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Papers of the All-Union Conference on Heat and Mass Transfer (May 1968,
Minsk), devoted to physical parameters of heat and mass transfer, are presented
in this book. An examination 1s made of the present standing of analytical and
experimental methods of determining thermophysical properties of compounds,
instruments and equipment are described, and results of research on thermal
conductivity and on the temperature coefficient of thermal conductivity, heat

capacity, thermal diffusion, enthalpy, and viscosity of various systems (solid,
liquid, gaseous) are also presented.
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PART ONE
ANALYSIS OF THERMOPHYSICAL AND TRANSPORT PROPERTIES OF COMPOUNDS

V. Ye. Alemasov, A. F. Dregalin, V. I. Bychenok,
and V. N, Trinos

EFFECT OF PARAMETRIC ERRORS IN POTENTIALS ON EQUILIBRIUM
COMPOSITION AND PROPERTIES OF MIXTURES OF REAL GASES

DETERMINED BY CALCULATION

The virial-form equation of state 1s widely used in the theoretical deter-
mination of properties of multicomponent mixtures.

The molecular-kinetic theory of gases makes it possible to determine
virial coefficients for components of a mixture if the inter-molecular poten-

tial function of interaction is known. The actual pattern of interaction here

is described by an analytical model (potential)., But at present reliable data

on potential parameters over a wide range of pressures and temperatures are

lacking for many compounds. This reduces the reliability of calculated values

ol thermodynamic properties of gas mixtures.

Difficulties encountered in the direct experimental verification of the
validity of a chosen model of interaction are well known for multicomponent

reacting mixtures at elevated temperatures (1000-2000°K). Therefore, we have

chosen the analytical approach in estimating the influence of errors of poten-

tial parameters on thermodynamic properties of gas mixtures.

Most often, the interaction among mixture components is approximated by
models of Sutherland, lennard-Jones (12-6), and Buckingham -- for nonpoiar

components, and ror polar components -- by the otockmeyer potential.
any ot the potentials cited is governed both¢ oy the precision essential
tor adescription of the experimental results, and also by the availability

use

ol necessary constants. 1he latter requirement often determines the choice

of model in calculating properties of reacting mixtures,
Convenient models of interaction in this respect are as follows

the Lennard-Jones potential (12-6) for nonpolar molecules:

Le [ -6

u

1)
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o
PV e OO A -
= PRI VISVE YV Ao




and the Stockmeyer potential for polar molecules

2
u = 4e[(B"- AR ¢ @

Potential parameters ¢ and e/k can be determined from experimental values
of viscosity, thermal conductivity, and compressibility. In the absence of

necessary data, the following relationships are recommended in [2,6,10]:

6=0561(v)"™" &/ =177(T )

’ (3)
L TNG =20Vy-5, €fx =115T, )
%‘!-‘Nb‘*=2,3vm, 'E/t.« = 1927, , 2

where Vs Tc’ v, , TB, Vi and Tm = values of the molar volume and tempera-

ture at the following points: critical, boiling, and melting.

As was shown by a verification of the precision of formula (3), undertaken
by the authors in [6], the error in determination of ¢ and e¢/k for a homologous

carbon series is less than 3.1 and 10 percent, respectively.

In this present study, the properties of a mixture of real gases of average
density are determined by use of the potentials (1) and (2). Therefore, only
paired interactions were used in the calculation. Potential parameters of inter-

action of oppositely charged particles are found by empirical combination rules:
=2 —
o =3(oiv ), /e)ij= e (e/u) (6)

The values of 0 and e¢/k obtained by different authors [2,7,9,10] based on

the methods listed were used in the calculations.

The following causes of errors in calculations stemming from use of poten-
tials are as follows: ‘

1. Force constants of the potentialso and e/k were determined in approxi-
mate terms for several compounds and can be further refined.

2 Calculgtions at temperatures higher than 1000°K for most compounds pre-

suppose extrapolation beyond the limit of the experimental determination of the
constants o and efk.,

FTD-HT-23-820-68




3. At high temperatures, we can expect lack of agreement of the shape of
the actual potential function with the Lennard-Jones potential and the Stock-
meyer potential.

4, For several comnounds, the force parameters were obtained based on
experimental viscosity data, but these values do not always afford good preci-
sion in calculating the second virial coefficient.

All these factors can with some approximation be identified with errors
caused by use of "imprecise' values of the constants 0 and e/k. In determining
the effect these errors have on the end result of calculation, we can artificially
set potential psrameters differing from those adopted, calculated the main thermo-
dynamic properties of a mixture of real gases, and find the relative deviations

of real gas properties from ideal gas properties. We varied the values of ¢ and
e/k by + 10 and * 30 percent.

The range of variation of ¢ and e/k by + 10 percent for several compounds
corresponds to the data in [4,5], where a model with the variable o and e/k

varying as a function of temperature within the limits *+ 10 percent is suggested.

The authors developed the following version of a calculation of chemical
equilibrium of real reacting mixtures. As we know, the composition and thermc-
dynamic properties of an equilibrium reacting closed system do not depend on the
path followed in reaching this equilibrium., Let us assume that for several given
values of p and T the equilibrium composition is determined, and the number of
moles of mixture components nj has been found. ¥rom our state with pressure p
and temperature T, we can formally advance to the state p* -+ 0,T, keeping the
mixture composition unchanged. Though for a closed equilibratedly reacting
system, such a transition is unrealistic in practical terms, nonetheless it
gives us an opportunity to employ relationships that are valid for closed systems.
Let us integrate with T = const and n:l = const the following equality:

dy ={v-T(§E)s)dp. )

We get an expression for the enthalpy of the mixture:
P
l
J(p, 7= 30T m )+ { [v-TEGHA)dp. (8)
0

where the index (*) refers to the function of a mixture of ideal gases.




In a similar way, we can obtain relationships for any thermodynamic
functions. We will present the most importaant of them:

entropy

L P 3w dv o
S(pT,m)=STA T n))* Jug,. - (8%),)0p.

9
Gibbs' potential
‘9(9,1", n)) = g*(p* T, np+ !P(v -v")dp, (10)
chemical potential
(p).:(ﬁ*,‘aff(vrv")dp. an

<]

We will recall that integration in equations (8) - (11) is carried out at
constant composition.
The derivation of equations (8) - (11) is not restricted to any equation of

state, therefore we used them to determine thermodynamic functions and properties

both of real gases as well as, in a particular gas, for ideal gases.

In deriving equilibrium equations, we will use the procedure suggested by
Gibbs; we will consider the closed system as the totality of several open sys-

tems. Then the conditian of equilibrjum at p and T = const can be written as:
ifcpj dnj=0. (12)

We take atoms as tiie base components. In this case, the condition (12) is

written in the form:

‘P. —Za&jq}‘-o.

d 1 (13)

To determine the composition and properties of the reacting mixture at
specified p and T, it is necessary that the system (13) be supplemented by equa-

tions of the conservation of matter:

Z agng = My bir . (14)
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As the closing equation we use:

;'xqﬂ. 5

Introduction of tae number MT in the equality (14) is founded on the follow-

ing considerations. From the condition of the conservation of mass we can write:

g My = uN. (16)

Since at given p and T

. u. =const,
T iR (1)

then
M, =const-N. | (18)

So, we can select the value MT such that the following condition is met

N = Pengen | (19a)

= ' (19b)
ﬂ“‘PJ ug.

The relationship (19b) is especially important since it allows us to introduce

into the equation of chemical equilibrium (13) nJ as the unknown number of moles.

The system of equations, consisting of (13) - (15), affords determination

of the composition, thermodynamic functions and properties both of real and of
ideal reacting gas mixtures.

In calculating the composition and properties of mixtures, the following
equations of state are used:

pV a N RQT (20)

for ideal gases

e

e f

L .
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for real gases.

pV = NROT'(1+-[%°B,—',)

TABLE 1

———y

(21)

Deviations of ¢ideal-¢real, percent, at a Pressure of 500 Bars..

¢1deal

quantity oo

g s o m——— t—— o ———— i Vi =+ s

change 1in potential parameters, percent

P 6 ,+10 €/x 410 6 ~10 E/A,-10 G 430 £/k,+30 6 ,-30 &K ,-30
800 ~I,9% ~1,9%0 =1,035 =~1,I37 =-3,I7 =-2,9%0 = 0,5996 - 0,4939
7 1000 ~1,228 -I,241 =~ O0,7I7% - 0,6763 - 1,962 =-1,909 = 0,3916 = 0,196
1200 = 0,6I71 = 0,7067 = 0,3¢05 ~ 0,2654 ~ 0,9951 - 1,206 = 0,2168 0,11%
600 2,I14 1,93 1,191  I,344 3434 2,652 0,5991 0,5011
S 1000 1,221 1,0 0,685 0,7539  I,984 1,412 0,3465 0,5536
1200 0,7093 0,6i64  0,3957 0,k61¢° 1,169  0,7925  €,1978 0,3258
800 =~20,51 =-19,58 ~II,08 ~ 13,91 =~ 33,53 -29,47 «5,722 =~ 7,638
Cp 1000 =7,369 - 6,767 = 4,203 = 4,637 - 1II,79 - 9,700 =~2,I37 =~2,970
1200 =~ 8,373 ~ 7,20 = 4,763 =~ 5,620 ~ 13,33 =~ 9,212 =~ 2,391 « 4,233
800 - 9,068 - 3,76 - 4,069 - 8,21I -17,83 1,824 - 1,216 - 12,35
o 1000 -1091 -6581 ~6,53 =-9,169 -19,I2 =-3,56 =~2,192 ~1I,39
1200 -~ II,04 = 7,376 =5,796 = 8,879 - 18,73 -5,676 =~2,469 =-10,18
TABLE 2
Mole Fractions of Ecquilibrium Composition, p = 500 bars, T = 800°K.

et e r—

e ————— s L —— S v 8 @ —— s -

change in potential parameters, percent

O, +I0 &/, +10 G, -10 &/, -10 @, +30 £/, +20 6, -30 &/k, =30
CHe  0,08877  0,04864  U,04831  0,04842 0,04928  0,04888  0,04797  0,04823
CO o,00t48 o0,c0149  0,00i47  0,00[45  0,00I1S6  0,00056  0,001t5  0,00144
CO, 0,20499  0,20504 0,20525 0,20520  0,20469  0,2048%  0,2054%  0,20532
H, 0,007 0,02857 0,00929 0©,00891 0,00572 0,007II  0,01064  0,00962
H,0 ©.40532  0,5050f  C,40413  0,40440  0,40666  0,40670  0,40325  0,40390
N, o,33181 0,331  0,33154 0,33160 0,332[3  0,33189  0,33133  0,33149
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Table 1 shows the effect of errors in potential functions om I, §, c

p’
and a for combustion products of a mixture that has the starting composition
C2H8N2 + 1.6N204 [11]) at a pressure of 500 bars and a temperature range of

800-1200°K. Table 2 presents mole fractions of the equilibrium composition of

a mixture of real gases with change in potential parameters at a pressure of
500 bars and T = 800°K.

The calculations were made on the Ural-4 electronic digital computer.
Thermodynamic functions of individual compounds were calculated from polynomials
approximating the tables in the handbook [3]. Virial coefficients of nonpolar
molecules and also derivatives of the form T*(%%t), T*chégi) were determined
from polynomials approximating the tables in [2]. The program for the elec-
tronic digital computer makes it possible to determine the composition and
thermudynamic functions and properties for compounds of the classes C, H, F, O,

and N -- elements of an arbitrary starting composition.

Based on results obtained, we can draw the following conclusion:

1. The nature of variation in deviations as a function of 40 and Ae/k 1is
practically the same for all thermodynamic functions.

2. With temperature rise, the "imprecision" of values of potential para-
meters has less and less of an effect on the final result. Evidently, we can
expect that at temperatures higher than 2000°K the effect of 0 and e/k will be
shown quite insignificantly.

3. If we assume that the error in the values of 0 and ek of the main
components does not exceed 10 percent, then the values of the deviations of

properties of real mixtures from those of ideal are determined with an error
of 20-30 percent.

4. Variations in potential parameters have a weak effect on the equilibrium

composition of the mixture under study.

Symbols

O, ¢/% and £ = parameters of potentials; nj = number of moles of the j-th
ccmponent; v = specific volume; V = total volume; a = velocity of sound, as well
as stoichiometric reaction coefficient; B = second virial coefficient; biT -
number of atoms of the i-th chemical element in the original compound; cD =
specific heat capacity at constant temperaturej !jg= Gibbs potential; J = total

enthalpy; { = atomic component of mixture; j = molecular component of mixture;

-8~
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MT- arbitrary number of moles of original compound; N = Avogadros number;

nq = total number of moles in mixture; x, = mole fractions of combustion products;

p = pressure; q = number of mixture compgnents; R0 = universal gas constant; r =
inter-molecular distance; S = entropy; T = temperature; T* = reduced temperature;
u = potential energy of interaction; Hps W = molecular weight of original com-
pound and molecular weight of combustion products; ¢j = chemical potential; in

Table 2, the mole fractions are denoted by chemical formulas of the compounds.
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THERMOPHYSICAL PROPERTIES OF COMBUSTION PRODUCTS
OF CERTAIN CHEMICAL FUELS

V. Ye. Alemasov and A. F. Dregalin

It is necessary to know several thermophysical properties of a mixture to
describe gas dynamic and heat exchange processes cccurring at elevated temper-
atures with a reacting working body: heat capacity at constant pressure and
constant volum~, veloclty of sound, transpcrt properties (coefficients of vis-
cosity and thermal conductivity), and others. Due to the limited numbar of
existing ways of experimenting at elevated temperatures, all the more so for
corrosive combustion products of chemical fuels, the avenue of theoretical
calculation becomes especially important and at the present time is evidently
the main approach in determining the thermophysical properties of a mixture.
But when applied in calculating equations of thermodynamics and the molecular-
kinetic theory of gases, several simplifying assumptions are emnployed (for
example, in writing the equation of state and in selecting the model for inter-
action of mixture components). This introduces into the values obtained by
calculation some indeterminateness, especially as to the value of the transport
coefficients. Therefore, an evaluation of the effect errors in theoretical
values of thermophysical quantities have on heat exchange properties is of
pracilcal interest and at the same time governs the acceptability of theore-

tical methods of calculating properties.

This article describes methods of determining chermophysical properties
of reacting combustion products of chemical fuels. These methods have been
used by the authors in a universal program for the M-20 electronic digital

computer in getting calculaticn data for different mixtures.

The groundwork for calculating thermophysical properties of combustion
products is a determination of the gquilibrium state and derivatives under
different sets of conditions. 1In most of the cases that avre of practical inter-
est, the problem boils down to determining the equilibrium state and its corres-

ponding derivatives at known tempcratures and pressures,

The system of equations of thermodynamic equilibrium when atoms are used

as the base components 1ls written as follows:

~11-
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2::0-“ tﬂ P" = tﬂK" .
tﬂ (Faq “) * gaq ﬂ;n): e“ M-rb&f ' (1)
n ZJ: p;=lnp,
where MT = number of moles of fueli emsuring the equality
ny =P E‘:Y"J =P
Solution of the system (1) by the numerical method in [1] determines the
equilibrium composition of the combustion products.

-~

To find the particular derivatives of the form @?—%‘) ag?ﬂ%‘)p it is
n Zh

necessary to appropriately differentiate the system (1) and substitute calculated

vaiues of n, and n

i i’
Now several of the most important properties of the working body can be
found from customary thermodynamic relationships:
equilibrium heat capacity at p = const

=gl (503, a

m M _..L " (2) i
n + %ﬁv) 7 }
ﬁ‘: ¥a€r\1‘ 1
equilibrium heat capacity at v = const
» (3) b
equilibrium velocity of sound
* _Cp R T ,
AU =Cy A (BLe) @
: hplr

On the assumption of the constancy of composition for an infinitesimally
small variation in temperature and pressure, we can determine the frozen proper-

ot “p-froz’ Cy-froz 24 afroz
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The transport coefficients of the mixtures -- viscosity and thermal con-

ductivity -- are found from the formulas of the molecular-kinetic theory [2].

The component of the thermal conductivity coefficlent caused by transfer

of the heat of chemical reactions, ) , is of particular interest. A general

R’

formula for determination of AR has been advanced in [4]. With a few modifica-

tions, this formula was used by us in making practical calculations.

The most difficult task in obtaining transport coefficient by calculation
was selecting the potential of interaction among mixture components when they
collide., In the case of chemical fuels of the C, H, O, and N class, elements
whose combustion products contain differently charged molecules and atoms of
the order of 20 species, without bringing in empirical models of interaction
this problem cannot at present be solved. The most suiltable is the Lennard-
Jones potential (12-6), since it describes collisions of nolecules both in the
field of low as well as of moderately high temperatures. This allows us to use
experimental data for determining the corresponding potential constants, first
of all, and to make more or less warranted extrapolations, in the second place.
Additionally, the constants of the potential (12-6) can be estimated from

several physical properties In the absence of experimental data.

Interaction of polar components with applicable precision at elevated
temperatures is described by the Stockmeyer potential. We adopted this poten-
tial for all four components. In contrast Lu the values of the collision
integrals ls® recommended in [2], in the present study we used the values of
ol»® averaged over all orientations from [5]. We borrowed paramneters of the

Stockmeyer potential from the same reference.

Parameters of the Lennard-Jounes potential for 200 compounds, recommended
in [3] as possible components of fuel combustion producis, are taken from [6]

or are evaluated de novo by methods in [6].

Tabled data of collision integrals 2!’1% and ¢%’?% {n (2,5) are approxi-

mated by power polynomials.

Properties of combustlion products of several chemical fuels were evaluated
by calculation. In this article, prepertics of combustion products of the

27872

chemical fuel [7] C,H.N., + N204 are presented by way of {llustration (Tables
1-3) for the coefficient « = 0.8

of excecs N204 compared to the stoichiometric

concentration.

—13-
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Analysis of the values of potential parameters determined by different
methods showed that these methods are extremely approximate. Therefore, values
of potential parameters obtained with the ald of these methods can be employed
only in preliminary estimations. Experimental data will gserve in possible
judgement on the size of the error introduced by imprecise values of potential

parameters.

In view of the lack of experimental data on transport properties of the
combustion products of chemical fuels, we made a thermodynamic calculation of
the chemical fuel CZHSNZ + N204, a=0.,8, p=0.01 bar, and T = 2000-4800°K.
Here "errors'" were artificially introduced into the values of the potential
parameters. The changes in potential parameters indicated were made for all
components in the same direction (decrease or increase). The results of calcula-
tions are shown in Table 4. The magnitude of the change in coefficients of vis-
cosity and thermal conductivity as a function of percent change in ¢ and ¢ /k can

be roughly approximated by the formula

Byyte 3 207 *010¢ 7 (5)

TABLE 1

Pressure 0.00981 bar

Tk ) @ (© () ":
800 585,8 1,560 1,128 32“,7 0,0991 1,115
1600 62,3 1,788 1,041 5457 0,7691 1,069
2400 989,1 1,926 5,9 733,0 .2,I93 8,179
3200 154§ 2,006 6,093 861,8 - 2,328 5,709
4000 B8k 2,030 1,625 982,9 0,681 1,422

Key: (A) meters/second; (B) c kilojoules/kg-deg;

b ) ¢ /

c ’
const p' p-froz
(E) Ae’ watts/meter-deg.

p-froz’
(D) n + 10°, nanoseconds/meter?;

|
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TABLE 2
Pressure: 0.981 bar

T a (& B) %-10° Ae
® 10’ A, Lt
800 569,0 1,554 1,941 3239 0,1646 L,903
1600 g23.5 1,788 1,030 545,7 0,/637 1,036
2400 66,5 1,928 1,378 728,0 0,389 1,693
3200 1210 1,99 6,310 897,1 2,902 9,038
4000 1669 2,063 6,369 1010 3,057 6 621

Key: (&) cp-froz; (B) Cconst P

Cp—froz

TABLE 3
Pressure: 98.06 bars
§ A
400 A £
T & @ ® " Ty
800 556,86 1,822 1,352 319,2 0,155 1,851
1600 83,9 1,788 1,031 &u5,7 0,1627 . 1,028
2400 1002 1,925 1,039 M7,5 0,23% 1,069
3200 1140 2,000 1,719 e88,7 0,577 2,017
4000 1338 7,044 3,353 1042 1,665 4,623
Rey: (A) Cp-fror; (8) Cconst p .
Cp-froz

When A, = 10 percent and A

maximum error is 21 percent. It

/k = 10 percent, the calculated value of the
appears to be of low probability that 1in the

future potential parameters of all components will undergo substantial re-

finement in the same direction.

are the most unreliable.

Potential parameters of atoms and free radic~ls

1f we assume that for these imprecise values of ¢ and

£/k introduce an error proportional to the content of atoms and free radicals

in the combustion products of the fuel, the actual changes in An and AA percent,

will be small even for considerable values of Ao and Ae/k for atoms and free

radicals. With this in mind, we

must at the present time accept as not possibl-

-15-
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the calculated determination of the transport properties of combustion pro-
ducts at errors less than 20-30 percent,
tions of effective thermal conductivity coefficient Xe to use approximational

formulas, which considerably reduces the necessary machine time and simplifies

calculations.

TABLE 4

Effect on Thermophysical Quantities

of Changes in Potential Parameters

26 -10% a0, 10%

quan- 8&L-107 084 0L OEAIOL (o e

tities
change, in percent
2000 — 0 L1389 - 1493 - 48B4 1912 - 17.83
g I1s339 =~ (618 -4,331 19,67 -18,5
2400 —2 1\323 - 1460 - 4,024 19,62 - 18,06
Ae 1,660 -1,3%2 -3,892 20,61 - 18,58
2800 2 1,308 e Y413 - 3845 20,48 - 18.39

Ao 1,301 - 1,517 - 4,118 20,81 - 18,64

3200 L1276 . =136 ~3.736 20,79 _ - JBA8
: A, 1,366 =-1,475 =3,089 20,90 - 18,5

3600 b 2O =16 - 3.728 20D =16,

TABLE 5

Pressure: 98.06 bars

— 0,5 0,7 0.9 i 13

™K 2738 3311 3454 3399 3290

Aeﬂagprox 0,943 0,991 1,085 I,130 I,12%
e

-16-
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A formula of the following form is most often proposed for approximate

determination of Ae:

€,
%:—Eﬁ' }Le:]‘f*hﬁ- (6)

Tables 1-3 illustrate application of the formula in [6]. As we can see,
in several cases this formula gives unsatisfactory results in the calculation
of A .

e

Another vereion of the approximational is the following function

f\e fpada =%)ZCVP @)

Verification of this formula has been made at several points. The corres-
ponding results are given in Table 5, where the ratio Ae—approx/xe is presented
for conditions of equilibrium combustion at different a.

Let us look at the possibility of using estimate values of transport
coefficients in calculating convective heat exchange when there 18 a flow of
chemical fuel combustion products in a Laval nozzle. We select as an example
a profiled Laval nozzle with the following geometric characteristics: area of
critical cross-section Fcr = 0.0065 meter?, ratio of cutoff area to area of
critical cross-section is 85.7, pressure at inlet to nozzle is 60 bars, and fuel
is products of the combustion of kerosene and oxygen. To determine specific

thermal convective fluxes q, we use a typiczl formula of the form

q =\PQWwW (J* — J stationary) (8)

Values of speclfic convective thermal fluxes at inlet to nozzle, in the
critical cross-section, and at the nozzle cutoff are, respectively, ~10-10%,
~40+10%, and ~0.15:10° watts/meter?. Similar to the data in Table 4, we vary
the values of the viscosity and thermal conductivity coefficients by + 20 per-
cent. The relative change in specific thermal fluxes for given cross-sections
will lie in the limits 4-6 percent. Since theoretical methods allow us to deter-

mine the quantity q to a precision of ¢ 10 percent, estimate values of trans-

port cocefficlents can be nsed in calculating heat exchange in Laval nozzles. 1In

Bl g e
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a similar way, we can demonstrate the applicability of estimate values of

transpcrt coefficients 1in calculating frictional forces,

We present in the conclusion a number of characteristics of the universal
computer] program employed. The program allows us to determine the composi-
tion and thermophysical properties of combustion products of chemical fuels of
arbitrary original composition. The fuel can contain up to ten atoms of the
22 most widely distributed [3]. Properties of individual components are cal-
culated from seven-order polynomials approximating the tables in [3].

Symbols .

= gtolichliometric coefficient; pj = partial pressure; n, and n(k) =

3 i)

= pnumber of atoms of the

aij

number of moles in gaseous and condensed phases; biT

i-th chemical element in the conventional formula of the fuel; MT = number of

moles of fuel; p = pressure; T = temperature; and u = molecular weight of

u
T
fuel and molecular weight of combustion products; cpp and cvp = equilibrium

heat capacities at constant pressure and at constant volume; J = total enthalpy

of the mixture; J_j = total enthalpy of the j-th product; cpj

at constant pressure of the j-th product; Ro = universal gas constant; ap -

= heat capacity

equilibrium velocity of sound; n = coefficient of viscosity; Ae = effective

coefficient of thermal conductivity; A_ = coefficient of thermal conductivity

f
of internal and translational degrees of freedom; o and ¢/k = potential para- 4
meters; p = density; W = flowrate;.j * = enthalpy at drag temperature; {? =

function of thermophysical properties, flowrate, and geometry of the flow

section.

-18-
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ENGINEERING METHODS OF CALCULATING THERMOPHYSICAL PROPERTIES OF
SOLUTIONS AND BINARY SYSTEMS

L. A. Bakhtin, N. A. Shakhova and L. S. Aksel'rod

In calculating mass and heat transfer processes in systems containing J
bicomponent solutions, it is necessary to know their thermophysical proper- '

ties (viscosity, surface tension, partial pressure of solvent vapor,
of solution, etc.).

heats

Earlier (1] it was shown that the similarity of the temperature depend-
ence of thermophysical properties of binary systems (solutions) y and of
individual components (solvent) Yo at constant pressures and concentrations
makes it possible to obtain the following expression that is taken as the

basis of a relatively simple method of calculating different properties of
solutions:

i— TN

{(3): K”f(Ho)* Kl'b; (1) #

Several thermophysical properties asg functions '
of temperature are determined by an exponential formula,

The form of the function f(y) and f(yo) is best determined from
molecular-kinetic principles.

For example, the

Ya. I. Frenkel' formula for the viscosity of a liquid: u = a, exp (U/RT), and
the formula for the vapor tension over liquids [2]:

P =a, exp (-r/RT).

We can write expressions for determination of a sought-for property of

a solution y and a sought-for property of ths solvent Vs based on an
exponential formula:

-20~-
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H’QGXP(Q/QT), (2)

= Q, exp (Q,/RT),
Yo * Qg €xp(Qe/RT) -

Solving equations (2) and (3) jointly when T = To, after uncomplicated
transformations we get the equation:

tgg :K’ Q%%o'i—K% [9%, . (4)

which i{s a particular case of expression (1) when f(y) = log y, in which the

multiplier of the similarity transformation and the increment are as follows

G
| b_a/o
Ky=g,r %7 Qe (5)
Equation (4) can be written in a different way:
Ky
y = (51‘ %o) c (6)

When deriving equations (4) and (6), the condition T = To was adopted.
Hece, points of identical temperatures are the similarity points of the

curves depicting the temperature dependence of properties of solution and of
solvent in this case.

The method of calculation based on similarity of the temperature
dependence of physicochemical properties of a solvent and a solution can be

used in determining the vapor tension of water over solutions.

—_
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Equations
(4, 6) take on the following form in this case:
o P = tg b
gP = kplg P+ wp LG 0p . o
-21-
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P=(b, P, )

An equation analogous to expression (7) was first derived by
V. A, Kireyev [3] in the following form:

TtgP =kplgR +B. )

Studies of V., A. Kireyev and D. F. Othmer have demonstrated that in
logarithmic coordinates  log P - log Po experimental data on the vapor tensions
of watur over pure liquids, solutions, and mixtures are satisfactorily
approximated by straight lines, which confirms the validity of the principle
of similarity of temperature dependence of physicochemical properties of

related compounds, including solution and solvents, applicable to saturated
vapor tensions,

The form in which the principle of the similarity has been written in
r equations (7, 8) has an advantage compared to the equation of V. A. Kireyev,
since it makes it possible to find the saturated vapor tension .as an

analytical function of composition for a number of binary systems.

Based on (7) and (9) we can write the expression of the integration

-

constant B:
B =xplqb, . (10)

According to the experimental data of D. F. Othmer [4], based on
equation (10} the increment Bp was plotted as a function of concentration for
A ammonium nitrate solutions and is shown in Figure 1. From inspection of the

figure it follows that Bp equals the mole fraction of water Xb

t b' =-x"1

(11)

Y

Y.

ra—

-[ o

A SO




-— g

When we take (11) into account, equation (8) becomes:

P=(XyP)"™ 12)

D. F. Othmer [4] obtained an equation for determination of the differ-
ential heat of solution qé:

[ aqt - =
Ch :*é;"‘ = f'. (1 K'). (13)

Othmer determined the integral heat of solution q, by graphic integra-
tion of the experimental curve 1 - kp = f(¢), where ¢ = concentration

period.

The differential heat of swelling (solution) as a function of wacer
content u is given in [5] for cases when water is absorbed by a colloidal

body and for the dissolving of sulfuric acid in water:

q, = 99¢ _ a:b (14)
du (Bbew)
Bearing in mind that the moisture content u 1s proportional to the mole

ratio v, we combine the solution of equations (13) and (14), to get:

4-x, = a,b

P (D V)% . (15)

Treatment of experimental data [4, 6] has shown that the coefficients of

equation (15) for ammonium nitrate solutions are a, = 0.31 and bl = 7.8; then
equation (15) becomes
13 . & 034238
Fr(tev)?
(16)
=23-
A o D s

ks o
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Figure 2 presents a graph of kp as a function of concentration for
ammoniur nitrate solutions, which shows that the curve calculated from
equation (16) satisfactorily agrees with experimental data. Experimental

values of kp have been calculated from data [4, 6] treated by the least-
squares method.

Equations (12) and (16) allow us to calculate the vapor tension of
water over ammonium nitrate solutions for a wide range of temperatures and
concentrations. The discrepancy of experimental [4, 6] and calculated values
in the concentration range 0-75 percent does not exceed t4-6 percent,

attaining at high concentrations (89.7 percent) a value of 12 percent (based
on data in [6]).

The principle of similarity of the temperature dependence of the
saturated vapor tension of a solution and of a sclvent allows us to correlate

experimental data on vapor tension and on heat of solution.

Substituting (16) in (13), we get equations of the differential heat of

solution:

.. 031:78
G = Vo T +v)? (17)

and the integral heat of solution of ammonium nitrate:

3178

- r—&-—.‘-—.dv 1
q'& j °(7.8+V)z (8)
which after integration becomes:

e O3V
qy = Te~57+v—*C (19)

The dimensionality ¢ the quantities that enter into equation (19) are as
follows: [rO] = [kcal/kg-mole of water], and [th = [C] = [kcal/kg-mole of

NH4N03].
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The integration constant C can be determined from the heat of infinite
solution. Based on (19), the integral heat of infinite solution of

1 kg-mole of NH4N03 (v » ») is determined by the expression:

Qe =03t1 - C (20)

Based on data in [7], G 6470 kcal/kg-mole; C = 3190 kcal/kg-mole (at a
temperature of 18°C). From data in (8], U = 6160 kcal/kg-mole;
C = 2905 kcal/kg-mole (at a temperature of 25°C).

As follows from (19), the integral heat of solution of NH4N03 is made up
of two components, one of which depends, and the other does not depend on
solution concentration period. As we know, one of the causes of heat effects
in the formation of real solutions is the difference in forces of inter-
molecular attraction in pure solvent and in the solution. How strong
this factor is obviously depends on concentration and is taken into account
by the first member of the righthand side of equation (19). Further, when
crystalline compounds are dissolved the crystal lattice breaks down, occur-
ring with an expenditure of heat, which obviously is taken into account by
the integration constant C. Hence, the integration constant equals the sum
of heats of transformations from the.crystalline modification corresponding
to the given temperature to the dissolved (liquid) state. For ammonium
nitrate the values of the integration constant C calculzted from data in (7]

from heats of transformations are as follows:

Temperature, °C Higher 125-170 83-125 32,3-83 Lower 32.3
than170 than

C, kcal/kg-mole of
salt 0 1460 2487 2798 3055

The values of ¢ calculated from the heat of infinite solution agree
with a precision of t5 percent with the velue of C cbtained from data based
on heats of transformations in the corresponding temperature range

(t < 32.3°).

