH . . . 

1,02 
1.04 

1.09 
1.05 

1.02 
1.0 

0,88 
0,82 

1,13 
0,84 

1.1 
1.04 

1,25 
4.6 

15,3 
304 

For a theoretical determina- 
tion of heat exchange, in most 
cases we can take p, o t  and X to 
be linear functions or temperature. 
Lince p and X decrease with tempera- 
ture for most liquids,1 while o    in- 

creases, the interpolation equations 
have the form 

1)  Liquid; 2) mercury; 3) 
wator; 4) transformer oil; 
5) feiyterin. 

•1—Px (<-'.)• 

(3-1) 

(3-2) 

(3-3) 

where pQ,  o , and Xft are the values 
rn       u 

temperature tt; ßp, ß„ *<«$x are 

and the temperature range 

of the physical parameters at a fixed 
constants depending on the type of liquid 

(found from experimental data). 

0 

O 
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TvBLE 3-2 

Physical Properties of Water at Saturation Curve 

0 

P-lo*. 
*QM 

A. X. ••it». •*••••. »•10». 
1, 'C r* I u9m i« g »•en m* ft Utftfl 

*/•* Kfipai 
"k 

m-tfat ft ST 
% I £ 3 5- __6_ 

13.3 

_7_ 
0 909.8 -0.7 4.216 0 0.558 1788 1.788 13.5 | 

10 990,6 0.95 4.191 42.04 0.579 13.8 1305 1.306 9.45 
20 998.2 2.1 4,183 83.90 0.598 14.3 1004 1.006 7.02 
30 995.6 3.0 4.178 125.69 0.613 14.7 801 0,605 5.46 
40 992.2 3.9 4,178 IU7.5I 0.627 15,1 653 0.656 4.35 
SO 988.0 4,6 4.183 209,30 0.639 15.5 549 0.556 3,60 
liO 983,2 5,3 4,183 251.12 0,650 15.8 470 0,476 3,02 
70 977,7 5.8 4,191 292,99 0,661 )6.l 406 0.415 8.57 
W 971.8 6.3 4,195 334.94 0,609 16.4 355 f 365 2.22 
90 9G5.3 7.0 4,204 376.98 0.677 16.7 315 0.326 1.95 

100 958.3 7.5 4,216 419.10 0.683 16,9 282 0.295 1.74 
120 943.1 8.5 4,245 503,7 0.686 17,1 237 0.252 1.47 
M0 926.1 9.7 4.287 589,1 0.685 17.2 201 0.217 1.26 
100 907.4 10.8 4.342 675.3 0.680 17.3 174 0.191 1.11 
180 886.9 12.1 4.409 763.2 0,671 17,2 153 0.172 1.00 
200 864,7 13.5 4,497 852,4 0.657 16,9 136 0.156 0.936 
220 840,3 15.2 4.614 943,7 0,640 16.5 124 0.146 0,697 
240 813,6 17.2 4.769 1037.5 0,618 15,9 115 0.141 0.686 
260 784.0 20,0 4,982 1135.0 0,592 15.2 106 0.135 0,891 
280 750.7 23.8 4.588 1236.8 0.564 14.2 98 0.131 0.922 
300 712.5 29.5 5.757 1344,8 0.532 13.0 91 0.126 0.967 
320 667,1 38,0 6.57 1462.0 0.493 11.2 85 0.126 1.14 
340 610,1 47.5 8.21 1594,8 0,447 8,93 78 0.187 1.48 

*) 

1) kg/ms;  2) deg; 3)  ep, kJAg'deg; k) kJAg;  5) 
W/m.deg; 6) roVs; 7) N.s/m2; 8) m*/s. 

r 

In isolated cases, the linear interpolation equations may 
prove Inadequate to describe the way in which p, a  , and X ac- 

tually depend on t.  They then can be supplemented by terms con- 
caining higher powers of the temperature. 

If we assume that p is a linear function of tt  then the co- 
efficient of volume expansion 

N"TW,ST 
will increase with temperature%  while the coefficient 

P-—B^l—' 
will remain constant. It is clear that ßp=ß,p#. Since p changes but 

slightly with temperature, the coefficient 0 is frequently assumed 
to be constant and equal to the mean value in the given temperature 
interval. 

The coefficient of dynamic viscosity for liquids decreases 
with temperature, first rapidly and then more slowly. Its tempera- 
ture dependence can be quite well approximated by the equation 
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TABLE 3-3 
Physical Properties of Transformer Oil 

1 
'• 

»•10«. 

f, *8     I *i     1 ■ 
a* BO« 

. ~k-. £ 

i £&iu    i «,,«»' 
10 8» .4 6.85 
•A 880,3 *.,*M» 
30 874.2 6.95 
40 868.2 7.00 
SO 862.1 7,05 
60 856.0 7.10 
70 850.0 7,15 
80 843.9 7,20 
90 837.8 7.25 

100 831.8 7.30 
110 828.7 7.35 
120 8P.6 7.40 

I 
*dm 

\. H-10«. 
«•£■*« 

»•ICH. 

r 

...v. •...:.   ; 5.N    i **< 7*..f 

..1)1   1 o.i i; 7.83 ÄS 37,r 
1.67 0.111 7.56 198 T*.f> 
1.73 0.110 7.28 128 14.7 
1.79 0.109 7.03 «9 10.3 
1.85 0.108 6.81 65.3 7.58 
1.91 0.107 6.58 49.5 5.78 
1.96    ! 0.106 6.36 38.6 4.54 
2.03 0.106 6.17 30.8 3.66 
2.09 0.105 6.00 25.4 3.03 
2.14 0.104 5.83 21.3 2.56 
2.20 0.103 5.66 18.1 2.20 
2.26 0.102 5.50 15.7 1.92 

Pr 

ft*. 
4$4 
298 
202 
14b 
III 
87,8 
71.3 
59.3 
50.5 
43.9 
38,8 
34.9 

1) kg/m»:  2) deg; 3) kJAg'degj *») W/m'deg; 5) mVs; 
6) N^s/m*; 7) mVs. 

TABLE 3-1 
Physical Properties of Sodium1 

ft 
KSM 

X. a-10». »•10», 

t, *c M 
M* 

Ml 
et» 

M* Pr-10» 
tt'ifd M'tpad 

1_ _2_ 
1.39 

-3- 
86.1 66.9 

-5 
100 928 77.0 1.15 
150 916 1,36 84.1 67.8 59.4 0.88 
200 903 1.33 81.6 68,1 50,6 0.74 
250 81)1 1.30 78,7 67.8 44.2 0.G5 
300 878 1.28 75.5 67.2 39,4 0,59 
350 866 1.27 71,9 65.3 35.4 0,54 
400 854 1.27 68,7 63.3 33,0 0,52 
450 842 1,27 66,1 61,7 30.8 0.50 
500 829 1.27 63,8 60.6 28,9 0,48 
550 817 1.27 62.0 59,7 27.2 0,46 
600 805 1.28 60.6 58,9 25.7 0.44 
650 792 1.28 59.7 58.9 24.4 0,41 
700 780 1.28 59.1 59.2 23,2 0,39 

r"i^,-rrcj („,-nrc (at atmo- 
spheric pressure). 

1) kg/m8; 2) kJ/kg'deg; 3) W/m« 
•degj 4) m2/sj 5) m2/s. 

! ! 
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where i*„ ,'<„, ««.'3^ are constants determined experimentally. In the 

sir 
(3- 
simplest case, we need only keep the first two terms of Series 

For the temperature dependence of the coefficient of viscosity, 
we also use interpolation equations of the form 

*-(*)'• 
p   -4MU 

where \iQS b,  and o are constants. 

The kinematic viscosity coefficient and Prandtl number for 
liquids decrease as the temperature goes up. 

The way in which v and Pr depend on t  is determined, in the 
main, by the relationship between p and t, since p, cp H(ldxvary lit- 
tle with temperature. 

3-3. GASES IN A STATE CLOSE TO THE IOEAL 

In the reg   of state parameters far from the saturation 
curve and the near-critical region, i.e., at relatively low pres- 
sure and fairly high temperature, gas density is relatively low. 
Here the gas is in a state close to that of an ideal gas.1 For 
such a gas, the Clapeyron-Mendeleyev equation holds; it establishes 
a simple relationship between gas density and temperature and pres- 
sure: 

where R  is the gas constant. 

If the pressure in the flow is constant (p 

(3-5) 

const), then 

(3-6) 

who re p0 is the density at TQ, 

As we can see from (3-5), the coefficient of volume expansion 
for an ideal gas is 

*—H^W- 
The specific heat content at constant pressure for ä monatomic 

gas in nearly ideal state is practically independent of temperature, 
while for Matomic, trlatomic, and multiatomic gases it increases 
with temperature. Figure 3-1 gives an idea of the way in which o 

depends on T  for biatomic and triatomic gases (air, carbon dioxide); 
it is clear from the figure that when the temperature changes, o 
varies far less than y or X. It is convenient to represent Q  (T)P&S 
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a power function, 

%-GF- (3-7) 

where n is a constant that depends on the type of gas and the 
G 

temperature interval. Thus, for example, for air between 0 and 
1500°C, nQ    ■ 0.116; for carbon dioxide between 0 and 1000°Cne-0.33. 

*J«£E                         _, 
*/%                         / 

~7 

/ 
7^ 

~t 

A    JL,    -* 
A U%Z zK^2>^ / ifZir 

t      a     3     * J: 5 

L 

Pig. 3-1. Functions MD> »OT 
.nd c,(f)for air (solid lines) and 
carbon dioxide (dashed lines). 
The values of &» |io»'«««ft correspond 
to T. 273°K. 

The ratio k"Cp/cr between gas heat content at constant pressure 
and constant volume decreases with temperature. For example, for 
air at u°C £»1,40, while at 1000°C*= 1,32. 

The dynamic viscosity coefficient and coefficient of thermal 
conductivity for gases in the nearly ideal state increase with 
temperature. Figure 3-1 shows \x  and X as functions of T  for bi- 
atomic and triatomic gases. For monatomic gases, the relationship 
is of approximately the same nature as for biatomic gases. 

The change in the dynamic viscosity coefficient with tempera- 
ture is described by the Saterland equation, which is derived in 
the kinetic theory of gases: 

Sr\n) TT7* (3-8) 

where s is a constant determined experimentally for the given gas; 
for example, between 0 and 1200°C a ■ 122°K for air, a ■ 102°K for 
nitrogen, s  ■ 233°K for carbon dioxide. 

n 
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TABLE 3-5 
Values of Constants In Equations 
for Viscosity and Thermal Conduc- 
tivity of Gases in the 0 to 
1000°C Range 

1 
Tu i* 

3 

"P 

V». 
1 

Mtf** 
4 

s Apron   .... 

» BoAnpnj..... 
» Boaayx  .... 

10 KlKJIopOA   .  .   . 
ti BojviHMt nap. . 
12 /UyoKitcb yrjie- 

poAa  .... 
«•» AMMHIK .... 

Ar 
He 
N, 
H, 

ä 
HiO 

CO* 
NH, 

21.2 
18.4 
16.7 
8.36 

17.1 
19.4 
8.24 

14.0 
0.936 

0.72 
0.08 
0,08 
0,078 
0.083 
0,093 
1.20 

0.82 
1.06 

16.5 
143 
24.2 
172 
24.3 
24.5 
15.1 

14.9 
' 21.0 

0.80 
0.73 
0.80 
0,78 
0,82 
0.87 
1.48 

1.23 
1.53 

0 
The values of uQ and XQ corres- 
pond to TQ  * 273°K. 

1) Gas; 2) chemical formula; 3) N-s/m*; 4) W/m*deg; 5) argon; 6) 
helium; 7) nitrogen; 8) hydrogen; 9) air; 10) oxygen; 11) water 
vapor; 12) carbon dioxide; 13) ammonia. 

In many cases, in place of (3-8) it is more convenient to use 
an equation of the form 

J» ( T YV (3-9) 

In general, the exponent n depends on the temperature. At 
moderate temperatures it is close to unity; as the temperature in- 
creases it decreases, approaching a value of 0.5 according to (3-8), 
A constant value may be taken for n    for a given gas over a re- 
stricted, although fairly wide, temperature range. For example, for 
air between 90 and 300°K, n * 8/9. Table 3-5 gives values of ]xQ 
and n    for certain gases on^the basis of published data p]. 

The relationship between the thermal-conductivity coefficient 
and the temperature has the nature as vi (T), and can be represented 
by an equation of the same type: 

k -fTYx 
(3-10) 

The exponent «^ differs for different gases am    moreover, 

is temperature-dependent.  Like n  , however, n,  may be taken to 
V A 

be constant o»ror a restricted temperature range. Table 3-5 gives 
alues of i, «nd nx for certain gases. As the table shows,   n\>%> 
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The difference between them is not great, however, for monatomic 
and Diatomic gases. 

: 

For gases in a nearly ideal state, the Pr number depends 
principally on the number of atoms in the molecule. For monatomic 
gases, Pr equals O.63 on the average; it is 0.72 for diatomic gases, 
and 0.75-0.9 for triatomic and multiatomlc gases. Since X increases 
somewhat more rapidly with the temperature than does y, while cn 

increases little with the temperature, the number Pr 
slowly with temperature. 

]io  /A changes 

The information given here on the properties or a ga3 in near- 
ly ideal state is valid provided the chemical composition of the 
gas (or gases forming the mixture) does not change under variations 
in temperature and pressure. This condition is fulfilled if the 
gas temperature at a given pressure does not exceed a specific value 
at which complex molecules begin to dissociate. For air, the tempera- 
ture corresponding to inception of component dissociation (primarily 
O2) is about 2000°C at atmospheric pressure. 

TABLE 3-6 

Physical Properties of Air at Atmospheric Pressure 

0 
ion 
200 
»no 
400 
son 
«00 
700 
800 
900 

1000 
1100 
1200 
1300 
1400 
1500 
1600 
1700 
1800 

i.aw l."0 
0.9460 1.01 
0.7459 1.03 
o.fiir»7 1.05 
0,5242 1,07 
0,4564 1,09 
0,4045 1.11 
0,3028 1.13 
0,3290 1,16 
0 3009 1.18 
0,2766 1.19 
0.2570 1.21 
0.2396 1.23 
0.2244 1.24 
0.2110 1.26 
0.1991 1,28 
0.1874 1,30 
0,1789 1.33 
0,1702 I.3G 

2,43 
3.19 
3.87 
4.45 
5.05 
5.62 
6.15 
6,66 
7.20 
7.61 
8.05 
8.48 
8.90 

a-IP. M0». ».10». 
M* M-eet *• 
en *• C*K 
h 5 6 
IS.7 17,1 13.2 
33.3 21.9 23.2 
50,6 26,0 34.9 
69,5 29,7 48.2 
90.2 33.0 63.0 
113 , 36,2 79.3 
137 39.1 96.7 
162 41.7 115   ' 
189. 44,3 135 
215 46.6 155 
244 49.0 177 
273 51,2 199 
303 53,4 223 
— 55.5 247 
— 57.6 273 
— 59.6 299 
— 61.6 329 
— 63.6 356 
— 65.5 385 

Pr 

0.707 
0.69b 
0.689 
0.695 
0,698 
0,704 
0,708 
0,710 
0,712 
0,721 
0,727 
0.731 
0,737 '•   P 

1) kg/m3; 2) kJ/kg^deg; 3) W/m^deg; 4) m2/sj 5) N»s/ 
/m2: 6) m2/s. 

3-4. REAL GASES 

Near the saturation curve and, particularly, in the supercri- 
tical region,' the properties of matter change substantially not 
only with temperature, but also with pressure. In this parameter 
region, the change in physical properties with temperature and 
rressure cannot be represented by relationships as simple as the 
one applying to a liquid or a gas in nearly ideal state. 
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It is convenient to characterize the deviation in specific 
volume or density of a real gas from the values corresponding to 
the equation of state >f an ideal gas by the compressibility coef- 
ficient i 

(3-11) 

For an ideal gas, z -  1. For real gases, * depends on tempera- 
ture and pressure. If this relationship is represented as 

z=/(*. T), (3-12) 

where «=/>//»i<p«««T=7'/rK„ are the reduced pressure and temperature, while 

^kr and rkr are tfte critical parameters; then by the law of corres- 
ponding states, this relationship will be roughly the same for dif- 
ferent substances. 

Figure 3-2 illustrates Relationship (3-12); the figure is taken 
from [93. Using this graph, we can easily establish the region of 
values of p and T within which the equation of state of an ideal 
gas is valid. The real gas will obviously deviate more from an ideal 
gas the more a differs from unity. If we know the values of p^, and 

r,  for a given substance, we can then use Fig. 3-2 to determine the 

approximate value of p for the values of p and T.h  Naturally, for 
exact calculations it is always preferable to use exaot 'tables and 
diagrams compiled for the given substance. 

t                     O          M     it 10 

I 
1.4 i     1! Li.             ii     il               _ II 1 

-t-- 
iriüuyi in mi ni;« TT" 

• 10 
S3^^^^5

:
~5~~4T^* =P T iiT" ai i^m R^jäjyjv^N^. 

T*^£tfe^P ■f ■      * » \\v v\ 
7 
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I    *^Al4 

Jr* 
t-fiU- t, 

v 
iSHx. -    t'U 
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* 
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If 

 r-it 4 
 . —i—i— "47- 1 

't   - ~tt ■    i      v     at     at     a* ■ 

il _j 11 II INI Mill fill' r 
oi at a*     at a* u> J0     40   ft 

Fig. 3-2. Compressibility coefficient z  of real gases as function 
of reduced pressure and temperature. 

The coefficient of volume expansion ß= ^(it)  f'or a real Sas 

depends essentially on temperature and pressure. In the supercritical 
region, when p  » const the coefficient $ first increases and then 
"^creases uith the temperature.5 The value of $ at the maximum point 
..111 be higher the closer the pressure p is to p, . At the critical 
coint ß kr' 

■ _ 5 / i - /4U 
- 37 - 



<i mim/mmm* 

m   m   JSO   *M 

Pig. 3-3. Heat content of water and water vapor in near-critical 
region. 1) Saturation curve on vapor side; 2) saturation curve on 
water side, a) kJ/kg.deg; b) at. 
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Fig. 3-4. Thermal-conductivity 
coefficient for water vapor. 
The dashed line shows the sat- 
uration curve, a) W/m»deg; b) 
at. 
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Fig. 3-5. Pr number for water 
at saturation curve. 
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The heat capacity c of a real gas varies sharply with tempera- 

ture and pressure changes near the saturation curve and, in particu- 
lar, in the supercritical region. 

Figure 3-3 givey some idea of the way in which heat capacity 
varies with t  and p; it gives data for water and water vapor. In 
the supercritical region, the heat capacity o   passes through a 

maximum for certain temperature values, depending on the pressure. 
At the critical pointf cp=<x>.  At p>p*p , the values of e    at maxi- 

mums will decrease as the pressure increases. Near the maximum 
points, the heat capacity may change by a factor of ten within a 
narrow range of temperature and pressure. 

The coefficients of dynamic viscosity and thermal conductivity 
also experience substantial variations with temperature and pressure 
at high pressures. Figure 3-4 gives an idea of the relationships ob- 
served; it gives data on the thermal-conductivity coefficient of 
water vapor at pressures between 1 and 500 at and temperatures be- 
tween 100 and 700°C (the qualitative variation in the viscosity is 
the same as that for the thermal conductivity). 

The change in Pr near the saturation curve and in the super- 
critical region is associated chiefly with the change in Op,  since 
M and A vary less, and in almost the same way. Thus the curves for 
Pr will have roughly the same shape as the curves for a    in Fig. 

3-3. Figure 3-5 shows Pr for water at the saturation curve. For 
temperatures between 0 and l80°C, Pr drops rapidly with the tempera- 
ture; this is associated with the reduction in u and a certain in- 
crease in A (here o    varies negligibly). Between l80 and 310°C, Pr 

remains roughly constant, while above 310°C and up to the critical 
point, it rises rapidly in accordance with the rapid growth of o  , 

3-5. CLASSIFICATION OF HEAT-TRANSPORT MEDIA BY PRANDTL NUMBER 

As we shall see later, the number Pr=mcp/K is an essential char- 

acteristic of a heat-transport medium (liquid, gas) from the view- 
; Int of the features of the convective heat-exchange process. For 
djfferent media, Pr will vary widely. Depending on the value of Pr, 
heat-transport media can be classified into three groups: media 
with Pr -^ I, media with Pr = 1, and media with Pr>l. 

The first group includes liquid-metal heat-transport media: 
sodiitf", lithium, sodium-calcium alloys, lead-bismuth alloys, mer- 
cury, etc. For the mecUa of this group, Pr varies between about 
0.005 and 0.05. This very low value of Pr for liquid metals is 
ussocialed with their high thermal conductivity and relatively 
iuw heat capacity. 

T'b'-. second group of media includes gar.es at moderate pres- 
sures anu liquids at high temperatures. For them, Pr varies within 
fairly narrow limits, roughly from 0.6 to 1. 

The third group of heat-transport media consists of the 
.onmetallic liquids: water, various organic and inorganic liquids 
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(petroleum, products, molten salts, etc.). For media in this group, 
Pr ordinarily ranges from 1 to 150-200. Certain liquids (glycerin 
and viscou.: oils, for example) have a Pr number at low temperatures 
that may reach several thousand or even tens of thousands. The 
high values of Pr for the third group is explained chiefly by their 
viscosity, in particular at low temperatures. 

To conclude this chapter we note that the reference list in- 
cludes several handbooks and monographs in which the reader can 
find data on the physical properties:of liquids and gases that 
are required for heat-exchange calculation. 

Manu- 
script 
Page 
No. 

30 

33 

36 

37 

37 

39 

Footnotes 

*For water, glycerin, and other strongly associated 
liquids, a different relationship is found between X 
and t.  Thus, for example, for water X  first increases 
with the temperature (at t <  125°C), and then decreases, 

2The region of applicability of the ideal-gas model 
is more accurately determined in §3-4. 

8The supercritical region is the region of parameters 
of state corresponding to p > p  . 

"For helium, hydrogen, and nitrogen, better agreement 
with experiment is obtained if we add 8 to the values 
of Pkr and Tkr. 

5In the supercritical region, the nature of the change 
in ß is similar to the nature of the change in e 
(see below). p 

'For water, pkr * 225.65 at and *Rr = 37
2».15°C 

I 
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Transliterated Symbols 

mi ■ pi ■ plavleniye ■ melting 

KMn ■ kip = kipeniye = boiling 

i<p = kr = kriticheskiy ■ critical 
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Chapter 4 

ANALYSIS OF FLOW AND HEAT EXCHANGE IN TUBES BY THE SIMILARITY METHOD 
4-1. PRELIMINARY REMARKS 

It is useful to begin the study of a given specific heat-ex- 
change or fluid-motion problem with an analysis by the similarity 
method [1, 2, 3, 4], Analysis of processes by the similarity meth- 
od is based on reduction of the equations describing the investi- 
gated process and the corresponding initial and boundary conditions 
to dimensionless form. This reduction can be carried out either by 
a change of scales, or by the dimensionality method. The number of 
new dimensionless variables and constants occurring in the basic 
equations and initial and boundary conditions will be less than 
the number of dimensioned quantities essential to study of the pro- 
cess; this offers significant advantages. For an experimental in- 
vestigation, utilization of the similarity method makes it possible 
to minize the number of quantities that must be varied during the 
experiments, and gives an efficient method for generalization of 
experimental data. The similarity method also proves useful for 
theoretical investigations; for example, it can sometimes be used 
to reduce the problem of finding a function of two variables to 
the problem of finding a function of one variable, or to finding 
a function to within a numerical constant. With the similarity 
method, it is convenient to analyze limiting cases and to general- 
ize the results of numerical solutions. 

In the succeeding sections of this chapter, application of 
A  * similarity method to problems of fluid motion and heat exchange 
ir. pipes will be illustrated. 

4-2. ISOTHERMAL FLOW 

In a tube with cross section that is arbitrary (but unchanged 
ilnng the length)  let an incompressible liquid filling the en- 
tire tube be at rest (Pig. 1-1). At the time taken as the initial 
instant (T=0), a constant pressure difference P\—pt   is instantaneous- 
ly set up at the ends of the tube. At the next instant (t>0), a non- 
stationary fluid flow apper.rs in the tube; later (as x ■+■ *) It be- 
comes stationary. Let the mean velocity of the stationary flow be 
ejiven over the section; it equals U -l The fluid enters the tube 

00 

so that the velocity vector in the entrance section is directed 
long the axis, while the velocity is uniformly distributed over 
ie section. The riuid temperature is the same everywhere, so that 

2  physical properties of the fluid are constant. We analyze this 
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# I 
Fig. Jl—1. Analysis of Problem of iso- 
thermal flow in tube. 

problem by the similarity method. To do this, we set up its mathe- 
matical description. 

Under the conditions considered, fluid motion is described 
by equation system (1-5), (1-8) in which we must set F«-f»-iF,=0: 

££+w grad w. = —J-.£+vy«»,; 

^+*grad«v = -|.^ + V»,; (^1} 

^-• + Sgrad«>1=—I.^+vyH*,; 

divie = 0, 

where p  is the difference between the actual pressure in the flow 
and the hydrostatic pressure (see the footnote to page 10  ). 

The initial conditions are: 

for T 
B 0 »x=»v«art-.0. 

The boundary conditions are written as follows: 

forx>0. A = 0, |$M<|l/c|H.2|<l*c| »*==••('«)• t»„ = »t = 0; 

fon-*.oo,JC = 0, |y|<|i/cMz|<l*c », = w,(oo)=s»Ä; 

for x > 0, A" • ■' 0, y -- tjc»T»i2=e Zo u»,=»v = a, — 0, 

(4-2) 

(4-3) 

where y and 2 are the coordinates of points on the inside sur- 

face of the tube; w- is the velocity at the tube entrance; it is 

constant over the section but variable in time (for t—oo,a)0—S;«,). 

The equation specifying the form of the tube inside surface 
is 

<p(tfc, *c. fa A. ■ • •. A») "0, (4-4) 

where U, /, /„.are the characteristic dimensions of the tube cross- 
section. 

We reduce Eqs. (4-1) and Conditions (4-2), (4-3), and (4-4) 
to dimensionless form, using the method of scale transformations 

f 4 

* * 
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0 

:J 

[3, 4J. Selecting lQ  and w^  as scale ratios, we introduce the di- 
"lensionle; =5 coordinates, linear dimensions, and velocities: 

V—£. Y—L    z JL /  '•   /  fm. -*—/,• r—V *—X'  Lt    K  **V 

»• "»        »0. »0. 

In (-l-l)-(-l--O, we replace the dimensioned variables x, #, .... v0 
by the products of the dimensionless variables and the correspond- 
ing scale ratios, Xl* Yk,.... B^ow- In (-l-l)-(4-4), ve group the .re- 
maining dimensioned quantities and their scale ratios into dimen- 
sionless complexes; this yields a mathematical description of the 
process in dimensionless form: 

||i+#gudr,)Re=-^(EuRc)+v«r,; 

fs + (W grad Wy) Re = —% (Bu Re)+v^J 
•>" (4*5 

^i+(irgradWf)Re = ~^.(EuRe)+viir,; 

dsvi?'=0. 
for Zh = 0 Wx == W„ = Wt = 0. , (4-6) 
for Zh>0. X = 0, |K|<|K€| —I^KIZ.1 r, = IF,(Zh), 

r.-r.-o. (4.7) 
forZh-oo,Jf=0f|K|<|KeH2|<|Ze| ^«=V#(oo)«l. 
for Zh>0, A^O, K=yc-»,2==ZC B7«-=^ = jrt=0. 

<p(Kc, Zc, /-„ Z. Zw) = 0. 

Zn (4-5)-(4-8): 

Zh=-jj-— Zhukovskiy number2 : 

Eu = -^ Euler number; 

Re=-^-— Reynolds number. 

If follows from Eqs. (4-5), initial conditions (-»-6), and 
boundary conditions Cl-7) and (4-8) that the dimensionless depondenl. 
variables are functions of the following dimensionlosvs Independent 
var:'.*tiles and constant parameters: 

Wx, Wv, W„ nu-/*(Zh, X, Y, Z, Re, Llt L2 /.„,). (4-9) 

where the fy  are unknown functions (k-w„  w,, v„  tfu), depending on 
the geometric shape of the tube cross section. 

r-( 
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Forvsufficiently large values of the Zhukovakiy number (Zli .00) 
stationary flow will set in. In this case, in place of (4-9), we 
have 

W„ W» V«, Eu -/* (X, Y, Z, Re. Lu U ..., I*).      (4 ..10 ) 

Let us now assume that:sufficiently far from the tube entrance 
(at !-»••), the fluid velocity at each point in the flow will be 
parallel to the x axis.3 Consequently, in this flow region IP»=0, 
fl?,»0 and dWJdX^O  (this last relation follows from the equation 
of continuity). Thus for the case under consideration the distribu- 
tion of velocity W„  will be independent of X,  and will be determined 

SB 

completely by the geometric shape of the tube cross section. Such a 
flow is said to be hydrodynamlcally stabilized. 

For a stabilized flow, the second term on the left side of the 
first equation of (4-5) vanishes, whi?e the second and third equa- 
tions of (4-5) reduce to the following: 

-sr==0*nd-3r==0- 

Thus the number Eu= plfw2, or the dimensionless pressure, does 
not vary over the flow section,* so that in the case considered in 
place of System (4-5) we have the equation 

aw, , d«v, ■ anr« J(BIIRB) _F,m (4-11) 

The left side is independent of X>  and the right side of / 
and Z, so that both sides are functions of Zh alone. 

Prom (4-11) and the corresponding initial and boundary con- 
ditions, we find that for stabilized flow 

Wx-WAZh, Y,Z, Lu U Im), (4-12) 

ir=ite,1,<Zh- Lt, L , tm). (4-13) 

If, in addition, the flow is stationary, then 

WX~WX(Y,Z, U Lt Lm), (4-12a) 

dx —Ho["'  mh (4-13a) 

where A  is a constant that depends on the geometry and relation- 
ship of dimensions of the tube cross section. 

Let us now obtain dimensionless expressions for the hydraulic 
resistance. The latter is determined by the longitudinal gradient 
of the mean pressure over the section dp/dx.    The dimensionless 
mean-pressure gradient, taken with sign reversed, is called the 
local coefficient of hydraulic resistance: 

ü 
(4-14) 
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where 

IM 

/        2 *^ 

axis. 
Here / is the area of the cross section normal to the tube 

For stationary flow of an incompressible liquid in a tube, 
we usually have dp/dx<6 and,  consequently, the coefficient £ is posi- 
tive. 

The mean coefficient of hydrffuMc resistance for the tube 
segment between « ■ 0 and x will obviously equal 

t X 

«"=—[ tdjc= -fUäX = -f (ET, - ES), (4-15) 

where Eu0 is the value of E~u at X  « 0. 

J       If we substitute dp/dx from (2-44) Into (4-14), we obtain 

«-•+f[wr^.*+ajj<*} 
while for a stationary flow, 

C=* + - ■4}»:* 
where 

(4-16) 

(4-l6a) 

(4-17) 

is the local coefficient of friction resistance; Ho * Ho--~- 
is  the homochronicity number;5 8  is_ the perimeter of the tube 
cross section normal to the axis; o   is the tangential stress 
at the wall, averaged over the perimeter. 

The first term in (4-16), i.e., the quantity £, allows for 
i.l).? energy expended in friotion, while the second term allows for 
!-.he change In velocity with time and in flow kinetic energy '«ith 
lengtl- (owing to rearrangement of the velocity profile) . On the 
basis or  (4-9), (4-14), and the definition of Eu it is easy to 
pee that c is a function of the following dimensionless quantities: 

;-;(Zh, X, Re, Lu L2 lm). (4-18) 

If the flow is stabilized over the entire tube length then, 
as we ^an see from (4-l#)? (4-14), and (4-15), 

CRc=:CRc = tfc(Zli,Z.I,£l LM). (4-19) 
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If, in addition, the flow is stationary, it then follows from 
(4-16) that c - Z>  while 

5Re = ^l(L1.Z.I !,„). (1-20) 

In other words, for a stationary stabilized flow, £Re will 
be a constant depending solely on the geometry and dimensional 
relationships of the cross section. 

The functions c, ♦.» and the constant A-  are found theoretical- 
ly or experimentally. 5 * 

If the resistance coefficients are known, it is not difficult 
to determine the pressure variation along the length or the pressure 
drop across a certain segment of the tube. Thus, for example, for 
stationary flow we have from (4-14): 

dj^-Z&dx. (iU21) 

Integrating this relationship over the length, we can find 
p(x). 

The pressure drop across the tube segment between x  ■ 0 and 
x, which we represent as Sp=j>o—p,   is found from (4-15): 

ip=-il** (4-22) 
2 i. 

Relationship (4-22) is known in hydraulics as the Darcy-Weisbacn 
law. 

We have considered flow in a tube of arbitrary cross section 
that does not change along the axis. If the tube is round, then 
the only dimension determining the cross section is the tube dia- 
meter, and this can then be taken as the characteristic dimension, 
i.e., we let lQ - d.  Here the relative linear cross-sectional di- 
mensions Li, Li Im are eliminated from the expressions found above. 

4-3. HEAT EXCHANGE AND HYDRAULIC RESISTANCE IN FLOW OF LIQUID 

Let us consider liquid flow and heat exchange in a smooth 
round pipe of diameter d  ■ 2rQ.6 At the tube entiance section, 
the velocity vector is directed along the axis, while the liquid 
velocity wQ and temperature tQ  are constant over the section and 
invariant 5    time. At times preceding the initial instant (x < 0), 
the liquid temperature throughout the entire volume and the wall 
temperature are identical and equal to *0; consequently, there is 
no heat exchange, and there is isothermal flow of the liquid in 
the tube. At the intial instant (x » 0), the wall temperature 
or density oV  the heat riow at the wall will change instantaneously, 
and take on  values * or o that are constant in time and over the s   ^ s 
surface. During a certain time interval, a nonstationary transient 
will be observed in the tube; later (when x •*■  «) a stationary state 
s/56 
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will set in. For generality, we shall assume that the physical 
properties of the liquid depend on the temperature. 

Under these conditions, t'.ie liquid motion and the heat exchange 
are described by equation system (1-16). Assuming that there are no 
internal heat sources in the flow and neglecting the heat of fric- 
tion, we drop the corresponding terms in the energy equation. We 
introduce the lift (see $ 1-2) into the equation of motion, letting 

«*-3J =-rf/.(<-««t-j5-^-*Ä». (1^.23) 

where p is the actual pressure in the liquid flow; pQ is the hy- 

drostatic pressure, computed on the assumption that, the liquid has 
density pQ everywhere; $  is the angle between the x  axis, which co- 

incides with the tube axis, and the vector representing the gravi- 
tational force. We shall henceforth simply use p to represent the 
pressure difference p - pQ. We shall use Relationships (3-1)-(3-4) 

to allow for the way in which the physical properties of liquids 
depend on temperature. Thus our problem corresponds to the following 
equation system:7 

fc, (j;+w grad / \ = di v (X grad I); 

P(^- + »grad^)=-^.(/-/.)cost-g-+^^)+ 

•   1 . d r    (dwx   , dwr Y| ,   I   d [   /id»«, *<\\ I. 
+T'w[*(ir+-w)\+Ti>r[*(T--dr+-3})\ • 

0V 
+ div(pw) = 0; 

£=!-{*,('-'.); ■£- i+Pc(/-/.); 
r*. 

(1-24) 

-X7=i-M<-'.); T=1+M'-'.>' 

where Po. cp0< ^»""H-o are the values of the liquid physical parameters 
at the entrance temperature tQ. 

On the basis of the earlier analysis [see (4-10)], we can 
write the intial conditions as 

far*<0.Jt>0-0<r<r.g.l ^ = ^(-J-. £• *£). (*=*/) 

w 0; / = /.. 1 (4-25) 

The boundary conditions have the form 

for ■»  '0, .v ~.Q-*0<r<rt wx — w„ wr^wf—0, lr=(t; 
,ot (4-26) for *>0, jc>0-~if = rt ws = wr=wf=0, t = te or   ^=qe 

1. Let us first analyze the problem of liquid motion and heat 
IS 

'-8/57 

exchange for the case in which the wall temperature t    is specified. 
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To transform Eqs. (4-24) and Conditions (1-25) and ('»-26) 
to dimensionless form, we introduce the variable »=/—/., and 
select the following scales: d, w„ de=/e--/,f P„ <• l,—*. Using these 
scales, we introduce the dimensionless quantities 

*-*«-* »-!'■•-*-£& 
P=-£-« r —£>.• A 

After simple manipulations, we obtain a mathematical descrip- 
tion of the process in dimensionless form: 

?C>[m +Pe(^grad0)]=div(Agrad8); 

*L+div(PV)=0; 

p=l_ppM; C,=l+pcM; 

A=i-pxM;-g-=
1+PM 

For Fo<0, X>0 and 0<A<-j 
Wxt Wr=F>iX, tf.Re), Wf=0, 6=0. 

for Fo>0, X=e«»»0</?<4" 

for Fo>0,^>0-«^=-j- 

=0. 

(4-28) 

fli.oq) 

In  (4-27),  (4-28), and (4-29),  the symbols are as follows: 

(J 

O 

Fo = ^r — Fourier numbers; 
K 

fl«=p.c 
Coefficient of thermal diffusivity; 

Zh=jJ£— Zhukovskiy number; 

Ho = ~- — Homochronicity number; 

CU: . ''... 
p.f'Ü 

Euler manner; 

Peclet number; 

RC^?^_. Reynolds number; 

Qr-sSLpJl- Qrashof number. 

- 48 - 

% 

.; ..! 



*äWf&**4MH»» - 

,'i -%.\   » *S *  • <f s.. 

The quantities ^»e. M«> M« ani ?»•• ean be represented In terms 
of the ratios of the corresponding physical parameters at tempera- 
tures *s and tQ.  Letting 0 • 1 in the last four equations of Sys- 
tem (4-27), «re obtain 

where 

Px*o = 1 ~ A«, P^« » j- — 1, (4-30) 

It follows from (4-27) — (4-30), that the dimenslonless dependent 
variables are functions of the following dimenslonless quantities: 

6, IP*, 1P„ IP%, Eu=/ji(Fo, Zh, Ho, *, R,  f, Pe, Re, Or, 
♦. Pe. C„. A«, Me), t*-*1) 

where 

*=•• Vm. *T. f.. E«. 

The Zh and Ho numbers appearing in (4-31) can be represented 
in terms of Fo, Re, and Pe: 

Zh = ~2; Ho=PeFo. 

Then (1-31) can be represented as 

e, Wm. W„ Wf, Eu=/*(Fo. X, R,  f, Pe, Re, Or, *, P., C,., A„ M.). (4-?2) 

Naturally, in (4-32) we can introduce the ratio £■■-—Pr» i.e., 

the Prandtl number, in place of one of the controlling parameters 
Pe or Re. 

We now obtain a system of dimenslonless numbers for the heat 
transfer and hydraulic resistance. 

We find the local heat-transfer coefficient; in accordance 
with (2-20), 

or in dimenslonless form, 

Nu =Ac (ÄL . ' (4-33) 

mi where Nu=r is the dimenslonless heat-transfer coefficient, called 
the Nusselt number. 

Substituting the values of 0 from (4-32) into (4-33), we 
jee that Nu is a function of the following dimenslonless quantities: 
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Nu = Nu{l . . . <j>, Pc. Re. ur, v, Pc, Cp«, A«, Mc).      (4-34) 

In (4-33), the local heat-transfer coefficient pertains to 
the intial temperature head t    - tQ.  If we refer o tc the local 
temperature head * — t  (where t  Is the mean mass temperature of s 
the liquid in the given section), then Nu will depend on the same 
dimensionlojs quantities, but the nature of the relationship will 
be different. 

The local resistance coefficient c is determined from (4-14), 
in which 

2« in 
Eu=4$MEu*d* (1-35) 

when we consider a round tube. 

Substituting the values of Eu from (4-32) into ('4-35), from 
(4-14) rfe have 

fc«t(Fo. X, Pe, Re. Gr. *, Pc, C„c. Ac. Mc). (4-36) 

Equations (4-32), (4-34) and (4-36) are valid both for a 
nonstationary transient and for the steady state. In the latter 
case, the temperature field does not depend on the time and, con- 
sequently, the Fo number on the right side of these equations must 
be dropped. 

The number of dimensionless quantities on the right side of 
(4-32), (4-34) and (4-36) will be reduced significantly if we as- 
sume that the physical properties of the liquid do not depend on 
the temperature. In this case, the last four equations of System 
(4-27) drop out. In the remaining equations of this system, P, 0  , 
A, and M will equal uruty. The term allowing for the influence of 
the gravitational force will vanish in the equation of motion 
(since ß ■ 0, and thus Gr ■ 0), so that the velocity and tempera- 
ture fields will be symmetric about the axis; the nonstationary 
term in the equation of motion will also vanish, since under the 
conditions considered the flow will be stationary when u and p are 
constant. 

Under such assumptions, the problem of fluid motion reduces 
to a special case of the problem considered in the preceding sec- 
tion. As for the heat-exchange problem, after the indicated simpli- 
fications are made in System (4-27), we find 

e=e(Fo,Ar,/f,Pe,Pr). (4-37) 

Substituting this expression into (4-33), we obtain 

Nu-Nu(Fo, X, Pe, Pr). (4-38) 

For a stationary state, the Fo number will drop out of (4-37) 
and (4-38). 

2. Let us now consider the same problem, but for the case in 
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which we are given the heat-flow density at the wall, q    * const, 
Thus in place of the condition * » t   at r  ■ rQ, we have1 the 
condition 

^L-«" (4-39) 

In analyzing this problem we can use the same scales as in the 
preceding case (see paragraph 1) with the exception of the scale 
for the temperature. This scale must be selected as the difference 

<s - V since the wall temperature *_ is not known in this case. S 
The scale for the temperature can be established from boundary 
condition (4-39); to do this, we write the condition in dimension- 
less form: 

*W?)L"'' (4-40) 

From this it is clear that the quantity 

••-IT 
should be taken as the scale for the temperature; it has the dimen- 
sions of temperature. 

If we introduce the dimensionless temperature 

ft— »_<-<• 

TT 
(4-41) 

and replace the scale $   by the scale $ ,  then the dimensionless 
mathematical description of the process (4-27), (4-28), and (4-29) 
also remain valid in the given case, with the exception of the 
last condition of (4-29), which should be replaced by Condition 
(4-40). Thus in the problem of fluid motion and heat exchange, 
for a specified heat-flow density at the wall, we have the fol- 
lowing system of dimensionless numbers: 

e,Wx,\Pr,Wf,E\i=Fh(Fo,XtR,ftPs,R*,Qr,Wf»,t Mf.M«»M«>. (4-42) 

wherp * = «. IT.. r„ W,. Eu; 

vi r = ., r 1ST    jr- . 

Vö 

All the remaining quantities have the same values as in §1. 

The dimensionless temperature at the wall is the reciprocal 
of Nu, in which the heat-transfer coefficient a refers "to the 
emperature difference t    — tQ: 
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tt_ » 

Letting J? * 1/2 in the expression for 6 (4-42), we obtain: 

Nu«^—Nii(Pbf^f,Pft,Reiar,t.p^f,p8tf,ßx»,tp^f).   (4-43) 

The same system of dlmensioniess numbers is also obtained 
when o refers to the local temperature head t   — t. 

