
MEMORANDUM 

RM-6002-ARP A 
SEPTEMBER 1969 

ARPA ORDER NO. 189-1 

THE GRAIL SYSTEM IMPLEMENTATION 

T .0. Ellis, J. F. Heafner and W. L. Sibley 

PREPARED FOR: 

ADVANCED RESEARCH PROJECTS AGENCY 

------------~R~no~ 
SANTA MONICA • CALIFORNIA--------

THIS DOCt.:~IE:'\T H.~S BEE:'\ APPROVED FOR PGBLIC RELE.~SE -~=>D SALE: ITS DISTRIBUTIO!" IS U:'\LI~IITE!l. 





MEMORANDUM 

RM-6002-ARPA 
SEPTE:MBER 1969 

ARPA ORDER NO. 189-1 

THE GRAIL SYSTEM IMPLEMENTATION 

T. 0. Ellis, J. F. Heafner and W. L. Sibley 

This research is supported by the AdYanced Re,:;earch Projects Agency under Contract 

No. DAHClS 67 C 0141. Views or conclusions contained in this studY should not lw 

interpreted as representing the official opinion or policy of ARPA. · 

DISTRIBl.ITION STATE.\1ENT 

This document has been approved for public rf'leas!' and sale; it~ di~trihution is unlimitf'rl. 

--------------------~Rnno~ 

/ 



This study is presentPd as a compPtent tr!"alm!"nt of the Euhject, worthy of pub
lication. The Rand Corporation ,-ouches for thP quality of the research, without 
nPcessarily endorsing the opinions and conclmions of the authors. 

Published by The RAND Corporation 



-iii-

PREFACE 

This Memorandum is the third of a three-partt final 

report on the GRAIL (GRAphical fnput ~anguage) Project 

sponsored by the Advanced Research Projects Agency of the 

Department of Defense. The study was an integral part of 

both RAND's and the client's overall programs to explore 

man-machine communications. 

The major problem in implementing this graphical program

ming system (GRAIL) was to provide good response times and 

simultaneously to relieve the man from rote system tasks. 

The Memorandum describes internal program representation 

and its dynamics along with algorithms employed to shorten 

the feedback loop. 

tSee also by the same authors: The GRAIL Project: 
An Experiment in Man-Machine Communications, The RAND 
Corporation, RM-5999-ARPA, September 1969; The GRAIL 
Language and Operations, The RAND Corporation, RM-6001-ARPA, 
September 1969. 





-v-

SUMMARY 

This Memorandum describes the major problems that were 

considered in implementing the GRAIL (GRAphical Input ~an

guage) system. The central issue was to shield the man from 

awareness of system operational tasks while providing good 

response times. 

Interactive use of the console (a RAND Tablet/Stylus 

and a CRT display) demands that many independent data packages 

be accessed in real-time. The Memorandum examines the in

ternal representation of the user's program and its dynamics. 

This representation consists of: 1) its picture form, 

2) data structures to denote properties implied by the pic

ture, and 3) positional information to relate stylus location 

to the other forms. Also discussed are the problems of stor

age allocation, data and storage management, and data transfer. 

Since primary storage is not large enough to contain the 

user's entire program nor the entire system, storage must be 

arranged and maintained so that the user is unaware of the 

size limitations. 

As the man's highly variable actions are not predictable, 

the central processor must be allocated to meet peak demands 

asynchronously with respect to other tasks. This Memorandum 

examines the use of algorithms for scheduling, priority, 

synchronization, and parallel processing. 

The system was tailored to provide good response times 

for operations on complex program organizations within 

limited time and space resources. 





-vii-

ACKNOWLEDGMENTS 

The authors would like to thank the many reviewers of 

this Memorandum for their suggestions as well as the follow

ing people for their discussion of this work: G. F. Groner, 

R. Patrick, J. C. Shaw, and R. Turn. \ 





-ix-

CONTENTS 

PREFACE 

SUMMARY 

ACKNOWLEDGMENTS ............................... . 

FIGURES ....................................... . 

Section 
I. INTRODUCTION 

User's Data Representation ..........•. 
Dynamics of User Data ................ . 

II. PRIMARY STORAGE ..................•...... 

III. SECONDARY STORAGE ...........•........••. 
Transfer Times ......................•. 
Formatting and Access ....•........•.•. 
Data Set Mapping ............•..•...... 
Space Allocation ..................... . 

IV. DISPLAY DATA .....................•...... 
Area Control Block .............•...... 
Pseudo-Channel Program Table ......... . 
Channel Program Table ................ . 

V. CODE PLANES ............................ . 

VI . RING STRUCTURE ......................... . 
Elements and Rings ................... . 
Structure Space ...................... . 

VII. PRIMARY STORAGE DYNAMICS ............... . 

VIII. 

Read-Only Process Space ...........•... 
Context Space ......................•.. 
Automatic Space ....................•.. 
Central Processor Allocation and 

Supervisory Functions ....... ~ .•..... 
Parallel Processing ................•.. 
Task List ..•.......................•.. 
Serially Reusable Process (SRP) 

Scheduling ....................... ~ .. 
Program Status Group (PSG) 

Synchronization ..................•.. 

DISCUSSION 

iii 

v 

vii 

xi 

1 
1 
3 

5 

9 
9 
9 

10 
10 

13 
13 
13 
15 

16 

17 
17 
19 

21 
21 
22 
22 

23 
23 
24 

24 

25 

26 



-x-

Appendix 
A. BASIC RING STRUCTURES ................... . 
B. LOADING AND THE CORE CONTROL DICTIONARY .. 

REFERENCES .................................... . 

27 
46 

55 



1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

-xi-

FIGURES 

System Organization ....................... . 

Space Allocation .........•................. 

He ad Format ............................... . 

Display Control ........................... . 

Ring Structure ..........•.................. 

Space Allocation Structure ................ . 

Available Heads Element ................... . 

System Structure ..•........................ 

Files Description Structure ............... . 

File Structure •............. o. o •• o o o. o •• o •• 

Context Structure 

Context Structure 

Plane Structure 

Plane Structure 

Plane Structure 

Plane Structure 

Plane Structure 

Plane Structure 

6 

7 

11 

14 

18 

28 

29 

31 

32 

34 

36 

37 

40 

41 

42 

43 

44 

45 





-1-

I. INTRODUCTION 

This Memorandum, the third of three (see Refs. l and 2), 

describes some aspects of implementing the GRAIL system. 

The software was planned and coded according to the GRAIL 

philosophy, yet tempered by hardwaret specifics. The closely

knit data organization and management were tuned to the hard

ware to provide timely, expected responses. The total organ

ization consists of many independent data packages--some 

pictorial, some processes, some structural--all of which must 

be accessed in real time. 

Since the system was written within the GRAIL language 

conventions, processes described and compiled from the con

sole are identical in form to hand-coded system processes. 

