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ABSTRACT 

Messages arriving at a store-and-forward switch are stored 

on a drum.  Each message stored takes up a number of blocks of 

drum storage that depends on the message length in characters. 

It is assumed in this report that the arriving messages are 

drawn at random from a message population; thus the number, 

say N, of messages that fill the drum is a random variable. 

It is shown, by means of renewal theory, that the distribution 

of N is approximately a normal distribution whose mean and 

variance are simple functions of the drum size and the 

parameters of the message population.  Illustrative examples 

are given.  An estimate of the expected fraction of wasted 

characters of drum storage is also given. 
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SECTION I 

INTRODUCTION 

Messages arriving at a store-and-forward message switch are 

stored on a drum.  The number of stored messages -- also called 

in-transit messages -- is related to the capacity of the drum and to 

the lengths of the arriving messages.  In this report we regard the 

arriving messages as being drawn at random from a message population. 

In keeping with this statistical approach, we regard the total number 

of stored messages as a random variable.  What are the principal 

characteristics of the distribution of this random variable?  We shall 

answer this question analytically and give numerical illustrations of 

our results. 

Our analytical results and the elementary theory underlying them 

are presented in Section II.  The distribution of the number of stored 

messages is given in Section II for a special case involving a partic- 

ularly simple choice of drum size and message population.  In 

Section III we consider two extreme message populations which 

'bracket' all other message populations considered in this report. 

In Section IV numerical examples of our results are given for com- 

binations of two different drum sizes and five different message 

populations.  Section V gives a comparison of results; and some 

supplementary remarks are given in Section VI.  The Appendix gives 



a derivation of our main results and gives basic formulas used in 

Sections II - VI. 



SECTION II 

THE PROBLEM AND ITS SOLUTION 

Consider a drum having a certain number, say L, of blocks of 

storage.  (For example, L might be 8192.)  Each block has a certain 

number of characters.  Let w denote the length (in characters) of 

an arriving message (w ^ 1). Any message stored on the drum takes 

up an integral number of blocks on the drum.   Let x (x= 1, 2, ....) 

denote the number of blocks required to store a message of length 

w.  The dependence of x on w is described in Appendix Section II. 

This dependence involves quantities B.. , B„, B-, ..., which are the 

'ends' (expressed in characters) of the first, second, third, .... 

blocks of drum storage.  It will be noted from the discussion in 

Appendix Section II that when w is a random variable the quantity 

x :'s also a random variable; furthermore, the probability distri- 

bution of x can be determined from the probability distribution of 

w together with a knowledge of B.. , B„, ... .  Each arriving message 

is regarded as having been drawn at random from a message popula- 

tion; accordingly, the number of blocks required to store the 

message is regarded as having been drawn at random from the popula- 

tion of x-values associated with the message population.  (It is 

assumed also that all arriving messages are drawn independently.) 

* 
Incidentally, the storage of messages in blocks usually leads to 
storage waste.  For further discussion of this subject see 
Appendix Section III. 



The arriving messages are stored on the drum one after the other. 

Let the sequence of lengths (in blocks) of these messages be x1, 

x„, ... .  Let N be the largest integer such that 

x + x + ... + x^ ^ L. 

We call the quantity N  the number of messages that 'fill the drum.' 

In general this number will vary from one 'filling of the drum' to 

another; and since the quantities x.. , x„, ... are regarded as drawn 

at random from a population, the quantity N is a random variable. 

Let F(n) be the probability that N is less than or equal to n 

(n =0, 1, 2, ...); F(n) is the so-called cumulative distribution 

function of N.  An exact formula for F(n) is given in Appendix 

Section I.  We shall denote the mean and variance of N by E„ and 
N 

2 
a     , respectively. 

2 
Let \i  and a    be the mean and variance of x.  If a  is finite and 

L is large, we see from the results stated in the last paragraph of 

Appendix Section I that E  is approximately L/|i, a  is approximately 

(cr/y.) /L/u , and that the distribution of N is approximately normal 

with mean L/|i and standard deviation (a/u.) /L/u.. 

By way of illustration, suppose the distribution of x is as 

follows: 
g(x) = 1/8 (x = 1, 2, .... 8). 

(The function g(x) is the probability function of x; thus g(l) is 

the probability that x • 1, g(2) is the probability that x = 2, etc.), 



It will be noted that the function, g(x) = 1/8, is uniform over the 

blocks 1, 2, ..., 8.  The mean, u., of x is 

V.  = 1(1/8) + 2(1/8) + ... + 8(1/8) = 36(1/8) = 4.5 . 

The variance, a  , of x is 

a2  - l2(l/8) + 22(l/8) + ... + 82(l/8) - ^2 

= (204) (1/8) - (4.5)2 = 5.25  . 