-25-




Figure 2 presents a comparison of experimental and calculated values of 4
the integral heat of solution of ammonium nitrate, showing that the curve N
calculated from equation (19) at C = 3055 kcal/kg-mole satisfactovily agrees {

b with the experimental values.

b We can obtain an analytical-graph method of calculating the viscosity
of a solution based on the principle of the similarity of the temperature S

dependence of properties of the solvent and of a solution.

i,

For this case equations (4) and (6) become:

tgm :K/*Eé/a\o;kftg&u. (21)

Mmo2 (b '/"°)T#' (22)

In Figure 3 experimental data on viscosity of aqueous solutions of urea
are plotted in the coordinates log p - log Mo+ The temperature scale
plotted from experimental values of the viscosity of water, and the lines of
saturation and boiling of the solution are also shown. Analyzing Figure 3,
it 1s not difficult to see that in the coordinates log u - log H, experimental
points are satisfactorily approximated by straight lines, which confirms the
validity of equations (21, 22). A similar result in logarithmic coordinates {
is given by treatment of experimeﬂtal data on viscosity of solutions of
ammonium nitrate and of nitric acid. From Figure 3 it is clear that values 4
of ku (slopes of lines) and bu do not depend on temperature and vary with

increase in concentration.

Figure 4 presents the multiplier of the similarity transformation ku and 1
the increment of viscosity bu as functions of the concentration of solutions 1
f of urea and of nitric acid. The values of k and b have been calculated
from experimental data treated by the least-squares method. Figure 4 also |

shows the freezing-point diagrams of the systems under study.

Figure 4 shows that the eutectic points of the freezing-point diagrams

correspond to the critical points of the curves of ku and b“ as functions of
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composition. For the urea-water system, the curve of k as a function of

./_‘L

composition has a minimum at a solution concentration corresponding to the
eutectic point of the ireezing-point diagram. For the HN03—water system the ‘
eutectic point of the freezing-point diagram at concentration ¢ = 33%

corresponds to the minimum on the curve ku = fic), the eutectic point at
¢ = 537 corresponds to the maximum on the curve ku = f(c), and eutectic

point ¢ = 90% corresponds to the inflection poirt of the curve k = f(c). 4

b .

Equations (21) or (22) together with the graph of ku and b“ as functions

of composition allow us to calculate the viscosity of the solutions in

question for a wide range of temperatures and concentrations. (When

calculating with the aid of the graphs in Figure 4, the viscosity must be
substituted in millipoise.)

Comparison of experimental viscosity values with those calculated from
equation (?2) with the graphs and Figure 4 shows that the discrepancy for the

vast majority of experimental data is not greater than t3-5 percent. |

The temperature range of applicability of equations (21, 22) is limited ‘
by the boiling point of the solvent t;p. Data on solvent viscosity at
t > tgp have been obtained for P » 1 atm abs, and their use in calculating
soluticn viscosity from equations (21, 22) contradicts the condition
P = const, adopted in their derivation. Figure 3 shows that the function
log v - log Hy is linear both for temperatures up to 100°C as well a3 higher
temperatures. However, at the transition through the 100°C point the nature

of the curves of ku and bu as functions of composition changes sharply,

accounted for by the effect of change of pressure on viscosity of water at
t > 100°C.

It must be noted that the Ya. I. Frenkel' exponential formulas of !
viscosity, saturated vapor tension, etc. are approximate in view of the
assumptions made in their derivation. When deriving equations of the form }
(7, 8, 21, 22), similar assumptions are adopted for the solution and the
solvent. 1In these equations properties of the solution and the solvent are
compared, and the relative quantities ku and bu come into play, therefore the
effect of the above-indicated assumptions is not grrat and the precision of

these equations is higher than that of the initial exponential formulas. ‘
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Use of the method set forth above in experimental research on physico-~
chemical properties of solutions and binary systems allows us to reduce to a

minimum the essential number of experimental points.

In determining the

multiplier of the similarity transformation ku and the increment bu for a

solution of concentration c, it suffices to determine the magnitude of the

sought-for property of the soluticn at two temperatures and to have available

data on the temperature dependence of the corresponding property of the

solvent.

As we know, to calculate surface tension o of pure liquids the parachor

method is used [9], which at temperatures far from the critical is determined

by the expression

n=e¢"%y,

(23)

Table 1. Parachor cof Ammonium Nitrate Solutions as Functions of

Concentration and Temperature

Concentra- Temperature, °C Mean
tion, by == Parachor
weight;% 20 40 60 80. 100 120 140 Value

Value of Parachor

“;_ U
0 52,71 52,43 62,23 52,16 ©2,07 O1,98 OI,89 + 52,22
20~ 67,97 57,98 §7,85 57,48 57,33 - - 57,72
40 66,36 ‘66,40 66,33 66,16 65,89 - - 66,23
60 80,11 60,I5 80,I5. 79,97 79,66 .~ - 80,01
80 - o - 15,80 1@,50 I%.Z - I%'so
9 - - - - 128,60 128,50 I28,0 128,50

L

The parachor of pure liquids N1 is almost independent of temperature and

its value is determined by additive summation of the component fractions of

atoms, groups, and bonds [9].

An attempt has been made in this study to :mploy the parachor method in

calculating surface tension of solutions and of binary mixtures.

-28-
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Table 2. Parachor of Urea Solutions as a Function of Concentration
and Temperature
Concentra-~ Temperature, °C Mean
ticn, by . ' Parachor
welght,Z 20 40 60 80 I00 I20 140 Value
Value of Parachor
20 58,28 57,90 57,65 67,22 57,41 1= - 51,63
60 - 77'57 77’07 76.63 %.” ] - 76.6[
80 - - = 55,83 601 M55 - 85,14
90 - - - - .~ 109,20 108,8 109,00

. —ameman s amwe as(zme)

Using experimental data on surface tension and density, we have calcu-
lated the parachor values for solutions of ammonium nitrate and of urea at
different concentration (cf. Tables 1 and 2). The data of these tables show
that the parachor of solutions, as well as of pure liquids, is almost
independent of temperature. Additionally, the concentration of a solution
has a considerable effect on the parachor value. The parachc- of these
solutions as functions of concentration is given in Figure 5. We can see
from Figure 5 that the parachor of solutions Il rises linearly with increase

in mole fraction of solute XA and can be determined from the additivity rule:

ﬂ=ﬂAXA+nBX" (24)

The parachor of water PB [B = water) 1s 52.22 (Table 1). The parachor

of a melt of ammonium nitrate and of urea (XB = 0; X, = 1) 1s 163.5 and

A
130.4, respectively (Figure 5).

The expressioans (23) and (24) allow us to calculate the surface tension
o for any working conditions, if we have determined the values of o for the
original components or for two compositions of the binary system, and if we
know its density at the given conditions. The discrepancy of experimental

and calculated surface tension values for solutions of ammonium nitrate and
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of urea do not e«ceed *6 percent, wholly satisfactory for engineering
calculations. The simplicity of the method of determination and the avail-
ability of a great deal of experimental material on density (compared with
material on surface tension) accounts for the expediency of use of the
parachor method ia calculating surface tension of solutions and of binary

systems.

Symbols

a and b = coefficient constants; B and C = integration constants;
ky and b'y = multiplier of similarity transformation and iacrement of
corresponding property; P and Po = vapor t:nsion of water over solution and
vapor tension of water over pure solvent at identical temperatures;
kp = }/rO = multiplier of similarity transformation equal to the ratio of the
partial molar heat of evaporation from solution r to the latent heat of
evaporation of the pure solvent r s u = energy of activation; r = latent
molar heat of evaporation; R = gas constant; T = absolute temperature;
VM = molecular volume; v = xB/xA, ratio of mole fractions of solvent and of
solute; Q and QO = energy characteristics of the process for the solution and
the solvent, respectivaly; I, “A and HB = parachor of solution, solute, and
solvent, respectively; Xy and Xp = mole firaction of solute and solvent,
respectively; u and Wy % viscosity of solution and of solvent at identical
temperatures; ku = U/Uo, multiplier of similarity transformation of viscosity
equal to the ratio of the energy of activation of solution and the energy of

activation of the solvent.
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EXPERIMENTAL DETERMINATION OF TRANSPORT DIAMETERS IN THE TEMPERATURE RANGE
2000-10,000°K

Yu. N, Belyayev, N. V. Kamyshov, V. B. Leonas and A. V. Sermyagin

Difficulties in determining thermophysical properties of gases at
temperatures greater than 1000°K are well known. The customary methods of
steady state measurements at these temperatures prove inapplicable, and

extrapolation of low-temperature data is unsubstantiated.

However, the kinetic theory allows us to reduce equilibrium and
nonequilibrium properties of gases to the same common basis -- forces of
intermolecular interaction. These results constitute a reliable foundation
for carrying out a broad program of determining equilibrium and nonequil-
ibrium properties by using independent data on molecular forces of inter-

action.

Determination of these forces in the range that is of interest owing to
the existence of thermophysical properties of gases is possible by direct

experimentation based on the so-called molecular beam method.

A detailed description of the method and experimental apparatus for
investigating elastic scattering of molecular beams is given in [1]. A wide
range of systems corresponding to paired combinations of atoms of noble
gases [2], the atoms H, N and O, and the molecules Hz, N2 and 02 [3, 4] have

been investigated on devices of this type since 196L.

In subsequent studies the systems including combinations of the
molecules CO, NO and N, atoms N and 0, and also CHA_CHA and He-—CH4 have becn
investigated, Data on transport diameters for the systems listed are given

in this present paper.

As we know, the potential of intermolecular forces determines the

dynamics of pair collision of particles participating in the transport of a

-35-
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given molecular characteristic (momentum, type of particle, and energy).
Kinetic coefficients are associated with forces of intermolecular inter-
action through the so-called collision integrals Q'(S) (transport
diameters) (35}

™ 1/2 = . . )
o y
where y = 1/2 ViellkT' For the potential V = k/rn,‘the reduced collision .
integrals beccme
(1,3) /£ Kn\2/n 2\ A(Y) ‘
QMERTG-BA (Y @)
(2) .
Q‘”'”:Jf(%)"“r(tr—%)i‘\ (nY, (3)

where T'(x) = Euler function, A(l)(n) and A(z)(n) = quantities tabled in [5].

The complex nature of forces of interaction as a function of distance
makes the question of how much information we have on these forces essential
in making practical calculations nontrivial. This question has been
discussed in detail [6, 7]. For calculations in the temperature range
2000-10,000°K, it is necessary to have data on potentials in the range from
~ 0.2 electron volt to ~ 1 electron volt. It is precisely this range of

interaction temperatures that has been explored in the present paper.

Parameters of interaction potentials approximated by functions of the
type V = K/r" were obtained from functions of the energy of effective
complete scattering cross sections Q(eo, E) at small angles. The measure-

ments were made by the method of scattering beams on gas targets [1].

A compilation of potential parameters of the systems investigated, and
also the range of distances within which the values of K are constant are

given in Table 1.
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The collision intervals Q(l'l) and 9(2'2), essential in obtaining

coefficients of viscosity, diffusion, and thermal coaductivity to the first
approximation of the kinetic theory of gases, have been calculated for all
systems studied in this paper for the temperature range 2000-10,000°K. The

results of calculations are given in Tables 2 and 3.

Since the composition of gas mixtures can vary very strongly as a
function of conditions, it appeared worthwhile not to calculate the transport
coefficients, but to give only tables of collision integrals for the
components. The values of ﬁi(z’s)presented in this paper and also data in
[2-4] allow us to calculate the kinetic properties of air and other gas

mixtures that are of great practical importance for a wide temperature range.

Table 1. Parameters of Potentials of Systems Studied

i}
System K (For Aoi?l) Ton ar [5] T
0 ~ 0 ot 9,00 241 - 1,89

- Q 379 8,12 2,58 ~ 1,84
LNV o 761 9,30 2,53 « 1,80
- 1 . 6,82 2,35 » 1,80
-9 2038 8,7 2!77 = 2,_22
2 ~ 0 24 8,48 2,85 « 2,28
Ww ~Co 1965 8,23 2,92 = 2,31
Ho - CH, 136 8,00 2,22 = 1,7
. Clty.=.CH,. 2765 9,50 2,62 - 04 .
i\
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Table 2.

T g

Systems

Collision Integrals 5'(2'2), Az, for Systems Studied

N:CO NNO_ CO-CO_0-NO_N-NQ 0-CO N-CO He-CH,CHCH,

2000

4000
5000

8,968 9,548
8,167 8,675
7,650 3,108
7,265 7,691

10,03 6,331
9,091 5,803
8,477 5,453

6,799 6,930 6,742 5,910 7,94
621‘[62975987527 7,29
5,826 5,852 5,503 4,895 6,85

5,546

5,540 5,155 4,63 6,55

6000 6,963 7,367 7,682 5,000 5,325 5,297 4,087 4,43 6,29

00 6,723 7.105 7,39 4,836 5,146 5,099 4,671 4,25 6,11
8oco 6,521 6,887 7,I5¢ 4,699 4,9% 4,935 4,380 4,12 5,92
9000 6,345 6,69% 6.955 4,582 4,867 4,793 4,329 4,00 5,79

10000 6,192 6.532 6,781 4,479 4,73 4,671 4,207 3,895 5,66

. e e mcmm wh A A S Pt S T s o < SO w——

Table 3. Collision Integrals Q( L) (A ] for Svstems Studied

T [gﬁ Systems A L

T N;CO NCO CO-CO 0-NO N-Mg 0-CO »  He CH, CHh,
2000 7,852 8,049 8,4I4 5,383 5,75I 5,7% 5,837 5,010 6,780
3000  7,ISI 7,313 7,627 4,934 5,254 5,253 5,184 4,995 6,220
5000 6,698 6,835 7,112 4,637 4,926 4,889 4,765 4,710 5,920
5000 6,361 6,483 6,736 4,421 4,691 4,628 4,463 4,045 5,6C0
6000 6,096 6,210 6,445 4,251 4,505 4,425 4,231 3,780 5,370
7000 5,886 5,989 6,205 &4,IIT 4,353 4,260 4,044 3,363 5,217
8000 5,710 5,805 6,002 3,995 4,225 4,123 3,793 3,525 5,060
9000 5,555 5,643 5,835 3,896 4,117 4,005 3,757 3,415 &,951

10000 5,42l 5,506.5,689 3,809 4,021 3,902 3,643 .3,321 4.8#0' '

Symbols

A(Z)(n) = numerical coefficients; k = Boltzmann constant; K and n = potential

parameters; L and s = 1,2,...; Q(Z)(V) = effective transport cross section;

r = interatomic distance; T = absolute temperature; V = velocity of

rel
particles at collision; V(r) = potential of repulsive interaction;

_(ZQS)

I'(x) = Euler y function; y = reduced mass;

(1,s)

= reduced collision

integral; @ = collision integral; 80 = angular resnlution of apparatus.
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DETERMINATION OF VISCOSITY AND THERMAL CONDUCTIVITY OF REAL GASES
AND THEIR MIXTURES BY THE SIMILARITY METHOD

A. A. Vasserman and V. I. Nedostup

Similarity methods have found wide acceptance in calculation of

viscosity and thermal conductivity of real geses. Generalized equations and

diagrams affording determinations from limited data of transport properties

of compounds that have been little studied are put forth in [1-4}, etc. A

shortcoming of these studies 1s the impossibility of using them for reliable

determination of transport coefficients of gas mixtures, since cnordinates of

the critical point figure as the reduction parameters, but critical states of

a mixture and of a pure compound are not corresponding states. Use of

so-called pseudocritical points does not insure the requisite precision,
since none of these points exist at the surface of the state of a mixture,

and moreover different methods of determining their coordinates are not well
enough substantiated.

A general method of selecting support points of similarity in investi-

gating thermodynamic properties is put forth in [5, 6)]. Since the state of a

gas is determined by two independent variables, corresponding states are

found from the condition of equality therein of two dimensionless complexes

of different designations [5, 6]. These conditions are necessary and

sufficient in determining coordinates of reference points#* of similarity and

afford use of any point of the surface of the state of a real gas as a reference

point. However, the simplest and most reliable approach 1is selection of

reference points from curves of the extrema of thermal properties, in

particular, from the Boyle curve. Such points, taken from identical values

of the compressibility coefficient Z for different gases, have been success-

fully used in calculating thermodynamic properties of gas mixtures [6, 7].

# The terms "support point" and "support curve' should in all instance
be read "reference point'" and "reference curves" {Tr. editor]

-40-

R

/

P




In this paper the principle of selection of support points of similarity

described above is applied in generalizing data on transport coefficients of

real gases and their mixtures.

The relationship between any thermophysical property of a compound and
thermal parameters -- temperature and pressure -- is conveniently depicted in
the form of a surface, for whose study the principles of geometric similarity
can be employed, if we find a reliable method of determining the support
point coordinates. Curves of the viscosity and thermal conductivity minima
at isobars exist on the surfaces n = £(p, T) and A = ¢(p, T). The following

dimensionless complexes can be formed for points on these curves

3,

The equality (1) or (2) can be employed as one of the conditions Jf

selecting a support point on the corresponding surface.

For transport properties, the role of quantities analogous to ideal-gas
properties 1s played by viscosity and thermal conductivity values at
atmospheric pressure which in a temperatufe range markedly exceeding the
critical temperature make a substantial contribution to the quantities n and
X even at increased pressures. Therefore, we selected a ratio of transport
coefficients on the minima curves to values at the same temperatures and

P =1 atm (nT and AT) as the second dimensionless quantity.
Thus, points on the curves of viscosity and thermal conductivity minima

1/ Cpin’ )
can be chosen as support points of similarity, as satisfying the conditions:

"%g’(€%$€l,= 0 = idem,

Zovr - idem 3)

in isobars taken from different gases with the same values oLk

for viscosity

hd

for taiermal conductivitv
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for thermal conductivity

-:§}(€%%9p =0 f idem

A min
e e

4)
= idem

1

To find coordinates of new support points, we determined the curves of
viscosity and thermal conductivity minima and the values of the corresponding
properties at atmospheric pressure for several individual gdses and gas
mixtures. Here, we used table data [8] for nitrogen, oxygen, argon and air;
the data in [9] for carbon dioxide, the results of experiments in [10-12] for
methane, and those in [12] for natural gas. Using the minima curves, we
determined the coordinates of support points To’ P, and o (Ao) at the values

nmin/nT = 1.35, and Amin/AT = 1.5, which are presented in Tables 1 and 2.

Table 1. Coordinates of Support Points of Similarity for Viscosity at
the Value nmin/nT.= 1.35

SO, 2% op P, 1 bar ‘Z4o5' Newtzgs-seconds
Nitrogen 246 156 20,70
Oxygen 283 196 26,73
Carbon dioxide 501 249 31,66
Methane 362 197 17,46
Air 243 150 21,00
Natural gas 362 168 17,38

To verify the effectiveness of new support points of similarity, the
above-indicated data on viscosity and thermal conductivity were reduced to
dimensionless coordinates n = n/no, o= A/Ao, Ty = p/po, T = T/To, and then
a comparison was made of the values of n and X for different compounds at
identical 1 and 1. Tt is clear from Table 3 that dimensionless quantities
of viscosities for different compounds agree quite satisfactorily -- mainly
within the limits of 1-2 percent. There are large discrepancies for thermal

conductivity, reaching 6-7 percent (Table 4). We must bear in mind, however,
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that the precision of experimental and table values of thermal conductivity
as a rule are below the precision of data on viscosity; in particular, the

error of the data we used [8] has been evaluated by the authors at

3-4 percent. Thus, the discrepancies observed in Table 4 do not exceed the

overall error of original data.

Table 2. Coordinates of Support Points of Similarity for Thermal

Conductivity at the Value Amin/AT = 1.5
Compound ’
g T+ % Po v bar 30'106' kw/m*degree
gi“gie“ 299 214 38,7
Arycgm 321 215 42,48
= 324 204 28,26
255 146 34,09

We must note that new support points of similarity are best used not
only for mixtures, but also for pure compounds, since in many cases choice
of the critical point as a support point introduces substantial errors owing
to imprecision of determination of viscosity and thermal conductivity values

for it.

Results of the comparison made allow us to recommend the new support
points of similarity in Jetermining viscosity and thermal conductivity
coefficients of little-studied gases and gas mixtures of constant composition
based on data for well-studied compounds. Here, it 1s enouvgh to have
available for the compound under study very limited experimental data
affording determination of coordinates of even one point on the minimum

curve.,
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Table 3. Comparison of Dimensionless Values of Viscosity n/no at

Identical v and Tt

1
T gT:P/po
T=T/T, Compound 0,5 I,0 I,5 2,0 25 .3,0
Nitrogen 0,837 1,000 1,205 1,417 1,626 1I,830
Oxygen 0,83 1,000 I,I99 II0 1,620 I,825
1,0 Carbon ° '
dioxide 0,832 1,000 I,2I9 I,453
Methane ° 0,841 1,000 1,206 1,409 1,608
Alr 0,83 I,000 1,208 I,426 1,638 I,840
Natural
gas ) =
0,839 1,000 1,205 I,385 I,572
Nitrogen 1,058 I,I30 I,216 1,312 I,sl2 I,518
Oxygen 1,062 1,I35 1,238 1,330 1,409 I,508
I,6 Carbon
dioxide " 1,065 1,13 1,217 1,308
“Havhane 1,066 1,140 I,224° 1,317 I,412
Adr 1,06 I,I38 I,225 I,320 1,422 1,526
Nitrogep 1,275 1,320 1,372 1,430 1,492 1,557
Oxygen 1,273 1,320 1,3% 1,431 1,492 1.55%
2,0 Carbon
dioxice 1,281 1,323 1,575 I,430
Air 1,272 1,335 1,387 1,45 1,507 1,572
Nitrogen L4567 1,491 1,529 1,571 1,615 1,664
Oxygen 1,463 1,498 1,536 1,578 1,622 1,667
2,5 Carbon : .
dloxide 1,475 1,498 ‘1,539 1,579
Y AdT L4880 1,512 1,558 1,599 I,643 I,689
T T Nitrogen 1,628 1,654 1,685 1,717 I,752 1,788
$,0  Oxygen 1,636 1,664 1,694 1,727 1,7%I1 1,796
Air 1,671 1,697 1,726 1,798 1,791 1,A26
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Table 4.

>

Comparison of

Values of A/Ao at Identical 1 and 1

1

T:Tfﬂ Coupound

T = P/P,

0,5 1,0 I,5 2,0 2,5 3,0
Nitrogen 0,810 1,000 I,I99 1,378 [,52 1,702
1,0 Oxygen 0,805 I,000 I,I87 X,%49 1,493 1,62
Argon 0,625 1,000 I,2I4 I,410 1,590 1,7%
Air 0,606 1,000 I,217 1,025 1,620 [,805
‘Nitrogen 0,998 [,002 I,212 1,320 1,426 1,532
1.5 Oxygen 1,026 I,129 1,237 1,339 1,435 1,525
Argon 1,007 1,110 I,222 I,33% I, 1,582
Air 1,005 I1.I38 1,231 1,365 L,449 1,552
Nitrogen 1,197 1,268 1,344 J,421 1,499 1,57
2,0 Oxygen 1,266 1,337 T,4I3 1,488 1,50 1,630
~ Argon 1,201 1,270 1,347 1,326 1,503 1,580
Alr 1,265 1,312 I,403 T,470 1,544 1,615
Nitrogen 1,391 1,445 1,503 I,562 1,622 1,685
2,5 Oxygen 1,49 I,047 1,606 1,664 1,720 1,778
Argon 1381 1,435 I,492 1,992 1,601 1,671
M 1,461 1,533 1,560 1,600 1,693 1,7%6
Nitrogen 1,534 1,627 1,673 [,722 1,770 [,622
3,0 Oxygen,. 1,766 1,76 1,793 I,841 1,890 1,936
Argon I, 6 1,590 1,6% 1,664 1, 7® 1,72
Alr 1,580 1,722 1,75 1,808 1,850 1,899
_45_
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VISCOSITY AND THERMAL CONDUCTIVITY OF LIQUID AIR AND ITS COMPONENTS
IN A WIDE RANGE OF TEMPERATURES AND PRESSURES

A. A. Vasserman and V. A. Rabinovich

In gpite of the iIntensive use of liquid nitrogen, liquid oxygen, liquid
argon and liquid alr in cryogenics, thelr transport properties have not been
adequately studied. An analysis and generalization of experimental data on
viscosity and thermal conductivity of liquid air and its components are
carried out in the present paper; equations are compiled and detailed tables
of transport coefficients are calculated. The report 1s essentially a
continuation of a similar investigation made for the above indicated four

compounds in the gaseous state [1].

Dynamic Viscosity

Experimental research on the viscosity of liquid air and its components
can be divided into two groups. The first group includes studies [2-12]
devoted to determining the viscosity at saturation pressures or near-
saturation pressures. Works in the second group contained results of the
viscosity measurements in a broader range of parameters. They must first of
all Include the study [13} in which the viscosity of nitrogen and argon was
determined at constant densities and for different temperatures. 1IN, F. Zhda-
nova [14] measured the viscosity of liquid and gaseous nitrogen in the dens-
ity range 0.38-0.746 2/cm3 and the temperature range from the saturation
curve to 290°K. The viscosity of nitregen and argon at low temperatures and
high pressures has also been investigated by Robinson [15]. Some data on the
viscosity of liquid nitfogen, liquid argon and liquid air have been obtained
by G. P. Filippova and I. P. Ishkin [16]}, experimenting in the temperature
range -183 to 0°C up to a pressure of 150 atm. Fairly recently,
1. F. Golubev and coworkers [17] carried out an extensive investigation of
the viscosity of nitrogen in the temperature range -195.8 to 0°C at pressures

up to 500 atm.
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For most of the compounds considered, with the exception of nitrogen,
experiuental data embraces a limited region of parameters and cannct be
directly used in compiling tables of viscosity used without entailing
calculation methods. 1In view of the lack of a general theory of the liquid
state up tc the present time, reliable and theoretically substantiated
methods of calculating the viscosity of a liquid have not been developed and
a la.ge number of empirical and semi-empirical equations are employed. An
analysis of several such equations, in particular, the well known equations
of A. I. Bachinskiy [18] and A. S. Prodvoditelev [19], has shown that they
satisfy experimental data within experimental precision only for a limited
range of temperatures and pressures. Therefore, with the aim of generalizing
exper imental data on the viscosities of the liquids investigated, we use
the dependence of excess viscosity on density proposed by N. B. Vargaftik

[20], which has beer successfully used for many compounds,

Values of the viscosity of a gas at atmospheric pressure Nr sbtained
f.om smoothed experimental data in [1] were used in forming the values nf
excess viscosity An from viscosity values at given temperatures and pressures

We must note that the use of a component of n_, allows us to obtain a

n .

siézle equation for the viscosity of a liquid and thz gas, and is justified
from the viewpoint of several theories of the liquid state, for example, the
theory of essential structures [21]. For temperatures below the normal
boiling point values of Ny were obtained by extrapolation of curves plotted
from data in [1]; the error of extrapolation cannot substantially affect
reliability of 4N values. Density values at experimental temperatures and
pressures were calculated from equations of state that we formulated ([22].

In plotting the most precise experimental data on viscosity of liquid
nitrogen in the coordinates excess viscosity versus density (Figure 1), the
data in [17] embracing a temperature range of 77.35-123.15°K at pressures up
to 500 atm agree satisfactorily with experimental results [6] and [4) for the
saturation curve. The experimental data in [16] are marked by scatter,
however some of them agree with the data given above. Experimental values in
[5) and [10]} are considerably overstated compared with the results of
measurements of other researchers. The data in [9, 13-15], shown only on

small-scale graphs, 1s not plotted in Figure 1.
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The support point An = f(p) for liquid nitrogen in the density range
0.70-0.81 kg/decimeter3 required points somewhat higher [17] with the aim of
insuring a reliable configuration of isobars and good agreement of data for
the liquid and the gas. At higher densities, the curve was fitted among
experimental peints [4, 17] and [6]. At a density value p = 0.66 kg/deci-
meter3, the support curve fits tightly the curve calculated from the equation
An = f(p) for gaseous nitrogen [1], on which some of the data [17] for the

liquid also falls.

Owing to the availability of an equation for calculating excess
viscosity of nitrogen for the density interval 0-0.72 kg/decimeter3, it was
recognized as worthwhile to describe the section of the support curve in the

range p = 0.65-0.90 kg/deciméter3 using an individual equation:

.- Q)= ”T % (1070 weconsul] = )? 09 + 253,4( © =0 G))+
+ T638( g = 0,650 = 29430( § = 0,65)° + 283350( © - 0,65)"
= 471070( 9 - 0,65 ) . 1)

For the value p = 0.65 kg/decimeter3, the quantities An and the derivative

d(An)/dp from equation (1) and the equation given in [1] agree.

Data on the viscosity of liquid oxygen and liquid nitrogen were sub-
jected to similar treatment. For the first compound the support curve is
presented from experimental data [4, 11] and fits smoothly at the value

= (.92 kg/decimeterB, the curve obtained earlier for gaseous oxygen [1].
Experimental points in [5, 7] lie above the support curve, and the points in
[12] somewhat lower. The section of the supporting curve for oxygen in the

density range 0.92-1.26 kg/decimeter3 is described by the equation

- A (1070 wecon/i?) = 73,66 + 23,5 9 =0,92) +

+486( 0 -0, 92)2 +10695( 9 - 0,%2)>"= 79567( 9 - 0,92 g
+ 208570% 9 - 0,92 g $ : (2)

The excess viscosity of liquid argon as a function of density was obtained by
the present authors, as in the case of oxygen, based on the data in [4, 11],
which agree wetl internally. Experimental points in [10, 12, 16] lie on
different sides of the support curve. At the value g = 1.08 kg/decimeter3,

the curve presented is congruent with the curve obtained earlier for gaseous
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argon. In the density range 1.05-1.45 kg/decimeter3, the values of excess

viscosity for argon are represented by the equation

A7 = 65,42.¢ 161,5( 9 = 1,0 05) + 225( 9 S 1052 s

€ 7503( 0 - I,05)3 - 33418 - 1,05 :
il 9 (9 A 56305( ¢ = A (3)

In view of the limited experimental data on viscosity of liquid air, we
used the excess viscosity as a function of density in reduced coordinates
An/Ank = f(p/pk) [23] and the data for nitrogen, which allows us to calculate
the values of excess viscosity of air at densitles exceeding 0.6 kg/deci-
meter3. The curve obtained An = f(p) agrees well with the experimental
pointe [16] for the isotherm -183°C and for a limited number of data [7] for
the mixture 80.4 percent N2 - 19.6 percent 02. In the density range
0.60-0.93 kg/decimeter3, the curve is described by the equation

AN = 34,33 + 41,9 0 = 0,6) + 350( g - 0,6)% o
» 4762 9 ~ 0,6)> - 41943( p - 0,6)* + T40530( ¢ - (4)
- 0,6)°.

The viscosity of liquid air and its components at pressures up to
500 bar in the temperature range from the critical point to the triple
point was calculated from equations (1)-(4) and from the correspondine
equations in the field of lower densities [1]. Starting with the precision
of experimental data and the error of their analytical description, we can
evaluate the error of the viscosity values obtained at 3 percent for nitrogen

and 5 percent for the other compounds,

Thermal Conductivity

In contrast to viscosity, thermal conductivity of liquid nitrogen,
liquid oxygen and liquid argon has been investigated chiefly at pressures

differing from the saturation pressure.

The thermal conductivity of liquid nitrogen at the saturation state has

been investigated by Hamman [24], Ye. Borovik, A. Matevev, and Ye. Panin
{25] and by Powers, Mattox, and Johnston [26]. At higher pressures, the

thermal conductivity of this compound was first measured by Ye. Bciovik [27]
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in the temperature range -182.8 to -102.5°C and for pressures of 11.2-99.0 atm.
Later, the thermal conductivity of liquid and gaseous nitrogenlwas investi-
gated by the following: U. Uhlir [28} in the temperature range 76.4-184.3°K
and at pressures of 5.8-67.6 atm, by Z. Ziebland and Burton [29] in
approximately the same temperature range, but for a wider range of pressures
(1-134 atm), and by I. ¥F. Golubev and M. V. Kal'sin [30] in the temperature
range -195.6 + 20°C and for pressures from 1 to 485-600 atm,

The thermal conductivity of oxygen has been measured by the following:
Hamman [24] at the saturation state, by Ziebland and Burton [31] in the
temperature range 79.2-199.8°K and for pressures of 1-135.8 atm, and by
N. V. Tsederberg and D. L. Timrot [32] at pressures of 60 and 100 kg/cm2 and
for the temperatures -190 to +25°C. There are even studies [33, 34] in which

only individual thermal conductivity values of liquid oxygen are presented.

Quite detailea datu on the thermal conductivity of argon has been
obtained in the following studies: Yhlir [28] for the temperature range
86.6-193.8°K and the pressures 1-96 atm, by Ziebland and Barton [29] for a
temperature range of 93.3-196.1°K and pressures of 1-120 atm, and by
Ikenberry and Rice [35], who explored the widest range of parameters
(91.6-224.6°K, 1-500 atm). TFive experimental thermal conductivity values of

liquid argon were obtained by Keyes [34].

There is no experimental data on the thermal conductivity of liquid air
in the literature. The lowest temperature at which I. F. Golubev [36]
measured the thermal conductivity of air at increased pressures was -77°C,

that is, fairly removed from the critical point.

