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Papers of the Ail-Union Conference on Heat and Mass Transfer (May 1968, 

Minsk), devoted tu physical parameters of heat and mass transfer, are presented 

In this book. An examination Is made of the present standing of analytical and 

experimental methods of determining thermophyslcal properties of compounds, 

Instruments and equipment are described, and results of research on thermal 

conductivity and on the temperature coefficient of thermal conductivity, heat 

capacity, thermal diffusion, enthalpy, and viscosity of various systems (solid, 

liquid, gaseous) are also presented. 

The book Is written for scientific coworkers, graduate students, and 

engineering and technical workers In heat and mass transfer. 
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PART      ONE 

ANALYSIS OF THERMOPHYSICAL AND TRANSPORT PROPERTIES OF COMPOUNDS 

V. Ye. Alemasov, A. F.  Dregalln, V.  I. Bychenok, 

and V. N. Trlnos 

EFFECT OF PARAMETRIC ERRORS IN POTENTIALS ON EQUILIBRIUM 

COMPOSITION AND PROPERTIES OF MIXTURES OF REAL GASES 

DETERMINED BY CALCULATION 

The virlal-form equation of state Is widely used In the theoretical deter- 

mination of properties of multlcomponent mixtures. 

The molecular-kinetic theory of gases makes It possible to determine 

virial coefficients for components of a mixture If the inter-molecular poten- 

tial function of interaction is known.    The actual pattern of Interaction here 

Is described by an analytical model  (potential).    But at present reliable data 

on potential parameters over a wide range of pressures and temperatures are 

lacking for many compounds.    This reduces the reliability of calculated values 

oi thermodynamlc properties of gas mixtures. 

Difficulties encoun'Lered in the direct experimental verification of the 

validity of a chosen model of interaction are well known for multlcomponent 

reacting mixtures at elevated temperatures  (1000-2000oK).    Therefore, we have 

chosen the analytical approach in estimating the Influence of errors of poten- 

tial parameters on thermodynamlc properties of gas mixtures. 

Most often,   the interaction among mixture components is approximated by 

models of Sutherland,  Lennard-Jones (12-6j, and Buckingham -- for nonpoxar 

components, and for polar components -- by the Dtockmeyer potential. U3e 
any of the potentials cited is governed bothi oy the precision essential 
Tor a description of the experimenta]  results, and also by the availability 

of necessary constants.    The latter requirement often determines the choice 

of model in calculating properties of reacting mixtures. 

Convenient models of interaction In this respect are as follows: 

the Lennard-Jones potential  (12-6)  for nonpolar molecules: 

u^zi&r-mn, a) 

rTD-HT-23-820-68 -2- 
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and the Stockmeyer potential for polar molecules 

u*4e[(-?-rM-m^ (2) 

Potential parameters a and e/k can be determined from experimental values 

of viscosity,  thermal conductivity, and compressibility.    In the absence of 

necessary data,  the following relationships are recommended in  [2,6,10]: 

,5/11 5/6 ff= 0,561 (Vcr1.      £/K =1.77(rc)"
6, 

-r7rN(ys*2.0V5, C/K =1.l5l"t)\ 

(3) 

(4) 

3-^6^2.3^.    £/* = 1,92 Tn 
(5) 

where v ,  T  , v, ,  T. , v ,  and T    * values of the molar volume and tempera- ccb'b'nr m 
ture at the following points:    critical, boiling, and melting. 

As was shown by a verification of the precision of formula (3), undertaken 

by the authors in [6], the error in determination of a and e/k for a homologous 

carbon series is less than 3.1 and 10 percent,  respectively. 

In this present study,  the properties of a mixture of real gases of average 

density are determined by use of the potentials  (1) and  (2).    Therefore, only 

paired interactions were used in the calculation.    Potential parameters of inter- 

action of oppositely charged particles are  found by empirical combination rules: 

%*■?(<*{ + o«),     (£/KJij= JUhdvUMl (6) 

The values of a  and e/k obtained by different authors  [2,7,9,10]  based on 

the methods  listed were used in the calculations. 

The following causes of errors in calculations stemming from use of poten- 

tials are as  follows; 

1. Force constants of the potentials a   and e/k were determined in approxi- 

mate terms  for several compounds and can be further refined. 

2. Calculations at temperatures higher  than 1000oK for most  compounds pre- 

suppose extrapolation beyond the limit of the experimental determination of the 

constants   o and e/k. 

FTD-HT-23-820-68 
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3. At high temperatures, we can expect lack of agreement of the shape of 

the actual potential function with the Lennard-Jones potential and the Stock- 

meyei potential. 

4. For several compounds, the force parameters were obtained baaed on 

experimental viscosity data, but these values do not always afford good preci- 

sion in calculating the second virlal coefficient. 

All these factors can with some approximation be identified with errors 

caused by use of "imprecise" values of the constants o and e/k. In determining 

the effect these errors have on the end result of calculation, we can artificially 

set potential parameters differing from those adopted, calculated the main thenno- 

dynamic properties of a mixture of real gases, and find th*  relative deviations 

of  real gas properties from ideal gas properties. We varied the values of a  and 

e/k by ± 10 and ± 30 percent. 

The range of variation of o  and e/k by ± 10 percent for several compounds 

corresponds to the data in [4,5], where a model with the variable o and e/k 

varying as a function of temperature within the limits ± 10 percent is suggested. 

The authors developed the following version of a calculation of chemical 

equilibrium of real reacting mixtures. As we know, the composition and thermo- 

dynamic properties of an equilibrium reacting closed system do not depend on the 

path followed In reaching this equilibrium. Let us assume that for several given 

values of p and T the equilibrium composition is determined, and the number of 

moles of mixture components n. has been found. From our state with pressure p 

and temperature T, we can formally advance to the state p* -► 0,T, keeping the 

mixture composition unchanged.  Though for a closed equillbratedly reacting 

system, such a transition is unrealistic in practical terms, nonetheless it 

gives us an opportunity to employ relationships that are valid for closed systems. 

Let us Integrate with T « const and n. - const the following equality: 

d5=[v-T(|-f)p]cip. (7) 

We get an expression for the enthalpy of the mixture: 

p 

0 

where the index (*) refers to the function of a mixture of ideal gases. 

, II«I »mat i  rfTk 
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In a similar way, we can obtain relationships  for any thermodynamic 

functions.     We will present  the most important of them: 

entropy 

o (9) 

Gibbs'  potential 

P 

^CpT.np^VT.n^fCv-Oclp, (1o) 
0 

chemical potential 

9j = <pM(vv,f)dP- (ID 

We will recall that integration in equations (8) - (11) is carried out at 

constant composition- 

The derivation of  equations   (8)  -   (11)  is not restricted  to any equation of 

state,   therefore we used them to determine thermodynamlc functions and properties 

both of real gases as well as,  in a particular gas,   for ideal  gases. 

In deriving equilibrium equations, we will use the procedure suggested by 

Gibbs; we will consider the closed system as the totality of several open sys- 

trms.     Then the condition of equilibrium at p and T = const can be written as: 

Stfj dnj *0. (i2) 

We take atoms as  the base components.    In this  case,  the condition   (12)  Is 

written in the form: 

((>  - ZQijtp. wO, 
(13) 

To determine the composition and properties of the reacting mixture at 

specified p and T, it is necessary that the system (13) be supplemented by equa- 

tions of the conservation of matter: 

Zalqn<< - hT bit ■ (14) 



•  ■^■f« 

As the closing equation we use: 

?a:''1 (15) 

Introduction of tae number M- in the equality (14) is founded on the follow- 

ing, considerations. From the condition of the conservation of mass we can write: 

/tTMTv*N. (16) 

Since at given p and T 

then 

Mr^COnstN. (18) 

So, we can select the value M_ such that the following condition is met 

N ^ Pcmcti , (i9a) 

n *o (19b) ni    Ft H 

The relationship  (19b)  is especially Important since it allows us to introduce 

into the equation of chemical equilibrium (13) n,  as the unknown number of moles. 

The system of equations, consisting of (13) - (15), affords determination 

of the composition, thermodynamic functions and properties both of real and of 

ideal reacting gas mixtures. 

In calculating the composition and properties of mixtures,  the following 

equations of state are used: 

pV «NRoT (20) 

for  ideal gases 
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pV = N R0T ■C^T) (21) 

for real gases, 

TABLE 1 

Deviations of      ideal-'^real,  percent,  at 

*ideal 

a Press 

L parame 

£/i<,+30 

ure of 500 Bars,. 

quantity r0K change in potentla ters, p« 

6* ,-30 

•cent 

cp G.tJO £/K,+I0    6" ,-10  f/*,-10    ^,+JO £/K ,-30 

.1 
eoo 

1000 
1200 

- 1,97^   - I,M0   - 1,135    - 1,137   - 3,175 
- 1,228   - 1,241    - 0,71 A - 0,6763 - 1,962 
- 0,6171 - 0,7067 .- 0,36fi5 - 0,265'i - 0,9951 

- 2,950 
-1,909 
- 1,205 

- 0,5996 
- 0,3916 
- 0,2168 

- 0,4939 
- 0,190? 

0,1195 

5 
eoo 

1000 
I2O0 

~800 
1000 
IZQO 

2,lit       1,913       1,191        1,3'tJi       i,H^ 
1,221       1,075       0,6G55      0,753.9     1,9m 
0,1m     O.CWi     0,3957     0,4616"    1,169 

2,652 
1,412 
0,7925 

0,5991 
0,3466 
0,1978 

O.SOII 
0,5536 
0,3258 

cP 

- 20,51   - I9,CJB   - 11,48    - 15,91   - 33,53 
-7,369   -6,767   -4,205   - 4,6';7   -11,79 
- 8,373   - 7,261    - 4,763    - 5,620   - 13,33 

- 29,47 
- 9,700 
- 9,212 

- 5,722 
- 2,137 
- 2,391 

- 7,838 
- 2,970 
- 4,233 

Q 

800 
1000 
1200 

- b,068   -3,746       4,069-8,211   -17,85 
-10,91    -6,531    -5,534    -9,169   -19,12 
-11,04   -7,376   -5,7%    -8,679   -18,73 

1,824 
- 3,561 
- 5,676 

- 1,216 
- 2,192 
- 2,469 

- 12,59 
- 11,39 
- 10,15 

TABLE  2 

Mole Fractions of Ecuilibrium Composition,     p «  5U0 bars,  T « 800oK. 

change  in po teatial p arameters, percent 

O", »10 

0,04877 

£/K , tlO 

0,Cy»BG4 

Q", -10 

0,04851 

V
C
VK, -10 

0,04842 

CT. +30 

0,04928 

£ A , +30 6 , -50 f/K, -30 

CHt 0,04888 0,04797 0,04825 

CO 0,00148 C,C0I«)9 0,00147 0,00145 0,00150 0,00156 0,00145 0,00144 

CO, 0,?0499 0,20504 0,20525 0,20520 0,20469 0,20464 0,20544 0,20532 

H» 0,00762 0,0080? 0,00929 0,00891 0,00572 0,00711 0,01064 0,00962 

HaO 0.405J2 0,4050£ 0,40413 0,40440 0,40666 0,40670 0,40325 0,40390 

N. 0,33181 0,>3IV4 0,33154 0,33160 0,33213 0,33189 0,33133 0,33149 

-    ii ■- ^ 
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Table 1 shows  the effect of errors In potential functions on    I,  S,  c  , 

and a for combustion products of a mixture that has the starting conposltlon 

CLHpN,,    + 1.6N.0,   [11] at a pressure of 500 bars and a temperature range of 

800-1200<,K.    Table 2 presents mole fractions of the equilibrium composition of 

a mixture of real gases with change In potential parameters at a pressure of 

500 bars and T - 800"K. 

The calculations were made on the Ural-A electronic digital computer. 

Thermodynamlc functions of Individual compounds were calculated from polynomials 

approximating the tables In the handbook  [3],    Vlrlal coefficients of nonpolar 
dB* ^ d^B* 

molecules and also derivatives of the form T*(-T=-). T* (.-■>  ) were determined 
di dl 

from polynomials approximating the tables In  [2].    The program for the elec- 

tronic digital computer makes It possible to determine the composition and 

therrmidynamlc functions and properties for compounds of the classes C, H, F, 0, 

and N — elements of an arbitrary starting composition. 

Based on results obtained, we can draw the following conclusion: 

1. The nature of variation In deviations as a function of do and Äe/lc  is 

practically the same for all thermodynamlc functions. 

2. With temperature rise, the "Imprecision" of values of potential para- 

rasters has less and less of an effect on the final result.    Evidently, we can 

expect that at temperatures higher than 2000oK the effect of a and e/k will be 

shown quite insignificantly. 

3. If we assume that the error in the values of cr and tfc.  of the main 

components does not exceed 10 percent,  then the values of the deviations of 

properties of real mixtures from those of ideal are determined with an error 

of  20-30 percent. 

A.    Variations  in potential parameters have a weak effect on the equilibrium 

composition of the mixture under study. 

o,  e/k, and C = parameters of potentials; n    = number of moles of  the j-th 

as  stoichiometric reaction coefficient; B ■ second vlrlal coefficient; b. 

Symbols 

:entlals; 

component; v = specific volume; V ■ total volume; a = velocity of sound, as well 

as stoichiometric reaction coefficient; B ■ second vlrlal coefficient; b, 

number of atoms of the i-th chemical element In the original compound; c * 

specific heat capacity at constant temperature; H^." Glbbs potential; "J   • total 

enthalpy; i = atomic component of mixture; J ■ molecular component of mixture; 

-8- 



M^« arbitrary number of moles of original compound; N " Avogadros number; 

n - total number of moles in mixture; x, ■ mole fractions of combustion products; 

p - pressure; q - number of mixture components; R = universal gas constant; r ■ 

inter-molecular distance; S = entropy; T - temperature; T* * reduced temperature; 

u = potential energy of interaction; p , y = molecular weight of original com- 

pound and molecular weight of combustion products; (jj . « chemical potential; in 
J 

Table 2, the mole fractions are denoted by chemical formulas of the compounds. 

■ i^ -   M    il tbhaM m tm 
J -— - 



References 

1. Vukalovich, M. P. and I. I. Novikov, Uravneniye aoetoyaniya real'nykh 

gazov  (Equation of State of Real Gases), Moscow,  1948. 

2. Hirschfelder, J., Charles Curtis,  and R. Byrd, Molekulyamaya teoriya 

gazov i zhidkoetey    (Molecular Theory of Gases and Liquids), Foreign 

Literature Publishing House, 1961. 

3. Gurvich, L. V., G. A. Khachkuruzov et al., Termodinamiaheekiye avoyetva 

individual'nykh veshoheetv, Spravoohnik    (Thermodynamic Properties of 

Individual Compounds.    Handbook), Academy of Sciences USSR, Moscow,  1962. 