USER'S DATA REPRESENTATION 

Internal representation of the man's construction-time 

program is a central issue to the utility of the system. The 

following requirements should be satisfied: 

l) Data organization and management should be carefully 

matched to the man's response expectations; e.g., 

no hesitation in inking or symbol recognition should 

occur, but major changes in the operating environ

ment could be fed back at a more leisurely pace. 

2) The man should feel that he is working directly with 

his problem, thus changes in representation should 

be made automatically only when his attention is 

focused on the area to be modified. Therefore, the 

man should be able to retrieve exactly the picture 

he constructed rather than some logical equivalent. 

tThe hardware was an IBM System/360 Model 40, two IBM 
2311 Disk Drives, A Burroughs Corp. prototype display, and 
a RAND Tablet with match circuitry and direct feedback. 



-2-

3) The representation should be easily amenable to 

such different kinds of processing as querying, 

editing, or compiling. The representation chosen 

is associative. 

The internal representation chosen to satisfy these 

three requirements consist of the following three parts: 

l) The display order codes generate the picture 

exactly as it was organized by the man. 

2) The data ring structure (a partial abstraction 

of the pictorial representation) complements this 

by containing the implied properties of the pic

ture--i.e., the connectivity of both control and 

data. 

3) A set of linked tables connect the picture to the 

structure and correlate with both the geometric 

areas sensitive to the stylus and the stylus posi

tion itself. 

The display picture segments are highly dynamic because 

the man frequently modifies them. They are represented so 

that it is easy to detect the display area that is being 

stylus-addressed and to alter the display easily in parts. 

The linked tables may be considered a plugboard to which 

display segments or picture elements can be added or de

leted. With a single pen motion the man can operate on a 

flowchart symbol or code statement, a collection of symbols 

or statements, or the entire display. The plugboard must 

be addressable at these various levels and, at the same 

time, be insensitive to the number and displayed arrange

ment of segments. The linked tables contain the channel 

program for driving the display picture, links to the cor

responding ring structure, and coordinates of picture 

elements for area comparisons with stylus location. 

The hierarchy of the language--viz., files, closed 

processes,- ·open processes, and frames--suggests some form 



-3-

of structural representation other than an array. Further

more, in using the language the man is building and changing 

such associations as the connectivity of a flowchart--which 

suggests even more strongly a structured (open-ended) form 

for manipulation. 

The designers chose a two-dimensional ring structure 

with forward pointers. Unidirectional pointers conserve 

space and can be justified if the number of elements of each 

ring is small enough so that a particular element can be 

found quickly; e.g., a flowchart symbol generally has few 

attributes. Eliminating the background "garbage collection" 

common to many list processors is also desirable from the 

standpoint of response time. Two element sizes (assignable 

from opposite ends of available space) allow immediate com

pression of available space; thus no space-compression over

head occurs when one structure is exchanged with another on 

secondary storage; e.g., when the man goes from picture to 

picture. Since the picture description is in display lan

guage, only the cross references between logical structure 

and display elements need be kept in the structure. 

DY.NAMICS OF USER DATA 

Since primary storage is not necessarily large enough 

to contain the man's entire file, storage is arranged and 

maintained so that he is unaware of size limitations. In

formation subject to immediate operations is kept in primary 

storage--i.e., the currently displayed picture and related 

ring structures; other pictures and structures are retrieved 

from secondary storage as needed. Responses correspond to 

his expectations since manipulations within a picture re

quire no secondary-storage access, and picture-to-picture 

operations within a plane require only frame swapping. 

Specifically, the data kept in primary storage are the 

current display frame, a ring structure abstracting the 

current plane connectivity, a ring structure abstracting 



-4-

the open processes and labels within the current closed 

process, and a ring structure denoting the closed process 

relationships within the file. 



-5-

II. PRIMARY STORAGE 

Primary storage contains systems and user (the man's) 

data sets--processes, structures, and displays (see Fig. 1). 

All the data sets that the system needs to supervise the 

man's actions cannot reside in primary storage simultaneously. 

The highly variable demands for both data and their managing 

processes require dynamic allocation of primary storage that 

is automatically provided by the system. Primary storage is 

partitioned into three segments--read only (R/0), context, 

and automatic (see Fig. 1)--which accommodate R/0 processes, 

formal parameter linkage, and temporary storage. Once loaded, 

read-only processes occupy the space until it is needed. The 

parameter link and temporary space are assigned only for the 

execution of an instance of a process. Only the management 

of automatic is described in Fig. 2, since all three space 

types are managed similarly. 

The supervisor (one of the basic system processes) keeps 

the automatic segment of primary as linked blocks of avail

able space and space that has been assigned to processes 

being executed. Each block contains forward and backward 

links followed by the space addressable by the active process 

and perhaps subsequent daughter processes. 

Automatic space is conventionally allocated from lower 

to higher core and normally occurs in large blocks. The 

sequential-in-time nature of process calls and the release 

of space upon their returns (in inverted order) help to 

accumulate large blocks. Exceptions occur when processes 

are invoked late in a sequence of actions, yet have a long 

active time compared to processes invoked even later. Many 

of the processes with parallel exits have this latent re

lease characteristic. When such processes are compiled, 

they are given a distinct data-set type that the supervisor 

recognizes when allocating automatic space. The space is 

assigned from higher to lower core, thereby maintaining 



-6-

PRIMARY STORAGE 

~d~e-n-t----~y~------0-y-ooA-m-ic------~ 

General services 
e.g. 1 ring prim. 

Ring structures Secondary 

""' •torage Display lists, etc. 
Data 

tomatic 

,..-
_j~ 

supervision 
~ 

~ 2311 ;:g Space linkage Tc J.:: 
supervision 

etc, 

ontext 

Ta<k Graphic rl-
supervision 

handler 
detail analysis 

linking 
Transient (PCCW scan) 

R/ 
loader 

Interrupt 
Sub-syotem (ACB scan) I supervision 

Inking/recognition t J 
v 

Fig. 1--System Organization 



-7-

Automatic 

~ Forward link r-

0 

Forward link 
14---
~ 

.._ 
Backward link 

• • • 

~ 
• • • 

~ 
~ 

0 

.._ 
Backward link 

Fig. 2--Space Allocation 



-8-

large available blocks in the center. No contiguous blocks 

of available space occur since the return algorithm examines 

blocks adjoining the block being released and merges those 

available. 



-9-

III. SECONDARY STORAGE 

Secondary storage houses system data sets (read-only 

processes, fixed display frames, and ring structures) and 

user-file data sets (structures, frames, and compiled pro

cesses). All data sets conform to a common mapping on 

secondary storage, generalizing the I/O processes that 

manipulate them. The space is assigned dynamically because 

its contents are as highly variable as those in primary 

storage. Standardized physical formats minimize transfer 

times and simplify channel programming. 

TRANSFER TIMES 

Two IBM 23ll~Disk Storage Drives house the data sets. 