The experimental data cited above were compared by the authors as to
isotherms and isobars. The comparison revealed that the data in [30] and
in [29] for nitrogen agree within the limits 1-27 and are intermediate when
compared with the results of other researchers. For oxygen, the data in [32]
and in [31) agree in the main with the same precision, with the exception of
the near-critical region, where the discrepancy amounts to 4-5 percent. Data
in [35] for argon agree with a considerabie fraction of the experimental
points in [28, 29] in the limite *2%, but for 1ndividual points the discrep-

ancy amounts to 4-6 percent,
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As the result of analysis of equations for thermal conductivity, it was
established tha“ the most successful are the e ations of A. S. Predvoditelev
[37] and N. B. Vargaftik [38], expressing thermal conductlvity in the form

of the sum of the functicns of temperature and density, and taking as

the temperature function the thermal conductivity of gas at atmospheric
pressure. Thermal conductivity as a function of two variables is more
general than as a function solely of density, however, taking cognizance of
the good agreement with experimental data for a liquid using the equation

A= Bpn [37, 39, 40], we deemed it worthwhile to treat the most detailed data
for nitrogen and argon both in the coordinates ) and p, as well as in the

coordinates AA, p.

Figure 2 presents experimental data for liquid argon in these coordin-
ates. Both coordinate systems allow us to attain approximately the same
precision in plotting a generalized curve from the experimental quantities.
Most experimental data [29, 35] differ from the curves A = F(p) and
AX = £(p) by not more than 3 percent, but only for several points do the
deviations exceed the indicated value. Some of the experimental points
[28, 34] reveal somewhat greater deviations from the generalized curves,
however these daviations lie within the same limits as in the comparison of
experimental data in the customary coordinates A, p and T. Since a similar
state of affairs has been observed also for nitrogen, we used an equation of

the type A + f(p) in calculating the thermal conductivity of the

p,T - 1
liquids under question, allowing us in principle tou obtain a single equation

for the thermal conductivity of a gas and of a liquid.

The earlier compared [1] equations for calculation of the thermal
conductivity of gaseous alr and its components even upon their extrapolation
satisfactorily describe data for the liquid throughout the entire range of
densities under study (dash lines in Figure 2). Nonetheless, for densities
higher than 0.76 kg/decimeter3 for nitrogen and higher than 0.9 kg/decimeter3
for argon, support curves were corrected by 1-2%, which brought them closer

to experimental points.

The absence in the curves A\ = f(p) of sections with abrupt change in
curvature allowed us to describe them in a broad range of densities,

including the precritical densities, by the following simple equations:




-
———— T T T

for nitrogen (in the range p = 0-0,9 kg/decimeﬁer3)

DA = A~ AJ06 . L
{ s, 93 4204359 nf/;gt;gng) : 29,46 + 175, 679 =

, 5)
for argon (in the range p = 0-1.45 kg/decimeterB)

A]\~18529 +57,98 0% - 7,539 3 + 57,189 %

- 7,52 9 (6)

Thermal conductivity data for liquid oxygen [31, 32, 34] were treated

bv the authors in the coordinates A, p. It turned out that these data in

the limits 1-3 percent agree with the curve plotted on the basis of the

equation for the thermal conductivity of gaseous oxygen in [1]:

A= Ay 4 25,450 3 [92.769 - 433,250 4 (7)
+ 877,86 0 4 - 156,50 p °

Equation (7) has been formulated for the density range 0-1.2 kg/deci~

meter3. In calculating the thermal conductivity of liquid to a pressure of

500 bar, it was used by the authors to the value p = 1.27 kg/decimeter3; the

error of so slight an extrapolation can hardly prove substantial, if we take
into account the good results of extrapolation of similar equations for
nitrogen and argon.

The thermal conductlvity of liquid air, as noted above, has not been

investigated experimentally. Methods of calculating thermal conductivity of

liquid mixtures based on data for components, examined in [41, 42], do not

insure requisite precision. Therefore, in calculating the thermal

ity of liquid air we used an equation obtained earlier for gas [1]:

ﬁ.,, = Ay 14.';‘,169 456,659 2 + ’4.309 b (8)
+ 95,589 4,
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Here it was taken into account that for components of air data on the ™~
thermal conductivity of liquid and gas in the coordinatesp) , o forms a 1
single curve, which is described with satisfactory precision by an equation
formulared for gas. The equation (8) was extrapolated by us in the course )
of calculations from the densitv value 0.7 kg/decimeter3 te p = 0.93 kg/deci- J
meter3; the reliability of the extrapolation was verified by comparing L
support curves for nitrogen and air in the reduced coordinates AA/AN&’ ' j
o/o) - i
The thermal conductivity of liquid air and its components was calculated

from equations (5)-(8) for the same ranges of temperatures and pressure, as
was the viscosity, with the exception of the near-critical region where an
appreciable deviation of experimental data from the function  pp= f(p)

was observed [l]. Taking account of the slight deviations of the most
reliable experimental data from support data and the high precision of the
analytical description of the latter, we can evaluate the error of calculated
values of the coefficient oi thevmal conductivity of nitrogen and argon as

3 percent, .foroxygen 4 percent, and for air 5-6 percent.

In conclusion, we note that much of the temperature and pressure range
for which tables of transport properties of liquid air and its components

have been prepared have not been investigated experimentally.
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Figure 1. [xcess viscosity of liquid nitrogen as a function of
density based on the experimental data: ., I. F. Golubev et al.
(17); 2, Forster [i0]; 3, G. P. Filippova and I. P. Ishkin

[16]; 4, S. F. Gerf and G. I. Galkov {6]; 5, I. S. Rudenko [5];
6, N. S. Rudenko and L. V. Shubnikov [4].
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Figure 2., Generalization of experimental data with thermal
conductivity of liquid argon: 1, Data of Ikenberry and Rice
{35]; 2, Ziebland and Burton [29]; 3, Keyecs [34]; 4, Uhlir [28].
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STUDY OF MASS TRANSFER IN A BINARY MIXTURE OF RAREFIED GASES

P. V. Volobuyev, G. V. Lozhkin and P. Ye. Suyetin

Formulating the Problem

In recent years several studies have appeared on investigation of the
relationship of diffuse and viscous mass transport in gases. Such a rela-
tionship in closed systems leads to the baro-effect phenomenon [1]. 1In
multi-component mixtures, as a result of mutual causation of diffuse and
viscous transport, irregular fluctuations in density develop [2]. The
interaction of gas molecules with walls when there is a concentration

gradient produces ''diffuse slipping" of a mixture [3, 4].

An analysis of the phenomena named from the point of view of possible
refinement of transport coefficients was of interest. We knew of attempts to
explain the relatively large deviation of measured values of the coeffi-
cients of mutual diffusion D12 from calculated values as stemming from the
emergence of a mean-mass flow caused by diffusion [5]. Below it will be
shown that similar possibilities occur also in the analysis of coefficients

of barodiffusion.

However, thus far the cffect of the incipient mean-mass movement of gas
on diffusion has not been clearly enough taken into account. In particular,
the role of diffuse slipping when there is a constancy of pressures in the
system remains unclear. Hence, it was natural to attempt to invesgtigate
"pure'" diffusion [6] when the pressure gradient ie compensated by special

measures.

Graphically, the formulation of the task can be clarified with the aid

of a simplified diagram (Figure 1l). Two volumes A and vy were adjusted in

advance to the same pressure p for different gases, the molecular weights of
which were my and m, respectively (m2 » ml). Upon mutual diffusion of gases
through a capillary with a cross-section area Sk’ a pressure gradient was
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induced which was compensated by the symmetrical variation in volumes by
means of shifting a calibrated rod with a cross-section area srod' The
equality of pressures at the capillary ends was recorded bty a differential
micromanometer [7], serving as a null instrument. The sensitivity of the

’ micromanometer was ~ 10-2 new;ona/mz. Since the magnitude of the coefiicient
for the conditions under study is ~ 1 newton/mz, this sensitivity allows us

to insure equality of pressures at capillary ends with adequate precision.

It is not difficult to show that the rate of change of volumes of the
system for isoBaric diffusion is determined by the density of the numerical
flux of molecules of the mixture j—through the capillary. Actually,
variation in the total number of molecules N in each of the volumes can be

represented as

N g
%TL 35, 3 -g—?‘-vJS,‘ : )

But since the pressure is kept constant, the original equations become

nQuegs, o ongdma-gs, @

Under the conditions investigated

b —— g

and
QV.'-__Q!‘_AV. )
ot "ot "t (3)

. i —g

But Ay = change in volume can be expressed by the extent of shifting of the

compensating xod AZ,
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av =5, -al (4)

hence

J=-P_ Sur sk
= i A
kll S, (5

Thus, tecording the rate of shifting of the coupensating rod, we can
experimentally determine the value of the density of the complete flux of

molecules of the mixture in isobaric diffusion.

Thermodynamic Solution

The value of the density of the total molecular flux can be found by
methods of irreversible thermodynamics, based on determination of the rate

of increase of entropy S for the system under study [8].

_Q___ - 01 '_GVL 2, Mi 5
(")t, j?sdv —J:I‘: 6‘“( 'a—;’*(dv'*- i‘ﬁ LA-;FJ av (6)

The mean-mass velocity V is conveniently represented in the form of two

components

v =V{r) FV(R). 7)

-
The value of V(R) in macroscopic approximation is censtant throughout

the cross section.

It can be shown that the presence of slipping does not lead to addi-

tional change of entropy in the system. Moreover, taking into account that
in [9]

T ViP (8)

the first integral in the lefthand member of equation (6) is conveniently

represented as

/' ! aV; - 2 v 1..2_p.. (9)
4 00 ZedV =- [n Vi ZE oV,
v v
~61-
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wkere V is the value of the mean-mass velocity, averaged over the capillary

cross section, without taking slipping into account.

The expression for rise in entropy is simplified if we take into

_

account the relationship between diffusion fluxes of components and the
Gibbs-Duhem ratio. Further, it is convenient to pass on to the chemical

pctential, referred to a single molecule M [10]

| MpJ=KT[b1C;*Ypr¢f(THL (10) ;
:
Then
Q i ¥ mn
B‘t“;{Qst?-J(ﬂVﬁ')-i.\f)g% fi‘(%., é )vM D

The rate of entropy rise is determined as the sum of products of
generalized fluxeslﬁa for the corresponding generalized forces ;e' From
(11) it follows that in this case

-51 ‘hﬁ("‘)'% . -j.z '-{v(ﬂh 9."‘) b 1
2 VP .
i X4 = f\T z‘ 31-9". 1

The total flux of gas molecules through the capillary without cognizance
taken of slipping is defined as ¢

Hence, the rise in entropy can be represented as 1
| :
. = — - 4
A -"(7."33)"' o 3g?2 » (14)
r where
f
i
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. a.?,,. X A 2=y, (15)
The generalized fluxes and forces are related by linear relationships

) ".L'"Y,' - L.ﬂ Yi (16)
T Loy Xi Lo X;

Taking slipping into account allows us to refine the density of the total

flux of molecules through the capillary

=J + n¥(R), a7

y

Its values when Vp = zero in accordance with (12) and (14) are determined 1in

the form

T viug = L ¥y + V(R (18)

X

Using the Onsager relationship for coefficients L [First subscript in
g 8 i p

symbol just given is illegible == Tr.], we can write
- =, Xy -
= Har—aal 'VLV(R)
Jlx:-o ‘,x":o X, (19)
The coundition ;é = 0, as fsllows from (10) and (15), under isothermai

conditions is equivalent to VC = 0. Hence, returning to the former symbols,

57 ! . Vi m/ji= vy
, jlvp=o=('ﬂ71*E%)L'lvc-o'l%@lﬂnvm) (20)

In accordance with [117.
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The rate of diffusive slipping is determined to the first approximation in
[4)

V(R)=G,,D,, vC (22)

Taking (21) and (22) into account, we can write

| -j.lvpnlo =-n :Dgz (ap - 6,23VC | (23)

The value of the density of molecular flux averaged over the capillary length

can conveniently be represented as

1

< P
Jivp=0™ KT Dr2 j(o(,- 6,,)dC ‘[1: (24)

Thus, when there is isobaric diffusion the total molecular flux is
determined by three kinetic coefficients, and not only by the coefficient of
mutual diffusion D12’ as asserted in [5, 6]. The presence of the coefficient
919 in equation (23) shows that even when Vp = 0, we must take into account
the movement of the gas as a whole under the effect of the concentration

gradient.

The expression we obtained for the density of the total molecular flux
is of interest from the viewpoint of possible experimental analysis of the
coefficient of barodiffusion. We know that, in contrast to the concepts
adopted, in the thirteenth-moment approximation a_ proves to be substan-
tially dependent on potential parameters. This function is determining for

mixtures, the molecular masses of whose components are similar in value [12].

Direct measurement of the total molecular flux through the capillary in
isobaric diffusion allows us to verify the conclusions of the thermodynamic

solution set forth.
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Comparison of Experimental and Calculated Results

Measurement of the total melecular flux in isobaric diffusion was made
on an experimental apparatus prepaved in accordance with the above-described
basic layout. The design of the equipment is given in [1]. It was supple-

mented by a compensation device,

Shifting of the compensating rod made it possible to symmetrically vary
the volumes V1 and Vips the initial value of each of these was 704 cubic
centimeters. A 0.8-cm-diameter rod was shifted through a teflon gasket .

The position of the rod was established with a precision of 0.01 mm. The

measurements were made at a temperature of 293°K in the pressure range

5-103 to 5-104 newtons/mz.

Isoraric diffusion of four pairs of gases was investigated: He-Ar,
He—Nz, H2—N2, and Hz-He. The values of the density of the total molecular
flux measured in accordance with (5) in isobaric diffusion of the gases
He—N2 are given in Table 1. The results of the measurements show that the
density of the total molecular flux under the conditions presented does not
depend on absolute pressure. This is to be expected, starting from the

expression of the density of the flux determined by the relationship (24).

In analyzing experimental data it was assumed that the gas concentration
at the capillary ends did not vary during the measurement period. Its value
was kept equal to the initial concentration in the volume [8]. This assump-
tion was experimentally confirmed by measurements of the density of molecular
flux of the He~Ar mixture for capillaries of different lengths. The
corresponding results of measurements are given in Table 2. From the table
it is clear that the products of ilux density bv capillary length, and

consequently, the values of the difference in concentrations remain

unchanged.

The scatter of experimental results when we investigated isobaric
diffusion of the gases He-Ar through capillaries of different diameters
proved to be somewhat greater. Upon changing the cross-sectional area of
the capillary Sk from 6.90+107% ti813.09'10‘4 igz, ;he measu;cd value of
flux density changed from 5.13¢107" to 4.14+10° " cm +second ~. Capillary

leagth in these measurements was 4.66 cm. The corresponding value of flux

P
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density found from formula (24) does not depend on capillary diameter and is
- 18 -2 -1
4,72-10 em esecond .
Table 1. Measured Density of Total Molecular Flux As a Function of
Pressure in Isobaric Diffusion of the Gases He-N2 Through the
Capillary Lk = 4,57 cm and Sk = 6.90-10—4 cm2
PGS W * i 2 LN i e i : atias, S W
~2 o5 P . ! : L
* P n/m".10 3 r.°x { , . S€ec. aly v T o ormten 10.19 '
cm”-sec,
6,93 296 70,6 2,00 3,50
. 14,7 250 75,0 1,00 3,56 .
3 26,8 297 . 139 1,00 3,42
& 40,9 295 109 0,50 3,35
S 65,5 296 141 0,50 E

Table 2. Measured Density of Molecular Flux As a Function of

Capillary Length in Isobaric Diffusion of the Gases Ar-He.

4

2

S, = 13.09-10  cm

2 -3 o 1 18 ., =17
t L“ '] cu - P.n/m 010 T.OK t ] sec. At. au j.'c?:'s—ec QIO JL"' I QIO
e em -sec!
1 7,80 27,5 291 106 1,00 2,50 - 1,9
2 k.66 27,3 291 95,4 1,50 A,I4 1,95
3 2,86 27,5 292 29,9 2,00 6,55 1,87.

Table 3 presents a comparison of measured and calculated values of the
density of total molecular flux for all gas pairs we investigated.
Calculation of transport coefficients entering into expression (24) was made
to the first approximation according to the Chapman-Enskog method for the
Lennard-Jones potentlal. Integration with respect to concentrations was made

in approximate terms using the trapezoidal formula. The table preseits
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values of ap and 919 averaged over concentrations. The values of D12

presented correspond to atmospheric pressure and the temperature 293°K. The

density of the total molecular flux of the mixture for the conditions under

i

"

study did not depend on pressure for the gas pairs investigated. Only for
18

et

the NZ‘HZ pair was a weak variation cf flux density from 5.15-10 to
5.72'1018 cmnz-second"1 was observed for a pressure change in the system from
0.66:10" to 1.33+10% newtons/nZ. v

-a

It follows from Table 3 that the conclusions of :theromdynamic theory
satisfactorily agree with the experimental results. The main difference
between measured molecular flux densities and those calculated from formula
2-N2, He—N2 and ;
He-Ar. Only for H2—He did this difference prove to be more substantial.

{24) did not exceed 8 percent for the three gas pairé i

Additional comparison of the total molecular flux values obtained was
made with experimental data in [5], which were recalculated for the values we

measured. The results of the comparison are set forth in Table 3.

Table 3. Comparison of Calculated and Measured Values of Total

Molecular Flux in Isobaric Diffusion of Gases Through a Capillary.

| %
g = q =
Sy 6.90-10" cm”, Lk 4.57 cm
e oul = = I -18 1 ~I8~, _ 1 . .-I8
: T, % 6,, o - 9107 7 —e]0 10
E Gases _ Daas /sec. ! (2 j'c sec A EETEZC ‘? - sec _
: Calculated Experiment From data in i
[57 :
I Hp-N, 0,800 297 1,706 3,045 5,79 5,15 ¢ 5,72 6,67 -
2 He-N, 0,705 2% I,I29 2,110 3,7% 3,47 4,65
3  He-Ar 0,734 291 1,358 2,522 4,72 5,13 5,05
4 H, -He 1,390 298 0,349 0,688 2,54 3,42 6,48
-67-
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Symhols
C = numerical concentration of light component mol&cule#; v(r) = usual

Poiseuille velocity, the value of which is zero at the wall; $(R) = #lipping

rate of gas caused by longitudinal concentratior gradient Ojp = coefficient
of diffusive slipping.
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Figure 1. Simplified diagram of device for investigating
diffusion of binary gas mixture
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TRANSPORT COEFFICIENTS OF MULTI-COMPONENT MIXTURES

G. N. Dul'nev

Many of the artificial materials encountered in nature are multi-
component mixtures, which can be divided into two classes by structural type.
The first class includes mixtures with isolated closed inclusions: in the
binding component (first component) inclusions of another material (second
component) not in contact with each other are disseminated. The second class
includes mixtures with components in contact or mutually penetrating each
other. In analyzing transport processes (of heat, electricity, etc.) through
multi-component mixtures, in some cases it is possible to adopt a macro-
scopic point of view, that is, to ignore the fact that materials consist of
atoms and molecules, and to consider them as tontinuums. Then, based on
phenomenological analysis of the transport process, it is possible to
establish the effect of transport coefficients of the mixture as a function of
its structure, and to establish the transport coefficients of the mixture
componénts as a function of their concentrations. For example, the
effective transport coefficient of a binary mixture A is associated with

transport coefficients Al’ A2 of the components and their concentrations my
and m, by the function

AcfCAL AL, my.me) w

With this approach to the analysis of transport processes, the following

assumption is adopted: transport coefficients of pure components and also

components in a mixture are identical.

Mixtures satisfying this assumption will be called mechanical mixtures
in what follows.
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. Mechanical mixtures include a large number of systems consisting of
solid components, and also porous bodies with gaseous or liquid inclusions

aand granular materials.

If when mixing various materials processes leading to change in the
coefficients of the original components are induced, the effective transport
coefficient will depend not only on the concentration of the original
components and their transport coefficients, and functions of the type (1)

cannot be used in calculating the effective transport coefficients.

Mechanical mixtures with closed isclated inclusions have been examined
in detail in the literature, and several formulas have been proposed for
calculating their effective transport coefficients. Among various authors,
functional relationships of the type (1) do not agree, due mainly to the
diversity of forms of the inclusions they considered. For example, in 1873
Maxwell calculated the effective electrical field of a system consisting of a
continuous isotropic mass in which extraneous particles spherical in form
were disseminated [1]; later, the problem was generalized by several authors
who considered particles of more complex form. We note that in the initial
studies the main consideration was given to dielectric permeability of a
mixture consisting of an isotropic medium containing within it particles of
elliptical, :pherical, cylindrical, and other forms. Later, similar
investigations were made by Rayleigh who considered the electroconductivity
of a system consisting of a media with particles disseminated in it [2].

The results obtained were later applied for thermal conductivity phenomena,
and the methods of generalized conductivity found further development in this
field. A review of numerous studies on generalized conductivity of systems

of the first class is given in [3].

The results of calculations using formulas proposed by various authors
afford the following conclusion: the form of inclusions has a little effect
on the value of the effective transport coefficient, it here being assumed
that the inclusions’are isometric, tbat 18, in all directions the inclusion

dimensions differ little from each other.
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In our view, for mixtures of the first class with isometric inclusions,
investigation of generalized conductivity was most correctly carried out by
V. I. Odelevskiy, who proposed the following formula for calculating general-

ized conductivity of a binary system [5]

AL . v D2

TAN
it =1 : (2)
Ny e 7_:3%'3.t e

Considerably fewer studies are found dealing with the analysis of
effective transport coefficients of mechanical mixtures of the second class,
that is, mixtures with mutually penetrating components. The qualitative
distinction of a structure of this class is the absence of continuous gaps in
the substance of the first component and the presence of alternating sections
filled with the substance of diverse components oriented perpendicularly to
the thermal flux and also parallel to it. Moreover, components of mixtures
in the second class are index~equivalent, that is, when the indexes of the

parameters Ai and m, are changed, the result remains the same. Mixtures

with closed enclosuies do not satisfy this condition. The distinction noted
for structures of the second class is already reflected in the first and
earliest simplified model proposed by Shuhmeister [6]. His model consisted
of a combination of two pairs of flat walls, one pair aligned parallel to
the flux, and the other perpendicular to it. The Shuhmeister model did not
fully enough reflect the actual structure of mixtures of the second class,
which compelled him to resort to introduction of empirical coefficients for

better agreement of ‘experimental and calculated data.

A different approach to the analysis of effective thermal conductivity
of structures with mutually penetrating inclusions was put forth by
Meisenard: the trangport coefficient was determined twice from formulas of
the type (2) for structures of the first class. The first calculation was
made upon an arbitrary choice of one of the components such as the binding compon-
ent, the second calculation was made using the same formula, but the other
component was taken as the binding component; the effective transport
coefficient was determined as the arithmetic mean of these two calculations

{7). With the aid of these operations the requirement of index-equivalents

=78=
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cf components for structures of the second class was evidently satisfied.
However, the effects of thermal conductivity of second-class mixtures
calculated by this method often deviated appreciably from experimental data,
which ultimately compelled Meisenard to recommend various empirical formulas

for practical use.

In 1965 the present author proposed a model of a mixture with mutually
penetrating components and analytically substantiated the form of the

functional relationship (1) for this class of mixtures! [4]

296(1—C)]

ve+(1-¢) 3)

)L=)\,[c"+0(1-c.\a +

where ¢ = parameter associated witnu the bulk concentration m, of the

2
second component by the equation
3 4
mz'—'2c ’BC *1
The solution of the latter equation is of the form
C:O.beCO&'\';‘
0§me 05 Q=-1 P=anceos (1-2m)y)

0S¢M <10 Q=1 ¥ - onceon (2my-1)

Later, the model with mutually penetrating components was generalized
for multi-component mixtures, and also for mixtures that are a combination of

structures of the first and second classes [8].

We note that a considerable number of natural and artificial materials
are classified as mixtures with mutually penetrating inclusions, therefore it
was of interest to use the functlions obtained in calculating effective

transport coefficients of various mechanical mixtures.

Solid porous systems. A comparison is made in [9] of values of
effective thermal conductivity calculated from formula (3) and experimentally

obtained for a group of construction and industrially dispersed materials. The

main difficulty in plotting the empirical function (1) from experimental data

! see p. 82
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was that the authors of the experiments, as a rule, did not indicate all
parameters entering into the formula (1). Usually, for construction and
industrial materials the effective thermal conductivity, kind of material

(sometimes extremely complex), porosity, or bulk weight was indicated.

Therefore, the authors of study [3] had to determine the parameters that

enter into the function (1) by an indirect approach, sometimes, approx-

imately. Here the following materials were examined: various kinds of
brick (pumice-concrete, trapel, slag, silicate, etc.); concrete (air-
entrained concrete, slag-concrete, rubblestone concrete, etc.), and also

several other construction and industrial materials.

In spite of incomplete information on properties of components and the
highly complex structure of the mechanical mixtures indicated above,

theoretic functions of the type (3) lead to results satigfactorily agreeing

with experimental data of the various authors. Additionally, the qualitative

nature of the function (1) agrees fully, and quantitative deviatiors of
calculated and experimental data rarely exceed the region caused by exper-

imental error or scatter of the characteristics of the original components.

A comparison of calculated and experimental thermal conductivityv values
of chamotte ceramics in Lhe temperature range 80-1200°K is given in [10].
These ceramics can be considered as a2 mechanical multi-component mixture in
which both closed and mutually penetrating inclusions are present. The
skeleton of the ceramics consists mainly of two components: 8102 in the
amorphous phase and A1203 in the crystalline phase. Here particles of
aluminum oxide are dispersed in a continuous medium of silicon dioxide, that
is, the particles constitute a two-component mechanical mixture of the first
class. The ceramics are permeated by mutually penetrating pores which in

the experiments were filled with the following gases: helium, freon-12 and
5 7

air at pressures of 0.993'10b newton/m” and 0.133 newton/mz. Calculation of

effective thermal conductivity led to good agreement with experimental

data -- deviations do not exceed the limits of measurement error.

Experimental data on the effective thermal conductivity of sintered
porous bronzes as a function of bulk concentration of air pores, varied

within the range 5-40 percent, are presented in [7]. Comparison of

= 7i5=
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experimental data with results of calculations from formula (3) also leads
to good agreement.

Mechanical solid mixtures also include alloys with practically insoluble
components. Experimental data on thermal conductivity and electroconduct-
ivity of such alloys have been borrowed from (11-13], in which a study is

made of thermal conductivity and electroconductivity of the following binary
alloys: Bi-Cd, Bi-Ag, Pb-Sb, Pb-Sn, and Pb-Mn.

Comparison of experimental data with results of calculations made from

formula (3) shows that the deviations do not exceed the limits of measurement
error.

Mixture of a solid porous material with liquid. Such mixtures are found

both in the natural state (petroleum- and water-bearing soil) and are also
prepared ariificially.

Results of experimental investigation of thermal conductivity of

petroleum- and water-bearing soil as a function of bulk concentration of

liquid are given in [14]. Experiments on measurement of thermal conductivity

were conducted on specimens of porous quartzite sandstones and sands fiiled

with water, petroleum, air and other gases. Deviations of experimental data

from results of calculations made using formula (3) did not exceed 10-15 per-
cent.

Experimental dafa on thermophysical properties cf an artificial system
of silicate spheres (solid skeleton) filled with various liquids (benzene,
ethyl alcohol, distilled water, and acetone) are set forth in {15]. The
results of calculation of effective thermal concuctivity from formula (3)

differ by no more than *6.5 percent from experimental data.

Fibrous materials. The structure of fibrous material (cotton, wool,
felting, fibrous insulation, etc.) with chaotically distributed fibers is
such that it can be regarded as a two-component (fiber and gas-filler)
mixture with mutually penetrating inclusions. This makes it possible in
calculating effective thermal conductivity of such systems to use formula
(3). The main difficulties here are associated with determination of thermal

conductivity Az of the gas—-filler. It is not hard to show that Az equals the
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total of molecular AZM and radiant AZA components of thermal conductivity

Xz': A?.M-‘.AZA (A)

The molecular component of the thermal conductivity coefficient can be

determined from the formula in [16]

X LG 7 aiiera)
Aanz B’ B-k*1(Pm) Q aOHo (5)
'l-*pj.:

The radiant component of the coefficient »f thermal conductivity for most

fibrous systems equals, to the first approximation, [17]

" 3
A, B GT Y (6)
A T

3 4

where y = parameter dependent on thickness of material, blackness of

enclosing surfaces, and coefficient of attenuation a.

Analysis of experimental data and their comparison with the results of

calculations made using formulas (3)--(6) have shown that the effective
thermal conductivity of fibrous materials can be calculated from these

formulas with satisfactory precision.

Dendritic systems. The systems considered above with mutually pene-

trating inclusions are based on a model whose components are formed by cross-

links of constant cross sectioning [4], This model narrows the range of

applicability of formula (3) and does not allow it to be extended for certain
kinds of structures, for example, structures obtained by sintering of grains

under compressive loads. A characteristic feature of these structures is the

sharp decrease in cross-sectional area of the solid component at sites of

grain contact and the formation of "necks.'? This structural feature leads
to the need to take into account the nonuniformity of cross-sectional area

in the direction of thermal flux. It can be shown that taking this effect

“See p. 82

—~ 77

Es B P PR TP W

ek e R e L TR S0 9 0

L




vy

——

,a-ﬂa—y——-q————.-—f—'—'—'ﬁ

into account leads to changing the value of the first member in thke formula
(3), and the rest of the formula remains as before. Such a modification of
formula (3) is given in [18, 19].

Calculation of tcmperature fields using a model with variable cross-
sectional area of the solid component and comparison of results obtained with
experimental data of precision radiophysical measurements of the moon's
temperature at different depths afforded a prediction of the nature of the
structure of the moon's surface layer [18). We note that in this case the
reverse problem was solved: from a known value of effective thermal
conductivity the structure of a material was decided. The possibility of
using the modified formula (3) in calculating effective thermal conductivity
of granular systems is shown in [19]. Satisfactory agreement of calculation
with exparimental data has been obtained for several granular materials,
however, this study calls for frrther development and refinement of certain

assumptions.

Thermal conductivity of liquid mixtures. It was of interest to use the
phenomenological theory of generalized conductivity for the analytical
determination of thermal conductivity of 1liquid mixtures or solutions. As
we know, sclutions denote mixtures of two or more 11qui@s'that are
molecularly intermingled. Usually, transport processes in liquid mixtures
are viewed from the vantage point of the molecular-kinetic theory. However,
heat transport processes have still not been adequately studied even for
homogeneous liquids, which leads to defects of theoretical formilas used in
calculating transport coefficients. The problem 1s still further complicated
in analysis of transport processes through liquid mixtures. The lack of a
sufficiently reliable analytical method of calculating effective thermal
conductivity of liquid mixtures leads to the use of various empirical

functions.

Let us examine the possibility of using a model with mutually penetra-
ting components in calculating the thermal conductivity of liquid mixtures.
Here we must substantiate the validity of the assumption adopted in deriving
formula (3), to the effect that -thermal conductivities of the original
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components in the solution are constant. To some extent this assumption is
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indirectly confirmed by certain studies on solution structure. The micro-

crystalline hypothesis of the liquid state was adopted in explaining X-ray

i
scattering in liquids and solutions; according to this hypothesis, the ;
structure of the liquid is represented as small ''crystallites" formed by |
aggregates of several thousands of molecules that are dimensionally close to ;

finely pulverized powder. These components are unstable, change continu-
ously, break down, and form new components {20, 21]. If particular specified
positions of the atoms of the liquid are observed, it is always possible to
find one of the ordered states which can be represented, starting with any
space lattice [22]. The possibility of the existence of structural form-
ations in solutions of associated liquids is even more probable., At nigh
temperatures a breakdown of ordered regions occurs and the hypothesis of
microcrystalline structure becomes less plausible. For temperatures higher
than the melting point, the structure of the liquid is described based on the
quasi-crystalline hypothesis: the liquid is considered as a state of

matter that is quasi-crystalline in structure. This hypothesis derives from
the group movement of molecules of the liquid; the transition of the latter
into the gaseous state denotes the absence of group movement, that is, the
presence of individuzl movement of molecules of the compound [23]. Thus,
various hypotheses on the structure of a liquid derive from the existence of
large molecular complexes. This allows us to adopt the assumption that in
the mixture the complexes themselves retain their thermal conductivity value
unchanged. Further, in describing transport of all possible kinds of space
lattices, it is natural to dwell on the structure of the mutually penetrating
components and to use formula (3) when we calculate the thermal conductivity

of the mixture.

The suitability of the proposed model of 1iquid soclutions was found by
comparing theoretical and experimental values of effective thermal conduct-
ivity of more than forty different mixtures of normal and associated liquids;
the main deviation of the calculated data from the experimental did not

exceed 7 percent {[24].

Thermal conductivity of gas mixtures. Most gas mixtures cannot be

classified as purely mechanical, since thermal conductivity of components in
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the mixture can differ from thermal conductivity of the pure gas, which is

due to change in mean free path upon mixing the gases.