Prom (4-14), (4-35) and (4-42) we find 

Ca=C(Fo,^Pe,Re,Qr,t,p^,ßcVPx*».P|l»f).      (4-44) 

If the physical properties of the fluid do not depend on 
the temperature, then the system of dlmensioniess numbers will be. 
exactly the same when qa  and * are specified: here we need only 

8        S 
allow for the fact that the dlmensioniess temperature 9 will be 
determined differently in each of these cases. 

4-4. HEAT EXCHANGE AND FRICTION RESISTANCE IN FLOW OF A GAS 

The sole difference from the preceding problem (see §4-3) 
lies in the fact that it is not a liquid flowing through the 
tube, but a slowly9 moving gas. Thus in the mathematical descrip- 
tion of the process, the last four equations of System (4-2'4) must 
be replaced by relationships describing the change in the physical 
properties of the gas with temperature: 

*■**-(*)* .*-(*)*■ £-(*)*•     (*-«5> 
where p„ cH,  Xo.ndUo are the physical parameters of the gas at the      (3 
entrance temperature T0; ne, "/ix«nd/i|4 are constants that depend on the 
type of ga3. Since the gas moves slowly, the relationship between 
the density and the pressure can be neglected (see §1-2, para- 
graph 3). 

1. Let us first consider the case in which the constant wall 
temperature T    - const is specified. 

As we can see from (4-45), it is convenient to take TQ  as 
the scale for the temperature. Then the dlmensioniess temperature 
can be written in the form 

The previous scales are retained for the other quantities. 
After the equations and initial and boundary conditions have been 
transformed to dlmensioniess form, we obtain the same dimension- 
less numbers as before (see §4-3, paragraph 1), with certain ex- 

V57 
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jeptions. In place of the numbers ß,*e, ftt«"» etc., from the boundary 

O 

condition at the wall (9 ■ 9_ for R * 1/2), we obtain the number 
ec=fe/f„ ar.d the numbers «*„ ^.-/^from Relationship (4—115). To . 

replace the Or number in the dimensionless equation of motion, we 

Introduce the number *\ '; 'multiplying It by 9 - 1, we obtain 

the previous number Qrss^_> where ♦•»?«—f,. As a result, we 
arrive at the following system of dimensionless quantities: 

6,1F„«?r
r,Vf,Eu=g/»(Fo,jr,^,ffPe,I^tQr,t,efl,iia./ix,s|k).  (4-46) 

The number Qe—tc/T, is called the temperature factor. 

Referring the local heat-transfer coefficient a to the tempera- 
ture head £ , we obtain a relationship of the type (4-33) for Nu, 

but with 9. - 1 in the denominator. Substituting 9 from (4-46) into 

this relationship, we obtain 

Nu=aNö(Po,^f,Pe,Re,Or,*,e0,«e,«i,«ll). (4-47) 

On the basis of (4-14), (4-35)> and the expression for Bu, 
from (4-46) we obtain 

C=C(Po,^,Pe,Re,Qr,f ft»,**,«*,«,). (4-48) 

When the temperature heads are not very great, the relation- 
ship between o   and 2* can be neglected, and we can take n ■ 0. 
Moreover, in most cases we can let ifmn^mn. 

2. If we are given the constant heat-flow density at the wall, 
q    ■ const, then determining the dimensionless temperature in the 
3 
form 6 *> T/TQ,  we obtain the same system of dimensionless numbers 

as with (4-46), (4-47) and (4-48), with the sole difference that 
from the ooundary condition, in this system we replace 9 by the 
dimensionless number 

The dimensionless wall temperature 0O=zV/r,, which in our case 

Is the dependent variable, will be a function of the following 
quantities: 

e„=e0 (Po, X, t, Pe, Re, Or,>, 9f,««, nx, nj. 

Naturally, the number 

(4-49) 

also depends on these quantities. 
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Finally, If It proves convenient, we can treat 0C(*. <p)as an 

independent variable,10and Nu or Ö as dependent variables. In 

such case, we arrive at the system of dlmensionless quantities 
(4-47). It is natural that the functions will in general differ 
in form for f_ ■ const and a   ■ const. 

3 S 

Comparing the systems of dlmensionless quantities for a gas 
and a liquid, we see that the scle difference lies in the dlmen- 
sionless quantities allowing for the way in which the physical 
properties of the gas and liquid depend on the temperature. If 
the physical properties of the gas and liquid are constant, then 
their dlmensionless systems and the relationships among the dl- 
mensionless quantities will be identical. 

4-5. LIMITING CASES OF FLOW AND HEAT EXCHAN6E 
-■-*■ 

To keep the ensuing discussion simple, we shall assume that 
all physical properties of the liquid (gas; are constant, with the 
exception of the density. We consider the dependence of p on t  only 
since this is associated with the appearance of lift forces. In all 
other respects, we shall also assume that the density is constant. 
Then for the fluid-motion and heat-exchange problem considered in 
the last two sections, we obtain the following system of dlmension- 
less equations:11 

0 

&+Pe(W*rad8)=ve; 

75r+Re(frtfrad)r *~gj-ecos* -^(EuReJ + VT«; 

di?r=0. 

(4-50) 

To this system, we must add the initial and boundary conditions, 
which have the same form as before [see (4-28), (4-29), and (4-40)]. 

We have the following relationships for the local values of 
the Nusselt number and hydraulic-resistance coefficient, according 
to (4-33), (4-14), and (4-35): 

Nu-f-SA 

C = 
s«' i/a 

(4-51) 

(4-52) 

In the general case, the viscosity, inertial, and gravitation- 
al forces will be commensurate in the fluid flow. Thus we say that 
such a flow is vlscous-lnertfal-gravltatlonal. In analyzing it, we 
must take into account all terms of the equation of motion. Here 
we find from (4-50), the initial and boundary conditions, (4-5}.), 
nd (4-5<0 that Nu and £ depend on the following quantities': 

16-11 /57 
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Nu »Nu(Fo, X, <p, Pc, Re, Gr, *); (4-53) 
t-t(Fo. X, Pe. Re, Gr, *). (^^ 

Let us now consider certain limiting cases for flow and heat 
exchange. 

a) A viscous-inertiaI flow corresponds to negligibly snail In- 
fluence of gravitational forces (lift forces) as compared with the 
viscosity and inertial forces. If we drop the first term on the 
right side of the equation of motion and recall that in the absence 
of lift forces Eu, w ,  and »   will not depend on 6, i.e., the flow 
will become stationary12 and symmetric about the axis, we obtain 
the following system of dimensionless numbers for this case: 

Nu«Nu(Fo, X, Pe, Re); (4-55) 
;-.;<*, Re). (4-56* 

b) Viscous-gravitational flow corresponds to negligible influ- 
ence of inertial forces as compared with the viscosity and gravita- 
tional forces. Dropping the left side in the equation of motion, 
we find 

Nu-Ni*(Fo, X, <p, Pe, Gr• Pr, *); (4-57) 

CRerr^fFo, X, Pe,QrPr,+); (4-58) 

Thus Gr and Pr enter into (4-57) and (4-58) as a product, 
while the resistance coefficient t~l/Rs. 

! i ' 
c) A viscous flow corresponds to negligible influence of 

inertial and gravitational forces as compared with the viscosity 
forces. 

Looking at the facts noted in paragraph "a," we find it ob- 
vious that the inertial forces are unimportant as compared with 
the viscosity forces when ^r ■ 0 and, consequently, <JWydX-0, 

i.e., when hydrodynamic stabilization sets in. Dropping the cor- 
responding terms in the equation of motion, we obtain 

Nu-Nu(Fo, X.Pe); (4-59) 
•  .  const 
5=1=3 -RT- (4-60) 

If we also assume that the variation in heat-flow density 
owing to heat conduction along the axis is small as compared with 

the variation along the radius, i.e., JPT^JJ».then in place of 

(4-59) we obtain 

Nu=Nu(Fo,£). (4L61) 

After the stationary state has commenced, the Fo number van- 
ities from all of the equations given here. 
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Viscous and viscous-gravitational flow can only occur in lami- 
nar flow of the liquid, i.e., for Reynolds numbers below the criti- 
cal value. But viscous-inertial and viscous-inertial-gravitational 
flows are observed with both laminar and turbulent flow regimes. 
Although the system of dimenslonless numbers (4-53)-(1-56) was ob- 
tained by analyzing the basic equations for laminar flow, they al- 
so are valid in turbulent flow. The reason is that transfer of 
momentum and heat by turbulent exchange (i.e., by velocity and 
temperature pulsations) depends on the same Re and Pe numbers that 

sady occur in Systems (4-53)-(4-56). 

The influence of free convection on forced flow is reflected 
in Or (or Gr.Pr). If it is small,, the flow will be viscous or vis- 
cous-inertial. Por sufficiently large values of Gr, we observe a 
transition to viscous-gravitational or viscous-inertial-gravita- 
tional flow. 

To conclude we note that the results given in this chapter 
were obtained solely with the aid of an analysis of the mathema- 
tical description of the process by the similarity method. 

Manu- 
script 
Page 
No. 

41 

43 

44 

44 

45 

Footnotes 

*We note that specifying w    is equivalent to specifying 

- P 2. We shall henceforth assume that wm  has been spe- 

cified, since this is more convenient for analysis. 

2The number wj. expressing the dimenslonless time in 

problems on nonstationary flow of a viscous fluid, is 
called the Zhukov3kiy number, and represented by the 
symbol Zh in honor of the outstanding Russian mechanics 
Scholar Nikolay Yegorovich Zhukovskiy (1847-1921), whose 
contributions to the development of hydrodynamics and 
aerodynamics are generally recognized. 

'This assumption finds good confirmation, as we shall 
see later. 

'•Here and in the ensuing discussion, we shall use w  ra- 
ther than wm    to represent the mean velocity over a sec- 

tion in stationary flow. 

*We note that the Ho and Zh numbers are associated by 
the relationship Ho-ReZh, so that it is easy to go from 
one to the other in the equations. 

'The tube is assumed to be round only for purposes of 
simplification. The results of the subsequent analysis 
are Just as valid for tubes of arbitrary cross section, 
provided the system of dimensionl ss numbers is supple- 

0 

O 
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merited by the relative linear dimensions characterizing 
the cross section. 

47      7The equations for the projections of the velocity w 
w   are omitted to reduce the bookkeeping.        r 

8 The term d»,idx     is retained in the equation of motion, 
since owing to the dependence of p and u on the tempera- 
ture, the flow during a transient will be nonstatlonary, 
even though by hypothesis wQ  do^s not change in time. 

52     9That is, the gas velocity is small as compared with 
the speed of sound. 

5^     10Here 0_ should be specified by a function of the coor- 

dinates X  and oat the tube wall. 

54 M The equations are obtained directly from (M-27) if 
we use the assumptions made. Here the equations for the 
velocity projections w    and w   are also omitted. 

j» 

55 12 tfe recall that in this problem (see §4-3), nonstation- 
arity results solely from the time variation of the 
thermal boundary conditions. If the physical properties 
of the fluid are constant, this will not result in dis- 
turbance of the stationary nature of the flow. 

Manu- 
|°^pt Transliterated Symbols 
No. 

42 c » s * stenka ■ wall 
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Chapter 5 

ISOTHERMAL FLOW 
5-1. GENERAL INFORMATION ON STATIONARY STABILIZED FLOW 

In this chapter we shall consider isothermal flow of an In- 
compressible fluid, i.e., a flow suc.'.i that the temperature field 
in the stream is uniform and consequently, the physical properties 
of the fluid are constant. 

As theory and experiment have shown, the nature of fluid 
flow near the entrance section of a tube depends essentially on 
the entrance conditions. At a sufficient distance from the en- 
trance section, however, this relationship vanishes. Far from the 
entrance the fluid moves so that the velocity vector at each point 
in the flow is parallel to the tube axis.l  As we have already noted 
in $4-2, we say that such a flow is hydrodynamically stabilized. 
If the tube is sufficiently long, then, beginning at a certain 
distance from the entrance, the flow can always be assumed to be 
stabilized. For fairly short tubes, it is necessary to allow for 
the features of flow in the initial segment (see §5-4). 

Let there be a stationary stabilized flow of fluid in a 
tube of arbitrary cross section, whose axis coincides with the 
a? axis of a rectangular coordinate system. In this case dwJdx^O, a>„= 

a^Oand, consequently, ^ = j£=0and ^2-=0(here p is the differ- 

ence between the real pressure in the flow and the hydrostatic 
pressure). Thus in stabilized flow, the pressure is constant over 
a section and varies only with the length, while the velocity w 
changes only over a section and is constant with length. Talcir? 
this into account, we write the equation of motion as 

O 

.x 

-(S,+&)-ä5-—■ 
Since a is a function of y  and a alone, while p is a func- 

X ii 

tion of x,  the right and left sides of this equation equal the 
same constant. In particular, this implies that p  varies linearly 
along the tube. We let 

dx    7" -const, 

where Ap i3 the pressure across the tube segment of length I.  Then 
the preceding equation can be rewritten as 
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To find the distribution of velocity w . we must solve (5-1) 

under a boundary condition at the wall that requires the velocity 
u» to equal zero. 

Equation (5-1) is a Poisson equation, which can be solved by 
various mathematical methods. Exact solutions can be obtained, for 
example, with the aid of functions of a complex variable. The approx. 
imate methods used Include the method of finite differences, as well 
as variational methods that make it possible to obtain an approxi- 
mate solution in analytic form. From the mathematical viewpoint, the 
problem considered is equivalent to the problem of torsion In a long 
beam. Thus with certain modifications, the solutions known In elas- 
ticity theory for problems involving torsion in beams of various 
shapes can be used to determine velocity profiles In tubes with the 
same cross-sectional form. There are many studies containing solu- 
tions of Eq. (5-1) for tubes of various shapes [1-7]. Some of them 
will be given in subsequent sections. 

After the velocity distribution has been found, it Is not 
difficult to calculate the tangential stress at the wall. The lo- 
cal stress is 

—>(*L- 
where n  is the normal to the Inside surface of the wall. The mean 
tangential stress over the perimeter is 

--•*(*)-.*■ 

where s  is the tube perimeter. 

£j        It is convenient to use the hydraulic-resistance coefficient 
K  to determine the pressure drop; in the present case, it coincides 
wth the friction-resistance coefficient £ (see §4-2). By defini- 
tion, 5 equals the dimensionless pressure gradient, taken with 
reverse sign: 

I: 21,     dp _  2/, Ap 

f>w* ' dx      fit ' I ' (5-2) 

where lQ  is one of the cross-sectional dimensions, selected as 

a scale ratio; w is the mean fluid velocity over the section. 

The quantity £ is associated with cF by Relationship (4-17): s 

._ 2/.« V, 

where / is the cross-sectional area of the tube. 
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The choice of scale lQ  is arbitrary, and is still not fixed. 

Thus we can take any quantity as a scale that has the dimensions 
of length, being guided by considerations of convenience. Let us 
take IQ ■ Hf/a.  This is called the equivalent diameter of the tube. 

Thus we take as the scale 

</,= 4f 

Utilization of this scale offers the following advantages: 
a) it simplifies (4-17); b) the scale is determined uniquely for 
tubes of different geometric form; c) for a round tube (the most 
common case), d    simply equals the tube diameter d.  The choice of 

<L as the scale may prove desirable for other reasons as well; more 

of this later. 

After we introduce d  , (5-2) and (M-17) will take the form 

(5-2a) 

(5-3) 

Substituting the expression for a into (5-3)» we find s 

w~rJ(#L*-        (5-1) 

o 

where 

.*., Re = ^ 
»-*■ 

If the change in velocity from zero at the wall to the value 
at the flow core were to take place in a thin layer at the wall 
(far thinner than the cross-sectional dimensions), then the flow 
conditions at the wall, i.e. »(dUydAO^o "would be the same at dif- 
ferent points on the perimeter even for tubes of different shapes. 
Then, as (5-*0 shows, owing to the utilization of <T, we would 

obtain the same value of £Re for tubes differing in shape. In ac- 
tuality, however, in laminar flow W   varies over the entire section, 

and the velocity profile depends essentially on the cross-sectional 
geometry. Thua despite the utilization of a,  the value of £Re will 

also depend on the shape and relationship of cross-sectional dimen- 
sions .2 

If we know the velocity distribution in a tube of specified 
geometry, we can use (5-^) to calculate its resistance coefficient 
K  (see §§5—2 and 5-3). Using the value found for £ and (5-2a), we 
can easily find the pressure drop across a tube segment of length 
tx 

793 
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•5-2. STABILIZED FLOW IN CYLINDRICAL AND PRISMATIC TUBES 

1. Fur flow in a round tube, Eq. (5-1) is conveniently writ- 
ten in cylindrical coordinates. Since the flow is symmetric about' 
the x  axis, the equation takes the form 

where r is the running radius. 

Integrating twice, we find the general solution: 

(5-6) 

The boundary conditions have the form 

forr=0   ^-«=0; 

for**0'.   »«=0, 

where rQ is the inside radius of the tube. 

Using these conditions, we find the constants: 

Substituting in (5-6), we obtain the equation for the velocity 
distribution: 

The mean fluid velocity over a section is 

(5-7) 

i-^jMr-r-^JcrJ-^r^^-. 

The maximum velocity is 

Equation (5-7) can be written as 

(5-8) 

or as 

o», = : 

ere rQ - r  is the distance from the wall to the point considered. 
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Thus the fluid velocity for motion in a round tube is dis- 
tributed parabolically (Pig. 5-1). 

The volume flowrate of the fluid is 

V« (5-9) 

This equation represents the Polseullle law. 

We use (5-1) and (5-8) to determine 
the friction-resistance coefficient: 

ERc-64. (5-10) 

where Re«wrf/v. 

(0 V 

Pig. 5-1. Velocity 
profile in round 
tube with stabil- 
ized flow. 

The velocity distribution (5-8) and 
resistance law (5-10) have received good 
experimental confirmation. 

The distribution of velocity in a 
flat tube  (i.e., between parallel plates) 
of width 2rQ ■ h  can be found by solving 

(5-1) (without the second ten?: on the left 
side) under appropriate boundary conditions, 
As a result we obtain 

-^('-t-l5?-^]'        (5-u) 

where y  is the distance along the normal from the tube axis to the 
point under consideration. 

Itis clear from (5-11) that the velocity on the axia of the 

flat tube is uwc-ij-w- 

Using (5-1) and (5-11), we find'that for a flat tube 

|Re«96, (5-12) 

where Re-wrfa/v, d3**2h. 

3. For the velocity distribution In a round annular tube 
(i.e., in the region between two coaxial cylinders), the general 
solution of (5-6) is valid. Determining the constants of integra- 
tion from the boundary conditions (w ■ 0 when w - x»l  and r ■ r«2), 
we obtain the velocity-distribution law: 

»»-- 
A/» 

r 
In- 

tf-O-S-V-'t) 

where r- and r0 are the radii of the inner and outer cylinders. 
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From the last equation we find the radius corresponding to 
the maximum value of velocity: 

The mean velocity over a section is 

i=^,u.±±\ 
ta-r- 

0 

i    Ö 

Thus the velocity distribution in an annular tube can also be 
represented as: , 

wxz=2a> 
_ (^-r»)ta £-(,»-,»),.£ 

i-t+rt+t)*-% 

Hf i3^k •?*r 

* 
1 «^ * 

r 
UB 

~*-at 
- u — 
—Hi 
—v 
>-4« 

05 * 

0 9i    a*    at    & v 

(5-13) 

Pig. 5-2. Velocity profiles in 
annular tube with stabilized 
flow. 

Figure 5-2 represents the dimensionless velocity «»/»> as a 
function of the dimensionless distance from the wall r - 's/r- - *i 

for various values of ri/r». As r\\r%  decreases, the velocity maximum 

shifts toward the inside wall of the tube. For valuer. 0,l< ~ <1 

this shift is relatively slight. In Fig. 5-2, the dashed line shows 
the positions of the velocity maximums. 
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TABLE 5-1 

Values of £Re for Tubes of Annular 
and Rectangular Cross Section 

, Elliptical, 
1 

a 
Kpyr.ii> mm»! Tpy6». r, 
■ r,~ puajrcti ijjtpwmro 
■ NapjrKHaro oftMiupoa 

0.001 0.01 0.00 0.1 0.2 0.4 0.« 0.0 10 

(Re 74.00 00.11 06.27 •0.37 »2.35 04.71 06.61 06.02 96.00 

b 
8UHH«UH   TpyO».  b, ■ 

*»—MiyOCH MMKt 
*• 0.1 0.2 0.3 0.4 0.8 0.0 0.7 0.0 0.0 1.0 

IR< 77.8 74.43 71 JO 00.10 07.26 06.02 04.00 04.3» 04.13 64.00 

C 
flpMoyrMMna TpyOa. » » ft— 

AJiMW cvupos ^iimxyrojfc» 

» 
* 

IRe 

1 1.» 1.6 s 2.26 3 4 S 10 OB 

«.90 67.47 50.02 02.14 04.00 06.35 72.00 70.20 04.01 00.00 

a) Round annular tube, J>1  and r2 are the radii of the inner and 

outer cylinders; b) elliptical tube, b^  and 2>2 are the semiaxes of 

the ellipse; c) rectangular, b  and h  are the lengths of the rec- 
tangle sides. 

When r, drops to zero, corresponding to flow in a round tube, 

(5-13) reduces to (5-8). In the other limiting case in which r2—r, << r 
(flow in a flat tube), (5-13) reduces to (5-11). 

The friction-resistance coefficient for an annular tube is 
found from the relationship 

«Re = »(-*•)'  , 

+(*)'+1# 
(5-14) 

where   Re-tw/s/v; da-2(rt—rx). 

Table 5-1 gives values of £Re for an annular tube as a func- 
tion of r^/1,2• 

4, The velocity distribution in a tube of elliptical arose 
section  is described by the equation 

*-S|l-^\ (5-15) 

where £, and 2>0 are the semimajor and semiminor axes of the ellipse. 
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TABLE 5-2 

Equations for Velocity Profiles in Prismatic Tubes 

l 0npiu iKUk'pcuioro 2    ym II MM 

.#1"     '  *        "|        fl 

3    flpMjKoytwiMwir 

I4. PalMoöeBptHMUÜ 
npeyiOAbHUK 

2h 

V3 

sin -r- tin -y 

«I*I7M... Ml,t,l...«« I ■JT+-J5T 1 
(5-16) 

m     --<B4-2)(^-y»tg'R f/j(\»-»      1 

c PatHocmopoMHud 
'    mpeyto/ib*im 

6flp*Mvyto/i»nöi6 
0of»ooeäptHKvi 

mptyio/ibinm 

7 tamp xpyia 

-H*-m'-n+)']}»«« 

16A/*« 
•      n sin —r- sin •  ** ~ n iw —t    im —g 

«I, S.S...««S, 4.6... 

.    MM    ,    AM      1 » OD mt|n__5|n__ 

m»2. 4,6... n=1.3, 5. 

IK \ 00 «+l JM        COt-K— T I 

(«•I») 

1) Cross-sectional shape; 2) equation for w  ; 3) 

rectangle; k) isosceles triangle; 5) equilateral 
triangle; 6) isosceles right triangle; 7) sector 
of circle. 

The velocity reaches its maximum on the tube axis (i.e., for 
y *  0 and z  ■ 0); as for a round tube, this maximum is 2 times 
the mean velocity. 

The friction-resistance coefficient is found from the rela- 
tionship 
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Tablo 5-1 gives the values or £Re as a function of the b^/h*. 

5. Table 5-2 gives equations for the velocity profiles In 
prismatic tube»    with cross section In the shape of a rectangle, 
triangle, and sector of a circle. As an example, Fig. 5-3 shows 
velocity profiles In a sector tube for various sector flare angles. 
As we might expect, as the angle decreases, the velocity maximum 
shifts toward the cylindrical wall.9 

Pig. 5-3. Velocity profiles along central line of sector tube for 
various sector flare angles (stabilized flow). 

es 

60 

at 

so 

Nr ^'J l&s- 

• 

3 

&**" 

♦0 60 OOtpoui a 
Pig. 5-1». Values of £Re for 
tubes with cross section in 
form of sector of circle, isos- 
celes triangle, and right tri- 
angle, a) deg. 

Table 5-1 gives values of £Re for tubes of rectangular cross 
section, calculated in terms of the equivalent diameter. For tubes 
with cross section in the form of isosceles triangles [9] 

We*- (B-m'tgt+Vl+tcW (5-20) 

..here 0 is half the vertex angle of the isosceles triangle, and 
B  is the perimeter, found from the equation given in Table 5-2. 

0 

0 
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For example, for ß ■ 30° (equilateral triangle), CRe ■ 53.33. 
Por ß * 45° (isosceles right triangle), Eq. (5-20) gives an indef- 
inite result; expanding it, we see that here £Re ■ 52.71. 

Figure 5-4 shows £R« as a function of flare angle for tubes 
with cross sections in the form of a sector of a circle, isosceles 
triangle, or right triangle. 

It is noteworthy that for tubes of various profiles £Re var- 
ies within fairly narrow limits: roughly from 48 to 96 or from 0.75 
to 1.5 times the value of £Re for round tubes. 

5-3. STABILIZED FLOW IN BANK OF ROUND CYLINDERS IN LONGITUDINAL FLOW 

Flow along a bank of circular cylinders (tubes or bars) is 
encountered in many heat-exchange systems. The cylinders are or- 
dinarily positioned in the bank at the corners of equilateral 
triangles or at the corners of a square (Fig. 5-5). If we assume 
that the bank consists of many cylinders, while the cylinder dia- 
meters and positions are identical, we need only consider the 
flow in an element ABCD  of this system. 

Fig. 5-5. The problem of longitudinal flow past a bank of circular 
§    cylinders, a) Cylinders located at corners of equilateral triangle; 

b) cylinders located at corners of square. 

The two-dimensional velocity field in the systems shown in 
Fig. 5-5 is described by the equation 

<)*w,t I äw„  j 1 d'w,__      Ag 
<W>   r ' ör  "*" r*"Sfr"-"~tS" 

The boundary conditions have the following form: 

w, ■= 0 for r=r.; ~Ji ----- 0 for 9=0 «~i ?=30° (Fiu. 5-5.a) or f m 45° (Fle. 

M,b):~*--=0 Mrr=~ (« is the normal to plane BC). 

An approximate solution of this problem has been obtained by 
Sparrow and Loeffler [10]. The velocity distribution is described 
by the following equations: 
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TABLE 5-3 
Values of Constants 6. and e. in Equation for Velo- 

city Profiles with Longitudinal Flow Past Banks of 
Circular Cylinders1 

X   HWMW paciMMnwaM ao jrr*n» pnMoeropomcr« TpeyroawMu 

*, K h u *, t. 

1.0 -0.0.-W5 0.005.} —0.01103 -«.0002 0.0000 _^ 
1.01 -0.0319 0.0052 —0,0001 -0.0002 0.0000 .» 
1.02 -0.0332 0.0051 o.oooo -0.0001 0.0000 m» 

1.03 -0.0345 0.0049 0.0002 -0.0001 0.0000 —» 
1.04 -0.0357 0.0046 0.0002 -0,0001 00000 -» 
1.05 -0.0368 0.0043 0.0003 -0.0001 0.0000 -* 
1.10 -0,0416 0.0028 0.0004 0.0000 <■» -» 
1.20 -0.0469 0.0007 0.0002 0.0000 -* —» 
1.50 -0.0502 -0.0007 0.0000 —• —• «• 
2.00 -0.0505 -0.0008 0,0000 -* -» ■* 

4.00 -0.0505 -«.0008 0.0000 -• —• m» 

2  UiuwHApM pacfKUKnttHU no ynuM KMApiTa 

* 
■i «. is •i •• <• 

1.05 
1.10 
1.20 
1.50 
2.00 
4.00 

-0.0904 
—0.0987 
-0.1104 
-0.1225 
-0.1250 
-0.1253 

0,0073 
0,0036 

-0,0024 
-0.0091 
—0.0105 
-0,0106 

0.0032 
0.0029 

-0.0015 
-0.0002 
—0,0006 
-0.0006 

0,0002 
0,0005 
0.0003 
0.0000 
0.0000 
0.0000 

—0.0001 
0.0000 
0.0001 

—» 

0.0000 

o.oooo 

0 

—  r^jjg arrows in the table indicate that zeros 
follow everywhere. 

1) Cylinders located at corners of equilateral tri- 
angle; 2) cylinders located at corners of square. 

•0 
H*) 

A 
I \ 

OU 

\ 
' 

\ J 

\ 

ffl P- N s 
X 

0 

o   (u a* ofi a* w 
Pig. 5-6. Function F(<) for 
bank of cylinders in longitudl- 
nal flow. 1) Cylinders located 
at angles of equilateral tri- 
angle; 2) cylinders located at 
corners of square. 
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0 

for cylinders located at the corners of an equilateral tri- 
mgle, 

+pKi)"[,-(Jr)'"}a"»Y- 
for cylinders located at the corners of a square, 

..=£{l<.i-4-[(iH*)> 

(5-21) 

(5-22) 

In these equations, 6. and e. are constants depending on b/rQ, 

Their values are given in Table 5-3. 

The friction-resistance coefficient £ is found from the re- 
lationship 

«»T-T^'g} (5-23) 

In (5-23) we have: Re-Si.; Re<s»2i;<f0 is the equivalent dia- 

meter, calculated from the wetted perimeter of the bank flow sec- 
tion; d  - 2rQ is the cylinder diameter; tc is the ratio of the .bank 

flow-section area to the area of the entire bank (i.e., the ratio 
of the area of quadrangle ABCD  to the area of triangle OBC); 

K=1 

With cylinders located at the corners of a triangle v»-n/6, 
while with cylinders at corners of a square, «PO-ä/4. 

Figure 5-6 shows F  as a function of b/pQ  or, what Is the same 

thing, as a function of K, for the two types of cylinder configura- 
tion considered. For a bank of specified geometry we first find 
K and then use Fig. 5-6 to find F(tc); we finally calculate £ from 
(3-23). 

Figure 5-7 shows the distribution of the tangential stress 
H' the cylinder surface as a function of the angle for various 
i,i lies of l>/r0.  For b/ra  close to unity, the tangential-stress 

distribution is extremely nonuniform. At b,'r9 > 1,5 for cylinders at 
M - :^r-v r of a triangle, however, and for 6/r0>2for cylinders 
at the corners of a square, the tangential stress Is nearly uni- 
formly distributed over the circumference. Thus for sufficiently 
vide barks (V*Q greater than the values indicated), the velocity 

•*n be assumed to be a function of the radius alone. 
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An approximate determination of the flow in such banks can 
be made by the method first proposed by Leybenson [11]. If we 
replace triangle OBC  (see Pig. 5-5a, b) by a sector of a circle 
with radius r§ so that the sector and triangle are of equal area, 
we can use the general solution (5-6) for a round annular tube.- 
Determining the constants o-, and o9 from the boundary conditions 

dm    I 
*«lr«f,"0 and "STL "0* we 0Dtain tne equations for the velocity 
profiles. These equations have the same form as (5-21) and (5-22), 
but without the last terms containing the series. We obtain the 
following expression for the resistance coefficient: 

IRe = «K*M 
W-^W^W7' (5-24) 

14 t   . 4-j* 
<« /J!. 
u 

M 

«.#              i r     w 
M 

ft 
!&r 

P 
' 1    i   w   <s 

a 
It   IS   M 

Fig. 5-7» Distribution of tangential stress at wall over cylinder 
circumference with cylinders located at angles of equilateral tri- 
angle (a) and at corners of square (b). 

With the cylinders located at the corners of an equilateral 
triangle 

,.-(s?y\ 
*-*.[*(*)•-•]■ 

With the cylinders located at the corners of a square1' with 
sides 22>1 and 22>2, 

O 

o 
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5-4. HYOROOYNANIC iNriAL SEGMENT 

If a certain arbitrary velocity distribution is specified at 
the entrance section of a tube, then as we move away from the en- 
trance, under the action of the viscosity forces, the velocity 
profile will tend to take on a shape corresponding to stabilized 
flow. Thus the latter can be treated as a limiting state to which 
the flow changes in the initial segment at a sufficient distance 
from the entrance. As is proven in the dynamics of a viscous 
fluid, a flow with steady velocity profile corresponds to minimum 
energy losses to friction. 

=T- 
- Wj^X 

* 
"   ^K 

—■« T 
==~J-£ = 

BH^ 
* \ 

Pig. 5-8. Development of velocity profile in ini- 
tial segment of round tube. 

0 

If the fluid is delivered to the tube from a sufficiently 
large reservoir, and the tube edges are well rounded, then the 
velocity distribution in the entrance section, will be uniform 
(Fig. 5-8). Owing to the action of friction forces and adhesion . 
of the fluid to the wall, a layer of retarded fluid will appear 
in the flow near the wall; this is called the dynamic boundary 
layer. For sufficiently large Reynolds numbers, near the entrance 
this layer will be thin as compared with the tube radius. In the 
direction of the normal to the wäll, the fluid velocityrin the 
boundary layer will vary from zero at the wall to the velocity 
at the flow core. Since the core does not experience the retard« 
ing effect of the friction forces, the velocity distribution will 
remain uniform here. As we move away from the entrance, the bound- 
ary layer becomes thicker, the flow-core section contracts, and 
the core velocity increases (since the flowrate through any tube 
section is constant). This process continues until the boundary 
1 ->ver developing at the walls fills the entire tube cross sec- 
tion, at a sufficient distance from the entrance. In the sec- 
tion where this occurs, formation of the velocity profile is 
finished, and the profile will no longer vary with length as we 
move away from the entrance (for isothermal flow of an incompres- 
sible fluid). 

;e separation of the flow into two regions, the dynamic 
boundary layer within which the action of the friction forces 

3 concentrated, and the flow core where the friction forces 
'U'o negligibly small, permits us to construct an approximate 
melnod for determining the flow in the initial segment. There 
ar<? nth^r "lethods for solving this problem that do not require 
lntioüuotx^.i of the boundary-layer concept. 

±    i t us consider flow in the initial segment of a round 
•■ube  wiu a uniform velocity distribution at the entrance. Such 
flow '3 been determined on the basis of the boundary-layer 
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notion by Shiller [12], with later improvements by other investi- 
gators [13, 14].' We let 6(a>) represent the thickness of the bound*, 
ary layer and, following [12], we assume that the fluid velocity 
in the core is constant over the section: 

while the velocity in the boundary layer is distributed parabolieal- 

!-»W-«p?)-pr-T 
As a consequence, for 6 ■ rQ, the velocity profile in the 

Initial segment will go over to the velocity profile for stabilized 
flow. 

We write these equations in dimensionless form: 

IT,=*,(*) (forO</?<l -1); 
r««ir, 

)(forO<Ä<l-t); \ 
!(i=l)-(i~iVl(fori-Ki?<l). | (5-25) 

where r»=^, «r,=-Ji, /?-=•£-, l=y-, v, is the constant velocity of the 
fluid at the entrance. 

The relationship between W1  and 6  can be established from 
the condition requiring that the flowrate be constant: 

0 r,—» 

Substituting the expression for w into this equation and 
integrating,we find 

1P,= 
6-41+1* 

(5-26) 

To find the way in which 6 and the mean pressure p over the 
section depend on x, we require two more equations. One of them 
can be the conservation of momentum equation (2-45). For the case 
under consideration, it is written as 

>&'U'*+p£+'*=*' 
where 

or, in dimensionless form 

^««-f£fe£)+^=°. (5-27) 
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/here 

9 

9 

A'— — —  BP  ?«1 rf_o,. 

here pn is the pressure at the tube entrance section; the quantity 

X is called the reduced distance to the entrance. 

As the second equation, Shiller used the Bernoulli equation, 
written for the flow core; he simultaneously assumed that the 
pressure in the given core section equals the mean pressure in 
the same section of the tube. This assumption is quite Justified 
for small x, but becomes less and less accurate as * increases, 
owing to the increased thickness of the boundary layer, i.e., 
tne region of viscous dissociation. As a result, the Shiller solu- 
tion becomes inaccurate when we move far enough away from the 
entrance. Thus, following [14], in place of the Bernoulli equa- 
tion we shall use the approximate equation for the mechanical 
energy balance of the entire flow, also taking, into account the 
energy loss caused by viscous dissipation. We write this equation 
for the flow segment from the entrance section to a certain sec- 
tion located a distance x from the entrance. On the assumption that 
w'*>a>'r,  and that all derivatives of the velocity can be neglected 
except for 3w /9r, we obtain 

2vrfr—0, 

or in dimensionless form 

jr.Äa-i^^U^ÄJ(*)'t*-a      (5-28) 

Solving (5-25)-(5-28) simultaneously, we can find the way in 

which 6 depends on X and &z£- depends on 5. Omitting the inter- 

"■■Miate manipulations, we give the final result: 

[33Ö?- 26 In (1 - *)+318ln (2 -%) + 1481nJC (*) + ?lM±2>— 
L If (!) 

2084 
* V2 

arctg (Wff- 1680A-, (5-2?) 

where   K(*) = 6-4y+8^ 

P»—P i_r 
"1    .135' 
-2-K        L 

3 816 In (2-?) - 416 ln( 1-S) -1700 ln/C (S) ■ 
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3 (r ' Jj J£2) , 324 (108 - 9) ,  I 970 ■r-arctg 
2-«)\ 

\ Vf 
■ 24Q5-- !4J 4 4*fy 

0 MtM») 
(0-30) 

Using (5-29) to find the way In which 5 depends on X  (this 
relationship is sr»own in Pig. 5-9), it is not difficult for us 
to determine the remaining flow characteristics in the initial 
segment. Prom (5-25) and (5-26), we find the velocity distribu- 
tion WX-WX(R, X),: while (5-30) yields the variation in pressure 

as a function of X.  For sufficiently large X, the solu- 
2 '"f 
tion found goes over asymptotically to the solution for stabilized 
.flow, The computational results are in good agreement with experi- 
ment." 

Numerous investigators have solved 
the problem of fluid motion in the ini- 
tial segment of a round tube by direct 
integration of the equation of motion, 
under various simplifications introduced 
for the purpose of linearization. It was 
precisely in this way that the problem 
was first solved by Bussinesk, whose 
results, refined by Atkinson and Qol'd- 
shteyn [15], are in good agreement with 
experiment at a sufficient distance 
from the entrance but are inaccurate 
near the entrance section. This problem 

has also been considered by Targ [16], Langhaar [17], and others 
[18, 19], Their results more properly describe the variation in 
velocity with tube length. 

Pig. 5-9. Boundary- 
layer thickness as 
function of JT. 

TABLE 5-J» 

Values of Constants 8 
(5-3D n in 

n   1    1 2   |   a   |   4 5 

if 

6 

Ü. 
n 

5,130 

7    1 

8.417 |ll. 62 \j4ja 
*»  i» ~"|~*io 

21.12 
12* 

in 24.271 27.42130,57133,72 36,8« 4(1.(11 

o 

o 

Targ obtained the following equation for the distribution 
of the longitudinal velocity component and the pressure drop in 
the initial segment for a uniform velocity distribution at the en- 
trance : 

r.-2(l-^-4jJ^[l-^]op(-<^.     (5-31) 
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.'ABLE 5-5 

alues of * as a func- 
tion of A' for Initial 
Segment of Round Tube 

♦ W> 

0.000235 20.0 
0.00033 II.0 
0.001805 8,0 
0.003575 6,0 
0.00535 5.0 
O.OOKtt 4.0 .> 
0.0137 3.0 
0,0179 2.5 
0.0237 2.0 
0.0341 1.4 
Ü.0449 1.0 
0.0620 0.6 
0.0760 0.4 

'-f=**+4-8£^«P(--4£jr). (5-32) 

where JQ %B  a Bessel function of order 

zero; M«-L 2, 3...) are the successive 
roots of a Bessel function of second 
order, J2* 

T«eir values are given in 

Table 5-4. 

The Langhaar equation for the '• 
velocity profile under the same condi- 
tions has the form 

w*—  hwm    ■ (5-33) 

where ln  and l0 are modified Beseel 

functions; ♦ is a certain function 
of X whose values are given in Table 
5-5. The pressure variation can be com- 

puted by substituting (5-33) into (5-28). 

Figure 5-10 shows the velocity distribution over the tube 
section for various values of X, while Fig. 5-11 gives the varia- 
tion in axial velocity with length.' As we can see, the uniform 
velocity profile at the entrance becomes parabolic as we move 
toward greater X. 

The distance from the tube entrance at which the influence 
of the initial velocity distribution ceases to influence- fluid 
motion is called the length of the hydrodynamlc Initial segment, 
ln  _. For isothermal flow, the reduced length of the hydrodynamlc. 

* .        . . 
Initial segment can be found as the value of X=JLit: ■ B  for 

which the axial velocity differs by no more than 1%  from the axial 
velocity for stabilized flow. Thus the .relative length of the hy- 
drodynamlc initial segment is 

(5-31) 

where B  is a constant. 

Calculations carried out with (5-31) give a value B  ■ 0.0*1; 
(b-33) yields B  « 0.0575. The value closest to the actual figure 
i: apparently li  » 0.065, calculated on the basis of the Bussinesk 
solution, which is in good agreement with experiment for large 
ieduced lengths. It follows from (5-31) that the length of the 
dynamic initial segment may be considerable; for example, when 
Rt = 2ü00, I    m * 130d. n. g 

Table 5-6 shows the results of a determination of the pres- 
sure variation in the initial segment of a tube. For X  < 0.0075, 
the Shil-Ler method was used, while for X  > 0.0075, the Bussinesk 
method was used (at X  ■ 0.0075, there is roughly a 2%  difference 

tween the results computed by these two methods). It is conven- 
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. 5-10. Velocity distribution In Initial segment of round tube 
various values of X.  1) x ■ 0 (entrance section); 2) x  « 
.00083; 3) X • 0.00357; 4) X * . (parabolic profile). 

Pig. 5-11. Variation of axial 
velocity in initial segment of 
round tube. 

TABLE 5-6 

Values of •&=£ in Initial 

Segment of Round Tube 

1    X Pr-P Pr-P 
1    2 X*:~- 1    ? «<• a ■jWll KCll •jjW) 

0 0 0.0075 l.:«i 
U,(HN).ri 0,32 0.0100 1.1.3 
0,0010 0,<Hi 0,0125 1.88 
0.(X)l5 0,5li 0,0150 2.10 
0,0020 0.05 0,0200 2,51 
0,0025 0,73 0.0250 2,88 
0,0035 0.87 0.0300 3,24 
0,0045 1.00 0.0350 3,59 
0,0055 1.11 0,0400 3,93 
0,00c» 1.22 0,0450 4,2<> 
0.0075 1,33 0,0500 4.59 

0.0550 4,92 
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lent to represent the pressure variation In the Initial segment in 
terms of the local and mean resistance coefficients: 

O 

r&dx 

where v 

Using (5-32), for example, we find: 

(5-35) 

WQ  In the case under consideration. 

