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TRE11D SURFACE ANALYSIS AND SPATIAL CORRELATION

by

Geoffrey S. Watson

.. Introduction.

Yapping has always been a favorite tool of geologists so that, with

the increased acessibility of computers, it is scarcely surprising that

gc6logists should now be very interested in studying spatial distributions

mathematically. Their aim is to use some math-matical model to smooth or

contour a net of data points, or to interpolate between them or to calculate

some average over the area. (Two recent general references with substantial

bibliographies are [ 1], [2]. )

There are a number of possible methods, each with advocates, and

some controversy has arisen. In the U.S., the most popular methods have

assumed that

value at data point = value of deterministic function - random error
(1)

and consequent application of the least squares techniques. In South Africa

and France [3], the preference seems to be for

Value at data point = value at a point on a random function (2)

and application of moving averages. In actual fact, these two models are not

really distinct. at seems useful, without attempting to say what should

be used, to try to explain the theoretical background of these methods,

because this is not available in an elementary exposition. At the outset

it should be said that this area requires considerable statistical research;

it has so far been mainly the preserve of very theoretical 'workers. What

little there is in the literature by way of applications has been written
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by geophysicitso perhaps the earth sciences as a whole will help to create

a new class of statistical methods (see so-- of the references in [Q)

2. Conceptual Problems.

Let us restrict discussion to the two dimensional problem. Thus

suppose we have a quantity y measured at points (x1, x2 ) in the plane,

distributed ovr some region R. Geometrically, - have points (with

coordinates in three dimensions) (x , x2, y). Through this cloud of points

we desire to put a smooth surface. It is hcped that this surface will show

how y woul, vary with position (X1 , x2 ) if there were no local or small scale

variation the effect of large scale disturbances is uspposed to be incor-

porated into the smooth surface, which may be called to trend surface.

Thus

observable surface = trend surface -, variatl.cn surface (3)

The separation into two parts is made on the vague basis of "large" and

"small" scale var~htion. Our interest may be in either part. The trend

surface seems appropriate for interpolation ani averages, the second for

the detection of anc-ralies, e.g., discreteore bodies. It is clear that,

lirless we can introdum more prior knowledge of the particular phenomenon under

study, or have a bright idea about the mechanism after a f'irst look Et the

data, nny analysis must be quite empirical. It follows that one cannot say

any meLhod Is "best",.

In section 3, w .il1 'iacUss some specific mechanisms which might

acount renliatically for some i7er)oljcn1 dist.r.",litimns. Here we will

contilue with a mot,tr gper,1i anlysis of (3). If (3) is compared with (1), we

nitp tlint the two pnrOt, nre arimred to be of f differnt nature. 'Te trend

in nrrnrim d I() be P delorynh ll ' iii c t' f , n' the vnri'nt ion to he rntiom oi-

ntochnit c, It' (3) is -j''ui it I (, ), ther ! n, t zil'Ilw i n but

"rflll(I"' npTpea re nra ini



We therefore discuss first how randomness might enter. In the

first place, y will usually be measured with error, i.e., if - e site

is revisited, sampled and the sample measured, a different value would be

obtained. Tnis is well understood and so can be ignored for the moment.

Suppose now that our interest is only in the region R that was sampled

at a finite number of points - we will later consider the case where region

R itself has been chosen because it is typical of many similar area, 'i.e.,

our interest is in the population from which R was somehow chosen. There

are infinitely many hypothetical surfaces passing near a finite number of

points. Some will be more credible geologically than others. It is a

standard tactic in science to deal statistically witn an infinite hypothetical

populations. Explicitly, we must define the class of admissable surfaces

and suppose our particular case is a randomly chosen member of the class.

Apart then from measurement errors, it is in this way that "randnmness"

enters when attention is confined to one area.

The population of admisssable surfaces may be defined in several

ways, corresponding to (1) to (2). We will return to this in a monent.

If the region R itself has been chosen as typical of many

other regions, even complete knowledge of the aurface over I would be

insufficient for conclusions about the other egions. It is necessary to

defiiie again a class of admissable surfaces and to rege-d the surface over

R am a randomly drawn member of the class if we are to use statistical

Lrguments.

To define a class of admissable surfaces, we are guided by scientific

plauslbility atiO mathematical and computational convenience. The older

method is that ot (1) and the cormcnett choiecs for the deterministic function



are (i) an algebraic polynomial in cI and x2  (ii) a trigonometric-i

polynomial, i.e., the first few terms of a two -imensional Fourier series.