Let  L be  8192.     It   is   reasonable   to  regard   this  value  of  L as   large 

in  relation   to |i;   thus we  shall  use   the  normal  approximation mentioned 

above.     We  have 

EN =   (8192)/(4.5)  =  1820, 

CT
2

N =  (1820)   (5.25)/(4.5)2 = 472, 

CTN = /472 =21.7  . 

The value, 1820, obtained above for E  is approximately the 50 percent 

point (also called the median) of the distribution of N.  Roughly 

speaking, half the time the number of messages that fill the drum 

will be less than or equal to 1820 and half the time the number will 

be greater than 1820.  Since 1820 is both the mean and the median of 

the distribution, we have ample reason to regard it as the 'center' 

of the distribution. 

The standard deviation, a„,   which was found to be about 22 in 
'  N 

our example, is an indicator or measure of the 'spread' (i.e., the 

variability) of the distribution of N. 



The following remarks are intended to explain how <7„  relates 
N 

to the spread of the distribution. 

With regard to any normal population, 99.87 percent of the popu- 

lation lies below the point that is three standard deviations above 

the mean, and .13 percent lies below the point that is three standard 

deviations below the mean; hence, the percent of the population lying 

between these two points is 99.74 (= 99.87 - 0.13).  Accordingly, 

about 99.74 percent of the population of N-values lies between the 

two numbers  E.T - 3 <J„ and  E,T + 3 0\T.  (Note that the length of the N N N N ° 

interval  between  these   two numbers  equals     6 a;   thus,   nearly all   the 

population lies  in an interval whose  length  is  6 a  .)    With  regard  to 

our numerical  example we  can  say  that  approximately 99.74 percent  of 

the  population  of  N-values   lies  between  1755   (= E     -   3 cr  )   and     1885 

(iEN + 3 V- 

In the example given above, the distribution g(x) = 1/8 (x • 

number of blocks required for storage) is too idealized to indicate 

fully the nature of message populations encountered in practice. 

Several distributions which are of more practical interest will be 

studied in Section IV.  To provide a useful frame of reference for 

the results presented in Section IV, we introduce in Section III two 

extreme distributions of x; these two extremes yield bounds on all 

the distributions of the drum-filling number, N, that are considered 

in Section IV. 



SECTION III 

THE 'BRACKETING' POPULATIONS 

Consider a message population in which every message requires 

one block of drum storage.  Call this population C   Consider another 

message population in which every message requires nine blocks of drum 

storage.  Call this population C .  The mean and standard deviation 

of Cc are equal to 1 and 0, respectively (i.e., for  C y, = 1 and 

a  = 0).  The mean and standard deviation of C are equal to 9 and 0, 

respectively (i.e., for C_ \i>  • 9 and a  = 0) .  Both populations have 

the unusual feature that they have no variability (i.e., no spread). 

It is obvious that when all the arriving messages are drawn from 

C  the drum-filling number, N, equals L; similarly, when they are all 

drawn from C  N equals L/9 (approximately).  These conclusions imply 

that when the sampling is from C the distribution of N has '0 spread1 

and that when the sampling is from C the distribution of N also has 

0 spread.  It will be instructive to see what our formulas for E^ and 

aN (given in Section II) yield when we apply them to sampling from C 

and to sampling from C .  In the case of C we have p, = 1 and 
1 o 

CT  = 0;     hence    EL^ = L/(J, = L and a    =   (CT/U) /L/U = 0.     In  the  case  of 

C      we have    \X • 9    and a =  0;     hence    E^ = L/9 and    cr. - 0.     What 

these  formulas   tell  us  is:     in  the  case of C    the population of 

N-values has     0     spread and all  its values are  concentrated at L; 



in the case of C  the population of N-values has  0  spread and all 

its values are concentrated at L/9 (approximately).  It should be 

noted that the results obtained by using the formulas agree perfectly 

with the common-sense conclusions stated in the first part of this 

paragraph. 

Graphs of E = L/u- (for \i =   1 and |i = 9) are given in Figure 1. 

The upper graph is associated with C and the lower one with C .  It 

will be apparent from the discussion in Section IV and Section V that 

these two graphs are bounds (see Figures 2 and 3 on pages 19 and 20). 
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SECTION IV 

NUMERICAL ILLUSTRATIONS 

The main results given in this section are numbers indicating 

the center and spread of the distribution of the number of in- 

transit messages.  These results are given for all combinations of 

five distinct message populations and two widely different drum sizes 

As indicated in Table IL the populations are denoted by C  C  C 

C and C • the drum sizes are 8192 and 16384. 