CRe«64+32fexp(-4^^). (5-36) 
Ml 

Computational results with good experimental confirmation 
have shown [13] that at values X < 0.001, the following simple 
relationships are valid: 

CR.-6.87 (£4)-"", 
(5-37) 
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Fig. 5-12. Local and mean resistance co- 
efficients In initial segment of round tube, 

Figure 5-12 shows (Re and ?Re as functions of X,  When X +  0, 
(Re and CR« approach a constant value corresponding to stabilized 
flow. To within ljf, c takes on a constant value at a distance 
* - lB _ from the entrance, while c takes on a constant value 
at a far greater distance equaling -hot      . 

For x>«Vr, it is convenient to write (5-35) as 
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where l=64/Reis the friction-resistance coefficient, constant over 
the length, for x > I      . Since 

.Re=coast «nd -L.ltl—const, 

then 

A~P=(?T+A)J?- (5"38) 

where k  is a constant. According to the data of various authors, 
fc ranges from l.o4o to 1.159. A value k  ■ 1.12 is apparently clos- 
est to the true figure. 

We note that in the general case (for x <  Z„ ), the local n.g 
friction-resistance coefficient £ will also vary with the length. 
Here C < C, and only at x - 0 and x > Z   will these coefficients 
coincide. n,g 

2. The flow in the initial segmert of a flat tube  (i.e., 
between parallel plates) has been studied by Leybenzon [22], and 
later by Schlichting [15], Targ [16}, and others [23]. Targ ob- 
tained the following equations for the velocity distribution and 
pressure drop in the initial segment for a uniform velocity dis- 
tribution at the entrance: 

=4(l-n-2|[V[l--^P]cxp(-16T
J

-X), (5-39) 
X 

where 

fip£-=96X + 4-4fj-Lexp(-16Y^.       (5-40) 

m      •» v      a     r—  • * 

.=?•£.. d^ and Re=^j2-; d-=2h  is the equivalent diameter; h  - 2rQ is the 

tube width; Y„ are the successive roots of the equation tan x ■ x. 

The relative length of initial segment for a flat tube, cal- 
culated with the aid of (5-39), equals 

Jp — 0,0113 Re. (5-41) 

The value of the constant in (5-4l) is very close to the 
value obtained by Schlichting (0.01). For a flat tube, if we 
use d  , the value of k  In (5-38) lies In the 0.601-0.626 ran«e. 

3. The flow in the initial segment of an annular tube  has 
been considered elsewhere [24, 25, 26] for a uniform velocity 
distribution at the entrance. According to the data of [25], 
the reduced length of the initial segment will have the follow- 
ing values, depending on r^/^1 

- 78 - 

O 

 '_[•__ ■_  * ''.'•<ii> 



'1^l^'i-^^^^»9m>'y»»^i 

0 

Or   M» 

Pig. 5-13. Curves for K(X)  at var- 
ious values of J*1/i

,2» Tne dashed 

lines on the right represent *(»)-*. 
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Pig. 5-14. Resistance coeffi- 
cient c for tubes of rectangu- 
lar cross section. 

rjr, 0.02        0,05        0,10        0.2S        0,50 1,0 

Rc"T       {),m5    °'0174     0,fll45     0,°"7     °'0105    °'0,0° 

Here Re-»»rf»/v. rf»=2(rj—n). 

The pressure drop in the initial segment of an annular tube 
can be calculated from the equation proposed by Sparrow and' Lin 
[26]: '    ' 

(5-42) 

where $ is the friction-resistance coefficient for stabilized 
flow (see Table 5-1); K(X)  Is a function allowing for the change 
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in flow kinetic energy and for ehe additional energy expended on 
friction in the initial segment as compared with a stabilized 
fl.^w. Figure 5-13 shows values of K(X) .  When X  * 0, K(X)  « 0, 
while when X •*■ ■» (for • > I   in practice), KfXV approaches a 

constant value that depends solely on r,/r2.In the latter case, 

K(»)  - fc, and (5-^2) reduces to (5-38). 

|. The flow in the initial segment of a reotangular tube 
has been investigated by Prankl* and Baklanov [27], as well 
as by Han [28]. The reduced lengths of the initial segment are 
shown for tube.) with various ratios of sides in Table 5-7 [28]. 
These lengths are determined, as usual, from the condition re- 
quiring that the velocity on the tube axis at x « I        differ 

by no more than 1%  from the velocity on the axis for the fully 
developed flow. 

TABLE 5-7 

Reduced Length 
of Initial Seg- 
ment and Value 
of Constant k 
for Tubes of 
Rectangular Cross 
Section 

* 1 '»r r *' i% 
ft 

1.0 0.0752 2.1 
0.75 0.0735 2.00 
0.» 0.06GO 1.80 
0.« 0.0427 1.36 
0.1» 0.0227 1.10 
0 0.0099 0.85 

The pressure drop in the initial seg- 
ment of a tube of rectangular cross section 
can be calculated from (5-35), and for x > 
> ln  - from (5-38) (if we replace d  by d& 

in the equations). Figure 5-14 shows the 
resistance coefficient C in (5-35) for tubes 
of rectangular cross section, while the con- 
stant 31c in (5-38) is given in Table 5-7. 
The Reynolds number in Table 5-7 and Fig. 
5-14 was calculated on the basis of the 
equivalent diameter. 

5-5. CRITICAL REYNOLDS NUMBER. INFLUENCE 
OF ROUGHNESS 

1. As we know, there are two basic 
forms of motion for a viscous fluid, lami- 
nar and turbulent. Laminar flow becomes 
turbulent at a certain value of the Rey- 
nolds number, called the critical value. 

Re, *P= m.- 
If for a given flow of fluid in a tube the Reynolds number 

Re < Re. , the flow will be laminar; if Re > Rekr, it will be turbu- 

lent. The critical Reynolds number depends essentially on the tube 
entrance conditions and the conditions in the fluid flow ahead of 
the entrance. The smaller the disturbances in the fluid flow en- 
tering the tube and in the entrance section (for example, owing 
to flow separation from the walls when flowing past sharp edges, 
the higher the critical Reynolds number. Thus special measures 
aimed at reducing disturbances have made it possible to obtain 
laminar flow in a tube for Reynolds numbers of up to 40,000. It 
is apparently possible to obtain still higher values of critical 
Reynolds number by carefully eliminating disturbances. In practice, 
however, it is more important to know the lower bound for the criti- 
cal Reynolds number than the upper bound. The existence of such a 
bound has been established in numerous'experimental studies. Hence- 
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forth, when we speak of the critical Reynolds number R«kl,, we 

shall mean the lower bound. If Re < Re    , then any strong dis- 
turbance at the tube entrance will be damped at a sufficient dis- 
tance from the entrance, and the flow will remain laminar. If Re > 
> Rftjg,» however, then under ordinary conditions (i.e., for the 

disturbances observed in practice), the flow will become turbulent, 

Leaving aside the question of laminar-flow stability and the 
processes involved in the transition to turbulent flow, we shall 
only give certain data on the critical Reynolds numbers. Numerous 
experimental investigations have shown that for isothermal_„flow . 
in round tubes, Re.  s 2300. For tubes whose cross section is not 

round, the value of Rekr calculated on the basis of the equivalent 

diameter will have roughly the same value as for round tubes. Thus 
for annular tubes, Re^, ■ 2000-2800; according to data in certain 
older studies, Rekr depends on r^^* increasing as the ratio de-, 

creases [12]. For rectangular tubes, including flat duets, Re^, z 
z  2000-2300. For tubes of triangular cross section, if the angles 
are not too acute (about 45° or more), Rw2000. 

O Fig. 5-15. Laminar- and turbu- 
lent-flow regions in triangular 
tube with acute angle. 1) Turb- 
ulent region; 2) laminar region. 

In tubes whose cross section includes narrow corner zones, 
both laminar and turbulent flows may exist simultaneously. This 
is quite clear from Fig. 5-15, which shows the results of visual 
observations on flow in a triangular tube with a vertex angle of 
11.5° for the isosceles-triangle section [29]. It turned out that 
when a smoke probe was moved along tjhe center lino from the vertex 
to ehe base, the stream of smoke was first completely quiescent, 
i.e., V>e  ^low was laminar. Next stability was lost (waves tra- 
veled along the smoke stream; their amplitude increased with dis- 
tance from the vertex); turbulent flow finally set in (the smoke 
stream became blurred a short distance from the probe). The curve 
of Fig. 5-15 was obtained by such observations at various Reynolds 
numbers and fixed values of x/h  (points on the graph) at which 
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stability ioss first occurred. Below this curve there Is a region 
of laminar flow; above there is a region of transition and devel- 
op cf? tu- iulent flow. The Reynolds number at which the flow remains 
laminar over the entire cross section turns out to be considerably 
below the critical Reynolds number for round tubes. As Re in- 
creases, the laminar region contracts, but even at quite high Re, 
it cues not vanish completely; the flow near the angle remains 
laminar 

The critical Reynolds numbers given here are precisely the 
values such that a sufficient distance from the tube entrance a 
deviation from laminar-flow laws takes p'laee owing to the first 
appearance of turbulence. If the entrance does not produce flow 
separation (the flow enters, for example, through a nozzle with 
smooth outline), near the tube entrance section the flow may re- 
main laminar even for values Re » Re. . The segment over which 

laminar flow is preserved decreases as Re increases. Beyond the 
laminar-flow section there is a region of transition from laminar 
to turbulent flow, and beyond this a region of developed turbulent 
flow. 

Under heat-exchange conditions, fluid flow may be signifi- 
cantly nonlsothermal. Owing to the relationship between the physi- 
cal properties of the fluid and the temperature, the velocity dis- 
tribution may differ from that accompanying isothermal flow. Here, 
the critical Reynolds numbers may also have values differing from 
those indicated above (see, for example, §16-1). 

Data on critical Reynolds numbers for flows in bent tubes 
and for nonstationary flows in tubes are given in §5-6 and 5-7. 

2. Theoretical calculations for laminar flows are carried 
out on the assumption that the tube is smooth. Real tubes are 
rough, however. We thus must face the question of the degree to 
which computational results for smooth tubes can apply to actual,     ._, 
i.e., rough, tubes. This question has been answered by the well-     \ j 
known experiments of Nikuradze, in which a study was made of the 
hydraulic resistance of tubes with artificial roughness, (sand). 
The relative roughness of tubes (ratio of projection height to 
tube radius) varies widely from 1/15 to 1/507. Experiments have 
shown that in laminar flow, all rough tubes possess the same 
hydraulic resistance as smooth tubes. It also turns out that 
the critical Reynolds number does not depend on the roughness. 
These experimental facts can be explained as follows. The fluid 
in the depressions is practically stationary, while under the 
conditions considered, the fluid flows past the projections with- 
out separation and, consequently, without the formation of vor- 
tices. The reason is that the Reynolds number for the projections 
(calculated from the projection height and the velocity of the 
flow incident on the projections) proves below the value at which 
flow separation occurs. Since T»ith unseparated flow at the projec- 
tions, the pressure resistant is very low or even zero, the re- 
sistance of rough tubes is the same as that of smooth tubes. Since 
no vortices appear, the critical Reynolds numbers also prove iden- 
tical. 
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Naturally, as the relative roughness grows, a value will be 
reached, called the critical value, at which the foregoing condi- 
tions ce--.se to be satisfied. On the assumption that vortex forma- 
tion begins at a Reynolds number of 50 for a projection, Shiller 
ootained the following expression for the critical value of rela- 
tive roughness: 

['•toYW 
Thus if the relative tube roughness is less than the critical 

value, the results obtained for smooth tubes can be used for rough- 
tube flow calculations. 

5-6. FLOW IN BENT TUBES 

Everything that has been said above is valid only for fluids 
flowing in straight tubes. In practice, we often use tubes bent 
nlong a spiral (colls). Several turns of such a coil are shown in 
^ig. 5-l6a. A centrifugal force acts on each particle of a fluid 
moving in a curved tube. This force will be greater the greater 
the velocity of the particle. Thus greater centrifugal forces will 
act on fluid particles located at the center of the tube than on 
particles near the wall where the flow velocity is small. The 
centrifugal forces cause the fluid particles at the center of the 
tube to move away from the center of curvature of the tube, while 
the particles at the wall, forced out by the particles, coming 
from the center of the tube, move toward the center of curvature. 
As a consequence, a transverse circulation appears in the tube 
(Fig. 5-l6b, c); the particles participating in the circulation 
also move along the curved axis of the tube. Thus the resultant 
motion can be imagined to take place along two flattened spirals 
with different directions of rotation, filling the tube cross sec- 
tion. The velocity profile will not be axisymmetric for such a 
flow; the maximum of the longitudinal velocity component will be 
shifted away from the center of curvature. Figure 5-l6d shows 
velocity profiles in the cross section of a coil for D/d  ■ 40 and 
Re ■ 4000;7 the measurements were reported in [30]. The profile 
has well-defined asymmetry in the AB plane (Fig. 5-l6b)j in the 
CD  plane, the velocity in the core is nearly constant, while it 
t?ops rapidly near the walls. 

As theoretical and experimental investigations have shown, 
the factor determining the influence of curvature in laminar flow 
4.e  the parameter /C=Rey^X introduced by Dean. Here Re-svf/v, D-2R, 
d  is the tube diameter, R  is the coil radius of curvature. 

For values K  < 13.5, the tube curvature still has no influ- 
3 on the nature of fluid flow. In this case, the streams of 

ixuid move parallel to the curved tube axis; there is no trans- 
verse circulation in the flow, and the velocity distribution .and 
reslsbaiice law in bent tubes turn out to be the same as in straight 
tubes. The limiting Re number at which such flow is still maintained 
will evidently equal 
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Flg. 5-16. Plow in bent tube, a) Coil diagram; b) transverse cir- 
culation for large values of X; c) the same, for small JC; d) velo- 
city profiles in AB  plane (1) and CD plane (2), and Polseuille 
profile (3). 

o 

For values K > 13.5» although the flow will still be laminar, 
transverse circulation will appear. Thus the velocity distribution 
and resistance law will change. 

Dean has made a theoretical study of fully developed flow in 
round bent tubes (coils) [31]. His results, however, obtained by 
a perturbation method, are valid only for small K  (£ < 36). Figure 
5-l6c shows the pattern of secondary flows for this case. This 
problem has been studied by other authors for large JC. A very com- 
plete analysis was recently given by Mori and Nakayama [30]. As 
in certain earlier studies, in [30] it is assumed that the flow in 
the tube consists of a core within which viscosity forces can be 
neglected, and a thin boundary layer. The solutions for the velo- 
city field in each of these regions are joined by the boundary 
conditions. The calculations are carried out by successive approxi- 
mations . Figure 5-l6b shows th* pattern of secondary flows for 
large values of X.  In second approximation, the following equation 
is obtained for the resistance coefficient in a bent tube: 

i. ) 

(5-J»3) 

Here l"-"ScT—; p is the pressure at a given point in the 

flow;' x  is the longitudinal coordinate, coinciding with the curved 

axis of the tube (the calculations are carried out on the assump- 

tion that |£ssj^£., where <p is the longitudinal angular coordinate); 
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Fig. 5-5-T. Relative resistance coefficient for colls of round tub- 
ing on basis of data from theoretical calculation (1) and experi- 
ment (2). 

4 flff 

Pig. 5-18. Rekr and Re  as 

functions of D/d  for colls. 

E  Is the resistance coefficient for a straight tube at the same 
pr 

Re value as in the bent tube. 

The results of experimental investigations into hydraulic 
resistance of coils of round tubing In the 13.5 SX<5000 range are 
well described by the empirical equation proposed by Ito: 

t_        21 .Mr (5-M) 

figure 5-17 shows the ratio S/E_r as a function of the para- 

meter K  (curve 2). When K < 13,5, the ratio t/fo-1, while with a 
^rther increase in Kt  the ratio rises continuously. Thus £ Is 
larger the smaller the radius of curvature of the tube. The re- 
lationship between £ nd Re will be different than for a straight 
tube: while £pr - He'11  *~Re-". where n <  1. To« theoretical equa- 
tion (5-^3) (curve 1) is in good agreement with experimental data 
for K  > 100; for smaller values of Kt  it gives incorrect results. 
Naturally, Eqs. (5-^3)  and (5-1*1*) are valie only for values, of 
K\" KeM, 
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The c? Mnal  Reynolds number for 30} 1ö depends on the coil 
radius of curvature, with the number Increasing a*> ch* radius 
decreases. Figure 5-18 shows experimental data on r'*  * f(D/d). 
They show that in bent tubes when D/d  is not large, He.  will be 
significantly greater than for straight tubes. This 13 apparently 
connected with the stabilizing influence of the centrifugal force 
and the transverse circulation that it excites for the flow at 
the wall. 

The experimental data shown in Pig. 5-18 can be represented 
by the empirical equation [32] 

Rr^--1500(4)"M. (5-*»5) 

which is suitable for values 3<-J-<200, where A=-^-D. 

Figure 5-18 also shows Re  as a function of D/d.  The curves 
for R«Dr and Re.  divide the entire flow region into three char- 
acteristics zones: the first (I) corresponds to laminar flow with- 
out transverse circulation, the second (II) to laminar flow with 
transverse circulation, and the third (III) to iurbulent flow. We 
also note that the transition from laminar to turbulent flow is 
accompanied by a monotonic decrease in the resistance coefficient 
for bent tubes. 

5-7. NONSTATIONARY STABILIZED FLOW IN TUBES 

In this section, we confine the discussion to stabilized non- 
stationary flows, which are realized in practice in long tubes.9 

Let there be confined flow of a fluid in a long cylindrical 
or prismatic tube. Neglecting the entrance and exit effects, we 
assume that at any point in the flow and at any time, the vector 
representing the fluid velocity will be directed along the x  axis 
of the tube. Consequently, w„=wt=0-»<idwxldx=0. 

1 

Then the first equation of System (4-1) takes the form 

^_W^=-1$, (5-1.6) 

while the other two equations yield }£=£ =0. 

Since wx=wx(y, 2, T) while p=*p(x, x),   it then follows from (5 ''6) 
that the pressure gradient is independent of the coordinates, and 
can Just be a specified function of the time: ~—^—f(x)> 

Thus the equation of motion for nonstationary stabilized flow 
will have the form 

-J^vvX+ ±/(*). (5-47) 

ime?,vHt'. .,M. .,r.' •rh'..? »qxi-icn require: 4;ha"; th*; fol) ';*\.r<?.  s» 
'. \ 
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a) t!>e Initial condition in ehe form of a function specifying 
the velocity distribution at the initial time, wx~w<>(y,z) tor t-0; 

b) boundary conditions, in a form requiring that the velocity 
w   equal zero at the inside surface of the tube, and symmetry con- 
dltions for the types of flows to be considered later; 

c) the law governing the change in pressure gradient with time, 
i.e., the function f(x) tor x ^fr. 

The problem of nonstationary fluid motion in a round cylindri- 
cal tube was solved in 1882 in a fairly general formulation (for 
any initial conditions and a specified law governing the variation 
in pressure gradient with time) by the well-known Russian mechanics 
scholar I.S. Gromek [33]. This problem was later studied with ap- 
plication to various specific conditions by numerous authors [34-40]. 

Equation (5-17) has the same form as the heat-conduction equa- 
tion for a nonstationary temperature field In a solid with inter-1 

nal heat sources whose strengths vary in time. If the geometric 
form of the flow In the tube and the geometric shape of the body 
are identical, if the laws governing the time variation of the pres- 
sure gradient and of the internal-source strength of the body coin- 
cide, and if the initial and boundary conditions are identical for 
both problems, then the solution to the heat-conduction problem can 
also be treated as the solution to the corresponding problem of flu- 
id motion in a tube. Since solutions are known for several appropriate 
problems in heat-conduction theory [41], these solutions can be used 
directly or after some modification (for example, if the Initial 
conditions do not match) to determine nonstationary flows In tubes. 

I Here we give solutions for certain problems of nonstationary 
fluid flow in long tubes, since they subsequently will be used in 
analyzing nonstationary heat-exchange processes. 

1. Flow in a flat tube with step variation in pressure gradient, 
£j    In a flat tube of width 2rQ, let there be stationary stabilized flow 

of a fluid with a mean velocity over a section of w,=— £{$L\,  where 

~(öt") is tne Pressure gradient, which is constant in time. At a 
certain time taken as the origin (T * 0). the pressure gradient 
changes instantaneously (i.e., in a step) and takes on another con- 

stant value — (TJJ) • After a certain time has elapsed (when T + •»), 
a new stationary regime is established in the tube; it is character- 

.zed by a mean velocity », = — r£x(j~) • 

Under these conditions, the nonstationary velocity distribu- 
tion during the transient is represented by the following equation 
[36, 373: 

(,~J)StT?1 ^(Wcxpt-fjZh).  (5-48) 
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where I » ^/'g is the dimensionless coordinate of th« point, meas- 

ured from the tube axis; £«-•<*+Vt)*: Zh=vrfa» is the ähukovskiy [Joukow- 
sky] number. 

Equation (5-^S) holds for all cases_of step variation in the 
pressure gradient, exeept for the cases w. » 0 (i.e., the initial 

pressure gradient equals zero and the fluid It initially station- 

ary) and »2"0 (the pressure gradient drops to aero). In the lat- 

ter case, if we multiply (5-^8) by »p/»-» and *e" *2 m °» tne eo*ua- 
tion reduces to the form 

tffi "»(^^«pKiSjZh), •«.«eP.fc^ (5-*»8a) 

a« u   WKti 

Pig. 5-19. Velocity 
profile for decel- 
eration of flow in 
flat tube. 

Figure 5-19 shows velocity profiles 
for various values of the Zh number, com- 
puted with the aid of (5-48a). 

We find the mean velocity over the 
section by integrating (5-48) with respect 
to I between 0 and 1: 

|-= 1+6 (t-ljj^ «?(-£>). (5-Ü9) 

or in more convenient form, 

JS=£. =6 V J-exp(- b* Zh).  (5-49a) 
»i — ■»    4J CJ 

ImO 

Using (5-t9a), we can evaluate the 
time T required to establish a new sta- 

tionary state after a step variation in the pressure gradient. If 
we determine T fromthe condition requiring that the change in 

3 
mean velocity 5^ - w  be 95* of the total change w1  - «2» i.e., 

if we let 

0.05=-6j]^cxP(-^Zh.), 

and find Zh from this, we then obtain Zh» 
8 

1,21. J'or oxumple, l'or 

water at room temperature, in a tube 6.36 mm wide, it takes t»^!2s 
to reach the stationary state. For air under the same conditions, 
T is less by a factor of nearly 15, since the kinematic viscosity 

9 
coefficient for air is so much greater than for water. 

It is interesting to see how the tangential stress at the wall 
changes for an unsteady flow (o ) as compared with a steady flow 

- :2Q - 
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(og ) foi exactly the same mean velocity. For this purpose, we 

compute the ratio 

where «e ==—1& (^"j)^Br#* «e.=3^1.; w is the instantaneous value of 

mean velocity. 

Using (5-M8), we find 

- » • 

-*(>-%)$? «**-*>*> 
(5-50) 

Figure 5-20 shows the way in which a/oa      depends on Zh for 

0    various pressure-gradient ratios (p)J(^) . or what is the same thing, 

for various üp/w,. 

'ß 

<A 

1.0 

Ofi 

0 

\ 
1— 

^J 

•• 

1 
as 

0.2 n\ =ZA •^ ..-?1 
■ _ .X 

0    0,01  «04 0» ft» ft»  «0 2  4 ««4» 7 4 «»to >  4 < lf> 

Fig. 20. Ratio o/oB . as a function of tin 
S   S .e 

for unsteady flow in a flat tube. 

1,0 M OJS  U* Hi   0   0,2 OA 0.6 M  i.O 

Fig. 5-21. Velocity profiles 
for acceleration of a flow in 
a round tube from w^  ■ 0 to w. 
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For f 1 >ws with acceleration (wi>w\)t  the rarj j Ocj0c,    first rises 
rapidly as Zh increases, passes through a maximum, and then drops to 
the init'al constant value of unity. For decelerated flows (»i<5>i), 
we find the reverse pattern, althougn it is not as pronounced. This 
behavior of oja*» is explained by the fact that at low Zh, the velo- 
city gradient at the wall changes more rapidly than the mean flow 
velocity, while the opposite situation prevails for high values of 
the number. 

* 
2. Flow in a round tube under step variation in preeeure grad- 

ient.  Stationary stabilized flow in a round tube with mean velocity 

^•="~E"/a^ is disturbed owing to a step change in pressure gradient 

from (dpjdxjt to the value (dpldx)t. After a certain time, a new station- 
ary regime is established in the tube; it is characterized by a mean 
velocity 

1   * W. 
o The solution obtained for this problem by Gromek [33] leads 

to the following expression for the velocity distribution during 
the transient: 

&.=2(.-«-)-U>(«-ä.) I^p,-^!,,,    (5-51) 

where the X. are the roots of a zero-order Bessel function «rA; . x u 
B  » r/r^Zh^vr/r^; rQ is the tube radius; J, is a first-order Bessel 
function. 

Equation (5-51) is valid both for flowjacceleration and de- 
celeration, including the cases w, » 0 and n. * 0> It can also be 
written in a form resembling (5-48a). {j 

Figure 5-21 shows velocity profiles at different times; they 
are found from Eq. (5-51) for the case in which the fluid is sta- 
tionary at the initial instant (w, ■ 0), and then accelerates under 
the action of an abruptly appearing pressure gradient titnl'\x)2.  It is 
characteristic that during the initial period of acceleration, the 
velocity has identical values over almost the entire tube cross 
section, and the influence of friction becomes noticeable only near 
the wall. It is only after a certain time has elapsed that the in- 
fluence of friction extends all the way to the center of the tube. 
As the time increases, the velocity profile goes over asymptocally 
to a parabolic Poiseuille profile. 

Multiplying (5-51) by 2RdR and integrating between 0 and 1, 
we obtain an expression for themean velocity over the section: 

jL==i+32f^-l>)f;r!rexp(-A;Zh).        (5-52) 
' (si 
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The angential stress at the wall Is 

3. Pulsating flow of fluid in flat tub».  Let there be pulsat- 
ing flow of a fluid In a flat tube owing to sinusoidal oscillations 
superposed on the stationary pressure gradient. Thus the instantan- 
eous pressure gradient will be the following periodic time function: 

where f^\ =—3 ^ is the stationary component of the pressure grad- 

ient; w  is the flow velocity averaged over time and over the sec- 
tion; 2rQ is the tube width; y/2 is the dlmensionless amplitude 
of pressure oscillations; <■> is the oscillation frequency. The oscil- 
lation period will obviously equal TQ ■ 2r/u. 

t% As before, the flow is assumed to be stabilised, I.e., the 
**    velocity w is independent of the coordinate x. 

Solution of this problem [40] leads to the following equation 
for the velocity distribution over the section and over time: 

Tr-rKl-rH-Ha (5-55) 

The first term on the right side, (Vo—>")]» is the stationary 

component of the velocity; the second, rj-T^)» is the «onstationary, 
i.e., pulsating component. We obtain the following expression for U: 

9 
a ^ «^+f__£_ii [(A cos MY eh MT - B sin MY sh AiT) cos«— 

— (BcosMrchMY+AsmA(rshMY)tiam«], (5-56) 

where i4^sinA*-shiW; £=cosAf.chAf; Mwm^A  5 ?«•£> 

The Independent variable WT can be represented in terms of 
tin- «hukovtfkly number: ...i 2/W?Zh, where ZII--VT//-'0. 

Figure 5-2LJa, b, c, d show the distribution of velocity U  over 
the tube section for various values of WT and M.  The value of U 
varies periodically as WT varies from 0 to 360°. The graphs show 
curves Just for WT < 180°, since by symmetry (/(<•*+«)— f(u»r). For 
M  * 0.1, the frequency is so small that the profiles of the pul- 
sating velocity component are quasistationary, i.e., for each 
value of WT the velocity profiles will be the same as for station- 
ary flow with the same instantaneous value of pressure gradient. 
As M  increases, the profiles of the pulsating velocity component 
become ever less parabolic, while the amplitude of the velocity 
oscill'' ons decreases. Thus for M  ■ 5, the amplitude l:i lens 
than 1/20 of the amplitude at M  • 0.1. 
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Fig. 5-52. Distribution of pulsating velocity component over tube 
section for various values of WT. a) M - 0.1; b) M » 1; c) M = 2- 
d) Af ■ 5« ' 

O 

c 

0     6?    tftf   «0   2*0   UOtpoil 

Pig. 5-23. Pulsating velocity 
component averaged over section 
for various values of M,  1) deg, 
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We find the mean flow velocity over the section by integrat- 
ing (5-55) with respect to I between 0 and 1: 

-S-=1+T0. 
(5-57) 

where 

~-(s\i2M+sin2M)smwt]. (5-58) 

• 

t 

Figure 5-23 shows IT as a function of WT for various values of 
M.  When M ■ 0.1, the mean pulsating velocity over the section will 
follow the pressure gradient. As M increases, the maximum of 2/ will 
shift more and more with respect to the pressure-gradient peak, 
and at the same time the amplitude of the velocity oscillations 
will decrease. 

The critical Reynolds number for pulsating flow, calculated 
from the velocity w averaged over time and over the section will 
be less than for stationary flow. Thus, for example, measurement 
results [42] yield the following values of critical Reynolds num- 
ber for pulsating flow in a round tuoe: 

Re «p 

.. Jfe o 

_?£      2310 

5 

1730 

10 

1610 

IS 

1550 

20 

1510 

These results are understandable if we remember that at cer- 
tain times, when the Instantaneous value of mean velocity w passes 

through a maximum, the number 2i>"*, so that in actuality the 

transition to turbulent flow occurs at a higher Reynolds number, 
equaling Ud/v. During the rest of the cycle (until the new w  peak), 
i-he turbulence appearing evidently cannot be damped. 

manu- 
script 
Page 
No. 

58 

o0 

Footnotes 

'This is true only for isothermal flow In straight 
tubes with arbitrary cross section that does not change 
along the tube axis. 

2For turbulent flow at large values of Re, the change 
in velocity basically occurs within a thin layer at the 
wall. Thus if we use <?e as the characteristic dimension, 

the resistance law will be roughly the same for tubes 
differing in shape. A large difference in resistance 
laws is often observed^ however, for individual geome- 
tric forms with turbulent flow. ' 
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66      3It is sometimes stated that for* laminar flow in prisma- 
tic tubes, as In turbulent flow, there is  transverse cir- 
culation in the corners. Actually, the.'t Is no circulation 
for laminar flow. This has been shown experimentally for 
a triangular tube [8].      ' 

70 "Equation (5-24) can be used not only for cylinders lo- 
cated at the corners of triangles and squares, but also 
at the corners of rectangles. 

74 'Velocity profiles in the initial segment of a round tube 
have been measured by Nikuradze [20] and Reshotko [21]. 

75 'The curves of Figs. 5-10 and 5-11 were plotted from Eq. 
(5-33). Other equations for W   yield similar results. x 

83 'At this value of Re, flow in a coil with D/d  - 40 is 
still laminar (see below). 

84 'Since the flow is stabilized, dp/Ar-conit. However» dpldr *o      _ 
owing to the presence of secondary flows. \.j 

86      'Existence of such a flow can be demonstrated by quali- 
tative investigation of thepropertles of the generalized 
solution to the nonlinear Navier-Stokes equation. Such 
a solution has been constructed and certain of its pro- 
perties Investigated [43]. 

Manu- 
|°^pt Transliterated Symbols 
No. 

59 c -  s » stenka = wall 

60 3 * e ■ ekvivalentnyy = equivalent 

61 MaKC » maks - maksimal'nyy ■ maximum 

75 H.r = n.g = gidrodinamicheskiy nachal'nyy = hydrodynamic 

initial 

80 Kp ■ kr = kriticheskiy = critical 

83 np = pr = predel'nyy - limiting 

84 np = pr - pryamoy = straight 
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Chapter 6 

HEAT EXCHANGE IN ROUND AND FLAT TUBES WITH CONSTANT PHYSICAL 
PROPERTIES OF THE FLUID AND BOUNDARY CONDITIONS OF THE FIRST KIND 
6-1. HEAT EXCHANGE IN A ROUND TUBE WITH CONSTANT WALL TEMPERATURE 

Let us look at heat exchange with viscous flow of a fluid in 
a round tube for the case of constant wall temperature. We make 
the following assumptions: 

1) the confined fluid flow and the heat-exchange process are 
stationary; 

2) the fluid is incompressible; its physical properties are 
constant (i.e., do not depend on temperature or pressure); 

3) the fluid flow is stabilized, i.e., the velocity profile 
does not vary along the length (the heat-exchange segment precedes 
the isothermal damping segment over which the velocity profile is 
formed); the fluid flowrate is specified or, what is the same, we 
know the mean fluid velocity over a section; 

4) the fluid temperature at the entrance section to the heat- 
exchange segment is constant over the section and equal to tQ; 

jj^j        5) for the heat-exchange segment, the temperature of the in- 
side wall surface of the tube is constant and equal to t 

6) there are no internal heat sources in the flow, and the 
amount of heat liberated owing to energy dissipation is negligible;1 

7) the changein heat flow along the tube axis owing to heat 
conduction is small as compared with the heat-flow change along 
the axis caused by convection. 

This problem was first solved by Graetz (l885)[l]. It was 
ign'r solved independently by Nusselt (1910) [2]. A somewhat dif- 
ferent solution was obtained by Shumilov and Yablonskiy [3]. We 
shall consider the Graetz-Nusselt solution, using values of the 
corus* .i,i • i.uter refined by several investigators [4, 5, 6], 

We write the energy equation for an Incompressible fluid 
with constant physical properties when the flow has no internal 
leat sources and there is no energy dissipation. In cylindrical 
coordinates, this equation has the form 
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* 

When the fluid has constant physical properties, the heat- 
exchange process has no influence on fluid flow. In this case, 
the fluid moves as if the flow were isothermal. For laminar stabil- 
ieed flow in a round tube, the velocity component along the axis 
is 

while the radial and circumferential components are 
i 

Here w  is the mean fluid velocity over the section; rQ is 

the tube radius. 

»  In virtue of the axial symmetry of the temperature field, 

dt      fit*    n 

*  According to Assumption 7, 

E-tP'i*«') >£(*&)• 

0 

or 
M <*'/ 

"«■5">«"aF- 

since wm  is independent of x.  Thus the first term on the right side 

of (6-1) can be dropped. 

To understand the conditions under which Assumption 7 is 
satisfied, let us make an approximate estimate of the quantities 
in this last inequality: 

- 01 
j, WJt '  ox   ~    x    ' äx* 

Consequently, this inequality can be rewritten as 

or 
-?>1. 

where IV--«•«//«; </ is the tube diameter. 

Thus if Pe > 100, Assumption 7 is satisfied for almost the 
entire tube length (for x/d  > 1 in any case). For gase3 (Pr z  1) 
and nonmetallic liquids (Pr«T-l 000), this condition will almost 
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rlways be satisfied. For liquid metals (Pr*0,005-0,05) it may or may 
not be satisfied. In this last case, the term tPtldx*  must be retained 
n Eq. (6-1); it allows for the change In heat flow owing to heat 
conduction along the axis (see Chapter 10). 

Taking all of this into account and introducing a new variable 
for the temperature, 9=t^tt (<e is the wall temperature),' we can 
write the energy equation corresponding to our problem in the form 

The boundary conditions have the form 

for jc=0.nd0<r<r, *=*„ 

for jts»0»~»r=0 ?=0. 

for jt^0«ndr=r, *=0, 

m 

t where &,=/,— te. 

For* convenience in the subsequent computations, we reduce 
the equation and boundary conditions to dimenslonless form. To 
do this, we introduce the dimenslonless variables 

After elementary manipulations we obtain 

3 

for .Y=0»n.i0</?<1 8^=1; 

for X>0«*R=C  m 

for Jir>0-~«; 
where 

-Ä-0 -g-=0; 1 
>/?=! 8=0, / 

riiBn" i # "M"— ■*' ~ f / TOP rf« K I*/? 

A' -  " - x - 

(6-2) 

(6-3) 

(6-1») 

The dimenslonless coordinate X  or, more accurately, the quantity 

=^^,  is called the reduced length of the tube. 

ijet us attempt to solve differential equation (6-2) by separat- 
ing the variables. To do this, we represent the dimenslonless temp- 
erature Q(Xt  R)  as the product of two functions, one of which de- 
pends solely on X  and the other solely on ff: 

H(A\ R)    ?(A')«KK). 

Substituting ((>-'>) Into Kq. (6-2), we obtain 

(6-5) 
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To separate the variables, we divide both sides cf the equa- 
tion by ft(l— R%  Then the equation takes the form 

i 

T' _ 
V' + TfV 

,       +0-Ä») — •'• 

Since the left side of this equation depends on X  alone and 
the right side on /•' alone, they can be equal only if the left and 
right sides of the equation equal the constant -c*. We note that 
this constant must be negative, since if this were not the case 
it would turn out that as X  increases the temperature 6 increases 
without limit, and this contradicts the formulation of the problem 
wjth t    ■ const. We thus have two ordinary differential equations: 

^=—Y. (6-6) 

aF+Trar+'fl-W-a (6'7) 

A solution of the first equation is 

where A is a constant of integration. 

*      We rewrite the second equation as 

mr+«'dm+[l ?-J*=0- (6-9) 

The solution of (6-9) must satisfy the following boundary con- 
ditions: 

for /? = 0 ^=0; 

for /?=l 4» = 0. 
(6-Ha) 

This problem is known in mathematical physics as the elgen- 
function problem, or the Sturm-Liouville problem. 

A solution of linear differential equation (6-9) cannot be 
obtained in closed form. Nusselt suggested that it be sought as 
a power series, 

*«£ MS 
«■0 

where £ * e/f. 

Subst ttut lug this expression for i|» into (6-9) and requiring 
that U>-9) be satisfied for any £, we obtain relationships for 
tie coefficients r  . Substituting this expression into (6-9), we 
have . 

n=c0 «=0 n=0 
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or 

i=0 «=0      MO 

We renumber in the last equation; in particular, we reduce the 
exponent for £ to the same value in all terms. To do this, we let 
k  = n - 2 in the first term, k  » n in the second, and fe ■ n + 2 in 
the third. As a result we obtain 

Taking some of the terms to the left of the first and second 
summation signs, we rewrite the equation as 

i f 

to 

This equation must be satisfied for any C, the coefficients 
on terms containing different powers of £ must equal zero, i.e., 

fri-0; 

*.=-£=0; 

Thus the coefficients on even terms are represented by the 
two preceding even coefficients, and those on the odd terms by 
the corresponding two odd coefficients. Since b,  ■ 0 and fc_ » 0, 

the coefficients on the series terms containing odd powers of £ 
will equal zero. Thus the solution for <I(ä) can be represented 
as a series containing eff in even powers alone, i.e., 

*(•*)« £ btn(>R)' 
n=0 

where 

6.= r (n  =0); 

i 

In expanded form, (6-10) is written as 

This series converges for any tR  and c. 

(6-10) 

(6-10a) 
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Pig. 6-1. The function $n(R) 

for heat exchange in a round 
tube with t 

3 
const. 

The constant e is found with the aid of the second boundary 
condition of (6-4a). Applying this condition to (6-10a), we obtain 

>-7*
,
 + B(?+T)-

,
+--«- (6-11) 

Equation (6-11) has an infinite set of roots, called the ei- 
genvalues of Problem (6-9) and (6-4a). According to Nusselt's cal- 
culations, the first three eigenvalues equal: eo-2,705; ei«=6,66; e2=IO,3. 
To each eigenvalue there corresponds the elgenfunction 

1>M, e„)-t«W- 

The first three functions ^„(R)  are shown in Pig. 6-1 for 
n  « 0, 1, and 2. 

rn 

Thus a particular solution of differential equation (6-2) 
satisfying the boundary condition at the wall can be written as 

i 

This solution is only valid for the special case in which 
the temperature distribution at the entrance has the form So-dniM^) 
however. Solution of the problem in the general case, where an 
arbitrary temperature distribution QQ(R)  IS specified at the en- 

trance must be sought as the sum of all special solutions: 

n-Q 

(6-12) 

Only the coefficients An  are unknown in (6-12). They are 

found from the boundary condition at the entrance. Let the temp- 
erature distribution at the entrance,i.e., at X  - 0, be described 
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:»y the function QQ(R)  [in our case, QQ(R) m  1]. We can then write 

*<*)-f A#M. (6-13) 

The coefficients An  are determined from (6-13) with allowance 
for the orthogonality property of the eigenfunctions. Let us prove 
this property. 

Since the function i|>»""dt» («*"*)are solutions of (6-7), we 
can write 

(6-1Ü) 

Multiplying the first equation by * and the second by f  , 
and subtracting the first equation from the second» we obtain 

The left side of this equation can be represented as 

dR [*(♦•$•-♦-&)]• 
Integrating this last equation with respect to R  between 0 

and 1, we obtain 

■ i 

{,l-al)lMmR(l-R*)dR = R(^-U%)\- (6-15) 

f}        The right side of (6-15) vanishes when R  ■ 0 and R  ■ 1 [since 
Vv(l)=Vm(l)~0]. Since in¥*zm,  we obtain the orthogonality property 
for the eigenfunctions: 

^♦■MO-W^qfor m*fin. 
0 

On the basis of this relationship, we can calculate the coef- 
ficients An  of the series in (6-12). To do this we multiply both 
fides of (6-13) by tM?(l—R*) dR and integrate between R  ■ 0 and 1. 
Making allowance for the orthogonality property, we obtain 

i 

C *»(*)+■ (R)R{\-Rt)dR 
An=J-, . (6-16) i 

.1.2 

We evaluate the integral in the numerator of (6-16) for our 
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case, i.e., for 0n ■ I. To do this, we rewrite the first equation 
of (6-14) as   u 

Integrating this expression between 0 and 1, we find 

i 

The integral in the denominator of (6-l6), 

N.= W(R)R(l-R*)dR 

can be evaluated on the basis of (6-15). We drop the subscript m  on 
the quantity em in (6-15), and treat e as a continuously varying 

quantity that approaches en in the limit. Then Nn will be the limit 

of the integral, which in virtue of (6-15) can be represented as 
follows: 

. «(♦.*-♦*)( 
Nn = lim \MR (l-R')dR^ li.n 5— °-, 

0 

Wlien e + e , this fraction exhibits an indeterminacy of the 
0/0 type. Removing this indeterminacy, i.e., differentiating 
numerator and denominator with respect to e, letting R  ■ 1 and 
R  ■ 0, and recalling that ^(1)«^II(1)-0, we obtain 

and, finally, 

0 

Substituting (6-17) and (6-18) into (6-16), we obtain the 
final expression for the coefficients <4„wh"» 0,= 1: 

The derivative i',tt)  , is found from (6-10a). 
a  1 

The calculations yield the following values for the first three 
coefficients: ,-l0=1.477; /!,=—0.810; i42=0.385. 
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Thus by these calculations we have determined the constants 
e and A    needed to determine the temperature distribution with n n 
Eq. (6-12). We again write this equation In somewhat different 
form: 

(1=0 

The values of the eigenfunctions, eigenvalues E , and the 
constant 4 in (6-12) or (6-12a) are determined from (6-10)4 
(6-11), and (6-19), respectively.Their values, computed by Nus- 
selt, are given below. More exact values for ♦»(#), e„ •««4* are 
given in Tables 6-1 and 6-2 [6]. 