For transmission the read/write heads must be positioned 

to the desired cylinder and head (the address of a disk 

data space) , which takes an average deflection time of 

180 mst over 200 cylinders. The system uses 14 adjacent 

cylinders on one device and a given user's file employs 8 

adjacent cylinders on the other, reducing the average de

flection time. For many manipulations within a file that 

require disk access, the deflection time is zero. 

A second delay time averaging 12 l/2 ms (25 ms/revolu

tion) occurs before the disk revolves to head origin; then 

25 ms are required to transmit the data. 

The average transmission time for additional heads of 

the same data set is less than two revolutions, since the 

space-allocation algorithm tends to assign heads sequentially. 

FORMATTING AND ACCESS 

All heads are formatted with a single physical record 

(Rl) of maximum length to simplify both channel programming 

tEngineering changes have reduced this figure. 



-lD-

and CPU processing. The transmission times for storing and 

retrieving a data set with this format are effectively the 

same as using multiple physical record markers, unless the 

existing record format of the head is unknown. The descrip

tion for random formats must be maintained in primary storage 

or a lengthy channel program must be executed to ascertain 

them. 

DATA SET MAPPING 

The same logical I/0 group of processes manages all data 

sets. Because they differ radically in their internal organ

ization, a header is prefixed to each data set to form a 

logical record (see Fig. 3). Both the header format and the 

logical I/0 processes are open ended for defining new data

set types. The header for each data-set type is uniquely 

numbered and contains the cylinder-head of the next segment 

of the data set (if it spans more than a single head). The 

remaining header items are different for each type. 

SPACE ALLOCATION 

The logical I/O process group assigns data-set space 

upon output request. The old version of a data set is de

leted from secondary storage when the new version is written, 

rather than when the old version is read, thus providing 

better error recovery. Since space is assigned dynamically, 

a data set is arbitrarily located each time. Parent pro

cesses of the logical I/0 group may keep relative addresses. 

The I/0 processes compute absolute addresses for channel 

program use only. 

A ring-structure data set at a fixed location describes 

the space allocation and data-set locations currently on 

each disk pack. 

The space-allocation algorithm computes the amount of 

space req~ired for the data set. If the amount required is 



Record 
morker 

IBM standard 

Byte length: 

BBCCHHR N 

8 4 

N = Number of data set entries this head 

RA 

Variable 

RA = Addresses relative to Rl of each logical record 

Di = A logical record 

Header 

20 

Di 

Variable 

Rl 

------

-- ----

The data 

Variable 

On 

Record 
morker 

Avai I able space 
(L) 

------ ------

~ 
Variable Variable 

L = Current unused space -also reflected in the ring structure describing this head 

F i g. 3-- Head Form at 

I 
f-' 
f-' 
I 



-12-

greater than a full head, a full head is used and the re

mainder is again tested against full-head count. A remainder 

less than a full head is checked against a partially .avail

able-heads structure. If enough partially available space 

is found, the data-set remainder will be assigned there; 

otherwise, the remainder is assigned to part of a full head. 

When a data set requires several full heads, they are 

normally contiguous. 



-13-

IV. DISPLAY DATA 

The display data consists of: 

1) The display order codes that cause the CRT to 

display a picture; 

2) A continuously looping collection of channel 

program segments (CCWs) that drive the CRT; 
3) Pseudo-channel program segments (PCCWs) that 

relate display orders to structure and both to 

pen-sensitive areas. 

AREA CONTROL BLOCK 

The CRT surface is dynamically divided into many virtual 
areas. The area control block (ACB) relates large display 
areas to their channel programs, to the stylus, and to pro
cesses that interpret stylus motions (see Fig. 4). A high
level process (subsystem), active for all the current areas, 
directs stylus data to a lower-level process (transient) 
that monitors the particular area. The ACB links the stylus, 
the CRT, and the transient process-group that interprets pen 
motions and responds to them in that display sub-area. 

The x,y coordinates in each entry of the ACB (Fig. 4) 
define a rectangular area of the display surface in which 
some display information appears. The PCCW entry that points 
to a table associated with that area is also addressed. The 
type byte identifies the kind of information (and its tran
sient process-group) displayed on that part of the CRT--e.g., 
flowchart or code sheet--and indicates its status--i.e., 

primary or secondary (foreground-background) . 

PSEUDO-CHANNEL PROGRAM TABLE 

A variable-length PCCW table for each ACB entry describes 
in more detail the contents of that display area. A PCCW 
table cons±s·ts of a header to address the first and last CCWs 



Area control block 

I I 
I I 
I I 

Type A IPCCW table) 

A 
A I A I A Yo YI 'o 'I 

I I 
I I 

I I 

A pseudo.channel program 
segment 

- A ICCW table! 

Count A ICCW TIC I 

I I 
I I 

, 
p 

Yo p I p I p YI 'o 'I 
I I 
I I 

I I 

L:. 

I 
I 

I 
I 

A channel program 
segment 

ccw 

Count • 8 

TIC A I next segment I 

Code A I PREY TICI 

I 
I 

I 
I 

Some display order 
codes The CRT 

{ 

To produce CRT 

Y~---+~=A========~~ 
YI[:~ Pause 

PP[: :::_jP 
'o· Yo 'I 8 picture of A 

"PAUSE" Yo f 

u ·: 
Fig. 4--Display Control 

tA 
'I 

I 
I-' 
II» 
I 



-15-

of the corresponding CCW table and of a count of the re

maining entries in the PCCW table that correspond position

ally to complementary CCWs in the CCW table. A PCCW entry 

occurs, for example, for each flowchart symbol displayed 

in the area bounded by the ACB coordinates, for each virtual 

button, or for each code statement. 

The second half of the PCCW entry defines a virtual 

rectangle surrounding the displayed element, while the first 

half is meaningful only for flowchart symbols, coupling the 

figure with the ring structure describing such attributes as 

labels and connectivity. 

CHANNEL PROGRAM TABLE 

A CCW table (for each ACB entry/PCCW table) controls 

the CRT order codes for the ACB display area. The table 

contains a header pointing to the fixed display in the ACE

described area--e.g., the grid lines and title information 

for a code sheet; a CCW for each flowchart symbol or code 

line; and a transfer-in-channel (TIC) command to the next 

CCW table segment for the next ACE-described area. 

The first word of the TIC is standard for channel 

operation. The second word locates the next and previous 

segments for purposes of linking a segment in or out. It 

has a code that is the ACB code for the entry corresponding 

to the next segment. The address field points to the TIC 

of the previous segment. 



-16-

V. CODE PLANES 

The man may define processes in assembler language as 

well as by flow diagrams. A code plane in primary storage 

when being displayed is organized similarly to a flow 

diagram--each CCW addresses the CRT orders for a single 

coding statement. Only the CRT orders are recorded on 

secondary storage, since the channel program is constructed 

for a code plane and represents only that part displayed 

before the viewing window at any one time. 

When code statements are syntax-analyzed at end-of

message, only label information is abstracted to the ring 

structures; the original CRT picture form is kept intact. 



