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TREND SURFACE ANALYSIS AND SPATIAL CCRRELATION

by

*
Geoffrey 5. Watson

l. Introduction.

Mapping has always been a favorite tonl of geologists so that, with
the increesed apcessibility of computers, it is scercely surprising that
ge.iogists should now be very interested in studying spatizl distributiens
mothematically. Their aim is to use some mathematical model to smooth or
contour & net of data points, or to interpolate between them or te calculate
some average over the area, (Two recent general references with substantial
bibliographies are {1], [2].)

There are a number of possible methods, each with advocates, and
some controversy has arisen. In the U.S., the most popular @gthods have

assumed that

value at date point = value of deterministic fumction + random error

(1)

and consequent application of the least squares techniques. 1In South Africa

and France [3], the preference seems to be for

value at data point = value at a point on & random function (@}

and application of moving averages. In actual fact, these two models are not
really distinct. .t seems useful, without attempting to say what should

be used, to try to explain the theoretical background of these methods,
because this is not availahle in an elementary exposition. At the outset

it should be saild that this area requires considerable stetistical research;
it has so far been mainly the preserve of very theoretical workers. WhAat

little there is in the literature by way of applications has bveer written

*Research supported by the Office of Naval Research under contract

NONR 4010(09) awarded to the Department of Statistics, The Johns Hopkins
University. This paper in whole or in part may be reproduced for any
purpose of the United States Government.




by geophysicistso perhaps the earth sciences as a whole will help to create
& new clags of statistical methods (see scme of the references in |71)

2. Conceptusl Problems.

Let us restrict discussion to the two dimensional problem. Thus
suppose we have & quantity y measured at points (xl, xe) in the plane,
distributed over some region R. Geometrically, : have points (with
coordinates in three dimensions) (xl, X5 y). Through this cloud of points
we desire to put a smooth surface. Tt is licped that this surface will show
how y would vary with position (xl, x2) if there were no local or small scale -
variation the effect of large scale disturbances is uspposed to be incor-
porated into the smeooth surface, which may be called to trend surface.

Thus

chservable surface = +trend surface + variaticn surface (3)

The separation into two parts is made on the vague basis of "large" and
"small" scale variation. Our interest may be in either part. The trend
surfece seems appropriate for interpolation and averages, the second for
the detection of ancmalies, e.g., discreteore bodies. It is clear that,
anless we car iatroduce more prior knowledge of the particular phenomenon under
study, or have a bright idea about the mechanism after a 'irst look et the
data, any analysis must be quite empirical., It follows that one cannot say
any method Is "best”,

i section 3, wo will (lscuss some specific mechanisms which might
account reallsticnlly for some peole. ical dlstr.'mitimme. Here we will
continue with a more gereral analysis of (3). If (3) is compared with (1), we
notice that the two parte are kopimed to he of a different nature, ‘The trend
ta ansumed to be o deferminletic funct ton anc the varintion o be random or
atochnitic, I {(3) tr compnrod with (), there fa no Jesection but

"randen” appearns npaln,




We therefore discuss first how randomness might enter. In the
first place, y will usually be measured with error, i.e., if e site
is revisited, sampled end the sample measured, a different value would be
obtained, This is well understood and so cen be ignored for the moment.
Suppose now that our interest is only in the region R thHat was sampled
at a finite number of points - we will later consider the case where region
R itself has been chosen because it is typicel of many similar area, ‘i.e.,
our interest is in the population from which R was somehow chosen., There
are infinite.y many hypothetical surfaces passing mear a finite number of
points. Some will be more credible geologically than others. It is a
standard tactic in science to deal statistically with an infinite hypothetical
populations. Explicitly, we must define the class of admissable surfaces
and suppose our particular cese is a randomly chosen member of the class.
Apart then from measurement errors, it is in tnis way that "randomness"
enters when attention is confined to one area.