It is difficult to use this method to determine the eigen- 
values and eigenfunctions for large values of n. In this connec- 
tion, Sellers, Tribus, and Klein [7] have constructed an asymptotic 
solution of Eq. (6-7), letting e -*■ *. The following expressions 
wÄe obtained for the eigenvalues, eigenfunctions, and constants: 

..=4«+l; (6-20) 

An = (-1)« 2,b4606r,/3; (6-21) 

Q for small R  (near the tube axis) 

tf *«(Ä)-/o(e«/?); (6-22) 

J 
£7 *$      for moderate values of R 

*«(J?)=iA2 . L! L U.     (6-22a) 

for R  close to unity (near the wall), 

t.(*>-/yd -Si- D%,[Hr <! -*f*\l (6-22b) 

where «f-,/^ is a Bessel function of order 1/3. 

The asymptotic solution also proves valid for finite values 
of e .A comparison of results for this computation and the exact 
solution (Tables (>-1 anil 6-.'.') shown good agreement at both largi« 
and small «. In afiy case, the approximate values of the constants 
and functions can be used for values n >_  3. 

Figure 6-2 shows the temperature distribution in the fluid 
flow, calculated from (6-12a). For small values of the reduced 

length f-1-T^O.OSV the fluid temperature near the axis will vary y_ l'c a ^ J 
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S 

little along the tube radius and length. It is only near the wall 
hat. large changes In temperature both along R and I will be ob- 
served. 

The region of small reduced-length values Is characteristic 
in that it is here that growth takes place in the thermal boundary 
layer within which the temperature varies. The temperature distribu- 
tion in the flow core, whose cross section contracts with increasing 
x, remains almost uniform (the temperature it approximately equal to 
the entrance temperature). 

Sufficiently far from the entrance, the thermal boundary lay- 
ers Join, and heat exchange encompasses the entire tube cross sec- 
tion. Beginning at a certain value of the reduced length, the temp- 
erature profiles become similar, i.e., the temperatures in differ- 
ent sections differ only in absolute value, while the law governing 
the temperature variation over the radius remains the same. The so- 
lution (6-12a) reflects this nature of the temperature field. For 
small reduced lengths, the temperature distribution is described by 
a series. As I Increases, the Influence of the last terms of the 
series rapidly decreases as compared with that of the earlier terms. 
Finally, when the reduced length is sufficiently large, all terms 
of the series, except the first, can be neglected. Here 

^-A*(iW-*«Kd- (6-2*) 

From this it is clear that the temperature variation along a 
radius is described for any * is described by exactly the same 
function ^Q(r/rQ)  (see Fig. 6-1), while for all values of a», the - 
variation with length is exponential. 

Let us determine the mean mass temperature of the fluid in 
an arbitrary tube section. According to Eq. (2-14), 

or in dimensionless form 

§=£^=2 fe<r8/?</*. 

In our case, IP«=-4-= 2(1— R'y&nd,  consequently, 

3=4 je<i-*«; w*. 

Substituting the value of 8 from (6-12} into this expression, 
vte  find 
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Fig. 6-3. Variation In 5" over 
tube length. 1) Plat tube; 2) 
round tube (in the latter case, 
h  corresponds to d). 
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Taking (6-17) Into account, we finally obtain 

U 

\~^%"*(~K^). 
n=0 

(6-25) 

where 

*~^(*L 
Figure 6-3 illustrates the function (6-25). When Jf^O.eWe^l. 

As the reduced length increases, 0 decreases; beginning at a cer- 
tain value, it decreases exponentially. For X—oo,*!—0. 

Let us now determine the local heat-transfer coefficient, 
referring it to the difference between the mean mass temperature 
of the fluid and the wall temperature: 

t, -i 
m. 

t-i„ 

Here q     Ls the density of the heat flow at the wall, \  !:•> 

the thermal-conduct! vlty coefficient of the fluid or, In dimenaion- 
less form, 

*-*—*(S)„--»[i(f:S)L- 
Substituting tY.e  derivative found from (6-12) and the value 

of 0 from (6-25) into the above equation, we obtain an expression 
for the local Nusselt number: 
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n 

Nu = . «=0 

HPTT) (6-26) 

Figure 6-4 shows Nu as a function of X.  When X ■*■  0, i.e., 
at the entrance to the heated segment, Nu -*■ *. The reason is 
that the derivative of the temperature at the wall, (*/*•)„,,, 
becomes infinite at the entrance section, while the temperature 
head t — t    is finite. The infinite value of (df/dr),^results from 

the computational scheme adopted for the process, according.to 
which when X  * 0 the fluid temperature is uniformly distributed 
over the radius, and equal to tQ»  but when r « rQ, it changes 

abruptly from tQ  to tg. In fact, owing to heat transfer in the 

wall and the fluid by heat conduction, in the axial direction 
the derivative (dtldr)rft and, consequently, Nu will have large, but 

e values at X = 0. -■w ,. J *. . 

■     ■— J J « I     ■   I    I   I I ■   ■ I 
2   3 US 810     2   3*SS8tÖ     2   3 i SS 8 HI      2  3 « 56 8»'    2  3 t SS 810* 

Fig. 6-4. Variation in local (1) and mean (2) 
Nusselt numbers over length of round tube with 
t    = const. s 

As X  increases, Nu decreases, asymptotically approaching a 
constant value. This occurs since beginning at a certain value of 
X  the temperature profiles in different sections become similar, 
and the temperature field is described by Just the first term of 
the aeries in  Eq. (6-lPa), i.e., Eq. (6-24). Here the dimension- 

Li'iws i'Xi'.es;? ItMiipt1 future, represented as the ratio '"-", will 

cease to vary with the length. Since Nu is uniquely determined by 

It will also take on a constant value. In other words, 
t — 

t-tc the field of the dimensionless excess temperature ~-  and the 

Nusselt number will become seifsimiIar with respect to the coor- 
dinate X,  As we shall see later, the property of temperature-field 
selfsimilarity at large values of X  is characteristic of many heat- 
exchange problems for fluid flow in tubes. 
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This constant value of the Nusselt number is called the limit- 
ing value, and represented by Nuro. Letting X  go to infinity in 

(6-26) and considering only the first terms of the series in the 
numerator and denominator, we have 

NuÄ=-f=3,657~3,66. (6-27) 

Prom this it follows that the limiting heat-transfer coeffi- 
cient is 

«„.=3,66^. 

Thus a depends only on the thermal-conductivity coefficient 
of the fluid and the tube diameter. 

o    to  *o to to too no m m m m 

Fig. 6-5. Variation in Nu over 
length of round tube with Re » 
■ 2000 and various values of 
Pr. 

V* PrwUO 
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\ 

V JO 
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t 

0 

It is clear from what we have said that the entire length of 
the heated (cooled) tube can be divided into two segments. The 
temperature profile is formed in the first segment, i.e;, the law 
describing the radial temperature distribution changes with length 
from the initial form (at X  ■ 0) to some limiting form tyQ(R),  while 

Nu decreases with the length. In the second segment, the radial 
temperature distribution does not vary with length (although the 
absolute temperature values do change), and Nu remains constant. 
The first segment is called the thermal initial segment, and the 
second the stabilized heat-exchange segment. While the tempera- 
ture field and heat exchange in the thermal initial segment depend 
substantially on the temperature distribution at the entrance, 
there is no such influence in the stabilized heat-exchange seg- 
ment. 

u 

The length of the thermal initial segment I  . can arbitrarily 

be defined as the distance from the entrance section at which Hu 
takes on a constant (limiting) value, to within a specified ac- 
curacy. Taking 1%  accuracy, on the basis of (6-26), we find that 

the reduced length of the thermal initial segment is pj-^rs 0,055, 
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rfhile the relative length is 

'-^=0,055 Pe. (6-28) 

For a specified Reynolds number, the length of the thermal 
initial segment lu determined by the Prandtl number (Pig. 6-5). 
Thus for liquid-metal heat-transport media, having values of Pr 
from roughly 0.005 to 0.05, ln  «. will not exceed several diameters; 

for gases with Pr 2 1, ln  t reaches »1004; for nonmetallic liquids 

(water, mineral oils, and other viscous liquids) with Pr from 1 to 
100 or more, ln  t may vary from several hundred to several thousand 

or even tens of thousands of diameters. In particular, this shows 
that ln tubes of neat exchangers used for heating or cooling flu- 
ids with Pr > 1, heat exchange ln viscous flow takes place over 
the entire tube length in the region of the thermal initial seg- 
ment . 

Direct utilization of (6-26) is extremely inconvenient in 
practical determination of heat transfer near the tube entrance, 
since here it is necessary to compute many terms of the series. 
For small reduced lengths, however, the solution (6-26) can be 
simplified by substitution of the asymptotic values of t% »^Bnfrom 
(6-20) and (6-23), and substitution of an integral for the sum. 

Using this method, Lipkis [5, 73 has shown that for i 4 <10"4 

(6-26) takes the form 

Nu=l,077(ii-.-f-)~
,/3-1.7. (6-26a) 

For p7'ir>10"'» we can use the interpolation equation [8a] 

0.2355 Nu=3.655 + 

(p^rx8"*"*-)'     <6-26b> 

which describes the results of a computation performed with high 
accuracy by a numerical method, with no more than 0.5* deviation. 

The mean heat-transfer coefficient and, accordingly, the mean 
Nusselt number for a tube segment of length I  (from i * 0 to i « I) 
can be determined in different ways (see §2-*0. We first find an 
expression for the mean integral heat-transfer coefficient: 

From Mio heat-balanco equation for an element of length dx 

a&2wt dx = — *r\ wfCy dft, 

where 5 =7—tCl we l'lnd 
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Consequently, 

41 

and 

Substituting in 8»=! from (6-25), we finally obtain 

K--W-[«fi*«»(-*!ifc4)]- (6-29) 
n-0 

At the entrance to a heated segment, Nu, like Nu, approaches 

infinity; far from the entrance, i.e., for ±..JL-~c^, Nu takes on a 

constant value equaling Nu,, » 3.66 (see Pig. 6-4). The distance 

from the entrance at which Wä becomes constant, to witnin 1%,  will 
be substantially greater than for the local Nu numberi however. 
This distance is called the—length of the thermal Initial segment 
or the mean heat transfer, T . . Calculations show that 

n.t 

i.e., 

ij2.= 1,365 Pe, 

/,,t«. 25/..,. 

(6-30) 

For approximate calculations, we can replace (6-29) by the 
interpolation equation [8b] 

0,0C68Pc 
Nu--3,66-f 

/ 

I +0.04 
d \W K) (6-31) 

For Pe <250, this equation yields a deviation of no more 

than +■'!$ from the exact solution. 

The mean heat-transfer coefficient a  calculated here should 
be referred to the mean logarithmic temperature head. This is 
shown by the expression given above for a, from which it is easy 
to obtain the following equation for the amount of heat trans- 
ferred from the wall to the fluid: 

itrf» Q,. - - ^- w'pc, (»„., - »„) =•. = oA/j,* ill. 

where 

St, - tr— tt 
In -..  In 

tc-t^, 
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It In not difficult to write equations for o and flu, referred 
to other temperature heads (see §2-4). Naturally, they will differ 
from (6-29). 

Thus, for example, referring the heat-transfer coefficient 
to the mean arithmetic temperature difference, i.e., letting 

where 
**«— 

we obtain 

2  ' i +*.*» 
(6-32) 

Substituting ex=, from (6-25) into (6-32), we obtain 

NS = lPe4 
-•B^(-KW) 

n=0 
(6-32a) 

+«ij7^(-*eÄ7) 
«=0 

For large reduced lengths, where the fluid temperature at 
the exit is close to the wall temperature so that e,-/«*0, the Nu 
number approaches the following limit, as (6-32) shows: 

Nu«=TPef (6-33) 

which in the given case is no longer constant, but varies in in- 
verse proportion to the reduced length. We note that Eq. (6-33) 
can be obtained directly from the heat balance. 

JO 
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Fig. o-„. Comparison of theoretical results and experimental data. 
Solid line) Graetz-Nusselt solution; circles) experiments of Ya. 
M. Rubinshteyn. 
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wx 

where y  is the distance from the tube axis to the point under 
consideration. 

We substitute the expression for wm  into the energy equation. 

After conversion to dimensionless form, we obtain 

$=<i-n&. ' (6-34) 

where 

The boundary conditions are written as 

Vl37 
' 3i - 112 - 

The results ofthe theoretical computation are well confirmed 
by experiment when the experimental conditions correspond to the 
assumptions used in solving the problem. Figure 6-6 compares the 
theoretical relationship (6-26) with experimental data of Ya.M. 
Rublnshteyn, obtained by the diffusion-analogy method [9]. These 
experiments are characteristic in that they were a practical 
realization of all ehe basic assumptions underlying the theoreti- 
cal calculation. As the figure shows, within the limits of experi- 
mental accuracy, the empirical dsta are in good agreement with 
the results of the theoretical calculation« 

In making practical application of the theoretical equations; 
we must remember the restrictions formulated at the beginning of 
this section (Assumptions 1-7). Later we shall consider problems 
in which some of these restrictions are removed. 

6-2. HEAT EXCHANGE IN A FLAT TUBE WITH CONSTANT WALL TEMPERATURE 

While retaining all the conditions and restrictions of the 
preceding problem, let us change the system geometry alone. Let 
the liquid flow in a flat tube, i.e., between two infinite plates    |*^ 
separated by a distance h  * 2rQ.

s *'* 

We locate the origin at the center plane of the tube. The 
x axis is directed along the flow, and the y  axis perpendicular 
to hhe wall, the values x < 0 correspond to the damping segment, 
within which the temperature field is uniform. Values x > 0 cor- 
respond to the heat-exchange segment; at the entrance to this 
segment, the fluid temperature is constant over a section; the 
wall temperature in this segment is constant over the surface. 

With allowance for the restrictions formulated at the be- 
ginning of the preceding section (Assumptions 1-7), we write 
the energy equation for the problem in the form 

dt    „dH 

Since the flow is stabilized, then according to (5-11) 

i! ! 



TABLE 6-3 

Eigenfimctions in Problem of Heat Exchange In Plat 

0 

Tube at ta * const 

r *. *. *. *• 4« *■ 

(1.00 1 ,000000 1,0(10000 1.000000 l.OCOOOO 1.000000 

i 

, .'>>X«CO 
ii,or. 0,99646» O.'K^IOI 0,885460 0,775528 0,634685 0.408544 
0.10 0,98591H 0,843772 0,568534 0.203564 -0.193675 -0.560642 
0.1". II,:I6KI74 0,<*Ü07MI 0,1224«) -0.459406 —0.882896 —1.000849 
0.20 (t,'.»li:ti:t 0,420158 —0.351258 —0,921270 —0.941399 —0.39W88 
0,?5 0,!l|:iN)'.) 0,158833 —0,748049 —0,985885 —0.337119 0,61543« 
o.ui O.877L>:'.| -0.120471 -0.984:108 —0.1*34258 0,501492 1,016112 
0.35 0,835000 -0,391132 —1.015180 -0.021446 1.007459 0,424512 
0.40 0,787600 —0,1*34500 -0.841406 0.601586 0.863177 -0.573740 
0,4!. 0,7355:|4 -0,835125 -0,504825 0,997970 0.181310 —1.057742 
0,50 0,679303 -0.983217 -0.074980 1,035010 -0.612118 —0,627170 
0.55 0.019481 —1.072154 0,368669 0.719609 —1.068827 0.323114 
0.60 0,556603 —1.101348 0.753970 0.174334 -0.971307 1.036029 
0.65 0.491205 -1,074172 1,028753 -0,424459 —0.406126 1.022915 
0.70 0.423798 -0.997324 1.166876 —0,914201 0,340922 0,350528 
0.75 0,354800 -0.879078 1.167602 —1.192769 0.963222 -0.532402 
0.80 0.284819 —0.731087 1.049901 —1.232895 1.270307 —1.165137 
0.85 0,214048 -0.561247 0,844080 —1,068439 1.231402 —1.329442 
0.90 0.142850 —0,378731 0.583116 -0.765623 0.928494 —1,071980 
0.95 0.071454 —0.190228 0.295444 -0.393116 0,485424 -41.573428 
1.00 0.000000 0.000000 0.000000 0.000000 0.000000 0,000000 

n 

1.2 

'.0 

0.8 

0,6 

0.4 

0.2 

0 

-0,2 

•oA 

•0,6 

-0.8 

-1.0 

-I 2 
'"0   0,2 Ofi  0.6 0.8 1,0 

Fig.  6-7.  Function i|>  (Y)  for n 
boat exchange in a flat tube 
at; t , ■ const. 
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for X~0."d.-l<r<i e=in 
for ^>0.«.K = 0 £ = &, or 
fOr Jf^O.«!^;*;! 6 = 0. 

(6-35) 

1. As in the case of a round tube, we solve this problem by 
separation of variables. To do this, we represent 0 as 

e(jr,y)=?(*)t(0. 

Substituting this expression in;o (6-34) and separating the 
variables, we find that (6-3*0 corresponds to two ordinary differ- 
ential equations: 

where e* is an unknown constant. 

The integral of the first equation is 

where A  is a second unknown constant. 

C 

The solution of the second equation can be represented as the 
following series: 

tw-ijy. (6_36) 
n-0 

Substituting this expression into the second equation, we 
obtain recursion relationships for the coefficients fe« : 

(*=0); 

(«=1); bt = -°f.> 

Satisfying the condition at the wall, i.e., the third bound- 
ary condition of (6-35), we obtain 

V6IB=0, 

Prom this we can find the eigenvalues r.n  (n=0, 1,2 ...) of the 
problem; to each eigenvalue there corresponds an elgenfunction 
y(Y, F,,)~ iM^)-  Tabler. 6-3 and 6-^1 show the values of ty  (Y)  and 
e according to published data [6]. The first three eigenfunc- 

tlons are shown, in Fig. 6-7. 

As wan rhown in [7], for sufficiently large e , the follow- 

■«•■» 
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ing relationship holds: 

,n=4n+j  («=0.1,2...), 

which can be used in  practice when n >_ 3. 

Thus the general solution of the problem will have the form 

n=0 
(6^37) 

The coefficients A    of the series are found from the boundary 

condition at the entrance section, (6-35): 

e(0,K) = 2^t.(K)=l. 
«=o 

Using arguments completely analogous to those of §6-1, and 
the condition for orthogonality of the eigenfunctions, which in 
this case will have the form 

+i 

jM»(i-n<o'=o. 

we obtain an expression for the coefficients of Series (6-37): 

Je(0. Y)^(Y){l-Y*)dY 

An = '=—fl  

j *Ur)(\-Y*)<tr 

(6-38) 

TABLE 6-4 

Eigenvalues and Constants in Problem of Heat Ex- 
change in Flat Tube for t    = const 

n •« 
o 

•n A» "n 

0 l.iisi.Wi;» 2,S277(i28 + 1.2008303 0,85808050 
1 5,0098573 32,147282 —0,2991000 0.50940270 

■) «U.i iS:M'.>r> 93,474913 +0,10082040 0,47000545 
3 I3,00700i 180.80490 -0.l074.Wi04 0.42397375 
4 17.00737» 3)2.13010 -\ 0,07% 1007 0.389108055 
.1 iM.lW.IUl 409.40777 —0,00277505 0.30340500 
li 25,007090 058,79982 +0,05151021 0.34347545 
7 29,tit>702l tWO.13214 —0,04351073 0,32726570 
8 33,000900. 1133,4040 +0.03754180 0,31373925 
9 37,000924 1418.7972 -0,03293327 0,30220410 

It can be shown that for 0 (0, Y)   -  1," 
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A.« 

- (*L. y=l 

(6-38a) 

Calculating the derivatives with the aid of (6-36), we can 
use (6-38a) to find the values of A„  (Table 6-H). n 

We determine the mean mass temperature of the fluid: 

> = -L-\twxdy. 

Taking (5-11) into account and reducing the expression for t 
to dimensionless form, we obtain 

i 

5-J=fc-lje<I*-»'W (6-39) 

Substituting in the value of 0 from (6-37), we obtain 

;JSO 

Integrating the differential equation for \f>  and allowing 
for the second boundary condition of (6-35), we find 

JfcOTO-rwr—•£(&)„,. 

AM a« a« a« ft» a» 

Pig, 6-8. Variation in Nu along 
tube length. 1) Plat tube; 2) 
round tube (in this case h  cor- 
responds to d). 

u 

ft 

Thus the final expression for 0" can be written as 

e=.3J^cxp(-|.;]i£), (6-40) 
n-0 
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where 

*~TM»L- 
Table 6-4 shows the values of B  . 

Relationship (6-40) Is Illustrated in Fig. 6-3* which also 
gives the curve for a round tube. The flat-tube Turve is not as 
steep as the one for the round tube. The reason Is that the ratio 
of perimeter to tube cross-sectional area Is smaller In the first 
case than In the second; thus the fluid Is cooled more slowly In 
the flat tube than In the round. 

r 

0 

Let us determine the local Nu number, referring the heat-_ 
transfer coefficient to the local temperature difference ta — t. 
Then s 

»s-m.,- 
Substituting the value of 9 from (6-37) and ©" from (6-40) 

into this expression, we obtain 

Nu: (6-41) 

I X Letting ^j-   go to infinity, we find the limiting Nusselt 
number: 

Nu»-4 «;=3.770. (6-42) 

If we find the length of the thermal initial segment from the 
condition Nu, . =:l,0lNu_, the value will be 

L"f = 0,055 Po. 

Relationship (6-lJl) is shown in Pig. 6-8. This figure al3o 
shows the corresponding curve for a round tube. The two, curves 
are quite close. Thus for a flat tube Nu«, is 3%  greater than for 
a round tube. The lengths of the thermal initial segments are also 
nearly the same. 

Let us determine the mean integral heat-transfer coefficient, 
or the corresponding mean Nusselt number: 

Carrying out calculations similar to those for a round tube 
(see §b-i), we ebtain 
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Nu^-yPejlnÖ«,, 

or 

««-4*4 «<»fiW-T <!«)]• (6-43) 

2. We can also construct another (approximate) solution for 
the heat-exchange problem in a flat tube. For flow with a velocity 
profile that is uniform over a section (bar flow) the energy equa- 
tion will be similar in representation ,to the heat-conduction 
equation, and the problem of heat exchange in a flat tube reduces 
to the problem of unsteady heat conduction in an infinite plate at 
t ■ const. As we know, the eigenfunctions of this problem have 
s r     «VI 

the forma» 1(2»»+U-jl. where the m are Integers from 0 to °°. On the 

basis of this result, we can represent the elgenfunctions ty of 

(6-34) as the following series in cosines, as was proposed in [15]: 

•l»„=|j6»-.cos[(2«+l)-jK]. U 
m-0 

By an appropriate choice of series coefficients, we can allow 
for the change in velocity over a section, i.e., for the presence 
of the function r2 in (6-34). 

Then the general solution of the problem will have the form 

(1=0 «E0 

We keep only five terms of the series, i.e., the      of m 
and n  will vary from 0 to 4. Substituting (6-44) into v~ ^)»  after 
regrouping of the terms we have 

o        wA «-■KJ_/*,
V* ***** J_  tf**Yh  «.wi n      (6-45) X*„.cosT+^-J bnico$-r + .., + ^j ^cos-j-j^O. 

0 
:ß  We separately multiply Eq. (6-45) and cos^.cos-^,... ,cos-^ » and 

in each case integrate the equation with respect to 1  from 0 to 1. 
Performing this operation for each harmonic of the cosine, we ob- 
tain the following system of five equations: 
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(~T--,H-^-)*-*--T*-»-t-a*«--iii6«"+i*-»=B=0*' 

-7*«.+(-J—J-+S?)*-» -jl^+Ä*"«-!?*"«0^ 
5
A  

I5
A •/ "* ,

J_
25
**\A  

ä
A _L**  n. 

(6-46) 

TABLE 6-5 

Values of Constants In Eq. (6-47) (Problem of Heat 
Exchange In a Plat Tube with t    ■ const) 

0 
n 

n 
»M 

».t 

n 
1 

.i 
4 

2.tarn 
35.1475 
■U.4;«2 

W.:M 
414.7«! 

1.1777« 
o.nr,7-iHir. 
I).I»I«!WIH 
0.IHI7OWU 
0.0I3NIM7 

0.0-.M1R34 
—5.57195 
—4 .«MO 
—».«»•73 
-3,32432 

-n.onnjwo 
_n.»WB7| 

9.4SH0B 
7.94700 
0.61*79 

0.207037.10-» 
0,0230768 
3.3I5S6 

—12,0113 
-11.0745 

-0.595767.10"« 
—0,00930795     | 

0,1014*3 
-7.124« 

13.7624 

Since these are homogeneous equations, I      can be nonzero 
tun 

only If the determinant for their coefficients equals zero and, 
consequently, the e* are the roots of the coefficient determinant. 

Table 6-5 shows values of e*, determined by computer. They are in 

good agreement with the values obtained for e2 by another method 

(see Table 6-4), with the exception of e?. The discrepancy in e{ 
Ois explained by the fact that only a five-term approximation was 

used in the computations. 

Since the e* are known, we can now determine the values of b n nm 
It turns out that System (6-46) cannot be solved so as to determine 
all the values b .  By dividing each equation of System (6-46) by 

bnQ  and solving any four of the five equations, however, we can 

find the ratios bnlfk„0, bni/b„0, etc.; the values of b n  will still be 

unknown. The solution of (6-44) can now be written as 

•-2*.[«¥+jj t« **#*•]■•<—:*    (6-47) 
n-0 m-1 

where thu are unknown. 

To determine the bnQ,  we use the boundary condition at? the 

entrance(9 = I for * = 0),; this leads to the equation 
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i»SM«'T+Sfe0"!Tu-,r} 
4 

I 
n=0 m=\ 

Multiplying this equation separately by each of the values 

cos[(2m-H)X 2H  an(j integrating them with respect to Y  from 0 to 1, 

we obtain a system of five equations: 

(1=0 

E (£)*-•=<-^T*W; •-1.**4- 
n=0 • 

Solving this system, we find the b  Q. The numerical values of 

the constants occurring in (6-1*7) are given in Table 6-5. By using 
(6-J|?), it is not difficult to compute all the other heat-exchange 
characteristics, including the Nusselt number. 

6-3. HEAT EXCHANGE IN THE THERMAL INITIAL SEGMENTS OF ROUND AND 
FLAT TUBES WITH CONSTANT WALL TEMPERATURE (APPROXIMATE SOLU- 
TION) 

As we have already noted, for fluids with Pr >> 1, the reduced 
length of a tube in actual equipment will usually be less than the 
reduced length of the thermal initial segment. For this case it is 
possible to obtain an approximate solution to the problem of heat, 
exchange in round and flat tubes in finite form, as has been done 
by Leveque [16J.5 All the restrictions 1-7 (see §6-1) are retained 

1                                 2 
i '  

3C 

Pig. 6-9. Solution of the Leveque 
problem. 1).Damping segment; 2) 
heated segment; A) width of ther- 
mal boundary layer. 

in solution of this problem, and still another is added: the width 
A of the thermal boundary layer appearing at the wall is assumed 
to be small as compared with the diameter of the round tube or the 
width of the flat tube (Fig. 6-9). In other words, the temperature 
in the flow core is assumed to be constant along the radius and 
length, and equal to the fluid temperature at the entrance to the 
heated segment. This condition is clearly satisfied only for small 
values of reduced length (smaller than the reduced length of the 
thermal initial segment). 

The energy equation for this problem is easily found from 

(6-1), letting av= w,-  (W^='ii—oin accordance with the conditions 

7137 
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dopted. Tf, in addition» we replace the coordinate r by the coor- 
.inate y  ■ rQ  — r (I.e., the coordinate measured from the wall), 

t 

.; then obtain 

at I  o Y. .(Hi 

Since A<fc then within the thermal boundary layer (0< y < A) 
the quantity y  in the energy equation can be neglected as compared 
with rQ. Then this equation will look like this: 

it       M 

This equation will be exact for heat exchange in a flat 
tube (the wall radius of curvature rQ -*■ *); it will be approximate 
for heat exchange in a round tube, since we have replaced the cylin- 
dri cal boundary layer by a flat layer, which is permissible when 
the layer is thin. 

ÖThe velocity distribution in a round tube is described by the 
equation 

*»Äfl—J)-fi(f-SJ. 

and in a flat tube by the equation 

where d  ■ 2rQ is the round-tube diameter and h  = 2rQ is the flat- 
tube width. 

For values y «  rQ, we can neglect the quadratic terms in 
the expressions for w      as compared with the linear terms, i.e., 
we can assume that the velocity distribution in the thermal bound- 
ary layer is represented by a straight line tangent at the wall 
to the Poiesuille parabola. We can then let 

wx**Ay, 

in the energy equation, where A=i(dwt/dii)u-0 is the velocity gradient 
ai the wall; for a round tube, A=Sir<fd , and for a flat tube A^Swfh. 

As a result, the energy equation takes the form 

*£«•$. <6-*8) 

The assumption that the thermal boundary layer is thin permits 
us to f01 uiulate the boundary conditions in a form convenient for 
integration: 

y=zoo  / = //; \ for xz>0"*y — oo / = //; 
for ATX)«"* 
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where tQ  is the fluid temperature at the entrance to the heated 

segment; t    is the wall temperature, 
S 

Equation (6-1(8) can be solved exactly for boundary conditions 
(£-'<9). 

We introduce the new independent variable 

1-0=0'' 
We now find the expression.", for the derivatives: 

dp —i/i \dy) Ty— \9ax)    Sj*' 
ftl_dt «<5__    _i_ fJ_\lP y dt 
e)4r"~^/1)l>4:ss,      3 \9ax)    FSj" 

Substituting the last two expressions for the derivatives into 
(6-48), we see that this equation reduces to the ordinary differen- 
tial equation 

0 

Boundary conditions (6-J»9) take the form 

(6-50) 

for  n=oo /=/,;   1 
for  ij=0   t=tc.   ] 

Integrating (6-50), we obtain 

and 
1 

(6-51) 

TABLE 6-C 
Values of Dimensionless Tempera- 
ture As a Function of n According 
to Eq. (6-52) 

'-'<• '-',. /-■/,. 

1 V'.:" 1 'Ü-T 1 '.-',;' 

0,0 0 0,70 0.7227 1,40 0,9897 
0.05 O.OfiOO 0,75 0,7610 1,45 0,9928 
0,10 0.1121) 0.80 0,7902 1,50 0.9951 
0,15 O.llW 0,85 0,8281 1,55 0,9908 
o.'.n» 0.2235 0.90 0,8568 1,60 0,9979 
O.l'ft 0.27SS 0.95 0,8821 1.65 0,9987 
o,;tt> 0.3337 1.00 0,9043 1.70 0.9991- 
o,;ir> 0,;W78 1,05 0,9234 1.75 0,9994 
0.4« 0,4409 1.10 0,9395 1,80 0.9997 
0,45 0,4927 1.15 0,9530 1.85 0,9998 
0,56 0,54:». 1,20 0,9641 1,90 0,9999 
0,55 0.5915 1,25 0,9730 1,95 0.9999 
0,(10 0.6377 1,30 0,9801 2,00 1,0000 
0.65 0,6816 1,35 0.9856 
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Fig. 6-10. Dimen- 
sionless temperature 
as a function of n. 

The constants of integration are found 
from boundary conditions (6-51). The se- 
cond condition yields o, 
first condition gives 

t  , and the 

*. 

Thus the equation for the temperature 
distribution has the form 

..A #-**| 
'•-'' friM, 

(6-52) 

The denominator of (6-52) is a gamma function, whose values 
have been tabulated: 

«0 

f.-*rf,-r(-f)-M«>. 

0 

Table 6-6 shows the values of the dimensionless temperature, 
computed from Eq. (6-52). Figure 6-10 shows a graph of this func- 
tion. 

Let us now determine the local heat-transfer coefficient, 
referred to the difference between the wall temperature and the 
temperature of the fluid at the entrance to the heated segment. This 

is a convenient method for determining a in this case, since when 
i ' x 
pjf-yls small, the mean mass temperature of the fluid varies little 

with the length, 

»  ft 

Using the relationships obtained previously, we find 

UA-. w U»A- vs*v km- 
Consequently, 

*  / A   \l/» 

The mean heat-transfer coefficient is 

(6-53) 

—   1 A  \i/J _ i r    .  3 \   / A \ 
(6-5*) 

Substituting the value A=^-, into (6-53) and (6-!:"), we obtain 

sessions for the local and mean Nusselt numbers in the initial 
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segment of a round tube: 

Nu.= ^-=1.077 (Pe4-)'/J. (6-55) 

Nu. =^=1.615 (Pe-f)"3. (6-56) 

wd 
where Pc=--- 

Substituting the value A~^~, into (6-53) and (6-54), we obtain 

analogous expressions for a flat tube: 

^,=^=0.978(1* A)"8, (6-57) 

Nu.=x = 1,467 (Pe-f)"3. (6-58) 

where Pe=—- a 

To compare the approximate solutions obtained with the exact 
solutions of the same problems (see §§6-1 and 6-2), in (6-55) and 

(6-57) we must go from Nu,^^^f for a round tube) to Nu==—*^=-, «h«. T 

is the mean mass temperature of the fluid in the given section. 
Here Nu and NuQ are connected by the relationship 

Nu = Nu,k^. 

The value of t  is easily found from the heat-balance equation. 
For a round tube we h~~e 

2* "™ «,jjpc. 
W»„   _4«.-f.) I / A   V/3 

Integrating this expression from 0 to x  and substituting /--, 
8w/d  into it, we obtain \J 

£^i-6,46(enr) " 

Nu—x—- -    / I *\W (6-55a) 

Thus if the heat-transfer coefficient is referred to the local 
temperature head ["«T^],    then (6-55) will take the form 

 7T7W" 

It Is not difficult to obtain an analogous equation for a 
flat tube. 

In Fig. 6-11, Eqs. (6-55) and (6-55a) are compared with the 
exact solution (6-26) for a round tube. 

i * 
For values p^- j- <0,0005, Eq. (6-55a) [which should also be com- 

pared directly with (6-26)] gives values of Nu that are no more 
than 8-10i8 above those found with the exact solution. WhenJ * >o(XXK> 

f 
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Fig. 6-11. The Nu number as a function of pg—j- for a round tube. 

1) Eq. (6-55a); 2) Eq. (6-55); 3) exact solution (6-26). 

the difference between (6-55a) and (6-26) increases, since as the 
reduced length becomes greater, the thermal boundary layer becomes 
thicker, and becomes commensurate with the tube diameter. The Lev- 
eque solution then ceases to apply. 

Thus Eq. (6-55a) can be used with an error not exceeding 8-10* 

only when-jij.~<0,0005 . In this region, the difference between the 

initial Us - iQ)  and local (*B - t) temperature heads is insigni- 

ficant, and thus the values obtained for Nu from (6-55a) and (6-55) 
almost agree. 

Equation (6-55) is in better agreement with the exact solution 
|   x 

over a wider range of pj'-j; this does not mean, however, that it is 

more accurate or that it is applicable over a broader region. The 
error in determination of the heat flow with (6-55) and (6-55a) 

the same for any ± • £ will naturally r* 

The fairly good agreement between the curves for (6-55) and 

(6-26) in the-pj. j <0,01 region indicates that an equation of the 

type (6-55) can be used for interpolation in approximate represen- 
tation of the exact solution (6-26). The equation 

*-T-"»(W)' 
I. 
T 

(6-59) 

can be used as such an interpolation formula, in particular; with 
an error of roughly ±3%,  it describes the exact solution in the 

i >gion of values ~- £<0,01 and is in good agreement with the experi- 

mental data (see §7-5). 

The corresponding interpolation equation for the mean integral 
heat-transfer coefficient has the form 

Nu = - = 1,55^--^ (6-60) 
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aiH will be vplid with the same accuracy for value,? p--;,- *0,05. 

The heat-transfer coefficients in (6-59) ^.nd (6-6Q) should 
naturally refer to the local and mean logarithmic temperature heads, 

respectively; only when 2.-J-< 0,0005 can they be replaced by the ini- 

tial value. 

We note that the lengths of tubes employed in heat exchangers 

usually satisfy the Inequality fL.^.<0,05,  and even pz~j-<0,0\,     prov- 

ided the heat-transport medium is a viscous fluid possessing a fairly 
high value of Pr. 

6-4. HEAT EXCHAN6E IN A FLAT TUBE WITH ONE WALL HEAT-INSULATED 
AND CONSTANT TEMPERATURE AT THE OTHER WALL 

We shall consider heat exchange in a flat tube for which the 
temperature of one wall is held constant; the other wall is heat- 
insulated. All other conditions are the same as in §6-2. 

We locate the origin at the tube wall through which heat ex- 
change takes place and, as usual, direct the x  axis along the flow 
and the y  axis along the normal to the wall. 

Remembering that the velocity distribution is represented by 
the equation 

w • 

we can represent the mathematical expectation for the heat-exchange 
process under these conditions as 

JS-6<r-n&; (6-61) 
forA,=0.ndO<K<19 = l;   | 
for JOO—r^O  9 = 0; I (6-62)       Q 

for X3»0.«dy=l ^-=0. [ 

Here 

OY 

The solution of this problem. Is fully analogous to the solution 
given in §6-2; thus we at once give the final results. 

The fluid temperature at an arbitrary point in the flow is 

£fc-S*Mn.»(-+<,i4). (6.63) 
(1*0 

The wean mass temperatuit of the fluid is 

— on 

«=? 
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TABLE 6-7 

Eigenvalues and Constants in Problem 
of Heat Exchange in Plat Tube with 
Constant Temperature in One Wall and 
Heat Insulation ac the Other 

o 
i 
2 
3 
4 
S 
6 
7 
8 
r 

TABLE  6-8 

3.818667 
11.89723 
19,92414 
27,93835 
35,94734 
43.05364 
51,95837 
59,96211 
67,96519 
75,96784 

* 

14,5822 
141,541 
396.971 
780.551 
1292,21 
1931.92 
2699.67 
3595.45 
4619,27 
5771,11 

2.176 
1,427 
1.20 

2.176545 
1.427232 
I.I93G03 
1.063782 
0.9768908 
0.9129374 
0,8630460 
0,8225616 
0,7887606 
0,7 

Values of Eigenfunctions ^(i)  in Problem of Heat 
Exchange in Flat Tube with Constant Temperature at 
One Wall and Thermal Insulation at the Other 

o 
o.i 
0,2 
0,3 
0,4 
0,5 

0,0000 
0,1001 
0,1983 
0,2920 
0,3768 
0.4484 

0,0000 
+0.0989 
+0.1838 
+0,2273 
+0.2053 
+0,1162 

0,0000 
+0.0969 
+0.1564 
+0,1219 
-0.0045 
-0.1252 

o.s 
0,* 
0,8 
0,9 
1.0 

0,5079 
0,5419 
0.5636 
0.5723 
0.5736 

—0,0125 
-0,1378 
-0.2244 
—0.2629 

-0.1320 
—0,0230 
-0.1074 
-0.177» 
-0.1896 

0 
where & itsi,,(?L 
ferenceV°-a7 £ "^k^* referred to the l0*<*  temperature dif. 

s 

Nu«-£axH' n I  

°£;fcxp(~T,JK-'t) 
(6-65) 

The limiting Nusselt number is 

Nu. =2,430. (6-66) 

Th^ length of the thermal initial segment is 
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~-«*0,21Pe. 

The eigenvalues e and constants A    and fl 
* n    n 

(6-67) 

are given in Table. 
6-7, e^d the eigenfunctions jkfXJ for » ■ 0, 1, and 2 in Table 
6-8; the data is taken from [18]. 

For the problem under consideration, the limiting value of 
•Mw is roughly 351 less than for the problem of heat exchange 
tnrough hoth walls of the tube (in this latter case, Nuw • 3.77). 

The reduction in Nuw is natural, since with one-sided cooling, 

heat exchange takes place through a fluid layer with thickness 
2 times greater than for two-sided cooling. For the same reason, 
the length of the thermal initial segment is significantly greater 
for one-sided cooling than for two-sided. 

The mean integral Nusselt number will obviously equal 

sn: «A (6-68) 

where f - is found from Eq. (6-64). 
£mlr   ' 

6-5. HEAT EXCHANGE IN A ROUND TUBE WITH ARBITRARY, IN PARTICULAR 
LINEAR, VARIATION IN WALL TEMPERATURE 

Let the wall temperature of a round tube vary arbitrarily with 
the length, i.e., *s(«) is a specified function of x.  All remaining 
conditions remain the same as for the problem of heat exchange with 
* •'■■ const (see §6-1). 
8 

U 

t 
1 

■ 

- 

1 
1 

4, 4, 

Fig. 6-12. Problem of heat ex- 
change in a round tube with 
arbitrary variation in wall 
temperature. 

o 

Since the energy equation (6-2) is linear, the solution of 
the heat-exchange problem for t    • const can be generalized tp the 
case tAx)  by the method of superposition [7]. 

0 

form 
Solution (6-12a) for * ■ const can be represented in the 

5 
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0 

(6-69) 

2 jr 

Here, as in §6-1, ^^W'T* R—rlr+ 

The temperature difference * - tQ can be treated as a change '" 
in fluid temperature caused by a "source of thermal disturbance" 
in the form of an abrupt change in wall temperature fro« tQ  to t_. 
This "source" is situated at the origin, I.e., at X ■ 0. 

If the source is located at the point with coordinate I • g ' 
(Pig. 6-12), then in place of the preceding equation we mist write: 

/-/♦=(/.-*.){1- 

-V^t.(*)exp[-.:(X-I)j}. 

When there are several such "disturbance sources," i.e., 
when there is a stepwise change in wall temperature (Fig. 6-12): 
'ci. A*. ■••, Um (»-U 2, 3, .... m) , the total variation in fluid tempera- 
ture can be represented as the sum of the changes produced by the 
action of each "source": '        . - 

where iA/0«=<oi—-fc«-t>is the wall-temperature variation at the point 
with coordinate E.. 

For a continuous wall-temperature variation, going from the 
bum to the integral, we obtain 

/~/,=j|l-||,4B*n(/?)exp[-.J(X-«)]J§.i«. 

const, 

0 '    ffsO 

Thus, if we know the solution for t 

(b-70) 

s 

then the solution for an arbitrary continuous wall-tempperature 
change will look like this: 

\\-*{X-%,R))V,®dK (6-70a) 

Let us consider the case of a linear change in wall tempera- 
tun- , lot 

M*)='.+**. or /„(*)==/,+**, 
L 

^here k  ami/C^-^-Ped are constants. 
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Tb n t^ ■ K, and in accordance with (6-7Q), 
X     as 

Integrating, we obtain the final equation for the temperature 
field: 

l-*.«**-*JildM^ll-«p(-<*M.     (6.71) 

The mean mass temperature of the fluid is 

•So  * f v-> 

Taking (6-17) into account, we obtain 

T-t.=KX+wV^.ltv(-Sx)~\], (6-72) 

where*. ^(ar)..,- 

The eigenvalues e„ and the constants 4 and B„, as well as n n n 
the eigenfunctions $n(R)  in these equations are the same as for 
the problem of heat exchange with t    ■ const (see §6-1). They 
are given in Tables 6-1 and 6-2. 