4. Kessel'man, P. M.  and A.  S. Litvinov, IFK, Vol.  10, pp.  385-392,  1966. 

5. Kessel'man,  P.  M.  and S.  K.  Chernyshev,  TVT,  No.  5,  pp.   700-707,   1965. 

6. Thodos, G.  and S. W. Flynn, Am. I.  Chem. Eng. Journal,  Vol.  8, No.  3,  1962. 

7. Brokaw, R.  S., Alignment Charts for Transport Properties, NASA, R-81, 1961. 

8. Hadgman,  C.  E., Handbook of Chemistry and Physios, Z7th ed.3  Cleveland. 

9. Monchick, L.  and E. A. Mason, J.  Chem.  Physios,  Vol.   36, No.   10,  1962. 

10. Svehla, R. A., Estimated Visoosities and Thermal Conduotivities of Gas at 

High Temperatures, NASA, Rep.  132,  1962. 

11. Grolecki,  G. J.  and S. Tannenbaum, ARS Journal, Vol.  32, No.   8, 1962. 

Kazan'   Aviation Institute 

-10- 

—  -■■----■-       A -... ..^.  ,. . ..->-   _ ->  ..-. —^ d-^-—.—.—-. mtmi^m^^t 



 r 

THERM0PHYS1CAL PROPERTIES OF COMBUSTION PRODUCTS 

OF CERTAIN CHEMICAL FUELS 

V.  Ye. Aleraasov and A.   F.  Dregalin 

It is necessary to know several thermophysical properties of a mixture to 

describe gas dynamic and heat exchange processes  occurring at elevated temper- 

atures with a reacting working body:    heat  capacity at constant pressure and 

constant volumn,  velocity of sound,  transport properties  (coefficients of vis- 

cosity and thermal conductivity), and others.    Due to the limited numbar of 

existing ways of experimenting at elevated temperatureo, all the more so for 

corrosive combustion products of chemical fuels,  the avenue of theoretical 

calculation becomes  especially important and at  the present  time is evidently 

the main approach in determining the thermophysical properties of a mixture. 

But when applied in calculating equations of  thermodynamics and the molecular- 

kinetic  theory of gases,  several simplifying assumptions are employed  (for 

example, in writing  the equation of state and in selecting the model  for inter- 

action of mixture components).      This  introduces into the values obtained by 

calculation some indetermlnateness,  especially as  to the value of the  transport 

coefficients.     Therefore,  an evaluation of the effect errors  in theoretical 

values of thermophysical quantities have on heat exchange properties  is  of 

practical interest and at  the same time governs  the acceptability of  theore- 

tical methods of  calculating properties. 

This article describes methods of determining  chermophysical properties 

of reacting combustion products of chemical fuels.     These methods have been 

used by the authors  in a universal program for  the M-20 electronic digital 

computer in getting calculation data for different mixtures. 

The groundwork  for calculating  thermophysical properties of combustion 

products is a determination of the equilibrium state and derivatives under 

different sets of conditions.    In most of the  cases  that are of practical inter- 

est,   the problem boils  down to determining the equilibrium state and its  corres- 

ponding derivatives  at known temperatures and  pressures. 

The system of equations of thermodynamic  equilibrium when atoms are used 

as  the base componentb  is written as  follows: 

■11- 
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in Z pj » £A p , 

where VL, » number of moles of fuel ensuring the equality 

Solution of  the system (1) by the mnaertcal method in [1] determines the 

equilibrium composition of the combustion products. 

To find the particular derivatives of the form [c^Cnm) /.Cljj'Jrti)      It is 

necessary to appropriately differentiate the system (1) and substitute calculated 

values of n.   and n   . 

Now several of the most important properties of the working body can be 

found from customary thermodynamic relationships: 

equilibrium heat capacity at p * const 

(2) 

equilibrium heat capacity at v = const 

l   öCnp Jj 

(3) 

equilibrium velocity of sound 

a!z-£tt  R 
'  ^ * UWfU 

(4) 

On the assumption of the constancy of composition for an inflniteslmally 

small variation in temperature and pressure, we can determine the frozen proper- 

ties: c r  , C  ,  and a? ^ . 
p-froz   v-froz     rroz 

-12_ 



The transport  coefficients of the mixtures — viscosity and  thermal con- 

ductivity — are found from the formulas  of  the molecular-kinetic theory  [2]. 

The component  of  the  thermal conductivity coefficient caused by  transfer 

of  the heat of  chemical reactions,   \      is of particular interest.    A general 

formula for determination of A    has been advanced in   [4],    With a few modifica- 

tions,  this  formula was used by us in making  practical calculations. 

The most difficult  task in obtaining  transport  coefficient by  calculation 

was selecting the potential of interaction among mixture components when they 

collide.    In the case of  chemical fuels of  the C,  H,   0, and N  class,  elements 

whose combustion products  contain differently  charged molecules and atoms of 

the order of 20 species,  without bringing  in empirical models of interaction , 

this problem cannot   at present be solved.     The most  suitable is  the Lennard- 

Jones potential  (12-6),  since it describes  collisions of nolecules both  in  the 

field of low as well as of moderately high  temperatures.    This allows  us  to use 

experimental data for determining  the corresponding potential constants,  first 

of  all,  and to make more or  less warranted extrapolations,  in the second place. 

Additionally,   the constants of the potential   (12-6)   can be estimated from 

several physical properties  In the absence of  experimental data. 

Interaction of  polar   components with  applicable  precision at  elevated 

temperatures  is described  by   the Stockmayer  potential.    We adopted  this  poten- 

tial for all  four components.    In contrast   Lu  the values of the collision 
7  s integrals Q recommended  in  [2J,  in  the present study we used  the values of 

7   s Ü averaged over all orientations  from   [5j.     We borrowed parameters  of  the 

Stockmeyer potential  from  the same reference. 

Parameters of   the Lennard-Joues   potential  for  200 compounds,   recommended 

in   [3]  as possible  components of fuel  combustion products,  are  taken  from   [6J 

or are evaluated de novo by methods in  [6]. 

Tabled data of  collision integrals fl1'1* and ir-'2* in  t2,5J  are approxi- 

mated by power polynomials. 

Properties of  combustion products of several  chemical fuels were  evaluated 

by  calculation.     In   this  article,  properties  of  combustion products  of   the 

chemical fuel   [7]   C„H„N„  +    N„0,   are  presented  by way  of  illustration   (Tables 

1-3)   for the  coefficient  a  =  0,8 of excess N„0.   compared to  the stoichiometric 

concentration. 

.13- 
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Analysis of the values of potential parameters determined by different 

methods showed that these methods are extremely approximate.    Therefore, values 

of potential parameters obtained with the aid of these methods can be employed 

only in preliminary estimations.     Experimental data will serve In possible 

Judgement on the size of the error Introduced by Imprecise values of potential 

parameters. 

In view of  the lack of experimental data on transport properties of the 

combustion products of chemical fuels, we made a thermodynamic calculation of 

the chemical fuel CjHg^      +   N^,  a - 0.8, p - 0.01 bar, and T -   2000-4800oK. 

Here "errors" were artificially Introduced into the values of the potential 

parameters.    The  changes in potential parameters indicated were made for all 

components  in the same direction  (decrease or increase).    The results of calcula- 

tions are shown in Table 4.    The magnitude of the change in coefficients of vis- 

cosity and  thermal conductivity as a function of percent change in a and e /k can 

be roughly approximated by the formula 

i 
• 

A^y/. ^2zwv. *O,IA£///. . (5) 

TABLE  1 

Pressure    0.00981 bar 

T(
0K (A) (B) (C)          (D) (E) A« 

800 
J6O0 
t400 
3200 
4000 

585.8 
823 v3 
989.1 
1SHL 
1684 

1,560 
I »788 
1.926 
2,056 
2,090 

1,128     324,7 
1,041     545.7 
6,994     733,0 
6,093     861,8 
1,625     982,9 

0,0991 
0,1691 

.2,193 
2,328 
0,681 

1,115 
1,069 
8,179 
5,709 
1,422 

Key:     (A) meters/second;     (B)  c    froz, kilojoules/kg-deg; 

(C)  c /c     ,       ;     (D) ri  •  105,  nanoseconds/meter2; const p    p-froz' 
(E)   A  , watts/meter'deg. 
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TABLE 2 

Pres sure: 0.981 bi «r 

T a CA) (B) Vio5 
Ae 

Ae 
Ar 

600 569,0 1,561» 1^*1 523,9 0,16*6 t,905 
1600 823.:* 1,788 1,051 5*5,7 0,/.637 1,036 
2^00 566,5 I,92S 1,378 728,0 0,3509 1,693 
3200 1210 1,994 6,3X0 897,1 2,902 9,058 
4000 1669 2,063 6,369 I (HD i.057 6^21 

ley: 'A) v froz' ^   '   Ccon8t p • 

p-froz 

TABLE  3 

Pressure:    98.06 bars 

T a (A) (B) Mo5   ;u Xe 

aoo 
IÄJ0 
2400 
3200 
4000 

556,6 
823,9 
looe 
1140 
1338 

1,522 
1,786 
1,925 
£,000 
',/0<»4 

1.352 
1,031 
I,0i9 
1.719 
3 »353 

3Ü.2      0,135^ 
5»5,7      0,1627 
727,5      0,239^ 
888,7      0,6778 
10*2       1.665 

1,851 
1.026 
1.069 
2,017 
1,623 

Key:     (A) c    .      ;     (B)     c nr>a.   „ p-froj const p 
c     r p-froz 

When AJJ » 10 percent and Ac/k - 10 percent, the calculated value of the 

maximum error is 21 percent. It appears to be of low probability that In the 

future potential parameters of all components will undergo substantial re- 

finement in the same direction. Potential parameters of atoms and free radices 

are the most unreliable. If we assume that for these imprecise values of o and 

c/k introduce an error proportional to the content of atoms and free radicals 

in the combustion products of the fuel, the actual c'.ianges in A^ and A^ percent, 

will be small even for considerable values of A and A ,k for atoms and free 

radicals. With this in mind, we must at the present time accept as not possibl 

-15- 
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the  calculated determination of  the transport properties of combustion pro- 

ducts at errors less  than 20-30 percent.    This affords grounds in calcula- 

tions of effective thermal conductivity coefficient  \    to use approximational 

formulas, which considerably reduces the necessary machine time and simplifies 

calculations. 

TABLE 4 

Effect on Thermophysical Quantities 

of Changes in Potential Parameters 

I^K    titles 
,u,„- ^.-m ^.w ^m ^ sa 

change,  in percent 

2ÖO0 ^      1.389       - l.m      - ».18» 19.12 - 17.83 
fie    1,359       - I.6I8      -».»I 19,67 - 18,15 

2400    2 UEZ - Um - ».02» 19.ez . IS.K 
 Ag    I»^0       -1^392       -3,892 20,01 -18,58 

2800    —^ I■?» ,^r VI? -3.8»5 20.^8 - ie.?9 
 Ag    1,301       - 1,517      - »,118 20,81 - 18,6» 

3200     —^ 1.276       -1.369      -3.736 20.79 .18.^8 
;tg    1,366       -I,»73       -3.989 20,90 - IBJ^S 

36oo        ^     IJ£U -t.^ . zJLm .^»7? zJUl 
A-    1.3«       - I,5S5      -3,809 20,87 - m,5I 

TABLE 5 

Pressure:    98.06 bars 

\^                  0,5 0,7 0.9 I.I 1,3 

T^               273« 3311 3«« 3599 5290 

Jli^iEfirox 0|9O 
Ae 

0,991 1,083 1,130 1,12» 
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A  formula of the following  form is most often proposed for approximate 

determination of X  : e 

^ = 477 ■   K-h-h (6) 

Tables  1-3 illustrate application of the formula in   [6].     As we can see, 

in several cases  this  formula gives  unsatisfactory results  In the  calculation 

of  \   . e 

Another version of the approximational Is the following function 

W*, =-r)?c^ (7) 

Verification of this  formula has been made at several points.    The corres- 

ponding  results  are given in Table 5, where the ratio  A /A    is presented 
e-approx    e        r 

for conditions  of equilibrium combustion at different a. 

Let  us  look at the possibility of  using estimate values of  transport 

coefficients  in  calculating  convective heat exchange when  there  is a flow of 

chemical  fuel  combustion products  in  a Laval nozzle.     We select as  an example 

a profiled Laval nozzle with  the  following geometric characteristics:    area of 

critical  cross-section F      = 0.0065 meter2, ratio of  cutoff area  to area of 
cr 

critical cross-section is 85.7, pressure at inlet to nozzle is 60 bars, and fuel 

is products of the combustion of kerosene and oxygen. To determine specific 

thermal convective fluxes q, we use a typical formula of the form 

Q   = y O W O — ^ stationary) (8) 

Values  of  specific convective  thermal fluxes  at  inlet  to  nozzle,  in the 

critical  cross-section,  and at  the nozzle cutoff are,  respectively,  -^iO-lO^, 

^Q'10c,  and  -O.15'10l> watts/meter2.     Similar to  the data  in Table A, we vary 

the values of  the viscosity and  thermal  conductivity  coefficients by i  20 per- 

cent.     The  relative change in specific  thermal fluxes  for given  cross-sections 

will  lie  in  the  limits 4-6 percent.     Since theoretical methods  allow us to deter- 

mine  the  quantity q to a precision of   ±   10 percent,  estimate values of  trans- 

port  coefficients can be used  in  calculating heat  exchange  in Laval nozzles.     In 

-17- 
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a similar way, we can demonstrate the applicability of estimate values of 

transport coefficients  In calculating frlctlonal forceo. 

We present In the conclusion a number of characteristics of the universal 

[computer] program employed.     The program allows ua  to determine the composi- 

tion and thermophyslcal properties of combustion products of chemical fuels of 

arbitrary original composition.    The fuel can contain up to ten atoms of the 

22 most widely distributed  [3],    Properties of Individual components are cal- 

culated from seven-order polynomials approximating the tables In  [31. 

Symbols 

(k) a,    = stoichlometric coefficient; p. " partial pressure; n.  and n^      - 

number of moles in gaseous and condensed phases; b.T •* number of atoms of the 

i-th chemical element In the conventional formula of the fuel; M^, = number of 

moles of fuel; p ■ pressure;  T «■ temperature;  yT and u " molecular weight of 

fuel and molecular weight of combustion products;  c      and c      ■ equilibrium 

heat capacities at constant pressure and at constant volume;  J m total enthalpy 

of  the mixture;     3 * m  total enthalpy of the j-th product; c  . ■ heat capacity 

at  constant pressure of  the j-th product; R    ■ universal gas constant;  a    ■ 

equilibrium velocity of sound; r\ ■ coefficient of viscosity;    X    - effective 

coefficient of thermal conductivity;  Xf - coefficient of thermal conductivity 

of internal and translational degrees of freedom; o and e/tc ■ potential para- 

meters;    p = density;  W = flowrate; J * " enthalpy at drag temperature;   \f  - 

function of thermophyslcal properties,  flowrate, and geometry of the flow 

section. 