It is usually implicit in papers on this basis that the choice of function,

the highest degree terms used, etc., should make the "random error" have x

zero mean, be uncorrelated and have constant variance. For example, the most

thorough stuey in the algebraic polynomial case - Fraser Grant [4] - makes

this quite cxplicit. His methods may be repeated using trigonometric poly:-

nomials, or any other set of functions. In detail, they depend strongly

on having observations on a regular grid ,

However, the model (1) method does not have this

requirement and so has appealed to geologists - but the "error" should be

studied if the model is to be checked at all with reality.

The "errors" referred to in the last paragraph should be thought

of as the hcights of a random surface e(xl, x2 ) above the observing points -

because we might have used other observing points. If P'=(xi, x1 )

are any two observing points, the above assumptions read

2

E(e(xi , x2)) o , E(e4(xj, x )) = c

(4)

E(e(x i, x°) e(x2, x.) 0

Clearly the last assumption is unreasonable P' and F" are close together

and reasonable if they are for apart - for this is the way we expect spatial

correlation to behave. We are stpposing that e(xl, x2 ) describes small scale

disturbances only. It would be preferable if we could do an analysis which

replaced the last two assumptions of (4) by

E(e(P') e(P")) - c(P', P") (5)
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where the covariance function c(P', P") decreased as P" moved away fromP'.

If we assume that

c(P', P")-- c(P' - P") (6)

i.e., that c(P', P") depends only on the vector (x x the

error function is said to be a homogeneous random function. If we assume

more, namely that

c(P', P") = c2 (r)

where (7)

r J(xj x)

the error function is an isotropic random function, because the covariance

now depends on the length but not the direction of the vector separating

P' and P". In neither case does the average depend on the absolute position

of P' and P". These are the generalizations to two dimensions of tho notion

nC stationarit, now common in time series analysis - which is the cme dimen-

sional equivalent of our problem.

The spectral methods of time series analysis are n-o, familiar.

particularly to geologiati who have followed compter applications of the

Kansas group. The weakness of the model (1) work has come from ignoring the

two dimensional time series aspect of the error model implied in model (1).

Having come this far, one sees that it may be unnatural to

separate the obaervable surface into a deterministic and a randcm function.

For the small and ]arge i--al tisaittvnce notions find a natural definition

in rpectral terms - high and, low z',eqenriea. And t.here is no mor an unnat&mrl
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di'rision between the two. It may be better to define the class of admissable

functions in terms of averages over the class, to asum' homnogeneity or

isotropy and to base the analysis on this assumption. We cannot, in this

short paper, explain how the analysis would then go, except to note that

moving a.-erages appear naturally. It is not too different from the

trigonometric equivalent of Fraser Grant's method. Thus it is very awkward

without regularly spaced data. Also the general weak assumptions nAde imply

that one should have a considerable number of data points. This is one form

of model (2). We hope to deal with methods based on this model in detail

at a later date. The reader will find a list of relevent references at the end

of the paper [63.

Matheron [5] advocates another version of model (2). He dces not

assume that the averages are independent of the absolute position but that

the averages of changes are. Explicitly, he considers random surfaces

f(xl, x5 ) such that, for all (x.., x2 ), (hl, h2 )

I + h1 , x2 + h2 ) - f(x1, x2 ) ]  -(h)

where (8)

h~ = h I + h2
1i 2

This is nnrt. the same as saying at

n(l, ) f x2) - 0)C 2'2 (9)

is an isotropic rrndcm function berak:ve (P) does not Allow the calcuilation

of c( , P") wv',n 7' and P" are distinct. The extensive litersture '5]
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generated by Matheron and his co-workers, particularly Serra has only

recently come to our attentior At the time of writing it is not clear

how assumption (8), even with a particular choice for the function y(h),

is made to support a method of analysis. Matheron however endorse the use

of movina average methods which he attributes to Krige. In fact he uses

"Kriging" to describe the aot of taking moving average Matheron claims his

methods do not require regularly spaced data points.

To conclude this section, we return to measurement errors. If they

are present,one must adr, to the random surfaces discussed above a random

surface which is isotropic and in which the spatial correlation falls off

very rapidly, i.e., the equivalent to the white-noise of time series analysis.

3. Some mechanistic models.

There are two relatively simple ways of building probabilistic

mechanisms that may have application to trend surface work, i.e., generate

classes of random functions of geological pertinence. The key paper, with

a large bibliography, is Whittle [6]. The tract by Matern [7] is also a basic

course.