The series 5J-T converges rapidly to a value of 11/768. Thus    U 

Eq. (6-72) can be written in the form 

r-^-*[*-U+8 J *«*<-<*)].      (6-72a) 

The local temperature head is 

/€_7=/c[»_8|j^exp(-.'.*)]. 
rt=0 

The heat-flow density at the wall Is 

Substituting the value of t  from (6-71) Into this expression, 
we obtain 
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W*£^*^JIjjH»||W«J("3M. ,~    ,    ;-. . .  

fi-«-s-B5-u-••(-•I** (6-73) 

When X * •, as we see from (6-72) and (6-73)» 

and 

O 

«=0 " 

In addition, it follows from the heat-balance equation that 

Substituting in the values of It/dX  and q    from the preceding 
relationships, we have 

OB 

fit- 11=0 

o 

Thus Eq. (6-73) can be represented as 

net 

n=0  " 
(6-73a) 

There now is no difficulty in determining the local Nusselt 
number: 

.-.2ft-(-Kifc-*) 
Nw- *d _-  1. 

M/,"°  Ü  ,rV8"   Z' ,2 ' *\ 
n=0 " •  ' 

(6-7*0 

Figure 6-13 show? the variation In i , tt  and Nu as a function 
of jr. s 

When X  -*> », the series in (6-71)-(6-74), which contain expon- 
ential functions, vanish. Thus beginning at a certain value of Xt 
the temperature of the fluid at any point will vary linearly with 
the length, together with t, while o , i - t, and Nu take on con- s  s 
stant values. The limiting value of Nu will equal 

(6-75) 

In thin case, the thermal Initial segment will be longer than 
when fc0 » const. 

Thus, in the problem of heat exchange with linear variation 
in wall temperature, Just as when there is a constant wall tempera- 
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Fig. 6-13. Variation 

In fs^i. I^s and Nu as 

function of pj-7^ 

•* 
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TA*. 
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TT- ^^SS 
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Flg. 6-14. The Nu number 
In round tube for linear 
variation in t„ and var- s 
lous values of 0 0* 

ture, we find stabilization of the heat-exchange process, Here the 
same temperature profile will form in the region with incipient 
thermal stabilization as when a constant heat-flow density is speci- 
fied at the wall. Thus Nuw will have the same value as for the heat- 
exchange problem with q    • const (see §8-1). 

We have considered the problem of heat exchange with dta/dx  ■ 
const Just for the special case in which there is no wall-temper- 

*Q). If there is a Jump In t    at ature Jump at x ■ 0 (i.e., t, 

x ■ 0, then the problem can be solved by the same method. Grigull 
and Tratz [8a] recently determined the heat transfer for this case 
by a numerical method. Their results are shown in Pig. 6-14. Here 
the quantity 

e.= (<e-<.). • 

'(/c—//}_o)oo 

was used as a parameter, i.e., the ratio of the wall-temperature 
Jump at x ■ 0 to the difference between the wall temperature and 
the temperature on the tube axis in the region of stabilized heat 
exchange. The latter is easily found from Eq. (8-5) (see §8-1) in 
conjunction with the heat-balance equation 

('c— ^=o)oo=i65Ä" 

O 

/—* 

As we see from Fig. 6-14, when 0<9,5 1 , Nu decreases mono- 
tonically, while when e0 > 1 , it passes through a minimum, in either 
case approaching a limit of 4.36. As 0Q increases, the thermal ini- 

tial segment becomes longer. When 6o-*oo t  this problem degenerates 

to the problem of heat exchange with t ■ const, and Nu approaches 
Nu.-3.66. s 

6-6. SOME GENERAL LAWS GOVERNING STABILIZATION OF HEAT EXCHANGE 
WITH WALL-TEMPERATURE VARIATION ALONG TUBE LENGTH 

The method considered in the preceding section can be used 
to esamine the distribution of heat transfer along the length 
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>f a tube for a specified variation in wall temperature. The re- 
mits of .such a determination show, in particular, whether self- 
imilar cv stabilized heat exchange sets in for a specified dis- 

trioution t-(x). It is useful to Investigate the question of self- 
slmila'r-regime inception for the Nusselt number when t    varies 

8 
along the length in more general form, as wab done recently by 
V.D. Vilenskiy [19]. Let us analyze the case of stabilized flow 
of a fluid with constant physical properties in a straigth tube 
of arbitrary cross section. The heat flow along the axis owing to* 
heat conduction Is assumed to be small as compared with the heat 
flow caused by convection. It is also assumed that there are no 
internal heat sources, and that the influence of dissipation is 
negligible. 

Under these assumptions, the temperature field in the fluid 
flow is described by the equation 

*.<r. *)-ar=5£+lF.        (6-76) 
where 

y  and s  are the coordinates in the tube cross-sectional plane; 
d   «'4//s is the equivalent diameter; / and • are the cross-sec- 

tional area and perimeter of this section; tQ  is the temperature 

of the fluid at the entrance, i.e., at I ■ 0. 

The boundary conditions are written as 

Ojr-o«0. , (6-77) 

O        We assume that the function cp(Af) describing the wall-tempera- 

ture distribution along the tube length exceeds zero when 0 < X <  », 
and that it is continuous together with its derivatives. 

To analyze heat exchange far from the tube entrance, it is 
necessary to consider the temperature field In the fluid flow when 
X ->■ «. 

It was shown In [19], that If the function <p(*) possesses the 
property that the limits 

exist, where the function xn is determined by the relationships 

at 
Xn ^jj--~fn-iXn-|. 
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while JO—m.«*"» is is the first eigenvalue of the problem 

VW *)+l»W,,(K, Z)=0;\ , _  . 
*<r..2.)«o,     J        (6-79) 

then when X-»» 6 can be represented as the asymptotic series 

t^Vniy, Z)X,(X), (6-80) 

where the functions Vn  are solutions of the problems 

VV.-W/.-O; 
r#(K0, Ze)«l;  * 

V«(Ke, Ze)=0. 

(6-81) 

If for some «=«, —^«K«. » then Series (6-80) breaks off at 

the n,-th term and the difference between the exact solution of 

(6-76) and its asymptotic representation at X •*■ » (6-80) will ap- 
proach zero as exp(—f^X). 

If 

fttHfr-*!»*-*' 

or 

then for X * «, 

Jf-»eo, 

X 

6 ~ -1), (J ^- <fc) exp (- *,*) f f exp (|i,S)«ft,      (6-82) 

where Tin is the first normalized eigenfunction of Problem (6-79), 
while ö/ön1  is the derivative with repsect to the normal n  to the 
tube surface, directed toward the fluid. 

It follows from (6-80) and (6-82) that if when X ■*-  », the 
logarithmic derivative of q> with respect to X has a finite limit 
or approaches -*, then the temperature field in the fluid flow ad- 
mits of asymptotic representation as the product of a function of 
I  and Z  and a function of X.  In this case, there will be stabiliza- 
tion of the temperature field in the fluid flow, completely analo- 
gous to the stabilization (regularization) of the temperature 
field in a solid during unsteady heat conduction. Here the tempera- 
ture gradient in the fluid flow at the tube wall and the difference 
between the wall temperature and 'the mean mass temperature of the 
fluid will become proportional to the same function of X,  indicat- 
ing that heat exchange has been stabilized. 
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If fc ^en X—**-*'•$["—+°° , then 9 cannot be represented as the 
product of a function of I  and Z and a function of I, i.e.» the 
temperature field and,accordingly, the heat exchange are not stab- 
ilized. 

The value of the Nusselt number in the region of stabilised 
heat exchange,Ntt-ST^Ar-can be obtained on the basis of (6-80) and 

. Ml«— •) 
(6-82). 

If the parameter /C,>—*, (except for /f,=0), *«Nt\,is determined 
by the first term of Series (6-80), i.e., essentially by the function 
VQ.  The expression for Nu^ will have the form 

("^)^. 

Nu.OV Z,) = -2 , ( **'* » <6'83>   . 
i-7-jv,r,rff 

r 

where iV =-^2" ls tfte dimensionless normal to the wall, directed to- 
ward the fluid; F — tfld]  is the dimensionless cross-sectional area. 
It ls clear from (6-83) that here Nuw depends on the tube geometry, 
the parameter KQt  and the coordinates of the perimeter point under 
consideration.  ' 

If Kt—0, ih.nV,= l. . In this case, Nuw is determined by the se- 
cond term of Series (6-80): 

{^Jr-r. 
Nu.(K.. Z.)~2jr^. (6-0*) 

0 * 
Thus when KQ  » 0, Nuw is determined by the parameter If,«UmX-. 

If K,<T*• «••"N"«, is described by the expression 

ffi)r-Y. 

TT 
Nu^iKcZ.)^^^ , ffr, —' (6-85) 

whe-e S ~.-~_ls the dimensionless perimeter of the section. 

In this case, consequently, Nu^, does not depend at all on 
the law governing the variation in wall temperature, but is deter- 
mined solely by the tube geometry and the coordinates of the peri- 
meter point considered. In other words, when/C,<—jh Nu«, will have 
the same value as if the wall temperature were constant. 
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We note that A' can take on negative or zero values. When 

—*»<Ki<6,  Expression (6-84) goes over to (6-83); in this ease,- 
we should replace KQ by F1. If ITi<Pif'»«M% Is determined by (6-85), 

To illustrate the foregoing general results, let us compute 
the limiting Nüsselt numbers for laminar flow of a fluid in a 
round tube. 

Kb. 
#-j 

Er ■ 

• •• 

*. 1 
1 

1 

f 
IM <b:% 

•4 • -I r -< 1   •» 

Fig. 6-15. The Nuw number in a 

round tube for variations in 

s *„ (curve 1) and q    (curve 2) 
S s"' 

with length. 

If AT,>—j», (but/C, *0), , then to calculate Nua we must determine 

the function VQ.  The latter is a solution of the equation 

(6-86) ■ TT (**)-*•<>-W.-0 

Here the boundary conditions are 

where R  « r/rQ. 

The solution of (6-86) has been investigated elsewhere [20, . 
21]. Using the results of these studies, we can represent VQ  as 

for /C,>0 V,= p{U Kt), 

for ~K<iC.<0 V.-jgHgf. 

where/»(/?,/Co) «ndp(/?, Ko) are Poiesuille functions. In [20, 21], they 

were represented as power series. Substituting these expressions 
into (6-83), we obtain expressions for NuÄ as a function of the 

parameter Xo for Ko>0««*-m<Ko<0. . 

If KQ  ■ 0, then, as we have already mentioned, NuM is deter- 
mined by the parameter X,. When \i\'<K<0   , the results obtained 
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vith the aid of (6-83) are valid for Nu.. When J^ ■ 0, Nuw is found 
'rom (6-8'i). The function V,  in this equation is a solution of the. 
problem 

-r£(*ar)=2(I-/p): 

v.(i)-(k (fj^-a 

From this we have 

"•=x«'('-f«,)-f- 
and ^„„=4.36. 

The computational results are illustrated in Fig. 6-15 (Curve 
1). As the figure shows, the minimum value of Nuw corresponds to 

a wall temperature that is constant along the length of the tube. 
f"Y   When K,>—p, > Nuw rises as the parameter KQ  increases. 

Manu- 

?^pt Footnotes 

No. 

95 !This last assumption is well confirmed in most cases. 
The problem of heat exchange with allowance for energy 
dissipation is considered in Chapter 15. 

99     2The first coefficient bQ  of the series is arbitrarily 
taken equal to unity, since it can be removed from the 
summation sign in (6-10) and combined with the still 

{J indefinite constant A  in Expression (6-5) for 0. 

112     3This problem has been solved by a numerical method 
[10, 11], An analytic solution using the Ritz method 
was first obtained by Leybenson [12], and refined in 
[3]. A solution based on power-series expansion of 
the function representing the temperature distribution 
over the flow section has been given by May'yamov [13], 
as well as in [Hi, 6], 

114 *As In the case of a round tube, the coefficient bQ  is 
arbitrarily taken to equal unity. 

115     w See the analogous proof in §6-1. 

120 5 The same solution was published quite a bit later in [17], 

121 »In solving the heat problem, we can eliminate the opposite 
wall In our Imagination, and assume that a medium with con-r 
stant temperature equaling the entrance temperature *0 
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133 

extends to Infinity. 

«The subscript "s" is used with the tube-wall coordinates. 

»•Only the case of real K  is considered. 

Manu- 
script 
Page 
No. 

95 

108 

110 

133 

Transliterated Symbols 

c ■ s ■ stenka * wall 

H.T ■ n.t « nachal'nyy termicheskiy ■ thermal initial 

ji « 1 ■ logarifmlcheskiy ■ logarithmic 

a ■ e ■ ekvivalentnyy ■ equivalent 0 
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Chapter 7 

HEAT EXCHANGE AND RESISTANCE IN FLAT AND ROUND TUBES WITH VARIABLE 
FLUID PHYSICAL PROPERTIES AND BOUNDARY CONDITIONS OF THE FIRST KIND 
7-1. PRELIMINARY REMARKS 

Since the physical properties of a fluid depend on temperature, 
they vary in time and along the coordinates in accordance with the 
temperature variation. When the temperature differences in the flow 
are small or the physical properties depend little on temperature, 
these variations will not be great. Under such conditions, results 
obtained under the assumption of constant physical properties will 
be valid. If there are significant temperature differences in the 
flow, the variation in physical properties with temperature will 
have a significant Influence on the velocity and temperature fields. 
Thus, for example, owing to the dependence of the viscosity coeffi- 
cient on temperature, the velocity profile will not be parabolic 
for viscous flow of a liquid in a round tube. The variation in velo- 
city profile entails a corresponding change in the temperature pro- 
file. Here, naturally, the heat transfer and friction resistance 
will change as compared with their values for constant physical 
properties. 

Since the velocity and temperature fields are interrelated 
when the physical properties are variable, such problems require 
joint integration of the equations of motion and energr , As we 
have already noted, this Involves considerable difficulties, as- 
sociated with the nonlinearity of the initial equations. For this 
reason, theoretical calculations for flows and heat exchange with 
variable physical properties are carried out chiefly by approximate 
oiethods, and encompass a relatively small group of problems. Experi- 
ment plays a significant role in study of these questions. 

For liquids under ordinary conditions, the dynamic viscosity 
'•aries most sharply with the temperature (see, for example, Table 
3-1). Thus for a viscous flow of a liquid, we often consider only 
the variation in the viscosity alone, assuming that the remaining 
physical properties are constant. 

The motion problem for a fluid with temperature-dependent 
vfs ..i u      s first formulated by L.S. Leybenson between 1922 and 
1924 [1, 2], He obtained an approximate solution to this problem 
on the assumption that the fluid temperature and viscosity are 
constant over sections and vary only along the tube length. This 
specific formulation of the problem is of interest in determination 
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of hydraulic resistance for motion of a hot fluid (petroleum, for 
example',   in long pipelines. Here the intensity of heat exchange 
between "luid and wall is negligible, and the assumption of con- 
stant cross-section temperature is satisfied in approximation. 

When a fluid moves under conditions of fairly intense heat 
exchange (in heat exchangers, for example), there is a very sharp 
<*adial variation in the temperature and, consequently, the viscosity, 
with relatively little lengthwise variation. Thus the solution of 
L.S. Leybenson is unsuitable for determination of hydraulic resis- 
tance in heat exchangers and similar devices. 

Attempts have been made to consider flow with variable vis- 
cosity for a problem resembling the Qraetz problem, with constant 
wall temperature [3* 4, 5, 6]. In these studies, the simplified 
equation of motion (with no inertial terms) is solved on the as- 
sumption that the temperature distribution in the flow remains 
the same as for constant viscosity. Using a linear relationship 
to approximate the velocity profile found by this method in the 
region of the thermal boundary layer, Jamagata [6] has calculated    /~y 
the local heat-transfer coefficient for the front part of the       ^ 
thermal initial segment (i.e., near the tube entrance). It is un- 
derstandable that the results obtained in these studies should be 
treated as a first rough approximation. 

In §§7-2 and 7-3» we present our approximate solutions for 
problems of fluid motion and heat exchange in flat and round tubes 
with allowance for the relationship between the viscosity coeffi- 
cient and the temperature [7, 8]. These solutions are valid for 
the thermal initial segment in viscous flow (i.e., when there is 
no natural convection). In addition, in §7-4, we consider an ap- 
proximate solution of the problem with allowance for variable vis- 
cosity, obtained by Yang Van Tszu [9] for the entire flow region 
in a round tube. In §§7-5 and 7-6, we give results of experimental 
investigations. 

7-2. THEORETICAL DETERMINATION OF HEAT EXCHANGE AND RESISTANCE IN 
THERMAL INITIAL SEGMENT OF FLAT TUBE 

1. Let us consider motion of a liquid and heat exchange in 
the thermal initial segment of a flat tube. Here we shall allow 
for the relationship between the viscosity coefficient and the 
teuperature, assuming that the remaining physical properties are 
constant. Naturally, the assumption that the density, which de- 
pends little on temperature for most liquids, is constant elim- 
inates the influence of free convection from consideration. 

...f...,..**. j. „..,...*-,*.•***. 
We assume that the velocity 

profile is fully developed (parabolic) 
^^'  3T"X'lsC"==iA in tile tube entrance section. We also 

j>>m77r»ti}?F»ihim>m>wi * assume that the fluid temperature at 
the entrance is uniformly distributed 

Pig. 7-1. Plow diagram    over the section, while the wall temp- 
for flat tube. erature is constant over the surface. 

We can Isolate two regions in the thermal initial segment 
of the tub2: a thermal boundary layer of thickness A, and the 

- mo - 

O 

■;■/< -iu .. 



Wß^mßHfmmnai 

core, wh h is not involved in heat exchange (Pig. 7-1). For subse- 
quent siiuolification of the equations, we make the basic assumption 

iat the thickness A of the thermal boundary layer is substantially 
less than the tube width h. This means that we restrict the problem 
to the region of small reduced lengths. We note, incidentally, that 
reduced lengths are usually small for motion of viscous fluids. 

We neglect the heat transferred along the axiu by heat conduc- 
tion as compared with the convective transfer. For simplicity, we 
shall also neglect the heat of friction, although it is not diffi- 
cult to make allowance for this quantity, as we shall show later. 

It is convenient to use an equation of the type (3-4) to ex- 
press the relationship between the viscosity coefficient and the 
temperature; it permits good approximation to almost any experi- 
mental curve for the viscosity coefficient. 

As formulated, the problem corresponds to the following 
equation system: 

w*Jx~+w»T,'=saW'> 

'(4+.%*)--lW(4^*)+ 
(7-1) 

(7-2) 

ax T-jr—w 

-f=a§+ajt+a1p + ...+amf~. 

(7-3) 

(7-4) 

where a0, alt at am are constants depending on the type of fluid 
and the temperature interval. 

System (7-1)-(7-4) contains no equations for the projection 
£j of the velocity on the y  axis. The proposed method for solving 

the problem makes it possible to do without this equation, pro- 
vided we do not investigate the pressure distribution over the 
ube cross section. 

The variation in velocity along the tube axis can be neglected, 
so that the next-to-last term in (7-2) can be dropped. 

To solve the problem we must simplify (7-1) and (7-2) substan^ 
t'. 1 y. To do this, we replace the convective terms in (7-1) by 
"heir values averaged over the thickness of the thermal boundary 
layer. Since A << h,  this approximate way of allowing for thecon- 
vjt^ve terms should not substantially influence the final results. 

Thus in place of (7-1) we use the equation 

(7-5) 

II   i;he motion were isothermal, wv««dwxldx in (7-2) would equal 

- Ill +     ,     . 

wm 



zuiX), and p would not depend on y. These conditions are not satis- 
fied for nonisothermal flow, when u is a variable. We can state, 
however, that here w,u*dwjdx will be small asNjompared with w^HdwJdy. 
Thus we need only make approximate allowance for terms containing 
u   and 3w„/d*; in (7-2) we use their values averaged over the tube 

y * 
width ft ■ 2rQ. This can also be done with 3p/3«. Thus in place of 
v/-2) we use the equation 

(7-<S) 

This way of making approximate allowance for the inertial terms 
in the equations of motion was proposed, insofar as we know, by N.A. 
Slezkin, and later utilized by S.M. Targ [2]. 

The boundary conditions for our problem have the form 

for jc>O«d0=O t—tc, wx=Wy=sQ; 
dt for je>0.«dr,>y>A <=/„ -J-=»0; 

for jc>0—y=r, ^J-«0. 

(7-7) 

We introduce the following dimensionless quantities for con- 
venience : 

e-.£fe, r.-fr, r,-*, Pe-^, i*,-^; *-£, 

r a»-^* and Ass—, 

and write (7-3)—(7-6) in the dimensionless form 

where 

&»i+«',e+o',e»+...+a'me«», 

-*fc*)-*(^)]". 
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«aw -l^iv.:.^fca^-i.^.^»«,-H^-.^.„f,-.-;;^^aw, 

0 

0 

The oundary condition» will be 

forjf>o--r=o e=o, «r.»rf«0; (7-x4a) 
for jr>o«d!>K>& e=it -£=0; (7-i*t>) 

2. Let us determine the temperature and velocity distributions. 
Integrating (7-8) with respect to I and using the second boundary 
condition of (7-l4b), we obtain 

£=B(W-*). 

Again integrating with respect to I and taking into account 
the first boundary conditions of (7~l4a) and (7-l*b), we determine 
B(x)  and the dimenslonless temperature: 

B{X)=—lr. (7-15) 

e-?--£. (7-16) 

Substituting 6 into (7-11)» we find 
*        »        ■ 

?-*k+fcT+»'(t),+-..+».^)"-J%(i)V    (7-17) 

where the b.  are new constants; bQ  ■ 1. 

Integrating (7-9) with respect to I and taking (7-l4c) into 
account, we obtain 

*fc-~A(X)£<r-i). (7-18) 

The solution of (7-18) will be different for the thermal 
oundary layer and for the flow core, which is not involved In 
h-at exchange. 

For the thermal boundary layer, i.e., for Y < fc, when u /u 
Is described by (7-17): "" 

Integrating this equation with respect to I and considering 
thai, when Y ■ 0, V   ■ 0, we obtain an equation for W   when 7 £ fc: 

■r.-«Jj*(f5H?r).-      . (T_J, 
We have the following expressions for 1/ when Y * k 
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For the flow core, i.e., when Y>k,  i*=|i,=coöst. Here integra- 
tion of (7*18) yields 

Determining o  from the condition IP,=1^ tafY—kve  obtain an 
equation for W,m t.acY>t: 

r.-iHJ0£[T^-^-^-*)]+^w|]^(nFT--rn-)- (7-21) 

The function A(X)  is found from the condition requiring that 
the flowrate be constant: 

•        r,       _ 

or, in dlmenslonless form, 

jr.dK+.Jr,<JK=l. (7-22) 

We evaluate the first integral using (7-19), and the second 
using (7-21); this yields 

where 
W- -*,+*>+*,*! TW"~T' (7-23) 

(7-24) 

For brevity, we henoeforth let 

<   (7-25) 

Substituting the value of A(X)  into (7-19) and 07-21)i we 
obtain the final equations for the distribution of velocity w  : 

fory<« * 
(7-26) i 
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0 

for Y>k 

Im» 

When i»-ii«-iie-const, Eqs. (7-26) and (7-27) go over to the 
familiar equation 

which describes the velocity distribution In a flat tube with stab- 
ilized Isothermal fluid motion. The same result is obtained if we 
let k  ■ 0 in (7-27). Thus Eq. (7-27) satisfies the specified velo- 
city distribution at the entrance. 

The transverse velocity component V   is found from (7-10) 
when we e?.low for the fact that W   ■ 0 at I « 0: 

r 

u 

Using (7-26), we calculate the derivative 

fto 

where 

T*=Plk-\-2P#.+ZPtp. 

Substituting (7-28) into the expression for V t after inte- 
gration we obtain " 

.-     <<* ri  »«   w+rr    r«+«     _     r*+*    \ .        . 
^»—"33rZj"F+i    RI~l(<+i)(<+2)   (i+i)(i+3)J- lf-*»J 

imit 

It follows from (7-29) that W'■ 0 for isothermal flow. 

The equations for the temperature and velocity distributions 
still contain the unknown fc, which is a function of X. 

3. We determine the thickness of the thermal boundary layer 
and compute the heat transfer and friction resistance. To do this, 
we use (7-12) to determine the way in which k  depends on I. Sub- 
stituting B(X)  from (7-15) into this equation, we obtain 

-*-*{(».*+»;*)*        (7-30) 
We evaluate the integrals in (7-30): 

j***Hh*j*Jßfr^(W)«- 
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fir £rfK- 2 ^^ilii!*!^?/^-.''*^ 

Is« 

]• (i+2)(i+3)(i-H)(< + 5) J* 

Substituting the values of the integrals into (7-30), after 
certain manipulations we find 

[fr-*)fiT + l)(«+2)<< + 3)<«+4) 

Is« J 

Integrating this equation from 0 to k  and 0 to X, respectively, 
we obtain an equation representing the dimensionless thickness k  of 
the thermal boundary layer as a function of X/Pe: 

l[B>{*-i)-B^-$)k]&dk=& (7-3D 
where 

Sl*S l< + l>(<+2)(<+3)<< + 4) : 

Joä 

5,==
2J («+2)(«+3)(' + 4)('+5) ' 

(7-32) 

(7-33) 

The left side of the equation cannot be Integrated analytically, 
and numerical Integration methods must be used to determine the way . 
in which k  depends on X/Pe. 

Having determined the relationship between k  and X/Pe, we can 
use (7-16) to determine the temperature field, and (7-26), (7-27), 
and (7-29) to determine the velocity field; it is also simple to 
calculate the heat transfer, since the Nusselt number is uniquely 
determined by k. 

The local heat-transfer coefficient, referred to the initial 
temperature difference, is 

or in dimensionless form, 

0 

Q 
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Determining the derivative from (7-16), we find 

The mean Nusseit number over the length is 

(7-3*) 

o 

0 

rc«x-iJN»«. (7-35) 

If the fluid viscosity is Independent of the temperature, then 
(7-31) can be integrated analytically. Here (7-31) takes the form, 

{(*-*) "*-** 
o 

which yields 

A»  3*<  2 r 

On the basis of (7-34), after replacing X by 2«/*, we obtain 

(7-36) . N«.=4^4(i-ii). 

For small fc, we can neglect—=»2^ as compared with unity; then 

A V/3 

and 

Nu=l,l(Pe-M 

5l5 = l,65(PeAJ'3. 

(7-37) 

(7-38) 

rhese relationships agree with the Leceque equations (6-57) 
and (6-58) with the difference that the coefficients in the Leveque 
equations are 11$ less than the values computed by us. This differ- 
ence 3.8 apparently explained by the different degrees of approxi- 
mation in volved in the basic assumptions used in our solution, and 
the Leveque solution. 

Let us calculate the local friction-resistance coefficient. 
For constant density, this will be determined by (4-17) or, after 
.ntroduction of the equivalent diameter, by (5-3): 

S 8«, 

The tangential stress at the wall is a«=m, f!Sf\    ;  with al- 

lowance for (7-26), it can be represented as 

9* = ~W 
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Cc isequently, 

where 

(.7-395 

Equation (7-39) represents the relationship between the local 
friction-resistance £ and the thickness k  of the thermal boundary 
layer. Pirst determining the relationship between k  and X/Pe, we 
can use (7-31) to determine £ as a function of X/Pe. 

The mean friction-resistance coefficient for the tube segment 
between 0 and X equals 

t=4jwx. (7-10) 

If we let n-vo~|i«-coiist in (7-39), we obtain Eq. (5-12) for the 
resistance coefficient with isothermal flow in a flat tube. 

The resistance coefficients £ and £ found here only allow for 
energy losses to friction. In determining the pressure drop along 
the tube length, in addition to friction we must also consider the 
change in flow kinetic energy caused by the variation in the velo- 
city profile with the length. Tuls is not difficult to do, since 
the velocity distribution is known. 

Let us illustrate the computational method with a specific 
example. 

4. Sample ealoulation.  Grade MK oil moves in a flat tube. 
The oil temperature at the entrance is 4>='150°C; the wall tempera- 
ture is /C-3S*C. The relationship n-W) between the oil viscosity 
and the temperature is specified as an experimental curve. 

TABLE 7-1 

i. *c 1      H'Cn 
1» 

,mX=ü *-.-rö 

180 
95 
38 

5.96-10-» 
23,25.10-» 
329,610-» 

58 
14.2 
1.0 

1.00 
0.51 
0.00 

1.0 
0,3 
0.0 

1) u, M.s/m«. 

0 

a) Taking a polynomial of degree two as (7-17), we determine 
the coefficients b0, t,M*H  To do this, we take three values of 
v  on the curve  tW(<): the values at temperatures tnt t„%  and some 
intermediate temperature t't  for example, //-95°C. *-w* *„»„* .«** 
of t, we .let ermine ys/v, 0, and I/k  [from Eq. (7-16)]. Table 7-1 

0» 's» 
For these values 
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shows the results of the calculations. 

The solution of the equations (7-17) set up for the three se- 
lected points yields: be-1, *i-39,2 .«16,« 17,8. 

b) We find the coefficients of Polynomial (7-25). Using (7-24), 
we obtain P0-f9,3; P|— 31.46; /»««».O.-JP,-—5,6. 

By (7-32) and (7-33), the coefficients ß, .«iß, will have the 
following values: fii-0,419; 5,-0.139. \ 

c) Evaluating the integral on the left side of (7-3D, for 
arbitrarily selected values of k, we determine the values of the 
group pL. £, corresponding to the selected values of k.  For these 
same values of k, we use (7-16), (7-26), and (7-27) to determine 
the temperature and velocity profiles, and employ (7-34) and (7-39) 
to determine Nu and £Rea. Table 7-2 shows the results of calcula- Ö 

tions for Nu and £Res in condensed form. Using the relationships 
found for Nu and £Re as functions of Jj-4, we calculate Ru and 
£Rea (Table 7-3).  

8 
S 0 

TABLE 7-2 

* 1     *   .«. KB w« * 1        *     MM Na «*.   •■ 

0 
0.01 
0.02 
0.05 

0 
0.005 
0.032 
0.54 

00 
400 
200 
80 

0.829 
0.842 
0.856 
0.922 

0.10 
0.20 
0.50 
1.00 

4.30 
87.8 

929 
11932 

40 
20 
8 
4 

0,978- 
1.154 
1.905 
3.780 

TABLE 7-3 

•     '*    urn Nu «*« 

0.1 207 0,86 
1.0 97.0 0,90 

10 45,3 0.97 
too 21,7 1.17 

1000 10.9 1.61 
10000 6,78 2.7» 

Let us look at the results of the theoretical calculation and 
c lroare them with experimental data. Figure 7-2 shows the distribu- 
biun of temperature and velocity over the section of a flat tube 
for various values of the reduced length. The curves for 9 show 
that as i-.j increases, the width of the thermal boundary layer 
increases considerably more slowly. 'Curve 1 for W   corresponds to 
Isothermal flow, and also gives the velocity distribution at the 
abe entrance. 
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Pig. 7-2. Distribution of V and e over section of flat tube for 
I X various values of pg-^.  Grade MK oil flowing at i.-itt'&fiv.-aB'C; IWIH-SS. O 
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Pig. 7-3« The Nu number as a function of ^>j  for the data of the 

theoretical calculation. 1) 
for flat tube. 

.5«: 2) ■= I; 3) Leveque equation 

( ) 

It is clear from the graph that the variation in viscosity 
with temperature has a significant influence on the velocity profile. 

Thus, for example, with cooling of the fluid (i*c/»*,=58 •-*£;-£ »0,001 \ 

the velocity is less by roughly a factor of 5 at a distance Y ■ 0,1 
from the wall than for isothermal flow, while the velocity on the 
axis is roughly 25%  greater. Conversely, with heating of the fluid, 
the velocity at the wall will be greater, and the velocity at the 
core smaller than the velocity for isothermal flow. This type of 
velocity variation accounts for the influence of variable viscosity 
on the heat exchange and hydraulic resistance. 
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Figu 7-3 shows the local Nu number as a function of J-.4- 
or grade MK oil at V„/VQ « 58 (see the example). It also gives 

curves for Eq. (7-36*) with M8/Vg ■ * and for the Leveque equation 
(6-57). The last two curves are nearly parallel. As we have noted 
earlier, the difference in the Nu values calculated from these 
equations amounts to about lOJf. The curve for u_/yn ■ 58 first runs • - -   s u 
parallel to the other two curves (for pg~y-<10-»); its slop« then 
gradually decreases as the thickness of the thermal boundary layer 

increases (at ppir^0,01» * ls close to unity). Figure 7-4 shows 
Nu as a function of Pe ft/* for transformer oil and grade MX oil 
for various values of P3/y0. For comparison, the graph shows curves 
for US/VQ * 1» plotted from (7-38) and the Leveque equation (6-58). 
The data shown in Figs. 7-3 and 7-3 indicate that the relationship 
between y and * has a substantial influence on heat transfer. Thus 
wnen Mg/pQ changes roughly from 0.2 to 1000, all other conditions- - 
being eq"al there is a reduction by a factor of 3 in the heat trans- 

f\ fer. With cooling of the fluid, heat transfer will always be less 
- J under these conditions than for heating, since at the same value 

of Pe ft/«, the velocity near the wall will be greater fpr heating 
than for cooling. 

Figure 7-5 compares results of a theoretical determination of 
heat exchange in a flat tube with experimental data. Since there 
are no such experimental data available for comparison purposes, 
the data of E.A. Krasnoshchekov and the author [12] are given; they 
apply to heat exchange in a tube of rectangular cross section with 
side ratio b/h z  5 and relative length l/h    ■ 226. The physical 
properties at t  «(1/2) UQ + tQ)  were selected for the determination 
of Wx  and Pe h/l  from the experimental data. The latter correspond 
to fairly small values of Pe ft/Z, where the width of the thermal 
boundary layer is commensurate with ft/2 and the theory ls inexact. 

f\ It ls for this reason, most likely, as well as differences in geo- 
**'    metry, that the experimental points lay 13—15% below the theoreti--, 

^al curves. 

Figure 7-6 shows the results of a theoretical friction-resis- 
ance determination for grades TM and MK oils moving In a flat tube, 

for various values of wa/v0. The axis of ordinates shows the ratio 
of the mean friction-resistance coefficient in nonisothermal flow 

*-.! e friction-resistance coefficient KA  a  for isothermal flow. 1. s 
The latter is computed on the assumption that the fluid tempera- 
ture everywhere equals the wall temperature. It follows from (7-39) 
nd (7-^0) that for the same value of Re. 

X 

where 
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Pig. 7-4. The Ru number as 
a function of Pe h/x  for 
various values of us/u0 
from theoretical data. 
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a) Curve; b) oil; c) buy 
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Pig. 7-6. Ratio ?/£< „ as a 
1. s 

function of Pe h/x  according 
to theoretical data (solid 
lines) and experimental dat 
(circles). 1) Grade TM oil, 

-0.18; 2» Vo H*       ~' JS' '"O   ~  1» 3) 

grade TM oil, ys/u0 «■ 4; 4) 

a0 
s0 

grade MK oil, u8/pft - 58; 5) 

Pig. 7-5. Ru as a function 
of Pe h/x  from theoretical 
data (solid lines), Leveque 
equation (dashed lines), and 
experimental data (circles). 
1) Oil. 

(U'a.itf MK >•! VV, 1.050. 
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The orizontal line 2 corresponds zo  isothermal flow at a 
luid ten erature * " *s« Curves 1, 3, 4, and 5, which correspond 

flow v th heat exchange, show that the relationship between y 
and t  has a great influence on the resistance factor. In the final 
analysis, £ also depends on Pe h/x  owing to the variation in vis- 
cosity with temperature. At Pe——«» or je—Ö", the coefficient 

t=E*.c ^=^..  i.e., it equals the resistance coefficient in iso- 

.iiermal flow, computed from the entrance temperature. When Pe h/x 
Is small, X will approach Z±  g. Thus, X will always lie between 
F       and C10, and it may vary widely for the same Reynolds number 

at the entrance. 

The theoretical curves of Pig. 7-6 coincide with experimental 
'dta obtained for grades TN and MK oils flowing in a'rectangular 
tube with a side ratio b/h z  5 [22]. As the graph shows, the ex- 
perimental data are in quite satisfactory agreement with the theo- 
retical results. Under the least favorable conditions (small Pe h/x), 
the experimental points do not deviate by more than 10-121 from the 
theoretical curves. 

7-3. THEORETICAL DETERMINATION OF HEAT EXCHANGE AND RESISTANCE IN 
THERMAL ENTRANCE SEGMENT OF ROUND TUBE 

1. All the conditions and assumptions formulated in the preced- 
ing section for flow in a flat tube are retained in this problem. 

For flow of a fluid with variable viscosity in a round tube, 
the initial equation system will have the form 

^+f^(^)-05 ' (7-43) 

In contrast to the preceding problem, here we allow for the 
b at of friction in the energy equation to illustrate the general- 
ity of the method. 

As in the preceding section, we replace the exact equations 
(./■ i-Jand (7-^2) by approximate relationships in which the right 
sides are averaged over the thickness of the thermal boundary layer 
and the tube radius, respectively. Moreover, we replace the coordin- 
ate r by the coordinate y  ■ rQ  — r, measured from the wall (r0 is 
the tube radius), and w„  « - &L. 

y * 
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After the approximate- equations have been reduced to dimension- 
less form, following certain manipulations we obtain the equation 
system 

r=rar[0-fljr]-W); 

^.=si+a'Ie+rfie»-f-...+flfwe-. 

(7-14) 

(7-45) 

(7-46) 

(7-W 

Here we let 

'«-^J[C'*är+<r'ir)+«£(&)>]«  . (TJ8) 

X(XJ is a certain function of X,  which shall be defined below; 

 * — <*  07  S»  M7  ft. p* "lgr» 
I» — I«        w        w ■ 

The boundary conditions will be the same as for the problem 
of heat exchange in a flat tube. They are determined by equation 
system (7-l4a)-(7-l4c). 

* 2. We compute the temperature and velocity distributions. 
Integrating C7—III> with respect tp I, and taking the second bound- 
ary condition of (7-l4b) into account, we obtain 

or 

(7-49) 

Again integrating (7-49) with respect to Y and taking into 
account the first boundary condition of (7-l4a), we obtain 

e_£^[-(i-jph(i-n-(r--T)]< 

Using the first boundary condition of (7-l4b), we find an 
expression for B(X)  and the final equation for 9: 

AC*)— 
<i — *)» to <i — Ä) -*- (*—-T) ' 
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0 

<l-A)«to(l--A) + (*-£j 

Since the thickness of the thermal boundary layer is assumed' 
to be small as compared with the tube radius, in calculating the 
thickness, and in determining the viscosity variation over the bound« 
ary-layer thickness in (7-44), we can neglect I as compared with 
unity (i.e., the curvature of the tube surface). In such case, in 
place of (7-50) and (7-51) we obtain the equations 

B{X) £. C7-50a) 

8=24-5-» (7-51a) 

which coincide with the corresponding flat-tube equations. 

Substituting the value of 6 from (7-51a) into (7-47), we obtain 

T-EVT-V- <7-52) • 
where the b^  are new constants; b~  » 1. 

Integrating (7-45) with respect to I and noting that (•£*-)    »0, 
we find V « Jr-i 

^^(^^(r-i). (7-53) 

Integrating (7-53) for I < k  [in this case, u/v  is described 
I. (7-52)] and I > k  (here y « yQ - const), we obtain the fol- 
lg equations for w: 

for Y<k 

*.=4»wg£(}£-?£>    '  (7-5») 

for Y*=h 

i   « / *•   * \        ^7-55) 

for y>k 

(7-56) 
1*9 

^-^^^{^[^•-^-(K-^+^^rfy-rlr)}. 

The function A(X)  is determined from the condition requiring 
that the flowrate be constant: 
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J 2»wadr+  j 2w»,<*r=«rJ v. 

Going from the coordinate r to the coordinate y9  after this 
equation has been reduced to dimensionless form we obtain 

* i 

using (7-5*) to evaluate the first integral and (7-56) for 
the second, and performing certain manipulations, we find 

where 

*(*)=. /%+/».*+/»•*»+/».*•+/%*• ~"   T* 

i  * 

1=0 

P —  3 -Fr ill     »I 

I art 

1=0 
n 

P ! . .!■* - \1    »« 

(7-57) 

(7-58) 

Ö 

the final equations for w : 

Ä=P.+PI*+P^+P.&*+P4*
4. (7-59) 

Substituting A(X)  from (7-57) into (7-51) and (7-56), we obtain 
lations 

for Y<k 

for Y>k 

'■=Tr{£[<1'-*>-T<,'"-',»]+S*'(fTT-^)}- ' (7-6l> 
faO 

For isothermal flow, (7-6o) and (7-6l) yield the familiar 
parabolic velocity distribution: 

r«-2y(2-v), 

or 

U 
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We determine U   fron the continuity equation (7-46). Within 
the thermal boundary layer we neglect J as compared with unity; 
this yields 

Substituting In Wx from (7-60) and Integrating, we obtain 

r«"ar^Tg-F-[»+iMI+» tf+W-Hj'      <7-62) 

where 

O       3. We find the thickness of the thermal boundary layer and 
compute the heat transfer and friction resistance. The relationship 
between k  and X is determined from (7-48). Substituting B(XJ  from 
(7-50a) into this equation, we have 

-rw^[(*.&+»*j+?*(*n*   •«-«> 
Using the equations for w, W, and 6, we evaluate the inte- 

grals : * 

j^TDr^-Trftl'p p+^PT« 
» 

*« fkVT+wfw+^y 

o IS 

<'+«(/+»<l+4i(l+l»]! 

Substituting the values of the integrals into (7-63) and 
integrating from 0 to k and from 0 to X, respectively, we finally 
obtain 
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*(»-x)-**(3-4)ar 
>+7«i-]fr(0i-20yk+Di»^ 

**=£. (7-64) 

«here 

*«—B <J+i)<J+jj><J+3)</+4): 

« • a 

D,=2J'"+V: D,~2ji+^: D»==2r+^' 

(7-65) 

(7*66) 

(7-67) 
taO »=0 1=0 

Equation (7-64) establishes the relationship between the di- 
mensionless thickness k  of the thermal boundary layer and JT/Pe. 
The second term in the denominator of the integrand allows for 
the heat of friction. The integral on the left side of the equa- 
tion must be evaluated numerically. 

The only structural difference between (7-64) and the cor- 
responding equation for a flat tube lies in the term allowing for 
the heat of friction. It should be noted, however» that the func- 
tions T  and R differ in the equations for the round and flat tubes. 

Evaluation of the influence of the heat of friction shows that 
in many cases it can be neglected. Thus, for the conditions of the 
example given in the preceding section (flow of grade MK oil at - 
u /UQ ■ 58), the term allowing for the heat of friction amounts to 
only 0.79 of the denominator. 

Referring the local heat-transfer coefficient to the initial 
temperature difference t&  - tQ, we obtain the following expression 
for the Nusselt number: 

ad 

W-X=*(£L 
where d  - 2J»Q. 

Substituting in $> from (7-51), we find 

4 
NU: 2(1 — «•' (7-68) 

If we replace (7-51) by (7-51a) (i.e., we neglect the curva- 
ture of the tube surface), then 

Nu* 4-, (7-68a) 

0 
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«rhich coincides with the corresponding flat-tube equation. 