-17-

VI. RING STRUCTURE 

Ring structures describe parts of flow-diagram pictures 

and disk-space allocation on both the system and the user's 

packs. 

ELEMENTS AND RINGS 

Eight and 16-byte sizes were used. Each 4-byte word 

of an 8-byte element and the first two words of a 16-byte 

element consist of a code and either a link or a datum. 

The next two words o£ a 16-byte element are data, as shown 

below. 

Link Link 
Code or Code or 

Datum Datum 

Link Link 
Code or Code or 

Datum Datum 

Data 

One bit of the code byte determines (the byte has further 

application) if the three remaining bytes constitute a link 

or a datum. Links are never examined by a high-level pro

cess using the structure but only by a group of ring

structure primitives, written as remote code sequences. 

All links are relative to the base of the space in which 

the ring structure resides. 

The upper link is referred to as the object link and 

the lower as the set link (Fig. 5). One or more elements 

linked through the object link are known as an object ring 

and, similarly, one or more elements linked through the set 

link constitute a set ring. 



-18-

Object ring 

1--

Set ring 

Fig. 5--Ring Structure 



-19-

STRUCTURE SPACE 

Rings of elements are spatially compartmented in a 

structure space (shown below). 

8-byte 
elements 

available 
space 

structure space 

16-byte 
elements 

The boundaries of available space change according to the 

number of elements in use at any given time. When either 

length element is requested, that boundary element is sup

plied; and when either is returned, the boundary element of 

that type in use is interchanged with the element to be 

returned. Thus the used elements stay compressed in their 

respective groups and available space remains contiguous. 

To conserve secondary-storage space, only the elements 

in use are recorded. 

Elements external to the structure space are permitted 

while the structure is in primary storage. An external 

element gives processes an easily accessible "handle" to 

a ring--e.g., the PCCW (shown below). 

STRUCTURE SPACE PCCW TABLE 

AVAIL. 

16's 



-2D-

The allocation of a structure space is controlled by a 

block of pointers, external to the space, called an array 

(shown below). 

8's 
An array 

AVAIL. 

16's 

The pointing is normally maintained by the primitives, 

not by a higher-level process; but the array usually resides 

in the same automatic store as the structure space for some 

high-level process instance. 



-21-

VII. PRIMARY STORAGE DYNAMICS 

READ-ONLY PROCESS SPACE 

The read-only space (R/0) houses processes that are 

loaded when an instance of the process is encountered at 

execution time. The supervisor invokes the loader to re

trieve the process from secondary store, allocate space 

for it, and resolve referen~es. Functionally related pro

cesses are usually loaded as process groups. The loading 

operation is implicit and does not appear as part of a flow

diagram description. It is executed as a parallel task to 

allow data transmission to overlap other activities. 

Assembler output is preprocessed before being cata

logued as an R/0 data set on secondary storage, but it is 

not formatted as an absolute load module. The data sets 

are relocatable and are not necessarily loaded at the same 

time as other processes referencing them. A core-control 

dictionary (CCD) resides in primary storage to resolve 

references among loaded processes. A process-group data

set contains: 

1) A compressed section for resolving references 

local to the group; 

2) A compressed external-reference section for re

solving references from the group to processes 

not included among them; 

3) A definition section for resolving references into 

the group from other external processes; 

4) The read-only process definitions themselves. 

References (and access) from one process to another are 

made only through the entry point, as defined by the flow

chart symbolism. 

A process group remains in primary after execution 

until the space is needed for other processes. When space 

is insufficient to load another group, all dormant process 

gro_ups (those not in execution) are released {deloaded) from 



-22-

R/0 space. If completion of a task is pending because of 

an interrupt, a WAIT synchronizer, or a pending return from 

a daughter process, the space is not released. Additional 

rules cause process deloading as a function of the contextual 

level of the process being invoked. 

The preprocessed data sets, the CCD, and the loading 

algorithms were organized to optimize response times. 

CONTEXT SPACE 

The contents of the context space describe the operat

ing environment of a unique use of a process at execution 

time. Context space is automatically allocated at execution 

time for each use of a closed (labeled) process or a serially 

reusable process. The space contains parent- and daughter

process context linkage information, translated parameter 

pointers, and return location information. 

The supervisor assigns space when an instance is en

countered and releases it when the invoked process returns 

control to the parent (invoking) process. 

The parameter pointers address the real data at object 

time that the man indicated at construction time on the 

instance's Translation Frame. 

AUTOMATIC SPACE 

The supervisor assigns and releases automatic (auto) 

space along with context space. Auto contains the local 

temporary data for each instance of a closed process during 

its execution. The local real data at execution time 

corresponds to an auto specification that the man described 

on the Parameter Frame at construction time. 

The ring structure and the display frame description 

of a man's construction-time processes are examples of 

temporary data for some of the system processes. 



-23-

CENTRAL PROCESSOR ALLOCATION AND SUPERVISORY FUNCTIONS 

The system interprets and evaluates stylus input. The 

tablet channel program is continuously looping and command 

chained. When the stylus switch is closed, the hardware 

inputs data at a rate of 4 ms/x,y coordinate. An interrupt 

occurs every 28 ms; i.e., every seven samples. The CPU 

speed and the amount of processing required for immediate 

inking feedback and stylus data analysis determines the 

channel program's buffer length. When the stylus is closed 

and moving slowly, it requires about 35 percent of the CPU. 

At maximum slew rate, Mod 40 speeds will not quite maintain 

the inking function, which generates fixed, small incremental 

coordinates from the variable incremental raw pen data for 

display. 

A selector channel supplies data out of primary storage 

to the display hardware. A looping, continuous channel pro

gram, consisting of the linked table CCvvs addressing the 

display order codes (described earlier for picture elements) 

drives it. The primary storage buffer is desirable for such 

highly dynamic data as the ink track. 

PARALLEL PROCESSING 

The system processes tablet input at a high priority. 

Ink and other responses are given on the CRT. Display 

frames, associated structures, and their managing processes 

are stored and can be retrieved from disk on demand. Super

visory functions permit logical I/O processes and process 

loading to overlap secondary-storage transmission with pen 

analysis and inking feedback. 

The GRAIL language (and underlying supervisor) con

ceptually permits the simultaneous execution of two or more 

tasks that are (over some interval) independent--i.e., multi

programming; and given the requisite hardware it would per

mit multiprocessing. 



-24-

The treatment of stylus inking feedback on the display 

surface exemplifies the parallel processing capability. An 

inking process is initiated as a continuous high-priority 

task. Other tasks may load processes from secondary storage 

or interpret pen data independent of the ink task. Tablet 

input independently invokes the ink task from a wait state. 

TASK LIST 

The task list (actually a table) holds tasks that may 

be dispatched (executed). The priority of task firing is 

last-in/first-out--under the assumption that the most 

recently suspended activity is the most important. The 

supervisor maintains this table. 