An example of the fir:.t method would be the following construction.

Suppose ore bodies are initially distributed randomly in the plaie with

-ifferent sies and that, after a given time, their "inflhence" is felt

at neighbcring po_ nts. For example, their contents ray diffuze c twart's

from thei.r >,nitial posi ions which we might approximate tv," points. If the

rmedium is .>-.,ojenous, r(w,r) could itand for the concentratimr a" a uint,

a vector r away from a body of r.ass w. If rAsses wi  fell at x-citions

then a r,,easure.ent at x, y (x, free of r-.ea~urement error, will yield

y ,x , -x - R, " (1
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since for the ith mass, r = x - R.. The sum in (10) is over all the masses.

If the masses are distributed over the whole plane by a Poisson process so

that the mean number in area- A is X A and if the probability of a mass

lying in (w, w, + dw) is f(w) dw independently of its position, the

stochastic properties of (10) may be worked out easily. In particular, the

process is homogeneous. If :(w, r) depends only on the length of r,

it is also isotropic. If it is relevent, then inte resting problems arise

because nw the date should enable us to estimate k and f(w).

'ns model could also be used for linear reefs - one would then

distribute lines rather than points. .-)other ,eneralization would arise if

the Poisson 0istribution is inadequnrte and has to be replaced.

The statistical treatment of data on these models is in its

infancy. '.of'els of type (10) are called mo*n0' Pverage representations.

Another class of moels is .sng;ested by classical math-ematical

prbysics in which the mathe'atical 'escrirtion usiunlly has the form

y (x) 0 , x insice R,, ~(ii)

y (x) e(x' x on S

nere S is the b-ouruary of R a nc. where L is a linear nUrator. F-r

2 2exe:ple, if y -temer,.reat quilibrm, .22 . n

s'Kn r rr,\ irza]' oases, the te.-.e'.at ,o're dis'tribut ion o~cer thch'undry

de~~~ethic,"."v~t:r. M!, ne-l "'"',.:. . nl', ob t ,on. Th.us

, bx) b(x, x') ( ') )x' (12)
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"Ten vhriah~p r-gir naliseen et laur P, imation"

ti nntr'n t ( i , C 9$5, by G, 1Matheron.

'here hewy. herri mrny puhi eatiuns by Mathern and his colleaguex.

1e-t o 'i r.1 f,?'nr in the bnvhoe br,nt uf' 30') raitvs of rnathemattes, h is

h-ok In rrit, Piny ria(1lng rid has no point of contact with the usual literature -

In fart, It han no referencees at all, except to text bonks on atochastic

prne.ses. It seems wOrthwhile therel'ore to attempt a survey of its contents.

Since it develops a great. deal of formalism, we try only tm describe in our

own words and rntation the essential problem matheron tackles And his methods -

also we give references to key sources in the Fnglish statistical literature.

This may understate the range and depth of the book. If so, we hope it provoker

someone else to translate his methods at greater length.

Let f(x) be a function of x n (x1, x 2 ,...,Xn), a point in

n dimeisiot.Al E1~1,ifdian s.ace. We would like to estimate

Q= f(x) dx, (1)

where dx = dx ...dxn, given some I tformation on fr(). To fix ideas, f(x)

might be the density of a metal at a point x in n = 3 space. Then Q is

the total quantity of metal; the integral makes sense becaise f(x) is usually

zero outside some region R. One other example is important. Suppose kR(x)

is z , for x outside R and unity for x in R. Then

V = , f x dx (2)

is the ol1in ' 4*tho( vepiozj TZ. A 'n ilij f volni 7~ rifI.: ' fhe N-A117 (-)



1H(x) , we might, wifh V 't"~~b V-

111( pvatillat" ( I ) wllLI O N(~) m ) 11 1l ike " It rppl-ii' i, s hr't I1 I

f'iictionPtl turni r ) in ,4iVp~ii in Kt i, 1 1pr fit, 11,141-0,al 11- 11nl I

IntogIrFottiriut ir t'hi rurm tir r(A) ill (IIbtd ilf 11vtil's I it I 14

istbrnogisif R with v~hittePn V ,.1 ~ 'v I At r f(x ) aI i, if IN tuh vi, i ii~)i iix 1

M

Flauir i r methodA approx imate 1" loo''A Iy hv 0 11111101, li1i-1 1I I in. 111I. l ilt'I f,1IJ& I

furmle w ill have n form like (J~) . 'lit hairrot imicfl I to oimp y q-1 thd tiosi

oi rnimeriel (s i ntegrttion muwgjJflfi . wMYM (it 'fl WiA Iti~n 11,1 0up 1P sit, 1

of' the fnmunla for f(x). 'This to all vst aioniuftIl niAthitit h-. It I'iiot liutt '1

knmowni aboiit f(x) oxrnept. its vatuaR fit ,,K, iilti'l' 4141 1h sAfid Nh('111,

the error q-s3.