-18- 
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ENGINEERING METHODS OF CALCULATING  THERMOPHYSICAL PROPERTIES OF 

SOLUTIONS AND BINARY  SYSTEMS 

L.  A.  Bakhtin,  N.  A.  Shakhova and L.  S. Aksel'rod 

In  calculating mass and heat transfer processes in systems  containing 

blcomponent  solutions,   it is necessary to know their thermophysical proper- 

ties  (viscosity,   surface tension, partial pressure of solvent vapor,     heats 

of solution,  etc.). 

Earlier   [1]   it was  shown that the similarity of the temperature depend- 

ence of  thermophysical  properties of binary systems  (solutions)  y and  of 

individual components   (solvent)  y    at constant pressures and concentrations 

makes it possible  to obtain the following expression that is taken as the 

basis of a relatively simple method of calculating different properties of 

solutions: 

f(y)=K,f(y.)*S-^ (1) 

The form of the function f(y) and f (y ) is best determined from 

molecular-kinetic principles.  Several thermophysical properties as functions 

of temperature are determined by an exponential formula.  For example, the 

Ya. I. Frenkel' formula for the viscosity of a liquid: y ■ a, exp (U/RT), and 

the formula for the vapor tension over liquids [2]: 

P = a2 exp (-r/RT). 

We can write expressions for determination of a sought-for property of 

ution y and a s< 

exponential formula: 

a solution y and a sought-for property of the solvent y based on an 
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^ s Q exp (Q/QT), 

^0 'Q,, Q*p(Q9/Rr)t 

(2) 

(3) 

Solving equations   (2) and  (3) jointly when T = T ,  after uncomplicated 

transformations we get  the equation: 

^ =^1^% +Ka ei^ ' (4) 

which is a particular case of expression (1) when f(y) *  log y, in which the 

multiplier of the similarity transformation and the increment are as follows: 

0    L   -_£- 
a.. ■/o 

(5) 

Equation (4) can be written in a different way: 

v ^V (6) 

When deriving equations  (4)  and  (6),  the condition T = T    was adopted. 

He'iCe,  points of identical temperatures are  the  similarity points of  the 

curves depicting the  temperature dependence of properties of solution and  of 

solvent in this case. 

The method of calculation based on similarity of the temperature 

dependence of physicochemical properties of a solvent and a solution can be 

used  in determining  the vapor tension of water over solutions.    Equations 

(4,  6)  take on the following form in this case: 

t^'p    =  Kp^R,* Kp^fcp . (7) 
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P =(bpPo,)K' • (8) 

An equation analogous to expression (7) was first derived by 

V. A. Kireyev [3] in the following form: 

tq P - Kf tg Po ♦ B. (9) 

Studies of V. A.   Kireyev and D.   F.  Othmer have demonstrated   that   in 

logarithmic coordinates   log P - log P    experimental data on the vapor tensions 

of water over pure liquids,  solutions,  and mixtures are satisfactorily 

approximated by straight lines, which confirms  the validity of the principle 

of  similarity of  temperature dependence of physicochemical properties of 

related compounds,  including solution and solvents, applicable to saturated 

vapor tensions. 

The form in which the principle of   the similarity has been written in 

equations   (7,   8)  has an advantage compared  to  the equation of V.  A.   Kireyev, 

since it makes  it possible to find the saturated vapor tension . as an 

analytical function of composition for a number of binary systems. 

Based  on   (7)  and   (9) we can write the expression of  the  integration 

constant  B: 

B = Kp^fcp  • (10) 

According to the experimental data of D. F. Othmer [4], based on 

equation (10) the increment B was plotted as a function of concentration for 

ammonium nitrate solutions and is shown in Figure 1. From Inspection of the 

figure it follows that B equals the mole fraction of water X. 

br sXt, (ID 
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When we take   (11)  into account, equation  (8)  becomes; 

P = (XBPo) 
*> 

(12) 

D. F. Othmer [4] obtained an equation for determination of the differ- 

ential heat of solution q': 

^  M.^#(l-Kf) (13) 

Othmer determined the integral heat of solution q by graphic integra- 

tion of the experimental curve 1 - k = f(c), where c ■ concentration 

period. 

The differential heat of swelling (solution) as a function of water 

content u is given in [5] for cases when water is absorbed by a colloidal 

body and for the dissolving of sulfuric acid in water: 

a1 -dgt _ g-b 
"* ■" au ~(äTüF ' 

(14) 

Bearing in mind that the moisture content u is proportional to the mole 

ratio v, we combine the solution of equations (13) and (14), to get: 

4-K *^>hr 
(15) 

Treatment of experimental data [4, 6] has shown that the coefficients of 

equation (15) for ammonium nitrate solutions are a, = 0.31 and b. = 7.8; then 

equation (15)  becomes 

1 - KB   a O.H'TJ- 
p    (7l*v)a 

(16) 
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Figure 2 presents a graph of k as a function of concentration for 

ammonluir nitrate solutions, which shows that the curve calculated from 

equation (16) satisfactorily agrees with experimental data. Experimental 

values of k have been calculated from data [A, 6] treated by the least- 

squares method. 

Equations (12) and (16) allow us to calculate the vapor tension of 

water over ammonium nitrate solutions for a wide range of temperatures and 

concentrations.  The discrepancy of experimental [4, 6] and calculated values 

in the concentration range 0-75 percent does not exceed iii-6  percent, 

attaining at high concentrations (89.7 percent) a value of 12 percent (based 

on data in [6]). 

The principle of similarity of the temperature dependence of the 

saturated vapor tension of a solution and of a solvent allows us to correlate 

experimental data on vapor tension and on heat of solution. 

Substituting (16) in (13), we get equations of the differential heat of 

solution: 

N 

and the integral heat of solution of ammonium nitrate; 

(17) 

I-KT^ 

which after  integration becomes: 

„       f    0.31 'V     - 
(19) 

The dimensionality cf the quantities that enter into equation (19) are as 

follows:  [r ] = [kcal/kg-mole of water], and [q 1 = [C] - [kcal/kg-mole of 
o t 

NH.NOj . 
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The integration constant C can be determined from the heat of Infinite 

solution. Based on (19), the integral heat of infinite solution of 

1 kg-mole of NH,NO„ (v ■+ «0 is determined by the expression: 

qt„-0.31-r0-C (20) 

Based on data in [7], q  = 6470 kcal/kg-mole; C = 3190 kcal/kg-mole (at a 

temperature of 180C) .  From data in [8], q  = 6160 kcal/kg-mole; 

C = 2905 kcal/kg-mole (at a temperature of 250C) . 

As follows from (19), the integral heat of solution of NH.NCL is made up 

of two components, one of which depends, and the other does not. depend on 

solution concentration period. As we know, one of the causes of heat effects 

in the formation of real solutions is the difference in forces of inter- 

molecular attraction in pure solvent and in the solution. How strong 

this factor is obviously depends on concentration and is taken into account 

by the first member of the righthand side of equation (19). Further, when 

crystalline compounds are dissolved the crystal lattice breaks down, occur- 

ring with an expenditure of heat, which obviously is taken into account by 

the integration constant C. Hence, the integration constant equals the sum 

of heats of transformations from the crystalline modification corresponding 

to the given temperature to the dissolved (liquid) state. For aramonium 

nitrate the values of the integration constant C calculated from data in [7] 

from heats of transformations are as follows; 

Temperature, 0C Higher 
than 170 

125-170 83-125 32.3-83 Lower 
than 

32.3 

C, kcal/kg-mole of 
salt 0 1460  2487   2798 3055 

The values of c calculated from the heat of Infinite solution agree 

with a precision of »5 percent with the value of C obtained from data based 

on heats of transformations in the corresponding temperature range 

(t < 32.3°). 
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Figure  2 presents a comparison of experimental and calculated values of 

the  integral heat of solution of ammonium nitrate,  showing that  the curve 

calculated  from equation  (19)  at C -  3055 kcal/kg-mole  satisfactorily agrees 

with  the experimental values. 

We  can obtain an analytical-graph method of calculating  the viscosity 

of a  solution based on the principle  of  the  similarity of  the  temperature 

dependence  of properties of  the solvent and of a solution. 

For  this case equations   (4)  and   (6)  become: 

tgyu = KM^/A,. . xAl^h^ 

j*- « (6^ /O 
KA 

(21) 

(22) 

In Figure 3 experimental data on viscosity of aqueous solutions of urea 

are plotted in the coordinates log y - log y . The temperature scale 

plotted from experimental values of the viscosity of water, and the lines of 

saturation and boiling of the solution are also shown. Analyzing Figure 3, 

it is not difficult to see that in the coordinates log u - log p experimental 

points are satisfactorily approximated by straight lines, which confirms the 

validity of equations (21, 22). A similar result in logarithmic coordinates 

is given by treatment of experimental data on viscosity of solutions of 

ammonium nitrate and of nitric acid.  From Figure 3 it is clear that values 

of k  (slopes of lines) and b do not depend on temperature and vary with 

increase in concentration. 

Figure k  presents the multiplier of the similarity transformation k and 
P 

the  increment of viscosity b    as functions of the concentration of solutions 
P 

of urea and of nitric acid.  The values of k and b have been calculated 
P     P 

from experimental data treated by the least-squares method.  Figure 4 also 

shows the freezing-point diagrams of the systems under study. 

Figure 4 shows that the eutectic points of the freezing-point diagrams 

correspond to the critical points of the curves of k and b as functions of v p     p 
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composition.     For  the urea-vater  system,   the curve of k    as a  function of 

composition has  a minimum at  a solution concentration corresponding  to  the 

eutectic  point  of   the  r'roezing-point  diagram.     For  the HNCL-water   system the 

eutectlc point  of  the freezing-point diagram at concentration c *  33% 

corresponds  to  the minimum on the curve  k    =  f;c),   the eutectlc  point at 

r * 53% corresponds  to  the maximum on  the curve k    = f(c),  and  eutectic 

point c % 90% corresponds to  the  inflection poirt of  the curve k =  f(c). 

Equations   (21)   or   (22)   together with  the graph of k    and b     as   functions 

of  composition allow us  to  calculate  the viscosity of   the  solutions   in 

question  for a wide  range of  temperatures  and concentrations.      (When 

calculating with   the aid of   the graphs   in Figure 4,   the viscosity must be 

substituted  in millipoise.) 

Comparison of  experimental viscosity values with  those calculated  from 

equation   (22)   with   the graphs and  Figure  4  shows  that  the discrepancy  for  the 

vast majority of  experimental data  is not greater than ^3-5 percent. 

The  temperature  range of applicability of equations   (21,   22)   is  limited 

by  the boiling  point  of  the  solvent  t°   .     Data on solvent viscosity  at 

t  >  t°     have been obtained  for P  >  1 aim abs,  and  their use  in calculating 

solution viscosity  from equations   (21,   22)   contradicts  the  condition 

P = const,   adopted   in their  derivation.     Figure  3 shows  that   the   function 

log u - log u    is  linear both  for  temperatures up to  100oC as well  a3 higher 

temperatures.     However,   at  the  transition  through the  100oC point   the nature 

of  the curves  of  k    and b    as  functions  of composition changes  sharply, 

accounted  for by  the effect of change  of  pressure on viscosity of water at 

t  >  100oC. 

It must  be noted  that  the Ya.   I.   Frenkel'   exponential  formulas  of 

viscosity,   saturated vapor   tension,  etc.   are approximate in view of  the 

assumptions made   in  their derivation.     When deriving equations  of   the  form 

(7,   8,   21,   22),   similar assumptions  are  adopted  for  the  solution and   the 

solvent.     In  these  equations  properties  of   the  solution and   the  solvent are 

compared,   and   the relative quantities k    and  b    come  into play,   therefore  the 

effect of   the  above-indicated assumptions   is not grrat and  the  precision of 

these  equations  is  higher  than  that  of   the   initial exponential   formulas. 
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Use of the method set forth above in experimental research on physico- 

chemical properties of solutions and binary systems allows us to reduce to a 

minimum the essential number of experimental points.  In determining the 

multiplier of the similarity transformation k and the increment b for a 

solution of concentration c, it suffices to determine the magnitude of the 

sought-for property of the solution at two temperatures and to have available 

data on the temperature dependence of the corresponding property of the 

solvent. 

As we know, to calculate surface tension o of pure liquids the parachor 

method is used [9j, which at temperatures far from the critical is determined 

by the expression 

n = slA vM . (23) 

Table 1,     Parachor of Ammonium Nitrate Solutions  as Functions of 

Concentration and Temperature 

Concentra- Temperatnre,  "C Mean 
tion,  by Parachor 
weight,% 20 to £0        80        100       120 140 Value 

VaJ ue of Parachor 

0 52,71 52 ,W 52,23   52,16   52,07   51,98 51,69 ; 52,22 
20"" 57,97 57,98 57,85   67,48   57,33       - - 57,72 
«0 66,36 66,40 66,33   66,16   65,89 - 66,23 
60 60,11 60,15 80,15   79,97   79,66       - - 80,01 
30 - - -    105,80 106,50 106,2 - 105,50 

90 m - -     128,60 128,50 128,0 128,50 

The parachor of pure liquids n is almost  independent of  temperature and 

its value  is determined by additive summation of  the component  fractions of 

atoms,  groups,  and bonds   [9]. 

An attempt has been made  in  this study to   imploy  the parachor method  in 

calculating surface  tension of  solutions and of  binary mixtures. 
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Table  2.     Parachor of  Urea   Solutions as a  Function of  Concentration 

and  Temperature 

Concentra- Temperature,   0C Mean 
tlcn,  by ,  ■    Parachor 
weight,%       20      40 60        80        100       120       1^0      Value 

Value of Parachor 

20 58,20 57,90 SV,« 67,22 67,H    r-            - Sf,65 
40 66,10 65,69 60,40 64,95 64,57     -            -   d5,34 
66 - 77,5^ 77,07 76,63 7*30     -            -   76,81 
80 - - . ,- Sö,83 56^1  ^^5       - ,»,14 
90 - .- - - .-     109,20 108,§ 109,00 
96 - - - - -          -     117^117,80 

Using  experimental data  on  surface  tension and  density,  we have calcu- 

lated  the parachor values for solutions of ammonium nitrate  and of urea at 

different  concentration   (cf.   Tables  1  and  2).     The data  of   these  tables  show 

that   the  parachor of  solutions,   as well as of  pure   liquids,   is almost 

independent  of  temperature.     Additionally,   the concentration of a  solution 

has  a  considerable effect  on  the  parachor value.     The parachc." of  these 

solutions  as  functions  of  concentration  is given  in Figure  5.     We can see 

from Figure 5  that  the parachor of  solutions n rises  linearly with increase 

in mole  fraction of  solute X    and  can be determined  from the  additivity rule: 

The  parachor of water  P       [B  =  water]   Is  52.22   (Table   !),     The parachor 

of a melt  of  ammonium nitrate and  of   urea   (X,, » 0:  X.   =  1)   Is  163.5 and 
15 A 

130.4,   respectively   (Figure 5). 