The following cause dispatchable tasks to be entered 

on the task list: 

1) Hardware interrupts stack the mainline interrupted 

task; 

2) Parallel exits stack the initiating task; 

3) Setting a waiting synchronizer stacks the con

tinuation from the WAIT; 

4) The terminal exit from a serially reusable 

process (SRP) with a pending use stacks the 

return task. 

SERIALLY REUSABLE PROCESS (SRP) SCHEDULING 

The supervisor schedules SRPs on a device basis after 

assignment of context and automatic space. If the SRP 

definition is executing another use, the pending uses are 

linked via their context space to form a queue. They are 

not placed on the task list since they are not yet 

dispatchable. 

When an SRP terminally exits, the supervisor normally 

returns control to the parent process after releasing con

text and automatic space. If another use of the SRP is 



-25-

pending, the parent return is stacked on the task list 

and the pending use of the SRP is initiated. 

The priority of pending uses is first-in/first-out. 

PROGRAM STATUS GROUP (PSG) SYNCHRONIZATION 

The format of a PSG referenced by the flowchart symbols 

HAIT and SET is shown below. 

STATE I 'CONTEXT' 
POINTER 

PROGRAM STATUS WORD (PSW) 

CHANNEL STATUS NORD 

The state byte indicates what state (e.g., WAIT or SET) 

the PSG is in. The context pointer addresses the context 

space in which the WAIT occurred. The PS~v contains the 

process state and the instruction-counter value of the in

struction subsequent to the WAIT. 



-26-

VIII. DISCUSSION 

GRAIL exemplifies a small operating system designed 

for one specific purpose. However, it has several charac

teristics in common with those found by other investigators. 

The size, complexity, and proliferation of subroutines 

indicate the need for dynamic storage allocation and demand 

loading and releasing of processes. No natural place to hide 

system processing seems to exist. The fast-response require

ments coupled with the asynchronous and somewhat unpredictable 

behavior of the man make priority-driven multiprogramming 

imperative. Aside from the mechanics, the techniques de

veloped are applicable to a large variety of problems repre

sented by block diagrams. 



-27-

Appendix A 

BASIC RING STRUCTURES 

Five ring-structure types are basic to system main

tenance and representation of users' files. The purpose 

of each is described below with examples of its use. 

SPACE ALLOCATION STRUCTURE 

The space-allocation-structure complex (Fig. 6) is 

part of three major structures that describe the occupied 

and available space on either part or all of the secondary

storage disk pack. 

The base element specifies the cylinder, head (C, H) 

of the beginning of a contiguous block of space. The 

occupied set gives the C, H relative to that base for data 

sets along with the data set ID. Not all data sets in the 

space appear on the occupied set. This complex is used by 

a group of logical I/0 processes, and they either seek and 

append occupied elements or pass the relative C, H to the 

parent process for recording elsewhere. Typically, static 

display forms and compiled read-only processes are kept on 

the occupied set and dynamic display frames and ring struc

tures are not. 

The partially available object-ring elements specify 

relative addresses and byte counts for the available space 

on heads that contain data sets and for some available 

space as a block at the end of the head. This structure 

is also maintained by the logical I/O processes. 

The available heads object specifies the availability 

or nonavailability of each head within the space. Figure 7 

shows the format of an available-heads element. The space

allocation algorithm assigns contiguous heads for data sets 

requiring more than one head, except possibly for the last 

segment of _the data set that may be assigned to any one of 



/ 

~-"\ 

\... 

D 

! . . 
I 

D' 

D 

ID 
'//// 

c H '//// 

OCCUPIED 
SET 

D' 

D 

ID 

c H w& 
\. ' -----

-~ -~ BASE 

H p B'~ C H 

PARTIALLY 
~VAT I ARLE 

c:T 
!AVAILABLE p 1-•. ·- p 

SET 

H ~B~TES p c c 
_/ 

c H ···- H 

H ~# ~ 20 
BITS G# ~ 20 

BIT<; 

_/ ~ 30 BITS ~ 30 BITS 

% 30 BITS ~ 30 BITS 

Fig. 6--Space Allocation Structure 

H I B~TES 

I 
N 
ro 
I 



0 

0 

H 

GROUP 
INDEX 

3 4 

6 7 

9 

-29-

20 bits for 
status of 20 
heads 

30 bits for 
status of 30 heads 

30 bits for 
status of 30 heads 

Cylinder Nos. relative 
to the group index 

Head nos. within a cylinder 
(1 bit= avail., 0 bit= partially 
or occupied) 

Absolute C,H = (Base C,H) + (Rel. C,H) 

Rel. C,H = (G# * 8) + (Rel. cyl. No.) + (Rel. Head No.) 

Fig. ?--Available Heads Element 



-30-

the partially available-heads space. Read-only compiled 

processes and occasionally code planes span more than a 

single head; ring structures and other display frames do 

not. 

This ring is also managed by the logical I/O processes. 

SYSTEM STRUCTURE 

The system structure (Fig. 8) describes space alloca

tion on the GRAIL system pack and also contains information 

about the current or last-addressed file. It is a boot

strap directory and (excepting the Initial Program Load 

record) the only data set that resides at a fixed location 

on the system pack. When GRAIL is in use, a copy resides 

in primary automatic storage of a basic system process that 

is always in use. The copy is rewritten on secondary each 

time the operating environment changes; i.e., a new sub

system is invoked. 

The ID source element contents are passed as a formal 

parameter throughout the system and used as a source for 

internal identifiers of new data sets. The system key is 

a label identifying the current version of the system. De

tails of the space-allocation complex were shown in Fig. 6 

(p. 28). The complex describes the entire system pack, which 

includes system read-only processes and invariant display 

frames. 

Information about the current file contains internal 

identifiers of the structures and display frame currently 

in primary. 

FILES DESCRIPTION STRUCTURE 

The files description structure (Fig. 9) describes 

space allocation and user-file information on a user pack. 

It is a bootstrap for the user pack and is the only data 

set resid~ng at a fixed location on the pack. A copy is 



r' ID SOUF 

s s s 1---·-

f C' # K null 

SYSTEM 
KEY 

( 
f 1-- f !-- f r- f f- f 

,.__ 
f 

,__ 
f C' t%1 ~:~: p ~ PREV. s. s. U' F' N' 

FILE CONTEXT ID PLANE I D USER'S FILE I D FILE NAME KEY I MiSS. 
NAME , FRAME I D SKEL. ID TAG 

N' and I' apply to the current file when it is being executed, at which time f, F' are used for a pseudo-~rocess parent to the file being executed. 

Fig. 8--System Structure 

f 
"' 

I I 

FILE ID 

~//~ 1://///~ ~ 



I. ,~_, 

j. 

\: D ~ 
F 

FILES 
SET 

F 

L 

FILE 
NAME 

D 

I I 

F 

K' 

t Space a 11 ocati on) 
complex 

PACK 
I D 

FILE OBJECT 

F F 

L' B' ~ ~ c I H 

USER'S FILE 10 ~ #CYL. 

key 
~c IH ~ ~ 

Fig. 9--Files Description Structure 

'I~ 

F 
1,/) 

T' ~TYPE 

TYPE 0 = GRAJ L 

/ 

I 
w 
rv 
I 



-33-

not kept in primary as with the system structure, but it 

is read when needed to perform operations on entire files. 