In specifying the number of blocks required to store a message 

we have used the following values for B  B , 3 , etc., which are 

the ends (in characters) of the drum blocks: 

Bl  = 602 

B2 - 602 + 672 =  1274 

B3 =1274 + 672 = 1946 

B =5306 + 672 = 5978. 

(Note that we are assuming that no message will require more than 

nine blocks of drum storage.) 

For further discussion of the quantities B.., B-, B~, etc., see 
Section II and Appendix Section II. 

10 



The population C is uniform and has the following range: 

70 characters S w ^ 5400 characters.  The probability function g(x) 

associated with this population is, therefore, 

g(D =533Y ' g(2) = 8(3) = ... = g(8) = JJJJ-  , g(9) = rrrr-  . 

The populations C  C , and C are, so to speak, 'composite' popula- 

tions since they are formed by distinct 'mixtures' of two basic 

populations.  We shall first explain what the basic populations are 

and then indicate how they are 'mixed' to form C , C  and C . 

One of the basic populations is C  which consists of narrative 

messages (i.e., 'people-to-people' messages); we shall call this the 

narrative population.  The other basic population is derived from 

very long data messages between computers.  These very long data 

messages are broken up into shorter, fixed-length segments.  The 

fixed-length segments constitute our second basic population of 

messages, and we assume that they are all 5300 characters in length. 

We shall call this basic population the data population. 

The characteristics of the narrative population are given in 

Table I.  Note that its mean (|J,) and the standard deviation (CT) are, 

respectively, about 2.627 and 2.154.  The probability function g(x) 

associated with the narrative population can be regarded as simply 

given.  (The function used here was actually estimated from data on 

the lengths, in characters, of narrative messages.  These data 

indicated that the mean length (in characters) of the narrative 

11 



messages was 1358.) As regards the data population, it is apparent 

from the description above that all its messages are eight blocks 

long; thus, for the data population p, = 8 and O" = 0. 

Populations C , C  and C are distinct mixtures of the narra- 

tive and data populations.  C„ is a (90% - 10%) mixture -- i.e., a 

mixture consisting of nine parts of the narrative population and one 

part of the data population.  C„ is a (71% - 29%) mixture; and C is 

a (10% - 90%) mixture.  The means and standard deviations of C  C_, 

and C have been calculated by making use of the appropriate formulas 

in Appendix Section IV. 

Table II gives E„, E.T - 3 0\T, and E„ + 3 o\_ for each combination °     N  N     N      N     N 

of CL, C, , C„, C„, and C. and two different drum sizes.  Table II 
0   1   2   3      4 

also gives the quantities m, p,, and (a/\l)   for C^, C  C , C , and 

V 

12 
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SECTION V 

COMPARISON OF RESULTS 

Several graphs are given in this section which permit one to 

easily compare and integrate many of the results presented in the 

previous sections. 

The graphs in Figure 2 show E as a function of the drum size, 

L, for the seven populations Cg, CQ, C.., C2, C„, C,, and C .  It is 

noteworthy that the graphs for C_, C. , C„, C , and C, lie between 

those for C and C . 
o       X 

The graphs in Figure 3 show, on a different scale, the function 

E again.  It will be noted, however, that in Figure 3 the graphs of 

E for C_, C , C  C  and C, lie inside shaded bands.  The purpose 

of any of these bands is to show the spread of the probability 

distribution of N abouts its center, EL^.  Each band extends from 

E„ - 3 c„ to E., + 3 cr„. No shaded band is given for C. or C_, since 
N     N     N     N S    T 

in each of these two cases the probability distribution of N has 

0 spread (see Section III). 

Incidentally, none of the graphs in Figure 2 or Figure 3 is 

directly associated with the uniform population of x-values con- 

sidered in Section II; however, the graph of EL^ for this case would 

be extremely close to the graph of E^ + 3 a for C_ (see Figure 3). 

(In fact, the two graphs would differ at most by about the thickness 

15 



of a pencil line.)  The reason that the two graphs would nearly 

coincide rests in the fact that the probability function g(x) is 

almost the same in the two cases.  The g(.<) used in Section II is 

g(x) = 1/8 (x = 1, 2, ..., 8); and the g(x) for C  (see Section IV) 

is only slightly different. 

16 
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SECTION VI 

SUPPLEMENTARY REMARKS 

The normal distribution that is an approximation to the distri- 

bution of the drum-filling number, N, is determined by only two 

2 
parameters -- namely, the mean, E„ = L/u,, and the variance, a „ • 

N N 
2 

(L/u,) (cr/p,) .  Obviously these two parameters depend on only three 

quantities: \i,  a, and L. We see, therefore, that only two charac- 

teristics of the message population influence the distribution of N; 

these two are the mean, u, and the standard deviation, a. 