The  expressions   (23)   and   (24)   allow us  to  calculate  the  surface  tension 

a  for any  working conditions,   if  we  have determined   the values  of  o  for  the 

original  components  or  for   two  compositions of  the  binary  system,  and  if we 

know its density at  the given conditions.     The discrepancy of  experimental 

and  calculated  surface  tension values  for  solutions  of  ammonium nitrate and 
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of  urea do not  exceed   i6 percent,  wholly satisfactory for engineering 

calculations.     The  simplicity of  the method of determination and  the avail- 

ability of a great deal of  experimental material on density  (compared with 

material on surface  tension)  accounts for the expediency of use of  the 

parachor method  in calculating surface  tension of  solutions and of binary 

systems. 

Symbols 

a and b = coefficient constants;  B and C =■  integration constants; 

k    and b'     = multiplier of  similarity transformation and  Increment  of 
y y 

corresponding property;  P and P    = vapor  tinflion of water over solution and 

vapor  tension of water  over pure solvent at  identical  temperatures; 

k    =  r/r    = multiplier of  similarity transformation equal to the ratio of  the 
p     o 

partial molar heat of evaporation from solution r to the latent heat of 

evaporation of the pure solvent r ; u = energy of activation; r = latent 

molar heat of evaporation; R = gas constant; T ■ absolute temperature; 

V = molecular volume; v = x /x , ratio of mole fractions of solvent and of 

solute; Q and Q = energy characteristics of the process for the solution and 

the solvent, respectively; n, n and F = parachor of solution, solute', and 
A        15 

solvent, respectively; x and x,, = mole fraction of solute and solvent. 
AD 

respectively; y and p = viscosity of solution and of solvent at Identical 

temperatures; k = U/U , multiplier of similarity transformation of viscosity 

equal to the ratio of the energy of activation of solution and the energy of 

activation of the solvent. 
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Figure 2.    Multiplier of  similarity transformation k    of NH.NCL 

solutions as a function of  concentration   (a)  and  comparison  (b) 
of  experimental values of   the integral  heat  of  solution with 
those calculated  from equation  (19). 
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Figure 3.  Viscosity of aqueous solutions of urea as a function 
of temperature and concentration 
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Figure 4. Function of the increment of viscosity (a), multiplier 
of similarity transformation (b), and freezing-point diagram (c), 
of  solutions of urea   (dash lines)  and  of nitric acid   (solid  lines) 
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Figure 5.    Parachor of  solutions of NHAN0^   (a)  and of urea  (b) 

as a function of concentration 
%™3 
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EXPERIMENTAL DETERMINATION OF TRANSPORT DIAMETERS IN THE TEMPERATURE RANGE 

2000-10,000oK 

Yu.  N.  Belyayev,  N.  V.  Kamyshov, V.  B.   Leonas and A,  V.   Sermyagin 

Difficulties  in determining thermophysical properties of gases at 

temperatures greater than 1000oK are well known.     The customary methods of 

steady state measurements at these temperatures prove inapplicable,  and 

extrapolation of   low-temperature data is unsubstantiated. 

However,  the kinetic theory allows us  to reduce equilibrium and 

nonequilibrium properties of gases to the  same common basis — forces of 

intermolecular  interaction.    These results  constitute a reliable foundation 

for carrying out a broad program of determining equilibrium and nonequil- 

ibrium properties  by using independent data on molecular  forces of  inter- 

action. 

Determination of  these forces in the range that  is of  interest owing to 

the existence of  thermophysical properties of gases is possible by direct 

experimentation based on the so-called molecular beam method. 

A detailed description of the method and experimental apparatus  for 

investigating elastic  scattering of molecular beams is given in  [1].     A wide 

range of systems corresponding to paired combinations of atoms of noble 

gases  [2],  the atoms H,  N and 0,  and  the molecules H-,  N- and 0-   [3,   4]  have 

been investigated on devices of  this type  since 196A. 

In subsequent  studies the systems including combinations of  the 

molecules CO,  NO and N,  atoms N and 0,  and also CH,-CH,   and He-CH,   have been 

investigated.     Data on transport diameters  for the systems listed  are given 

in this present  paper. 

As we know,   the potential of intermolecular forces determines  the 

dynamics of pair  collision of particles participating in the transport of a 
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given molecular characteristic (momentum, type of particle, and energy). 

Kinetic coefficients are associated with forces of intermolecular inter- 

action through the so-called collision integrals Q   ,t. (transport 

diameters) [35$ 

J/2 F-r-1 S"'"^^)   |efV'V,,(v...Wr 
' o 

where y = 1/2 y V JV.1.     For the potential V * k/r , the reduced collision 

integrals become 

SM=(-£1f"r(3-*)A<,,W . m 

^"H^r-r^-lU Vni, (3) 

where r(x) = Euler function, A  (n) and A^ ^(n) = quantities tabled in [5], 

The complex nature of forces of interaction as a function of distance 

makes the question of how much information we have on these forces essential 

in making practical calculations nontrivlal. This question has been 

discussed in detail [6, 7]. For calculations in the temperature range 

2000-10,000oK, it is necessary to have data on potentials in the range from 

~ 0.2 electron volt to ~ 1 electron volt.  It is precisely this range of 

interaction temperatures that has been explored in the present paper. 

Parameters of Interaction potentials approximated by functions of the 

type V - K/r were obtained from functions of the energy of effective 

complete scattering cross sections Q(e , E) at small angles.  The measure- 

ments were made by the method of scattering beams on gas targets [1]. 

A compilation of potential parameters of the systems investigated, and 

also the range of distances within which the values of K are constant are 

given in Table 1. 
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(1.1) (2  2) 
The  collision Intervals Ü    '       and Q ,  essential in obtaining 

coefficients of viscosity,  diffusion,  and  thermal  conductivity  to the first 

approximation of  the kinetic theory of gases,  have  been calculated  for all 

systems studied in  this  paper for the  temperature range 2000-10,000oK.     The 

results of calculations are given in Tables 2 and 3. 

Since the composition of gas mixtures  can vary very strongly  as  a 

function of conditions,   it appeared worthwhile not  to calculate  the  transport 

coefficients,  but  to give only tables of  collision integrals for  the 

components.     The values  of Ü ^»s^ presented  in this paper and also data in 

[2-4] allow us to calculate the kinetic properties of air and other gas 

mixtures that are of great practical importance for a wide temperature range. 

Table 1.     Parameters of Potentials  of  Systems Studied 

System K   (For A0"71) •A, Ar [A] -- 

0-0 sot 9,00 ?,♦! - 1,89 
-   0 379 8,12 2,58   rr  1,8k 

0      cc 76t 5,30 2,33 e 1,80 
*• W.'^ JX> 6,Si 2,25 v 1,80 
'  K'i) 2030 6,70 2,77 - Z,22 

2-0 2161 MB 2,85 n 2,28 
CO   "00 tsm 8,25 2,92 - 2,31 
tin   - CH^ 136 0,00 2,22 r 1,75 

27(6 9,50 2,62 - 2,14 '»   " 
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Table  2.     Collision Integrals  Q (2'2)j A2,  for Systems  Studied 

m   Oß Systems 

iycÖ   tii NQ   CO-CO  O-NO   N-fVO 0-CQ AKO He-C^CH^ 

?O0O «,968 9,548 10,05   6,J3I 6,799 6,930 6,7^2 3,910 7,5* 
3O00 8,167 8,675 9,091 5,803 6,211 6,287 5,937 5,27   7,29 
4O00 7,650 3,108 M77 5,155 5,826 5,852 5,503 4,895 6,85 
5000 7,265 7,691 (3,050 5,200 5,5*6 5,540 5,155 4,«   6,55 
6000 6,56? 7,367 7f6S2 5,000 5,525 5,297 *,«87 4,43   6,29 
7000 6,723 7,105 7,5% 1,836 5,146 5,P9? 4,671 4,25   6,11 
80C0 6&1 6,887 7J5* «1,699 4,9» 4,3» 4,380 4,12   5,92 
9000 6,345 6,694 6.955 *,582 4,867 4,793 4,i-'9 4,00   5,79 

IO000 6,192 6.532 6,701 4.479 4,^3 1,671 «,20? 3.896 5,66 

Table 3.     Collision Integrals a     *       [A ]  for Sysueras Studied 

hj. Systems 

Nj-CQ   Nt-C0 CO-CO 0-NO N-WQ O-CQ  n       He CH^C^-LI., 

2000 7,852 8,049 8,414 5,383 5,751 5,796 5,837 5,010 6,780 

3000 7,151 7,513 7,627 4,934 5,254 5,253 5,184 4,995 6,220 

4O00 6,698 6,835 7,112 4,637 4,926 4,889 4,765 4,710 5,920 

5000 6,561 6,483 6,736 4,421 4,691 4,628 4,463 4,045 5,600 

6000 6,096 6,210 6,445 4,251 4,505 4,425 4,251 5,780 5,370 

7000 5,886 5,989 6,205 4,111 4,353 4,260 4,044 3,363 5,217 

8000 5,710 5,805 6,002 3,995 4,225 4,123 5.793 3,525 5,060 

9000 5,555 5,643 5,835 3,896 4,117 4,005 3,757 3,415 4,951 

10000 5,421 5,506.5,689 3,809 4,021 3,902 3,643 3,321 4,840 

Symbols 
(I) 

A       (n)  = numerical  coefficients;  k = Boltzmann   constantJ  K and n = potential 
(I) 

parameters;   I and  s = 1,2,...;  Q       (V)  * effective  transport cross section; 

r =  interatomic  distance;  T = absolute  temperature;  V    1   =* velocity of 

particles  at collision;  V(r)  = potential  of repulsive interaction; 
—(I s) r(x)  =  Euler y  function;  \i - reduced mass;  fi    *      =  reduced  collision 

n  s) 
integral;   Q     '       = collision  integral;   9     = angular  resolution of  apparatus. 
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DETERMINATION OF VISCOSITY AND THERMAL CONDUCTIVITY OF REAL GASES 

AND THEIR MIXTURES BY THE SIMILARITY METHOD 

A.  A.  Vasserman and V.   I.  Nedostup 

Similarity methods have found wide acceptance in calculation of 

viscosity and  thermal conductivity of real gases.     Generalized equations and 

diagrams affording determinations from limited data of  transport properties 

of compounds that have been little studied are put  forth in [1-4],  etc.     A 

shortcoming of these studies  Is  the impossibility of using them for reliable 

determination of transport coefficients of gas mixtures,   since coordinates of 

the critical point figure as the reduction parameters,  but critical  states  of 

a mixture and of a pure compound are not corresponding states.    Use of 

so-called pseudocritical  points does not  Insure  the  requisite precision, 

since none of these points exist at the surface of the state of a mixture, 

and moreover different methods of determining their coordinates are not well 

enough  substantiated. 

A general method of  selecting support points of similarity in investi- 

gating  thermodynamic properties  is put forth in  [5,   6].     Since the state of a 

gas  is determined by two  independent variables,  corresponding states are 

found from the condition of equality therein of  two dimenslonless complexes 

of different designations   [5,  6].     These conditions  are necessary and 

sufficient in determining coordinates of reference points-* of similarity and 

afford use of any  point of the surface of the state of a real gas as a reference 

point.     However,  the simplest and most reliable approach  is selection of 

reference points from curves of the extrema of thermal  properties,  in 

particular, from the Boyle  curve.     Such points,   taken from identical values 

of  the compressibility coefficient  Z for different gases,   have been success- 

fully used  in calculating  thermodynamic properties of gas mixtures  [6,   7]. 

-;s- The  terms "support point" and   "support curve"  should in all instance 
be read  "reference point" and  "reference curves"    \jr. editorj 
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In this  paper  the principle of  selection of support points of  similarity 

described above  is  applied in generalizing data on transport  coefficients of 

real gases and  their mixtures. 

The relationship between any  thermophysical property of  a compound and 

thermal parameters  — temperature and  pressure — is conveniently depicted in 

the form of  a surface,  for whose study  the principles of geometric  similarity 

can be employed,   if we find a reliable method of determining  the support 

point coordinates.     Curves of  the viscosity  and thermal conductivity minima 

at  isobars  exist on the surfaces  n =  f(p,  T)  and X = tyip,  T).     The following 

dimensionless complexes can be formed  for points on  these curves 

(i) 

The equality   (1)   or   (2)  can be  employed  as  one of  the conditions  jf 

selecting a  support point on the corresponding surface. 

For  transport  properties,   the  role  of  quantities analogous  to  ideal-gas 

properties   is  played by viscosity and   thermal conductivity values  at 

atmospheric   pressure which in a  temperature range markedly exceeding  the 

critical  temperature make a  substantial contribution to  the quantities n and 

A even at  increased  pressures.     Therefore,  we selected a ratio  of  transport 

coefficients  on  the minima curves  to values at the same  temperatures and 

P =  1 atm   (nT and   A   )  as  the second  dimensionless quantity. 

Thus,   points  on the curves  of viscosity and  thermal  conductivity minima 

in isobars  taken  from different  gases with  the same values  n   .   /n„   O   ,  A,,) 
min r  min i 

can be chosen as support points of similarity, as satisfying the conditions: 

for viscosity 

-Hlli-0=^ • 
-JJZIL =. idem (3) 

for  tiermal  conductivitv 

-41- 



T7 

for thermal conductivity 

idem 

Aw.,,- (4) 

To find coordinates of new support points, we determined the curves of 

viscosity and thermal conductivity minima and the values of the corresponding 

properties at atmospheric pressure for several individual gases and gas 

mixtures. Here, we used table data [8] for nitrogen, oxygen, argon and air; 

the data In [9] for carbon dioxide, the results of experiments in [10-12] for 

methane, and those in [12] for natural gas.  Using the minima curves, we 

determined the coordinates of supoort points T , p and n  (X ) at the values r      o  o    o  o 
n , /n„ = 1.35, and A . /X^  = 1.5, which are presented in Tables 1 and 2. mln    T ' mln    T ' r 

Table  1.     Coordinates of Support Points  of  Similarity  for Viscosity at 

the Value n  J   /ru, = 1.35 min    T , 

T0. 
0R Po. bar 

\ 
Io^.   Newtons-secon 

Compound i               j      

Nitrogen 246 156 20,70 
Oxygen 283 196 26,73 
Carbon dloxi de 501 2*9 3I,fa6 
Methane 362 197 17,46 
Air 2« 150 21,09 
Natural gas 362 168 17,38 

To verify the effectiveness of new support points of similarity, the 

above-indicated data on viscosity and thermal conductivity were reduced to 

dimenslonless coordinates n = n/n , A - X/A , t, = p/p . T = T/T , and then 

a comparison was made of the values of n and X for different compounds at 

identical T  and T.  It is clear from Table 3 that dimenslonless quantities 

of viscosities for different compounds agree quite satisfactorily — mainly 

within the limits of 1-2 percent.  There are large discrepancies for thermal 

conductivity, reaching 6-7 percent (Table 4).  We must bear in mind, however. 
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that  the precision of experimental and table values of  thermal conductivity 

as a rule are below the precision of data on viscosity;  in particular,  the 

error of  the data we used   [8]   has  been evaluated by  the authors at 

3-4  percent.    Thus,   the discrepancies observed  in Table 4 do not exceed  the 

overall  error of original data. 