The structure contains a pack identifier, the space

allocation structure for the entire pack, and a set of file 

object rings (one for each file on the pack) . The attributes 

of a file object are: 1) the file name, 2) the user's 

identification, specified when logging-on, 3) the file struc

ture data set ID and relative location, 4) the file-structure

space (user's file) base address and extent, and 5) a type 

identifier. The type is necessary at this structure's level 

of use because other GRAIL derivative programs are supported 

in addition to the flowchart language. 

FILE STRUCTURE 

The one file structure (Fig. 10) in each user's file 

space describes the space allocations within the file space 

on the user pack and also specifies the interrelationship 

and the location of labeled-process definitions within the 

file. 

One cylinder of the file space serves as a virtual 

memory during interpretive execution of processes in the 

file. The space allocation describes space within the file 

space. The occupied disk set contains ID and location only 

for compiled process data sets within the file. The modifi

cation number is a source within the file of identifying 

accesses to secondary storage, display-frame data sets, and 

some ring structures. 

The irresponsible-contexts set links those labeled

process definition object rings that have a definition but 

no instances. Labels and contexts link all labeled-process

definition object rings within the file. The attributes of 

a context object are its ID and location, its name, the ID 

of the process from which it was last referenced, the pro

cess kind {e.g., serially reusable process), its type defini

tion {code or structure), and its uses and used-by structure. 



--

CONTEXTS 

(\r,T 
c 

( 

\ p 

c 

CONTEXT I D 

~cl H~ 

Labeled process 
identifiers set 

/ "\ 

F -
L 

- -p 

£ 

CONTEXT 
(PROCESS) 
NAME 

names set 

I 

F F -F - F 

I I I M' ~ # E' 

FILE 
NAME 

Irresponsible 
contexts 

Modification # 

USED~ 
BY TYPE 

'- - -p p p p 

P' ]..1 t' ~ (l u 

PREV. ID Defn. mode 
or type 

~T 

process kind 

Fig. 10--File Structure 

# I -~ 
\ 

Virtual cc 
cylinder i 

USES~ 

-

ace } 1 oc a-
on 
ruc
re 

e 

I 
w 
~ 
I 



-35-

CONTEXT STRUCTURE 

A context structure (Figs. 11 and 12), which exists for 

each labeled-process definition within a file, resides in 

the secondary-storage file space; a copy of the context 

structure for the presently addressed process definition is 

kept in primary storage. The context structure contains 

two kinds of information: l) labels and their attributes 

that can be addressed throughout the labeled-process defini

tion, and 2) the hierarchy of open-process definitions and 

instances of labeled processes within the labeled-process 

definition. 

The label structure represents labels that are addres

sable throughout the labeled-process definition but not 

those (connector labels and exits from open processes) that 

are planar bound. The structure is built from label ref

erences appearing in flowcharts and code planes and from 

those written explicitly on the process-definition data 

form, which is constructed from this label structure. An 

object ring exists for each label; it specifies: 1) the 

label, 2) its type (e.g., automatic, formal, etc.), 3) a 

set of description objects (one for each line on the data 

form associated with the label, plus the pseudo operation 

code, data declaration, and comments), 4) a responsibility 

set denoting the plane-structure data set ID for the plane 

in which the label was referenced, and 5) a count of the 

number of references in that plane. The description objects, 

which are variable in length, are a function of the length 

of the commentary printed by the user. The three keepers 

are used as positional markers as the user edits a state

ment or graphical symbol that references a label. 

The process name (context label in Fig. 11) and its 

internal identifier also appear on the structure. 

The remainder of the structure specifies the hierarchy 

of open planes in the labeled-process definition and in

stances of other labeled processes (virtual contexts) in 



TO 
PLA 

r c c 
s v 

I 
( I .,......---....0 TOP 

\ s e.- PLANE 
- s 

s s 

PLANE ID 

.cTHTI ( s ~ 1--
I s ~ 

1- I IN CONTROL s s NESTED 

\ k 

I 
PLANES 

i-- PLANE ID 

s I c -1 H f!fl 
I KEEPER 

( s r--:_) VIRTUAL f-- s PLANE 

s v 
I 

BOX INST. ID 

( L 
\I:!~ INS CE 

CONTEXT ID L 

I v 

I VIRTUAL 
CONTEXT 
LABEL 

Fig. 11-Context Structure 

I--1--c 
I , 

~ 

CONTEXT 
ID 

CONTEXT 
LABEL 

I 
w 
0"'1 
I 



r~ rc 

F 

( 
\ L t--- L 

K k 

L r-- L 

L (l 

LABEL 

~c f-- c 1- c r-c 1-c 
A R I X E 

Folrma 1 AutLatic 
I 

Incompll eted J Read-only Parallel 
type exits ,.----.._ KEEPERS 

I-

l . 
j . 

LABEL OBJ~ 

I-f--- L I-- 1--L 9 
T y p e '-.__...-

(above) 

r 

Responsi-

( bi 1 i ties 

R' 

r 

PLANE ID 

bi Jc~ 

D 

DESCRIPTION OBJEI 

D 1-- D f---

D 

~ESCRIPTION 

Description 
set 

D' 

DESCRIPTION 

Fig. 12--Context Structure 

f-c r--c 

N K 

I 
w 
-...J 
I 

__...-"'. 
.. ~...-"'·'· 



-38-

the process definitions. In Fig. 11 (p. 36), each S/s set 

represents the position of a plane; the S/S are instances 

in that plane. If they object-connect to an S/s, an open

process definition is referenced; and if to an S/V, an 

instance of a labeled process is referenced. The plane

structure ID and the relative location (to the file base) 

are given for open-process definitions (planes) in the 

labeled-process definition. Other labeled-process defini

tions are virtual within this labeled definition so that 

their instances give the_virtual-process name, its context 

structure ID (the corresponding location C, H is found in 

this plane structure) , and the ID of the labeled instance 

in this plane structure. The keeper on the C/S set is 

object-connected to the particular plane whose frame is 

being displayed; it is used to mark the position, for ex

ample, for the return button function; i.e., going up one 

level in the structure to the parent plane. 

PLANE STRUCTURE 

There is at least one plane structure in the secondary

storage file space (Figs. 13-18) for each process defini

tion. A copy of the plane representing the process being 

operated upon is in primary. The plane structure contains 

information about: 1) all frames (displays) within the 

plane, and 2) the graphical-element connectivity and label 

translation for each frame. 

Figure 13 shows the basic object ring containing the 

various attribute sets and the plane-structure data set ID. 

Figure 14 shows the frames structure for frames in the 

plane. Each frame object specifies the following: 

1) The display frame ID and relative location to the 

file base; 

2) A source of tag identifiers that become uniquely 

associated with each graphical element and that 



-39-

are used with the hardware match circuitry to 

detect addressing of flow lines; 

3) A set of CCW objects, one for each figure displayed 

in the frame. 