It is of interest to compare u. and a  with regard to their effects 

on the distribution of N (assuming L fixed).  We see that:  (1) \i 

influences the mean, E , of the distribution, while a    does not; 

(2)  both p. and a influence the standard deviation, a  .     In 

connection with (2) it should be noted that for each of the popula- 

tions considered in this report a     is smaller than u-; thus in each 

case CT„  is smaller than the square root of E.T. N N 

19 



APPENDIX 

I.   The Distribution of the Size of a Sample Under a Simple Constraint 

on the Sample Sum 

Let X , X , ... be a sequence of mutually independent random 

variables having the same cumulative distribution function, say G(x), 

where x s 0.  Such a sequence is called a renewal process (see 

Reference [l], p. 245).  The quantities X.. , X , . .., can be regarded 

as obtained by drawing values at random one by one from a population 

of values of X, where 

Pr(X 5 x) = G(x)        (x > 0). (A.l) 

(The notation "Pr(X £ x)" means  "the probability that X £ x.") 

Let X, + X„ + . . . + X be denoted by S , and let L be any positive 
12 n n 

number.  Suppose now that as the values X , X„, ... are drawn we 

take note of how many have been drawn when, for the first time, the 

sum of the values drawn is greater than L; let N denote this number 

minus 1.  For example, if S < L, S2 < L, S < L, and S^ > L, then 

the value of N would be  3(= 4-1).  N is a function of random 

variables, and it is also a random variable. 

Let F(n)  denote the cumulative distribution function of N; 

i.e., 

F(n) = Pr(N <•  n)        (n = 0, 1, 2, ...)      (A.2) 
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A useful expression for F(n)  is provided by the lemma stated below. 

Lemma: 

F(n) = Pr(Sn+1 > L)     (n = 0, 1, 2, . . .) .     (A. 3) 

Proof:    It follows from the definition of N  that: 

if S  , > L, then N £ n; 
n+1 

and 

if N * n, then S  , > L. 
n+1 

The conditions  (S   > L)  and  (N ^ n)  are equivalent; therefore 

Pr(Sn+1 > L) = (Pr(N £ n), which, by (A.2), equals F(n).  This 

completes the proof. 

One reason why the result in (A.3) is useful is that in some 

cases we can express the exact distribution of S   (for any n)  in 

terms of tabulated functions and thereby calculate the distribution 

function F(n).  An even more important reason for the usefulness of 

(A.3) is that in many cases we can easily calculate an approximate 

distribution of S   and thereby calculate an approximation to the 

2 
distribution function F(n). More specifically, let p> and a      be 

2 
the mean and variance of X, respectively, and assume that a    is 

2 
finite (thus |i is finite) and that both a  and [i,    are positive; 

we conclude from the Central Limit Theorem that if n is large, the 

distribution of S ,, - (n + 1) (J. /( a /n+1)  is approximately a 
- n+i J 

standard normal distribution.  The cumulative distribution function, 
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say    $   (z),   associated with  the  standard  normal  distribution is 

z 2 
i   (z)   =(' —   ^      J    e"U  /2  du     (- » <  z < + oo) p 

V
/2TT y     - oo 

If     n     is   large,   then 

Pr(S +. > L)  * 1 - • rL -{n+1) *    1 = 5 l"^ * • L 1     (A.4) 
n+l - /•—~r -i - /*—~~r      -> a /n+l a /n+l 

We  conclude  from   (A.3)   and   (A.4)   that   for  large    n 

F(n)  - , l<n+1> * - L    I   . (A.5) 
a /n+l 

2 
Let E  be the expected value (i.e., the mean) and a  be the 

variance of N; and assume that  X is a positive random variable. 

The following statements can be obtained directly from some results 

given by Takacs (see Reference [2], p. 225): 

if u  is finite, then as  L - °° 

EN/L - 1/j*     ; (A.6) 

2 
if    a      is  finite,   then as    L -* °° 

a2
N/L - CT

2
/U

3
    , (A. 7) 

and    [N -  L/p.]   /  [   (cr/p.) /L/u ]    has  an asympototic  standard  normal 

distribution. 
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II.  Using the Character-Length Distribution to Determine the 

Distribution of Blocks Used 

Let  w  denote the length of a message in characters (w > 1). 