Table 2.    Coordinates of  Support Points of  Similarity  for Thermal 

Conductivity at  the Value A  J   /Xm =1.5 J min    T 

Compound T       V ^      ,   ^ 
kw/m»degree 

Nitrogen ^ ^ 

°Xy8en 321 215 .2 ..8 
Argon 
Air 32* 204 28,26 

ÜSS 146 34,09 

We must note that new support points of similarity are best used not 

only for mixtures, but also for pure compounds, since in many cases choice 

of the critical point as a support point introduces substantial errors owing 

to imprecision of determination of viscosity and thermal conductivity values 

for it. 

Results of the comparison made allow us to recommend the new support 

points of similarity in determining viscosity and thermal conductivity 

coefficients of little-studied gases and gas mixtures of constant composition 

based on data for well-studied compounds.  Here, it is enough to have 

available for the compound under study very limited experimental data 

affording determination of coordinates of even one point on the minimum 

curve. 
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Table 3.    Comparison of Dlmeneionless Values of Viscosity n/n    at 

Identical  T  and T. 

T=T/r. Compound 
(IT = P/Po 

0,5 i.o 1.5 2.0 2.5 - 3,0 

Nitrogen 0,837 1,000 1,205 1,41? 1,626 1,830 
Oxygen 0,83* 1,000 1,199 1,410 1,620 1,825 

1,0 Carbon 
dioxide 0,832 1,000 1,219 1,453 

Methane 0,841 1,000 1,206 1,409 1,608 
Air 0,834 1,000 1,208 1,426 1,658 1,840 
iN'atural 

gas 0,839 1,000 1,205 1,385 1,572 

Nitrogen 1,058 1,130 1,216 1.312 1,412 1,516 
Oxygen 1,062 1,155 1,238 1,330 1,409 1,506 

1,5 Carbon 
dioxide 1,065 1,134 1,217 1,300 ' 

Methane 1,066 1,140 1,224' 1,317 1,412 

Air 1,0-6 1,138 1,225 1,320 1,422 1,526 

Nitrogen 1,275 1,320 1,372 1,430 1,492 1,557 
Oxygen 1,273 1,320 V5574 1.431 1.492 1.555 

2,0 Carbon 
dioxide 1,261 1,323 1,575 1,430 

Air 1,272 1,335 1,387 1,445 1,507 1,572 

Nitrogen 1,457 1,491 1,529 1,571 1,615 1,664 
Oxygen 1,463 1,498 1,536 1,578 1,622 J.667 

2,5 Carbon 
dioxide 1,475 1,498 1,539 1,579 

Air / 1,480 1,512 1,558 1,599 1,613 1,689 

Nitrogen 1,628 1,654 1,685 1,717 1,752 1,788 
l.rt Oxygen 1,656 1,664 1,694 1,727 1,761 1,796 

Air I,b7I 1,697 1,726 1,758 1,791 I,V.6 

I 

-44- 

% 



^ 

Table 4. Comparison of Values of A/A at Identical T and i^ 

JT ~ p/pc 
i. - i; ,o      _.r  

0,5 1,0 1,5 2,0 2,5 3.0 

Nitrogen 0,010 1,000 1,199 1,370 1,542 1,702 
1*0 Oxygen o.ece 1,000 1,187 1,549 1,493 1,624 

Argon 0,025 1,000 1,214 1,410 I,!39C 1,750 
Air 0,606 1,000 1,217 1,425 1,620 1.805 

Nitrogen 0,598 1,102 1,212 1,520 1,426 1,532 
1,3 Oxygen 1,02^ 1,129 I,2i7 1,539 1,435 1,525 

Argon 1,007 1,110 1,222 1,334 1,444 1,552 
Air 1,035 1,138 1,231 1,345 1,449 1,552 

Nitrogen 1,197 1,260 1,344 1,421 1,499 1.576 
2,0 Oxygen 1,266 1,537 1,413 1,488 1,560 1,630 

Argon 1,201 1,271 1,347 1,426 1,503 1,580 
Air 1,265 1,312 1,403 1,^71 1,544 1,615 

Nitrogen 1,391 1,445 1,505 1,562 1,622 1,663 
2*5 Oxygen M9'» 1,0*7 I,60ö 1,664 1.720 1,778 

Argon 1.381 I,WS 1,492 1,452 1,611 1,671 
Air I ,/>GI 1,553 J.,5B0 ] ,640 1.695 136 

Nitrogen 1,53'! 1,627 1,675 1,722 1,770 1,622 
3,0 Oxygen.. 1,705 1,746 1,793 i ,m 1,890 1336 

Argon 1,546 I ,^90 1,636 1,6f,'i 1,751 1,782 
Air 1,680 1,722 1,765 1,808 1,861 IW 
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VISCOSITY AND THERMAL CONDUCTIVITY OF LIQUID AIR AND ITS COMPONENTS 

IN A WIDE RANGE OF TEMPERATURES AND PRESSURES 

A.  A.  Vasserman and V.  A.   Rabinovich 

In spite of  the  Intensive use of  liquid nitrogen,   liquid oxygen,   liquid 

argon and liquid  air  in cryogenics,  their  transport  properties have not  been 

adequately studied.     An analysis and generalization of experimental data on 

viscosity and  thermal  conductivity of  liquid air and  its components are 

carried out in the present  paper;  equations are compiled and detailed  tables 

of  transport coefficients are calculated.     The report  is essentially a 

continuation of a  similar investigation made  for  the above indicated four 

compounds in the gaseous state  [1]. 

Dynamic Viscosity 

Experimental  research  on the viscosity of  liquid air and  its components 

can be divided  into  two groups.     The  first  group   includes studies   [2-12] 

devoted to determining  the viscosity at  saturation pressures or near- 

saturation pressures.     Works  in the second group contained results  of   the 

viscosity measurements  in a broader range of parameters.    They must  first of 

all  Include the  study   [13]   in which the viscosity of nitrogen and  argon was 

determined at constant  densities and  for  different   temperatures.     N.   F.   Zhda- 

nova   [14] measured  the viscosity of liquid and  gaseous nitrogen in  the  dens- 

ity  range 0.38-0.746  «/cm    and  the  temperature   range  from the  saturation 

curve to 290oK.     The viscosity of nitrogen and argon at  low temperatures and 

high pressures has also been investigated  by Robinson  [15].     Some data  on the. 

viscosity of  liquid  nitrogen,  liquid argon and  liquid air have been obtained 

by G.   P.  Filippova and   I.   P.   Ishkin   [16],   experimenting  in the  temperature 

range -183 to 0oC  up   to a pressure of  150 atm.     Fairly recently, 

I.   F.   Golubev and  coworkers   [17]   carried  out  an  extensive  investigation  of 

the viscosity  of  nitrogen  in  the  temperature  range  -195.8  to 0oC  at   pressures 

up   to  500 atm. 
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For most of the compounds considered, with the exception of nitrogen, 

experiuiental data embraces a limited region of parameters and cannot be 

directly used in compiling tables of viscosity used without entailing 

calculation methods.  In view of the lack of a general theory of the liquid 

state up to the present time, reliable and theoretically substantiated 

methods of calculating the viscosity of a liquid have not been developed and 

a la. ge number of empirical and semi-empirical equations are employed. An 

analysis of several such equations, in particular, the well known equations 

of A. I. Bachinskiy [18] and A. S. Prodvoditelev [19], has shown that they 

satisfy experimental data within experimental precision only for a limited 

range of temperatures and pressures. Therefore, with the aim of generalizing 

experimental data on the viscosities of the liquids investigated, we use 

the dependence of excess viscosity on density proposed by N. B. Vargaftik 

[20], which has been successfully used for many compounds. 

Values of the viscosity of a gas at atmospheric pressure nT obtained 

f om smoothed experimental data in [1] were used in forming the values of 

excess viscosity An from viscosity values at given temperatures and pressures 

n „.  We must note that the use of a component of riT allows us to obtain a p, i i 

single equation for the viscosity of a liquid and the gas, and is justified 

from the viewpoint of several theories of the liquid state, for example, the 

theory of essential structures [21].  For temperatures below the normal 

boiling point values of nT were obtained by extrapolation of curves plotted 

from data in [1]; the error of extrapolation cannot substantially affect 

reliability of An values.  Density values at experimental temperatures and 

pressures were calculated from equations of state that we formulated [22]. 

In plotting the mosc precise experimental data on viscosity of liquid 

nitrogen in the coordinates excess viscosity versus density (Figure 1), the 

data in [17] embracing a temperature range of 77.35-123.150K at pressures up 

to 500 atra agree satisfactorily with experimental results [6] and [4] for the 

saturation curve. The experimental data in [16] are marked by scatter, 

however some of them agree with the data given above.  Experimental values in 

[5] and [10] are considerably overstated compared with the results of 

measurements of other researchers. The data in [9, 13-15], shown only on 

small-scale graphs. Is not plotted in Figure 1. 
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The support point An = f(p) for liquid nitrogen in the density range 
3 

0.70-0.81 kg/decimeter required points somewhat higher [17] with the aim of 

insuring a reliable configuration of Isobars and good agreement of data for 

the liquid and the gas. At higher densities, the curve was fitted among 

experimental points [4, 17] and [6].  At a density value p = 0.6fe kg/decl- 
3 

meter , the support curve fits tightly the curve calculated from the equation 

An = f(p) for gaseous nitrogen [1], on which some of the data [17] for the 

liquid also falls. 

Owing to the availability of an equation for calculating excess 
3 

viscosity of nitrogen for the density interval 0-0.72 kg/decimeter , it was 

recognized as worthwhile to describe the section of the support curve in the 
3 

range p =■ 0.65-0.90 kg/decimeter using an individual equation: 

- ' ^ = V,(T- VT?[I0^ ]I.COK/M
2
J = 52,09 + 253,'f( p - 0,G5)+ 

* I638( 9 - 0.65)2 - 29«G( 0 - 0,65)3 + 283350( O - 0,65)'*- 
- 47I070( p - 0,65)5.   . , (1) 

■i 

For the value p = 0.65 kg/decimeter , the quantities An and the derivative 

d(An)/dp from equation (1) and the equation given in [1] agree. 

Data on the viscosity of liquid oxygen and liquid nitrogen were sub- 

jected to similar treatment.  For the first compound the support curve is 

presented from experimental data [4, 11] and fits smoothly at the value 
3 

P = 0.92 kg/decimeter , the curve obtained earlier for gaseous oxygen [1], 

Experimental points in [5, 7] lie above the support curve, and the points in 

[12] somewhat lower. The section of the supporting curve for oxygen in the 
3 

density range 0.92-1.26 kg/decimeter  is described by the equation 

ä) [iCT* u.coK/ii2} = 73,66 + 237,Sf 0   - 0,92) + 
+ 486(   0-- 0,92)2 + I0695( O   - 0,92)^- 79367( O   - 0,92)/f + 
+ ?nRt;7nf ^  _ n 0^5 i J + 208570( p - 0,92) (2) 

The excess viscosity of liquid argon as a function of density was obtained by 

the present authors, as in the case of oxygen, based on the data in [4, 11], 

which agree weil internally.  Experimental points in [10, 12, 16] lie on 
3 

different sides of the support curve.  At the value p = 1.08 kg/decimeter , 

the curve presented is congruent with the curve obtained earlier for gaseous 
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3 
argon.  In the density range 1.05-1.45 kg/decimeter , the values of excess 

viscosity for argon are represented by the equation 

&} = 65,42.+ I6It5( 9-1,05) + 225(  g - I.OS)2 4 
* 7503(  9 - I.05)3 - 339I8( 0 - 1.05)* + 56905(  0   - (3) 
-I,05)5. I * 

In view of the limited experimental data on viscosity of liquid air,  we 

used  the excess viscosity as a function of density  in reduced coordinates 

An/An.   = f(p/p,)   [23]   and  the data for nitrogen,  which allows us to calculate 

the values of excess viscosity of air at densities  exceeding 0.6 kg/deci- 
3 

meter   .    The curve obtained An  =  f(p)  agrees well with the experimental 

point?   [16]  for  the  isotherm -1830C and for a limited number of data   [7]   for 

the mixture 80.4 percent N    - 19.6 percent G».     In  the density range 
/ 3 0.60-0.93 kg/decimeter   ,   the curve is described by  the equation 

A^ " 3^.53 *.UltH 9 - 0,6) + 350( p - 0,6)2 ♦ 
> V752( p  - 0,6)3 - 4I9«( O  - 0,6)4 + l40530( 0  - W 
-0,6)5. 

The viscosity of liquid air and its components at pressures up to 

500 bar in the temperature range from the critical point to the triple 

point was calculated from equations (l)-{4) and from the correanondina 

equations in the field of lower densities [1].  Starting with the precision 

of experimental data and the error of their analytical description, we can 

evaluate the error of the viscosity values obtained at 3 percent for nitrogen 

and 5 percent for the other compounds. 

Thermal Conductivity 

In contrast to viscosity, thermal conductivity of liquid nitrogen, 

liquid oxygen and liquid argon has been investigated chiefly at pressures 

differing from the saturation pressure. 

The thermal conductivity of liquid nitrogen at the saturation state has 

been investigated by Hamman [24], Ye. Borovik, A. Mateyev, and Ye. Panin 

[25] and by Powers, Mattox, and Johnston [26].  At higher pressures, the 

thermal conductivity of this compound was first measured by Ye. Bciovik [27] 
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in the  temperature range -182.8  to -102:5:'C and for pressures of 11.2-99.0 atm. 

Later,   the thermal conductivity  of   liquid and  gaseous  nitrogen was  investi- 

gated  by  the following:     U.   Uhlir   [28]   in the  temperature range  76.4-184.30K 

and  at  pressures of  5.8-67.6  atm,   by Z.   Ziebland and  Burton   [29]   in 

approximately the same temperature range,  but  for a wider range of pressures 

(1-134 atm),  and by  I.   F.   Golubev and M.  V.  Kal'sin   [30]   in the  temperature 

range  -195.6 + 20oC and for pressures from 1  to 485-600 atm. 

The  thermal conductivity of  oxygen has been measured by the following: 

Hamman   [24]  at  the saturation  state,   by Ziebland  and  Burton   [31]   in the 

temperature range 79.2-199.80K and  for pressures of  1-135.8 atm,  and by 
2 

N. V. Tsederberg and D. L. Timrot [32] at pressures of 60 and 100 kg/cm and 

for the temperatures -190 to +250C.  There are even studies [33, 34] in which 

only individual thermal conductivity values of liquid oxygen are presented. 

Quite detailed data on the thermal conductivity of argon has been 

obtained in the following studies: Yhlir [28] for the temperature range 

86.6-193.80K and the pressures 1-96 atm, by Ziebland and Barton [29] for a 

temperature range of 93.3-196.10K and pressures of 1-120 atm, and by 

Ikenberry and Rice [35], who explored the widest range of parameters 

(91.6-234.60K, 1-500 atm).  Five experimental thermal conductivity values of 

liquid argon were obtained by Keyes [34]. 