For constant viscosity, (7-64) takes the form 

(7-59) 

Integrating this equation and neglecting the heat of friction, 
we obtain 

•S^1"~Tir*/"R",T* - (7-70) 

Solving (7-68) and (7-70) simultaneously, we can find the 

relationship Nu=/(pg~j-)for the constant-viscosity case. 

If we use (7-68a) rather than (7-68), i.e., if we neglect the 
curvature of the tube surface, then for u ■ const we have 

Nu'=J£pe4(i_jg). (7-7.1) 

For large values of Pe d/x$  where k  is small and Nu large, 
(7-71) will take the form 

Nu = l,2l(Pe4),/8. (7-72) 

This coincides with the Leveque equation for a round tube, 
with the sole difference that the constant .coefficient in (7-72) 
is llff larger than in the Leveque equation (6-55). 

Using Eq. (7-60) for Wmt  as in the previously considered flat- 
tube case, it is not difficult to obtain an expression for the lo- 

£j    cal friction-resistance coefficient: 

•-■£+ -   (7-73) 

where   KOe — —^- 

For isothermal flow, R  ■ 1/k  and (7-73) go'is over to the famil- 
lar formula (5-10) for the resistance coefficient of a round tube. 

4. Let us look at the results of the theoistical computation 
and compare them with experimental data. Figure 7-7 shows the temp- 
erature distribution over the cross section of a round tube for 
various values of k  [the solid lines correspond to Eq. (7-51a), 
and the dashed lines to Eq. (7-51)]. When k  ■ 1, the computation- 
al results agree for both equations, When He ■ 0.5, the dashed 
curve is somewhat lower. As k  diminishes, the distance between 
the curves is reduced, and at k  ■ 0,2 and 0.1 they nearly coincide. 
For very small k  (about 0.01 or less), the dashed curve should run 
somewhat above the solid curve. Thus tube curvature has relatively 
little influence on the temperature field. 
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Pig. 7-7* Temperature distribution over section of round tube for 
various values of k  ■ A/rQ. Dashed line) With allowance for tube 
curvatures solid lines) no such allowance. i \    * 

Tig. 7-8. Comparison of different formulas for Nu at u ■ const. 
1) Calculations by (7-68) and (7-70) j i-n«««|.p,i.(i-«L\!,-M..,lI,(p,i.y^ 
«.IN. um (* ±)'<• 
Leveque formula. 
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PI*. 7-5, Velooity profiles In round tube for heating of fluid «ä. 7-v» velocity pronies in rouna 
(flow of grade MC oil at to - *»0°C, t 
1) He a 0„ Isothermal flow; 2) *-o.u pt-f« 11.4. »**-»■«,»»*».£. 

98°C and v8/y» 0i078i*). 
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Figu e 7-8 compares the different equations for th? local Nu 
number at constant viscosity. Equation (7-72) and Leveque equatl n 
(6-55) are represented by the horizontal linep 3 and 4 in *,he  se- 
lected coordinates. As we have already noted, the difference be- 
tween them does not exceed 11%. The curves corresponding to the 
other equations lie between curves 3 and 4 for the most part. 

Figures 7-9 and 7-10 show the velocity profiles for h  ing 
and cooling of the fluid. For heating, as compared withthe velocity 
for isothermal flow, the velocity is higher near the wall and lower 
at the center of the tube. Thus the velocity profile becomes more 
rounded. For cooling, the reverse effect is observed, and the velo- 
city of profile takes on a characteristic elongated shape. It is 
interesting to note that for the same values of He and u /u«, the 

velocity variation at the axis is sharper for a round tube than for 
a flat one (compare Figs. 7-2 and 7-10). 

Figure 7-11 shows theoretically computed curves for the local 
Nu numbers as a function of Pe d/x  or a flow of grade MC oil. Curve 
1 corresponds to oil heating at u /un " 0.78; curve 2, constructed 

from Eqs. (7-68) and (7-70) refers to the case in which Va/v0 ■ 1; 
curve 3 corresponds to cooling of the oil with u8/u0 ■ 58. The fluid 
velocity at the wall is higher for heating and lower for cooling 
than the isothermal-flow value; thus curve 1 is above« and curve 3 
below curve 2. As the graph shows, as u /uQ varies from 0.078 to 58, 

heat transfer is reduced by roughly a factor of 3. 
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Fig. 7-10. Velocity profiles in round tube for cooling of fluid 
(flow of grade MC oil at tQ 

1) k  ■ 0, isothermal flow; i- 

100°C, t, 20' C, and ys/y0 - 58). 
1 0,|; Pe —a 136-10*; 3- k = 0,2; Pe ~ = 10,9-10>; 4—* as 0.S; Pe -1 . :»l. 
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Fig. 7-11. Heat transfer in a round tube according to theoretical 
data (solid lines) and experiment (dashed lines with circles). 
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Pig. 7-12. Relationship £Re„ ■ 
-rfpe^-Vfor round tube accord- 

ing to theoretical data (solid 
lines) and experiment (circles). 

Figure 7-11 also gives experimental data [13] for heat transfer 
in a round tube during flow of grade MC oll; the data were obtained 
under the same conditions as the theoretical curves 1 and 3. As we 
can see, the experimental data are in satisfactory agreement with 
calculation. It is only for the case of fluid cooling at Pe d/x > 
>  7,10* that the experimental curve is somewhat steeper. This is 
caused by the influence of the hydrodynamlc initial segment, which 
in these experiments formed part of the heat-exchange segment. 

Figure 7-12 shows the results of a theoretical determination 
of the mean friction-resistance coefficient. The horizontal line 
corresponds to isothermal flow (£Re ■ 6*0» the upper curve to flow 
of grade MC oil with heating (VB/VQ  ■ 0.0*8), at the lower curve to 
cooling (U3/UQ ■ 58). The experimental data [22] plotted on the same 
graph are in good agreement with the theoretical results. 
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/-4. THEO ETICAL DETERMINATION OF HEAT EXCHANGE AND RESISTANCE FOR 
A ROUND TUBE 

1. In contrast to the preceding section, we shall consider flow 
and heat exchange along the entire tube length, and not Just In the 
thermal initial segment. As before, we shall assume that the fluid 
viscosity depends on the temperature, while the pt>«r physical pro- 
perties are constant. The velocity profile at the~~er*£rance Is taken 
to be parabolic, the temperature distribution at the entrance uni- 
form, and the wall temperature constant. Following [93 la the analy- 
sis, we assume that the temperature differences in the flow are not 
too large. This permits us first to assume a linear relationship be- 
tween 1/u and t  and, second, to assume that the radial velocity com- 
ponent is small as compared with the axial component.* \ 

Letting wp  » 0, we obtain dw^/ix  ■ 0 from the equation of 
continuity. Using these assumptions and neglecting the heat of 
friction, we reduce (7-4l) and (7-42) to the form 

'*.£,; 

where p is a function of * alone. 

Integrating (7-75) twice with respect to r, we find 

(7-74) 

(7-75) 

(7-76) 

O 

Substituting wx into the expression for the mean velocity over 

the section, 

s-i( wtrdr, 

we represent the pressure gradient as follows: 

dp "o (7-77) 

Substituting this expression into (7-76), we obtain 

T TT71 

J('M* 
(7-78) 

Using (7-78) and going over to diraensionless independent var- 
iables  (in (7-7^), we write the last equation as 
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vL.re 

r 

I u-y) dr 
.jo^ljJLga.. 

* _l_l   d 

dy 
33T=-l4r-W-[('-n^].    (T-79) 

jr= 1 jr . —_L -£_: DP«,"* • v— t     i  r 

He Introduce the dlmensionless temperature 6=-—if-and use the 

."yllowing equation to represent the relationship between viscosity 
and temperature: 

■£«i-Mrel (7-80) 

«here y is a constant parameter. 

letting 9 ■ 1 in (7-80), we find 

V- Ä--1. 

where u and uQ are the values of the viscosity coefficient for 

the wall temperature and the fluid temperature at the entrance. 
For cooling of the fluid, iWm>l «««v>0; for heating, i*e/i*o<l •«»¥«>. 

Substituting y from (7-80) into (7-79) and going over to the 
dlmensionless temperature, we obtain 

0 

(i-y)(i+te)dK 

■■T=r"sr[^~Y)w] 

IF** 

(7-BD 

This equation must be solved under the following boundary 
conditions. 

for X=0«-0<K<ie=l; 
for *>0 .MK=oe=0. 

I 
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Pig. 7-13. The Nu number in a round tube as a function of pj—-jp 
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We seek separate solutions of (7-81) for the thermal Initial 
Segment and the region of stabilised heat exchange; we then Join 
"hese solutions. In first approximation, both the first and second 
solutions are obtained by means of the Karaan-Pohlhausen Integral 
method. The solution found is substituted into the Initial differ- 
ential equation, which is then transformed into an ordinary linear 
second-order differential equation in 6. Solution of the latter 
gives the final expression for the temperature profile. The temp- 
erature profile found by this method is in significantly better 
agreement with the exact solution (for constant viscosity) than 
the arbitrarily chosen profile (first approximation for 9) in 
the usual Integral method. Knowing the temperature profile, it 
is not difficult to compute the Nusselt number, velocity profile, 
and resistance coefficient. 2 

n 

§ ) 

TABLE 7-4 
The Nu Number for a Round Tube as a Function of 

■pg—j- for Various Values of u3/u0 When ts ■ const 

1         X Ntt 
1         X Nu 1          X 

Na 
Pe    * Pe   a 

■ 
1      **"'   - 

—— zm «0,1 ■£., -0.4 «% -0.7 
IN fe m 

0.00075 16.004 0.0005 15,470 O.Ü004 15.194 
0.0047 7.685 0.0038 7,370 0.00335 7.172 
0.0130 5.317 0.0117 5.118 0.0110 4.973 
0.0247 4.447 0.0234 4.320 0.0227 4.217 
0.0500 3.912 0.0500 3.829 0.0500 3.780 
0.0750 3.829 0.0750 3.781      ■ 0.0750 3.730 
0,1000 3.781 0.1000 3.752 0.1000 3.72S 
0,1250 3.752 0.1250 3.734 0.1250 3.717 
0.1500 3.734 0.1500 3.722 OilSOO 3.711 

N .4 
1*« -7 N -10 

!»• m 1*» 

0.0002 14.427 0.0002 14.274 0,0002 14.203 
0.00235 C.563 0.0022 6.440 0.00215 6.382 
0.0091 4.425 0.00875 4.294 0.00855 4.231 
0,0208 3,737 0.02045 3.600 0.0203 3,531 
0,0500 3,353 0,0500 3.200 0,0500 3.115 
0,0750 3.432 0,0750 3.284 0,0750      | 3.193 
0.1000 3.500 0,1000 3.368 0.1000 3.276 
0,1250 3.555 0,1250 3,445 0,1250 3,360 
0.1500 3,598 0,1500 3,51! 0,1500 3,438 

«0 

m 

uo 

80 

K»c 
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A> 

1= 
*fl / 
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Pig. 7-1^. Values of £Rea for s 
a round tube as a function of 

pj—j for various values of I*./I*.. 
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Numer' al calculations were carried out by digital computer 
for values of ua/u0 from 10 to 0.1. Some results of these calcu- 

lations ire she.«i In Table 7-4 and Pigs. 7-13 and 7-1*. 

The relationship between Nu * ad/A* and X  is shown in Pig. 
7-13 for US/UQ * 0.1 and 10; the curves indicate that the change 

in viscosity with temperature has a stronger influence on heat ex- 
change in the thermal Initial segment thar in the thermal-stabiliza- 
tion region. It is also interesting to note that at U8/UQ > 1, Nu 

passes through a minimum as I increases, while it decreases mono- 
tonically when u_/u0 < 1. This results from the Joint action of 

two factors, the reduction In heat, transfer in the thermal ini- 
tial segment, which occurs for all values of u /u0, and the in- 

crease (for us/u0 > 1) or decrease (for u /u« < 1) in heat trans- 

fer resulting from the change in velocity near the wall with tube 
length caused by the variation in viscosity. 

Thus when the physical properties of the fluid, in particular 
the viscosity, are variable, Nu will vary along the length in the 
thermal-stabilization region as well, although far less strongly 
than in the thermal initial segment. Naturally, when X ■*■  ~, Nu 
approaches its limit, Nu,, ■ 3.66. This constant value is attained 
only a certain distance away from the entrance, where the tempera- 
ture differences in the flow become sufficiently small. It Is un- 
derstood that this difference by no means correspond to the length 
of the thermal initial segment. 

When the physical properties of the fluid are constant (see 
Chapter 6), the length of the thermal initial segment is defined 
as the distance from the entrance beginning at which Nu takes on 
a constant value. It is quite obvious that with variable fluid 
physical properties, this definition is unsuitable. For this more 
general case, by the length of the thermal initial segment we 
should mean the distance from the entrance beginning with which 
the temperature field and, consequently, the Nusselt number cease 
to depend on the initial temperature distribution (i.e., the dis- 
tribution at x ■ 0). 

As we might expect, the friction-resistance coefficient 

\m,ts-     (Pig. 7-1^) depends not only on Rc0=I^t, but also on X  and 
pee* •*« 

ys/u0. For the limiting cases, I.e., when ,£--.l or X -*■ «, the quan- 
tity £Re approaches a constant value corresponding to isothermal 

flow URe -64). 

2. The results given here and in the preceding sections hold 
only for liquids. For a gas flowing at high temperature heads, we 
must consider not only the way in which y depends on Tt  but also 
the dependences of p, A, and o    on f. Some heat-exchange and fric- 

tion calculations have been published for air under cooling condi- 
tions far from the tube entrance with T    ■ const [10], They show 

s 
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hat If X lr. the expression for NuM is selected for the mean mass 
temperature 7, then as 7 /F decreases fro» 1 to 0.25, Hu will rise s — 
when the physical properties are variable. This increase Is not 
great, however, not exceeding 6%  of the NuM value for constant phy- 
sical properties. The resistance coefficient under these conditions 
varies as a function of 7 /¥ In roughly the same way as when q    - 
* const (see S9-4). 

Worse-3chmidt and Leppert [11] have made a more detailed in- 
vestigation of heat exchange and resistance In a round tube for a 
flow of a gas with variable physical properties. The system of equa- 
tions of motion, energy, and continuity, describing the boundary 
layer in approximation, were solved numerically by finite differ- 
ences. The calculations were carried out for air with allowance 
for the way in which p, cp, pm*k depend on 7 as well as the relation- 
ship between p and p, in accordance with (3-5), (3-7), (3-9), and 
(3-10) for values /ie-0,12; n# -0,67 —«/^-0,71, Pr • 0.72 (for the gas 
temperature at the entrance). The flow parameters were so chosen 
that the influence of energy dissipation, work of gas expansion, 

Pi    and free convection would be negligible. The parabolic velocity 
"■' profile and the uniform temperature distribution (7 • TQ)  were spe- 

cified at the tube entrance, while a constant temperature (7 - 7 ) 
S 

was given at the wall. 

The calculations were carried out for 7c/ro«0,5; I; 2 «äs. They 
show that the variable physical parameters have relatively little 
influence on heat transfer, and quite significant influence.on the 
resistance. A somewhat unexpected type of variation in Nu as a 
function of T  /7Q was also found. For small values of the reduced 
length(p£—3T<10-*)» Nu increases, while at still higher values it 
decreases as 7S/7Q becomes larger. For all values of I, the resis- 
tance coefficient increases as 7S/7Q Increases. These features are n associated with the way in which the longitudinal and transverse - 
velocity components and physical properties are distributed over 
*-he tube cross sections at different'distances from the entrance. 
The variation in Nu and C as a function of 7 /7Q is observed chiefly 
vr'thin the thermal initial segment, whose length is roughly the same 
as for constant physical properties. For  x>/nT, these relationships 
regenerate rapidly, and Nu and £ approach the corresponding values 
ior constant physical properties, The reason is that at the fairly 
i.wr gas ficwrates corresponding to laminar flow, with large temper- 
ature differences at the entrance, the mean mass temperature of the 
.-•as varies rapidly along the length, and 7"P7f-»>l. The distance from 
un eim-ance at which T_/T  takes on a value close to unity wiljl 
roughly coincide with the length of the thermal initial segment. 

For the local Nu number and local resistance coefficient 5, 
interpolation equations describing the computational results to 
which +3% have been proposed [11]. 
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Por Tr 0,5 <TL< 2 ^X> 0.0005 

Nu =3.66(1 -exp(-.27X)]+aJr|,/,exp(-*J0, (7-82) 

where 

0=0,9054 0.123^; 
i 

b= 16,2-f3.90|j-; 

Nu«. *t. ; ^=^.4^ Fe=*i; 
a» 

Here T Is the mean mass temperature In the given section (found from 
the mean mass enthalpy for this section); A . Is the thermal-conduc- 

tivity coefficient of the gas at ¥; wQ is the mean gas velocity over 

the section at the entrance (i.e., for x ■ 0); aQ is the coefficient 

of thermal diffusivlty for the entrance temperature TQ. 

For 0,5<4-<3.»aX>0,0005 
T 

r.\- l»-4ß) (7-82a) 

where 

r. 4=64.«* i»=0,81 for 0,5<4^-< 1; 

i4 = 64.nd«=l,0 fori<y-<l^; 

/\ = 62.««/it=l,l forl^<i<3; 
r 

fww r* 

here pw" is the mean mass gas velocity; w  is the mean gas velocity 
in the given section; u . Is the dynamic viscosity coefficient of 

the gas at f. 

Equation (7-82a) has also been confirmed for helium and car- 
bon, dioxide (for  r,./7'>i)with the difference that for C02, when 
112 < I± <4 2 A - 62.«»m -1,25. 

Equations (7-82) and (7-82a) are valid for T    ■ const, values 

H 
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■ 

)fPfe« ««— >500and negligible Influence of free convection. The last 

condition will be satisfied if 

7.5. RESULTS OF EXPERIMENTAL INVESTIGATIONS INTO HEAT TRANSFER 

Several investigators have carried out experiments on heat 
transfer with viscous flow of a fluid in tubes [11, 13-19]. The 
mean heat transfer in tubes of various diameters and lengths was 
measured in the earlier studies [16, 17» 18]. The measurement meth- 
od was imperfect, so that the measurement results occasionally con- 
tained significant errors. The empirical formulas for mean heat 
transfer based on these measurements either neglect or make Improper 
allowance for the influence of several factors. Thus, for example, 
the formulas of Kraussold [16] and Boehm [18], cften recommended 

n 

.Mr - 

* 

It 

«f 

' 

■5 

-T- 4 

Pig. 7-15. Number Nu - f(x/d) 
for various values of VB/vzu 
with constant Pe. 

/_ •£«-« 0.00-0.1; *-.£l.0.31-IMC; i-p-mlfi-1X. 
I'm •*• •*■ 

«_ J?La20_30; «-•£- =250-«00. 

J.n the literature, do not properly allow for the influence of Pe 
and the ratio of tube length to diameter, and totally neglect the 
Influence of the relationship between viscosity and temperature. 

Measurements of local heat transfer have been carried out by 
the author together with Ye.A. Krasnoshchekov and L.D. Nol'de [13, 
14, 15]. The heat transfer was studied for viscous flow of grade 
MC oil in a round tube; the physical properties of the oil were 
f'-t determined experimentally. The oil was supplied to the tube 
from a stilling chamber through a nozzle of smooth configuration; 
there wir .. mixing device at the tube outlet. The local values of 
heat-flow density were found from the temperature drops in the 
thick wall of the tube, which was externally heated cr cooled. 
The temperature of the outside tube surface was held constant, 
while the temperature of the inside surface varied along the length 
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In accordance with the nature of the change in the heat-transfer 
coefficient. The experiments encompass the following ranges: Re 
betweeen M and 2100, Pr between 130 and 3900, and y /u„. between 

s zn 
0.07 and 1500. 

ä—:       - -               

■5^:::::      .,     ... 
'5v^::;;ri    :::: 
^S:5:S^„ 

rffH 
* $  * i fit* t  * % i >$ 

Pig. 7-16. Number Nu - f(z/d)  for various values of Pe at U_/M„. 
* 13-30. s zh 

J-Pea KM0>; J-Ptst-i»;    t-Pt = 3XP;    4-Vt ■ 
a J.3K)»:5-Pe= I .S-10*. 

Figures 7-15 and 7-16 show the change in local Nusselt number 
along tube length for certain characteristic experiments. Near the 
tube entrance, Nu is proportional to (x/d)"1'2, while a certain 
distance from the entrance it is proportional to (x/i)"1/'. When 
we consider that the velocity was distributed nearly uniformly 
over the entrance section, this type of variation in heat transfer 
near the entrance oan be explained by the simultaneous development 
of velocity and temperature profiles with the length. Velocity-pro- 
file development terminates at the end of the hydrodynamic initial 
segment, and the -1/2 power law becomes a -1/3 law. The latter cor- 
responds to the relationship usually observed for the thermal ini- 
tial segment with stabilized flow. 

Heat exchange with simultaneous development of velocity and 
temperature profiles along the cube length is considered in Chapter 
12. Here, therefore, we shall only give measurement results for val- 
ues of x/d  exceeding the length of the hydrodynamic initial segment. 
These results will clearly be valid for the entire thermal initial 
segment as well if the entrance velocity is parabolically distributed. 

Looking at Pigs. 7-15 and 7-16, we also see that when Pe is 
constant, heat transfer drops as us/Wzh Increases (Pig. 7-15), while 
when Ms/uzn stays the same, iieat transfer rises with increasing Pe 

(Pig. 7-16). Here Nu~Pe"s sufficiently far from the entrance.. Thus 
in complete agreement with theory, Nu is proportional to(l-.*\ m 

ii. the thermal initial segment for flow that is being stabilized. 

To account for the influence of the variable viscosity, the 
experimental data was represented as 

Nu ml *< \ 
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where Nu 's the experimentally determined Nusselt number; Nun Is 
^he Nusselt number (for the same value of p^) calculated on the 
assumption of coritant fluid physical properties; u and u .   are 
the dynamic viscosity coefficients at wall temperature and at the 
mean mass temperature of the fluid In the given section. We can 
use (6-59), which is valid ~-£-<0,01 as the simplest relationship 
for Nu«. 

I 0 

v» v at 4* 4w t ♦ 4i0 20 <# ttmm m *m mummt 
Pig. 7-17. Ratio Nu/NuQ as function of u /u^ with 
developed velocity profile at entrance. 

This treatment of the experimental data shown in Pig. 7*17 
leads to the following interpolation equation for local heat trans- 
fer in the thermal initial segment of a round tube: 

N-Los^^-^r. (7-83) 

The heat-transfer_coefficient in (7-83) refers to the local 
temperature head * - t.  The fluid physical properties entering into 
Nu and Pe are chosen for a temperature /=B-y-(/0-H). 

m Equation (7-83) is valid in the region of values ^—J-<0,01 
and o.07<—<1500 both when the wall temperature is constant and 
/hen it varies along the length (if the variation is fairly small). 

We integrate (7-83) over the length, assuming that u /u _ is 
constant, since the mean mass temperature t  varies little along the 
enfcth. As a result, we obtain an equation for the mean Nusselt 

number over the length: 

ru=1^4)-*(£) 1—0,14 (7-8i») 

u.n (7-84), the mean heat-transfer coefficient refers to the . 
mean logarithmic temperature head (since t  varies little with the 
length, so that the temperature head can ordinarily be replaced 
by the arithmetic mean). In the expressions for Nu and Pe, the 
physic .1 properties of the fluid and the value of y . are selected 

,     z« 
for a temperature     /-fc— j 6!t„.   Equation (7-8*0 can be used for 
values pL -£<o,05. 
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Equation (7-84) differs from the familiar formula of Sieder 
and Täte [17] only in a constant coefficient (1.5 rather than 
1.86). Tnus this formula gives values of heat-transfer coeffi- 
cients that are 20%  too high, which is not surprising, since it 
is based on experimental data that deviate by as much as lOOJf 
from the average curve. 

The ratio (w8/uzh) 
0 . Ik 

can validly be used to allow for the 

...fluence of variable viscosity in (7-83) and (7-84) for liquids 
(petroleum products, water, etc.) whose dynamic viscosity coeffi- 
cient decreases in roughly the same way with temperature as for 
the liquids employed in the experiments. Naturally, this way of 
allowing for variable viscosity is not suited to gases whose vis- 
cosities Increase with temperature. . 

To conclude, we note that (7-83) and (7-84) refer to the 
case of vis ©us flow of a fluid, where free convection does not 
have a substantial influence on forced flow and, consequently, 
on heat transfer. This condition is satisfied in approximation 
if Gt'Pr<S.vr,    where Gr^Sjl; A/ = |/C-*.M, is the fluid temperature 

at the tube entrance; and the physical properties in the Gr«Pr 
expression are selected for a temperature of t (tQ + tB)/2. 

U 

7-6. RESULTS OF EXPERIMENTAL INVESTIGATIONS INTO HYDRAULIC RESISTANCE 

It was shown In the preceding sections of this chapter that the 
relationships between viscosity and temperature has L  significant 
influence on the velocity profile and the resistance coefficient. 
Thus the relationships obtained for isothermal flow cannot be used 
directly in calculating the hydraulic resistance when there is,heat 
exchange. 

us  «*<w 

I I 

i 

Pig. 7-18. Relationship between X and Rezh ■ wip/y . for noniso- 

thermal flow of viscous fluids according to data of Kivel, MacAdams, 
et al. 
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The ^irst experimental investigations into hydraulic resistance 
i/ith noni- othermal flow of Water and air were carried out by N.A. 
Ilkheyev L20> 21] and by several American authors for flow of oils 
L17]. The data obtained in these studies (some of them are shown in 
Fig. 7-18) cover a fairly narrow region of variation in physical 
properties, chiefly viscosity. In this connection, together with 
Ye. A. Krasnoshchekov, we performed new measurements of hydraulic 
resistance for nonisothermal flow of oils [22]. The experiments were 
carried out for grade MC oil in a round tube and grade MK oil and 
transformer oil in a tube of rectangular cross section. 

The round tube had a relative length //<*«88;the rectangular tube 
had a side ratio of ft/ft-5,2 for the .cross section, and a relative 
length f/A-227. In neither case was there a damping segment, and 
the oil entered the experimental segments through nozsles of smooth 
configuration. The static pressure in the experimental segments was 
measured near the oil entrance and exit, and for the round tube, 
at the center as well. 

The mean resistance coefficient is found from the experiment 
by means of the relationship 

■($-')- C7-85) 

where Ap is the difference in static pressures for a" segment of 
length I  (measuring from the entrance); w* and pQ are the fluid 
velocity and density at the tube entrancej d is the diameter or 
equivalent diameter of the tube; k  iu a oorreotion for the hydro- 
dynamic initial segment (based on the data for Isothermal flow). 

I 4    I I ttfW      tt    I 

Fig. 7-19. Relationship between £ and 
Re for a round tube with various temp« 
erature regimes. 1) Symbols. 
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The method used In computing >~ for introducing the correction 
to the hydrodynamic initial segment is valid, strictly speaking, 
only for isothermal flow." Its application to nonisothermal flow 
is in great measure arbitrary, and the ,coefficient X found on the 
basis of experimental data and (7-85) makes allowance not only for 
the friction resistance, but also for the rearrangement of the 
•elocity profile in the stabilized-flow region. Processing of 
the experimental data has shown, however, that when such a correc- 
lon is introduced the relationship for the resistance coefficient 

is simpler and more general. 

Relationship (7-85) is valid provided the length of the tube 
segment / >ln***nfnj is the length of the hydrodynamic initial seg- 
ment. This condition was ordinarily satisfied in our experiments 
(the few experiments in which I < I       were disregarded). 

Figures 7-19 and 7-20 show I" as a function of Re for round 
and rectangular tubes. The individual lines on the graphs corres- 
pond to specific temperature regimes, each of which is character- 
ized by roughly identical values of t,, the fluid temperature at 

the entrance, and t  , the wall temperature. Thus the ratio yg/w0 
is roughly constant for each regime. The dashed lines pertain to 
isothermal flow CVS/UQ ■ 1). The lines corresponding to fluid 
heating are located below, and the lines corresponding to fluid 
cooling above the dashed lines. It is clear from the graphs that 
for Identical Re, the resistance coefficient will be greater the 

greater vs/v0' 

It is noteworthy that the lines for di ferent regimes have 
different slopes in logarithmic coordinates. This is understandable 
if we consider the results of the theoretical determination of hy- 
draulic resistance for variable viscosity (see §§7-2, 7-3, and 7-1»). 
When nc/(ii=r, the product TRe = const, so that the lines_ for isothermal 
flow have a slope n ■ - 1. For pcfa^*),  the product £Re depends not 
only on ys/uQ, but on Pe d/l  as well. Here if i»c/|i,<l(fluid heating),  ( ) 

then TRe rises as Pe-j- increases; ifi*c/m>l (fluid cooling), then 

5Re decreases'as Pe -j- increases. Thus the lines for fluid heating 

will have slope «>—1, vrhile for fluid cooling, «< —1.  The prod- 
uct £Re varies more as a function Pe d/l  the more y /yn departs s u 
from 1. Accordingly, the slopes of the lines in Figs. 7-19 and 
7-20 will depart more from -1 the more yD/un differs from l.

s 

s u 

Analysis of the experimental data indicates that the Influence 
of variable viscosity on the resistance coefficient is roughly the 
same for tubes differing in shape of cross section, and it can be 
taken into account by the parameters vs/vQ and Pe d/l.  This leads 

to the following interpolation formula for the mean resistance 
coefficient for viscous nonisothermal flow: 

F fc-£)" (7-66> 
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rt'»rtf!!«? fiafclon8hlP between f and Re for tube 

where Sa»6^p/Re is the resistance coefficient for isothermal flow, 
computed for the fluid temperature at the tube entrance. The con- 

pi    stant <p depends on the shape of the tube cross section, and is 
w    determined from the data given in §§5-2, 5-3, and 5-4. 

TABLE 7-5 

Values of Exponent n  in Eq. (7-86) 

*'r 

60 
100 

1000 
10000 
30000 

o.i 

0.77C 
0.667 
0,334 
0.246 
0,220 

IV/Hi 

0,673 0,583 
0,578 0,502 
0,290 0,251 
0,213 0,185 
0,191 0,165 

100 

0,505 
0.435 
0,218 
0,1«) 
0,144 

1000 

0.44" 
0.37 • 
0. |8:, 
0,139 
0,125 

The equation 

t=c(Pe£)-(£)--' -MM 

C7-87I 
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Pig. 7-21. Tae group \{~\ %-«has a function of Re 

for round and rectangular tubes. 
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1) Channel shape; 2) direction of heat flow; 3) 
symbols; h)  round; 5) cooling; 6) heating; 7) rec- 
tangular. 

was selected for the exponent n, where C  and m are constants; 

for Pe42-<1500 C--=2.30; /w = -0,3; 

for Pc £ > 1 500 C ---■ 0,535; m » - 0.1. 

The Re and Pe numbers in (7-86) and (7-87) are computed from 
the equivalent diameter and values of the physical properties at 
the temperature of the fluid at the entrance. Table 7-5 shows 
values of n  calculated from (7-87). 

Figure 7-21 shows results obtained by generalizing the ex- 
perimental data on the basis of (7-86). As we can see, for the 
vast majority of experimental points (more than 95%) the devia- 
tion from the curve corresponding to (7-86) dees not exceed 12%. 
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Fig. 7-22. Ratio T/£0 as func- 

tion of y8/u0 and Pe de/l  on 

basis of Eq. (7-86) . 

0 

n 

Equation C7-86] is valid for liquids in the region of values 
"if 

Re<2300;0,08<tic/no<1200;60<Pe j<3'104 and, naturally, when free con- 

vection has no influence (see §7-5). 

Figure 7-22 shows the_ratio f/£0 calculated from (7-86); it 
clearly demonstrates that Z  varies substantially not only with 
changes in V./VQ,  but also in Pe de/l;  the influence of y8/Pg 

drops as Pe d /I  increases. 

Equations of type (7-86), but with constant n, have been 
proposed before. Thus, according to the data of [17], n ■ 0.25, 
while according to [21], n ■ 0.33. In the last case, moreover, 
the ratio Pr /Pr h is used in place of ug/u0; for most fluids 

under ordinary conditions, this r tio deviates only slightly from 
u /u . .• As Table 7-5 shows, the exponent n varies widely (from 
s zh 

0.776 to 0.125). It is thus clear that these relationships are 
more special in nature, and correspond to narrow ranges of varia- 
tion in Pe dQ/l  and ug/u0. 

Manu 
script 
Page 
No. 

Footnotes 

163 

165 

JIn this case, w    is nonzero only as a result of de> 

formation of the velocity profile along the length 
owing to the dependence of viscosity on temperature, 

2For more details, see [9]. 
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1^5      Vr 2  heat~transfer coefficient o ls^ referred to the 
local temperature difference t    — t. 

167     'That Is, neglecting molecular transfer of heat and 
momentum In the axial direction, as well as all forces 
acting radially. This means that the radial velocities 
are assumed to be small as compared with the axial 
velocities. 

17M     Sfith nonlsothermal fluid flow, where the viscosity 
and other physical properties do not remain constant, 
the actual concept of the length of the hydrodynamlc 
Initial segment requires refinement. In the general 
case, It Is desirable to take as the length of the 
Initial segment the distance from the'tube entrance 
at which the boundary layer developing at the walls 
fills the entire tube cross section and the Influence 
of the initial velocity distribution vanishes. It fol- 
lows from this definition that the velocity profile 
and resistance coefficient will remain constant beyond 
the initial segment for isothermal motion, while there . .   .-*■ 
may be a variation along the length for nonlsothermal     I* 
motion. In the latter case, full stabilization of the 
velocity profile can set in only after there has been 
full equalization of the temperature over the flow 
cross section. 

17*1     5The slopes of the lines in Pig. 7-19 vary within nar- 
rower limits than in Pig. 7-20. The reason is that the 
experiments with the round tube correspond to higher 
values of Pe d/lt  where fRe depends little on Pe d/l. 

177     'The values of uQ and uzh also differ negligibly, since 

the fluid temperature varies little along the length in 
the thermal initial segment. 

Manu- 
ln* Transliterated Symbols 
No. 

li»2 c ■ s ■ stenka ■ wall 

151 H.C ■ i.s ■ isotermicheskiye soprotivleniye » isothermal 

resistance 

167 H.T ■ n.t ■ nachal'nyy termicheskiy ■ initial thermal 

168 x ■ zh - zhidkost' - fluid 

171 JI ■ 1 ■ logarifmicheskiy ■ logarithmic 
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174 

174 

H.r * n.£ « nachal*nyy gidrodlnamleheakiy ■ Initial 

hydrodynamic 

a « e ■ ekvivalentnyy ■ equivalent 

I I 
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Chapter 8 

HEAT EXCHANGE IN ROUND AND FLAT TUBES WITH CONSTANT PHYSICAL 
PROPERTIES OF THE FLUID AND BOUNDARY CONDITIONS OF THE SECOND 
KIND 
8-1. HEAT EXCHAN6E IN A ROUND TUBE WITH CONSTANT HEAT-FLOW DENSITY 

AT THE WALL 

We first assume the following conditions: r~ 

1) the flow and heat-exchange processes are steady; 

2) the physical properties of the fluid are constant; 

3) the velocity profile is parabolic over the entire length 
of the heat-exchange segment; 

k)  the temperature at the entrance to the heat-exchange seg- 
ment is constant over the cross section; 

5) a constant heat-flow density is maintained at the inside 
surface of the tube walls; 

6) there are no internal heat sources in the flow, while 
the heat of friction is negligibly small; 

7) the variation in heat-flow density owing to axial heat 
conduction is slight, and can be neglected. 

Conditions 5, 6, and 7 show that the mean mass temperature 
of the fH'iid varies linearly along the length of the tube. In fact, 
from the heat-balance equation we have 

or, in dimensionless form, 

Tt=s^"T' (8-1) e=i^=-L-^ 

where Pt=wdla; t0 is the constant for mean mass temperature of the 
fluid at the entrance. 

Thus the mean mass temperature of the fluid is given in this 
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case wWe the wall temperature and heat-tranafer coefficient must 
be determined. 

The problem formulated corresponds to an energy equation 
analogous to (6-2), except that the dlmenslonless temperature Is 
defined differently In this equation: 

The boundary conditions are 

•ft «-• (*)„-» -(&)„.,=T-    (8"3) 

Here 

ft—<— <«  o_ *"  y_ 2 * 

1. We first consider the solution of this problem for the 
r-»    region far from the tube entrance, where the Influence of the 
I./    specified temperature distribution In the entrance section be- 

comes unimportant [1]. We can assume that here the excess-temp- 
erature field t - t  (or 0-0) will be selfslmilar with respect 
to the X  coordinate. Thus the solution is representable as 

e-AX+1(R). (8-4) 

where it is a constant and f(R) is an unknown function. 

Substitution of the expression for 0 into (8-2) yields 

£(*£■)-*<!-*>*. 

Integrating this equation from Q to R  and considering that 
f'i.0)  ■ 0, we have 

■Ä-T}<|
-*'««-*(T-T)- 

Using the third boundary condition of (8-3), we find A  » 2. 

A second integration yields 

/(*)=4-£+c' 
wKere C  is a constant of integration. 

Substituting the expression for fCRl  into (8-4), we obtain 

Evaluating the mean mass temperature by means of the equation 
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0"=4 (9(1 -R*)RdR 

and comparing the result with (8-1), we find C  - - 7/48. 

Thus the temperature field far from the tube entrance Is des- 
cribed by the equation 

•—y-K-.T+T* -T*-TT        (8.5) 

The wall temperature Is 

*-^I-PT4+TP C8-6) 
while the limiting Nusselt number Is 

Nu^^-^-^Oc -9")"Hr~ **• C8-7) 
The results obtained correspond to a region, far from the tube 

entrance, characterized by Identical radial temperature distribu- 
tions In different tube cross sections, a linear variation In 
temperature with length, and a constant value of Nu. Expression 
(8-5) is thus a particular solution of differential equation (8-2) 
for the region of stabilized heat exchange. 

2. We now turn to a study of heat exchange in the initial tube 
segment [2, 31. To do this, we must find a general solution of (8-2) 
that will satisfy both the boundary condition at the wall and the 
boundary condition at the tube entrance section. 

In (8-2) and (8-3) we go from the temperature 0 to the tempera- 
ture 

where 0# is the known particular solution of (8-2) for the region 

of stabilized heat exchange: 

©• = 2^4—5- R*      g~^*"~"48' 

Then the mathematical description of the process will take 
the form 

W'Tir-11 K)lx' (8_8) 

e,(o, Ä)«-(4-«'—r*#-ar) 1 

(*L-*(*L-a   f (M) 

A solution can be constructed for this problem with homogen- 
eous boundary condition at the wall in analogy to the solution of 
the problem considered in §6-1, 
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The particular solution for 9,  can be represented as 

Ö. =*(*)? W=4t(tf)exp(-.«Jir), 

where A and e are unknown constants, and #(/?) is an unknown func- 
tion . 

Substituting this expression Into (8-8) and going from the 
variable R to the variable eff, we obtain 

Representing iJ/Ce/?) as a power series 

♦ (•/?)= V6,,, (./?)-, 

3 

** 3 

we determine the series coefficients from the preceding equation. 
The relationships for the coefficients b* (n-0, I,"2"..Tprove to be 
the same as the relationships found earlier for the coefficients 
&2    in the problem of heat exchange at t    ■ const  (see $6-1). 

IX 

0.8 

0,6 

ofi 

o* 

oft 

-0.Z 

-ofi 

-OJS 
o  oj oA %6 a« v 

Pig. 8-1. Function tJ>,(Ä)  in 
problem of heat exchange in 
round tube with q    ■ const. 

T\ 
• 

'S hi 

Satisfying the condition(oe/<?/?)R«i-0,or, what is the same» 
ty'(E/?)]n~i-0,      we obtain 

^«•'"-'«O ? 
»=u 

This equation has an infinity of roots (eigenvalues) e.(£ ■ 
* 1, 2, 3...). The first seven of them, found by computer [2] are 
3hown in Table 8-1. The limiting values of e., corresponding to 
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tr« '   *  «'  it,' 'K •♦ 

large i, equa". e««4J+!-y 

The eigenvalues «<(/-il, 2,3 ...Correspond to the elgenfunctlons 
♦(*/?,««) =1><(*)-  Figure 8-1 shows the graph for the first of these, 

Thus the general solution has the form 

ö.=£4M*)exp(-«ifX). 
Iml 

(.8-10) 

The coefficients A.  can he computed from the known dlstribu- 
tlon of 6j at the entrance on the basis of the orthogonality pro- 

perty of the elgenfunctlons, 

A« 
JMO '. ä)+«(ä)ä(I —«■)<«? 

as 
The ultimate equation for the temperature field can be written 

X 

i t 

+jA*W)«p(-ftfi»ä'). 
(«I   • 

(8-11) 

'.* 

i,0 

0.8 

0.6 

Of, 

0,1 

0. 

"2 Ä—rf \ ) v 

vS ^ 

N J^ A 
N V .• / 

V y ̂  

* /? 

uo 

0.8 

0.8 

0.4 

0.2 

s   / 
X 

?/ // [/ 
>4 

. / 

A ̂
 

^ 
■' *J 

(0     W      0       ft*     '.0     0 ao5    a»    vs    m   m   ox 

Pig. 8-2. Temperature distribution in flu- 
id flow along radius and along tube length 
with q    ■ const. 
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TABLE 8-1 

Values of Constants for Problem of 
Heat Exchange In Round Tube with 
<» ■ const 

1 •? •   ♦, <>> *i 

1 
2 
3 
4 
5 
6 
7 

25,6796 
83.8f.l8 

I74r167 
296.536 
450.947 
637.387 
865,850 

—0.492517 
0.395508 

—0.345872 
0.314047 

-0.291252 
0.273808 

-0.259852 

0.201741 
-0.087555 

0.052797 
-0,0365402 

0.0275178 
-0.0217416 

0,0177966 

i I 

i 

Figure 8-2 shows a graph of this relationship. 

The wall temperature Is 

00 

+ JjM*(l)exp(-2.^.f). (8-12) 

The values of A.  and *,(1) are given In Table 8-1. 

The Nusselt number, found from the relationship 

will equal 

Nur 

Nu= *!« (8c -§)-', 

^+yj^J(.)«p(-2.?^-.-5-) 
C8-13) 

I  JC Figure 8-3 shows the relationship between Nu and pj—7- 

For sufficiently large values of the reduced length, the Sum 
of the terms of the series in (8-11), (8-12), and (8-13) approaches 
zero, and the equations go over to the relationships found previous- 
ly for the region of stabilized heat exchange. 

Determining the length of the thermal Initial segment from 
the conation Nu,«,/ -f.OINu«, we obtain 

i^-«=:0,07Pe. 

Thu<* for the heat-exchange problem, when q    • const the values 
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u f i ♦ i * $ &'v t   11 • ii et* 

"•lg. 8-3. Variation in Nu along length of round tube with a    ■ const 
(solid line) and ta  » const (dashed line). s 

of Niu-4,36«-/«.T/rf"prove larger than for the problem with t    *  const 
(see §6-1). 