The population of admisssable surfaces may be defined in several
ways, corresponding to (1) to (2). We will return to this in a morent.

If the region R itself has been chosen as typicel of many
other regions, even complete knowledge of the surface over I would be
insufficient for conclusions about the other icgions. It is necessary to
defire again & class of admissable surfaces and to rege~d the surface over
R as a randomly drawn member of the class if we are to use statistical
urguments,

To Aefine a class of cdmissable surfaces, we are guided by sclentific
plausibility and mathematical and computational convenience. The older

method {s that of (1) and the commeneat choicea for the deterministic function




aere (i) an algebraic polynomial in =«, and X5 (11) a trigonometric

1
polynomial, i.e., the first few terms of & two 7imensional Fourier series.

It is usually implicit in papers on this basis that the choice of function,
the highest degree terms used, etc., should make the "random error” have x
zerc mean, be uncorrelated and have constant variance. For example, the most
thorough stucy in the algebraic polynomial case - Freser Grant (4] - makes
this quite explicit., His methods may be repeated using trigoncmetric poly-
nomials, or any other set of functions. In detail, they depend strongly

on having observations on a regular grid ,

However, the model (1) method does not have this
requirement and so has appealed to geologists - but the "error” should be
studied if the model is to be checked at all with reality.

The "errors" referred to in the last paragraph should be thcught
of as the heights of a random surface e(xl, x2) above the observing points -
because we might have used other observing points. If P'=(xi, xé),P"=(X£, Xg)
are any two observing points, the above assumptions read

B(e(x], x})) = 0 , B(e?(x!, x})) = o

(4)

E(e(xi, xé) e(xg, xg)) =0 .
Clearly the last assumption is upreasonable P' and P are close together
and reasonable if they are far apart - for this is the way we expect spatial
correlation to behave, We are svpposing that e(xl, x2) describes small scale
disturbances only. It would be preferable if we could do an analysis which

replaced the last two assumptions of (L) by

E(e(P') e(P")) = c(P', P") (5)




where the covariance function c¢(P', P") decreased as P" moved away fromP'.

If we assume that
c(p', P") = cl(p' - P") (6)

f.e., that ¢(P', P") depends only on the vector (x; - xi, xg - xé) the

error function is said to be a homogeneous random function. If we assume

more, namely that

e(P', P") = cylr)

where (1)

r =J(xi - x:?')é+(Xé - xg)2

the error function is an isotropic random function, because the covariance

now depends on the length but not the direction of the vector separating

P’ and P". 1In neither case does the average depend on the absolute position
of P' and P'. These are the generalizations to two dimensions of the notion
of stationarity, now common in time series analysis - which is the cne dimen-
sional equivalent of our problem.

The spectral methods of time series analysis are nc- familiar,
particularly to geologist: who have followed computer applications of the
Kansas group. The weakness of the model (1) work has come from ignoring the
two dimensional time series aspect of the error model implied in mcdel (1).

Having come thig far, one sees that it may be unnatural to
separate the obnervable surface into a deterministic and & randcm function.
For the small and large s~ale Ajstarbance notions find & natural definition

in rpectral terms - high and. lov rrequenciea. And there is no more an unnatursl
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division between the two. It may be better to define the class of admissable
functions in terms of averages over the class, to assumc homogeneity or
isotropy and to base the analysis on this assumption. We cannot, in this
short paper, explain how the analysis would then go, except to noite that
moving &.erages appear naturally. It is not too different from the
trigonometric equivalent of Fraser Grant's method. Thus it is very awkward
without regularly spaced data. Also the general wesk assumptions made imply
that one should have a considerable number of data points. This is one form

of model (2). We hope to deal with methods based on this mecdel in detail

at & later dete. The reader will find a list of relevent references at the end

of the paper [£].