There is no experimental data on the thermal conductivity of liquid air 

in the literature.  The lowest temperature at which I. F. Golubev [36] 

measured the thermal conductivity of air at increased pressures was -770C, 

that is, fairly removed from the critical point. 

The experimental data cited above were compared by the authors as to 

isotherms and isobars.  The comparison revealed that the data in [30] and 

in [29] for nitrogen agree within the limits 1-27,  and are intermediate when 

compared with the results of other researchers.  For oxygen, the data in [321 

and in [31] agree in the main with the same precision, with the exception of 

the near-critical region, where the discrepancy amounts to 4-5 percent.  Data 

in [35] for argon agree with a considerable fraction of the experimental 

points in [28, 29] in the limits ±2%", but for individual points the discrep- 

ancy amounts to 4-6 percent. 

■51- 

— - - "   A -■ 



^^^^^"«^^^^^   " " ^^rn^m" T- 

As the result of analysis of equations for thermal conductivity, it was 

established tha': the most successful are the e./iatlons of A. S. Predvoditelev 

[37] and N, B. Vargaftik [38], expressing thermal conductivity in the form 

of the sum of the functions of temperature and density, and taking as 

the temperature function the thermal conductivity of gas at atmospheric 

pressure.  Thermal conductivity as a function of two variables is more 

general than as a function solely of density, however, taking cognizance of 

the good agreement with experimental data for a liquid using the equation 

A = Bp  [37, 39, 40], we deemed it worthwhile to treat the most detailed data 

for nitrogen and argon both in the coordinates A and p, as well as in the 

coordinates AA, p. 

Figure 2 presents experimental data for liquid argon in these coordin- 

ates.  Both coordinate systems allow us to attain approximately the same 

precision in plotting a generalized curve from the experimental quantities. 

Most experimental data [29, 35] differ from the curves A = F(p) and 

AX = f(p) by not more than 3 percent, but only for several points do the 

deviations exceed the indicated value.  Some of the experimental points 

[28, 34] reveal somewhat greater deviations from the generalized curves, 

however these deviations lie within the same limits as in the comparison of 

experimental data ir the customary coordinates A, p and T.  Since a similar 

state of affairs has been observed also for nitrogen, we used an equation of 

the type A   = A + f(p) in calculating the thermal conductivity of the 
p, i   i 

liquids under question, allowing us in principle to obtain a single equation 

for the thermal conductivity of a gas and of a liquid. 

The earlier compared [1] equations for calculation of the thermal 

conductivity of gaseous air and its components even upon their extrapolation 

satisfactorily describe data for the liquid throughout the entire range of 

densities under study (dash lines in Figure 2).  Nonetheless, for densities 
3 3 

higher than 0.76 kg/decimeter for nitrogen and higher than 0.9 kg/decimeter 

for argon, support curves were corrected by 1-2%, which brought them closer 

to experimental points. 

The absence in the curves AA = f(p) of sections with abrupt change in 

curvature allowed us to describe them in a broad range of densities, 

including the precritical densities, by the following simple equations: 
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for nitrogen  (in the range p = 0-0.9 kg/decime'er  ) 

,„^i " hr' ^^ F1/*'*™] J* 29.46 0 V 175,67 p 2 I 1 
305,78 p 5 + 420,06 9 * - 79,16 9 5; . ( (5) 

for argon (in the range p  = 0-1.45 kg/decimeter  ) 

A A = 18,52 0 + 57,98 0 2 - 71,53 0 3 + 57,18 0 
- 7,52 9    * (6) 

Thermal conductivity data for liquid oxygen  [31, 32,  34] were  treated 

Ly the authors  in the coordinates 4A,  p.     It  turned out that these data  In 

the limits 1-3 percent agree with the  curve plotted on the basis of  the 

equation for  the thermal  conductivity of gaseous oxygen in [1]: 

ApT»   Xr + 25,'15 0 f 192,76 p 2 - 433,23 p 3 t 
■I- 477,84 p /f - 156,30 p 5. 

(7) 

Equation   (7)   has  been formulated  for  the density range 0-1.2    kg/deci- 
3 

meter  ,     In calculating the  thermal conductivity of  liquid  to a pressure of 
3 

500 bar,   it was used by the authors  to  the value  p  = 1,27 kg/decimeter   ;   the 

pi-ror of  so slight an extrapolation can hardly prove substantial,   if we  take 

into account  the good results of extrapolation of similar equations  for 

nitrogen and argon. 

Tbe  thermal  conductivity of liquid air,   as  noted above,  has  not   been 

investigated experimentally.     Methods of calculating  thermal  conductivity of 

liquid mixtures  based  on data for components,   examined in  [41,  42],  do not 

insure requisite precision.     Therefore,   in calculating  the  thermal    conductiv- 

ity of  liquid air we  used  an equation obtained  earlier for gas  [1]: 

lr.T 
95,yep 

=    A.i 4;'fl6p   *56,65p 2 + 4,30p 5 + (8) 
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Here It was taken into account that for components of air data on the 

thermal conductivity of liquid and gas in the coordinates/u > P forms a 

single curve, which is described with satisfactory precision by an equation 

formulated for gas. The equation (8) was extrapolated by us In the course 
3 

of calculations from the.  denslt" value 0.7 kg/decimeter to p «• 0.93 kg/deci- 
3 

meter ; the reliability of the extrapolation was verified by comparing 

support curves for nitrogen and air In the reduced coordinates AA/AÄ. , 

p/pk. 

The thermal conductivity of liquid air and Its components was calculated 

from equations (3)-(8) for the same ranges of temperatures and pressure, as 

was the viscosity, with the exception of the near-critical region where an 

appru^lable deviation of experimental data from the function ./M = f(p) 

was observed [1]. Taking account of the slight deviations of the most 

reliable experimental data from support date,  and the high precision of the 

analytical description of the latter, we can evaluate the error of calculated 

values of the coefficient 01 th< vmal conductivity of nitrogen and argon as 

3 percent, for oxygen 4 percent, and for air 5-6 percent. 

In conclusion, we note that much of the temperature and pressure range 

for which tables of transport properties of liquid air and its components 

have been prepared have not been investigated experimentally. 
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0,50      0,55      QöO Q65      0,70      Q75   .  0,60   "0,05 p kg/decimeter3 

Figure  1.     Excess viscosity  of   liquid nitrogen as a  function of 
density  ba.sed  on   the. experimental data:     J,   I.   F.  Golubev  et al. 
[17];   2,   Forster   [10];   3,  G.   P.   Filippova and  I.  P.   Ishicin 
[16];   A,   S.   F.   Gerf  and G.   I.   Galkov   [6] ;   5,   I.   S.   Rudenko   [5]; 
6,   N.   S.   Rudenko and L.  V.   Shubnikov   [4]. 

kw/nr degree 
5 aX  lüt 
a 

kw/m*degree 

Oß       09        1.0 1,1 1,2        1.5       \U   pkg/decimeter' 

Figure  2.     Generalization of  experimental  data with thermal 
conductivity of   liquid argon:     1,   Data  of   Ikenberry and Rice 
[35];   2,   Ziebland  and Burton   [29];   3,   Keyed   [34];   4,  Uhlir   [28] 
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STUDY ÜF MASS  TRANSFER IN A BINARY MIXTURE OF RAREFIED GASES 

P.   V.  Volobuyev,  G.   V.   Lozhkin  and P.  Ye.   Suyetln 

Formulating the Problem 

In recent  years  several studies have appeared on investigation of  the 

relationship of  diffuse and viscous mass  transport  in gases.     Such a rela- 

tionship  in closed  systems leads  to  the  b.iro-effect phenomenon  [1].     In 

multi-component  mixtures,  as a result  of mutual  causation of diffuse and 

viscous  transport,   irregular fluctuations  in density develop   [2].     The 

interaction of  gas molecules with walls when  there is a concentration 

gradient produces  "diffuse slipping" of  a mixture  [3,  4]. 

An analysis of  the phenomena named  from  the point of view of  possible 

refinement of  transport coefficients was of  interest.    We knew of  attempts to 

explain the relatively  large deviation of measured values of  the coeffi- 

cients  of mutual diffusion D       from calculated  values as   stemming  from  the 

emergence of  a mean-mass flow caused by diffusion  [5].     Below it  will be 

shown that  similar possibilities  occur  also  in  the analysis of  coefficients 

of barodiffusion. 

However,   thus  far  the effect of  the  incipient mean-mass movement of  gas 

on diffusion has  not  been clearly  enough  taken  into account.     In  particular, 

the  role of diffuse  slipping when  there   is a  constancy uf  pressures   in   the 

system remains  unclear.     Hence,   it  was  natural   to attempt  to  investigate 

"pure" diffusion  [6]   when the pressure gradient  is compensated  by  special 

measures. 

Graphically,   the   formulation of   the   task can be clarified with  the  aid 

of a simplified  diagram  (Figure 1).     Two volumes v    and v      were  adjusted  in 

advance  to   the   same pressure p  for different  gases,   the molecular  weights  of 

which were m1   and m„   respectively   (m„   "■  m,).     Upon mutual  diffusion of  gases 

through a capillary with a cross-section  area   S, ,   a pressure gradient was 
K. 
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Induced which was compensated by the symmetrical variation in volumes by 

means of shifting a calibrated  rod with a cross-section area S     ,.    The rod 
equality of pressures at the capillary ends was recorded by a differential 

micromanometer  [7],  serving as a null  instrument.    The sensitivity of the 
-2 2 

micromanometer was -' 10      newtons/m  .     Since the magnitude of the coefficient 
2 for the conditions under study is ~ 1 newton/m ,  this sensitivity allows us 

to insure equality of pressures at capillary ends with adequate precision. 

It  is not difficult to show that  the rate of change of volumes of  the 

system for  isobarlc diffusion is determined by the density of  the numerical 

flux of molecules of the mixture J through the capillary.    Actually, 

variation in the total number of molecules N in each of the volumes can be 

represented  as 

at    J:>* '    et  ' J*)" ' a) 

But since the pressure is kept constant,  the original equations become 

3) n .ff=3S. :     n.^ = -JS. <2) 

Under  the conditions investigated 

ni " "ll " n 

and 

at - at ' t (3) 

But AV ~  change in volume can be expressed by the extent of shifting of the 

compensating rod AZ. 

N 

-60- 



■w     ' m     ■■> r- ^"7 

hence 

ÄV = ^UT-At. 

7 - f _ 5U.T " A^ 
Vr  5.   "i 

(4) 

(5) 

Thus, tecording the rate of shifting of the compensating rod, we can 

experimentally determine the value of the density of the complete flux of 

molecules of the mixture in isobsric diffusion. 

Thermodynamic Solution 

The value of the density of the total molecular flux can be found by 

methods of irreversible thermodynamics, based on determination of the rate 

of increase of entropy S for the system under study [8]. 

(6) 

The mean-mass velocity V is  conveniently represented  in  the form of  two 

components 

V =v(r) -V(KV (7) 

The value  of V(R)   in macroscopic   approximation is  constant  throughout 

the cross section. 

It  can be  shown  that   the  presence   of slipping does  not   lead  to addi- 

tional change  of entropy  in  the  system.     Moreover,   taking  into  account  that 

in  [9] 

Ml?   = v, p (8) 

the first integral in the lefthand member of equation (6) is conveniently 

represented as 

JT     vKd^ J nT 
v v 
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where V is the value of the mean-mass velocity,  averaged over the capillary 

cross section, without taking slipping into account. 

The expresciion for rise in entropy is simplified if we take into 

account the relationship between diffusion fluxes of components and  the 

Gibbs-Duhem ratio.    Further,  It is convenient to pass on to the chemical 

potential, referred to a single molecule M      [10] 

M,„'«KT[tnC^tnp*f<T)]'. do) 

Then 

^-j^dV^ln^-^dV-J^^^dV (u, 

The rate of entropy rise is determined as the sum of products of 

ralized fluxes jf^ for the con 

(11) it follows that in this case 

generalized fluxes jfÄ for the corresponding generalized forces x . From 

(12) 
        7 _JH4» 
nT 

The  total flux of gas molecules through the capillary without cognizance 

taken of slipping is defined as 

Hence,   the rise  in entropy can be represented as 

s - - (?, Oj)x; *3;*x , (i4) 

where 
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xi - *, ., ^-^-7,, ' ^»5^. (15) 

The generalize, fluxes and  forces are related  by  linear relati 
onships 

(16) 
22**» 

Taking slipping into account allows us to refine the density of the total 

flux of molecules through the capillary 

^"5; + nvfa) (17) 

Its values when Vp = zero in accordan 

the form 
ce with (12) and (14) are determined in 

^.o'^^nvC«) (18) 

Using the Onsager relationship for coefficients L , [First subscript in 

symbol just given is illegible - Tr.], we can write 

xi 
^.fT X\ .  --^t* nvCn) !*',.Q      "t «jaO  X, (19) 

The condition x'  = 0,  ar.  follows  from 

VC  =  0.     Hence,  returning  to  the  former symbols, 

.2       -.  oa  ..x^ows  rrom  (10)  and   (15),  under  Isothermal 
conditions   is  equivalent   to 

^W^r ^j^lvc.o'^^^r.nVCR) (20) 

In accordance with  [11], 
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W-f m'"^a'c(,-c>^ (21) 

The rate of diffusive slipping is determined to the first approximation in 

[4] 

vCR)«(y,2a)ia7G (22) 

Taking (21) and (22) into account, we can write 

Jwp.os-n;MaP-^awc (23) 

The value of the density of molecular flux averaged over the capillary length 

can conveniently be represented as 

^|VP-O""KT ^a J(o'p"6'ia)dC~ (24) 

Thus,  when  there  is  isobaric diffusion  the  total molecular flux is 

determined by three kinetic coefficients,  and not only by the coefficient of 

mutual diffusion D-io»  as asserte£l  in  [5,  6].     The presence of  the coefficient 

ö12 in equation  (23)   shows  that even when Vp = 0,     we must take into account 

the movement of  the gas as a whole under  the effect of the concentration 

gradient. 

The expression we obtained for  the density of  the total molecular  flux 

is of interest from the viewpoint of possible experimental analysis of  the 

coefficient of barodiffusion.    We know that,   in contrast to the concepts 

adopted,   in the  thirteenth-moment      approximation a    proves to be  substan- 

tially dependent  on potential parameters.     This function is determining  for 

mixtures,   the molecular masses of whose components are similar in value   [12]. 

Direct measurement of  the total molecular flux  through the capillary  in 

isobaric diffusion allows us to verify  the conclusions of  the  thermodynamic 

solution set  forth. 
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Comparison of  Experimental and  Calculated Results 

Measurement of  the  total molecular  flux  in  isobaric diffusion was made 

on an experimental apparatus prepared  in accordance with the above-described 

basic layout.     The design  of   the equipment  is  given  in  [1].     It was  supple- 

mented by a compensation device. 