The item element connects to a graphic object ring specifying 

the attributes of the displayed figure. For the frame being 

displayed, an external element (the PCCW) replaces the CCW 

displacement element on the CCW object. 

Figure 15 shows the translation of formal parameters 

for a process instance and also the set of defined decisions. 

Figures 16-18 show the graphic object rings and their 

attributes; e.g., flow connectivity. 



p - p I-- p I-- p 

I' F s c 

Connec-
tor 
labels 

I 

\ L 

c 

LABEL 

1- p ~p 1-p 

B p X 

I I 
Graphic Synchronizer 
boxes labels 

q 
1- L ~ 

I 

To graphic 
object rin~ 

Fig. 13--Plane Structure 

f-p 

L 

I 
Exit 
labels 

Similar 

1--p 

I 

I 
Translate, 

labels 

I 
~ 

0 
I 



r6 PLANE OBJECT 

F 

c ;RAMG:J? TAG SOURCE 

F 

FRAME I D 

[?ilciHFJ§ 
I 

FRAMES 
SET 

c 

I~ c 

ccw 
SET 

c 

• 
c I 
I I 

Jr l I' 2 

CCW OBJECT 
ITEM 

I 

To graphic 
object 

Fig. 14--Plane Structure 

{I PCCW 
TABLE 

c * 
I I * to Yo Yl xo[xl 

This element is replaced 
by the PCCW element for each 
object of the frame being displayed. 

I 
~ 

I-' 
I 



c~ 
L 

I 

( L 
I LABEL INSTANCE ( 

I-- L 

L I 

LOCAL 
LABEL 

Translated 
labels 

( t 

T 

FORMAL 
LABEL 

~· 

(~ 
BOX OBJECT 

r-.... 
1-- f-

I T 

I ID 

To frames MOD # 
structure 

... 
ORMALS OBJECT 0 ... -

T 

T 

Fig. 15--Plane Structure 

/ 

p 

B 

r---
1-

B 

Defined 
decisions Box 

set 

( DECISION GRAPHIC 

1 

JECT 

I 
.!» 
N 
I 



ENTRY I~" I J l·,t _ J ~ 
PAUSE ~ 
EXIT I : I I a • J; L.'"' 1 I a • Jj orall , 1 I "' I ~ 

CONNECTOR I; I I 1: I l Ef_] El I 
a = 84, Instance C! 85, Definition 

Fig. 16--Plane Structure 

R 

LEGEND 

i tern, connects 
to CCW object 

incoming flow 
line 

r = outgoing flow 
1 i ne 

L 

T' 
I I 

D 

d 

1 abel, connects 
to label 
instance 
substructure 

switch index 
label instance 
connection 

sync. type 
box I D 

drawn decisions 

defined 
decisions 

B = box set 
T = formal 

translation 

I 

""" w 
I 



SWITCH 

SYNCHRONIZER 

DECISION 

1",'1 I 1·:1 I 1·:1 I B 
1:'1 I 1:'1 H:'l H~'l H:~~ . I 
tl I 1: I If 

Y = 80, Terminal 
Y =BE, Parallel 

y 

1 abe 1-- ~;;J?????~<'I 

Fig. 17--Plane Structure 

(later 
appended) 

# = 0 not defined 
CLEAR 

2 SET 
3 RESET 

4 WAIT 
5 REWAIT 

I 
,j;:,. 
,j;:,. 

I 



BREAK 
POINT 

PROCESS 
BOX 

( ) 
1:AI I I:AI I I:AI t 

1:1 I 1:1 I 1:.1 # I 1:1 f1 

a a 

d B 

a = 86, Closed process 
87, Open process 

= 88, Remote code sequence 
89, Serially reusable process 
8F, Code box 

a 

T 

ID 

MOD # 

Fig. 18--Plane Structure 

) 

' 

I 
,.!::. 

U1 
I 



-46-

Appendix B 

LOADING AND THE CORE CONTROL DICTIONARY 

The format of process groups is similar to IBM link

edit modules. The assembler output is preprocessed before 

it becomes a secondary-storaget data set to eliminate, for 

example, the linkage table. 

The processes are demand-loaded, and external references 

are resolved at load time, if appropriate. A control diction

ary is maintained in primary storaget to permit such loading. 

The Loader loads read-only process groups from secon

dary storage (upon request from the Supervisor) and allo

cates space for them. The request is issued when a process 

encounters an instance of another process that is not 

presently in primary. An SVC instruction trap occurs in 

the parent process for daughter process use; the Supervisor 

returns to the parent after loading. No explicit request 

for loading appears in the parent flow diagram. 

The loader maintains a Core Control Dictionary (CCD) , 

which is a directory of inter- and intra-process references 

used to resolve references between newly-loaded processes 

and those already loaded. The CCD is also used to absolve 

references when processes are released from primary. 

Indexes to information concerning references for a 

process group are kept along with the process group in read

only storage as shown below. 

R/0 Storage 
Linkage 

cco1 
D 

CCD 2 
D 

CCD1 
R CCD 2 

R 

tin the remainder of this discussion, "primary" and 
"secondary" will be used for "primary storage" and "second
ary storage·," respectively. 



-47-

The indexes relate to the first and last entries of a 

definition and a reference section, respectively, as shown 

below. 

(
ctl. diet. def. table) _ (ctl. diet. def. tbl.)l 

start address 
the entry length 

CCDR is similarly computed for the reference section of the 

CCD. 

The CCD indexes allow the loader to absolve references 

from other processes to a given process group when the group 

is released from core. 

The R/0 process-group data set on secondary is composed 

of the following four sections: 

Definition Table (DT) 

External Label (LR) 
Reference Table 

Numbered (NR) 
Reference Table 

Text (TXT) 

The R/0 data sets originate from preprocessing assembler 

output. 

DT is a transformation of the section-definition (SD) 

data on external-symbol-dictionary (ESD) images, which 

correspond to a control section for each process within the 

process group. LR entries are generated from a particular 

subset of the external-reference (ER) data on ESD images. 

LR is made-up of those ER data that are external references 



-48-

to the entire process group. NR is an ~bstraction of label 

definition (LD), label reference (LR), and the remainder of 

the ERs; i.e., those ERs whose reference is external to the 

control section (process) but is local to the module (process 

group). The TXT is the read-only code for all processes with

in the process group. 

NRs are resolved quickly compared to LRs and need not be 

maintained in the CCD since they are local to the process 

group. 

The CCD contains information for resolving references 

to a process definition (its read-only code) from a parent 

process instance at the time the instance is invoked or be

fore. A set of four CCD pointers are kept to address the 

extremities of the table in use, as shown below. 

CCD Pointers CCD 

------
De f. avail. 

- ~ De f. in use 

r-----_ Ref. avail. 