However, in this case as well it is possible to use the effective
thermal conductivity of formula (3) obtained for mechanical mixtures in
calculating. It 1s only necessary to substitute into formula (3) the
values of the coefficients of thermal conductivity of the components found
for the mixture. We know that the coefficients of thermal conductivity Ai
and Aé of the components of a binary mixture are associated as follows

with thermal conductivities Al and A, of the pure components [25]

v >\L ) 5L+S}'z ﬁL#Hi:Y_E}_
M= meemjAg, | Al 25&-)\‘ M ¥

Ce e G Cy
AT R P Y= F

(7)

Here we let i and j denote the first and second components of the binary

mixture. Intermolecular forces of interaction are taken into account by the

Sutherland constants 4 and Cj' Further, the values of cij for a mixture of

nonpolar gases are determined from the formula in [26], cij = ¢cicj, but

for mixtures of gases containing polar components ~- from the formula in

[25], cij = 0.733Vcicj.

Results of calculations of effective thermal conductivity of gas

mixtures from formulas (3) and (7) agree well with experimental data.

We note that the method of calculating effective thermal conductivity of
gas mixtures advanced above is not unexpected. Introduction of a definite
structure for the gas mixture must be viewed as a procedure that found its
initiation as far back as studies by A. Wasiljewa (27), who proceeded on
the basis of an additive relationship among the parameters 2, Al’ and Az.
The additive formula presupposes a complex structure for the mixture, and
layers must lie parallel to the flux. .In later studies, this procedure was
refined both by the introduction of various empirical coefficients, as well
as by the use of other structures. In the main, structures of mixtures with

closed inclusions of components have been used [7]. A structure with

mutually penetrating inclusions better corresponds, in our view, to the
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chaotic arrangement of gas molecules in a mixture. Evidently, this can
account for the better agreement of experimental data with calculated data
obtained from formulas (3) and (7) in which there are no empirical coeffi-

cients at all.

Symbols
A = generalized transport coelficient (thermal conductivity, electro-
conductivity, and dielectric constant); m, = bulk concentration of component
M and

= molecular and radiant constituents of component i; Ao = coefficient of

i
i, Ai = coefficient of thermal conductivity of component i; A

A
tigrmal conductivity of gas under normal conditions; Ai = coefficient of
thermal conductivity of component i in the gas mixture; k = cp/cv, ratio -
of heat capacities of gas at constant pressure and heat capacity of gas at
constant volume; Q = coefficient of accommodatinn; Pro = Prandtl criterion
for normal pressure; Zo = mean free path of molecule at normal pressure Ho;
H = pressure of filler gas; oy = Stefan-Boltzmann constant; a = coefficient
of attenuation of radiation of material; T = mean value of absolute temper-
ature of material; Si and S, = molecular diameters of components i ard j;

3

Mi and Mj = molecular masses of components i and j; ¢y and cj = Sutherland

constants for gas components i and j.
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Footnotes

To p. 74 Formula (3) wes derived for the thermal conductivity of a

mixture, however, its form is retained when we examine electroconduct-

ivity, and dielectric and magnetic permeability of a mixture.

To p. 77 We called such structures dendritic,
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THERMAL CONDUCTIVITY OF ORDERED FIBROUS SYSTEMS
G. N. Dul'nev, Yu. P. Zarichnyak and B. L., Muratova

We designate as a fibrous system with ordered structure a material whose
fibers are oriented even in juct one direction, that is, lying in a plane
perpendicular to the heat flux. Fibrous systems with ordered structure are
used as construction and heat-insulation materials (cloth, mats). Theor-
etical study of the heat transfer process in fibrous materials with ordered
structure has been presented in several works [1-4], however functional
relationships put forth for calculation of effective thermal conductivity are
as a rule semi-empirical, and therefore have a limited range of applic-

ability.

Let us examine the transfer of heat in fibrous systems with ordered
structure. Before we select the model of the fibrous system, let us adopt
the following assumptions to simplify the model: 1) all fibers lie in a
plane perpendicular to the heat flux and intersect each other at right
angles; 2) the cross section of fibers is square; 3) the entire fibrous
system has a homogeneouc structure, that is, there are no subdivisions into

strands, web, and surface lw.ver of nap.

With the assumptions listed taken into account, the model of a fibrous
system with ordered structure can be represented in the torm of a lattice of
intersecting crossbars, arranged in chessboard fashion (Figure 1, a). Using
the methods In [4-6], we conduct an investigation of the transport process in
the volume of an "elementary cell" (Figure 1, b) of the smallest volume,
whose repetition in a specified manner can constitute the entire original
model of the fibrous structure. As follows from determination of the bulk
concentration in Figure 1, the relationship between geometric parameters of
the elementary cell o and L and the bulk concentration of dry fibers m, and

1

the gaseous component m, is expressed by

2
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m“'%' 0 me, + My = (1)

Let us consider the thermal resistance of the elementary cell in the
direction of the thermal flux.

We broke down the system of horizontal isothermal and vertical adiabatic
planes, using the elementary cell, into individual sections whose thermal

resistances we determined from the formula for a flat wall (Figure 1, b)

Ri=zfx: Ry=R,v Ry=aroaya, RemRyi

(2)
= N = . - 2A 3
R4 A{L‘Aiﬁa' R‘ R4o R-' mra

A dlagram of the combination of thermal resistances of the sections

constituting an elementary cell is given in Figure 1, c¢. The total (effect-

ive) resistance R of the elementary cell is determined from the expression

The effective coef{icient of thermal conductivity A of the elementary cell.

and its thermal resistance R by definition are related by the function

R‘f?\ (4)

Equating equations (3) and (4) and expressing resistances by formula

(2), we get an expression for the effective thermal conductivity of the
ordered fibrous system

A ,](1[(1-m7_\2+m:v 4‘-"—'9‘@")].I V=336)

1+5 (5)
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Thus, the effective thermal conductivity of the fibrous system with
ordered structure X depends on thermal conductivity of the fibers, Al’ and

the gas-filler, Az, and on their bulk concentrations.

The limiting transitions confirm the suitability of function (5)
throughout the entire range of change in bulk concentration of components.
'=1,)\=X

Actually, when m, = 0, A = Al, and when m

2 2°

Further analysis involves selection of numerical values of coefficients
of thermal conductivity Al and Az. The coefficient of thermal conductivity
of the solid component (fiber) Al is chosen from handbook data or from the
results of the investigators' own measurements of the thermal conductivity
of the material of which the synthetic fibers are made. Further, it is
assumed that the thermal conductivity of the original material remains

unchanged in the manufacturing of the fibers.

The coefficient of thermal conductivity of the gaseous component Az

depends on a number of parameters

A, = f(Agn, K. Aaa). (6)

Thermal fluxes induced by molecular transport Qoo radiative transport
A9p» and convective transport 99 act independently. Therefore, the total

thermal flux q equals their sum

q = Qam * 9as *GQax ™)

Thermal flux > effective thermal conductivity 9 and temperature
difference (tl - t2) at the bounding surfaces of the elementary cell are

associated by the relationship

gi=06:i(t,~t)). L(=2m, 2« 24. (8)
Thermal conductivity 9 is equal to
-87-
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6, .-12'63 , (9)

where S and 2A. = cross-sectional erea and thickness of elementary cell,
respectively.

From (7)-(9) it follows that

Aa= Ron * Aau* Ay, 10

Let us represent the sum of molecular and convective components of the

coefficient of thermal conductivity of the gaseous component in the following
form

Agw
Mg " A= Mgy (400, Kﬂ"“‘hn‘ (11)

Then expression (10) can be written as

.AQ’AZ"(1’K)'A2A- (12)

The calculations made show that thermal conductivity of the gas-filler
in fibrous systems at normal pressure is practically the same as thermal
conductivity of the pure gas-filler Ao throughout the entire possible range

of change in concentrations of components, fiber dimensions, and temperature
drop, that is,

K=( .an,d /12,1(,1* k)‘* = ﬁol'_ . (13)

Evaluation of the radiated component o) the coefficient c¢f thermal

conductivity is made by a more complex approach, namely: radiated heat
transport is considered not in an elementary cell, but throughout the entire

fibrous system as a whole, with the characteristics of the bounding surfaces
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taken into account, especially important for thin-layer materisls. The
fibrous system with ordered structure is represented in this case in the form
of a continuous isotropic medium attenuating thermal radiation. Further,

the following assumptions are made: 1) surfaces of the isotropic attenuating
medium are parallel isothermal planes; 2) scattering of radiation at fibers
is absent (that is, the integral coefficient of medium attenuation equals

the integral coefficient of absorption ~n); 3) the index of refraction of the
medium equals unity; 4) linear distribution of temperatures is assumed in the
isotropic attenuating medium. In this case it is possible to relate the
value of the radiated component with integral characteristics of the

attenuating medium by a function of the form [7]
_ 16 6, 7Y v (T \3
Aa==2-20Y = 0302 -5 (3) €

The expression we obtained for the radiated component AZA is substituted
into formula (12) and is used in determination of thermal conductivity of the
gas~filler in the elementary cell. In this way we make one more assumption
to the effect that the radiated component of the gas~filler calculated for
the entire system as a whole equals the radiated component of the coefficient

of thermal conductivity in the elementary cell.

In determining the coefficient of attenuation a, we use a method applied
for a system consisting of opaque spherical particles uniformly distributed

in a transparent medium [8].

We will hold that individual fibers act 1in the role of particles
attenuating radiation in a fibrous system with ordered structure. Then,

from the definition
a = -Seca | (15)
S8

where it is convenient to take the surface of the elementary cell equal
to S = L2 as the surface on which radiation S impinges; and for the thickness
of the layer b .in which attenuation of radiation takes place, the thickness

of the elementary cell, that is, b= 2A In this case, Satten = surface
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attenuating radiation and equal to the projection of fibers onto a plane

perpendicular to the thermal flux.

Soc:n‘== (2L - A)A.

Substituting into formula (15) values of parameters and taking cogniz-

ance of expression (1), we get an expression for the coefficient uf attenu-

ation

_A=mg _ 4-m]

C="5s 71 (16)

Thus, by knowing A., X , m,, D, 7, and T, and using the functions (5),
1’ "o* 72
(12-14), and (16), we can calculate the effective thermal conductivity of the

fibrous system with ordered structure in a dry state.

However, the majority of fibrous materials are used under conditions of
some moisture content. Moisture in the form of water vapor or accumulations
of water droplets on fibers can lead to a considerable change in effective
thermal conductivity of fibrous materials. Empirical functions allowing us
to take account of change in effective thermal conductivity in the presence
of moisture are to be found in the literature [4, 9]. We will establish the
effective thermal conductivity as an analytical function of the moisture
content of a fibrous system. Experimental measurements show that the normal
moisture content of so-called air-dry material lies within the limits

0-15 percent [9].

It is customary to take as the normal moisture content in standard tests
of textile materials - the moisture content by weight (that is, the
ratio of weight of moisture to weight of absolutely dry material) of the
material kept for 24 hr under conditions of relative humidity ¢ = 65 percent
and at an air temperature of 20°C. It is assumed that within the limits of
normal moisture content, voids within fibers are filled with water, and at

higher moisture content the water lies around each fiber [9]. This conclusion
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allows us to assume that within the limits of the air-dried state (bulk
concentration of moisture in material is less than 6 percent) the moisture is
uniformly distributed within the fiber, that is, to assume that it forms a

three-dimensional mutually penetrating structure with the solid fiber.

The effective thermal conductivity A* of such a system is associated
with the thermal conductivity of water A2f and with its bulk concentration

Mye by the function [5]

e 2 o N2, 2Vic(1-C)
A A1[Cf : V.-(1 Cf) +* v'c‘+<1_c‘)])

3 17)
\)¢=-}\—2;‘:» mQ{=2C?-3Cf*1.
The effective thermal conductivity A of a moist (air-dried) fibrous
system is calculated from the value found for the thermal conductivity of the
moist fiber A*. For unordered systems1 the calculation proceeds according

to formula (17), and for ordered systems according to formula (5).

A comparison of the results of calculating the effective thermal
conductivity with experimental data [l1-4, 9-14] was made to test the suit-
ability of the proposed method and to determine the range of its applicabil-
ity. The results of the comparison are shown in Figures 2 and 3. The
theoretical curve calculated from formulas (17) and (5) is plotted by a solid

line on the graphs.

I'he satisfactory agreement of calculation results with experimental
results evidences the suitability of the method set forth above in calcula-

tion of the fibros systems.

A graph of the effective thermal conductivity of fibers as a function of
density A = A(p) is often given in the literature. A clearly pronounced
minimum of effective thermal conductivity in the low-density region exists in
such a graph (Figure 4, a). The existence of a minimum can be explained by
increase in the fractlonal representation of the radiative component for low-
bulk densities and by a rise in the conductive fractional representation

when there is an increase in the density of the fibrous system. If the

I'sea p. 95
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function A = A(p) 1is transformed to A = A(mz), and we also graphically
represent the function AA = AA(mz) for the established values of 7, € and D,
it is easy to see (Figure 4, b) that an increase in AA corresponds to an
increase in A for the same concentrations. Therefore, when we represent the

graph in the form A/Az - f(mz) the minimum on the curve disappears.

Symbols
A = chickness of crossbar in elementary cell; L = width of elementary

cell; m, = bulk concentration of solid component; m, = bulk concentration of
gaseous component; Al = thermal conductivity of solid component;

AZ = thermal conductivity of gaseous component; AZM and AZA = molecular and
radiated components of coefficient of thermal conductivity of the gaseous
compenent in the fibrous system; k = coefficient that takes into account the
convective component of the coefficient of thermal conductivity; T = mean
arithmetic temperature of the bounding surfaces of the fibrous material;

og = Stefan-Boltzmann constant; a = absorption coefficient of fibrous medium;
Y = parameter dependent on the coefficient of absorption, degree of blackness
of surfaces bounding the fibrous system, and the thickness of the fibrous
system (values of the function Y = Y(a, €, 1) are tabulated in [8]);

D = fiber diameter; Ao = thermal conductivity of gas-filler at temperature T;
AZf = thermal conductivity of water; m = bulk concentration of water;

£ = degree of blackness of bounding surfaces of fibrous system.
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Figure 1. Model of ordered fibrous structure: a) Overall appear-
ance; b) Elementary cell; c) Diagram of thermal resistances of
elementary cell
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Figure 2. Thermal conductivity of glass wool: 1, Calculated from
formula (17) for v = Az min/)\1; 2, Calculated from formula (17)

for v = A, : O, Experimental data from [11]; O, Exper-
2

AZ max
imental data from [12]; x, Experimental data from [13]; A, Exper-
imental data from [14].
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Figure 3. Thermal conductivity of wool and capron fabric (air-

dried materials): Al = 0.21, Aa = 0.25, v = 0.108, x, Exper-

imental data of the Leningrad Institute of Precision Mechanics
and Optics; O, Experimental data of the Central Scientific
Research Institute of the Garment Industry [10]; A, Experimental
data of the Central Scientific Research Institute of the Wool
Industry [4); —, Calculated from formula (5)

Watts/ 085 095 039 m,

Figure 4. Thermal conductivity as a function of density for

fibrous materials: O, Experiment; —, Calculated from formula
(17)
Qan.
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Footnotes

1 1. To p. 91 We take nonordered structures to be fibrous systems

with chaotic arrangement of fibers in all directions.
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ANALYSIS OF TRANSPORT COEFFICIENTS OF MULTI-COMPONENT SYSTEMS

Yu. P. Zarichnyak

It was shown in [1-4] that use of methods of the generalized conduct-
ivity theory affords prediction of effective transport coefficients of
mechanical mixtures 1f che nature of the structure of the mixture, char-

acteristics of the components, and thelr concentrations are known.

However, calculation of effective transport coefficients has been made
mainly for structures with isolated inclusions of components, since func-
tional rélationships for calculating effective transport coefficients of
structures with wmutually penetrating components are semi-empirical in nature.
A model for a structure with mutually penetrating components was proposed for
the first time in [4] and a functional relationship for calculating effective
transport coefficients was obtained free of empirical coefficients. Further
development of the model was made in [5) and the method of calculation [4]
for the case with any number of components was put forth in [4] along with
the method of calculating the effective transport coefficients for structures
that are combinations of the foregoing (with isolated inclusions of

components, and with mutually penetratinrg components).

Below we examine how suitable the proposed methods are for calculating

the effective transport coefficients of various mechanical mixtures.

Mixtures Containing Solid,Liquid and Gaseous Compcnents

Choice of functional relationships for calculating effective transport
coefficients is governed by the structure of the mixture. The structure of
natural petroleum- and water-bearing soil is as 4 rule disordered.
Investigation of the permeability of water- and gas-bearing structures (sands
and sandstones) shows that the lubricating liquid or gas uniformly fills all
porous space in the structure [6]. We use the model with) mutually pene-

trating components in calculating the effect of transport coefficient 2.
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and the coefficient of thermal conductivity for such a structure is equal to

[4]

2 2vc(1-c s
A=2 v -c9)e2L00l] ) s "

Here, C= geometric parameter associated with bulk concentration of

the second component m, by the relationship
my = 2¢?-3c®+1 (2)

Since structure components are geometrically interchangeable, the order
in which indexes are written is of no importance. For determinateness, we
assign the index 1 to the solid component, index 2 to the liquid or gaseous
component. Experimental values of effective thermal conductivity of water-
and gas-bearing quartzite sands and sandstones are given in [3]. The
original parameters for calculating effective thermal conductivity are
selected as follows. While the data on thermal conductivity of water 12
given in the handbook literature agree for practical purposes, the thermal

conductivity of natural quartzite A, 1s a value not as definite which varies

within the limits 6-8.5 watt/m'degrie [7-9]1. Indeterminancy in the values of
the original parameters allows us to predict only the probable :one of

values of the effective thermal conductivity coefficients. Calculated values
of effective thermal conductivity of water-bearing soil have been compared
with experimental data [3'. shown in the graph in the form of rectangles, the
length of whose sides is determined by the error of measurements. Furthef,
the scatter of experimental values along the vertical is caused by the error
of thermal physical measurements, and along the horizontal -- by the error

of measurement of bulk concentration of the components.

Comparison of experimental and calculated data affords satisfactory

agreement.

However, use of the function (1) in calculating thermal conductivity
of gas-bearing soil leads to considerable deviation from experimental data
(Figure 1).
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It can be assumed that the cause of the deviation is the incomplete
agreement. of the selective model with the real structure of gas-bearing
sandstone. Actually, it is assumed in the model that we adopted in deriviug
the functional relationship (1) that the cross-sectional area of crossbars
of the cubic three-dimensional lattice of any of the components can vary only
within small limits, that is, that any abrupt marrowing of the cross-
sectional area is absent. When there 18 a small ¥ifference in transport
coefficientgs of_components, the.existénce of aSrupt narrowing of cross-
sectional area of the solid phase does not have any substantial effect on the
value of the effective transport coefficient (curves 1 and 2 in Figure 1).
The transport coefficient of the gaseous component AZ can be two orders or
more of magnitude different from the transport coefficient of the solid
component. In this case we must take cognizance of the eifect of narrowing
in crosc-sectional area of components. The model that takes into account the
existence of narrowing when there is a considerable difference in transport
coefficients of components (v ~ 0) was examined in [10]. The functional

relationship in calculating effective transport coefficients is of the form

2 2

A=A B 2T @

y’)/,'%‘—:' '~. (%)

The analytical and graphic representation of the function ¢(y, z) taking

into account the additional resistance of narrowing, is given in [10].

The chief complexity in calculation based on the formulas (3, 4) given
above stems from assigning the value y. As a rule, the value of the
narameter characterizing the narrowing dimensions is determined experiment-~
ally [3, 11). This appreciably narrows the pvssibility of using calcul.ation
methods and does not avoid the necessity or conducting laborious experiments.
Qualitative investigation of the structure of granular porous and sintered
materials affords the assumption that the parameter y depends on porosity

(bulk concentration of the liquid ¢, gaseous phase) and on the nature of the

~100-




stricture of the material, and also allows us to propose a method of
determining its value. Let us look at the behavior of parameter y when we

vary the porosity of different structures,

It is natural to assume that there are no narrowings of any kind in a
continuous solid body, that is, y = 1. We will arbitrarily produce in a
continuous body voids that are not elongated in form, gradually increasing
their bulk concentration. For small values of bulk concentration of the

voids, m, < 0.2, and they are isolated or partially interconnecting inclu-

sions.

The emergence of abrupt narrowing is of low-probability and the value
of y is close to unity (cf. curve 1, Figure 2). When the bulk concentration
of voids is further increased, the emergence of abrupt narrowing of cross-
sectional area of the solid component becomes more probable, which at high
porosity m, > 0.8 lead to the appearance of local breaks in the solid
skeleton. Further, the effective transport coefficient decreases both owing
to the reduction in the bulk fraction of the conducting component, as well as

owing to the emergence of narrowing -- necks and breaks.

When m, approaches unity, y approaches zero. Let us examine varilations
of parameter y in a granular structure. The areas of contact of particles
are very small in actual granular materials (0 <y <5'10-2) and the value of
y varies slightly with rise in bulk concentration of the solid phase all the
way to m, < 0.3 (cf. curve 2, Figure 2). Under the effect of external
influences (compression, heating, and precipitation of solid phase at
contact points), the bulk concentration of voids continues to fall. An
abrupt rise in the value of y must occur, and when m, < 0.1, y ~ 1. Vari-
ation of the function y = f(mz) can become evident for specific materials, by
investigating their geometry for a wide range of variations in bulk concen-
tration of components or by back calculation from experimental values of
effective transport coefficients. Since actual structures of sandstones and
sintered materials occupy intermediate values between granular structure and

structure with mutually penetrating components with crossbars of constant

cross-sectional area, it 1s logical to assign linearity to y as a function of
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M, (cf. Figure 2), that is

Y = 1= mag - (5)
The linear approximation of the function y = f(mo) does not contradict

the physical sense and satisfies clarification at limiting transitionms.

Results of the calculation of effective transport coefficients by
formulas (1) and (3) have been compared with experimental data [3, 12] for
thermal and electroconductivity of gas-beariny sandstone and sintered porous
specimens made of bronze, nickel and iron (Figures 1, 3 and 4). The zone
of scatter of experimental values of transport coefficients are probably
caused by a certain difference in technological sintering conditions for
the specimens (temperature, specific load) for individual researchers.
Investigation of the relationship of size of original powder particles with
effective transport coefficient has shown that particle size has practically

no effect on the value of the transport coefficient of a sintered specimen
[12].

Analysis of results affords the finding that at low bulk concentration
of the gaseous phase m, < 0.2, experimental data is best described by the
function (1) (model with crossbars of constant cross-sectional area).

When the bulk concentration of the gcseous phase is increased, especially
in the case of a sharp difference in transport coefficients of the compon-
ents, taking the existence of narrowing (3) into account leads to better

agreement of calculation results with experimental data.

Mixtures of Liquid Components (Solutions)

The possibility of using the functional relationship (1) for calculating
effective thermal conductivity of solutions is indicated in [13]. 1In the
present study, results of calculation of effective thermal conductivity of
15 different mixtures of organic liquids were compared with experimental data
taken fronx[l&] (cf. Table 1) and agree satisfactorily for mixtures of both
normal as well as associated liquids. The mean deviation of calculation from
experiment is only 3 percent; the maximum deviation does not exceed B percent

for the entire range of change in component concentrations.
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Symbolg
effective transport coefficient of nixture;
cient of i-th component ;

A =

Ai = transport coeffi-
C = geometric parameter of model' Yy = parameter
taking into account narrowing in structure, y = /§ /S

k = averaged contact
area; §

T " averaged area of maximum Cross section.

i
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Figure 1. For calculation of thermal conductivity of water- and
gas-bearing soil: @, Sandstone-air; ®, Sandstone-water;

0O, Sand-water; B, Sandstone-heptane; 1, Calculated from formula
1), Amax; 2, From formula (1), Amin; 3, From formula (1), A

4, From formula (3). xmax; 5, From formula (3), A

aver’

min’

Figure 2. Recording narrowing of cross-sectional area:
a, Schematic representation of narrowing; b, The function
y = f(mz); T, Solid porous and sintered materials; 2, Grarularvr

material; 3, Linear approximation of function.
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Figure 3. Transport coefficients of sintered porous bronze

(Cu 89 percent, Sa 11 percent): 1, Calculation of effective
electroconductivity from formula (1); 2, As above from formula (3);
O, Experiment; 3, Calculation of effective thermal conductivity
from formula (1); 4, As above from formula (3), 0, Experiment
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Figure Electroconductivity of sintered specimens of nickel and

4.
iron: 1, Calculated ! -om formula (1); 2, As above from formula
(3); Vv, Experimental data for porous nickel; 3, Calculated from !
formula (1); 4, As above from formula (3); O, Experimental data
for porous iron.
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COEFFICIENT OF VISCOSITY OF LITHIUM VAPOR IN THE TEMPERATURE RANGE
T = 3000-6000°K AND THE PRESSURE RANGE P = 1-100 BAR

P. M. Kessel'man and S. F. Gorykin

Any kind of data on viscosity of dissociated lithium vapor are lacking
at present in the literature. Still, such data can be of definite interest

in solving a number of special problems.

Calculations show that in the region of parameters the following

dissociation reaction takes place in lithium vapor:

Li== 2Li (1)

An attempt is made in this present study (the first, as far as we know)
to theoretically calculate the viscosity ccvefficient of dissociated

lithium vapor in the temperature range 3000-6000°K and a pressure range
1-100 bar.

The molecular-kinetic theory gives us the following expression for the

coefficient of viscosity of a two-component wmixture [1]:

H11 H12 x‘l
HiaHpp X,
y = x,x, 0
cn— lH41 H1z
H

2 Haa

where Hll’ le and H22 have the following rigorous mathematical expressions:

X% MMy [ 5 . M,J (3)
’2; ’2|2 (Mq’Mz)a 3A% My
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10 ‘25593 2, 00%
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+ MzL f‘? (7)

Since there is a complete lack of experimental data with which we could

directly determine the potential parameters: s

055 € and ¢.,, for

12 12

lithium vapor, in the present study the method of calculation is the

determination of these parameters from the corresponding data for the second

virial coefficient obtained by theoretical calculation.

In {2] a method is formulated for describing thermal physical properties

of chemically nonreacting gases, based on the possibility of representing the

interaction of particles by some averaged potenti

al function with variable

parameters £ and o that are temperature-dependent,

U =4em{[e()/r

This method can be used for any compounds,
by using this method. wirth

can reliably describe not only equilibrium proper

tust the potential parameters e(T.). and

]“'. [6’\'1‘)/1"}6} “ ®)

It is important to note that

() we

ties, but also transport

coefficients of gases for a wide range of temperatures, including also the

high-temperature region.

To determine potential parameters by means of this method, we must have

original data on virial coefficients.
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Calculation of the second virial coefficient Bl corresponding to inter-
actions of free atoms was made in accord with the method in [3]. Lacking
the opportunity to dwell in detail on the determination of the potential
curves necessary in calculating Bl’ we note that they were chosen from

literature sources, or were calculated by the present authors [8, 12, 13].

Table 1. Values of Potential Parameters of Lithium

cmb s €. g ’
20 B, — By —Sie <~ 6,1
1 2
mole mole K .
3000 = 51,0 - I34,9 287 3,375
2500 - 43,8 - 96,0 2860 3371
4000 - 38,2 ) - 68,2 28635 3,368
4500 - 33,0 ‘ - 50,0 2830 3,366
5000 - 28,2 $ - 38,2 2815 3,364
5500 - 23,8 - 29,7 2800 3,362
6000 - 13,6 - 25,3 2785 3,361
6500 - - 17,9 2769 3,360
7000 - . - 13,2 2753 3,359
7500 - - 9,2 2734 3,358
3000 - - 5,9 2709 3,357
8500 - - 3,2 2678 3,356
9000 - - 0,9 2651 3,355
9500 - +« I,I 2655 3,354
- 10000 - + 2,8 2677 3,353

The corresponding data for B1 are given in Table 1. We note that B1
corresponds to those interactions among atoms that do not lead to the form-
ation of stable two-atomic molecules. Therefore we can assume that some
averaged potential function (in the case of interaction of particles with

. filled electron .orbitals) correspords to the second virial coefficient BI
referred to the entire system of free atoms.

Since in the general case the potential function (8) can be used for any
gas, it seems reasonable to select the corresponding parameters of this
potential, using as the basis data for the second virial coefficient B].
These parameters, as is to be expected, are constant and have the values

- 1/k = 2723°K; o, = 3.207A.
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Based on these parameters, formula (6) was used to calculate the
viscosity coefficient of atomic lithium, which was then employed in
calculating Mix’ In evaluating the reliability of the results obtained for
Nys we made a comparison with the corresponding data found in the literature.
As we know, the viscosity coefficient of an atomic gas can be determined

theoretically by using collision integrals 9(2'2)

calculated and averaged
over all potential curves of interacting atoms. This has been done by a

number of authors for atomic lithium [4-6].

Comparison of the viscosity coefficient ecalculated in the present study
with the most reliable data by the author cited {4, 5] reveals good
agreement of the values under comparison. Thus, the deviation of our data
from the data in [4] does not exceed 7 percent for the entire temperature

range T = 3000-6000°K under comparison.

As for the reliability of results given in [6], which differ appreciably
(by 30-40 percent) from the data in [4, 5], we note that we subscribe to the
criticism of this study which was given in [4]. The analysis made allows us
to conclude that the parameters £y and 9 obtained and that data on the
viscosity coefficient of atomic lithium calculated by means of these
parameters are sufficiently reliable and can be employed in calculating

1 I
mix

Passing along to molecular lithium, we must bear in mind that obtaining
parameters of the potential function (8) by ordinary methods used for
molecular gases, that is, based on experimental data for compressibility, is

not possible owing to the absence of the latter.

Therefore, in determining the parameters ez(T) and OZ(T) for the
Liz—Li2 interaction, it seemed reasonable, on analogy with atomic lithium, to
take as the basis data for the second virial coefficient of molecular lithium

BZ’ calculating them by a theoretical approach.

Statistical physics affords the possibility of calculating the values of

the second virial coefficient from the formula
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B= 207Nf[1-exp u(r)/nT]r’dr , _ (9)

if we know the curve of the potential energy u(r) of the particles under

study.

In the present study, the potential curve for interaction of the
L12~L12 system was calculated by the full pairing method [7] with account

taken of dispersion forces of attraction at large intermolecular distances.

The dispersional energy, as we know, is described with adequate preci-

sion by the formula

C
u :-—?—E (10)

The constant C was calculated from the Milliken formula [1]. Values of the
characteristic energy and the polarizability of the molecule Li2 necessary

for the calculation were taken, respectively, from [8] and [9].

The potential curve obtained was used in calculating the second virial
coefficient for molecular lithium B2 in accordance with formula (9). The
calculation was made on an electronic digital computer using the Simpson

formula.

Data on B2’ by analogy with the foregoing, were taken as the basis in
determining parameters of the potential function (8). These parameters were
obtained as unique quantities, if beth branches of the curve B(T) were

present -- negative and positive. For this purpose, data on B2 were

calculated up to T = 10,000°K.

The parameters described and the values of B2 are also presented in
Table 1.

It is clear from the table that potential parameters of Liz, like those
for other homonucleus diatomic molecules, are weakly dependent on temper-
ature. These potential parameters were used in calculating the viscosity

coefficient of molecular lithium according to formula (6).
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In calculating viscosity coefficient Nyps We must know the parameters

€2 and 0. characterizing the energy of interaction of unlike particles.
L

We note that corresponding to potential function (8) is some generalized
model, according cto which any compound can provisionally be considered as a
pseudospherical gas with centrally symmetrical operation of forces. This
circumstance affords the possibility of using the potential function (8) in
describing also dissimilar interactions by using the corresponding parameters

€9 and Oyq¢

To determine these parameters, we can use well known empirical combining

rules

ol L 8 = / '
G‘la = "2.(61 4 63) ’ 812 - e' 82 ’ (11)
which, as we know, are effective for the spherical model of a gas. In this
way we obtained the parameters €19 and 919 for the interaction Li—Li2 and
we calculated the values of N9 in accordance with formula (7).

Calculation of compositions in this present study was made with

cognizance of the nonideality of the mixture components. For reactions of

the type (1), the law of reacting masses gives the following function:

(1 - X, )2 4

The nonideality of the components was taken into account by introducing

the appropriate correction Kj into the equilibrium constant

K = .___.p_l—-—-- (13)

The quantity k, Ls expressed by the activity of the components j and 1

J

R
“Z = ——L’—_
4 Y2 (14)
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Table 2. Viscosity Coefficient of Dissociated Lithium Vapors,
6 2
n+10° [nesec/m")

T?K 3000 3500 4000 4500 500¢ 5500 6000
P.bag
I 2497 2879 3262 3633 3987 452@' 4647
) 2591 2933 3296 3657 4004 4340 4667
10 2703 2997 3338 3686 4026 4357 4681
15 2808 3059 3379 3715 4055 437 4693
20 2907 3120 3419 374 4070 4392 4707
25 2997 3179 3459 3773 4091 4408 4721
30 3086 323¢ 3497 3800 4112 4424 4734
35 3172 3291 35639 3826 4133 44540 4747
40 3252 3346 3573 3856 4154 4457 4760
45 3329 3398 3610 3883 417 473 4772
50 3402 3450 3646 3910 419 4489 4785
60 3539 3549 3717 3961 4236 4521 4811
70 3665 3643 3786 4014 427 4533 4837
g0 3782 3730 3852 4065 4316 4585 4862
S0 3890 3819 3917 4115 4355 4616 4887
100 3992 3902 3979 4182 4393 4647 4911

For the range of parameters described only by the second virial coeffi-

cient, the expression for the activity can be represented as:

, B, P 15
?.nd,n R"T : (15)

The valucs of the equilibrium constant Keq were taken from [11]. In
0
this way, we have available all the necessary data for calculating Moix’

Since formulas (2-7), given by rigorous kinetic theory, take into account
only pairwise interactions, we are limited to the range of pressures

1-100 bar.