Por small reduced lengths, it is inconvenient to use (8-13) 
in practical computations, since many terms of the series must 
be computed. Por small X,  it is far more bonvenient to use the 
approximate solution for the problem of heat exchange in the 
initial segment q    ■ const [3]. This solution, similar to the Lev- 
eque solution for tg ■ const (see §6-3) leads to the following 
equation for the local Nusselt number: 

Nu= 1,301 (pL-3-)" (8-1U) 

According to data of another approximate calculation (see 
§12-1), the coefficient in (8-14) equals 1.31 rather than 1.301. 

Equation (8-11) can be used for values of ^—£-<0,001» 

For values of pr-f-^0,001» tne following interpolation equation 
is valid: 

Nu = 4,364+ 0.2633 
( I    x y.»M      7Ä   1    x \      ' (8-11a) 

which describes the results of calculations carried out with high 
accuracy by a numerical method, with no more than 0.5% deviation. 

The following interpolation equation can be used for almost 

the entire region of the thermal initial segment (for-i-.-|-<0,037) 

Nu«l,3l(It-f)"
T(l+2Ii«f). (8.15) 

which yields an error not exceeding +1J5. Por ^-^->0,037we can take 
Nu *» ^„,=4,36 with an error of about 5%. 
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8-2. Ht.HT EXCHANGE IN A FLAT PIPE KITH CONSTANT HEAT-FLOW DENSITY 
THAT IS THE SAME FOR BOTH HALLS 

Let us look at the problem of heat exchange for a fluid flow- 
ing between parallel plates; the heat-flow density Is maintained 
constant and Identical for both plates. In all other respects, the 
problem is analogous to the one considered in the preceding section, 

In this case, the mean mass temperature of the fluid will also 
be given by the equation 

FW.+-M-, 

or, in dlmenslonless form, 

9—£s—re-Tp (8-16) 

where a » 2rQ  is the distance between the plates; Pe ■ wh/a  is the 
Peclet number. 

The wall temperature and heat-transfer coefficient must be 
determined. 

For fluid flowing in a flat tube, the temperature field is 
described by the following equation, with allowance for Conditions 
1, 2, 3, 6, and 7 (see §8-1): 

£-T<»-»">*• (8-17) 

The boundary conditions for constant fluid temperature at the 
entrance and constant heat-flow density at the walls is written 
as 

Here 

e(o.n=o;(^o=o-(^-)r-r4-. (8-18) 

e= 2ir 

The asymptotic (particular) solution of (8-17), satisfying 
the second and third boundary ccnditions of (8-l8) and valid in 
the region of stabilized heat exchange, has the form' 

6 —U~J'— 2 

¥ R—£ B~ t   v«     39 
"*I5"f —5eö- (8-19) 

To obtain a general solution of the problem that will also 
satisfy the boundary condition at the entrance, in (8-17) and (8-18) 
we go from 0 to e,=0 —8,. Then in place of (8-17) and (8-18), we 

obtain the following equation and boundary conditions: 
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TABLE 8-2 

Values of Constants In Problem of 
Heat Exchange In Plat Tube for q   ■ 
■ const 8 

1 •i •? ♦,<■) *<      ' 

1 
9 
9 

4,28732 
8.30372 

12.3114 

18.3803 
68.9618 

151.8708 

—1.26070 
1.4022 

—1.4911 

0.087812 
—0,025862 

•    0.01258 

C8-2Q) 

(8-21) 

(8-22) 

The general solution of the problem formulated, found In 
M hy the usual method of separation of variables,* has the form 

is I 

(8-23) - 

where « are the eigenvalues and eigenfunctions of the equation 

f+6«(l-K»)^-0 (8-21) 

under the boundary conditions 

^'(0)-o—i|>'(l)=.0. 

Substituting ty(Y)  as the power series 

O 

0 

tm-Ew- (8-25) 
B=0 

into C8-24), we see that the relationships for the coefficients 
*i» («-0. i. 2...) are identical to the relationships obtained earlier 
for the coefficients of the same series in the problem of heat 
exchange for t_ ■ const (see §6-2). 

The expression for ty(X)  satisfies the condition t|>'(0) ■ 0. 
Expression (8-25) satisfies the condition ^'(1) ■ 0 for eigenvalues 
*(i~l, 2,3...), that are roots of the equation 

V 2/i61B=0, 
nmO 

where ftv*I, A,«—i, etc 
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t 
t I 

o 

o 

*•„■ 

(8-27) 

The firat three values of e. are gTwi in Table. 8-2. 

The coefficients A. In Series (8-23) are found from the rela- 
tionship 

i 

Je,<o. n*«(Wi-r»)*r 
4—-£—i . 

e 

With the aid of the Qraetz method (see $6-1), the expression 
for the A . can be reduced to a form more convenient for computa- 
tion:   x 

From (8-19) and (8-23) we obtain the final equation for the. 
temperature field: 

+£^wexp(-4.;,L..jr> 

The wall temperature is 

T 

H-fj^dJexpf-S..;^). 

The local Musselt number is 

Taking (8-16) and (8-28) into account, we find 

Nu« 5       " . 

(mi 

ihe values of the constants m, i4<«*»iMl) are given for < ■ 1, 
2, and 3 in Table 8-2. For i > 3, the values of the constants 
can be found from the following equations": 

(8-28) 

At = (-1)'+«. 1,2363«; 
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obtained with the aid of the asymptotic solution for large e^ [4], 

The Uniting Nusselt number is 

^.«^«4.12. (8-30) 

The length of the thermal initial segment found, as usual, 
from the condition No».iM«l,0lNttA. is 

-^i»0.079Pfe. (8-31) 

8-3. HEAT EXCHAN6E IN A FLAT TUBE WHEN THE HEAT-FLON DENSITY IS 
CONSTANT BUT DIFFERENT FOR EACH HALL 

• 1' 

The sole difference between this problem and the preceding 
is that the heat-flow densities are not the same at the walls of 
the flat tube (nonsymmetric boundary conditions). Let the heat- 
flow density be qal at one of the walls and <7s2 at the other; 

We find the mean mass temperature of the fluid from the 
heat-balance equation: 

««   ?^2L       *   * (8-32) 
—a— 

If we introduce the dimensionless temperature 

8- '"'* 

(8-3*) 

then the nonsymmetric boundary conditions at the walls are written 
as 

("3r)K..a=5Ä75 \'sr)r^-isa~^+^'' (8"33) 

Under boundary conditions (8-33)* the asymptotic solution of 
(8-17) for the region of stabilized heat exchange will have the 
following form: 

1 Y*     39 -4- 1'i ~4'*    Y 
!€'       560~ 2 (?„+*>•) ' 

When fl'oi-Vc«, Eq. (8-31») goes over to (8-19). 

A general solution of the problem has been obtained in [5]; 
it satisfies not only the conditions (8-33) at the wall, but also 
the condition 0(0, I)  ■ 0 at the entrance. 

As in the preceding sections, we introduce the dimensionless 
temperature 0 - 0f. This new independent variable is conveniently 
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represenied as the \m of two functions: 

(8-35) 
It is not difficult to se« that the problem now splits into two problems. 

To determine the function 9^(1, I) we have the equation 

S^—rd-i")«** (8-36) 
and the boundary conditions 

».(P.n—(-f-i'*-Ä)i} 

for the function ©2(X, I)  we have the equation 

and the boundary conditions 

MH)~n(*X--*(*)L.-* 
TABLE 8-3 

Values of Constants in Heat-Exchange 
Problem for Flat Tube with Nonsymme- 
trlc Heating jtejjfo«) 

(8-37) 

(8-38) 

(8-39) 

o 
i 
2 
3 

2.263106 
6.29768 

10.3077 
14.3141 

«<<»> 

5.121649. 
39.6608 
106.249 
204.803 

-I.  
0.5454$ 

-0.36889 
0.2710 

0,4  
-0.21224 

0.14098 
-0.1085 

The even function e, is a solution of the symmetric problem 
Wsl • qs2)  which was obtained in the preceding section: 

®.-|^(K)exp(-4.;^. ca-23) 

Similarly, for the odd function 02 we obtain the solution 

e.-jDAMexp/^.;*), (MQ) 

vhere 
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D*=-JSG 
.. r-i 

0(K)-£o.r», («=-1,3.5...); 
«at 

«,= 1. 0,= j- 

here the at. are roots of the equation V nan=Q(n=lt 3, 5...). 

The first four values of «. are given in Table 8-3 together 

with the corresponding values of D.  and ff.(l). The following equa- 
tions are valid for i  > 3: 

. s 
DiÄ(-l)«

+,-2,4727«7T; 

5 

C<(1)=(~1)«.0,97103-7
T. 

Thus on the basis of (8-35) we can use the expressions found 
for ©t, ©j, and ©2 to determine the temperature at any poinc in 

the flow: 

2 C8-35a) 

+9'^y>+2^S-e.^n 

Substituting the values of 0§, elf and 02 from (8-34), (8-23), 

and (8-i»0) into this equation and letting I - 1, we obtain an ex- 
pressionfor the temperature of the first wall (at which the heat- 
flow density equals $..,): 

<M-<. 2    x   ,   17  , 

Ifri + fei) "jäf 

x[i+jiw(i)op(-T"!')} (8-i,1J 
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Subtracting (5-321 fro» (JB-4H, «e can obtain tU difference 
between he temperature of the first wall and the mean mass temp- 
erature of the fluid In a given section, as well as the Nusselt 
umber far the first wall. Multiplying this difference by (q .  ♦ 

+ ?s2)/2 and dividing it by qBl$ we finally obtain       
8l 

xj*Wl)o» (-f'fK-T>H"(' -&)X 

s 

X[l+^AA0)«p(-4«fii-'-f)]- C8-*2) 

Similar expressions are obtained for Nu2 and * 2 (second wall) 

simply by replacing the subscript "si" by "s2" cuid Ho*  versa In 
v8~*»2). When qg2  - qsl, Eq. (8-l»2) goes over to (8-29). 

Figure 8-4 shows the change In the dlmenslonless teaperature 

difference fr j>* (the reciprocal of NUj) along the tube length. 

The curves for the various values of ?s2/*sl correspond to the fol- 

lowing conditions: **?«—-I: the heat supplied to the first wall 
equals the heat taken from the secord wall (here t  remains constant 
along the tube length); W?ci-0: thj second wall Is heat-Insulated, 
I.e., heat Is neither delivered nor removed through It;  fatfo«i«I: 
heat Is Identically supplied (or removed) through both walls; 
7ca/<7oi=-2:  the heat supplied to the second wall Is 2 times that 
supplied through the first. 

w 
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-t 
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r—-i 

r     1 ..4- 

f 
0.2 

0.1 
X 

if 
«aj aw a» a» 

Pig. 8-i*. Variation In 

length. 
along tube 

f* 
"«toKj 

(f 

4 

L. 

0 «ft) 
*J    -*    w      0      I      I 

Fig. 8-5. Numbers Nu 1« 
and Nu2w as functions of 
<?s2/<?sl- 

When A'«^--*--».*>, the series on the right side of (8-42) 
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approach teru, and we arrive at the following expressions for the 
limiting Nusselt numbers: 

«y.  ■■" 

M«T 
"w     " ^fl 

(8-43) 

These relationships are shown In Pig. 8-5. Thus both Nuw and 
the length of the thermal Initial segment depends on the relation- 
ship between the specified values of heat-flow density at the walls. 
For symmetric heating (qQ2 » <7sl)> as we can see from Fig. 8-4, the 
thermal Initial regment will have minimum length. 

8-4. HEAT EXCHANGE IN A ROUND TUBE WHEN THE HEAT-FLOW DENSITY 
VARIES ARBITRARILY AT THE HALL HITH THE LEN6TH 

1. Th£ problem of heat exchange In a round tube with q    - const   \ ) 
Csee §8-1) can be generalized to the case of arbitrary variation In 
qm with tube length, as was done In §6-5 for heat exchange with t    - 
B S 

• const. This problem has been considered elsewhere [2, 6]. 

When qm  ■ const, the solution for the wall temperature of a 
round tube has the form 

'•-'.=¥ [K-'T+TT+II^W-Pf-^lt-T)]-    (8-12) 
/s»l 

Now let the heat-flow density <jg be a specified function of ». 

The ?_(*) curve can be represented as the result of summation of 

unit disturbances dqs  (Pig. 8-6). If a finite unit disturbance 

A<7 takes place at a point with coordinate £, and this disturbance 

remains unchanged when x  >_ £„ then the wall temperature occasioned 
by this disturbance will equal, in accordance with (8-12): 

+P*o)«?(-*',i-'-^)]. 

If a series of unit disturbances takes place, since the energy 
equation is linear in the temperature, we can represent the solu- 
tion for the w&ll temperature as a sum of expression of the type 
(8-44); replacing Aq8 by the differential dq3  and going over from 

this sum to the integral [the right side of (8-44) is integrated 
by parts], which corresponds to continuous variation in q    with 
the length, we obtain an expression for the wall temperatSre in 
this caser 
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"*• 8-6- Heat exchange ln a 
round tube with arhltSp» vaV- 
Utionta h..t.nc, A™; 

O 

O 

fl *'".♦■ <0 

Introducing the dimensionless quantities 

(8-45) 

where <?s and <jf"s are the local and length-averaged values of heat- 
flow density at the wall, I is thelength of the heated segment, 
and letting Ar««.-&Ji4«t«(l),  we write (8-45) in the form 

flu—*-*.       I    /   v 

(8-47) 

XK4+i*,e*[-*.*K->T<*-«]}»»Ä (8-1.6) 

Prom the heat-balane* «m..«.* 

Since by definition the Nusselt number equals 

NUsmZL^-Jä ttö 

on the basis of (8-46) and C8-47) we obtain 

Nu«—.—.___ ?(*) •      
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» v u u d* i$ J^ v-Jut it~i 
Fig. 8-7. Distribution of heat« 
flow density (dashed line) and 
Nu (solid lines) along tube 
length. 

Pig. 8-8. Number Nu as function of x/l tor q 
lines) and qa  - const (dashed line). 

O 

- sin Lux/I)  (solid 

To.evaluate the integral in (8-48), we assume that within the 
limits   0<x<1t, the function <p(5) is continuous and differentiable 
together with its derivatives, so that it can be expanded into 
Maclaurln series: 

where m can take on values between 0 and *. 

Substituting Series (8-^9) into (8-18) and evaluating the in- 
tegral In the denominator term-by-term, we finally obtain 

Nu=- 

where fc-fcf^-J.; P,^'-^ • P,ft,iSj^. 

—• (8-50) 
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If m * afr then?(2)-6.»land CÖ-5Q) goes ever to C8-13J for 
qm • const. 

8 

As an example* we consider a specific distribution of heat- 
flow density over the length, In the for« of the following poly- 
nomial 

*• 

8-7. 

£*.tCx)«MB - 0,!27Jc+2.967>-3,3WS».      (8-51) 

This relationship Is represented by the dashed line In ?lg. 

Substituting the values of the coefficients ** ku b% «* b% from 
(8-51) Into (8-50) and performing the appropriate computations, we 
obtain a family of curves (the solid lines In Fig. 8-7), whose 

parameter Is the number jL.^.. For R-^— OO, the coefficient *(-»<». 

and the exponential term and the function Pj(2)  In (8-50) approach 
zero, so that Nu approaches Nu.-~ -4,36. This result Is explained 

by the fact that In a very long tube the per-unlt variation In qm 

Is small. 

»m* ♦ i» t«« a * *• $v 

Fig. 8-9. Number Na-/(pL*j for qB -  sin (ir*/t) and p^-f-cis. 
Solid line) Theoretical computation; points) solution using hydrau- 
lic integrator. 

\ 

Nu 

^s 
^ N 

^^"•■■w 
g ■»              7 
7 
e 
s 
^ ** 

3 

t 
i 4 . F «7 IS«          l i i * l 3 678 ft 

Fig. 8-10. Number Nu ■ fCx/ll  with truncated-sinusoid variation 
of 1S' '"ir-lr-ft»»-wT-0'08i,-,K-T-0',i*-Tr4-«(solution obtained with 
hydraulic integrator). 
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This way of detennining the heat exchange can be used for var- 
ious laws governing the variation in q&  with length. In addition, 

a method has been proposed [7, 8] for determining heat exchange In 
round and flat tubes (in the latter case, for one- and two-sided 
heating) where the heat-flow density varies in accordance with, a 
sinusoid and a sinusoid truncated at the ends. These cases are of 
particular interest in nuclear-reactor engineering, since these 
are roughly the laws governing the heat-flow distribution along 
the axes of the fuel elements. 

Figure 8-8 shows tne variation In the local Nu number along 
the tube length with a slnusoidally distributed heat-flow density 
tqs  - sin (*«/Z)]; the curves were found by the method of C7]. For 

comparison, this figure also gives the corresponding relationships 
for qB  ■ const. When qa  is distributed slnusoidally, Nu is higher 

In the thermal Initial segment than when q   « const. At the end of 

the tube, Nu drops off rapidly, approaching zero. When the reduced 
length is sufficiently great, Nu remains nearly constant and equal   _ 
to 4.36 at the center tube segment; this segment will obviously be  Q 

longer the greater J--4-- 

As In certain other cases of convective heat exchange, to solve 
problems involving heat exchange with arbitrary variation in q   or 
ts  with the length, we can successfully employ analog computers9 
In particular hydraulic integrators. Figure 8-9 compares the results 
of a hydraulic-integrator solution to the problem of heat exchange 
in a round pipe with sinusoidal variation in q   with length and 

the results of a theoretical calculation by the method of [7]. The 
good agreement of these results confirms that hydraulic integrators 
can be used for such computations. 

Figure 8-10 shows the results of a hydraulic-integrator solu- 
tion of the heat-exchange problem for a round tube when there is     {  ■ 
a truncated-sinusoid variation In qm : ^s 

Each curve of Fig. 8-10 corresponds to a specific value of 

pg-.y.  The curves are the same In nature as for a sinusoidal var- 

iation In qot  but when x « l,  Nu is finite.6 

2. In a previously cited study (see §6-6), V.D. Vilenskiy 
has Investigated the influence of the way in which qB  varies s 
along the tube length on the onset of selfsimilar heat exchange 
and on the limiting Nusselt number in fairly general form. The 
analysis was carried out for flow In a tube of arbitrary cross 
section under the same conditions as in $6-6,  with the sole dif- 
ference that in place of the distribution t'Cx), the distribution 5 
qaCx)  of heat-flow density at the wall was specified. In this case, 
5 
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ehe temperature field in the fluid flow is described by (6-76) with 
Condition C6-77) at the entrance and the following condition at the 
wall: 

*—(*!*-♦» £3 
(8-52) 

Here Qt-qt4J3J*; *(X) is a specified function characterising the 
length distribution of a  j the remaining notation la the sane as 

S 
in §6-6. We assume that the function $(X)  exceeds aero (for 0 < X < 
< «0, and that it is continuous together with Its derivatives. For 
the case under consideration, it has been shown that If * possesses 
the property such that the limits 

liu **•$£!«& 

exist, where the functions x are described by the relationships 

£.=♦; 

X«=—2jp A«-IX«-I» 

O 

L 

and /(»>—ft. wtw.jl.^o is the first eigenvalue of the problem 

VW Z)+vWMr> *)«0, (8-53) 

then when I -*■ *, 0 can be represented as the asymptotic series 

e«4ft0*+2^<r.4fr(i). (8-5*) 
««0 

where the 9n are solutions of the problems 

v"P.--j?.r«?,—f*"5 

lanr-r,"11» 

0. 

(8-55) 

When A', = 0, the corresponding function of ?« is determined 
only to within a constant. The constant is found from the condi- 
tion 
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I r,p„rff=o. 
Ir exact analogy to the case In which the wall temperature is 

specified, Series C8-54J terminates if.for a certain *=*„—• ^—ff.; 

here the difference between the exact solution and Its asymptotic 
representation approaches zero, since «p(—"*,*), 

If 

1  **     ~     V 

O 

then for I ♦ •, 

•^T-JtW^+^^f^^)^^^!*^«?^)*.   (8-56)     ^ 

where n^ Is the first normalized elgenfunction of (8-53). 

It follows from (8-54) and (8-56) that when the heat-flow den- 
sity Is specified at the tube wall, stabilization of the tempera- 
ture field in the fluid flow and, consequently, stabilization of 
the heat-transfer coefficient, will take place under the same 
conditions as when the wall temperature is specified (except that 
restrictions are imposed on the law governing the variation in 
heat-flow density at the wall) (see §6-6). 

Prom (8-54) we find that when -£<£«<+oo 

NuJKoZ.)^^— (8-57) 

Thus in the case under consideration, Nu is determined by 
the tube geometry, the coordinates of the perTmeter point considered, 
and the value of the parameter g0. 

When A« <— ui,Nuw*0, which is not difficult to show, using Ex- 
pression (8-56). Physically, the explanation is that In our case 
for large X  the heat-flow density at the wall approaches zero more 
rapidly than does the difference between the wall tenroerature and 
the mean mass temperature of the fluid. 

Figure 6-15 shows Nu as a function of the parameter JT0 for 
heat exchange in a round tube (curve 2). Jt is interesting to note 
that if KQ  and if«»—HI, then when KQ  and KQ  have identical values- 

(and also when /Co-A'o-Ofor K±  ■ 0) , the values of Nuw will be identi- 

cal, regardless of which varies, the wall temperature or the heat 
flow at the wall (see §6-6). 
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8-5. HEA EXCHANGE IN A ROUND TUBE WHEN THE HEAT-FLOW DENSITY AT 
THE MALL VARIES ARBITRARILY OVER THE CIRCUMFERENCE 

So far, we have studied heat-exchange problems under boundary 
conditions symmetric with respect to the axis (uniform distribu- 
tion of tQ  or q&  over the circumference). In this case, naturally, 
the temperature field will also be symmetric about the axis. Pol- 
lowing [93, let us look at an elementary problem with asymmetric 
boundary conditions. Let the heat-flow density at the wall be con- 
st ant over the length, but variable over the circumference. Elim- 
inating the thermal Initial segment from the analysis, we shall only 
consider the region of stabilized heat exchange. All other condi- 
tions are the same as In §8-1. 

With allowance for these assumptions, the energy equation will 
take the form 

«(SH4*+^)-*(«-f)8- (8-58) 

Since the heat-flow density at the wall Is constant with length, 
while the heat-exchange process is stabilized, at every point In 
the flow 

1. Let the circle segment with angle 20 (Fig. 8-lla) be heated 
with constant <?g, and let the entire remaining tube surface be heat- 

Insulated (q    ■ 0). We then have from the heat-balance equation 

df       2rjfq, 
äx llfgfC,» 

We Introduce the temperature 

d(r, qO-<(r,9,*)-F(*) 

and the dimensionless radius R ■ r/rQ. Then with allowance for the 
relationships given abcve, Eq. (8-58) can be written as 

where 

m+irm+w •dp*akV - *">• 

A = l^. 

(8-59) 

For the case shown in Fig. 8-lla, the boundary conditions 
will have the form 

for ß<9<2« —p (arj^-o. 

To simplify the analysis, we represent 1) as 

(8-60) 
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•=f <*. n+kfi—fy. (8-61) 

Substituting C8-61) Into C8-59) and (8-60), we see  .t the 
function FtR, <pi must satisfy the Laplace equation 

and the boundary conditions 

(8-63) 

Solving (8-62) by the usual method of separation of variables, 
we obtain 

F^C+JjC^-coiSf. 
«si 

Using the boundary conditions, we have 

C»=-^r^m^, n^l, 2... 

Thus for the case shown In Pig. 8-lla, the solution will 
have the form 

♦=*(x-^)+c.+S^siOÄp/?"C08Äf-        <8-«> 
Ml 

The remaining unknown constant CQ  is found from the equation 
determining the mean mass temperature of the fluid: O 

tWgTdr, r=^H 
or 

3a   I 

Substituting In $ from (8-64) and Integrating, we find 

C.=- 
48i& ' 

The expression for the difference between the wall temperature 
and the mean mass temperature of the fluid, 0„(<j>)*«tfc—?, Is found 
from (8-64) when we let R  ■ 1: 
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(8-65) 

This expression is the reciprocal of the local Nu number. 
If we let 8 * x, which corresponds to a constant heat-flow density 
over the circumference, we obtain the usual value Nu ■ 48/11 ■ 
* Ü.36. 

2. Let us now consider the wall-temperature distribution 
when a narrow circular segment with angle'Au. is heated; this seg- 
ment is an angular distance <P ■ w away from the. origin (Pig. 8-llb) 
The h?at-flow density at the surface of the circle segment is con- 
stant and equal to <?a(w); the remaining tube surface is heat-insu- 
l, s ated (q    » 0). Here the expression for the wall-temperature in- 
crease 5^_ can be written on the basis of (8-65) by a simple change 

S ^.- 
of coordinates: -r.       '-'"" 

e ».„, .^Si^ [».£ +jj jj. * (=£)«*.(, *)].    (8-66) 
«si 

-fO,     f—*       -* 

i 

Fig. 8-11. The problem of heat 
exchange in a round tube when 
the heat-flow density at the 
wall varies over the circumfer- 
ence. 

If    here are several circle segments along the tube circum- 
?rencj, and constant heat-flow densities are maintained at each 
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cirrle segr n<, «ith the densities differing from segment to seg- 
ment (Fig.  d-licl, since Eq.  (.8-581 Is linear In the temperature, 
tue soli'*ion for this case can be constructed as the sum of solu- 
tions ol   (8-66). Here the boundary conditions at the trail will also 
be satisfied. Thus for the case shown In Pig. 8-llc we have 

^«-s^ii^ijÄ*^)—(t—-«]. «>-<*> 
■«■I nmi 

where m ■ 1, 2,  ..,, M; M is the number of segments. 

Finally, for an arbitrary variationin the heat-flow density 
over the circumference (Pig. 8-lld), if we replace Aw by the In- 
finitesimal <f« ana sum the elementary circle segments in (8-65) 
by Integrating over the circumference, we obtain 

•bW-Jfc^[»+j.2MitÄ]gi. (8-68) 

The series in (.8-68) converges to the finite expression 

Thus the general solution of the problem with arbitrary dis- 
tribution of qs  over the circumference can be written as 

where 

or 

0(T, -)* 1J -in^sin-*^.). (8-70b) 

Knowing the distribution ?s(u>) of the heat-flow density over 

the circumference and evaluating the Integral in (8-69), we can 
compute the wall-temperature distribution #c(q>) -*,;—t, and then 
Nu.(9)«</b'2rö7<M» Convenience dictates the choice of expressions 
for the function G to be used in the computations. For example, 
if the problem does not admit of analytic Integration then, in- 
tegrating numerically, we find it more convenient to use (8-70b). 

3. Let us look at two examples. 

a. Let q   be constant over the circumference, i.e., ft (•>)«* 
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= ^c,=coi) .   Here Integration of (8-69) yields 

b. Let q- be coslnusoldally distributed, i.e.,. 

Using (8-69) and (8-70a), we find the wall-temperature dis- 
tribution over the circumference: 

Integrating, we obtain 

The distribution of the local Nuw number over the circumfer- 
ence is 

Nu (9)=  '+6cotT , 
48+*""F" 

Figure 8-12 shows the results of this computation for b  ■ 1. 
They show that Nu varies substantially over the circumference, 
and differs significantly from Nu^ when qß  ■ const, when the value 
is 4 .36. At the point where /e»?,T.e7oe-0i Nu«—±oo," when t    < F, It 
becomes negative. The local difference between the wall temperature 
and the mean fluid temperature £g also varies substantially over 

circumference. Thus when «P ■ 0, the local value of this dif- 
ference is roughly 3 times the mean value over the circumference 
0* ). It is clear from the figure that significant errors will re- 

sult if we determine d (<P) as the quotient resulting from division 
D 

of <7C(<P) by the constant value a ■ 4.36 \/d. s 

The same problem has been considered in [10], but with allow- 
ance for heat conduction in the wall. Naturally, as the thermal- 
conductivity coefficient and the wall thickness increase, the non- 

iformity in temperature distribution over the circumference is 
moothed.  If the medium flowing in the tube is transparent to 
ablation, then heat exchange by radiation between wall elements 

at different temperatures will lead to the same effect. 
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Fir. 8-12. Results of calculation for sinusoidal distribution of 
q    over circumference. 1) «r =«„0+ «»»>• 2)  NH»W; 3)   M*L; it) 

£- on the assumption that «,=»,>, while  NU««^*; 5) asymptote. 

8-6. INFLUENCE OF RADIATION ON HEAT EXCHANGE IN FLAT TUBE 

Under boundary conditions of the second kind, the temper*;ure 
distribution at the inside surface of the tube wall will be nonuni- 
form: the temperature can vary both along the length and the peri- 
meter. If in this case the medium flowing in the tube is transparent 
to radiation, heat will be exchanged by radiation between surface 
segments at different temperatures. This leads to a reduction in 
the temperature differences between individual surface segments, 
i.e., there is a certain equalization of wall temperature, which 
in turn will uaually promote improved heat transfer. 

The treatment of heat exchange with Joint transfer of energy 
by convection and by radiation is still not very advanced. We shall 
not consider such problems in detail. To form an idea as to the in- 
fluence of radiation on convective heat exchange, we shall analyze 
an elementary case, flow of a diathermal medium in a flat tube far 
from the entrance [11]. The heat-flow densities are specified for 
each tube wall. The densities are constant over the surface, but 
do not equal one another (qgl ? <7S2^- 

If the medium is diathermal, the energy equation has the same 
form as for purely convective heat exchange, i.e., Eq. (8-17) is 

also valid here. Assuming that the condition^ « -gy «const Is also 

satisfied, let us determine this constant from (8-32), and substi- 
tute it into (8-17). As a result, the energy equation takes the 
form 

VjV 

(8-71) 

o 

where 

9: n\ 
'{<lt,+qct)h ' 

y  _2y. „ 1 x_.   pe_«A 
ft' k 
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The radiation exerts Uta irfluence through the boundary con« 
ditioris. Each surface e-leAent delivers heat to the fluid flow owing 
to convective heat exchange and to colder segments of the surface 
owing to radiative heat exchange. For simplicity, we shall formulate 
the boundary conditions in approximation, on the assumption that 
heat transfer by radiation takes place only In the plane of each 
cross section. This means that heat generated in the walls at a 
given section will be delivered to the flow in this section alone. 
This assumption will be closer to the facts the less the relative 
tube width h/l  and the smaller the wall-temperature variation along 
the axis as compared with the mean temperatures. Thus we write the 
boundary conditions in the form . 

(8-72) 

where a  is the Stefan constant; e  is the reduced emlsslvity; 

here c^  and e2 are the emissivltles of the tube walls. 

If the wall-temperature difference (f « - T  ,) Is small as 

compared with T.  and 7 ~, we can then assume, in approximation, 
that        sl    sd 

where 

r2.-^=^(7,o,-r,l). 

/ • =-j- (r0i+^««)« 

(8-73) 

Using (8-73) and reducing (8-72) to dimensionless form, we 
obtain 

(srL-r-iV2*^-^' 
(8-74) 

where 8=ti is the ratio of the heat-flow densities at the walls; 

«ftss^p- is a dimensionless parameter allowing for the influence 

of heat exchange by radiation. 

We represent 0 as 

e=e.+,w+/<y), 

where GQ is the dimensionless temperature at the entrance; A  ■ 2, 
as we can see from (8-32). Substituting this expression for 0 
into (8-71) and integrating the latter twice, we find 

- 2Q7 - 



-   ^.-■WIWMJBWII.IWJIJIJII   J.PM'P'U'-U'"»»11" i mi«m in —u uupu J.!  ■* l      »• I    y»-"   - »'"u   .PI-   "-  

where c and o2  are constants of Integration. 

Thus 

eÄe.+i«+4.(F»-^)+^+cfc      (8.75) 

Using the first boundary condition of (8-74) and the condition 
9=ec,ror X=—1, we determine the constants. After they have been sub- 
stituted Into (8-75), we have 

Letting I ■ 1, we find 

e<» ~~ *" = o+#>0+4*)- (3-76) 

Substituting this value Into the preceding equation, we        f~» 
finally obtain *-' 

•-«--■K"--*)+ti4*-irl»fW'+ 
, r 3S —13 , fl-ff(i+atn (8-77) 
^[m +»)^(IT»(«+4*)J* 

The expression for 0 - 0sl Is easily found by subtracting 

(8-76) from (8-77). 

There is no difficulty in computing the differences between 
the wall temperatures and the mean mass temperature of the fluid, 
and the limiting Nusselt numbers at each wall: 

e„--5=4 [(Sci-eui-KW (J-l; 2); O 
-Ji 

Nu  - »«» -   ggg M'*  7V,-f <iHrr><»«<^»)* 

where D<=1 •*••> **== 1 «•««<£>< =p wh*n /=2. 

Performing the computations, we obtain 

Nu,,^ ft_gf . (|J|)(^+(^-. (8-79) 
3!>"~"   14-4* 

Where C<P*0wh*" l=tlnndC,= l wh.nf»2. 

When * ■ 0, i.e., whon there is no heat exchange by radiation, 
Eq. (8-79) reduces to (8-43). 
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Pig. 8-13. Influence» of radia- 
tion on dlmensionless wall- 
temperature difference for 
flat tube. 

f\ Figure 8-13 shows the change in the dlmensionless tube-wall 
** temperature difference as a function of $ for various values of the 

parameter *. As * increases, the influence of radiative heat ex- 
change rises; this substantially reduces the wall-temperature dif- 
ference. Thus when ß •= 0,25 «*«a>~ 0,5, the wall-temperature difference 
decreases by a factor of 3 as compared with its value in the ab- 
sence of radiative heat exchange. 

0 

Manu- 
script 
Pa£e. 
No. 

183 

Footnotes 

'if we seek a solution by applying the method of separa- 
tion of variables directly to Ö, rather than to •,«•—•,. 

then in satisfying the boundary condition (-jj-)  «"-p 

we would have obtained a different relationship; 

2«6i^»"- 
I 
-r 

186 

187 

In other words, the method of separation of var- 
iables Is unsuitable for this case. Thus Me  see that 
it Is necessary to lso.late one particular solution 
O»), since this eliminates the inhomogeneity from 
the last boundary condition of (8-3), and the solu- 
tion for 0-L can be found by separation of variables. 

2See [8a] of the references fox* Chapter 6. 

This solution is found In analogy with the solution 
for a round tube (see §8-1). 
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'See the analogous solution for the case In which t    - 
■ const, S6-2. » 

•The example Is taken from [6]. 

•The hydraulic-Integrator calculations whose results are 
shown in Pigs. 8-9 and 8-10 were carried out at the 
Moscow Fewer Institute by I.V. Kurayeva. 

Manu- 
script 
Page 
No. 

180 

185 

199 
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Transliterated Symbols 

c ■ s ■ stenka » wall 

H.T « n.t ■ nachal'nyy termieheskiy [uchastok] 
d  a      initial thermal [segment] 

9  • e ■ [equivalent diameter] 

n - p « [not identified] 

np »» pr *  privedennyy » reduced 

O 

o 
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Chapter 9 

HEAT EXCHANGE AND RESISTANCE IN ROUND TUBE WITH VARIABLE FLUID 
PHYSICAL PROPERTIES AND BOUNDARY CONDITIONS OF THE SECOND KIND 
9.1. HEAT EXCHAN6E AND RESISTANCE IN THERMAL INITIAL SE6MENT 

1. We consider liquid flow and beat exchange In the thermal 
Initial segment of a round tube; the viscosity coefficient la 
assumed to be tomperature-dependent, while all other physical 
properties are taken to be constant. A similar problem was in- 
vestigated in §'/-3 for constant wall temperature. Proceeding in 
similar fashion, we can also solve this case without difficulty 
when the heat-flux density Is constant at the wall; this was 
done in [1]. Since the remaining conditions and the solution 
method are the same as In §§7-2 and 7-3» we shall only give the 
initial equation» and the computational results. 

We Introduce the following definitions for the dimensionless 
variables: 

O 

Itf» 

Pe=—. Jr=r§. r — i    —,   *=T~. 

The definitions of the dimensioned variables are the same 
as In §§7-2 and 7-3. 

If we neglect energy dissipation, the problem reduces to 
Joint integration of an equation system that takes the following 
form with our notation: 

where 

C9-1) 

(9-2) 

(9-3) 

(9-*) 

(9-5) 
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Hire ACX1    s „ certain function of X, 

for jr>o—K=o Jr—i. r.«rf—0; 

iorJir>0«-l>K>* e«0,  £-»0; 

for jr»o—r=i 5*=o. 
(9-6) 

tionaf«^n?18 CW) "* U8ln* «* temperature boundary condi- 

*W=Szp. (9.7) 

«mass Sizars arwr'isnÄi1«is sub- 
* and T as compared with unity HS'ISSL!«  #5§.!* can ne8l*ct 
ampler, taking the form Expression (9-8) becomes 

• -i(K-«'. (9-8a) 
Substituting (9-8a) Into (9-4), we determine the law govern- 

ing the variation in viscosity over the thickness of the thermal boundary layer: 

In most practical cases, the relationship between the vis- 
cosity and temperture will be described with sufficient accuracy 
by a second-degree trinomial. Thus we only keep the first three 
terms of the last equation. Then after certain manipulations we obtain 

* 

^^l + *f*+^^)-(c,+a)K-f4(T+3<r«)J',--TK,+'4&jr4- (9-9) 

We integrate equation of motion (9-2) separately In the 
thermal boundary layer region where.N is described by Eq. (9-9)» 
and In the flow core, where N • 1; determining the function A(X) 
from the condition requiring that the flowrate be constant, we 
obtain equations for the longldutinal velocity component: 

for Y< k 

forK»* 
(9-10) 

(9-11) 

u 

o 
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• 

where 

0 

Ä=- 

* 

For constant viscosity, Eos. (9-10) and (9-111 *****  .. •»•«. 
bollc velocity distribution. *****  n*ld ft para" 

Using the continuity equation (9-3) and Bq. (9-11) tow W % 

we obtain an expression for the transverse velocity component? 

-i(4-+P!)^+i(&+Ä-)^--Är]+ 

(9-12) 
When n«const,C|«c2«0, /?= .«yv»o. 

The relationship between the thickness k  of the thermal bound- 
ary layer and X is determined from (9-5). Substituting in the 
value of B(x)  from (9-7), as well as e, W*-*W,from (9-8a), (9-10), 
and (9-12), we have 

4 " j{ar[|innfra*'"-7 g(mjtej»"']+ 
8 i 

+T(~3ü5ff«*,+S5<?«** ~S5C»*4+W *■*)}Ä -&•   (9-13) 

A numerical method is used to integrate (9-13). 

For constant viscosity,  c,=c,=0, 6,= — l, *,«!, /?» —A» an* 
iff/<ffe ■ 0. In this case, (9-13) takes the form h 
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-.». 

3 

|(T*-nr*,>»-ir- 

As a result of integration we obtain 

(9-11») 

After the relationship between * and jjj—y h*8 °«en found, we 
can calculate the velocity and temperature profiles, as well as 
the wall temperature, heat-transfer coefficient, and resistance 
coefficient. 

We obtain the expression for the dimensionless wall tempera- 
ture from (9-8)» letting 7 ■ 0: 

*-i*=vW-Vh(i-iH-A(r-T)}     (9"15) 
If we use approximate equation (9-8a), then 

9,«4. <9-l5a) 
Determining the local heat-transfer coefficient In the form 

we obtain the following expression for Nu: 

Nu=.!£=. 2 
(9-16) 

The dimensionless mean mass temperature of the liquid in the 
given section is 

i • 

or, since when *<y<l,e=0, 

o 

e=2Jer»(i-V)rfy. 

fro» S-M^'SSS"** ln thS TSlUe °f 6 fr0m (9"8a) and "* 

Ö m 4-f -4- V -^ A' + ,4- ^±i ^   Ji hi** 7f[  2* 2j («+!)(.+5)*  -T-äT 2j(i>l)(/+4j*  - 

_2+* 
(9-17) 
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.'  Tire Nu* number can tie determined differently by representing a 
aft i'J*% - *Q. Then using C9-15al, we find 

*-i-4 
TABLE 9-1 

Comparison of Results of Theoretical 
Heat-Transfar Calculation with Experi- 
mental Data for Plow of BM-4 Oil In 
Tube 10 mm in Diameter at tn « 35.5°C 
and «7. - 20.8-10* kW/m*   ° 

1       M 
T5"T k fr.*C rv '*■»••» I*.«, 

4,65.10-' 
1.14*10-« 
I.I5.I0-» 

0.04 
0.10 
0.20 

83,0 
79.3 
123 

0.371 
0.131 
0.0837 

98.3 
38.8 
30,8 

93.3 
37.9 
30.4 

C9-I6a) 

- 

o 

o 

When the viscosity Is constant, pj"-jjpis sufficiently small, 

and fc/5 « 1 In (9-14), we have 

Nu=l, 1 x \-"/» *(iH-) 
This Is nearly the same as Eq. (8-14). The sole difference 

lies In the value of the constant, which Is 8%  greater here than 
In (8-14). We also note that In (8-14), Nu refers to the differ- 

ence tQ  - t  rather than tB  - tQ.  When j^-y- Is small, however, this 
Is of no great Importance. 

The local friction-resistance coefficient Is 

.     8«,     8m,/<>■>, \ 16 f99m\ 

Finding the derivative from (9-10), we finally obtain 

(9-18) 

where  Rec-S>prf/nc 

For constant viscosity, Eq. (9-18) gives the usual value 
5Re - 64. 

The results of a theoretical determination of heat transfer 
using the foregoing method are compared in Table 9-1 with experi- 
mental data. For this table, Nu0Dvtn »fas computed from (9-19).; 

Comparison shows good agreement of the calculated and experimental 
values of Nu. 
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2. A? *r can see. It Is a quite complicated matter to make 
a theoretical determination of heat exchange and hydraulic resis- 
tance with allowance for the relationship between viscosity and 
vemperawure. Each specific case requires a great deal of computa- 
tional effort. In practice, therefore, if we do not need to know 
the detailed process characteristics (velocity field, temperature 
field, etc.), preference is given to the simplest possible empiri- 
cal equations. 

■ 

■ 

8 :*; »■•• -t— rf- 
WLI: 
***** «■* 1 

si 4-H H. 1 JHllh* 
tfi  tU      « «««54« V V 

Pig* 9-1. Relationship between 
Nu/Nu0 and vs/uzn for <7g ■ const, 
based on experimental data for 
type BM-4 oil (circles) and wa- 
ter (squares). 0 

M.A. Mikheyev, S.S. Pilimonov, and B.A. Khrustalev have meas- 
ured heat transfer for viscous flow of water in round tubes [2]; 
Ma Tun-tsze has performed such measurements for viscous flow of 
type BM-4 oil [1]. In these experiments, the heat-flux density at 
the wall was held constant by passing an electric current directly 
through the tube wall, or by means of an external electric heater. 
In most cases, the liquid was introduced into the working segment 
through a nozzle of smooth outline so that the velocity and temp- 
erature profiles developed simultaneously along the tube length. 
Here stabilization of the velocity profile terminated a certain 
distance from the tube entrance, while, as a rule, the tempera- 
ture profile did not become stabilized within the limits of the 
working segment (except for some of the water experiments). 