,..... ----:. Ref. in use 

The DT and LR sections for the process group being 

loaded are appended to the CCD by a logical I/O process 

reading the information from secondary. The NR is read 

only into local automatic of the Loader since it is not a 

part of the CCD (see below). 



-49-

CCD CCD 

Avail. Avail. 

New P. G. New P. G. 
Appendage Appendage 

P. G. s P. G.s 
Currently Currently 

Loaded Loaded 

Definition Reference 
Section Section 

A DT entry from the data set: 

0 
Load Address Rel. to 

Process Group 

\.. 
"' 

4 bytes 

An LR entry: 

Label 

1.. 

Loaders 
Auto. 

NRs 
for this 

P. G. 

(process name) 

) 

8 bytes 

Length Assembled Process name reference (label) 
Ind. Origin 

a B 

\. J \ J ~~ 
"" " 4 bytes 8 bytes 2 bytes 2 bytes 

a is resolved by the Loader to the relative definition table 

number for the reference, and B is the relative definition 

table number for the process definition containing the ref

erence address constant. 



-50-

An NR entry: 

DT# DT# Length/Type Assembled Origin 
(Reference) (Definition) 

\.~----"'V'"---') \.~----..........-------) 
2 bytes 2 bytes 4 bytes 

The Loader first updates the new appendage to the 

definition table by converting the relative-load addresses 

of the processes to absolute. This is done by adding the 

absolute-load address to the process group (determined by 

the loader when available space was found for the process 

group) to the relative address of the DT entry, which 

existed on the data-set disk image. The absolute address 

of the process replaces the relative address of the DT 

entry for the process. 

Next, the modularly local references (NRs) are up

dated. The DT numbers are converted to reference the DT 

entries of the referencing process and the process being 

referenced, respectively. The assembled origin of the NR 

entry is really the displacement within the referencing 

process of the address constant. The referencing-process 

absolute address from the DT entry, plus the displacement, 

addresses the address constant. The address-constant length 

is supplied in the NR entry so that the constant may be 

extracted and added to the absolute address of the defining 

process (obtained from the DT entry of the process being 

referenced) ; this sum replaces the address constant. 

The Loader resolves references between the newly-

loaded process group and all other process groups currently 

loaded--this will include, at least, the parent process 

that has just invoked an instance of the new process being 

loaded. ~ormally, additional references ar€ included as well. 



-51-

The definition-table index of an LR entry in the data 

set on secondary is relative to the base of the DT section 

on secondary. The Loader computes the bias as a function 

of the displacement of the new DT section from the origin 

of the CCD's definition table. 

The bias is added to the relative number as each LR 

for the new process group is resolved. 

New LRs 

Previous LRs 

}X{~----New --IDTs 

} {L---Pre-viou_s DT___.s 

The Loader passes parts of the CCD twice in attempting 

to resolve LRs. The new LRs are matched successively 

against each previous DT entry in an attempt to resolve 

references in the newly loaded process group to processes 

already loaded. Another pass similarly matches the previous 

LRs with the new DTs in an attempt to resolve address con

stants between process groups. A match on the parent in

stance LR (which caused the loading of this new process 

group) will be found on this pass. 

An LR check is as follows: If the entry has been 

neither deloaded nor resolved, the LR label is compared 

with successive labels of the corresponding DT subset. If 

a match is found, that DT entry index is inserted in the 

relative definition-table entry position of the LR entry; 

the entry is marked resolved, and the actual address con

stant within the read-only code is modified in a fashion 

similar to the NR computations described above. 



-52-

The Loader inserts the DT and the L~ boundary indexes 

for the new process group in the R/0 linkage of the process 

group for later deloading. 

The Loader deloads processes to provide additional space. 

The LR-DT processing for deloading is similar to loading for 

the purpose of locating references between the process group 

being released and others that are still in use. The actual 

address constants addressed in the match are modified at 

resolution time; i.e., the absolute-reference-process ad

dress is subtracted from the contents of the address con

stant. The LRs are then marked unresolved. The R/0 link

age is adjusted to incorporate the deloaded process-group 

space into available space. The ceo is then compressed if 

possible; i.e., entries bounding the next available entry 

for either the DT or LR have been marked available. The 

available delimiters are repainted to include any available 

bounding entry space. 

DT 

Avail. 

Other PGs 

PG Being 
De loaded 

Other PGs 

Part LR 

Avail. 

1 

2 

3 

The deload match is between parts l and 3 of LR and part 2 

of DT. Then part 2 of LR and part 2 of DT are marked avail

able and possibly compressed into available space if part 1 

has a zer? _length. 



-53-

The NR section for the process group being deloaded 

does not exist and is of no consequence in deloading since 

all references were within the process group now released. 





-55-

REFERENCES 

1. Ellis, T. 0., J. F. Heafner, and W. L. Sibley, The GRAIL 
Project: An Experiment in Man-Machine Communications, 
The RAND Corporation, RM-5999-ARPA, September 1969. 

2. -----, The GRAIL Language and Operations, The RAND Cor
poration, RM-6001-ARPA, September 1969. 

3. Bernstein, M. I., and H. L. Howell, Hand-Printed Input 
for On-Line Systems: Final Report for Phase I, 
System Development Corporation, TM-(L)-3964/000/00, 
Santa Monica, California, April 1968. 

4. Davis, M. R., and T. 0. Ellis, The RAND Tablet: A 
Man-Machine Graphical Communication Device, The RAND 
Corporation, RM-4122-ARPA, August 1964. (Also, 
Proceedings of the FJCC~ 1964, p. 325.) 

5. Ellis, T. 0., and W. L. Sibley, On the Development of 
Equitable Graphic I/0, The RAND Corporation, P-3415, 
July 1966. 

6. -----, On the Problem of Directness in Computer Graphics, 
The RAND Corporation, P-3697, March 1968. 

7. Groner, G. F., Real-Time Recognition of Handprinted 
Text, The RAND Corporation, RM-5016-ARPA, October 
1966. (Also, Proceedings of the FJCC~ 1966, p. 591.) 

8. Licklider, J.C.R., and W. E. Clark, "On-Line Man-Computer 
Communications," Proceedings of the SJCC~ 1962, p. 113. 

9. Sutherland, E. I., "Sketchpad: A Man-Machine Graphical 
Communication System," Proceedings of the SJCC~ 1963, 
p. 329. 

10. Sutherland, W., Semiannual Technical Summary Graphics, 
Lincoln Laboratory, Lexington, Mass., November 30, 
19671 PP• 24-27 o 

11. Sutherland, E. I., and R. F. Sproul, "A Clipping 
Divider," Proceedings of the FJCC~ 1968, pp. 765-775. 





-t 
:I: 
m 

0 
;o 
)> 

r
Vt 

-< 
Vt 
-t 
m 
~ 

~ .., 
r
m 
~ m z 
-t 
)> 
-t 

0 
z 

m 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
>> setdistillerparams
<<
  /HWResolution [300 300]
  /PageSize [612.000 792.000]
>> setpagedevice