The effect of ionization was not taken inte account, since the fraction
of ions at temperatures not exceeding 6000°K is negligibly small [6]. The

results of the calculation are shown in Table 2%

-114-




—vy

Y

Varjation in Nnix with pressure must be related to change in mixture

composition.

In conclusion we note that unfortunately we do not have the opportunity
to evaluate the precision of the results obtained with the corresponding
experimental data, in view of the absence of the latter. However, taking
into account the reliability of the method of calculation used, justifying
itself in calculations for many mixtures [3], the authors believe that errors

in the viscosity coefficient Mix must not exceed 15 percent.

Symbols

X, = mole fraction of i-th component; Mi = molecular weight of i-th
component; T = absolute temperature; P = pressure; n = coefficient of dynamic
* * *
viscosity; K = Boltzmann constant; Afz = 9(2'2) /Q(l'l) g Q(l'l) and

*
9(2'2) = corresponding collision integrals tabulated in [1]; e and

o = parameters of potential function; f§3) = correctional coefficient
tabulated in [1]; T* = kT/¢, reduced temperature; N = Avogadro's number;
B2 = second virial coefficient; :: = distance between interacting particles;

Keq = equilibrium constant for the ideal-gas approximation; Keq = equil-
0

ibrium constant with nonideality of components taken into account;

ji = activity of component; R = universal gas constant.

Indexes: 1, Atomic component; 2, Molecular component.
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COEFFICIENT OF VISCOSITY OF COMPRESSED GAS AND ITS RELATIONSHIP
WITH THERMAL PROPERTIES

P. M. Kessel'man and V. R. Kamenetskiy

Establishing the relationship between viscosity coefficients and the. mal
properties of a compressed gas is one of the urgent problcms of presenc-day
heat physics. The solution of this problem would afford the posisibility
based on existing compressibility data to obtain all the information on the
viscosity coefficient of the compound under study for a wide range of temper-

atures and pressures without resorting to direct experimentation.

The first attempt in this direction was made by Enskog [1],
who obtained an equation establishing the relationship between the reduced

viscosity n/no and the equation of state.

The Enskog equation was theoretically justified, however it is valid
only for the model of rigid spheres, sirce it was derived on the assumption
of elastic interaction among molecules. Accordingly, this equation is only

of histeric interest and naturally has not found practical application.

Well known attempts to modify this equation suitably for real molecular
models have not yielded results owing to specific shortcomings inherent in

the original Enskog equation.

Even existing empirical equations do not correspond to the problem
posed, since their use necessitates availability of experimental data on the
viscosity coefficient of the compound under study. We note that for the
range of moderate pressures, when viscosity i1s practically independent ot
pressure, the problem posed has found solutlon in [2, 3]. Since a single
mechanism of intermolecular interaction is responsible for thermal and
transpcrt properties, in solving such a problem it appears reasonable to use
scme potential of interaction capable of comprehensively describing all

thermophysical properties of a compound.
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In this respect, the potentlal tunction (6-12) with variable parameters

e A

introduced for consideration in [2, 3] appears highly effective.

This functionr is of the form

v = se B (S5 )

where the parameters o and e provisionally depend on temperature.

Without dwelling in detail on the various advantages of the introduced
potential function (1), we note that by means of it it is possible to
comprehensively describe using a single set of potential parameters o(T) and
€(T), both the thermal and transport properties of a compound under study.

In particular, a method of determining o(T) and e(.) from compressibility
data is elaborated in [2, 3] and it is shown that the parameters obtained can
serve as a basis for satisfactory description of viscosity coefficient nO(T)

for any compound, independent of its molecular structure.

The aim of this preseat study is to establish a relationship between
thermal properties and the viscosity of a dense gas n(P, T) based on the
potential function (1) described. 1

It is convenient to seek this function in the form 4

U, =£(e.7), (2) | f

where the density of gas p at given temperature and pressure is known from
the equation of state p = p(P, T) or from tables of thermodynamic properties
of the compound investigated. A breakdown of the righthand member of
equation (2) appears pos-ible !{ we make use of the methods of thermodynamic
similarity, employing here the potential function (1) which is universal in

the sense of applicabillty for any complex compound.

[ Actually, it follows from the principles of thermodynamic similar‘ty
that if compounds are similar in thermal properties, they must be similar
also in coefficients of viscosity. 1In this way, if similarity exists with

P -118-




- ———

respect to compressibility Z = PV/RT in some system of dimensionless para-
meters w* and T* for all compounds, then for the same w* and T* the values of

the reduced viscosity coefficient n/no must be equal for these compounds.

In this case we could obtain from experimental values of n/no for some
limited number of compounds a generalized diagram r;/no = ¢ (v*, T*), (valid
for all gases), the analytic description of which would lead us to the goal

we seek.

Let us show here that by using the potential function (1), we can find
such a system of dimensionless coordinates w* and T* in which all compounds
will be thermodynamically similar. Actually, describing the equation of

state in the form

B(T (T, ..
Z =1+ \(/)J,Cvz o 3

and using the functions

where T* = kT/e, bo = 2/3(nNo3), we get

2
7 =1 +‘%‘QB*(T“)*“%%C*(T”)*"' )

If we take a point with characteristic valuez of volume and temperature
equal, respectively, to bO and e/k, as the support point, equation (4)

becomes
Z =1+ THw - CH T w" (5)

where the dimensionless quantities w* and T* are determined by coordinates
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of the support point by the relationships

L Bo .*_ KT .
W EI—V ' T -"""e (6)

Since B(T), C(T), etc. are universal functions for all compounds
(theoretical reduced virial coefficients for the potential (6—12)1, equation
(5) in the system of coordinates Z, w* and T* 1s general for all compounds,
which demonstrate the assertion made, Thus, all compounds are thermo-
dynamically similar in this system of dimensionless coordinates. Therefore,
in the system of coordinates n/no, w* and T*, they must also be similar,

that is, the general equation must hold for all gases

W, = e(w*, T )

The distinguishing feature of this established fact is that in this system of
coordinates, the parameters of reduction (support point parameters) are not
constant, but vary from isotherm to isotherm. Treatment in these coordinates
of experimental data for many compounds (Ar, Kr, Xe, He, NZ’ 02, COZ’ H2,
CHA’ CZHA’ C2H6, C3H8, NH3, H20 and CO), belonging to different molecular
models (from spherical to complex polar molecyles), confirmed that they are
actually similar, since the isotherms of the reduced viscosity n/n0 for
these compounds practically speaking coincide. This fact is selectively

shown in Figure 1.
Further, the maximum scatter of points did not exceed 7 percent.

In plotting the isotherms of reduced viscosity, use was made of
0, and NH
[7] for H2 and D2, data in [8] for NZ, data in [9] for He, and data in
{10] for Ar, Kr and Xe.

experimental data in [6] for CH&’ C2H4, C2H6’ co, COZ’ 2 3 data in

Values of reduced viscosity for HZO were calculated from data in the

International Steam Table [11].

'See p. 125
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The corresponding density values were taken from [12], and also from
original studies, while the values of the potential parameters ¢(T) and
£(T) -- from [3]) and [13-]5], where they have been tabulated for a large

number of compounds.

Smoothing out and mutual agreement of experimental valuesof n/no
according to the lines 1% = const and w? = const allowed us to obtain a
network of support values o: n/nO = ¢ (w*, T*), which is peneral for all
compounds, since in the established system of coordinates all compounds are

similar.

To obtain the analytical function (7), the network of support values of
W/no we have arriveu at was approximated by an equation according to the

method. This equation is of the form

n i q @ i
Yy = W e T h W e T W
2, = 1 g e Ly b e

(8)

wi

f = i ____"___-—n"
- T”?_;; d " w2 e W

Numerical values oi the coefficients in equation (8) are given in Table 1.

Table 1. Values of the Coefficients in Equation (8)

- Q. B'L ) Ch d'L e

i -0,126297 2,08%5¢ -2’12956 ],0“265 ~0,199718
2 0,280292 0,I01319 0,273418 ’l,q6”9ﬂ 0,980365
> 0,4225% ~2 94345 7,691[[ -5 ,32324 1,40170

4 0,222066 2,65269 «5,34702 4,04629 -],28964

Equation (8) was verified by us from experimental data for a large
number of compounds. Further, the mean error did not exceed 5 percent, and
the maximum error -- 7 percent. We present Tables 2 and 3 as selective

illustrations.

The region of applicabilityv for equation (8) is

A~ PP ORIV U SV NOp ST o * X A - At a

e o
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w* = 0-1.20, T* = 1-25,

which in terms of the usual parameters is approximately

p/pk = 0-1.8, T/Tk = 0.8-20.

The values of the experimental parameters o(T) and e(T) recuired for
the calculation can be found from compressibility data using the method set
forth in [3]. Thus, equation (8) affords calculation of the viscosity of
unstudied compounds for a wide range of parameters of state with an adequate
precision. Further, it is enough to have available as the original values
data on density as a function of pressure and temperature or the equation of

state of a real gas.

Table 2. A Comparison of Calculated Values of the Cited Krypton Viscosity
(Column I) with Experimental Viscosities [10] (Column 2)

100%C _ 150%
e T . 2 I 2

71,11 1,107 1,082 1,083 1,076
. 133,1 1,260 . 1,213 1,167 1,17
207,2 1,402 1,418 1,287 1,310
2794 1,578 1,655 1,413 1,456
341,9 1,763 . 1,862 1,546 1,618
411,3 1,945 2,068 1,668 1,770
. 478,7 2,141 2,281 1,804 1,922
546,7 2,391 2,480 1,937 2,058
614,8 2,491 2,665 2,051 2,190
683,5 2,653 2,846 2,183 14318
72,6 2,817 3,017 2,302 2,420
819,6 3,006 3,187 2,412 . 2,529

e 5,0 4,1

Semes, o - 6,8 -6l
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Table 3. A Comparison of Calculatcd Vilues of the Cited Viscosity of

Water vVapor (Column I) with Data of {II] (Column 2)

5007°C 650°C
P + bar 1 2 1 2
10 1,004 1,004 1,003 1,003
25 1,011 1,010 1,008 1,006
30 1,022 1,018 1,016 1,012
100 1,047 1,039 1,032 1,026
L50 1,075 1,063 1,050 1,041
200 1,108 1,095 1,069 1,038
250 1,145 1,130 1,068 1,075
300 1,190 1,176 1,109 1,093
400 1,312 1,299 1,156 2,126
500 1,497 1,697 1,210 1,188
6G0 1,734 1,708 1,270 1,246
700 1,978 1,919 1,338 1,313
800 2,19 2,099 1,413 1,386
Gav’vc 1,2 1,2
6rnax,y' * 4,6 + 1,9
Symbols

n = coefficient of dynamic viscosity at temperature T and pressure P;

M S coefficient of dynamic viscosity at temperature T and atmospheric
pressure; o and ¢ = parameters of the petential (6-12); k = Boltzmann
constant; N = Avogadro's numt~r; p = density; Py = critical density;

Tk = critical temperature; T* = T/(e/k), reduced temperature; B, C,...

= second, third, etc. virial coefficients.
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Footnotes 1

To p. 120 At present, the first four virial coefficients B, C, D and E

have been tabulated for the potential (6-12) ~; a function of T* (4, 5].
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VISCOSITY AND THERMAL CONDUCTIVITY CF COMBUSTION PRODUCTS OF ORGANIC FUELS

P. M. Kessel'man and A. S. Litvinov

Studvy and practical use of nhigh-temperature processes has necess’tated
the determination of traasport ccefficients for the combustion products of
various fuels at temperatures up to 5000-€000°K upon their combustion in air

and oxygen-alr mixtures with different oxygen conten..

Direct experimental study of thermophysical properties at high temper-
atures 1is difficuit, therefore theoretical calculation is widely used in

these cases. As we know, statistical mechanics of nonequilibrium systems

gives an expressiou for the visccsity and thermal conductivity of single-atom

gases and their mixtures, presented in {1]. Strictly speaking, thi~s theory
is applicable only for single-atom gases. For multiatomic gases, whose
molecules also exhibit internal degrees of freedem, inelastic collisions are
possible. Further, kinetic energy is no longer preserved, while momentum is
preserved. Therefo.e, viscosity depends only slightly on the existence of
internal degrees of freedom, and the theory of single-atom gases has been
succéssfully applied to multiatomic gases and to gas mixtures. T:king
account of the influence of internal degrees of freedom and calculating

thermal conductivity of combustion products of fuels will be considered

below.

To calculate the coefficients of viscosity of combustion products
according to formulas of kinetic theory, we must know the mole fraction of

components and the component coefficients of viscosity.

in the general case, at low temperatures combustion products of organic
fuels contain HZO’ C02, N2 and O2 (for sulfurous fuels 802 can be related to
carbon dioxide). At high temperatures combustion produc:s constitute a
chemical reacting mixture in which, iu addition to dissociation, formation of

new rolecular species takes place (at (he indicated P and T, ionization is
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insignificant), as the result of which they have a very complex composition
(HZO’ COZ’ N2, 02, HZ’ €O, NO, OH, H, O, N and C), dependent on the original
composition of the fuel, oxidizer, coefficient of excess oxidizer o, temper-
ature and pressure. Dissociation of combustion products having the composi-

tion described is determined by the following chemical reactions:

00,5200 + =5= Cpy H0 == B, +3 01 H0z= OH + 3~ Hp,

== 26 0,= 203 EN,+F0,=NOy Ny==2N

0 =C + O.

To determine the equilibrium composition of combustion products of
fuels, a system of twelve nonlinear algebraic equations was derived, which
consists of eight equations for chemical equilibrium corresponding to the
reactions presented above, three equations obtained from the equations of the
material balance of atoms, and the equation of Dalton's law. This system was
solved by a method similar to that set forth in [2]. Tre equilibrium

constants were taken from [3].

Due to the slight carbon content in the combustion products, when we

calculated the transport coefficients the carbon content was included with
the CO.

Component coefficients of viscosity were expressed by the collision
(2.2)% ]
integrals Q‘z 2) , in the calculation of which we must know about the

potential function of interaction among similar and dissimilar molecules and

atoms.

In this study, to describe the coefficients of viscosity of the "pure"
components, we used the potential of interaction (6~12) that contained

variable potential parameters o(T) and €(T)
u = 45(1'){[-‘5,‘7’-’]“- [21)] "} (1)

The method of determining potential parameters is described in (4, 5]}.
The collision integrals are tabulated in {1].

-128~

b .

i ——

o

S

S—— At ot il e




The reliability of this method of describing thermophysical properties
01 gases was verified for many multiatomic and polar gases [5-8]. This
same method was successfully used in {5, 9] in calculating the transport
coefficients and the second virial coefficient of the atomic components 0, N
and H. Thus, potential parameters and the coefficients of viscosity of all

components of the combustion products of fuels can be found in [5-7, 9].

In describing the interaction among dissimilar molecules and atoms,
potential parameters are found by combining the corresponding parameters for

the "pure'" components.

These combining rules, when the potential (1) was used, proved tn e
reliable in calculating the viscosity of mixtures consisting of molecular
components [7]. Collision integrals for the interaction N-O, O-H, d-H,
0—02, etc. have been calculated in [10-12]). Comparison of the latter with
collision integrals found by combination of potential parameters gives a
maximum deviation of 15-207%, which does not overreach the limits of precision

of the calculations made in [10-12].

Thus, with the mole fractions of components and component coefficients
of viscosity, the coefficients of viscosity of the combustion products of
twelve fuels (Saratov gas, kerosene, etc.) were calculated from formula
[1, p. 422] in the temperature range 400-6000°K and the pressure range
0.1-100 bar. The coefficient of oxidizer excess o = 1,0 (for Saratov gas
1.0, 1.1, 1.2 and 1.5), and the oxygen content 0O = 23.15, 40, 60, 80 and
100% (composition by weight). As an illustration, Figure 1 presents the
function of the viscosity of the combustion products of Saratov gas when
a=1.,0 and 00 = 23.15% at several pressures, from which it is clear that
n varies insignificantly with rise in pressure and only at high temperatures
does this change amount to 15%. The function of the coefficient of viscosity
of combuétion products of Saratov gas is shown in Table 1 a. The maximum
variation was observed at low temperatures and is 207% when Oo is varied from

23.15 to 100%.

When the coefficient of oxidizer excess o rises from 1.0 to 1.5, values
of n vary by no more than 3%. A similar picture is observed for combustion

products of other fuels.
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At high reaction rates, the effective thermal conductivity of a

dissociating gas mixture can be described as the sum of the member Af z for
the thermal conductivity of the '"chemically frozen'" mixture and th~ member
A , caused by the chemical reactions
reac
Aem =2A;* Ap (2)

Table 1 a. Coefficient of Viscosity of Combustion Products of Saratov Gas
(n-108 n'sec/mz) As a Function of Oxidizex Oo for o = 1.0 and p = 1.0 bar

Uo ok
4 23,Is 40 60 80 100
L&(\ ’

500 2394 2234 217 2060 1951
1000 3991 3960 3916 3866 3814
2000 6393 6447 63506 65C8 6506
. 3000 8363 8467 8569 8660 -8741

4000 10386 10622 10834 11000 11137
5000 12303 12728 13120 13425 13655
-6000 14387 15157 15543 15772 15780

Table 1 b. Coefficient of Viscosity of Combustion Products of Saratov Gas
(n-lO8 n-sec/mz) As a Function of the Coefficient of Oxidizer Excess a
for 00 = 23,157 and p = 1.0 Bar

1,% & 1,0 1,1 1,2 1,5
500 2394 2413 2429 2465
1000 3991 4007 4020 4048
2000 6393 T 6406 . 6417 6441
3000 8363 8389 8404 8437
4000 10386 I . 10447 10510
5000 12303 1232 - 12375 12443
6000 14587 14728 14757 14831

A formula for calculation of thermal conductivity of a mixture of
nonreacting gases that includes effects of inmelastic collisions was recently
derived in [13]. However, calculation using this formula when there is a

large number of components in the mixture 1s laborious and indeterminate
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owing to the absence of data on the transient relaxation of dissimilar
molecules. Moreover, correction for the irelasticity is small, therefore
the Hirschfelder-Eichen formula [14] proves satisfactory in calculating the

thermal conductivity of a mixture
_ A = AN
.}Lz- ,-';1'* _x_! 9:( (3)

But, here, inelastic effects must be included in calculaticns of the thermal
conductivity of the "pure' components Ak.
Table 2. Number of Collisions for Rotational Relaxation

Gas H,0 Co, 0, N 2 co

A ot 4,0 5,0 7,0 6,0 7,0

Calculation of the tramslational component of the thermal conductivity

of a mixture Agroz and calculation of the components Aﬁ similar to the

calculation of viscosity [1, p. 426] was made based on potential parameters

in the potential (1) found above.

Calculation of the thermal conductivity A for H,0, CO

K 9 29 02, N2 and CO
was carried out using the Mason and Monchick formula [15].
AM_ _ 45 _3 2@-2{2-&2)’(@.9-_ 4)
Y -‘ZQ‘(‘% gr‘))»z N2 h [ \Zep 2

The last member in (4) allows for the contrution of internal degrees
of freedom to the thermal conductivity by introducing the number of colli-
sions Zr and Z for rotational and vibrational relaxation. The number

ot vib

Zvib has a faiily large value, owing to which the contribution to the
thermal conductivity of vibrational relaxation was neglected. Thecretical

calculations of the excl.ange of rotational energy are still inadequate, and
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experimental values of various authors differ widely. Accordingly, Ztot was
determined on the basis of experimental data for thermal conductivity and
was adopted as average values not dependent on temperature (Table 2). The
rotational contribution to heat capacity Crot is taken as follows:

R = for linear molecules and %R = for nonlinear molecules (for H,0, the

2

3
values € nt Cv = ER were substituted for Crot)' For nonpolar multiatomic

molecules, the relationship was pD/n = %A*. For water vapor, the resonance

exchange of rotational energy pD/n = gﬂ*(l + Z'/Zo)_1 was taken into account.
The expression Z',/Zo was obtained in [15] for different types of polar

molecules.

The values of the coefficient of thermal conductivity of the "pure"
components of the fuel combustion products calculated by formula (4) are
given in Table 3. Comparison with available experimental data for these

compounds gives good agreement.

Calculation of the thermal conductivity of combustion products caused

by chemical reactions is made oun the basis of formulas derived in [16, 17].

Aw A Ay AH1'
An Al‘l sz AHz

Aw Az; -ruAVV AHV (5)
2, = - 1, aH, oM, . aHy 0 1

where ) A1V sz - Ap

L & RT (Mu_NitYne ng
Aj=As TE T s nen (- )R - BE)

(6)

Seven of the first reactions given above are taken into account in
calculation of krﬂac' The heats of reaction AHv have been calculated from

data in [3].
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Calculation of thermal conductivity was made for the same fuels,
oxidizers, coefficlents of oxidizer excess and parameters P and T as for
viscosity. Figure 2 presents the function 6f the effect of thermal conduct-
ivity of Saratov gas combustion products for o = 1.0, Oo = 23.15 percent for
the pressures 0.1, 1.0, 10 and 100 bar. For comparison, the thermal

conductivity of the 'chemically frozen" mixture X at a pressure of

froz

0.1 bar is plotted on the dot-dash line. The contribution of the ccefficient

of thermal conductivity Areac caused by chemical reactions is several times

greater than Afroz'

We must also note that in contrast to the viscosity the coefficient of

thermal conductivity varies sharply as a function of pressure and temperature

(when T > 2000°K). This is accounted for by the change in the composition
of the frel combustion products as a result of dissociation and formation of
new molecular species. Thus, for example, the existence of maxima is

caused by the dissociation of H?O, C02, H2 and 02, and the rise in the
coefficient of thermal conductivity at low pressures for temperatures

greater than 4000°K is associated with the dissociation of N2.

Symbols
P = pressure; T = temperature; M = molecular weight; R = universal gas
constant; u = intermolecular potential; o and € = force constunts of the
intermolecular potential; r = intermolecular distance; n = coefficient of
dynamic viscosity; X = coefficient of thermal conductivity; DkZ = binary
coefficient of diffusion; ey specific neat capacity at constant volume;
Ca = internal heat capacity; ¢ and c, = rotational and vibrational

int rot ib

heat capacities, respectively; Zrot and Zvib = number of collisions fecr

rotational and vibrational relaxations, respectively; p = density;

(2.2)*

Q (1.1)* (2.2)%

Ak = . and &
(L)%

]
1+Z/Zo

= reduced collision integrals;

correction for resonance collisions for polar molecules;

X and x; = mole fraction of the k-th and 7I-th components; u = total number
of components in gas mixture; v = total number of chemical reactions;

AHi = heat of the i-th reaction; n, = stoichiometric coefficient for the
k-th component in the i-th reaction; Oo = oxygen conternt in oxidizer;

o = coefficient of oxidizer excess.
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TRANSPORT COEFFICIENTS OF WATER VAPOR AND AIR AT T = 1000-6000°K
WITH ACCOUNT OF THEIR THERMAL DISSOCIATION

P. M. Kessel'man, A. S. Bestuzhev, Yu. 1. Blank, and
' A. S. Litvinov

A considerable number of studies have dealt with determination of
transport coefficient of air [1-3]. Results of refined calculation of
coefficients of viscosity and thermal conductivity of air with account taken
of thermal dissociation are given in this present paper. The following bulk
composition of air was adopted: N, = 78.084 percent, 0, = 20.946 percent and
ar = 0.97 percent. For the temperature range studied at pressures
0.1-100 bar air contains the following components: N2, 02, Ar, NO, N and O.
Estimates show that formation of NOZ’ N20 and N2049 and also ionization at
the indicated p and T may not be taken into account. In this case, when we
calculate the compositions of air it is necessary to pay attention to the

following chemical reactions:
N, = aN - 0= 20, § N, « 0= Ko

It must be noted that there is considerably less data on coefficients of
viscosity and thermal conductivity of water vapor, and in the temperature
range under study they are practically totally lacking with the exception of
{4]. Dissociation of water vapor! is determined by four independent equa-

tions: H,0 > H, + 1/2 02; H,0 2 OH + 1/2 H O2 2 20; and H

2 2 2H.

2} 2
HZO’ Hz, 02, OH, H and O can be present in the mixture.

2 2

The equilibrium composition of air and water vapor is found by solving
systems of nonlinear algebraic equations derived irom the law of active

masses, equations of material balance of atoms, and the condition Exi = ],

T'See p. 149
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Since the solution of the above-indicated systems in general form does not
appear possible, they were solved by an iterative method on the M-20
electronic digital computer for specified values of p and T. The values of

the equilibrium constants were taken from data in {5].

As we know, transport coefficients can be calculated from rigorous
formulas of kinetic theory if the potentials of interaction among particles
have been determined. The potential (6-12) with variable potential para-
meters ¢ and € dependent on temperature [6] was used for molecular components
(HZO’ N2’ 02, H2, NO, and Ar). Potential parameters and the coefficient of
viscosity for H,0, N, and 0, to 3000°K are given in [7]. Extrapolation of
data to 6000°K does not present any difficulties and was carried out by the
method given in [6]. Parameters for Hz, NO and Ar obtained from experimental
data proved to be practically independent of temperature and were taken as
g2 0 = 2,934 R, e/k = 34.1°K; NO, o = 3.495 &, e/k = 124,.2°K;

Ar, o = 3.408 A; e/k = 119.4°K). The potential energy of interaction and the
2_.(2.2)*
2

constant (for H

collision integrals ¢ for hydroxyl were obtained in [8] to the

complete pairing approximation. The second virial coefficient of OH, the
values of which are given in Table 1, were also calculated with account
taken of the dispersional member (58.10/r6 ev)? based on the potential

*
indicated. The integrals 029(2'2) were obtained in the same way.

The potentials of interaction of atomic components (N, O and H) are
given in [10-12]; collision integrals for these are in fact calculated in

{11, 12)}. The indicated data was used in our present study.

Potentials of interaction of dissimilar particles were determined by
using the customary combining rules. For this purpose, the interactions
N-N, 0-0, H-H, and OH-0OH were approximated by the potential in [6]. Data
on the second virial coefficients and the collision integrals were used at
an approximation. Table 1 presents the second virial coefficients obtained
from the method given in [13] and the potential parameters ¢ and e¢/k found as

a result of approximation.

“See p. 149
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The reliability of the combining rules for molecular interactions when
use is made of the potential with variable parameters is shown in ([1]. The
suitability of the above-described method for the atom-atom and atom-molecule
systems was verified by comparing collision integrals determined on the basis
of combining rules with those determined from curves of potential energies

taken from [11, 12]. Examples of such comparison are given in Table 2.

Determining all component viscosities in the above-described way
(corresponding tc the different possible interactions among gas particles)
at a known composition using formulas in [14, p. 422], the coefficients of
viscosity were calculated for water vapor and air, and they are shown

graphically in Figures 1 and 2, respectively.

The method of calculating the coefficient of thermal conductivity of
chemnically reacting systems is set forth in [15]. Also found there are
values of the coefficients of thermal conductivity of all components present
in dissociating water vapor and air. Therefore, this present study gives
only the results of the correspcnding calculations relevantly for water

vapor and air (Figures 3 and 4).

It was of interest to compare the results of calculations made in the
present study with the data of other authors. Figure 5 presents a comparison
of our calculated data with experiments and theoretical calculations by
Tomas, Nansen, Stupochenko, etc. borrowed from [16]. As we see from the
figure, our calculated data qualitatively best agrees with the experiment.
However, quantitative deviations do exist, which can be seen in Figure 5.
The results of other authors presented on the same graph do not agree even
qualitatively, since maximum and minimum of the coefficient of thermal
conductivity caused by dissociation of oxygen is absent. It must also be
pointed out that experimental points [16] lie with a m-+rked scatter and the
curve given in Figure 5 as experimental has actually been determined in [16]

not precisely enough (with a 20-percent error).
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Sywbols
T = absolute temperature; p = pressure; ¢ and ¢ ~ potential parameters;
) *
3 k = Boltzmann constant; B = second virial coefficient; 9(2'2) = reduced

collision integral.
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Figure 1. Coefficient of viscosity of water vapor
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Figure 2. Coefficient of viscosity of air -
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Footnotes

To p.140 Calculation of transport coefficients of water vapor was made

for the same pressure range as for air.
To p. 141 Polarizability values needed in calculating the dispersional
energy were obtained according to the method given in [9].

To p. 142 Note. For atomic nitrogen, the second virial coefficient and

the potential diameters are given, beginning with T = 4000°K, since at

lower. temperatures its dissociation 1ig pPractically absent

» even at
p = 0.1 bar.

Thus, at p = 0.1 bar and T = 4000°K, the mole fraction of
nitrogen Xy = 0.004.

To p. 144 Note. 1 -- Data of the present stud

y obtained using combining
rules for potential parameters;

2 -- data of the study [11].
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HEAT CAPACITY OF GASES AT ELEVATED TEMPERATURES WITH ACCOUNT OF THEIR

NONIDEALITY AND THERMAL DISSOCIATION (HZO’ C02, FZ’ AIR, LITHIUM AND

FUEL COMBUSTION PRODUCTS)

P. M. Kessel'man, M. M. Afanas'yev, A. S. Bestuzhev,
Yu. I. Blank, S. F. Gorykin, P. A. Kotlyarevskiy,
S. K. Chernyshev and §. A, Shchekatolina

Knowledge of heat capacity of dissociated gases as we know is necessary
in solving severa' p:oblems in hzat transfer.

This paper considers a method of calculating the heat capacities Cp and

Cv of chemically reacting gases with account of their nonideality. Deviation

from nonideality when calculations are made of properties of pure components,
equilibrium compositions, and compositions of mixtures is ailowed for by

the second and third virial coefficients, which ensures adequate precision of
results for the entire range of parameters investigated.
(NZ’ 02, H:, co, C02, NO, H

Virial coefficieuts
20 and Ar) of molecula: components have been
obtained on the basis of experimental thermal data by the method in {[1], and

virial coefficients for F2’ Li2 and OH have been borrowed from [2, 4].

For the atomic components 0, H, N, F and Li, the second virial coeffi-

cients are relevant, the method and results of calculation of which have been
presented in [3, 4].

Calculation of equilibrium compositions has been carried out by solving
a system of nonlinear algebraic equations, a gpecific form of which is
determined in the individual case by the equations of the corresponding

chemical reactions, equations of material valance of atoms, and the condition
rx, = 1.
1

Since in the general form solution of this system does not appear
possible, equilibrium compositions were determined by the iterative method on

an electronic digital computer at specified values of T and p.
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Further, the equilibrium constant was calculated from the formula

in which kY is determined by the expression
tn K‘.=2v‘¢an3~h -

where

~

"1 = Ci-B% p2
b= g B+~ 7).

(1)

(2)

(3)

Values of the constant kp were borrowed from [5]. Determining the

(o}

equilibrium composition by the method described and using the eguation of

state for a mixture in the form found in [6]
Ven =2 Vixi *Z Z xix oV,

where

and

We determine Bij by the usual combining rules [3].

Based on the equation of state for a mixture [4], it is not difficult to

(4)

(5)

(6)

obtain an expression for the enthalpy of a chemically reacting gas mixture
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A' Flcn = 2 FlleZZ.x;, X Aﬁq ' i
| afiy = 7 -T(5F ), Jop @

Substituting in (8) the expressions (5) and (6), after integration with

respect to p, we get
oy =(8;; - 12 )P (———-LP [(Be-TS3~(s, 'r )] )

The formulas (3)-(9) presented above involve mole quantities.

The specific isobaric heat capacity of a mixture of variable composition

was calculated from the formula

n =)

(10)

which takes into account properties of the frozen mixture and the eff.ct of
the heat of chemical reaction. In (10) Moix = Iy X and Hmix is given by

i
expression (7).

The specific heat capacity ngii is calculated from the formula

9 L'y | aVcn VC"\
Cy,, =Co.. +Tf ) ﬁ (11)
]
The partial derivatives (bxi/BT)p and (Bxilap)T that are part of (10)
} and (1ll) were obtained from a system of equations determining the equilibrium
L composition, which after uncomplicated transformations (taking the logarithm

of and differentiating with respect to the appropriate variable) is reduced

—y

to a linear system with respect to the derivatives sought for.
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The authors used the above-described method to calculate detailed tables
of isobaric and isochoric heat capacities for water vapor, carbon dioxide,
fluorine, air, lithium and the combustion products of thirteen organic fuels
throughout the entire range of temperatures and pressures of practical
importance (up to 6000°K and 0.1-1000 bar). The isobars of the specific heat
capacity Cp for one of the most complex systems of the groups under study
(combustion products of a stoichiometric mixture of Saratov gas and air) are

given in the figure by way of example.