Matheron [5] advocates another version of medel (2). He dces not
assume that the averages are independent of the absolute position but that
the averages of changes are. FExplicitly, he considers rendom surfaces

f(xl, xg) such that, for all (xl, XE)’ (hl, h,)

D000 + by xy + By) - flxy, x?_)}?} = v ()

N -

where (8)

2 2
h = \/hl * hy
This is not the same as saying hat

S(Kl’ x ) = f(xl, x2) - £, 0) (9)
<

is an isotropic randem function becavse (f) dces not allow the calculation

of c(i', P") when D' and I are (istinct. The extensive literature (5]




generated by Matheron and his co-workers, particularly Serra has only
recently come to our attentior At the time of writing it is not clear
how sssumption (8), even with a particuler choice for the function v (h),
{s made to support a methcd of analysis. Matheron however endorse the use
of moving average methods which he attributes to Krige. 1In fact he uses
"Kriging" to describe the ant of teking moving averages Matheron claims his
methods dn not require regularly spaced data points.

To conclude this section, we return to measurement errors. If they
are present,one must ad’ to the random surfaces discussed above a randem
surface which is isotropic and in which the spatial correlaticn falls off
very rapidly, i.e., the equivalent to the white-noise of time series analysis.

3. Some mechanistic models.

There are two relatively simple ways of building probabilistic
mechanisms that may have application to trend surface work, i.e., generate
classes of random functions of geologicel pertinence. The key paper, with
a large bibliography, is Whittle {6]. The tract by Matérn [7] is also & basic
aourse,

An example of the fir-t method would ve the following constructicn.
Suppose ore bodies are initially distributed randemly in the plene with
different sizes ard that, after a given time, their "influsnce” is felt
at neighbcring polnts. For example, their contents may diffuse cutwards
from their initisl positicons which we might approximate by points, If the
medium is li.mopencus, ©(w,r) cculd stand for the concentration a° 8 point,

a vector r away from A body of mass w. If mAsses w fell at positieons

i
31 then & measurement at x, y (x), free of mem~urement error, will yleld

y{x) - 1 (v, x - R) (10)




since for the ith mass, r = x - B;» The sum in (10) is over all the masses.
If the masses are distributed over the whole plane by a Poisson process so
that the mean number in arear A is X A end if the probability of a mass
lying in (w, w, + dw) is f(w) dw independently of its position, the
stochastic properties of (10) may be worked out easily. In particular, the
process is homoseneous. If #(w, r) depends only on the length of r,

it is also isotropic. If it is relevent, then intceresting problems arise
because now the date should enable us to estimate \ end f(w).

This model could alsc be used for linear reers - one would then
distribute lines rather than points. :.other seneralization would arise if
the Toisson distribuion is inadequnte and has to be replaced.

The statisticel treatmeni of date on these medels is in its
infancy. lMocels of type (10) are called movin~ pverage representations.

Another class of models is supgested by clessical mathematicel

physlics in which the matberatical description usually has the form

Ty (x) =0, x inside R, \)
Z X R )
( (11)
f i) = elx) a
Y OAX) = e\x| X on ¢

viiere 5 is the boundary of R and where L is a linear operater., For

. : - 2,52 2,..2
exerple, 1f ¥y = temperature at equilibrium, L = 3 Py /ij. In
- “

ustel rnesicnl cases, the tenmperaturc distribution over fie boundary

determines “te dncterior terpepnture Jdptrihution,  Thus




where h(ﬁ. }’) bnorelated o the dreents funetfon of the preoblam apd e
determined undquely by 1oand £ e A1 »(g') ta A rapidon funetdon opn B,
y(x) b vantom funetbon b the dnterbor, 1 will be aeen thet {10) 18 agats
a movitg nvepsge pepeapontat fon Hke (o). 1 g meraly ohtalned tn a dtffapont
wity,  Fludd flow dn dedcribed slmtinely ao {1t aeems Lhis approach siould be
rele.ont. for nome problema.