Shifting of  the compensating rod made  it possible to symmetrically vary 

the volumes v    and v     ;   the  initial value of  each of  these was 704 cubic 

centimeters.    A 0.8-cm-diameter rod was  shifted  through a teflon gasket • 

The position of  the rod was  established with a precision of 0.01 mm.     The 

measurements were made at  a  temperature  of  2930K in  the pressure range 
3 4 2 

5-10    to 5-10    newtons/m   . 

Isobaric diffusion of  four pairs of gases was  investigated:  He~Ar, 

He-N„,  H0-N„,   and H^-He.     The values of   the density of the total molecular 

flux measured  in accordance with   (5)   in  isobaric diffusion of  the gases 

He-N„ are given in Table  1.     The results of  the measurements show that   the 

density of the total molecular flux under the conditions presented does not 

depend on absolute pressure.     This is to be expected,   starting from the 

expression of  the density of   the flux determined by  the relationship   (24). 

In analyzing  experimental data  it was assumed   that  the gas concentration 

at   the capillary  ends  did  not vary during  the  measurement period.     Its value 

was  kept equal   to   the  initial concentration in  the  volume   [8] .     This assump- 

tion was experimentally confirmed by measurements  of   the density of molecular 

flux  of  the He-Ar mixture  for  capillaries of different  lengths.     The 

corresponding results  of measurements are given in Table 2.    From  the  table 

it   is clear  that   the products of  flux density by capillary length,   and 

consequently,   the values of   the difference  in concentrations remain 

unchanged. 

The scatter  of  experimental results when we  investigated  isobaric 

diffusion of  the  gases  He-Ar   through capillaries  of  different diameters 

proved  to be  somewhat  greater.     Upon changing  the cross-sectional  area  of 

the  capillary  S.    from  6.90'10       to  13.09*10-^  cm   ,   the measured value  of 
18 18       2 —1 

flux density changed  from  5.13*10      to 4.14'10       cm   'second     .     Capillary 

length in these measurements  was 4.66 cm.     The  corresponding value  of  flux 

-65- 

-»   - ■   •C*' 



density found from formula (24) does not depend on capillary diameter and is 
. _„ .AB      -2     ,-1 
4./2'10  cm »second . 

Table 1. Measured Density of Total Molecular Flux As a Function of 

Pressure in Isobaric Diffusion of the Gases He-N» Through the 

Capillary 1^ = 4.57 cm a^d Sk ■= 6.90«10"4 cm2 

i p     n/m2-^3 

i 6,95 . 

2 14,7 

3 26,8 

4 40,9 

5 55,5 

y**m»mtJmm*m***jm**m    ,-*.  fti   wu i  ■■ ■ma  1 ■■■IIH 11 I^HI a i   m   «ünniiiiiWMiiiiiiWui imf an 

tth i , sec.    -Ä£# la     2 ,—-*— . I0-i8 : 
cm -sec. *v 

296 70,6 2,00                      3,50 
290 75,0                 1,00                     5,56 

297 . 139                     1,00                      3,A2 

295 109 0,50                      3,35 

296 141 0,50                      ?,5I 

Table 2.     Measured Density of Molecular Flux As a Function of 

Capillary Length in Isobaric  Diffusion of  the Gases Ar-He. 

-■ 

Sk = 13.09-10 4 cm2 

ft 
^•K •   ^ 

P,n/m2.I0~3 T.^K t , sec/ At, ttu X ,_!       .IQ" 
^•sec. 

-IB Dls   ^.....I0"17 

rm -seo' 

I 

2 

3 

7,80 

4,66 

2,86 

27,5 
27,3 

27,5 

291 

291 

292 

IG6            1,00 
95,4          1,50 

29,9          2,00 

2,50 

4,14 

6,55 

1,95 

1.95 
1,87 

Table  3 presents a comparison of measured and calculated values of the 

density of  total molecular flux for all gas pairs we investigated. 

Calculation or  transport coefficients  entering into expression  (24)  was made 

to the  first approximation according  to  the Chapman-Enskog method  for the 

Lennard-Jones potential.     Integration with respect  to concentrations was made 

in approximate  terms using the trapezoidal formula.     The  table preseits 
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values of a    and  a,« averaged over concentrations.    The values of  D 

presented correspond to atmospheric  pressure and  the  temperature  293"K.     The 

density of  the  total molecular flux of  the mixture for the conditions! under 

study did not depend on pressure for  the gas pairs  investigated.     Only for 

the N„-H2 pair was a weak variation cf  flux density from 5.15'1018  to 
18      -2 -1 

5.72«10      cm    «second      was observed for a pressure change in the system from 

0.66vl04 to 1.33«104 newtons/m2. 

It  follows from Table 3 that  the conclusions of -.theromdynamic  theory 

satisfactorily agree with the experimental  results.    The main difference 

between measured molecular flux densities and those calculated  from formula 

<24)  did not exceed  8  percent for the  three  gas pairs H^-N-,  He-N- and 

He-Ar.    Only for H2-He  did  this difference  prove  to be more substantial. 

Additional comparison of the total molecular  flux values obtained was 

made with experimental  data in   [5],   which were recalculated  for  the values we 

measured.     The results  of  the comparison are  set  forth in Table 3. 

Table  3.     Comparison of Calculated  and Measured Values  of  Total 

Molecular Flux  in  Isobaric Diffusion  of  Gases Through a  Capillary. 

Sk = 6.90-10'   cm2,   Lk = 4.57  cm 

■67- 

£ Gases 

i 

T)     0,|2/ 
•^       'sec. 

T, OK 612 a, 0.-*—io-18 

ojr sec 
Calculated 

cir sec 
Experiment 

l   -io-18 

cirsec 
From data in 

f5j i 
1 

I H2-N2 0,800 297 1,706 3,C»5 5,79 5,15 +5,72 6,67 

2 He-N^ 0,705 295 1,129 2,110 3,76 3,47 4,65 i 
i 

3 He-Ar 0,73* 291 1,358 2,522 4,72 5,13 5,05 
■ 

5 

H Hj-He 1,390 298 0,3W 0,688 2,5* 3,42 6,48 4 
■ 

v 

I 

J 



^rr 

Symbols 

C = numerical concentration of light component molftcule«; v(r) - usual 

Poiseuille velocity,  the value of which Is zero at the wall;   v(R)  »   illpping 

rate of gas caused by longltudlrlal concentration gradient}  Oj. - coefficient 
of diffusive slipping. 
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Figure 1.     Simplified diagram of device for investigating 
diffusion of  binary gas mixture 

I 

-69- 



^T 

References 

1. Suyetin, P. Yt. and P. V. Volobuyev: ZhTF,  Vol. 34, No. 6, p. 1107, 

1964. 

2. Miller, L. and E. A. Mason: Phye.  Fluide,  N4, p. 711, 

1966. 

3. Kramers,  H. A.  and J.  Rlstemaker: Phyeioa, Vol.  10, p.  699, 1943. 

4. Volobuyev, P. V. and P. Ye.  Suyetin:    ZhTF, Vol.  37, No.   7, p.  1292, 

1966. 

5. Kosov, N. V. and L.  I. Kurlapov:    Nekotoryye Voprosy Obahohey i Priklad- 

noy Fiziki,   (Several Probleme of General and Applied Physios.) Nauka 

Press,  Alma-Ata,  1966. 

6. McCarty, K.  P.  and E.  A. Mason: Phys.  Fluids, N3, p.  906,    ' 

1960. 

7. Suyetin, P. Ye. and P. V. Volobuyev: Zavodskaya Laboratoriya,  -No. 3, 

p. 374, 1964. 

8. Suyetin, P. Ye. and P. V. Volobuyev: ZhTF,  Vol. 35, No. 9, p. 1689, 

1965. 

9. Landau,  L. V. and Ye. M. Llfshits:    Mekhanika Sploshnykh Sred.   (Mechanics 

of Continuous Media.) GITTL Press, Moscow, 1953. 

10. de Groot,  S. and P. Mazur:    Iferavnovesnaya Termodinamika.   (Irreversible 

Thermodynamics.) 1L Press, Moscow, 1964. 

11. Hirschfelder, J., C. Curtis, and R. Byrd     :    Molekulyamaya Teoriya Gazov 

i Zhidkostey.   (Molecular Theory of Gases and Liquids.)  XL Press, 

Moscow,   1961. 

12. Zhdanov,  V., Yu.  Kagan and A.   Sazykin:    ZhETF, Vol.  42,  No.  3,  p.   857, 

'   1963. 

-70- 

--   - i t- •   -■ -»  --   -      ■     •r^- 



^^ 

TRANSPORT COEFFICIENTS OF MULTI-COMPONENT MIXTURES 

G. N. Dul'nev 

Many of the artificial materials encountered in nature are multi- 

component mixtures, which can be divided into two classes by structural type. 

The first class includes mixtures with isolated closed inclusions:  in the 

binding component (first component) inclusions of another material (second 

component) not in contact with each other are disseminated. The second class 

includes mixtures with components in contact or mutually penetrating each 

other. In analyzing transport processes (of heat, electricity, etc.) through 

multi-component mixtures, in some cases it is possible to adopt a macro- 

scopic point of view, that is, to ignore the fact that materials consist of 

atoms and molecules, and to consider them as continuums. Then, based on 

phenomenologicai analysis of the transport process, it is possible to 

establish the effect of transport coefficients of the mixture as a function of 

its structure, and to establish the transport coefficients of the mixture 

components as a function of their concentrations. For example, the 

effective transport coefficient of a binary mixture A is associated with 

transport coefficients A.. , A_ of the components and their concentrations m. 

and m„ by the function 

AsiCAt.Az, mt .mz) 
(1) 

With this approach to the analysis of transport processes,  the following 

assumption is adopted:     transport coefficients of pure components and also 

components  in a mixture are identical. 

Mixtures  satisfying this assumption will be called mechanical mixtures 

in what follows. 

■a;. 

-71- 

■*■ -■- 



^^^^» 

Mechanical mixtures include: a large number of systems consisting of 

solid components, and also porous bodies with gaseous or liquid inclusions 

aad granular materials. 

If when mixing various materials processes leading to change in the 

coefficients of the original components are induced, the effective transport 

coefficient will depend not only on the concentration of the original 

components and their transport coefficients, and functions of the type (1) 

cannot be used In calculating the effective transport coefficients. 

Mechanical mixtures with closed isolated inclusions have been examined 

in detail in the literature, and several formulas have been proposed for 

calculating their effective transport coefficients. Among various authors, 

functional relationships of the type (1) do not agree, due mainly to the 

diversity of forms of the inclusions they considered.  For example, in 1873 

Maxwell calculated the effective electrical field of a system consisting of a 

continuous Isotropie mass in which extraneous particles spherical in form 

were disseminated [1]; later, the problem was generalized by several authors 

who considered particles of more complex form. We note that in the initial 

studies the main consideration was given to dielectric permeability of a 

mixture consisting of an Isotropie medium containing within it particles of 

elliptical, :pherical, cylindrical, and other forms.  Later, similar 

Investigations were made by Rayleigh who considered the electroconductivity 

of a system consisting of a media with particles disseminated in it [2]. 

The results obtained were later applied for thermal conductivity phenomena, 

and the methods of generalized conductivity found further development in this 

field.  A review of numerous studies on generalized conductivity of systems 

of the first class is given in [3]. 

The results of calculations using formulas proposed by various authors 

afford the following conclusion:  the form of inclusions has a little effect 

on the value of the effective transport coefficient, it here being assumed 

that the inclusions are isometric, that is, in all directions the inclusion 

dimensions differ little from each other. 
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In our view,  for mixtures of  the  first class with isometric  inclusions, 

investigation of  generalized conductivity was most correctly carried out by 

V.   I.  Odelevskiy,  who proposed  the  following formula for  calculating general- 

ized conductivity of a binary system  [5] 

A      ,           nn2 

A, A''   ^^-T' 
(2) 

Considerably fewer studies are found dealing with the analysis of 

effective transport coefficients of mechanical mixtures of the second class, 

that is, mixtures with mutually penetrating components. The qualitative 

distinction of a structure of this class is the absence of continuous gaps in 

the substance of the first component and the presence of alternating sections 

filled with the substance of diverse components oriented perpendicularly to 

the thermal flux and also parallel to it. Moreover, components of mixtures 

In the second class are index-equivalent, that is, when the indexes of the 

parameters A. and m are changed, the result remains the same.  Mixtures 

with closed enclosures do not satisfy this condition. The distinction noted 

for structures of the second class is already reflected in the first and 

earliest simplified model proposed by Shuhmeister [6], His model consisted 

of a combination of two pairs of flat walls, one pair aligned parallel to 

the flux, and the other perpendicular to it. The Shuhmeister model did not 

fully enough reflect the actual structure of mixtures of the second class, 

which compelled him to resort to Introduction of empirical coefficients for 

better agreement of experimental and calculated data. 

A different approach to the analysis of effective thermal conductivity 

of structures with mutually penetrating Inclusions was put forth by 

Meisenard '•     the transport coefficient was determined twice from formulas of 

the type (2) for structures of the first class. The first calculation was 

made upon an arbitrary choice of one of the components such as the binding compon- 

ent, the second calculation was made using the same formula, but the other 

component was taken as the binding component; the effective transport 

coefficient was determined as the arithmetic mean of these two calculations 

[7].  With the aid of these operations the requirement of index-equivalents 
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cf  components for structures of the second class was evidently satisfied. 

However,  the effects of thermal conductivity of second-class mixtures 

calculated by this method often deviated appreciably from experimental data, 

which ultimately compelled Meisenard to recommend various empirical formulas 

for  practical use. 

In 1965 the present author proposed a model of a mixture with mutually 

penetrating components and  analytically  substantiated  the  form of  the 

functional relationship   (1)   for this class of mixtures1   [4] 

^.[^-^^]. 
where c = parameter associated witn the bulk concentration m9 of the 

second component by the equation 

The solution of the latter equation is of the form 

04mt^0.S  Q=-l      «-fio-vcco:» O-^mj.) 

Later, the model with mutually penetrating components was generalized 

for multi-component mixtures, and also for mixtures that are a combination of 

structures of the first and second classes [8]. 

We note that a considerable number of natural and artificial materials 

are classified as mixtures with mutually penetrating inclusions, therefore it 

was of interest to use the functions obtained in calculating effective 

transport coefficients of various mechanical mixtures. 

Solid porous systems.  A comparison is made in [9] of values of 

effective thermal conductivity calculated from formula (3) and experimentally 

obtained for a group of construction and industrially dispersed materials.  The 

main difficulty in plotting the empirical function (1) from experimental data 

1 See p. 82 
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was  that  the authors of the experiments,  as a rule,  did not  Indicate all 

parameters entering into  the  formula  (1).     Usually,  for construction and 

Industrial materials the effective  thermal conductivity,  kind of material 

(sometimes extremely complex),  porosity,  or bulk weight was  indicated. 