Symbols

T = absolute temperature; p = pressure; KD and K. = equilibrium

(o)

constants for the real and the ideal gas, respectively; = activity of

Y
i
component; v, = stoichiometric number of componernits participating in the
reaction; Bi and Ci = gecond and third virial coefficients of the i-th
component ; V = molar volume; H = molar enthalpy; x = mole fractions of

components; Wy = molecular weight; R = universal gas constant,
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TRUE AND TRACE DIFFUSION COEFFICIENTS OF GASES

N. D. Kosov and L. I. Kurlapov

When there is mutual diffusion of gases in closed instruments, the
diffusional baro-effect arises [1, 2], which 1s the cause for the phenomenon
of hydrodynamic flow of the gas mixture. This flow superimposed on diffusion
currents, equalizes the transport of the number of molecules of ecach gas.

The mutuol diffusion coefficient of gases measured under these conditions (s a
characteristic of overall mass transport -~ transport by chaotic thermal
movement (diffusion proper) and transport by hydrodynamic current generated

in the course of diffpsion.

If measurements are made with strict observance of the isobaricity of
conditions [3] (that is, in the absence of the baro-effect and the hydro-
dynamic flow it generates), the diffusion coefficient determined by Fick's
law will characterize transport caused only by thermal movement (diffusion
proper), and it is conveniently called the true diffusion coefficient. In
the general case, the true diffusion coefficient of the first gas into
the second does not equal the true diffusion coefficient of the second gas

into the first.

An expression of true diffusion coefficients using molecular-kinetic
parameters (for the model of solid spheres, using effective molecular
diameters, molecular masses and the density of the number of molecules of
each species) had been given already by L. Boltzman [4], and the relationship
of the true diffusion coefficients with the coefficient of mutual diffusion
by 0. Meyer [5]. In the Boltzmann-Meyer theory, diffusion coefficients (true
and mutual) depend on the concentration of the diffusion gases even for
the simplest gas model -- solid spheres (the concentration explicitly enters
into the formulas). In the Chapman-Enskog theory [6], the coefficient of

mutual diffusion for this model does not depend on concentration, to the
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first approximation. Weak dependence on concentration was found only in the

second approximation. The nondependence on concentration of the mutual

diffusion coefficient in the Chapman-Enskog theory can be accounted for by

the fact that this theory does not take account of the effect on diffusion of

the collision of molecules of a given species. When the corncentration of one

of the diffusing gases is low (so-called trace diffusion), then in the
Boltzmann thieory the effect of l.omogeneous collisions can be neglected.
However, both these theories lead to different values for the ratio of mutual
diffusion coefficients for the two extreme cases (when the concentration of

the ficrst gas is small, and when the concentration of the second gas is

small). Hence, it was of interest to investigate mutual diffusion of gases

for these extreme cases. Below are given the results of measurements of

trace diffusion coefficients of four systems.

True and Trace Coefficients

According to Boltzmann [4], the true coefficient of the i-th gas in the
j-th gas with account taken of the persistency of velocities [6, 7] and the

mean free path as a function of velocity [7] is written as follows:

- 1,051 V8T
v 3?r\/97m‘{(1-w“)n,v’fsf~(1-wq)n5q}1/f"—'tn'Ti"-y 1)

The coefficient of mutual diffusion is associated with the true coeffi-
cients by the 0. Meyer formula:

(2)

The diffusion coefficients, as is seen from formulas (1) and (2), devend

on concentration. In the limiting cases (when cl > 0 or <, + 0, the true

diffusion coefficient of the first gas in the second varies from the

self-diffusion coefficient Dll to the trace coefficient D*

1’
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1,054 2(«T) .'D"

J)' (Ca—'O) = 307‘5;'_;“.‘(1 -w")PO'B'

(3)

3/2
s 37 fmm,(1-wy)poy; \{m‘_f:\_m_n | *) (4)
2

Similar expressions have been obtained also for extreme values of the

true diffusion coefficient of the second gas into the first:

3/2
1,051(2 kT

- D*
s, (1-wy)pag ([meems” ” T2 ()

i

/2
D,(c,~0)= 1.051:2 («T) D.,

3T YT, (1-w,,)po2 (6)

The coefficient of mutual diffusion determined by formula (2) at extreme

concentration values intergrades into the trace coefficient of the first gas

and the second gas, respectively:

Dyp(c,~0) = D,(c,=0)=D; )

:D12 (cz "'O) = mz (Cg"’O)""‘" D: ' (8)

The relationship of mutual diffusion coefficients for these extreme
cases is:

Dn‘z(Cq"O) = :D,:t m:(‘[-wz‘) .
D4 (€,~0) D3 my(1- W)

(9)

We note that when the persistency of velocities is left out of the

picture, the relationship (9) equals the ratio of molecula: masses, which
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does not agree with experiment. This fact once served as one of the main
reasons for nonacceptance of the Boltzmznn diffusion theory (cf., for

example, [6-8]] in this respect).

The Chapmau-Enskog theory of diffusion gives the following expression
for the relationship of trace coefficients of mutual diffusion in the second

approximation for the model of solid elastic spheres [6]:

; mi

LDQ(C,"O)J?‘ - ,\— 13m‘2’30m2016m,mg

r 1 - &

LDVI (CZ”O)JZ 1 mg (10)

T 13mI+30meibmm,

The concept of trace diffusion coefficient has a quite definite physical
meaning in the Boltzmann theory of diffusion. As we can see from formula
(1), trace coefficients characterize diffusion under such conditions when
collisions of dissimilar molecules play an essential role and when collisions

of molecules of the '"trace'" gas among each other can be neglected, that is,

when

LN A\ Yo
..j_._(f)_h_. Cy {6“ ] \ LA Tm >34 (11)
1-wy;  Coi 0/ 2m;

From relationship (11), it is clear that trace diffusion occurs not only
when Ci < Cj, but also when masses of molecules and their effective diameters
at commensurable valucs of the concentrations of diffusing gases satisfy

relationship (11).

Measurement of Trace Diffusion Coefticlents by a Steady-State Method

Usually, trace diffusion coefflcients are determined by a steady-state
method using a double-flask instrument, when 1its radioactive isotope is added
to the gas under study. We used an earlier proposed steady state method of
measuring mutual diffusion coefficients [9] for the measurement of trace
coefficients. Essentially the method amounts to the following. Let the pure
gas 1 move at a specific bulk velocity v through the upper tubing (Figure 1),

and traces 2* of the second gas through the lower tubing with the same

~161-




{ velocity of gas 1. The tubings are connected by a capillary. A set of
identical capiliaries is used to 1lacrease precision of measurement. Tubing

and the capillary set form a diffusion cell. Diffusion will take place in

capillaries connecting the tubings. 1In mutual diffusion of gases the overall

flow 94 of the first gas will equal the overall flow q, of the second gas,

as has been indicated above.

Before the gases are admitted into the tubings, they are passed through
identical halves (only the left, or only the right) of two successively
arranged identical interference cells. After diffusion, the gases pass
1 through the other halves of the interference cells. Upon attaining the
conditions 9, =4, = 9, that is, when mutual diffusion occurs, the optical
difference of the path of the interferometer rays will equal zero, and the
readings of the interferometer compensator cylinder will be zero. Then one
of the halves of the cell is swept through with the same gas (or gas
mixture) which is present in the other half of the same cell, and an analysis
of the gas mixture in the other cell is made in the usual way. From the
concentration of the gas following diffusion, the geometric dimensions of the

capillary set, the coefficient of mutual diffusion is found from Fick's law

cv
D, =Xt (12)

In deriving formula (12), it is assumed that linear Jistribution concentra-
tion holds in the cylinder, and the difference in concentrations Ac at the
cipillary ends is calculated from the known initial and final concentrations

with allowance of its variation over the capillaries along the flow.

Equating the flows 9 and 9, is achieved by varying the gas pressure in
one of the tubings [3].

3 The bulk velocity of gases v 18 measured by liquid rheometers. Theilr
relative calibration by means of the interferometer [10] makes it possible
to satisfy the condition of equality of v in both tubings with a high

degree of precision (0,05 percent).

The apparatus as a whole does not differ from that previously

described [3, 9, 11] for measuring true diffusion coefficients. To
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increase measurement precision, the main assemblies of the apparatus

(diffusion cell, rheometers, and interference cells) are thermostated.

Here is some data characterizing the apparatus. The capillary set
consists of 930 identical stainless steel tubes, with an overall area of
2.03 x 10_4 m2 and 7.16 x 10-2 m long. The velocity with which the
gases are swept through the tubings is kept constant throughout the
experiment to a precision of 0.1 percent and was 0.862 x 10_6 m3/sec in
all the experiments. Special verification of the equality of gas volumes
after diffusion was made prior to measurement of trace coefficients.

For this purpose, the bulk gas velocities were measured at the outlet from
the diffusion cell after a steady-state condition was established with
zero reading on the interferometer. Within the limits of experimental
error, bulk velocities measured by the displacement method proved to

be the same, confirming the equality of the flows 4y and q,:

Table 1 presents the results of measuring trace coefficients for four
systems of gases at a temperature of 298.2°K. Each value of the trace
coefficient is the mean of four to six measurements. The error in
determination of trace coefficient was 3-5 percent and was mainly due to
error in determination of the absolute value of the velocity with which
the gases were swept through the tubings and error in measuring the area of
the capillary set. The relationship of coefficients calculated directly
from measured values q = cv was determined more precisely (the error was
1-2 percent), since it did not depend on the absolute value of the

velocity, b+ Jepends only on the ratio of velocities in the tubings.

The values of the customary mutual diffusion coefficients of systems

investigated [12] lie between trace coefficients, as is to be expected.

The measured relationship of trace coefficients for three systems
agreed within limits of experimental error with those calculated from the
Boltzmann theory. For the third system (He—Oz), it proved to be less than
is to be expected from formula (9). The relationship of the trace
coefficients calculated from the Chapman-Enskog theory for solid elastic
spheres was 7-16 percent less than the experimental. This theory gave

still smaller relationships for other potentials [6].
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Measurement results show that the mutual diffusion coefficient
depends on concentration more strongly than was commonly believed [13].
The Boltzmann diffusion theory (taking account of persistence of
velocities) better describes extreme values of the mutual diffusion

cvefficients than does the Chapman-Enskog theory.

We note that Westenberg and cowcrkers [l4] obtained values differing

little from those calculated by the Chapman~Enskog theory for the relation-

ship of trace coefficients of the He-N, and He-Ar systems. The difference

2
between the data we obtained and the Westenberg data can be accounted for

by the fact that the iatter used a relative method of measurement,

graduating the apparatus beforehand with the He-Ar system, the mutual

diffusion coefficient of which was adopted as a standard and did not depend

on concentration. When graduating the apparatus, it is necessary to bear
in mind that at the point of the concentration field where trace coeffi-

cients are measured the numerical value of the standard coefficient must

also be a trace coefficient.

Symbols
Di’ Dij’ D*i and Dii = true, mutual, and trace diffusion coefficient,
and self-diffusion coefficient; w = persistence of velocities; m and
o = mass and effective diameter of molecule; oij = (oi + oj)/2; k and
n =

Boltzmann constant at number of molecules per unit volume;
c, = ni/Zni = relative concentration; T = zbsolute temperature;
p = pressure; L and S = length and overall area of capillary set; 9 and

q, = overall flows of first and second gases; v = bulk velocity of gas in

diffusion cell tubing.
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STUDY OF THE TEMPERATURE DEPENDENCE OF BODY LENGTH FROM CHANGES IN
HEAT CAFACITY IN QUANTITIES CHARACTERIZING BODY STRUCTURE

N. N, Medvedev and L, G, Savel'yeva

Precision measurements show that body length is a nonlinear function of

temperature., Body length as a function of temperature is usually expressed

by the empirical formula;

£et, (1ol pt?) 1)

We note that a physical quant’ty determined by the following expression is
called the true temperature coefficient of body elongation:

.l dt
R A @

where t = T - 1;, To = 273°K, Using expression (2) for formula (1), we get

°‘§=°‘*2ﬁt- (3)

Formula (3) shows that the true temperature coefficient of elongation in

contrast to the coefficients o and 8 is a function of temperature.

The empirical formula (1) can be viewed as an expansion of the unknown

function I = f(To + t) in series in powers of t with a restricted number of
members of this series.

Expansion of the function 1l = f(T° + t) into a series can be repre-
sented as follows:

est,p dt)w d“)a.o s (athi ]
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Let us find the analytic expression of the function I = £(T). For

where

(4)

metal bodies, the energy of interaction of particles in the body is deter-
mined [1] by the expression

W =—

slo

) (5)
ra

Equation (5) can be represented graphically (Figure 1).

From the graph (Figure 1) it is clear that when there is a rise in the
body temperature, atomic oscillations make a transition to a higher energy
level and become increasingly anharmonic, which is expressed by the
asymmetry of *he curve W = W(r). The mean distance r between oscillating
atoms increases nonlinearly with temperature rise, that is, r = r(T) is a

nonlinear function of temperature. This 1s also cause for the nonlinear

expansion of bodies on heating.

It is plain from the graph (Figure 1) that to each set value of the
function W = W(r) there correspond two real values of the argument r, the
arithmetic mean of which r = (r1 + r3)/2 determines the geometric position
of points having the coordinates (W, r), that is, describe the curve

W = W[r(T)]. This fact can be used to find the function T = ?(T), and
consequently, the function I = £(T).

The constant b entering into equation (5) can be determined from the

condition W = minimum [1]
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r® = value of r at T = 0°K., Substituting the value of b found into equation

(5), we obtain

- Q atr
WHCap=y ' ®)

[N
<
4

On the other hand, a total energy of ianteraction of atoms in metal
determined by formula (6) must be equated to the total internal energy of
the body referred to a single atom, This energy can be found if we assume
that its change depends not only on change in temperature, but also on
change in heat capacity of the body, that is, if we assume that

dW = 1/N d(CT).

Heat capacity C is viewed as a function of temperature. In this case,

it will be:

waEl oW, 7

where wo = integration constant,

Comparing expression (6) and (7) and finding at T = 0°K, the value

e

we get:
¢T. __&a :
235 '—2';:3)?5 2ar-ar’=Q (8)

Equation (8) is a quadratic in terms of r. Hence, for ea~h value of T there

are two roots of this equation », and Ty The arithmetic mean of these

1
roots determines the mean distance r between oscillating atoms, as a

function of temperature, that is,
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Using the properties of roots of a quadratic equation, we find:

1’0

P =
T-2ErCT.

Noting that r/a = Z/Z0 and ro/r0 ~1, where r = value of r at To = 273°K,

we get:

1

=1t 1-38cr (9)

In the general case of a polyvalent metal [1}, we can adopt the following

expression for the quantity a
aes 2Ac?2%?
In this case, we will have

- NAe*z*? 1
E - eO NAe&;’ll_ r,CT ) (10)

Formula (10) is an analytic expression of the function I = £(T).

Using formula (10) for the mean temperature of the interval

0 <T< T, where T = T/2, based on the expressions (4) we obtain: ‘

- 1 (d[ S 7%(C*2T%$ j
XN AT NAT - S ) (11) i
{
Bat (‘cﬁ-&-\ = ﬂﬂﬁi’.’.’.“.@&:@..’.}ig Z"_( NAeff’?Zr.c?j‘;’f") (12)
D) 220 dT’-/T-z‘f ( NAe115/|- 2 r, C'T')s —~-— (]
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In obtaining formula (12) it was assumed that dC/dT = const. Formulas
(11) and (12) show that the coefficients a sud 8 depend on quantities

characterizing the structure of the metal and its heat capacity.

Hence it follows that we can refer to constancy of the coefficients a
and B in the empirical formula (1) only within the limits of preservation of

’ a given type of structure, that is, in the absence of phase transitions.

With a precision quite adequate for calculating the coefficients a and B

when T = To’ formulas (11) and (12) can be represented in the following more

convenient form

L d — "0 (Cn’ 2Tn %'_%'__

NAeiy ! (13)
- T dC 2
ﬁ 2 TAetz™ a7 + Kk (14)

Thus, the values of the coefficients a and B, and consequently, also
the value of the true temperature coefficient an=o + 28t can be calculated
theoretically fcr different metals and their alloys from known quantities

characterizing their structure and heat capacity.

For most metals the value of the Madelung constant can be taken as
equal to A = 1.,75.

t The value of the interatomic distance ro can be found for various

metals in handbooks {3, 5], and can be determined by X-ray structural

methods of analysis or alloys.

The value of the heat capacity C and its change dC/dT can be calculated
for a given metal from the known Debye characteristic temperature 6, using
here the tables in [2] for C = f(5/T),

r 1f the Debye temperature is not known, for example, for alloys, it
can be determined from the experimentally known value of the heat capacity
and then dC/dT can be calculated. The values of the quantities N, e and z
are generally accepted. If the valency is not known, it as an integral
number always can be determined from the value of the coefficient of

! linear expansion [elongation] o that is known in approximate terms.
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Table 1 presents the calculation of the coefficients a, B and a, for
different metals and gives a comparison of theoretical and experimental
values of their coefficients of linear expansion. The distance r, between
nearest neighbors for the metals with a body centered cutic lattice has been
calculated from the formula L, = Y3a/2 (where a = lattice parameter), and
for metals with a hexagonal lattice r, = a For the series of metals that
have a face-centered cubic lattice, the distance r was calculated from the
formula r = a//f, aad for the series of metal with face-centered and
rhombohedric cubic lattice (Ni, Bi, As, Al, Cu, Ag and Pb) the distance was
calculated from the formula r = a/f, that is, the distance is taken between

corresponding oscillators [6].

The temperature coefficients of linear expansion were theoretically
calculated for several metal alloys using the formulas derived. Table 2
presents a comparisou of temperature coefficients of linear expansion
[elongation] calculated by formulas (13), (14) and (3), and experimentally
obtained for brass and steel. Interatomic distances for these alloys were

determined by the Debye method on the URS-50 IM unit.

Word Symbols

1 and Zo = body length at temperature t and t, = 0°C, respectively;
a and B = several coefficlents constant for a given body; a, = true temper-
ature coefficient of linear expansion; T = absolute temperature; W = total

energy of interaction per single atom; a and b = several constant quantities

value of r at T = 0°K; N = Avo-

273°K;

entering into the formula W = f(r); r°

galro's number; C = molar heat capacity; r, = the value of r at T
A = Madelung constant; 2 = electron charge; z = valency of metal; 6 = char-

acteristic temperature,
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Table 1.

Determined Coefficients of Linear Expansion [Elongation]

Comparison of Theoretically Calculated and Experimeutally

PO,

A./.‘_‘_

R . '

E C

Rement %1’. 10':'2 o'ﬁr 10 0‘-’0.':0‘:}510 'o‘tw 0” *.

[ Deg P

L e " [, e €
BE 34 . 75 6_78910
"Lithium 3,06 I 22,8 0,035 52,2 0,043 54,3 56,0 25
Sodium 3,70 I 26,9 0,035,69,9 0,053 72,6 72,1 25
Potassiumé&,62 I 28,5 0,023 83,I 0,043 85,2 83,3 25
Rubidium 4,92 I 29,4 0,025 65,0 0,051 87,5 90,0 25.
Cesium 5,36 I 26,8 0,030 %,9 0,070 98,4 98,0 25
Thallium 345 I 24,8 0,00I ‘35,8 0,001 35,9 33,6 50
" Copper 5,65 2 24,3 0,004 17,5 0,002 17,7 17,0 50
© Silver 5,71 2 24,2 0,004 19,3 0,003 19,6 19,0 50
Gold 2,88 2 25,2 0,012 I2,I 0,005 I2,6 I4,2 50
Beryllium.,87 2 18,2 0,030 I0,3 0,009 I3, I3,0100
Magnesium 3,20 2 24,6 0,035 19,3 0,016 22,5 25,0 100
. Calcium 3,93 2 24,3 0,012 16,6. 0,067 18,7 22,0 I50
. Strontium4,30 2 27,2 0,065 17,0 0,003 17,6 20,0 I00
~ Zinc 7,50 2 21,9 0,006 24,9 0,007 25,6 27,0 50
Aluminum 5,73 *2 25,1 0,009 22,9 0,009 23,8 24,6 S0
Indium 6,92 -2 26,0 0,020 33,2 0,0I8 35,0 33,0 50
" Tin 6,49 2 24,2 0,004 22,5 0,012 23,7 23,0 S0
. Lead 7,00 2 26,5 0,0II 29,7 0,010 30,7 .29,4 S0
. Vanadium 2,62 2 23,8 0,003 "9,6 0,002 10,3 $,3 IS0
* Iron 2,48 2 21,8 0,018 ‘10,3 0,006 10,6 II,?- 25
. Cobalt 2,51 2 26,2 0,020 12,3 0,007 I3,0 I3,4 50
" Nickel &.,90 2 25,8 0,015 II,0 0,005 II,5 13,3 S0
" Palladium,?5 2 26,I 0,005 10,4 0,003 10,5 II,? 25
Platinum 2,77 2 24,1 0,006 9,3 0,002 9,4 8,9 25
Bismuth 6,70 3 25,6 0,002 II,8 0,00I II,9 I53,4 50
Chromium 2,49 3 23,9 0,015 5,4 0,003 5,7 6,2 I00
Molybdenum 2,72 3 22, 0,:08 4,8 0,002 5,0 5,8 50
Radium 5,32 3 25,4 0,010 10,1 0,004 I0,5 8,5 S50
Iridium 2,7 3 25,1 0,06 €£.03 0,003 6,3 6,5150
Cerium 3,64 3 26,7 0,005 6,0 ool 6,9 7,1 S0
Zirconium3,I2- 4 25,2 0003 G5,60.0,(01 5,7 5% 80
Germanium4,00 4 22,8 0,004 4,92 0,003 5,8 €,I 15"
Tungsten 6,70 & 23,6 0,010 3,46 0,002 3,9 4,4 I50
Arsenic 5,77 5 24,0 0,041 4,5 0,006 5,0 5,6 150
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Table 2. Comparison of Theoretic

Determined Coefficients of Linear Ex
for Alloys

C*g'10ﬁ deg_1 dt'10:deg-l T

: °C

. Materjal Theoretical Experimentel
Brass 18,1 184 .50
Steel oI, 120 0 oso

Figure 1. Graphic representation of the energy
of interaction of particles in a body
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THERMAL CONDUCTIVITY AND VISCOSITY OF A COMPRESSED LIQUID

R. S. Prasolov

Ia calculating various processes and in designing apparatus we must
have data on the thermophysical properties of a liquid at pressures up to
~ 12,000 atm (~ lO9 n/mz). However, the unique experimental data of
Bridgmen [1] are not very numerous, and well known methods of calculating
thermal conductivity and viscosity of a liquid for these conditions, as
shown in [2-5], are applicable only for pressures up to ~ 2000 atm

(%16% a/n’y.

Uasing the concepts of the molecular-kinetic theory, we made a
calculation estimate of A and n of a homogeneous liquid at ultrahigh
pressures. In the analysis, we introduced the followirg main assumptions,

which are fairly well * .. ‘ed [2-6];

-- elastic smooth :}neres (spherical intermolecular potentials

of interaction) are the model concept of the molecules;
-~ gradients of temperature and velocities in the liquid are small;

-- the velocity of all molecules is identical and is determined by the

Maxwell distribution.

Essentially, the analysis cousists in the fact that the transition to
the liquid state is attained gradually from the model of ideal gases through
the model of compressed (real) gases to the analogous model for liquid.
Further, on analogy with the concepts of Enskog, but by an essentially
different method, corrections are introduced into the transport by colli-
sions (the greater rate of propagation of perturbations through the
molecules themselves is taken into account). Moreover, corrections are
introduced in the multiple interactions of particles, that is, conslideration

is given to the fact that in addition to binary, the interactions are
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ternary and quaternary, when three and four molecules collide simultane-
ously.

At first we explain how the classic relationship of the mean free path

of molecules will change if we ccnsider multiple particle interactions.

The number of binary collisions Z2 by a singlé particle in the gas is
determined by the following function [7]

2,=VZ 76%nc (1)

and the total number of binary collisions S2 of moving particles

nZ! :
Sz‘ 2 (2)
since each interaction embraces two particles (and two mean free p Ao)

in one second n molecules traverse 222 mean free paths, which are confined
into the segments nc equal to the overall path of n molecules in one second.

From this follows the well known gas-kinetic relationship for an ideal gas

- . nc A
A=3s, *n2, = VEa6 N 3

where the multiplier V2 appears as a result of taking cognizance of

molecular distribution by directions (including noncentral collisions)
(6, 71.

We used the very same method of reasoning in taking account of multiple
collisions, In addition to the cross section of binary collisions F2 = noz,
we introduce the cross sections of ternary F3 and quaternary Fh collisions.

Then the number of ternary and quaternary interactions of a single particle
must be written in the form

Z.Bg\/i.f-".nc, z'.g\/i.pu,nc %)

The total number of ternary and quaternary collisions, if we take into

account the fact that each of them embraces three and four particles,
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respectively, amounts to

S, “—:J . S,= ﬂg’a (5)

As a result, we get the following relationship for the mean free path
traversed by molecules with account taken of binary, ternary and quaternary

collisions

/\= nc = nc s 1
252*' 6-"3+‘45q n(}z*ZfZO V-Q'.n(ﬂﬁzﬁl?-ﬁ. (6)

in which the cross sections noz, F3 and F

the relationship with the quantities F3 and F4 with the gas-kinetic diameter

4 are summed up. Determination of

g is the task of further calculation.

Quantum mechanical considerations indicate that in the general case
wave fields (fields of interaction) are larger than molecular dimensions
{5]. 1In particular, covalent radii proportional to the smallest distance
between bound particles are smaller than the van der Waals radii of inter-
action (Lennard-Jones) [6]. Therefore it can be assumed that the transport
cross sections associated with interaction potentials overlap in dense media
(Figure 1, a). An impinging particle indicated in the figure by a point can
fall in the zone of field overlapping and this will correspond to ternary

interaction.

To find the doubled area of segments (overlapping zone) proportional to
the cross section F3, we find the distance I averaged over time between
centers of oscillating neighboring particles of the liquid. For short-range
order, particles in a liquid (a strongly compressed gas) lie in a tetra-
hedra% three~dimensional pattern. The volume of the elementary equilateral

tetrahedron can be found from the formula
ve o3

= — 7

v 12& (7)

Summing up the volumes of these elementary tetrahedra, we can obtain the

=179~
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entire volume of the liquid, and consequently, express the elementary volume
by the molar volume V and Avogadro's number, taking into account that 1/6

of a molecule is assigned to such a tetrahedron. Based on the foregoing we
get

L=V2 VY

(8)

The area of the doubled segment when a < 50° is estimated in approx-
imate terms by the well known formula, which when we take into account the

association hetween a, h, ¢ and 7, leads to the form

8
fi-4one VT )

Several particles surround each particle for which the collision cross
section is considered. Figure 1, d shows the pattern of the tetrahedral
structure, from which it is clear that, for example, in the plane of the
figure the particle under study (dash line) 1is surrcunded by six others. In
the rlane passing through the dash line and two upper (cross-hatched) |
particles there are four spheres, etc, Therefore, in an approximate fashion
we assume that on an average five segmental cross sections of ternary
collisions fit into the collision cross section of the molecule under

consideration, if we consider the plane of collision cross sections averaged

over directions.

As a result, for the total cross section F3 we get the formula

' ~ [T 2
Fo=133y(s- £)36 + &) (10)
In a similar way, we can also estimate the cross section of quaternary

interactions (Figure 1, b) which is proportional to the area of the curvi-
linear triangle. We replace this triangle, in approximate fashion, by the

circumference described in it having the radius

Re§- b

2:CoA3JD° ab
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and then F4 is est:imated from the function

F.=5r(c-0650)2 (12)

Hence, taking account of ternary and quaternary interactions leads to

the following correctional multiplier in the kinetic formula {3)

15,3

[1+—-— \/(5'--_ (su )+ESS_5'(€~O’65?’)ZT (13)

We now pass on directly to calculation of thermal conductivity of
liquids. For this we use the customary gas-kinetic model schematically
represented in Figure 1¢,, and to a line of thought similar to that given
in [9], but containing a number of refir.ements compared with [9].

The following energy flux is transported through an area with temper-

.
B Y

ature T (flat intecrnal problem)

q/:’—g-nw%k[(ﬁ gI—x>~(T-%Ix>} ) (14)

The quantity of the transport rate with cognizance taken of transport
by collisions (through the molecules themselves) can be represented in the

following form [9]

N+S cory
w=_/é_ , Seosy e CO"’ ;\' cosy) (15)
Cm

if we take into account that C < CM [4, 5]. It Is clear from Figure Ilc,

that
X=A+&cos0 = A1+ cony
A1 S cony ) (16)

and therefore thermal conductivity caused by collisions at an angle #
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from zero to m/2 amounts to the following, with consideration of (14)-(16)
)\'ﬂ-—'an-—K Ao (1¢ COQLP) (17)

Molecules can collide at any angle ¢, and further the probability of

collisions at angles in the range from ¢ to ¢ + d¢ is written in the form

[9]

P=sn2Y-dy an)

Thus, the correctional multiplier in formula (17) averaged over angles turns

out to be expressed as

7
g J(M -Cobl{’) 5m2L{’d\9 1+——-+ (%) (19)

N )

Based on the formulas (16)-(19), assuming A # (p), we get the

following function for the thermal conductivity of a compressed liquid

16\
A= )\°D+3A° > ('A° ) ] (20)
in which the parameter o//\O can be replaced by the relationship [9]

s L&
-6 V2 mnets BINE- - g (21)

For convenience in discussing the results obtained and in making
quantitative calculations, we make explicit the significance of the main

variables in formula (20) by using the expressions (8), (13) and (19),
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%\71 " % v [’* "{;2;: V(s- 057J% ) (6+05WVE) +

r Si(s-0ss(Z o5 B2 [ .

42\ [-0sn V(5051 X ) - T (oY% ) 1

It is clear from function (22) that the thermal conductivity as a function
of pressure is not difficult to calculate if we know the relationship

between the molar volume and the pressure, since ¢ # f(p) and Ao #* f{p) is

on the thermal conductivity isotherm.

Generally speaking, the quantities V, Ao and o can be estimated in
approximate terms by various methods of calculation [2-6], which however
can give sizeable errors. Therefore, for quantitative verification of
formula (22), we use experimental data for V = £(p), and we find the
quantity o from two support experimental points -- Ao and Al’ corresponding
to the thermal conductivity of an ideal gas (p < p) [sic] and the
thermal conductivity of the liquid (at atmospheric pressure pl). We make

all calculations for the thermal conductivity isotherms.

Analysis of Bridgmen's experimental results [1] and recent general-
izations of experimentation [10] shows that in verifying formuia (22)
unfortunately the available necessary data are extremely limited and embrace
only alcohols, pentane and water, It is precisely for these compounds that

experimental support points Ao and Al and the function V = f(p) do exist.

Figure 2a, shows experimental points for methanol, pentane and water,
the vertical dashes in which correspond to experimental error [l]. Here
however the lines 1-3 indicate the corresponding calculated isotherms
obrained from formula (22). Values of o for the calculated curves were
found by graphic solution from (22) based on experimental data for A A

1
and Vl [1, 10].
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A comparison of experimental and calculated data makes is clear that
the deviation between them lies within the limits of error of experimental

determination of thermal conductivity, that is, is about 3-4 percent.

So satisfactory an agreement between calculation and experiment for the
region of ultrahigh pressures where the thermal conductivity of liquid
consisting of complex multiatomic molecules is under consideration is
unexpected, since the basis of analysis was taken to be the simple model of
spherically symmetric particles. A similar result was noted also in (6]
where, for example, the following is related: although this ic¢ hard to
prove and appears strange, the spherically symmetrical model leads to good
results in analysis of viscosity and of the second virial coefficient of

compressed gases, even for such complex molecules as benzene, alcohol and

hexane,

Taking the result obtained for thermal conductivity into account, let
us try to calculate also the viscosity of a compressed liquid based on

similar considerations.

It is well known [2-8] that mechanisms of thermal conductivity and of
viscqsity in a liquid, in spite of some common ground they share, do have
key differences. This, for example, is evident from a comparison of
Figure 24 and Figure 92} , where, under otherwise equal conditions, an
incomparably greater effect of pressure on viscosity compared to that on
thermal conductivity is noticeable. Therefore, use of the ideas advanced

above requires some additional correction when we analyze viscosity.

In elucidating the differences between X and n noted, it is convenient

to represent viscosity in tte kinetic form similar to relationship (17)

2=0499 nm Wx (23)

and first analyzed in [9].

In heat transport, all n molecules participate in transport of energy
via thermal movement of particles, that is, their micromovement. Viscosity
in fact combines both micromovement as well as macromovement of

neighboring layers of liquid with ordered velocities C*. The transport of
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macrovelocity C* from one layer to another will be possible if the particle

is able to overcome the intermolecular potential of attraction in the layer

where it is initially present.