A mueh mopee HEFFLeult mitunbion may he relavent Lo pany pgel-ooienl
problemn,  Above wo hnve bean Un o nhout. boundnry value jprablems in an
notvopls madium but with enasdom hovindney vaiusa,  The converas sttuat boi --

A medivw whoue propert ben var, rand mly and atrple boundary conditions =- in

mueh hinpder to formuinte and denl wilh,

T - . e " PR, ot SOl SrpeToond
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Appendin,

feme Copments en
“lea variahlea regicnaliacen et leur satimation”

Manmon et Cle, 1965, by (i, Matheron,

There have heey many publicationg by Mathercn and his colleagues.
The eentral references {a the above beok of 309 pages of mathematics, ‘Thia
book 1A nnt, eray reading and has no point of contact with the usual literature -
lu faet, it bas no references at all, except to text books on sinchastic
prncesses, It seems worthwhile thereiore to attempt a survey of its contents.
Since 1t developR & great deml of formalism, we try only Le deacribe in our
own words and rntation the essential problem Matheron tackles and his methods -
also we give references to key sources in the Fnglish statistical literature,
This may understate the range and depth of the book. If so, we hope it provoke:
somenne else to translate his metheds at greater length.

Let £(x) be a function of x = (xl, xe,...,xn), a point in

n dimeusioral Fnclidean space. We would like to estimate

Q = I f(x) dx , (1)

where dx = dx,...dx , glven some i formation on f(x). To fix ideas, f(x)
might be the density of a metal at a point x in n = 3 space, Then Q 1is

the total quantity of metal; the integral makes sense because f(x) is usually
zero outside some region R, One other ecxample is important. Suppose kR(g)

is zz. » for x outside R and unity for x in R. Then

V= f kR(f) dax (@)

18 the volume ot the vepdiny R. Acodn, siven intormation ou the values ot




k“(ﬁ), wo might. wish toestimals Vv,

T evaluste (1) whon Fle) = 0 outabde & raglon By weet wher Hhe
faunctional form of r{x) 1 glven 1 n patter of Integration - e pr e
tnteration 1f the form of  Fla) 1o complicaied,  (pa dlvidea B tnde W
subraglons R with volumen v‘, eyl luntan F(a) at. n typleal poinl nl 1}

aRch Rl and forms
M
e ¥ r(xi)\H . (1)

Fancler methods approximate  locAlly by simpler Db bonm bat the Iy
formila will have a form 1ike (3). 'lhe error made in aluply -y and hookn
on numerical integration auggent ways of satimating this uatop e’ f ke et e
of the formula for f(l). This ia all clampateal wathemat low, 10 unthing 18
kuown about f(i) except 1tr values &l 51""‘§M' nuthin, can ha srid abont,

the error Q-8,

Two examplen show an interesting result (Altken (1030), Vaten (100)

Kendall (1942)). In one dimension the uac o potite cqealiy ap e

h unita arart reveals tin f&llnwln, racts:

1 2 S J

® L, -3 (0+nh) » F(X’ﬂ)

v Jﬁg e h estimates J A ‘x a1l (h)
) AN

very well even for h as large as twq while

- h p d

- > estimates | ————— e w1 (5)
« n{l-(8+nh)") (14 (x+0))

much more pcorly for similar values of h , As Kendal! rhewed, the reascu tor

the difference in the behavior is that tii> cravacteristic fucciicon {(Fourier

> .1
transtorn), ¢ - of (1 + x7) " decveares at a rlower rate thag, the char-

2/a %
/2 /0
L /, of o

actervistic function , e o o lt] =,
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f'rem “l'”ﬂ""’”k' we binve A ayatennt i pimp Pinge procemtie, A compry b o
Phere met ] -abs nnd the pelation o0 the iatter L hepnonds Apnlyate de kpown -
aee Cochren (JOWG), e (10 ),