Any message stored on the drum takes up an integral number of blocks, 

The number of blocks required depends on the length, w, of the 

message.  Let B. be the number of characters available in the first 

block of drum storage used in storing a message.  Let  B„  be  B. + 

the number of characters available in the second block of drum 

storage used in storing a message.  Let  B. = B + B + ... +B.  + 

the number of characters available in the jth block of drum storage 

used in storing a message (j = 1, 2, ....,), where for notational 

convenience we define B_ as 0.  The relations among Bn, B   ... and 

w  are indicated in the diagram below, 

B, B, B. 
J 

w 

The quantities  B  B„, ... are the upper ends of the blocks 

available for storage of a message on the drum.  If w £ B , then one 

block is required to store the message; if B. < w ^ B„, then two 

blocks are required to store the message; if B <  w ^ B , then three 

blocks are required to store the message; etc.  Let x denote the 
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number of blocks required to store a message of length w.   x  is 

a function of w, and we can express this function as follows: 

if  B   < w ^ B  then x = j    (j = 1, 2, ...).    (A.8) 

Assume that W  is selected at random from a population of 

message lengths and let r(w) be the probability function of W.  The 

mean value, say m, of W can be expressed as follows: 

K 
m = £ wr(w), (A.9) 

w=l 

where  K  is the maximum possible message length in characters. 

Let X denote the number of blocks required for storage of a 

message selected at random from the message population, and let 

g(x)  be the probability function of X.  The function g(x)  can be 

determined from  r(w)  by the following relation: 

B 
x 

g(x) =  £   r(w)  (x = 1, 2, ...)     (A.10) 
B  .+1 
x-1 

2 
Let \X    and a       be the mean and variance of X.  By definition, 

H 
M. = S xg(x), (A.11) 

x=l 

(where  H = max. possible value of x)  and 

u 
2       2       2 

CT = S x g(x) - \l       . (A.12) 
x-1 

25 



III. Storage Waste 

The use of blocks in storing messages results generally in 

storage waste.  For example, if a message is 1280 characters long 

and the 'ends' of the drum blocks are those given in Section IV of 

the text, then the number of characters of drum storage wasted in 

storing it is 666 ( = 1946 - 1280).  It is of interest to determine 

the expected number of characters actually used in storing a message 

that requires  x blocks (but not more than x blocks) of storage. 

If g(x)  (see (A.10)) is greater than 0, let m  denote this 

expected number (x = 1, 2, ...).  It can be shown that: 

B 
x 

m =     S    w r(w)/g(x). (A.13) 
X    w=B  .+1 

x-1 

If  g(x) = 0  for some value (say x1) of x, then m , is not defined -- 

since no message requires x1 blocks of storage. 

When the blocks are of equal length and the maximum length of 

a message is small in relation to L, the expected ratio of number of 

wasted characters of drum storage to total number of characters of 

drum storage is less than 1/u. approximately.  (u is defined in (A.11).) 

If, furthermore, each m  lies about midway between B  n  and  B , 
* ' X x-1        x 

the expected fraction is l/(2u.) approximately. 
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IV.  The Mean and Variance of a Composite Random Variable 

Consider two random variables, say y.  and  y„.  Let u,,  and 
'  A       B       A 

2 
a be the mean and variance of  y  respectively, and let \i.       and 

2 
a  T,  be the mean and variance of  y  respectively.  Suppose vthat we B B 

form a new random variable, say, y, as follows: 

(1) Use a random mechanism to first choose A or B.  Let 8 

(0 i 9 4 1) be the probability that A is chosen; thus (1 - 9) is 

the probability that B is chosen. (The probability 0 is assumed 

to be known in advance.) 

(2) If A  is selected in step (1), choose a value of y  at 
A 

random; if B  is selected in step (1), choose a value of y  at 
a 

random.     Let   the  mean and  variance  of     y    be  denoted  by    Mean  (y)   and 

Var   (y),   respectively.     It  can be  shown  that 

Mean  (y)   - 0 ^ + (1  • 0)  Ug, 

Var     (y)   =  9 CT
2

A +  (1  -  9) a2^ + 9   (1  -  9  )   (uA  - ^)2.   (A.14) 

We   can  regard     y    as  a   'composite'   random variable   since   it  is 

formed  by   'mixing'   two  other  random variables,   y    and  y   .     The 

population associated  with     y     can be  regarded  as  a   composite popula- 

tion  formed by mixing  the populations associated with    y      and    y   . 

In  this   connection  it  is  noteworthy   (see   (A. 14))   that   the mean of 

the y-population is  a   simple  function of  the mixing fraction,   9,   and 

the means  of  the  y.-population and  y-population,  and   the variance of 

the y-population is  a   simple  function of  9 and   the variances  aral means 

of   the  y  -  and  y  -populations. 
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