In determining the fraction of particles which can pass from one layer
to another, we assume that thermal distribution of velocities is governed
by the Maxwell distribution, and C > C*, We estimate in approximate terms
the intermolecular potential of attraction from the component of the
Lennard-Jones potential or the Stockmeyer potential for two particles [4,

6], neglecting the components of repulsion and dipole interaction

P N 7

U=t (__Eu) (24)

In reality, the particle under consideration lies in the potential
field of many of its surrounding neighboring particles. But, given the
symmetric arrangement of particles in the structure of the short-order range
within the bulk of the liquid, the passage of tre particle under consider-
ation into the ''vacancy" of the neighboring layer can be simply viewed as a
one-dimensional passage relative to the two mutually colliding molecules.
The effect of the other particles, whose interaction potentials with the

molecule under consideraticn are uniformly distributed over directions,

is mutually compensated.

0f the total number of n molecules the potential of attraction can be
overcome by those particles whose kinetic (thermal) energy E exceeds U,

E - U, The number of such particles n, can be found from the Maxwellian

U
distribution over energies [8]
[ -]
2 R NATA
nu:vnv}_riexp(-'a) KT-d(Kr) (25)
(84

Calculation of the quantities [, U and kT relevantly for the Bridgmen
experimental data {1] for n and V using the corresponding constants r and ¢
for the interaction potentials in [2-4, 6] show that U = kT, and therefore

the integral (25), with account taken of formulas (8) and (24), leads to
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the form [8]

G2 ‘
Ny n-exp(- %—)zn- eup[—(—“—é'hﬂ- )~ex MQ)' (26)

2T V¢ kKTV?e

Consequently, the formula for the vigcosity of a compressed liquid in
contrast to the function for thermal conductivity contains an additional

correctional comultiplier in the form of the exponential (26).

These considerations, if an attempt is made to describe viscosity based

on formulas (23) and the relationships (15), (16) and (26), leads to the

equation

6 2 ~
Gt VI ST TGN | B
Quantitative verification of the latter function was made on the basis
of the viscosity isotherms for water, methanol and n-pentane, similar to the
already considered viscosity isotherms for the same compounds. This
selection of experimental data [1] for verification of formula (27) stemmed
from an effort to compare values of 0 obtained from experiments on
viscosity and thermal conductivity. As in the calculation of thermal
conductivity, the value of ¢ was found from the support points No* M and
Vl' For methanol and n-pentane, the constants r, and ¢ were taken from the

data for the Lennard-Jones potential, and for water -- from the Stockmeyer
potential [2-4, 6].

Results of comparing caliculated curves and experimental data are shown
in Figure 2D . Analysis of this figure leads to the conclusion that in
this case as well, a.so beyond expectation, the deviation of calculation
curves relatjve to experimental points is close to the experimental error

(about 8-1C percent) and can be random in nature (not systematic).

In the table below a comparison is made of the diameters of interaction
of ideal gas molecules found by the method set forth here for thermil
conductivity and the viscosity of a compressed liquid. These values were

compared with values of o* (in Angstroms) which are found from the
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Lennard-Jones potential (methanol and n-pentane) and the Stockmeyer poten-

tial (water), if we equate the repulsion branch of the indicated potentials
with the kinetic energy of the molecules.

Table
Compound S(x) (%) &
Methanol 3,14 3,06 3,41
N-pantane 4,08 3,84 5,60
Water 2,65 2,44 2,70

From fundamental considerations [5, 11], numerical values of the
collision diameters for various processes mus. ..ave small systematic

d:fferences, which is also confirmed by the table given above.

In conclusion we note that qualitative verification of formulas of the
form (20) and (27) when various transformations are used with precision up
to numerical coefficients makes possible derivation of a series of well

known theoretical and empirical functions found earlier by Predvoditelev,

Vargaftik, Osid, Rama Rao, Bridgmen, Bachinskiy and Stolyrov. In the

future statistical treatment of calculated errors which need to be found by

comparison with all known experimental data for A and n for liquids at
ultrahigh pressures is necessary.

Symbols

5, Vand T = pressure, molar volume and absolute temperature; Py and

&

o normal pressure (1 atm, 105 n/nF) and temperature (°C); X and

N thermal conductivity and viscosity of gas at p; Al and Ny

= as above,
for Py Ao and Mo =

as above, in the ideal-gas state P, < Pys k and

N = Boltzmann constant and Avogadro's number; U and E = potential of inter-

molecular interaction and thermal energy of molecules; r and £ = constants ]

of the interaction potential; m, ¢, A, o0 and n = mass, mean arithmetic 1
velocity of thiermal movement, mean free nath, gas-kinetic diameter, ard

number of particles per unit volume; i and A = number of degrees of molec-

ular freedom and correctional multiplier (when i = 3, A ™ 2.5, when i = 5,

A~1.9, and when i = 6, A= 1.7); x = mean distance between center of

~-187-



—

e mp————

|
i
4
1
4

molecule and plane through which transport is considered; I = distance
between molecules of tie liquid averaged over time and space; v = volume of
elementarv tetrahedral cell; Zz, 23, and 24 = number of collisions for a
single particle per unit time for binary, ternary and quaternary inter-
actions; S?, S3, S4 are the total number of collisions per unit time with
binary, ternary and quaternary interactions; F2, F3 and F4 = cross sectiors
of binary, ternary and quaternary interaction; f = function taking into

account multiple interaction; ¢ = angle between direction of movement and

line of centers of colliding particles; P = probability of interaction at angle

¢; Cy and C* = rate of transport by collisions (through molecules) and rela-

tive velocity of neighboring layers of liquid; n* = number of molecules whose

thermal energy exceeds the potential of intermolecular interaction; q = specific

thermal flux; Ao = mean free path of particles in the ideal-gas state; o* =

diameter of particles found from E and U.
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Figure 1. Calculated diagrams used in taking account of
multinle collisions and transport by collisions: a, Overlapping
of interaction fields having radius ¢ in ternary interactions;

b, As above, for quaternary interactions; c, Diagram of transport
for spherical molecules of diameter ¢; d, Diagram for estimating
the coordination number of molecules in a plane averaged over

directions.
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Figure 2. 1Isotherms of feiative thermal conductivity (a) and
viscosity (b) of a compressed 1liquid: 1, Water, t = 75°C;
2, Methanol, t = 30°C; 3, n-pentane, t = 30°C.
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CALCULATION OF POTENTIAL PARAMETERS OF INTERACTION FROM EXPERIMENTAL DATA
ON VISCOSITY AND COMPRESSIBILITY OF GASES

P. Ye. Suyetin, B. A, Ivakin and B. A. Kalinin

In solving many physical and technological gas kinetics problems, we
need to have reliable information on kinetic coefficients governing the rete
of change of any particular macroscopilc parameters with time. The fullest
and most reliable information has been secured experimentally for the
viscosity coefficients of gases. The enormous range of application of these
coefficients and the relative simplicity of experimental arrangement helped

bring about this state of affairs.

Less reliable data, and in a narrower range of change of experimental
parameters were obtained for coefficients of thermal conductivity, diffu-
sion and thermal diffusion both by virtue cf experimental complexity, and
also owing to stubborn side effects complicating treatment of experimental

results.

The lack of information on these kinetic coefficients can be made up
for by certain empiricai formulas that fairly well describe available
experimenial data. However, reliability of extrapolation of these formulas

has always remained doubtful.

To solve this problem use of formulas of rigorous theory [1] is more

warranted from the physical point of view.

Kinetic theory allows us to calculate all kinetic coefficients if we
know the potentials of interaction between gas molecules. At present,

P calculations of kinetic coefficients based on these formulas does not pre-

sent any problem, since most laborious calculations have been tabulated for

different potential models and are given in [2].
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The common ground of the approach to calculating kinetic coefficilents
that is afforded us by kinetic theory is preferable also in the respect
that it allow. us to calculate some coefficients if we have experimental
data for others. Additional.v, when we have potential parameters calculated
from kinetic properties of a compound, we can calculate the equilibrium
properties of a gas, and vice versa. The potential parameters obtained also
allow us to estimate critical properties of the compound and properties of
crystals at low temperatures., Thusly, potential parameters allow us not
only to calculate kinetic coefficients, but also to determine a great many

physical properties of a compound.

However, for practical purposes we need tc have quantitative estimates
of th. applicatility of kinetic formulas in calculating particular proper-

ties.

The aim of this study is quantitative estimation of the applicability
of potential parameters derived from viscosity and compressibility of gases

in calculating other kinetic properties of gases.

We must select the potential model of ;nteraction among gas particles
to determine parameters. At the present time the two-parametric Lennard-
Jones (6-12) model is fairly well physically validated and is the most often
used. Three-parametric models greatly complicating calculations are little
refined in practical terms owing to the great indeterminacy in calculation

of parameters.

A large number of different parameters of the (6-12; model calculated
by different methods for different ranges of change in experimental
parameters is set forth in [2]. We must state that existing methods {the
method of intersections, the method of relationships, etc.) are not well
enough validated, which introduces elements of arbitrariness into calcula-

tions of parameters.

Apparently, the two-parametric least-squares model with preliminary
analytical graph treatment of experimental data, precluding their random
scatter, is the most valid procedure in calculating the parameters of the

model (6-12).
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Let us look at this model by the example of calculation of parameters

from experimental data on viscosity of pure gases as a functiom of ‘emper-
ature.

The viscosity coefficient in the first approximation is calculated from
the formula in [2]:

VMT

7
?. 10 = 266,93 619(2‘2)(,?”) . (l)

We bring [1] into linear form with respect to 02 and e/k. Further, we will

2
assume that we know o and (u/k)0 from other sources (for example, from

equilibrium or crltical properties of the gas):

Ve, “(:aa*é‘i); 4525, @

where x and y = small corrections to oi and (e/k)o. Substituting (1) in

(2), we get:

)ZU d E.ﬂ Q“l;)- A
/K)e dlaT* (3)

¥
S T
?—?“X@'} 17

Using the recurrent formula (2), we have:

din QY _ Sy (4)
St =41 Faw) s

Following the least-squares method, we obtain:

2 [ 4 = (e %) S i ®)

The approximation to zero of the partial derivatives with respect to x and y

is a necessary condition of the minimum (5)., Making tha necessary ~alcula-

tions, we obtain the system of equations for finding the corrections.
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After determination of x and y from (6), we find the corrected values of o

and e/k. Adopting them as the new initial parameters, the process of

e

refinement can go on., .3 a rule, one or two iterations are encugh.

In spite of the apparent cumbersomeness of the method, it gives a

unique value for the parameters 02 and e/k, best describing experimental

N

data within the limits of the functional relationship (1) of rigorous .
kinetic theory,

Table 1 presents potential parameters of the (6-12) model calculated
from cxperimental data on viscosity of 18 gases [3]. The table sets forth
inert, polyatomic, and polar gases., As we can see from Table 1, the *
viscosity of all inert gases, except for helium, given corrsct calculation
of potential parameters can be described Ly the theoretical formula (1)
with precision approximating the precision of experimental data.

Column 5 of Table 1 sets forth the main deviation from experimental quanti-
ties in the entire temperature range indicated in column 2. Moreover, it
proves to be possible both for polyatomic and polar gasec to select
potential parameters with a precision adequate for technical purposes that
describe the viscosity of pure gases as a function of temperature, The i
greater deviation for hydrogen and helium is accounted for, evidently, by

the necessity of quantum mechanical calculations and for chlorine -- by the

low reliability of experimental data.

Coefficients of mutual diffusion for 14 pairs of gases in the range of

temperature change 273-1000°K were calculated by using the derived potential

parameters and combining rules. The experimental values proved to be
4-10 percent above the theoretical, which either indicates the incorrectness

of the combining rules or points to some systematic errors in measurement

of the diffusion coefficients.

We made an attempt at direct calculation of the parameters of inter-
action among dissimilar molecules from experimental data on the viscosity of

gas mixtures. The above-described procedure was used in the calculations.
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Table 2 sets forth the caiculation results for five mixtures. The
calculation was carried out for three different concentrations, however,
as it turned out, calculati-n results did not depend on concentration within

the limits of precision of the experimental data.

Table 1
R A
range, °K °K M N Experimental
y 3R
I 2 3 4 5
He 273 #l1273 10,16 2,543 1,24
Ne 273- 873 27,I4 2,845 0,20
AP 273 1273 II4,3 3,450 0,54
Kr 273+ 873 178,6 3,645 0,Is
Xe 2754 873 230,0 b U 0,13
N, 200 +1000 81,0 = 3,722 0,67
0, 200 + 1000 108,8 3,446 0,44
Alr 273 & 127 20,2 3,727 0,81
COy 275 + 1273 208,6 3,893 0,48
SFy 470 ¢+ 9™  243,7 5,040 0,69
CoHy 273+ 773 217,9 4,171 0,20
" Hp 75 +1273 39,3 2,839 I,II
Cl, 273+ 873 426,2 3,918 1,18
CO 273 + 12713 122,7 3,563 0,35
NO 272 #1273 6,9 3,703 0,64
S0y, 275 + 1273 3192 4,131 0,93
NO, 293« 75 259,¢ 5,77 9,36
NHy 275 ¢ 1273 846,5 3057 0,466

It is clear from Table 2 that potential parameters obtained from the
viscosity of mixtures and from combining rules agree very well., This
result that appears to us unexpected is accounted for most likely by the
specifics of the formula for the viscosity of mixtures than by the reli-

ability of the combining rules.

TSee p. 198
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Similar calculations were made with the aid of the second approximation
of the theory for the viscosity coefficient of puve gases. Here it turned
cut that use of the second approximation does not improve the description of
experimental results, and in some cases even somewhat deteriorates the
outcome. Potential parameters obtained in this case and considerably
complicating all calculations differ little from parameters ol tained to
the first approximation of theory, anu introduce no improvement into the

description of kinetic properties of gases.

The above-described method was used to obtain potential parameters of
pure gases from experimental data on their compressibility [4]}. First of
all, the least-squares method was used to calculate the second virial
coefficients for ten gases in the range of change of temperature and
pressure shown in columns 2 and 3 of Table 3. Then, the potential para-
meters were calculated from the temperature dependence of the second virial
coefficient. Table 3gi§es us the results of the calculation, from which it
is clear that the potential parameters derived from experiments on compress-
ibility differ considerably from parameters obtained from viscosity. This

fact has already been noted by almost all researchers. We present here

only some quantitative results.

The viscosity of gases, set forth in Table 3, was calculated by using
potential parameters obtained from equilibrium properties. Comparison of
the derived viscosity values with experimental data shows a deviat .on of

6-14 percent, and further this deviation is as one-sided as in the case of
diffusion.

In conclusion, we must note that viscosity of gases given the corre-
sponding selection of iyotential parameters is well described by the
theoretical formula (1) (with a precision of up to one percent). Potential
parameters given in Table 1 can be recommended for calculation of other
kinetic coefficients. In the absence of experimental data on diffusion
coefficients, they can be calculated with a precision of up to 10 percent
using the theoretical formula (1) with the employment of potential para-~
meters from viscosity and the combining rules. Data on potential

parameters obtained from compressibility of gases are poorly suited for

calculating kinetic properties.
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Table 2 L
Tempera-  From v!scosity ‘From combin- : i
‘ ture of miatures iug rules h
Gases 9
range, K 10
B % (e/K)ra, 637107, (e/k)a, 6410"
oK ™M °K M
I 2 3 4 5 6
He - Ar 293:023 . 27,8 3,150 85,7 3,147 4
He ~He 293+473 17,8 2,687 16,6 2,694 ;
1, ~C0, 3004550 100,2 3,370 91,1 3,391
Hy- Ne 3004550 30,9 2,910 32,9 2,867
M, = 02-29}0623 94,0 5,584 93,5 3,584
Table 3
Pressure Tempera- 10
Gases range X ture G/K, () 10 .
x 107>, n/m?2 range, °K °K ™M
i 2 3 t B
by 0,f + 100 150 + 80O 31,50 2,940
Ar 0, +100 100 +1000 118,7 3,420
0, 0,1 # 70 200 #3000  1i5 4 3,526
ce, 0,07 & 1,4 244 + 550  316,9 4,259
N, 0,1 + 100 220 +I000 94,48 3,686
He 0,I « 70 200 #3000 100,2 3,837
o I + 90 273 41173 4,732 2,568
CC, 0,1 #1100 - 250 +1500 209,8 4,128
H.0 0,1 +120 373 #1273 385,9 4,259
1,0 0,0 + 80 373 + 823 396,0 2,671
Symbols
ny and ng = theoretical and experimental viscosity coefficients;
T and T* = absolute and reduced temperatures; M = molecular weight;
K = Boitzmann constant; Q(2.2) and 9(2'3) = reduced collision integrals;

¢ and 0 = corrections on potential parameters; x and y = potential para-

meters of the (6-12) model.

-197-




U T e — EESSSNNNNNNSE S = B —-—1————‘-—’-—7~ e . i

Footnotes

1. To p. 195 The sign + is the Russian counterpart for the hyphen in
Western usage -- Tr.
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CALCULATION OF THE VISCOSITY OF A STOICHIOMETRIC MIXTURE OF
NITROGEN TETROXIDE AND ITS DECOMPCSITION PRODUCTS

A. G. Tabachnikov and S. M. Mezheritskiy

Experimental data on the viscosity of the system under study! in the
vapor phase, published thus far, are mainly limited to atmoepheric pressure. c
The only study [1] embraces the pressure range 0.5-5 atm (at temperatures

of 298°-443°K). Data in (1] is the most recent and the most reliable.

The experimental study [2] in the temperature range 277.6°-410.9°K up
to 300 kg/cmz-(on the 310.9°K isotherm the data is obtained up to
431.8 kg/cmz) is known on the viscosity of the system in the liquid phase.

A calculation of the coefficient of dynamic viscosity of the system in
the vapor phase is carried out in the present ‘study in the pressure range
1-500 kg/cm2 and the temperature range 300°-2000°K. The calculation
results agreed with experimental results in the liquid phase which

had previously undergone critical analysis.

Calculation of the Viscosity of the System in the Gas Phase

We know that reaction effects only slightly influence the viscosity of
an equilibrium reacting system [3-4]. This allows us the opportunity when
czlculating viscosity to view this system in each state as a mixture

constant in composition and corresponding to the equilibrium composition.

Thusly, for each state it is necessary to determine the value of the
viscosity which would occur at p = 1 atm for a mixture of the given real
composition, and then to calculate the value of the excess viscosify

corresponding to the given density.

The method in [5] employing a well known expression in [3] for the

viscosity of clean gases at low pressures has been adopted in the present

ISee p. 209
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study for calculating viscosity at 1 atm:

Dt 26,59,5,-“““("/6‘3‘ ,Q«;.'m' (L

with the substitution in this formula of combinations of the potential

parameters

=B (e [E i (€00,60] /a2,

The reliability of this method has been verified by the authors [5]

for a large number of mixtures in a wide temperature range.

A generalized function [6] for multicomponent mixtures has been

employed in calculating excess viscosity:

(?' }”)E = 1,058[exp 1,.43‘3“) - e;(p(“.;"ﬁ“(;)‘lrul)] )

further, pseudocritical parameters were calculated from the following
expressions:

TK“‘=¥1‘TK('. va:$ ':x:‘th'. ZK“"'; x Lui
Pren = Lxen' R.TKC"/V“‘"'

It is shown in [6] with a wealth of experimental material that
calculation of viscosity for various mixtures relying on the equation in (2]
for a wide range of densities (up to w = 2) gives a mean error of 3.7 per-

cent and a maximum error up to 6 percent.

The force constants of the Lennard-Jones potentials of the components

adopted in the calculations are listed in Table 1.

Potential parametérs for N204 and NO2 were derived from the condition
of the best approximation of experimental data [l] to the corresponding
equation for calculation of viscosity [3] based on the kinetic theory of gas

mixtures. Further, ~hey find good agreement with the values recommended in

(7].
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Table 1
G, A 1,58 3,71 3,47 3,433
Eln, 'K A7 © 230 119 13-

The values of ¢ and ¢/k for NO and 02 were taken from [3].

The values of the critical parameters used for the components are given
in Table 2.

Table 2
| 3 . '
“l 04 N 02 1 NO ] 01 [
.F.‘. . e K 450 300 Ia{)'z 154,8
Pe s kg/ cm> 10 80 66,7 51,8
Px, kmole/ms 6016 10,22 17,3 12,81

The values of the critical parameters adopted for N

204 and NO2 were
derived in [8] from the condition of the best agreement of compressibility

coefficients for the mixture NZOA-NOZ calculated from experimental data on the

density of the mixture [9] and from the equation for mixtures in [10].

Additionally, the compressibility coefficient for the components were deter-
mined by relying on generalized functivns in [14].

For NO and 02, the critical constants were borrowed from [11].

Densities of the system were adopted in accordance with experimental
data {9] and from the results of the caiculation made in [8].

Compositions of the system in each of the states is calculated with the
aid of the following equations:

2
Koy = ——n sl _ .
1 = ““ _’ ()
3
K. = Ay , (4)
Fa (2*d;x1~agzp'
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Kr.::Kpm/Krtr Kr‘=r"°z/r"‘°""
- —1 t

KP\ = Kooz ,/K {2 Krz B K."“ x.ol/""ol

The fugacity coefficients of components Y, were taken according to the

generalized functions in [14].

Equations (3) and (4) are written on the assumption that reactions I and

[T occur successively.

This presuppcsition, though fundamentally not rigorous enough, does much
to simplify the calculation without introducing substantial errors. Possible
errors in determination of the mole fraction here, as analysis has shown, do
not exceed 0.001-0.002.

The main errors in determining system compositions stem from imprecise

values cf KY and kY , Which at high préssures and low temperatures can have
1 2

errors up to 15 percent (owing to imprecision of critical parameters of N204
and N02, and alsc on account of the use of generalized functions for calcu-
lating yi). We must however note that, as analysis has shown, possible

errors when real mole fractions of components are dtermined, proved all the

same to be considerably less than their difference from mole fractions of an

ideal system.

The calculation made for the vapor phase has shown that viscosity drops
only slightly up to ~ 20 kg/cm2 with rise in pressure on isotherms, and then
slowly rises. This is brought about by the fact that with the pressure
build-up equilibrium shifts toward the side of increased content of the less
viscous N204 and therefore in the region of low pressures where the value

(n=n*) is negligibly small, viscosity of the system decreases.

With further pressure build~up the influence of nonideality, responsible

for a rise in viscosity, begins to play a dominant role.

Analysis of Data on the Viscosity of the System in the Liquid Phase

As has been noted above, experimental determination of the viscosity of

NZOA has been made by Richter, Reamer and Sage [2], who used the rolling
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sphere method to determine the value of the viscosity on five isotherms, and
then graphically extrapolated them to saturation pressures for the purpose of

determining the values of n' on the left boundary curve.

The values of n* obtained in [2] at high temperatures raised doubts
based on the following considerations. Extrapolation of the saturation curve,
and also the critical isobar from the 1iquid side to the critical temperature
Tk = 431.4°K gives a viscosity value at the critical state equal to
~ 150 micropoises. This value proved to be appreclably less than the value of
the viscosity at p = 1 atm on the critical isotherm not only for the system
itself (n* = 228 micropoises), but also for clean N204 (n* = 174 micropoises),

the lalter value was obtained via calculation.

7till, we know that the following relationship (15] exists for particular
compounds as between viscosity st the critical state nTkPk and at 1 atm on

the critical isotherm n%k:

7'1*..,9,'* (17 +2,5) ’Z-:. (5)

If we further consider that at the critical state the system, in addition
to N204, contains a considerable amount (> 50 percent) of the more viscous

N02, doubt over the reliability of the value of n = 150 micropoises

Tk, Pk
bacomes clear.

Accordingly, an agreement was made between the lower boundary curve and
the results of calculation of viscosicy of dry saturated vapor, and the
nature of the 377.6° and 410.9°K isotherms was somewhat modified. And a
saturation curve was obtained on the side of the liquid, which gave a more
acceptable value of nTk,Pk = 385 micropoises and did not contradict, in
principle, the experimental .results [2], since, by raising sections of these
isotherms near the saturation curve somewhat higher than was done in [2],
some experimental points had to be shifted from within limits of scatter,
and others better fitted. 1In the process of reconciling the data, the

isotherms were graphically extrapolated to 500 kg/cmz.

In the temperature range 410°-460°K for pressures P > 100 kg/cmz,

viscosity values were obtained as a result of merging experimental liquid-phase
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isobars with vapor-phase calculated isobars; the regularity of the resulting
curves were checked by the appearance of tie isotherms. The results of

calculations and the agreement are given in Table 3(n in micropoises).

Appraisal of Precision

In appraising the precision of the viscosity values obtained, errors in
evaluating critical parameters, calculation of actual compositions, system
densities, and also the intrinsic error of equation (2) the error when
calculating values of n* were taken into account. The maximum error can be
~ 15 percent in the 480°K region, where the error with respect to densities
was evaluated at up to 6 percent for the general case. Here we also adopted
the maximum error of equation (2), though it should have been expected close
to w = 2, while in this region the maximum reduced density is only ~ 1.5.

Thus, the actually indicated maximum error must be lower.

At temperatures > 520°K, the error drops to 5-3 percent. We must bear
in mind that the values in the near-critical region have to be viewed as
approximate, since experimental data here is not reliable enough. Data in the

liquid phase, in accordance with the scatter of experimental points in [2],

have a precision of ~ 7 percent.

Discussion of Results

In [16], the authors used for (n-n*) the generalized function in [17]
obtained via treatment of experimental data for individual gases in calcul-
ating the viscosity of the system NZOA—NOZ—NO_OZ in the temperature range
300°-1500°K and the pressure range 1-150 atm. Here, the authors [16]
viewed the system under study as some pure compound of variable molecular
weight with wholly determinate critical state, whose parameters they used in

forming the reduced coordinates.
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Table 3

._'-{‘T.kg/cm‘.
T.,\I 4 10 20 B0 I00 IS0 200 250 300 400 500

290 4330 4335 A350 A370 M52  AB20 A62B 4720 4820 4920 SII0 5300
320 ISI,0 3059 3068 3080 3125 3I95 3280 3306 3350 3394 3490 3595
350 I79,3 166 2119 2137 2188 2255 2309 2360 2403 2840 2515 2555
400 2I3,0 208 203 198 873 II32 1265 1I335 1390 1435 1500 IS0 '
850 236 235 2% 233 . 239 275 350 A0 575 €85 830 930
500 259 258 258 2358 267 280 3I0 340 350 A5 530 6AS
600 305 303 305 303 308 3I9 332 7 366 378 A28 AT .
00 351 351 351 351 381 356 363 373 384 395 A22 A
800 390 389 387 388 389 393 A0L A0S Al? 825 A0 4SS
100 a6l 459 ASB AS8 ASS  AB9  AG2  A67  AT2 A%  AB6 496
1200 522 521 520 S50 520 521 B4 531 §3a SA0 547
JI500 S7% 5% 5% 5% 5% §7 8§80 584 587 591 597
1600 628 628 628 623 628 630 632 €36. 638 642 66
1800 678 €78 €7 €M 678 680 682 685 686 €90 693
2000 726 26 76 M6 M1 M8 O B2 T3 6 T

28288
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Actually, a chemically equilibrated reacting mixture, like a single-
component system {according to Gibbs), is very analogous to pure compounds
and, in particular, has a wholly determinate critical point which reflects the
limiting state of existence of the phases. However, it dces not at all
follow from this fact that this system can be thermodynamically similar to
clean gases, and the critical point reflects all of 1its specific features.
Critical parameters used in this case do not characterize the properties of
the reacting system in a wide range of parameters, which corresponds to the
totality of states of mixtures of different compositions, while at the same
time the critical state refers to mixtures of wholly determinate composition.

These considerations make use of the function in [17] theoretically poorly
validated.

Meanwhile, it turns out that when calculating the viscosity of the
reacting system under investigation, fairly reliable results can be secured by

using the method in [17] if the variable molecular weight is properly taken
account of.

The calculation made according to the method in {17] with the use of true
critical parameters of the system N204-N02—N0—O2 and molecular weights
corresponding to actual compositions, gave good agreement with the results of

the above-described determination of viscosity according to [6].

This is accounted for by the following circumstances. First of all, as
shown by comparison with the experimental data of a number of mixtures, the
method in [17] is applicable when calculating their viscosity if into the
calculation expression pseudocritical parameters combined according to the
method in [6] are substituted. Secondly, though the relationships of pseudo-

critical parameters ’lk_mix/pk_mix for different states of the system deviate

appreciably from Tk/pk (true critical parameters), this fact does not have a

substantial effect on the values of (n~n*) determined according to [17].

Thus, the method in [17] used in [16] to determine (n-n*), though
unsubstantiated from the standpoint of first principles, nonethaless can give
an acceptable result. Doubts arise however over the reliability of the
calculation made in [16]. A result of this calculation was a decrease in the

viscosity of the system on isotherms not only in the low-pressure region
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(about which we have remarked ahove), but as far as 150 atm. This function

cannot be derived if the compositions of the system in each of the states are

determined reliably enough. We note that it is precisely this aspect of the

question in [16] that has received very little attention, and the lack of

numerical values for n does not allow us to make the reeded analysis.

Symbols
n = coefficient of dynamic viscosity of a mixture a: given p [kg/cmZ]

and T [°K] of a mixture, micropoises; n* = viscosity at temperature T and

p=1atm; w=V /v = reduced volume; V = pgeudocritical molal
kmix mix k

mix
3 R V- 1/2, 2/3 _ _
velume of the mixture, m?/kmole; £ Tk_mix/[z(xiMi)] Py—mix coeffi

cient in equation (2); (e/k)i and o, = force constants of the (Lennard-Jones

(6-12) potential for the component; X, = mole fractions of component;

@) = degree of dissociation of NZOA; a, = number of moles of 02 formed as a

result of decomposition of'NO2 and referred to a single mole of starting

N204; Kp01 and Kpo2 -- jdeal-gas equilibrium constants of the decomposition

reactions of N,0, (reaction I) and NOz(reaction II) adopted from [12] and
[13], respectively.
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Footnotes
To p. 200 The system is formed as a result of the dissociation of

N204 and 1\‘02 in accordance with the reactions N,O = 2NO

20, 4 2NO 4+ O

2
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METHOD OF CALCULATED DETERMINATION OF THERMOPHYSICAL CHARACTERISTICS
OF REAL GASES FROM MOLECULAR DATA

A. L. Tsykalo

The rapid growth of heat power engineering, chemical techmnology and other
branches of the national economy that require detailed kaowledge of thermo-
physical characteristics of a wide range of compounds has led to intensive
stud, . properties of real gases, liquids, and mixtures. However,
experimental data unfortunately is available at present only for a relatively
small number of compounds and, as a rule, for fairly narrow ranges of change
in external parameters. Consequently, it is quite understandable that there
is mounting interest in developing calculation methods of determining proper-

ties of compounds that are of interest.

Some successes in solving this problem were achieved only by solving the
problem of determining thermophysical properties of rarefied gases. Efforts
at taking into account interactions of three and more molecules in most cases
do not lead to satisfactory agreement with experiment. By way of example we
can note calculations based on the Enskog theory [1] the theory of Snider and
Curtis ({2, 3], the theory of Hoffman and Curtis ([%], the tneory of Flynn and
Ross [5], and the theory of Stogryn and Hirschfelder [6] for the second virial
coefficient of viscosity and thermal conductivity. Relatively fair results
came from using the theorles of Stogryn and Hirschfelder [6] for calculating
the second virial coefficient of thermal conductivity and Kim, Flynn and Ross
[5] -- for calculating the second virial coefficient of viscosity. However,
even in these cases appreclable deviations of experimental and calculated

values were observed for some gases.

In particular, appreciable deviations occurred for xenon (viscosity and
thermal conductivity), nitrogen (thermal conductivity), etc. Unfortunately,
rigorous solution of the problem encountered both fundamental and calcula-

tional difficulties, so that simplifying assumptions were used in the
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above-mentioned theories.

Methcds of determining transport properties based on use of the principle
of corresponding states have enjoyed relatively wide acceptance. However,
this approach has two substantial shortcomings that reduce the importance of
this method and greatly limit its application., These shortcomings include the
need to know thermophysical properties at the points of reduction (for
example, at the critical point), and in addition, allowing for existing
differences between the compounds investigated and those used as standards is
hampering, and these differences can sometimes lead to considerable devi-

ations from the law of corresponding states.

In light of the foregoing, it appeared useful, in addition to u..ing the
results of theory, to resort to considering experimental data for well
studied compounds. Comparing numerical results of theoretical calculations of
thermophysical properties with the corresponding experimental data, we can,
by analyzing the corresponding deviationé, account for molecular character-
istics of the compound under study and the assumptions madé, and thereby judge

the shortcomings of theory in each particular case.

Consider the case of viscosity and thermal conductivity of a moderately
compressed gas ior which it is necessary to take intc account, in addition to
pairwise, also ternary interactions. In this case the coefficients of

viscosity and thermal conductivity can be represented in the form:

)Zo‘&?i

i
A=, “pe.

"

Comparison of experimental values of the reduced virial coefficients b*
and B* with the values calculated with the aid of various theories [1-6] Is
given in Tables 2 and 3. This comparison makes clear that when the theories
in [5, 6] are used for certain gases, agreement 1s satisfactory. However, in

some cases (Xe) the deviations are very great.