Two exampl en show all mt ererfti 1 114 t',dl t (Al tIn (1'1) .Volt ' (11.01,1

Kenidall1 (191i2) ). In one dimension~ the ime (-,' pi lit cq I y fljlceA

2 1 -t

e etiati j ~ Xy (i

very well even for h as large as twcq while

an

h dx

Ti n(l- (+nh) )j 14 X

much more prorly for similar values of' h . As Kendfl! shrwed, the re#1#4011'

tht difference in the behavior is that til: jatL-nct crhtimic ij.cul (i'urier

I

trans~form), C- of,( d'ek-tCAor nt A pliPev rmft.e tLirij the char-

acterisfic Nunction , er' of' e anI
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v , i) r( 111)Ik

aveorag h uii in (9) in, Fr.,ir r*.t *oa hit ti mpati 1,tl tenfiiul e

tfmtter an t: - . Up behavinr of (h) and ("I) can nov be predicted, If

A to tnot taken as a ranim vat-table, KenidallI olicied h,-w tor get uimilar resulto

by noticing that fi(P) And the or-ri 44-t(u) strif perindic Cwictiona of 6,
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Fin,!y, thP- varloinuiII rf 11(o) woiuld also be kn~own if we knew

V. J5 V(x) f(xey) Ix (i

f1'ir e've'ry y - hriaiv t,hpni wq: ccmulr revaluotte ().Math.eron calls (11)

III# r',vnlri~tflr~if fx). He litsu pjvroh the ri-Mitrninrnu1 versinn of the

Onl-,.vre" flii, III#, ,ily ohnrigen repi iiird sire notsIt irrial, He alvio defines the

Ii'tii - viLr 1i I.I!?I

,f(Y) I (±)- r(xfl dx .(?

Y(V) 7, ' (x ty) f(x4y) f(,< r(x) dx,

(13)

JI ) - lt(y)

111wevvr thr-r are' 1'invti-n for which (11) is infin~ite but for which (12) ill

iret - hle in the rr'anrY. why 1.%t.hrn preferrn (121). We will return later to

theut.' qu,,ztirret aiid to the' key qiietqti-ii rf choc~sig a form~ for g(y) or y(y)

Sanplinr, mooethords for solving ratheiratical problemsa (we have just

seen Fin e'xam~ple) aire tnow calird! 1.nto, Cnrlo methods and are very well known~

se'e, e.g., the br",, by Iairersloy ar;J Htnr~dcorre (I.C(4). They aill derend on

rtatistical theory. 1he ab've metcto Is b, rno mreansr 'te only, or the best,

wsay of evaluating integr~ls by sam~pling.
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Certain gerimetrical problnmn are closely related to the above.

For example Kendall (V)948) considecred estimating the area of a region P by

counting the number nf lattice pointm whlrh fall in it wher the lattice is

positrined at ,r#ndnm. The theor,' Jn RN above using the function kR(x) defined

for equation (2). Such problems are nf great mathematical interest and can

be traced throtigh books and papers on rntoeral (o.nmetry or Geometrical

Probability - see e.g., Kendall and Moran (1963), Moran (1969). Matheron calls

K(h)- J k1R(x) kR(xlh) dx (14)

the geometrin covaringidm.

So far we have here regarded f(x) as an ordinary function - the

only stochastic element has been the sampling process. But workers in mAny

fields incluring geology have considered the case where f(x) is a random

function with certain properties - the reason why and the basic refererces

have been given in the body of the paper.