Here we shall only consider experimental data pertaining to 
the flow region far from the entrance, at a distance exceeding 
the length of th* hydrodynamic initial segment (x >_ I      ).* Figure ™" n. g 
9-1 shows these experimental results in power treatment. The axis 

(ted of ordinates shows the ratio of the local number Nu found 

experimentally to the value of NuQ computed from (8-15) on the 

assumption that the physical properties of the liquid remain con- 
stant. The axis of abscissas shows the ratio of the dynamic viscos- 
ity coefficients at the wall temperature * and the mean mass temp- 

erature t  of the liquid. The curve of Pig. 9-1 corresponds, to the 
equations 

N-U.^-fHl +«*•*)(£•)-*.      (9-19) 
which, as we can see, is a quite good description of the experi- 
mental data. Approximate allowance is made for the dependence of 

O 
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A and a n the temperature by choosing the values of these para- 
meters in the expressions for Nu, NuQ, and Pe for a temperature 

2 t=Uf*+i). 

Equation (9-19) is valid for heating of liquids (thoir vis- 
cosity decreases with temperature) with constant heat-flux den- 
sity at the wall and, of course, with no influence of free eon- . 
vection. It covers the region of values of Re < 2300, J-* <o,04 
.«d0,04<•£-<!. " * 

Comparing Eq. (9-19) with (7-83) (for the case in which t„ * 

* const), we find that the influence of variable viscosity on 
heat exchange is roughly the same for qa *  const as for /_ ■ const. 
We can therefore assume that, first, Eq. (9-19) will be valid not 
only for heating, but also for cooling of the liquid (at least to 
values vs/üzn £ 10) and, second, that the influence of the variable 

viscosity on heat exchange can be taken into account with the aid 
of the ratio (»»e/»»*)".*h"»fl=0,l4-o,l6 both when the heat-flux density 
at the wall is constant along the length and when it varies with 
the length. 

3. In the study of Worse-Schmidt and Leppert, cited in §7-4, 
paragraph 2 (see [11] of the references for Chapter 7), a numeri- 
cal method was used to solve the problem of heat exchange and re- 
sistance for air flowing with variable physical properties in the7 ' ■■ 
thermal initial segment of a round tube. The calculations were car- 
ried out both for constant wall temperature and with constant den- 
sity of heat flux at the wall. All remaining conditions were the 
same In the Wo cases (see §7-4, paragraph 2). 

The computational results show that the influence of variable 
physical properties on heat exchange and resistance for q   ■ const 
is roughly the same as for t    ■ const. For small values of the re- 
duced length (pj--J<l°"8)> Nt» increases slowly, while for high values 

it decreases slowly as qa  (or TB/T)  Increases. The friction reels- 
ance coefficient £ increases as T/f increases for all values of S 

y-,  the rise is far sharper than for Nu. The variation in Nu and 5 
with qB  (or T/¥)  is greater in the thermal initial segment than in s     s 
.he region of stabilized heat exchange. When the physical properties 
*-e variable, the thermal initial section Is roughly as long as for 
t "istant properties. 

When a   ■ const, an interpolation equation was proposed in 
the above-cited study for the local Nu numbers; the equation des- 
cribes the computational results to within +3%: 

Nu ---4.36 [ 1 - exp (- 34*)] + atf-'^exp (- bX»), (9-19a) 

The values of the parameters a, b, and m depend on the para- 
meter   Qc = g£: 
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for 0<Qe<20 a=l,21+0.06610;-4, ft«47,6+8,42|f£, »=5/4; 

for 20<Qe<40 a=!.384-0,00429Qe, 6=20+3,82^, « = 1. 

Here XQ Is the thermal-conductivity coefficient of a gas for 

an entrance temperature TQ.  The remaining symbols, as well as the 
limits of applicability of (9-19a) are the same as for the case 
in which T   ■ const (see $7-4, paragraph 2).* 

When q   * const, Eq. (7-82a) holds for the local resistance coefficient. 

9-2. HEAT EXCHANGE ANO RESISTANCE FAR FROM THE TUBE ENTRANCE. 
THEORETICAL-COMPUTATION METHOD 

We shall Investigate flow and heat exchange In a round tube 
at a distance from the entrance such that the velocity and tempera- 
ture fields have become stabilized, i.e., where the fields have 
ceased to depend on the boundary conditions at the entrance sec- 
tion. Let the heat-flux density at the wall be constant along the 
length. In §7-1> this problem was solved on the assumption that 
the physical properties of the fluid remain constant. Here this 
restriction Is removed: the fluid physical properties are treated 
as arbitrary functions of the temperature, but, as before, the 
fluid is assumed to be incompressible. The problem has been con- 
sidered in this formulation by V.N. Popov and the present author 
[33. 

We make the following assumptions: 

1. The fluid velocity Is not large, so that energy dissipa- 
tion can be neglected. 

2. The mass-force Influence occasioned by the variable density 
la small as compared with the Influence of the viscosity forces and 
the inertia. 

3. The ohange In heat-flux density produced by heat conduction 
along the axis Is small as compared with the variation along the 
radius. 

4. The axial component of the mass velocity varies little 
along the tube axis, I.e., d(pws)/d'x*Q.   As a consequence of this 
assumption, we find that the radial velocity component equals 
zero (w ■ 0), while the pressure p Is constant over a section. 

With allowance for these assumptions, the energy equation 
and equation of motion will take the form 

»S-fvw. (9"20) 

■cm - 2i8 - 

O 

O 
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Here ft Is the enthalpy, T  the temperature, p the pressure, vx  the 
longitudinal velocity, component, q the heat-flux density, and a 
the tangential stress. • • 

To simplify the simultaneous solution of (9-20) and (9-21), 
*e make two more assumptions. We assume that the derivatives with 
respect to x occurring on the left sides of (9-20) and (9-21) do 
not vary over a section, i.e., 

5. -5j-=/.W. 

When the heat-flux density at the wall Is constant with length, 
assumption 5 should be sufficiently well satisfied. The same can 
be said of assumption 6, since for a gas flowing at moderate sub- 
sonic velocities, and even more certainly for a liquid, the pressure 
gradient produced by the longitudinal density variation dfafiffdx, 
will be small as compared with the resultant pressure gradient dp/dx 
which, as we have already noted, does not change over a tube cross 
section. Nonetheless, by introducing assumptions 4, 5, and 6 we make 
the problem solution approximate. 

On the basis of (9-20), (9-21), and assumptions 5 and 6 we can 
obtain equations for the distribution of heat-flux density, tangen- 
tial stress, temperature, and mass velocity over a tube section, 
as well as expressions for the Nusselt number and the friction re- 
sistance coefficient. 

Multiplying (9-20) by r dr>  using assumption 5, and integrat- 
ing over the radius between 0 and r«, we have 

dh_  2ft' 

für»' dx (9-22) 

here qo  is the heat-flux density at the wall; pw is the mean mass s 
velocity of the fluid over a section, and rQ is the tube radius. 

Substituting (9-22) into (9-20) and integrating the latter 
between 0 and r, we obtain the distribution of heat-flux density 
L-ver the radius: 

«*[&**«, (9-23) 

where R r/v 0 

Since the pressure is constant over a tube section, 

IF (9-24) 
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We can uae this relationship to represent the heät-flux den- 
sity in the form 

m     X dh 

Prom (9-23) and (9-25) we find 

(9-25) 

*-***rrJ*"* (9-26) 

Integrating (9-26) from R  to 1, we obtain the enthalpy distribu- 
tion ever the radius: 

fit™ 
\9-h=q,d | 1-j dR, 

V  ^7* 
(9-27) 

where fto is the enthalpy at the wall, s 

We can now obtain the temperature distribution if in (9-26) 
we represent 3A/3Ä In terms of ZT/9R  with the aid of (9-2^) anä 
integrate the resulting equation between R  and 1: 

O 

j i 

m .   A« 

(9-28) 

where Ta  is the temperature at the tube wall; X„ is the thermal- 
9 S 

conductivity coefficient of thefluid at temperature T  . s 

By definition, the heat-transfer coefficient equals 

a^Si^^lä^, (9-29) 
Tt-T    A.-7S w y' 

where T  and Jt  are the mean mass temperatures and the enthalpy of 
the fluid; 

is the mean integral value of heat_capacity for the temperature- 
variation interval between T    and T, 

S 

In turn, 

i 

Äc - h ~ 2 f (h0 - /i) -?=£-* rfÄ. 
J     P» 
o 

(9-30) 

Multiplying (9-27) by 2^-Ärfflai»id integrating with respect to 
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f"?«eBW»B!msw»i. 

i 

0 

0 

R betweer Q and lj we obtain 

* 

A,—*.— '*-" r~* rf ' * 
|*S-Ä« 

-H^Y-V"*)* 
The Integral on the right side of this expression is evaluated 

by parts. Integrating, we obtain 

<9-31) 

Using (9-29), on the basis of (9-3U, we obtain an expression 
for the Nusselt number: 

JMdR , _-r i if    / (9-32) 

where Nu,-»=ad/Ac is the limiting Nusselt number, computed from the 
value of the thermal-conductivity coefficient at the wall tempera- 
ture; a      is the fluid heat capacity at the wall temperature. 

It is easy to see that when the physical properties of the 
fluid are constant, Eq. (9-32) reduces to the familiar Layon inte- 
gral . 

We now turn to equation of motion (9-21). Integrating this 
equation between 0 and j», making allowance for assumption 6, and 
eliminating ~ (/r+po£)by means of the boundary condition at the 
wall, we obtain 

■£«*. (9-33) 

where o_ is the tangential stress at the wall. 
S 

Relationship (9-33) follows from assumption 6. Introduction 
c ' uls assumption means that the actual radial distribution of 
tangential stress is replaced, in approximation, by a linear 
distribution. 

Substituting the value«»— \idwjdr into (9-33) and integrating 
between F  and 1, we find the velocity distribution: 

i 

*- RdR. (9-3*0 
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Multiplying this equation by p and dividing by 

i 

fw=2[pwxRdR, 

we obtain the mass-velocity distribution: 

i 

-Mt*'* 
(9-35) 

The friction-resistance coefficient can be determined in the 
foxw 

«—g!£- ^9-36) 
Representing or In terms of the velocity gradient at the wall s 

and finding the latter from (9-35), on the basis of (9-36), we ob- 
tain an equation for the friction-resistance coefficient: 

s  _i 

Ji(Jv *«)*" 
O     ft 

(9-37) 

• 

where Re«.=p«ärf/i*r is the Reynolds number, calculated from the value 
of the dynamic-viscosity coefficient at the wall temperature. 

When the physical properties of the fluid are constant, Eqs. 
(9-23), (9-32), (9-33), (9-35) and (9-37) take the familiar forms 

*-«0-T> (9"23a) 

r«-r=-^-(3-4/?'+Ä4), (9-28a) 

Nu -Ü (9"32a) 

!-- R,   ' (9-33a) 

£.«2(1 -*■), (9-35a) 

l~g-. (9-37a) 

Equations (9-28), (9.12), (!)<&>) and (9-37) permit us to determine 
the heat transfer and friction resistance, and incidentally the 
temperature and velocity fields when the fluid physical properties 
(p. ji. X. <>) vary arbitrarily with the temperature. 

As we can see from (9-32), (9-37) and (9-35) to determine 
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Nile, «mi gc. ;e must know the radial distribution of the fluid physical 
properties or of the temperature (since we assume that we know the 
way in which the physical properties depend on the temperature;. 
Since the temperature distribution (with variable physical proper- 
ties) is not known in advance, a successive-approximation method 
must be used. 

The calculations are carried out as follows: 

1) the values of Tß  and qsd/\Q  are specified; 

2) the temperature profile is calculated in first approximation 
on  the assumption that the fluid physical properties ar>° constant 
and equal to the valuer, of the physical properties at the wall temp- 
erature; Eq. (9-?Ba) Is used for the computations; the radial dis- 
tributions of the fluid physical properties are determined, and 
Eqs. (9-35) and (9-28) are used for the initial determination of 
the mass-velocity profile and then for the second approximation to 
the temperature profile; 

3) the mass-velocity profile and the third-approximation temp- 
erature profile are determined, and so en until the difference in 
the temperature distribution for the (n  + l)st and nth approxima- 
tion becomes less than some specified amount within which the var- 
iation in fluid physical properties is negligible; 

4) the distributionof fluid physical properties corresponding 
to the temperature profile found in the last approximation is used 
to evaluate the integrals in (9-32) and (9-37); we then determine 

Nu, T» _   ft«* ~»iui|c Rcc. c~„        A, (At—A) 

Since the values of q,d/lc•»** TV are specified, it is easy to find 
the mean mass enthalpy h  and the corresponding mean mass tempera- 
ture T.  After thi3, we calculate the Nusselt number: 

After appropriate modification, this method of determining 
heat exchange with variable physical properties can be extended 
to the case of friction in flat and annular tubes. 

In the succeeding sections, we s^all give results of heat- 
exchange and friction-resistance calculations for flow of fluids, 
viMU'iiiW' g.iiuv», and hydrogen and carbon dioxide in a condition of 
i\\u\ 1 liu'.luir. dissociation for the supercritical region of the state 
•v.ramol era. 

9-j. UCA7 EXCHANGE AND RESISTANCE FAR FROM THE TUBE ENTRANCE FOR 
FLOW OF LIQUIDS 

Heat-exchange and friction-rer-istance calculations have been 
carried out [3] for water at a wall temperature t    between 0 and 
300°C, transformer oil with t    between 0 and 120°SC, »nd type 
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Pig. 9-2. Radial distributions of temperature (a) velocity (b) 
mass velocity (c), and heat-flux density (d) in tube with flow'of 
type MC-20 oil; tQ  and w are the values of t  and w  on the tube 
axis. ,,ie aashed line corresponds to constant physical properties 
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rao»ran) 
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11 <r=ISO*C IT fe=BO>C 

14 «.«»•»•c If 1,-WC 

15 <r = 65«C If te_«B*C 

I « 'r = *c m '. «M*C 

'.'I*.  "-i. Rotuilt* of heat-transfer calculations for water, trans- 
i'M-mor oil, and type MC-JO oil flowing in a round tube. The curve 
v\M«iv>tpond3  to the equation 

- IV-t »^fii*r<$9" 
A) Water; B) transformer oil; C) type MC-20 oil (all physical 
properties variable); D) type MC-20 oil (only viscosity variable) 
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MC-20 oil with t    between 20 and 15Q-C, with both heating and cool- s 
ing of the liquids. The ratio of dynamic viscosity coefficients at 
tie wal . temperature and at the mean mass temperature us/uzft of the 

liquid varied from 0.426 to 12.6 for water, from 0.356 to 18.5 for 
transformer oil, and from 0.163 to 5"-.3 for type MC-20 oil. The 
remaining physical parameters varied negligibly, as we can see from 
Table 9-2, which gives certain data for water. Nonetheless, allow- 
ance was made for the variation in all physical properties during 
the calculations.' Naturally, for liquids the relationship between 
u  and t  has the greatest influence on heat exchange and resistance. 
Moderate variations in the otherphysical parameters may only have 
a slight influence. To check this, additional calculations were 
carried out for type MC-20 oil; only the viscosity-temperature re- 
lationship was considered. As the graphs given show, for Nu and £, 
variations in p, o  , and X have negligible Influence on heat trans- 

fer and resistance during flow of oils. 

TABLE 9-2 
Some Calculated Data for Water 

*** t.*c VC» 

300 
0 

132 
193 

26 
2% 

1.34 
0.941 

0.764 
1.17 

0.787 
0.826 

0.426 
12.6 

G 

HQ  is the temperature on the tube axis. 

Figure 9-2 illustrates the influence of the variable physical 
properties (viscosity, in the main) of type MC-20 oil on the radial 
distribution of temperature, velocity, mass velocity, and heat-flux 
density. As the curves show, the dependence of the viscosity on the 
temperature has the greatest influence on the velocity profile (or 
on the mass velocity, which is almost the same thing in this case). 
The velocity-profile variation entails a corresponding change in 
the distribution of heat-flux density, as follows from Eq. (9-23). 
For cooling of the liquid, the velocity near the wall decreases 
as compared with the isothermal case. This leads to a reduction 
in the convective transport of heat along the axis in this region, 
and to a corresponding increase in the density of the radial heat 
flux.1* In heating of the liquid, the reverse effect is ot~erved. 

O 

Figure 9-3 shows computed heat-transfer results for water 
and the oils as theoretical points. The following equation is a 
good generalization of the calculated data: 

where 

Nu ^^(±.\°'W(&L\ 

• hv*-n 

(9-38) 

3-i» 
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Here X„ 5"s the thermal-conductivity coefficient at the .temperature 

tf«4-^/e^.ff;: p and u are-the values.of p and u at tefciand H« are 

the values of p and u at the temperature 7. 

The exponent has a value n » - 0.13 for heating of the liquid 
and -0.11 for cooling. The coefficient 18/11 corresponds to the 
value of the Nusselt number for constant physical properties of 
ohe liquid. By introducing Xp into Nuw,we allow for the influence 

of the variable thermal conductivity. For water, the correction 

(Pc/pM)*'H.  which allows for the influence of density variability, 
reaches '{%,  but does not exceed 1.5* for the oils. The maximum 
departure of the calculated points from Eq. (9-38) is 3f  for water 
and 2.3J for the oils. 

Comparison of (9-38) with the empirical equation (9-19) for 
heat transfer in the thermal initial segment shows that when q&  « 

* const, the influence of variable viscosity on heat exchange in 
the region in which thermal stabilization sets in is somewhat 
less than in the thermal initial segment (in the first case w ■ 
- 0.13, in the second case JI= —^- «—0.166). 

Fig. 9-4. Results of friction-resistance calculations for water 
and oils flowing in round tube. The curves correspond to Eq. (9-39) 
with the following values of the constants:I-A-IA*-. «-UM'--*-«* «-MM(the 
symbols are the same as in Fig. 9-3). 

Figure* 9-4 shows the resultr, of the friction-resistance cal- 
culations. They are well described by an equation of the form 

UK«-- 
«■  "*[(£)" .-']■ (9-39) 

In this equation 

Ar> we can see from Fig. 9-4, the calculated points for water 
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ard the oi 5 He on the same curve for heating. With cooling the 
points repiosrntlng water lie somewhat below the points for the oils. 
For oil' in cooling and heating and for water in heating, the con- 
stants -n (9-39) have the following values: A  »1.38 and n « O.38. 
Here the maximum deviation of the calculated points from Eq. (9-39) 
does not exceed 3.5*. To within 1.5%, the computational results 
for water with cooling are also described by (9-39) with A  » 38.8 
and n  « 0.016. 

Equations (9-38) and (9-39) will obviously be valid rot only 
for water, transformer oil, and type.MC-20 oil, but for other 
liquids for which the nature of the relationship between the physi- 
cal properties and the temperature is not too different from the 
corresponding relationships for the investigated liquids. It is 
understandable that the applicability of the equations is restricted 
by the limits of variation In the physical properties encompassed 
by the computation. 

We also note that (9-38) and (9-39) only permit us to deter- 
mine the local values of the limiting Nu and £  numbers far from 
the tube entrance, where the velocity and temperature profiles are    — 
stabilized (i.e., where they cease to depend on the conditions at    (vJ 
the entrance). Since these physical properties of the liquid vary 
with the length, Nu^ and C will also vary with the length. 

9-4. HEAT EXCHANGE AND RESISTANCE FAR FROM THE TUBE ENTRANCE WITH 
FLOH OF DIATONIC GASES 

Heat-exchange and resistance calculations have been given in 
[3] for air and hydrogen both with heating and cooling of the gas. 
For heating, the calculations were carried out at T    = 1000°K for 
air and T    » 1000 and 2000°K for hydrogen; for cooling, they were s 
carried out at T    *  300°K for both gases.5 For both air and hydro- 

* S3  *. 

gen, the temperature factor T /T  varied between 0.4 and 1.75. 

The graphs of Fig. 9-r> illustrate the influence of the var- 
iable physical properties of air on the radial distributions of 
temperature, velocity, mass velocity, and heat-flux density in 
the tube. The particularly sharp redistribution of mass velocity 
over the tube section is striking. This is of course associated 
primarily with the dependence of the density on the temperature. 
In contrast to liquids, the mass-velocity profile (and the velo- 
city profile to a lesser extent) is filled for cooling and elon- 
gated for heating of a gas. Since the mass velocity near the wall 
decreases when a gas is heated and increases during cooling as 
compared with an isothermal flow, there will be a corresponding 
increase or decrease in the heat-flux density near the wall. 

Figure 9-6 gives calculated curves for heat transfer to hy- 
drogen and air. The axis of ordinates shown the ratio of the Nus- 
selt number for variable physical properties, with the thermal- 
conductivity coefficient taken for the gas temperature T„  to the 
Nusselt number for constant properties, 48/11; the axis of abscissas 
shows the temperature factor T /f.   It is clear from Fig. 9-6 that 
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Fig.9-6. Results of heat-transfer calculations for air and hydrogen 
flowing in round tubes. Solid lines) Hydrogen; 1) T 2000°K; 2) 

1000°K; 5) 

300°K; Dash-dot line) Deisler computations for air. 

1000°K; 3) * » 300°K; Dashed line) Air; 4) tm s s 

the calculated curves for air and hydrogen differ somewhat for iden- 
tical values of T'    This difference is slight, however, and lies in 

the 1-2J range. It should also be noted that for hydrogen in the 
heating case, the curves corresponding to T    ■ 2000 and 1000°K also s 
diverge somewhat. Here too, the difference amounts to 1-2*. 

TABLE 9-3 

Values of Constants B  and m 
in Eq. (9-^0) 

1 
I'll. mnjun-iciiNf Triuoaoro anron B m 

2Bojv>poA npH HarpeoaHHH (7V*- 

3Boaayx  npa Harpesamm (re-= 

*tB.1JK>pOÄ H  B03AVX nDM OXMMM' 

0.0065 

0,029 

0.065 

5 

3 

1 

1) Gas, direction of heat flow; 2) hydrogen with heating (T    ■ 
1000 and 2000°K; 3) Air with heating (a» = 1000°K); k)  hydrogen s 
and air with cooling (r * 300°K). 

5 

The equation 

^-Tr{«+*[>+(£)"]} (9-40) 

!;• n good description of the calculated heat-transfer data for air 
and hydrogen; here 

1SI <7trf 

and A . is the value of A at the temperature T. 
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Table 9-3 shows the values of the constants B and m  in (9-40) 
Equation (9-40) describes the computational results with an error 
not exceeding It. 

Figure 9-6 also shows the calculated relationship obtained 
by Deisler for air. The equation for this curve has been taken 
from [7]. The difference in the absolute values of Nu^ obtained 

with our data and by Deisler*s calculations is not great, but 
there is some difference in the nature of the relationship. I", is 
difficult to account for this discrepancy, since we have not been 
able to obtain information about the Deisler computation method. 

0 
Pig« 9-7. Results of friction-resistance calculations :for air and 
hydrogen flowing in round tube. 1) Hydrogen, T    ■ 1000 and 2000°K; 
2) air, T    -  1000°K; 3) hydrogen and air, T    « 300°K. 

s s 

0 

Figure 9-7 shows the results of friction-resistance computa- i 
tions for air and hydrogen. The relationship between the friction- 
resistance coefficient and the temperature factor turns out to be 
the same for heating of hydrogen with T    * 1000 and 2000°K. The 

s 
similar relationship for air at r » 1G00°K differs only slightly 

(by roughly 2%).  For cooling of hydrogen and air (at T    « 300°K 
s 

in both cases), the same relationship is obtained between £ and 
Ts/T. 

The results of the calculation of friction resistance coeffi- 
cients for air and hydrogen are described by an equation of the 
form 

U «te, 
64 ->+*[(»'-.]. (9-11) 

wher» 

When the gas is heated, C  - 0.23 and k  ■ 3/2; when It is 
cooVd, C  = 0.36 and k  » 1. 

It is interesting that as the temperature factor increases, 
the heat transfer decreases while the friction resistance increases, 
The drop in heat transfer is associated wit-h the fact that the re- 
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duction in temperature gradient at the wall (see Pig. 9-5) is not 
compensated by a corresponding increase in the thermal-conductivity 
coefficient of the gas at the wall. The increased resistance is ex- 
plained by tne fact that the viscosity of the gas at the wall rises 
faster than the velocity gradient at the wall decreases. 

As we have noted, the wall temperature has very little influ- 
ence on the friction-resistance coefficient and the Nusselt number. 
Thus Eqs. (<M0) and (9-41) can be used for different wall tempera- 
tures (at least between 300 and 2000°K) over the 0.4 to 1.75 range 
of temperature-factor variation. 

Unfortunately, there still have been no reliable and systematic 
measurements of heat transfer and resistance for laminar flow of 
gases in tubes. Certain experimental data published for gas heating 
[8] show that within experimental accuracy (+10J5), Nu is indepen- 
dent of the temperature factor. This does not contradict the results 
of the theoretical computation. As we can see from Pig. 9-6, when 
T /T  varies from 1 to 1.8, Nu changes by no more than 10%. Naturally, 

such a change in Nu iö undetectable owing to the inadequate measure- _ 
ment accuracy. The same experimental data indicate that the resis- Q 
tance coefficient rises far more sharply as T /T  increases than is 

predicted by theory. Thus when T /T  = 1.8, SRe/ö*» * 2.2 according 
s 

to the experimental data, while theory yields £Re/6Jl * 1.35. It is 
apparent that the difference is associated with the approximate na- 
ture of the theory, which disregards the transverse velocity compon- 
ents. Calculations based on the theoretically derived equation (7-82a), 
which allows for the transverse velocity components, yield a value 
£Re/64 » I.85, which is much closer to the experimental data. The 
definitive solution of the problem requires further development of 
the theory and more systematic measurements. 

9-5. HEAT EXCHANGE AND RESISTANCE1 FAR FROM THE TUBE ENTRANCE WITH 
EQUILIBRIUM DISSOCIATION OF HYDROGEN 

As sufficiently high temperatures, thermal dissociation takes 
place in diatomic and muitiatomic gases. In this connection it is 
interesting to investigate the influence of dissociation on flow 
and heat-exchange processes. For simplicity, we shall henceforth 
assume that the dissociation rate far exceeds the rates of convec- 
tion and diffusion transport of matter. In this case, there will 
be chemical equilibrium at each point in the flow, and the mixture 
composition will depend solely on the pressure and temperature at 
the given point. It is well known that if we have equilibrium dis- 
sociation, the flow and heat-exchange processes are described by 
equations of continuity, motion, and energy that have the same 
form as for a homogeneous gas.6 Dissociation makes its influence 
felt only through the physical properties entering these equations. 
We take as these physical properties certain effective values of 
density, enthalpy, heat content, thermal conductivity, and vis- 
cosity that are calculated with allowance for the dissociation 
reaction. The boundary conditions for homogeneous equilibrium 
dissociation are the same as for heat exchange and motion of a 
homogeneous gas, provided the flow does not interact with the mater- 
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ial of tb3 wall, as we shall henceforth, assume. 

Figure 9-8 shows the effective physical properties for equili- 
brium dissociation of hydrogen (reaction H»~ 2H) at pressures of 
1, 10, and ICO atm and temperatures of from 2000 to 5000°K [93, 
The degree of dissociation a characterizes the fraction of atomic 
hydrogen in the mixture for various T  and p. The density p and dy- 
namic viscosity u change not only as a result of variation in 
temperature and pressure, but also in connection with the fact 
that the mixture composition varies together with T  and p. In con- 
trast to the situation for a homogeneous gas, the specific heat con- 
tent and enthalpy of a dissociating gas include the be<*t of reaction. 
Here the contribution made to the heat capacity by the theiioal ef- 
fect of the reaction far exceeds the heat capacity of a mixture 
whose components do not interact. Thus the heat capacity of a dis- 
sociating gas is far greater than that of a mixture with no chemical 
reactions, and it varies sharply with the temperature and pressure 
(since the proportions of the atoms in the mixture vary with T and 
p). When there is dissociation, molecular transport of heat in the 
mixture occurs not only through heat conduction ($.  » X.  grad T), 

but also through the heat transferred by diffusion (qM~ J} h7u   where 

h.  is the enthalpy of the tth mixture component, with allowance 

for the heat of formation; 1.  is the mass flow of the ith compon- 

entj N  is th.e number of mixture components). For equilibrium dis- 
sociation, <7d can be represented as the Fourier law (qx=»~-b*ira<lT). 

Thus the total heat-flux density </=Agrad7\ «*«•A=*m+A* is the effec- 

tive thermal-conductivity coefficient for the gas in equilibrium 
dissociation. Since A. may be several times A.  for certain values 

of T  and p, for these same values of T  and p, A can exceed At ; in 

such case, Ihe pressure will also vary sharply with the temperature. 
As we can see from Fig. 9-8, the presence of dissociation leads to 
extremely varied changes in the physical properties as a function 
of temperature and pressure; the heat capacity and thermal conduc- 

| tivity vary particularly sharply with the temperature, and have 
pronounced peaks. 

Thus the problem of heat exchange and resistance in equili- 
brium dissociation reduces to the analogous problem for a chemical- 
ly homogeneous gas with strongly temperature-dependent physical 
properties. Thus the method discussed in §9-2 for determining heat 
exchange and resistance far from the tube entrance can also be used 
for equilibrium dissociation. This method has been used to deter- 
mine heat transfer and resistance for hydrogen in equilibrium dis- 
sociation at 1, 10, and 100 atm and temperatures from 2000 to 5000°K 
[10]. l^or heating of the gas, the calculations were carried out at 
T&  a 3000, 4000, and 

ri000°K and a aeries of values of IT between 

a* and 2000°K, and for cooling for T    = 2000, 3000, and 1»000°K, and 

f between T    and 5000°K. s 

Figure 9-9 illustrates the influence of the variable physical 
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Fig. 9-8. Physical properties 
of hydrogen undergoing equili- 
brium dissociation. 1) atm; 2) 
g/cm; 3) cal/cm.s»°K; M) cal/ 
/g«°K; 5) g/cm-s. 

properties of hydrogen in equilibrium dissociation.on the radial 
distribution of the dimensionless values of temperature, velocity, 
and mans velocity.7 The figure also gives profiles of the variabler 
for two computational points in heating and two points in cooling. 
For comparison, temperature and velocity profiles are also given 
for constant physical properties. It is clear from Pig. 9-9 that 
the variable physical properties exert the greatest influence on 
the temperature and mass-velocity profiles. 

i I 

Figure 9-10 shows the results of heat-transfer calculations, 

as NuMiin~-—^-__as a function of p ,/p (the subscripts "zh" and 
* A».(r, — T) zh s 

"s" indicate physical parameters taken for T  and T  , respectively). s 
The points for p»c/Pc>l refer to the case of gas heating, and those 

for PMI/PC<. 1 to the case of cooling. As we can see, with equilibrium 

dissociation of hydrogen, the variation in physical properties with 
temperature has a considerable influence on heat transfer. Thus with 
variable properties, Nu   may differ froir. Nu for constant proper- 

ties (equaling 48/11) by a factor of 2.5. A still greater difference 
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dissociation. The dashod line represents constant physical proper- 
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Fig. 0-10. Results of heat-transfer calculations 
for flow of hydrogen in equilibrium dissociation, 
a) p, atm; b) computational points. 

!;•■ found for Nu. __*-._ (up to a factor of 10). 

If Jn (9-32), wo i\o  from Nu,m to Nu . , replacing A and o  s°°     zh*' s    ps 
by \  .iiui ..•  , it 1;- not difficult to see (remembering that for 
;i vi I.-.;••> ,; :•' Intf gas, l'r varies little with the pressure and tempera- 
ture) that tho difference between the product NuMW--~ and the cor- 

Cp 

responding value for constant physical properties (48/11) is caused 
basically by the temperature-dependence of the density and viscosity. 
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Thus Num..,-'"- can be represented, in approximation, as a function 

of pc/p«. »n>n*c/j*». Analysis of the calculated data leads to the fol- 

lowing interpolation equation, describing the computational results 
to within +6X: 

"«-=£•£(£)•(£)" (9-J12) 

where 

«■= 

m = 

I.0forjg-<1; 

0^i'ur^>l; 
trm 

W for •£■<!; 

0,7iorij->:: 

*f —ft  I  p 
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Pig. 9-11. Comparison of calcu- 
lated heat-transfer data with 
Eq. (Q-il2) (solid curve). 
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Pig, 9-12. Comparison of calcu- 
lated resistance data with Eq. 
(9—'13) (solid curve). 
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The parametern occurring in (9-42) were varied in the calcu- 

lation;-, over the following rangen: 0.^8< -^- < 1.5; 0.53-S-&-«S 1,3««i0,59< ■£--< 
-2.y. 

Figure 9-11 compares the calculated points with the interpola- 
tion equation (9-42). 

The results of the friction-resistance calculations show that 
for variable physical properties, S2n

Re n differs from £Re ■ 6*1 for 

constant properties by no more than 20%.  This difference amounts to 
a factor of 4.5 for £aRe . however. As (9-37) shows, the change in s s 
^zhRezh is caused by tne fact fcnat p and v  dePend °n r» so that the 
product can be represented as a function of the parameters (>a/ozh 

and Ms/v2h« 
To within +3Z, the computational results are described 

by the interpolation equation 

.*.~«(£n*(£)'+<i-K)]. (9-43) 

where 

«.,f». 
(pw) 

pad 

the flow, the 

Here * — 0 «n... ?(/pw < 1 ««« x =* 0.008 Whm pc/pm > 1. 

The ranges of variation for the parameters pc/p« »««• M** are the 
same for (9-43) as for (9-42). Figure 9-12 compares the calculated 
points with interpolation equation (9-43). 

9-6. HEAT EXCHANGE AND RESISTANCE IN THE SUPERCRITICAL REGION OF 
STATE PARAMETERS FOR MATTER 

In the supercritical region of state parameters, the physical 
properties of matter (p. <>, H »«'A) vary extremely sharply and differ- 
ently with the temperature, and depend substantially on the. pres- 
ure (see §/{-4). Thus even for fairly small temperature differences 

change 1n physical properties will have a great in- 
i'luonco on heat exchange and resis- 
tance. 

With supercritical state para- 
meters for matter, theoretical cal- 
culations of heat exchange and fric- 
tion far from the tube entrance 
(i.e., for the tube segment where 
the hydrodynamic and thermal bound- 
ary layers merge) can be carried 
out by the method considered in 
§9-2. V.N. Popov [11] has used this 
method to compute the heat transfer 
and resistance for carbon dioxide 
at a pressure of 100 atm8 over the 
20 to 600°C temperature range with 
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Fig. 9-13. Physical proper- 
ties of carbon dioxide at 
p  » 100 atm.a) kJ/kg«°C; b) 
W/m»°C; c) N«3/m2; d) kg/m3, 



constant heat-flux density at the wall. For heating of CO-, the 
calculations were carried out for {,=600, 400. 300, 200. 100. 70. 50> and 
45°C, and a scries of values of t  between t and 20°C; for cooling, 

lc  IM. 45. 50. 70,loo. «K»..TOO and 400°C, with t  ranging from t    to 600°C. 3 

Figure 9-13 shows the physical properties of carbon dioxide 
(p, o  , A, and y) for p « 100 atm [12, 13, 11, 15]. The computa- 

tional results show that in the supercritical region, the variable 
physical properties of carbon dioxide have a sharp influence on the 
temperature and mass-velocity profiles (Fig. 9-14), and less influ- 
ence on the velocity profile. The heat transfer and friction resis- 
tance also vary sharply owing to the changes in the physical pro- 
perties. Thus the ratio of Nu . m for variable properties to Nu . = 

» 48/11 for constant property varies from 0.5 to 2.5, while tr.e 
ratio of the corresponding resistance coefficients £ y, varies from 
0.7 to 2 (Fig. 9-15). zn 
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Fig. 9-14. Radial distributions of temperature (a) and mass velocity 
(b) for carbon dioxide at p ■ 100 atm. Solid lines) Variable physi- 
cal properties; dashed line) constant physical properties, a') 
Curve. 

TABLE 9-4 

Values of Constants in Eq. (9-44) 

V 
A n B * 

~P* 
c 

3 o.w 
0.10 

0,25 
1.0 

3.2 
0,9 

0,25 
2.0 

0,1.0 
0.24 

To within +10$ the results of the heat-transfer calculations 
are described by the interpolation equation 
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where 

»   .M(*)'-l+'}fcfe-M (9-14) 

0 

0 

Nu_=—*£ '<.= M£T: f-.*=r I1"" 
is the mean Integral value of the_dynamic viscosity coefficient 
in the temperature range between t  and t9 : At B, C%  n, and k  are 

constants whose values are given in Table 9-4. 
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Fig. 9-15. Results of calculations for heat transfer (a) and fric 
tion resistance (b) for carbon dioxide at p « 100 atm. 1) t    « 

300°C; H)  t    = 200°C; 5) *e = » 600°C; 2) *s = HO0°C; 3) *s  „-- -, .. -g 

= 100°C; 6) * = 70°C; 7) t_ - 50°C; 8) t = 1*5°C; 9) t, 
S D Ö I 

s 
20°C. 

The right side of (9-M) doer, not contain the thermal-conduc- 
tivity coefficient A. The roar.on 1 ;*> that, qualitatively «peaking, 
\[  ami A depend in the name way on the temperature, and thin wan 
taken Into account In the choice of Intoroolatlop equation. Intro- 
duction of the mean Integral parameter:; a    and \i  war. dictated by 

the nonmonotonic nature of the variation In heat content and vis- 
cosity with temperature. The relatively low accuracy of (9-M) is 
explained by the fact that for simplicity and convenience the para- 
meters f,,,A>. M./fi ""■' f'/Pw were used to allow for the Influence of the 
variable physical parameters on heat exchange; these parameters re- 
flect the variation in physical properties only over the tempera- 
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ture range between t    and t.  Moreover, the heat transfer is natural- 

ly influenced by the nature of the relationship between the physi- 
cal properties and temperature over the entire range of variation 
from t to t    n. While for turbulent flow, the ratio te— F//c—tn-o s    r*u * 
is close to unity, under our conditions, with laminar flow it var- 
ies from 0.35 to 0.8 [for constant physical properties, (/c—T/tc—/r=0= 

«-fif*»<M»l)L Construction of a more exact interpolation equation at 
the expense of substantial complication is hardly worthwhile when 
we consider the approximate nature of the theoretical calculations 
themselves. 

Analysis of the calculated friction-resistance data shows that 
if we substitute the mean integral value of dynamic viscosity into 
the expression for the Reynolds number, then with variable proper- 
ties the product 5znKe will differ little from the value of this 

product, equaling 64, for constan-; properties. For cooling of the 
fluid, the difference amounts to +62, and it does not exceed 10? 
for heating. Here, therefore, the~approximate equation 

&Jfc=64 (9-45) 

is valid, where 

In the supercritical region, the physical properties of the 
fluid depend on the temperature and pressure, while the latter 
vary along the length of the tube; thus the heat transfer and re- 
sistance will also vary with length. Using (9-44) and (9-45), we 
can calculate o (or t  )  and o at each tube section. s      s 

Figure 9-16 gives a notion of the possible nature of the 
variation in heat-transfer coefficient along the length of the 
tube for carbon dioxide with supercritical parameters. It gives 
the results of an approximate heat-transfer determination with 
p e 77.3 atm for one special case.10 Near the tube entrance, the 
heat-transfer coefficient drops rapidly, as must also be the case 
in the thermal initial segment. Since as we move away from the en- 
trance, t    and t  increase (t    >  £), then at a certain distance s s 
from the entrance, the heat capacity of the fluid for ts  will con- 

siderably exceed the heat capacity for t.  The difference in the 
values of a    leads to a slower increase in t . along the length 

than in ~t  and, consequently, to a slower increase in a. After t 
s 

exceeds the temperature *maks corresponding to the point of maxi- 

mum a  , the pattern changes: t    increases more rapidly than t\ 
p i> 

thus a passes through a maximum and then decreases. When both t 
s 

and t  become considerably greater than *malcs» the heat capacities 

will differ little for t    and t,  and the curves for different q 

will draw together, as we see from Fig. 9-16. As q    increases, 
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the minimum and maximum points for the curves a ■ a(x/d)  shift  to- 
v/ard the entrance, since t  takes on a value apDroaching t clon- 

r to the entrance. Naturally, the way In which a changes with fcho 
length is determir^d not only by the relationship between e    and tt 

but also by the way in which the other physical parameters depend 
on the temperature. The data shown in Fig. 9-16 exemplify the great 
diversity of heat-exchange phenomena in the supercritical region. 
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Pig. 9-16. Variation in a along tube length for carbon dioxide at 
P -  77.3 atm, tykh ■ 21°C, Re - 100, and various values of q 

(the dashed line represents constant physical properties), a) kW/m*» 
•°C; b) q    » 116 KW/m2. 

Manu- 
script 
Page 
No. 

216 

218 

2 ^ 

Footnotes 

xThe experimental data for the entire flow region, in- 
cluding the hydrodynamic initial segment, are given in 
§12.4, 

2The same authors have performed similar computations 
for helium and carbon dioxide. The Nu number turned out 
to be 3-535 lower for He and lB%  lower for C05 than for 
air [17]. * 

3The physical properties of transformer oil and type MC-20 
oil are taken from the data published in [4], 

■•In the general case, q  varies as a function of r  owing 
to the change in the surface through which the radial 
heat flow passes and to the variation in convective heat 
transfer along the axis, which is associated with the 
variation in velocity along the radius. 
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5A11 physical properties of air and 0 , ht  p,X up to 

700°K and u up to 1100°K for hydrogen were taken from 
[5]. The values of X for hydrogen at T  between 1200 and 
2000°K were computed from the empirical equation proposed 
in [6], while for T  between 700 and 1200°K, they were 
found by graphical interpolation. The values of u for 
hydrogen at T  ■ 1100-2000°K were calculated theoretically 
with the aid of the modified Buckingham potential. 

•See, for example [9]. There is no need to solve the 
diffusion equation for equilibrium dissociation, since 
the gas composition at every point in the flow is deter- 
mined completely in this case by the pressure and tempera- 
ture at this point. 

TThe subscript 0 indicates the value of the correspond- 
ing parameter on the tube axis. 

'The critical parameters for COp are: P«»-75.3 or.nd/.,-3i'c. 

'For practical calculations it is convenient if we first 

t 

construct M—fM'as a function of t  (where t    is a cer- 
* OL 
'• 

tain arbitrary constant temperature value) and find u 
from the relationship 

M(/.)-M(7) 

10In [16], the calculations were performed by numerical 
integration of the energy equation on the assumption 
that the profile for the longitudinal mass-velocity com- 
ponent is parabolic over the entire length of the tube 
(which is far from actually being the case, as we have 
seen) and that the transverse velocity component equals 
zero. 
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Transliterated Symbols 

c ■ s = stenka = wall 

Teop * teor ■ teoreticheskiy ■ theoretical 

oiiMT * opyt ■ opytnyy ■ experimental 

x ■ zh « zhidkostnyy = liquid, fluid 

H.r ■ n.g ■ nachal'nyy gidrodinamicheskiy ■ hydrodynamic 

initial 
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232 Tn = tp ■. teploprovodnost' » thermal conductivity 

232 A ■ d * diffuslya = diffusion 

240 Mane ■ maks * makslmal»nyy - maximum 

2^1 BX ■ vkh * vkhod * entrance 
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