A common assumption in the theories used [1-6] was the customary assump-
tion of the additivity cf the potential energy of Iinteraction of particles.

Careful analysis, however, allows us to conclude that in calculating b* and

-213-

e SR T e

A S Rl T iy

o, sl i TR

ORI

[P

s ,.Z_"-L




Y

B*, we must also take into account the nonadditive component of the potential
energy of interaction of three particles, the need for taking this into
account when calculating the third virial coefficient of the equation of state
was demonstrated in [7, 8]. It is quite natural that allowing for the
nonadditive component is highly important also when calculating transport
properties that are highly sensitive to the function of potential energy of

interaction of the system's particles.

We know that the potential energy of a system of three particles depends
in a complex way on distances between particles and on the angles of the
triangle formed by the interacting particles [7, 8]. Calculating the second
virial coefficient of transport properties with the aid of ordinary relation-
shi, Jjn this case imposes great difficulties, even if simplifying assumptions
are adopted. Accordingly, in the presént study an approximational method of
allowing for the nonadditive compo.ient of the potential energy of interaction
is proposed, founded on use of the conventional effective Lennard-Jones
potential function, corrected with account taken of the fact of nonadditivity
of the interaction of a three-particle system. In principle an approximation,
this method insures acceptable precision; an advantage of the method 1s the
possibility of its employment for the case of interacting particles when
their number is greater than three, in which case precision calculations

becore practically impossible.

This method is based on using the results of calculating the third virial
coefficient of the equation of state made by Sherwood and Prausniz {7],
Sherwood, de Rocco and Mason [8] allowing for the nonadditive component of the
potential energy of interaction of three particles for several model
potentials. The results of these authors, including two expansion members in
the expressiorn for the reduced third virial coefficient of the equation of

state can be written in the form

C sy vaaCm g 5cn

The functions log C* = f(log T*), plotted for various values of a* and

5*1/2 (Table 1), can, by the well known Lennard-Jones method by a parallel
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transport relative to the coordinate axes, be combined with the function

log C;dd = ¢(log T*). Here, it is easy to find the values of the corrections
A log € and A log ¢ allowing us to determine the force constants of the new
effective function of pairwise interaction ¢' and o', corrected with allowunce
for the fact of nonadditivity of the potential function of interaction. This
new potential function can be used in calculating the second virial cueffi-
cients of transport properties by the aid of the theories in [5, 6].

Table 1 presents the values of o, &, ¢' and €' for Ne, Ar, Kr and Xe, and
also the values of a* and 5*1/2. Results of calculating the reduced second
virial coefficients of viscosity and thermal conductivity in Tables 2 and 3
are compared with experimental values and with values calculated on the
customary assumption of additivity of the potential energy of interaction

of particles.

The comparisons made demonstrate that in the case of Xe, Ar and Kr when
the nonadditive component is allowed for, it is possible only to slightly
improve the results of calculation, which for these gases find satisfactory
agreement with experimental values. In the case of Xe an appreciable
improvement in agreement between calculation and experimental values of b* and
B* is observed. This dcubtless is accounted for by the considerably greater
contribution of the nonadditive component of the potential energy of inter-

action in the case of Xe than in the case of the first three substances.

It must be noted that, as shown by calculations of the third virial
coefficient, the contribution of the nonadditive componen: to the first
approximation is proportional to the quantity k* = (2.80* - c*l/z). This
is manifested in particular in the fact that the values of A log (e/k) and
A log o, determined as noted above by the Lennard-Jones method and allowing
us to advance on to the effective function of pairwise interaction, are
similar for substances characterized by similar values of k* (cf. Ar and Kr in

Table 1).

Analysis of experimental data and the results of theoretical claculation
of b* and 8* with the aid of theories in [5, 6] shows that when T* = 0.8-2.0,

the following approximational relationships hold:
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8% . 038777 " ¥ + 0,50 >
. . TQ-VA? 1,65, |
p = 2,8700 '

1
Table 1. Interaction Potential Constants and ak, 8*1/2 and k#* j
ot ENYE w .‘
Without ;2%}\!'!.«. i Allo}lnlm:r' }
Substance  for nonaddl E{;‘.‘:mqt ox® ENR (# ] |
O, A &K 6K ek |
2,79 35,7 2,% 36,7 0,018 0,025 0,025 '
3,42 124 326 138 0,038 0,050 0,060 1
3,61 190 3,44 214 0,044 0,061 0,059 |
4,06 229 3,7 254 0,058 0,07 0,086 ‘
Table 2!, Comparison of Calculated and Experimental Values of b* ‘
&*
Hauneane e% L Experiment:  Aytnory From g, o0 From  From From
[5] aswsnfl] p] 23] K] B |
20 7,98 0,76 X 0,12 0,62 1,10 0,66 = 1,15 0,61 ‘
% 2,16 1,0I t 0,07 1,04 0,57 0,65 1,32 0,65 1,05 ‘
20 1,37 0,97 % 0,03 0,96 0,46 ~0,I2 0,32 0,49 0,95 1
25 1.17 0,77 £ 0,05 0,84 0,42 <0,50 ~0,06 0,42 0,93
Table 3!. Comparison of Calculated and Experimental Values of B*
[
ﬁ~
Substance " "
] Seseman S, T Prom rm vm
(5] MM PRy oKy ' «
60 9,00 3,98 3,60 4,00 3,18 6,12 3,49 2,12
25 2,16 3,38 3,36 1,88 3,42 3,9 3,18 4,7% 1
20 1,15 4,07 4,00 1,40 2,68 3,29 3,88 5,7

'See p. 218
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These expressions can be directly used in calculating b and B if first
the values of the force constants ¢' and ¢' are determined bv the above-

Jescribed method.

Symbols
p = densgity; "o and Ao = values of the coefficients of viscosity and

thermal conductivity, respectively; C;dd = reduced third virial coefficient of
the equation of state calculated in the usual assumption of additivity of the
potential energy of interaction; a* = a/o3, ek = eo/ez, o = polarizability;

£ and o = force constants of the paired potential; AC* and §7* = corrections
associated with nonadditivity of dispersional and repulsive forces,

respectively, and tabulated in [7, 8].
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Footnotes
To p. 216 The values of T* (column 3) and of b* and B* of the experiment

and the calculations (columns & znd 5) were obtained by reduction with the

aid of force constants g' and €', The remaining values of b* and B* were

obtained by using the force constants o0 and €.
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THERMOPHYSICAL PROPERTIES OF TWO- AND THREE-COMPONENT SEMICONDUCTOR ALLOYS

A. F. Chudnovskiy

The formal similarity in structure of differential equations describing
the behavior of mechanical, thermal, electrical and magnetic phenomena is

well known and has been used in describing an extensive class of processes of

generalized conductivity. These procedures have proven especially productive

for purposes of analyzing heterogeneous multiphase and in general complex
systems. There are numerous studies in which various aspects of the method of
generalized conductivity are developed and which are extended for an ever
broader range of materials and an ever increasing list of their properties.

As we know, two kinds of objects are usually distinguished -- a statistical

mixture and matrical systems. For the former, for which dispersional powdered,

granul wwv and fibrous masses can be calculated, the equivalents of all

miscible phases of the system is characteristic: the main phase (index 1) and

the inclusion phase (index 2), such that interchanging of indices 1is not
réflected in the final value of the generalized conductivity for the system.
For the latter, such as porcelain, ceramics, asbestos, rlastics, cable
insulation and the vast majority of metal alloys, the existence of a single
main phase is characteristic -- the matrix in which the second phase is
included in the form of minute particles, grains and other elements, and for
which interchanging of phase indi-ces (1) and (2) leads to a substantial
change in the overall conductivity of the system.

Denoting by the generalized conductivity A and of the quantities entering
into the analogy list ~-- coefficient of thermal conductivity, diffusion,
dielectric permeability, Young modulus, the Poisson modulus, etc., the listed

characteristics of each of the two kinds of materials can be written in the
form:
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FOAD NGV V=P (A, A, V)

(1)
F(A1: Az,vlhvl) # F(Angq ,Va . V|)

V1 and V2 = bulk concentrations of the main and secondary phases in the
system. We will not dwell on a survey of the numerous studies in which:

1) a number of formulas of generalized conductivity have been established or
propcsed [1, 8-13]; 2) the practical use is proposed in various fields

of dielectrics and metals [2-5, 14]; 3) the generalizations derived for

electrophysical parameters are extended for thermophysical characteristics of
materials [6, 15].

Throughout all this multifaceted range of activity attention has failed
to be directed to aspects associated with the specifics of semiconductor
compounds, some of which can be placed in the class of statistical mixtures
(sintered or pressed briquettes of metal oxides, thermal resistances, ceramic
and alumina materials), and others -- and the class of matrical systems
(intermetallic alloys and solid solutions). 1In the case of solidifying
alloys both a statistical as well as a matrical system can be obtained. We
know only of one or two studies of S. V. Ayrapetyanets {16}, who investigated
thnermoelectric systems viewed as two-phase compositions, for which the
formulas of Odelevskly were applied [7]. Here expressions were obtained for
the coefficients of the thermoelectromotive force (al and az), eiectro-

(o] and 02), and thermal conductivity (Al and Az) of both phases (V1 and Vz).

These formulas have the following form:
~- for the matrical system at low inclusion concentration

= g6, -7‘1(61'61)
S oo +(2°’1*61)(27H‘71z V,_

(2)
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-- for the matrical system at low concentration of the matrical phase

A =y ?;ﬁ L .
.(2-6-; 1)

-- for the matrical system at any concentration of components

-- for the statistical mixture at any concentration of components

oA = o(,6",r,~o(‘ Lr
=2 6(F, e pu)

[z B AV
(25"‘5'1)(2) 'JT)

SAY
f2 = (2€+6,)(2A+2,)

C=Q,~ o..‘+ﬁf3

a1 a (3V1 “1)61[:(3\/2'1)6_:




L o

' (8a)
]l = Qz"1/Q§ +—4—1}i‘7‘

where

a, =3V =12 G o

‘The interesting work of S. V. Ayrapetyants can be expanded and developed

in various directions.

1. There is the possibility of supplementing the earlier obtained
conclusions by finding a complex quantity Z = azo/A, effectiveness of thermo-

electric materials.

2. It appears possible to find, by using the expression for o, o and A,
that concentration at which conditions for obtaining the maximum value of the
thermoelectric parameter arise. These conditions evidently are determined

from the relationship:

‘ s 6, ' ol
dz ___d "T.") oF _(E{__(‘JJT?
dV1 dV1 . d_VT

Here, the prerequisites on the smallness of one of the faces are retained.

3. An avenue is opened up for the use of those variants of the formulas
which are appliéable for the relative equivalents of both phases, when the
value of V1 does not differ much from V2. Here we are referring to methods of
obtaining thermoelectric compounds by other than the widely accepted

approaches.

Above all we have in mind powder metallurgy methods, where the compound
of interest to us can be obtained not by alloying, but by pressing the

original powders. For such mixtures, formulas of the type (4-8) with allow-

ance for the conditions Vl &~ V2 are wholly applicable.

L

L




A graphic example of this kind of object are thermistors, studied only
from one point of view, namely as semiconductor thermal resistances, and have
not at all been considered from the aspect of their thermoelectric properties.
Still, there can be no doubt that for these materials which are subjected
either to pressing or sintering, calculations of .generalized conductivity are
wholly applicable and that by this approach their thermoelectric character-
istics can be discovered, which can find use for measurement purposes.

Here also methods of obtaining thermoelectric materials by reversible

pressing at elevated temperatures [17] are of interest.

As has been established by the authors of this method, as a result of
pressing and sintering without fusion, it is possible to prcduce material with

good thermoelectric parameters.

Thus, use of the generalized conductivity formulas is wholly possible
under this method. Here we must Ybear in mind only the following. Increasing
the effectiveness of the value of Z involves searching for matecials and
conditions for their use that satisfy requirements corresponding to the
highest values of Z and 5 and the smallest possible values of A. We need to
underscore that such requirements must necessarily be corrected allowing for
the requirements of practical expediency, economy and technological simplic-
ity. In taking up the question from this point of view, it must be stated
that it is not obligatory under all conditions to obtain only large values of
the parameter Z. A whole series of tasks can be formulated that are most
expeditiously solved when there are not sufficiently high absolute values of
Z. The only important thing is that depending on concrete scientific-
production conditions the values be either reduced, but optimal out cf all

possible values.

How then can such situations be formed? Let us cite a number of

examples.

1. We were Interested in obtaining for hot and cold junctions thermal

elements of moderate, but not of maximum possible temperature drop.

2. We were limited to gsemiconductor material in short supply and were

interested in economizing it. Then, when V., = Vz, owing to the reduction in

1
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in the overall Z, we can use one of the componen: elements customarily

discarded as rejects, adding it to another element with a high Z parameter.

3. At high temperatures we were limited in selection of a heat-resistant
semiconductor material; then we could use even metal or metal-like arms with
low values of a, and consequently, of Z. Additionally, as shown in (18],
substitution of the semiconductors with metal promises a whole series of

other advantages.

Let us now turn to a brlef exposition of the essentials of the problem

formulated.

Beginning with formulas (2-5), we obtain expressions fcr the thermo-
electric parameter Z = azo/A of the matrical system for the case of low
concentrations of inclusions (V2 < 1) and for the case of low matrical phase
concentrations (\'l < 1), and we also calculate for each of these cases

optimal component concentrations at which the value of C reaches an extremum.

To calculate the variable, dZ/dV is conveniently expressed in the form

2 .
a“0/\; then after transformation we obtain the condition of extremum in the

form

AAE ~AGN 20 0a'=0 o

The values of a, 0 and X were obtained by simplifying the original formulas,
in which it was taken into account that when V2 <1, V% = (0, and when V1 <1,
Vf ~ 0. The values of o', o' and A' were obtained by differentiation of the

starting formulas, where members containing V2 were dropped in the results.

Thus, we have the following.

1. For the matrical system at low inclusion concentrations

90' 7(1(0(1"“1)
A = o, + 2 V.
(261*62X2)1’10 o

= = 3<T1(63 '5\)
6 = 6, T v,
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A=A, + 3.0y = 20) V,

)z r) A‘

1'
|
1
90, M (otg=dts) j
d = (20‘\'60(27‘: Ay ‘

:

4

! = 361 (61_' O'Q 601(5'2 0) V |
61 *269 (cz"' 261)2 : |

G;

.)\'= 3.7\ (7\1 Ai) 67‘ (]lz

As)
A, * 21, (a v2A,) v

2. For the matrical system at low concentrations of the matrical phase

|
: (V1 < 1):
|
| CREACEIRTAS
| A A, 2 3 'gi_.
I 36QA‘ V‘
| - (61 6)(261‘6)
; 0 = 62 23 Lo ) g Ve
|
, ‘A = }‘Z + (34‘113)()\2:\1 *2,) v, ' '
dl 3 __(dq 'dq)(ZG\AL" G; 7\9.) -
36,2, . ' |
- 2(“1'“&_{&6{%4"61153 YV }
9

| g e ar

6-' (64 6;)(26‘ *j ggG, 63) (26! sz
36

96'3. 1
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The reduced expressions were substituted into equation (9).

the following results:

1. For the case (V2 <1)

V, e (0,2 26000, 22 ot (A2 X6, - 26 -
"By~ 62,2 20,)- 62, 6,00, -a )} A

A=(2,-21)6,-6,)M = (A2=2)(6,+26,)N+
186, A (o~ )K
M 296, Aaloy ~ohy) 3k (A3~ A, )6, 26,) +
«-0‘ (52 61)(]\2 2)11)
N =96, 01(ctg-he) +3ct, (6, - -60(1,+ 22, )*
* 2, (h )(1)(0'9."26')

= (hz")h)(@_z*?.eﬂ)*(ﬁz- 61)(7‘1‘ 210

x _o\qG QX104 (200: 644 =k (BaA 1)~ 1,6y Ap
Ay A, (06,4262, 22)

2. For the case (Vl <1)

V:n“{sﬁ'tsa)‘\[& 6, % (s IRICIRDIED PP PN (6,-0y)
(26, +6,) - 26, A, (o4 =60 26,4, 'b‘ahﬂ]}

B = 2,(0,-6,)(26, 7 0)M, = 6,6, (2= 2 )(2Ar 2N
Y26(a, ~dg 26,4, * 0p A1 K,
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M, =20, 6, A,1,(0,-6,) * 6 A (o, -

0(‘)(2 C.l"s; )g)"
dz 6| 62 (A1 = 1;)(2)1 * 2) )

=242 6,6, (A0=2)+ 6, (-, (26,2, + 6, A )
*qz (6' 6 )(261 ’6‘:)

Ky =6,6,(2,-2 22X+ 2,) » 2,2, (6, - ~0,)(26, +6,)-
26,2 2 (26214 +6,2,)
z =SS, AW |
D 3 a,(26,2,+6,2,) (24,6 A=

(13)
-, 0, Rz “zszhﬂ

Below we give the solution to the problem for the more complex three-

comp.n- nt system. As we know, the general expression for the system

consisting of any number of phases i is of the form [18]:

(14)
> A+2A¢ 20

here Ai = generalized conductivity of the component phases of the system,

Vi their bulk (in percentages or fractions of unity, since V1 + V2 F ke
Vi = 100 percent or 1) content in the system, ®nd A = generalized conductivity

of the system as a whole,

We must understand by Ai and A the coefficients of
thermal conductivity and electroconductivity, dielectric permeability, thermo-
electromotive force, the Young modulus, shear, etc., for each of the compon-

ents and for the system as a whole, respectively.

We will use formula (14) )
for the system i = 3.

Thus, we are referring to finding a function of the
form:

A 1F.(A1)Agv A"'V"'Vs)

(15)
It is easy to see that the task reduces to solving the equation
A1 A Az A (16)
NaA A ST '2AV’
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Omitting all the intermediate operations, we present the solution of
{ (16) in the finished form; it will reduce to the following equation:
r IR
=\"q+Vqt-p* ~ig-/gTepT "3«
)
‘ Here we list the following symbols:
. 08% b __d (18)
i ’ 9 T T Ear 24
b
ac - b/
p=2-3143 (19)
A =4 (20)
b=-(n,V,*nV, +n,Vs) (21)
¢ ==(m,Vy +myVy +m, V) (22)
d='A-.AzAa (23)
: my = 200, Ay (20~ A,) (24)
b Ma = 200 A28, A )
i (25)
my =2A0,*A(2A,-A) 26)
n, =2(2A,-A,"AY) 27
b Ny =2(24,7A,74) o
My =2(2A-A,-A,)
! (29)
| 4
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We will give a number of examples in which it is possible to use the
formulas (17-29).

The first task in calculating coefficients of electroconductivity g,
thermal conductivity A, thermoelectromotive force a and thermoelectric

efficiency Z of three-component alloys. The values of o and A are found

from formulas (17-29) by simple substitution of the values A and Ai’

respectively, by ¢ and 9y and by 2 and Ai. As far as the value of a is

concerned, below we present the results of its calculation

A = d|6|rt *dgez rﬂ. ¥ 0‘16‘) f’

1-26(f+ rae ) (30)
here:
s 2(6»%?(‘2.\;‘}1,) (31)
2 = (26~?5':;(Z;+M) (32)
i (2.;*;’:)\(\;3%7\3) (33)

From here it is easy to find the values of the thermoelectric efficiency

Z, where X and ¢ are found from formulas (17-29) and o from formulas (29-32).

The second task is to find visible parameters of the third phase known

from characteristics of two components and from measurements of the effective

values of the entire three-component composition. In this case it is possible

to formulate three equations: one equation (17) in which A is measured; a

second equation (17) [sic =-- Tr.], in which o 1is measured and Al and AZ are
known; a third equation (30), in which a is measured and Al’ Az, 9y and 9y
are known. As a result, the task boils down to calculating three unknown
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parameters A3, 94 and g from data of measurements of A, 0 and o and based

on the earlier found characteristics A Az, 01’ 02, al and ¢ ..

1’ 2
Naturally, this task reduces to making the following functions explicit

oAy - .
6;:} ={(d‘0dl'6h 61.’ R‘pha; d. G.,),VQ..Vg'V‘).

and can be solved also in the following two versions:

&y
0.1 = { (dz.l ds'l 62;6"’ kz.' /\3', G‘G' l,v‘.Vg.V)
A

and
Ao

Gy = ”“1""‘3"6&53;/1,'- Ay, 6,2,V Vi V)
A . .

~

The third task is determining the percentage content of a given component

! in the mixture.

In this assignment we are faced with the problem of calculating the bulk

! fraction of any of the phases in the overall compound based on measurements
for earlier set characteristics of the phy'sical parameters both of the entire
' mixture as well as of its components. It is precisely here that we must find

out what the porosity or moisture content of the materials is.

Since we know that V. + V, + V_ = 1, to solve the formulated task it is

1 2 3
+ necessary to know the following values: «a, 0, A, ais Oy Ai’ Vi_1 and V1-2'
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Symbols
A, Al, A2, N Ai = general conductivity of the entire system and of its

components; A, Al’ AZ’ 0o0D Ai = ag above, for the coefficients of thermal
conductivity; o, Gps T ooy o, ™ as above for the specific electroconduct-
ivity; a, @py Gpy eeey 3y = as above, for the coefficients of the thermo-

electromotive force; Z, Zl' 22, Sexcls Z1 = ag above, for the parameters of
thermoelectric efficiency.
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PROBLEM OF CALCULATING TRANSPORT COEFFICIENTS FOR GASES

G. F. Shaykhiyev and A. G. Ustanov

Thus far @ considerable amount of experimental material has been
accumulated on transport coefficients of gases that are comprised of molecules
of various forms, symmetries and polarities. However, only a small amount of
this material finds agreement with calculations according to the following

equations:

D = 26230 T3/

ps T '1d7 1)
PerQ“ " (T7)
VT 7
7 = 266,93 6 OO (T%) 0, (&
A 1989,1 0_29(22)*(.‘_ o) 10 3)

derived on the basis of rigorous kinetic theory of gases [1, 2].

The observed disparities between the results of measurement and calcula-
tions are accounted for mainly by the lack of a realistic model of inter-
molecular interaction necessary in determining collision integrals. The
nature of change in collision integrals calculated based on idealized models
and according to equations (2) and (3) based on experimental data for the
transport coefficients is shown in Figures 1 and 2. These curves have been

plotted in the coordinates 9(2'2)(T) and T for Ar and CO Here are also

2.
presented curves of the potential functions obtained based on viscosity data,
and the curves for the Morse and Gugenheim-McGlashan potentials -~ from data
of crystalline structu.'e and to the second virial coefficient. 1In most cases

agreement between experimental and calculated collision integrals of momentum
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transport (Figures 1 and 2) is observed. When these are used as the starting
point in measurement of thermal conductivity, deviations increase as the
molecule becomes more complex, starting with argon and extending to carbon
.dioxide gas. The latter evidently is accounted for by the increment in the
neglected influence of internal degrees of freedom on the process of energy
transfer. There is little experimental data on self-diffusion coefficients,
therefore it is difficult to make an analogous examination. Experimental
values of the collision integrals of momentum transport agree with those
calculated from many potential functions for the gases under study at
dtmospheric pressure. In describing the collision integral of heat transport
allowing for the effect of internal degrees of freedom, we did not have
available the appropriate potential functions. Selection of interaction
potentials is even further complicated with increase in valency, change in
polarity and in molecular form. It was of interest to search for ways of
reducing the number of variables in calculating collision integrals of mass

transport, momentum transport and heat transport.

Earlier [4], starting from statistical considerations, the following

criterial equation was obtained:
- =Sy :
Upn = ¢ (552 ) (4)

which was used in generalizing experimental data on transport coefficients

in gases and liquids. Here, only the valency of gases was taken account of as
a condition of unambiguity in the first studies, and later the simplex St/R’
reflecting individual characteristics of molecules participating in the
process. The form of the function ¢ in (4) proved to be dependent on the

form of transport and the number of atoms in the gas molecule. The function

(4) is easily presented in the following form applicable to thermal conduct-
ivity:

Asese o T - oS (5)
b 2
}'\ AS 'I" = T1 SQ ’
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Experimental data on transport coefficients hrave been satisfactorily
generalized on the basis of (4). Therefore it was of interest to compare the
functional relationship (4) with the expression for the relative value of any

transport coefficient obtained on the basis of rigorous kinetic theory. Let

us take the thermal conductivity as such a coefficient, because it gives the

greatest deviation from experiment and requires introduction of the Euchen

correction for polyatomic gases. For temperatures T and Tl, we obtain:

A (TN QI (T
T "('F.') QDR (T W)

(6)

Experience in the application of (4) and (5) shows that they allow us the

oppertunity to calculate coefficlients of thermal conductivity based on

gencralized functions plotted for a group of gases. From this it follows that

¢(S/Sl) in equation (5) must be equivalent to the multiplier

(2.2)*

a2 =5

(T /9

in equation (6). Therefore it can be anticipated that replacing the reduced
collision integrals in (1)~(3) by the entropy function must preserve the
possibility of their application in calculating transport coefficients.

Starting from these prerequisites in equations (1)-(3), we replace the reduced

integrals by the relationship:
I Gt m
Qr6) = (a 5>

Then instead of the reduced collision integrals, QB(S), Q:(S)
enter into (1)~(3), respectively,

7 VT3/M
b= S i -7
26280 5ryrrgy 107,

@

and Q;(S)

(8)

e o M A




- VT ™ et (9)
) = 26@93~——-—GQQ~——~;(5) 107
VT/m -
A =19891 ——Fr— 10 - (10)
625 (s)

In order for equations (8)-(10) to be applied in calculations, it is

necessary to determine the exponent n in (7).

results obtained.

Table 1 presents
From these results it follows that the value of the expon-

ent depends on the kind of transport and the number of atoms in the molecule

(an exception is He and Ar).

temperature range investigated.

equal 1.5.

It is retalned constant throughout the entire

We note that in these calculations the interaction diameter ¢ is

taken in each case as constant and equal to such in the Lennard-Jones (6-12)

potential. 7Table 2

for Ar, N2 and C02.

Table 1.

presents by way of example numerical values of ¢ and e/k

Exponent As a Function of Kind of Transport and Valency

Kind of Transport b

“Exponent based on equation (7) ~
i Ar 2 CON, 0, Hy:(0,,50,,0! CH : Cq He

He

Self-diffusion
Viscosity

1,50 I,60 1I,50 1,50 1,50 1,50

1,20 1,35 1,20 I,50 0,50 1,40
Thermal conductivity 1,50

I,l5 I1.80 3,00 4,00 4,00

Table 2. Force Parameters for the Lennard-Jones (6-12) Potential
G ViSCOSitYiThermal conductivity pjiffusion
as ,
& Elw & €/ i 6 E/x
Ar 348 1I6 348 116 348 1I6
\PY 3,76 78,6 ° 3,60 31,4 3,63 79,8
CO, 4,18 16 3,85 213 4,00 200
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As Table 2 shows, force parameters change when we go from viscosity to
thermal conductivity or diffusion. This has been taken note of also in (1,
13, 14)]. Reduced collision integrals of heat and momentum QK(S) and
Q:(S) are generalized for valency as a function of temperature by multiplying
them by some constant b, which proves to be similar in magnitude to the inter-
nuclear distance re [15] (Figure 3). Thus, use of =zome entropy function
instead of model collision integrals gives better agreement with experiment.
The validity of the assumptions stated can be demonstrated also by the example
of polar gases. Let us take water vapor. Its coefficients of viscosity and

thermal conductivity have been investigated for a wide range of temperatures

and pressures [6].

Figure 4 presents the results of calculating collision integrals from
equation (7) and from the Stockmeyer potential [10]. Table 3 presents the
values of o and.n at various pressures. It must be noted that the values of ¢

drop off with rise in pressure, and that the exponent n approaches unity.

Table 3. Parameters of Water Vapor for Calculation According to Equation (7)

P n, 0y n, (51

1 3,0 3,93 5,0 7,88
109 2,0 3,56 3,0 3,41
200 1,0 * 3,39 2,0 3,205
300 1,0 3,33 1,0 2,87
400 1,0 3,28 1,0 2,80
500 1,0 3,23 1,0 2,27

At supercritical pressures, 1t proved necessary to select data relating

only to the vapor phase. The curve of heat capacity maxima was adopted as the

provisional boundary between liquid and vapor.

Coefficients of viscosity and thermal conductivity of water vapor were
calculated from data in Table 3 and from equations (9) and (10) at pressures
100, 200, 300, 400 and 500 bar and temperatures 700-1000°C, that is, in the

range of those parameters for which there are as yet no support data
(Table 4).

-238-

e b ci B =

ek A




-~

e S

N = et

Table 4. Transport Coefficients of Water Vapor at High Parameters

" Viscosity,

Thermal conductivity 5

P -
g/cm*8e€c 1078 calorie/cm-sec °K 1077,
T 100| 200 300 [400 500 | 100 | 200 {300 {400 | 00
1075|306 | 405 | 426 [aus |469 |28,3]29,9(32,3 [35,1 |58,z
1173 | 420 435] 456 |48 |sor |31,2|32,7|34,6]37,7 41,2
1273 | 451! ue0| 484 {506 535 | 34,3 35.1 36,9 (40,1 43,7

Thus, use of some entropy function in place of model collision integrals

makes it possible to employ with no less success equations »f rigorous kinetic

theory of gases in calculating transport coefficients.

Symbols
D = self-diffusion coefficient (cmZ/sec); n = viscosity coefficient

(g/cmesec); A = coefficient of thermal conductivity (calorie/cm-sec °K);

T = absolute temperature (°K); P = absolute pressure (bar); M = molecular

*
weight; o = interaction diameter (A); 9(2'5) (T*) = reduced collision

integrals; T* = kT/e =

(ergs); k = Boltzmann constant; Ur

reduced temperature; ¢ = depth of potential depression

el

= relative rate of process, which as

applied to thermal conductivity is taken as the ratio of heat fluxes qS-S4

and mass flux Qg corresponding to change in entropy at the boundaries S and

§. and AS = S

i 1785 q‘_s.u}s_,‘('r-‘l‘,);‘ Qus=das(Ty =T Ag_g. and ). = mean

coefficients of thermal conductivity; T, Ti, and T

ing to the entropies S, S.' and §

1

1’

1

1° temperatures correspond-

S = absolute molal entropy of the gas;

R = universal yas constant; a = dimensional constant in equation (7), found

to be equal to unity; QE(S) = reduced collision integrals with respect to

entropy, where L0 denotes the kind of transport; re = internuclear distance

(A); ¢(r) = potential energy (ergs).
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Figure 1. Collision integrals of heat transport and momentum

! ransport 9(2'2)(T) of argon as a function of temperature T (°K):

1, Buckingham (epx-6) potential (1]; 2, Lennard-Jones, (6-12)
potential [1]}; 3, Model of potential deYression (8, 9]; 4, Gugenheim~-
McGlashan potential [7, 12]; 5, Kikhara' potential [7}; 6, Morse
potential [11]}; 7, Solid sphere model; 8, Experimental viscosity

data [5]; 9, Experimental data on thermal conductivity [5]

1)

i 2 w1 | -
EEEN 3‘-\{(1__ 11z “ T ;v— ‘F
_Eh'D__L_I}___ N \.Eﬂ.:‘;_ 5‘?: 1 2 bius & -‘:E]'
20} - L 1— 5-—':[ 20 bl
_._..Ez:q L}.__l\ HER z. : ‘L- ..1“
180 --H-?r—-—--—\\. - ~ :;'r S
| {——- . 1 N
{5 SASS Sam-nm:mn
4 ®~-3 : il 7 =
T i e [ RS
ﬁ.n — e groam :_‘.T:|=.':_‘.:._.'.' == — I._,:.:'..,._
3oL [ —---LJ_ 0 3

0 WD 200 300 WO 500 (89 700 €00 900 T
Figure 2. Collision integrals of momentum transport and heat

transport 9(2'2)(T) of carbon dioxide as a function of temperature
T (°K): 1, Lennard-Jones (6-12) potential {1]; 2, Square well
model [8, 9]; 3, Sutherland model [1}; 4, Morse potential [11];

5, Experimental viscosity data [5]; 6, Experimental thermal
conductivity data {5]; 7, Solid sphere model.
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Figure 3. The quantities bQ:(S) and bQi(S) (cm) as a function

of temperature T (°K) for diatomic and triatomic molecules:
1, N, (re = 1.094 A); 2, CO (re = 1.282 A); 3, 0, (re = 1.278 R);

4y H, (re = 1.260 A); 5, N,0 (re = 1.186 A); 6, S0, (re = 1.110 A);
7, €O, (re = 1.162 A).
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Figure 4, Collision integrals of heat transport QA(S) and
momentum transport Qn(S) of water vapor as a function of temperature

T (°K) calculated from equation (7) and Table 3. Experimental

data in [5, 6]: 1, 1 bar; 2, 100 bar; 3, 200 bar; 4, 300 bar;

5, 400 bar; 6, 500 bar; 7, Collision integrals of momentum transport
Qn(s); 8, Collision integrals of heat transport QA(S); 9, Stock-

meyer potentials [10].
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Footnotes

1. To p.240 Transliterated from the Russian -- Tr,
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