Voran (1000) peerambied the probieme and petiende of Kendall hy

V) o the boreeeat Lo |)|],,,‘ e cnnalder sd

choatn v b pandom (aee
o R ARIEY hy vystepnt [N ,'f|;|.'l|h,‘-_ Thna, 'f‘lu'lﬂl‘\‘ I ole

Afeenunbin, 4 e { fix) dv ta n“v»uv_hvn!r‘l Vo

plo) - u Y (), ()

A ponban o danle  alnee v fo oA tandom variahle | Immedintely

h »
E(s(c)) - jA f?? h Y c(emn),
0 ] -
~ (11 )h
- v riv) dx, (1)
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pe bt HoEu) b oan onbineed aetimetor of 4. Also
N H
uhr (RLn)) < (R (o)) - e

wheyo  BUter amveanl sl@udpulsd bonp,

ﬂﬂﬂ”iu)i o " ‘r Fiw) Clwtal) dn, (")
LY
var|{n(n)} « % ¢ 'n(?ﬂw)lu . (9)
m

ohare (he wum 0 (9) e Frem we Lo axeluding m e O, and

p(t) = T @ AT (10)

is tha Fourler trapsform of £{x), The erve: {n 8(1) wiil be amaller on the
average the uraller (9) 1s. For fixed h, this means |¢(t)] tendiug tn rern
foater as |ti= w, The behavior of (h) and (%) can ncv be predicted, If

n is not taken am a randam varlable, Kendall ahcwed hiw to get similar reaults
by noticing that 6(n) and the errcr Q-8(u) arn pericdic tunctions of 8,

the pevlod hatug 4, sl Ao repnensntahle ap Pourier Berior
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Finnily, the varinnes ot H(0) would alsc be kuown if we know

ply) I £'(x) f(xty) Ax (11)
-fih
' every y - hecaune then we could evaluate (8), Matheron calls (11)
the covariopram of £{x). He bag glven the n-dimenaicnal version of the

nhove penalta the cnly changsan requived are notaticnal, He also defines the

demb-var fogrm

" ”
Wy . b f i) - ro0)f e (12)

i

Thun

"

W) A oy - 2 k) £ ¢ 5 (x)) ax,

-

- p{0) - nly) .

However there are functions for which (11) 18 infinite but for which (12) ia
net - thig {a the reaaer why !atheron prefers (12). We will return later to
these questicns and to the key questien ~f cheosing a form for g(y) or y(y)
in practice, R
Sampling methods for sclving mathematical problema (we have just
seen ar example) are now called Monte Carle metheds and are very well known -
nee, e.g., the beok by Mammersley and Handscemre (10€L).  They all depend on

rtatistical theory, The above methed {8 by no means “ne cnly, cor the best,

way of evaluating integrels by sampling.
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Certain geometrical probloms are closely related to the above,
For example Kendall (1548 cunairderad estimating the area of a region R by
counting the number nf lattice points which fall in it wher the lattice {s
positinned at rendom. The theory in as above using the function kR(x) defined
for equation (2)., Buch protlems Are of grest mathematical interest and can
be traced through hnoks and papers nn ntegral (ecmetry or Geometrical

Probability - see a.g., Kendall and Moran (1963), Meran (1569). Matheron calls
K(h) = J k“(x) kR(xrh) dx (1)

the geometria covaringiam.

So far we have here regarded f(x) as an ordinary functien - the
only stochastic element has been the sampling process. But workers in many
fields including genlogy have considered the case where f(x) is a random
function with certair properties - the reason why and the basic references
have been given in the body of the paper,

In this case even a complete knrwledge of f(x) smo that (1) may
be evaluated is not enough. The value of Q cbtained is lust one poasible

value out of au euswwhle whose average, *(Q), we seek. But
EQ) = [ E{r(x)) ax,

= | m(x) ax, (15)

where

E(f(x)) = m(x) . (16)