In this case even a complete kn.vwledge of f(x) so that (1) oiy

be evaltateC is not ennugh. The value of Q cbtafiied itt lot clue possible

valde oIt of muO iinh1Ir wh,-n" average, F(Q), we seek. But

E(Q) -. f E(f(x)) Ox,

j J m(x) fx, (15)

where

E(f(x)) .m(x) . (16)

Since var(Q) - E(Q ) - F(Q) 2 , we need

E(Q') F E Jj f(x) x') dx dx'



But setting x'1 x Y, we have

F (Q. 2 E (f(X) f(Xsy)) dx) dy, (17)

arid using (11),

E(Q 2 * R()d R

This should bp c.ompared with ()

The relationship in closer than one mijght have thought, In this approach

we utnually ask whether our linflrWIAudii tit' the piob~r l y ctpl A t*)IM to

anskume f-i', not E(j7( y)) but,

Cov(r(x), t(x+y)). i(i(x) C(x+y)), (0

crfled the rtjvarIIanr Uict~1o,,. F-Itivotently one might try t specily a

new versi t. of (12)

E(-y(y)) - txY) - r(x) ~

.nich, if known, imnplies the value of (20) when, that. exists.

To estlurAte ZE(Q), giver, only f(x) at x1,....,x we might coi~sider

the estim~ator

r - X f(X 1 ) + + . . (22)
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whvrp thp X.I n Itrei to be choven to minimize

(- mean aquare errnr of R (')

Mit

(n - Q)2 fl'((f(x) f(x')) dx dx'

2 1. 1 Sr(f (x ) f(x)) dx

k k i E(f(x)(x)) ((x)

Hence

2
*-2 E ;(f (x f W(x) c':-

'"fxi i

j2 , ) f )

0 (i 1,...,n) (25)

iIa aset of "rorm~l" equatiorns for the Xl, r'6rn They may be solved if t ,

ncVOI-If lice fiictior (20) is knourn. Mathern calls this method Kriginj.

There in some literature cr, hmt best, fto ,hr,' tL~ I.q xe t,,

where the rai. '-m f'MuOci 0. II (4'r P .et thAt

r
N

best" approxirten

Vf(x) x
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'lt10 1 ()) hiti romnii t.* yi: cqua IL A c lug when V is An inteLrval.

I AI v I i nil, iJ)'' '!.hrzv',k t. (1 i/(0) have studieO thP plnair Cane.

tri Iwt, Yj%% , (,-t - I J o r, I y tile eal irat ion cf thc irnte(ral (I)

hi n Iinnnf bf' h 1 i*y pr blfr 10 aced in 'he boiok al though tile

tnt 1httil4j I''ui

j') rx ) f (x) Ix ,26)

wbvre p(x ) isnc~rwn, in considoare 1 l. If p(x) -6 (x-x 0), the Dirac delta

fuic: I n, P f f(xc9n ). in jert Icular (26) raises the problem of

rn r I i i- f( ) a~ unsrv rcint , . lis prublez, is cons idered in our Virst,

rei'eretLce .o Fti-ercn': works. His arproach seers to~ be the fd1lowing.

Supprnse f(. ) is observed at Y1 ,... , arn reqluired at x 'Write

~~Ir~C )~ - 1 :lm' 27)

his lePas t s quitres prcblr. rAy b e scl--c:- i f me k. t- ccv\arirx.e f'unct ion

().Thc ccf-fficient.-3 are clearly leer. ('er.t ordx *sc' that ') is a kin' 'r

~c'V~l,; wera~. ~Rthe a", o cal ~s this r1R*

All the al'c':e tlhe,'ry c~un be rewriltcr. witi f(r vector va';ued

lhls all tho above t'rvis qulte sim .ple ar.C. not r'vel. It,-

arric: r.is !7--en always he~ ~ ~- c it a fuixcticr, the varic-ra:,

~er-i-~T4 SRe-:c*~ce~c ti ifc ee twh bteo:wul



- AIO -

Matheron's work into the English literature, this is the point that needs

most attention. It is clear that he favors functions which are isotropic.

Even giver this restriction, the estimation of the above functions from

data is non-trivial and this do-es not seem to be attempted.
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The methods for analysing data in one dimension (usuallylimc ) are highly
developed. However, in several dimensions, most applied workers only uise one class
of' methods -- thiit in which the data is assumed to be the sunm of a deterministic
trend and an uncorrelated random error. The more general model with a sp~tially
c-orrelated error has been neglected in most fields -- oceanography is a conspiculous
exception. This neglect is partly due to the lack of expositions for the applied
workers. However, the manner in which much geological dath is now collected does
make this application difficult.

The aim of' this paper is to explain the relevance of' the possible models
and methods and to indicate their data requirements. 11 :ppi.WIi: !lW U~~ dd('d
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