Since var(Q) = E(QQ) - E(Q)e, we need

s(qe) - F J\J‘ f(x) ~(x') dn dx' .
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But setting x' = x *+y, we have
£(Q%) = £ [(] (£0x) flxey)) dx) dy, (17)
and using (11),
R@) = [ Falv) dy . (18)

This should be compared with (8),

" [aad
E(s“(g)) «h ¥ g(nh) . (18)

-l

The relationship is closer than one might have thought. In thia approach
we usually ask whether cur undevntauding of the preblem angreata a foum to

assume for, not E(p(y))but,
cov(f(x), f{x+y)) = E(i{x) £{x+y)), ("0)

called the cuvarianre fiuction. Muivalently one might try t~ specliy @

new versi 1 of (12)

Bly(y)) = 5 £ (£0ey) = £x) )° (21)

wnich, if known, implies the value of (20) whern that exists.

To estirate =(Q), given enly f(x) at XyoeeenX, ve might consider

the estirator

P = '\1 f(xl) L.k xn r(xn) (22)
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whore the ki'n ure tn be chosen to minimize
(:4)

;“
E(R - Q) = mean aquare arror of R

Pt
BR - @) « [[((e0x) £(x') ox ax’
-2 “.\.i j E(f(xi) £(x)) dx
+ T'Xi XJ E(f(xi)f(xd)) . (o)
Hence
.i§.’LR;Q.)E . -2 E(f(x,) £(x)) ox
N Xi J (£(x, x)) ax
+ 2 ,),J N r(xi) !’(xj)
(29)

1 =1,...,n)

{s a set of "rormal" equations for the xl,...,\r. They may be sclved if tiv

Matheron calls this method Xriging.

covariance function (20) ia knowm.
There is acme literature cn how best to cheose the polnts x v v,
Py

where the rai’'-m Cauction {&8 (dbrecved g~ that

'(xi)

=1
b T
LY

"best"” approxirates

1

¥

j £{x) dx
\Y
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Hadele (1999) hai = result Juctifyliy cqual spacing when V  is an interval,
Falentun, Halek or' “ubrzvexl (1579) have studied the planar case,

fo far we hnve cenifcde-od anly the estiration of the interral (1) -
thin nemen too be the uly prebler aitacked in the book although the

entinntion nf

« [ oplx) £(x) ox ) (26)

where p(x) 18 wnown, is considered, If p(x) s 6(x-xo), the Dirac delta
futctimn, P w f£{x_ ). Tous in yarticular (2€) raises the problem of

ectimarine  £(-) Bl unobserved peinta, This problen is considered in our tirst
reference %o lMatuercn's works. His arpreech seers to be the follewing.

o, Xoand requived at x 0 Write

Supprse f£(-) is observed at X1 . "

-y
—
T
—
n
]
o]
—~
[P
4
(97
e}
—_—
1
~
i
"
A

Aard cheene Dy 0
1 r.

-~

-
E(f<xc) - f(xﬂ))' « minimum .

—~
4]
T

e

D)

ihie least squares problom ray be solied if cne ko2 e covariance function

{27}

The ccefflicients are clearly Jeperdent on x . so that {37) is & xino of
moving averate, lMather~n alsc calls this Ariging.
All the amove theor; can be rewritten witii () vecter valued
and jatheren dees this,
Thir all the above theory is guite simple and not novel. Its

aprlicatizn 1s ceen always to inc lve ke chrice of a functicn - the varicgran,

Ny e owe d ~ ~ . ~masem ot - a3 A AN ~n . - < . : 1
cerl-varioRreT o covarierce, I is diffdcadt o osee fist what Matheron world

recorrend, and why!l Fheald arcoore VoowiT i 0 Aaccept Che challenge to rut
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Matheron's work into the English literature, this is the point that needs
most attention. It is clear that he favors functions which are isotropic.
Even giver this restriction, the estimation of the above functions from

data is non-trivial and this d-es nct seem to be attempted.
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