Therefore,   the authors of  study   [3]  had  to determine  the parameters  that 

enter  into  the function  (1)  by an  indirect approach,   sometimes,  approx- 

imately.     Here  the following materials were examined:     various kinds of 

brick  (pumice-concrete,   trapel,   slag,  silicate,   etc.);   concrete  (air- 

entrained  concrete,  slag-concrete,   rubblestone concrete,   etc.),  and  also 

seveial  other construction and  industrial materials. 

In spite of incomplete  information on properties of components and the 

highly complex structure  of   the mechanical mixtures  indicated  above, 

theoretic  functions of   the  type   (:3)   lead  to results  satisfactorily agreeing 

with  experimental data  of   the various authors.     Additionally,   the qualitative 

nature  of   the function   (1)   agrees  fully,   and quantitative  deviatiors of 

calculated  and experimental data  rarely exceed  the region caused by exper- 

imental  error or scatter of  the  characteristics of  the  original components. 

A comparison of calculated  and  experimental  thermal  conductivity values 

of  chamotte   ceramics  in  the   temperature  range 80-12Ü0oK is  given in  [10]. 

These  ceramics can be considered  as  a mechanical multi-component mixture   in 

which  both  closed and mutually penetrating  inclusions  are  present.     The 

skeleton  of   the  ceramics  consists mainly of   two components:     SiO-   in  the 

amorphous  phase and A1„0,-,  in  the  crystalline phase.     Here  particles of 

aluminum oxide are dispersed   in a  continuous medium of  silicon dioxide,   that 

is,   the particles constitute a two-component mechanical mixture of the first 

class.     The  ceramics are permeated   by mutually penetrating  pores which In 

the  experiments were  fil]»d with  the  following gases:     helium,   freon-12 and 
5 2 2 air at  pressures of  0.993*10    newton/m    and  0,133 newton/m   .     Calculation of 

effective  thermal conductivity  led   to good agreement  with experimental 

data — deviations do not   exceed   the   limits of measurement  error. 

Experimental data on  the effective  thermal conductivity  of  sintered 

porous  bronzes as a  function  of  bulk concentration of  air pores,  varied 

within  the  range 5-40 percent,   are  presented  in   [7].     Comparison of 
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experimental data with results of calculations from formula (3) also leads 

to good agreement. 

Mechanical solid mixtures also include alloys with practically insoluble 

components. Experimental data on thermal conductivity and electroconduct- 

ivlty of such alloys have been borrowed from [11-13], in which a study Is 

made of thermal conductivity and electroconductivity of the following binary 

alloys:  Bl-Cd, Bi-Ag, Pb-Sb, Pb-Sn, and Pb-Mn. 

Comparison of experimental data with results of calculations made from 

formula (3) shows that the deviations do not exceed the limits of measurement 

error. 

Mixture of a solid  porous material with liquid.     Such mixtures are  found 

both in the natural  state   (petroleum- and water-bearing soil)  and are also 

prepared artificially. 

Results of experimental investigation of  thermal conductivity of 

petroleum- and water-bearing soil as a function of  bulk concentration of 

liquid are given in  [14].     Experiments on measurement of thermal conductivity 

were conducted on specimens of porous quartzlte sandstones and sands  filled 

with water,  petroleum,  air and other gases.     Deviations of experimental data 

from results of calculations made using formula  (3)  did not exceed  10-15 per- 

cent . 

Experimental  data on  thermophysical properties of an artificial  system 

of  silicate spheres   (solid  skeleton)  filled with various liquids  (benzene, 

ethyl alcohol,  distilled water,  and acetone)  are  set  forth in  [15].     The 

results of calculation of  effective thermal  conductivity from formula   (3) 

differ by no more  than  ±6.5 percent from experimental data. 

Fibrous materials.     The structure of fibrous material   (cotton, wool, 

felting,  fibrous  insulation,  etc.) with chaotically distributed  fibers  is 

such that  it can be regarded as a two-component   (fiber and gas-filler) 

mixture with mutually penetrating inclusions.     This makes it possible  in 

calculating effective  thermal conductivity of  such  systems to use formula 

(3).     The main difficulties  here are associated with determination of  thermal 

conductivity A„ of  the gas-filler.     It is not hard  to  show that  A„ equals  the 
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total of molecular A„    and  radiant A„.  components of  thermal conductivity 

I 
The molecular component of  the  thermal conductivity  coefficient can be 

determined  from the formula  in  [16] 

'■* US' 

The  radiant component of   the coefficient  of  thermal  conductivity for most 

fibrous systems equals,   to  the first approximation,   [17] 

X        J6 $*lh (6) 

where y = parameter dependent on thickness of material, blackness of 

enclosing surfaces,   and  coefficient  of attenuation a. 

Analysis of experimental data and  their comparison with the results of 

calculations made using formulas  (3)--(6)  have shown  that  the effective 

thermal conductivity of fibrous materials can be calculated from these 

formulas with satisfactory precision. 

Dendritic  systems.     The  systems considered above with mutually pene- 

trating inclusions are  based  on a model whose components are formed by cross- 

links of constant cross sectionin«  [4],     This model narrows the range of 

applicability of  formula   (3)   and does not  allow it   to be extended  for certain 

kinds of structures,   for    example,  structures obtained by sintering of  grains 

under compressive loads.     A characteristic  feature of  these structures  is  the 

sharp decrease  in cross-sectional area of  the  solid  component at  sites  of 

grain contact and  the  formation of  "necks."2     This  structural feature  leads 

to  the need  to  take   into  account  the nonuniformity  of  cross-sectional  area 

in   the direction of   thermal   flux.     It  can be  shown  that  taking  this  effect 

7 See  p. 82 
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into account leads to changing the value of the first member in the formula 

(3), and the rest of the formula remains as before. Such a modification of 

formula   (3)  is given in  [18,  19]. 

Calculation of temperature fields using a model with variable cross- 

sectional area of the solid component and  comparison of results obtained with 

experimental data of precision radiophysical measurements of the moon's 

temperature at different depths afforded a prediction of the nature of the 

structure  of  the moon's surface layer  [18].    We note  that  in this  case the 

reverse problem was solved:     from a known value of effective thermal 

conductivity the  structure of a material was decided.     The possibility of 

using  the modified formula  (3)  in calculating effective  thermal conductivity 

of granular systems is shown in  [19].     Satisfactory agreement of calculation 

with exp3rimental data has been obtained for several granular materials, 

however,   this study calls for f'-.rther development and refinement of certain 

assumptions. 

Thermal conductivity of liquid mixtures.     It was of  interest  to use the 

phenomenological  theory of generalized conductivity for  the analytical 

determination of  thermal conductivity of liquid mixtures or  solutions.    As 

we know,   solutions denote mixtures  of  two or more liquids that are 

molecularly  intermingled.    Usually,   transport processes  in liquid mixtures 

are viewed  from the vantage point  of  the molecular-kinetic  theory.     However, 

heat transport processes have still not been adequately studied even for 

homogeneous  liquids, which leads  to defects of  theoretical form ilas used in 

calculating  transport coefficients.     The problem is still  further  complicated 

in analysis  of  transport processes  through liquid mixtures.     The lack of a 

sufficiently reliable analytical method of calculating effective thermal 

conductivity of  liquid mixtures  leads  to  the use of various empirical 

functions. 

Let  us  examine  the possibility of using a model with mutually penetra- 

ting components  in calculating the  thermal conductivity of  liquid mixtures. 

Here we must  substantiate the validity of the assumption adopted  in deriving 

formula  (3),   to  the effect that  thermal  conductivities of  the  original 
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components in the  solution are constant.     To  some  extent this assumption is 

indirectly confirmed by certain studies on solution structure.    The  micro- 

crystalline hypothesis of   the liquid  state was adopted  in explaining X-ray 

scattering In liquids and  solutions;  according  to  this hypothesis,   the 

structure of  the  liquid  is represented as  small  "crystallites"  formed by 

aggregates of several thousands of molecules  that are dimensionally close to 

finely pulverized  powder.     These components are unstable,  change continu- 

ously,  break down,   and form new components   [20,   21].     If particular  specified 

positions of  the atoms of  the liquid are observed,   it  is always possible  to 

find one of  the ordered  states which can be represented,  starting with any 

space lattice   [22].     The possibility of  the existence of structural  form- 

ations in solutions  of associated liquids  is  even more probable.    At high 

temperatures a breakdown of  ordered regions  occurs  and the hypothesis  of 

microcrystalline  structure becomes less plausible.     For temperatures  higher 

than the melting point,   the structure of  the  liquid  is described based on  the 

quasi-crystalline  hypothesis:     the liquid  is  considered as a state  of 

matter that  is quasi-crystalline in structure.     This hypothesis derives  from 

the group movement  of molecules of  the liquid;   the  transition of  the  latter 

into the gaseous  state denotes  the absence of  group movement,  that   is,   the 

presence of  individual movement of molecules  of  the compound  [23],.     Thus, 

various hypotheses  on the  structure of  a  liquid derive from the existence of 

large molecular complexes.     This allows us  to adopt  the assumption  that  in 

the mixture the complexes  themselves retain  their  thermal conductivity value 

unchanged.     Further,   in describing transport of all  possible kinds  of  space 

lattices,  it  is natural  to dwell on the  structure of  the mutually penetrating 

components and  to use formula   (J) when we calculate  the thermal conductivity 

of  the mixture. 

The suitability  of  the proposed model  of   liquid  solutions was   found  by 

comparing theoretical and  experimental values of  effective thermal conduct- 

ivity of more than  forty  different mixtures  of  normal  and associated   liquids; 

the main deviation  of   the  calculated data  from  the experimental did  not 

exceed  7 percent   [24]. 

Thermal conductivity  of gas mixtures.     Most  gas mixtures cannot  be 

classified as purely mechanical,   since  thermal  conductivity of components   in 
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the mixture can differ from thermal conductivity of the pure gas, which la 

due to change in mean free path upon mixing the gases. 

However, in this case as well it is possible to use the effective 

thermal conductivity of formula (3) obtained for mechanical mixtures in 

calculating.  It is only necessary to substitute into formula (3) the 

values of the coefficients of thermal conductivity of the components found 

for the mixture. We know that the coefficients of thermal conductivity A' 

and A'  of the components of a binary mixture are associated as follows 

with thermal conductivities A and A„ of the pure components [25] 

X' -  X(.    A /ki^/ä3*k 

(7) 

Here we let 1 and j denote the first and second components of the binary 

mixture.  Intermolecular forces of interaction are taken into account by the 

Sutherland constants c and c .  Further, the values of c  for a mixture of 

nonpolar gases are determined from the formula in [26], c  = 'C.c,, but 

for mixtures of gases containing polar components — from the formula in 

[25], c.. = 0.733/c,c.. 
ij        i j 

Results of calculations of effective thermal conductivity of gas 

mixtures from formulas (3) and (7) agree well with experimental data. 

We note that the method of calculating effective thermal conductivity of 

gas mixtures advanced above is not unexpected.  Introduction of a definite 

structure for the gas mixture must be viewed as a procedure that found its 

initiation as far back as studies by A. Wasiljewa [2^], who proceeded on 

the basis of an additive relationship among the parameters A, A.., and A». 

The additive formula presupposes a complex structure for the mixture, and 

layers must lie parallel to the flux.  In later studies, this procedure was 

refined both by the introduction of various empirical coefficients, as well 

as by the use of other structures.  In the main, structures of mixtures with 

closed inclusions of components have been used [7], A structure with 

mutually penetrating inclusions better corresponds, in our view, to the 
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chaotic arrangement of gas molecules In a mixture.  Evidently, this can 

account for the better agreement of experimental data with calculated data 

obtained from formulas (3) and (7) in which there are no empirical coeffi- 

cients at all. 

Symbols 

A = generalized transport coefficient (thermal conductivity, electro- 

conductivity, and dielectric constant); m, = bulk concentration of component 

i; A = coefficient of thermal conductivity of component 1; A  and 

A.. = molecular and radiant constituents of component 1; A = coefficient of 

thermal conductivity of gas under normal conditions; A' = coefficient of 

thermal conductivity of component i in the gas mixture; k = c /c , ratio - 

of heat capacities of gas at constant pressure and heat capacity of gas at 

constant volume; Q = coefficient of accommodation; Pr = Prandtl criterion 
o 

for normal pressure; 1    =» mean free path of molecule at normal pressure H ; 

H = pressure of filler gas; a = Stefan-Boltzmann constant; a = coefficient 

of attenuation of radiation of material; T = mean value of absolute temper- 

ature of material; S. and S. = molecular diameters of components 1 and j; 

M. and M. = molecular masses of components i and j; c, and c = Sutherland 

constants for gas components i and j. 

| 
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Footnotes 

1. To p.   74      Formula  (3) was derived for the thermal conductivity of a 

mixture,  however,  its form la retained when we examine elcctroconduct- 

Ivlty,  and dielectric and magnetic permeability of a mixture. 

2. To p.   77      We called such structures dendritic. 
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THERMAL CONDUCTIVITY OF ORDERED FIBROUS SYSTEMS 

G.   N.  Dul'nev,  Yu.  P.   Zarichnyak and B,  L. Muratova 

We designate aa a fibrous  system with ordered structure a material whose 

fibers are oriented even in just one direction,  that  is,   lying in a plane 

perpendicular  to  the heat flux.     Fibrous  systems with ordered structure are 

used as construction and heat-insulation materials  (cloth,  mats).     Theor- 

etical study of  the heat transfer process  in fibrous materials with ordered 

structure has been presented in several works  [1-4],  however functional 

relationships put  forth for calculation of  effective  thermal  conductivity are 

as a rule  semi-empirical,  and  therefore have a limited range of  applic- 

ability. 

Let us examine the transfer of heat  in fibrous systems with ordered 

structure.     Before we select  the model of  the fibrous system,   let  us adopt 

the following assumptions to simplify the model:     1)  all  fibers  lie  in a 

plane perpendicular to the heat  flux and  intersect each other at  right 

angles;   2)   the  cross section of  fibers  is  square;   3)   the entire  fibrous 

system has  a homogeneous structure,   that  is,  there are no  subdivisions into 

strands,  web,  and  surface lc.yer of nap. 

With  the assumptions  listed  taken  into account,   tne model  of  a  fibrous 

system with  ordered structure can be represented  in  the form of  a  lattice of 

intersecting crossbars,  arranged  in chessboard fashion  (Figure  1,   a).     Using 

the methods  In  [4-6], we conduct an investigation of  the  transport  process in 

the volume of an  "elementary cell"   (Figure  1,  b) of  the smallest volume, 

whose repetition  in a specified manner  can constitute the entire  original 

model of  the  fibrous structure.     As follows from determination of  the bulk 

concentration in  Figure 1,   the relationship between geometric parameters of 

the elementary cell A   and L and  the bulk concentration of dry fibers m    and 

the gaseous  component m.  is expressed by 
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Let us consider the thermal resistance of  the elementary cell  in the 

direction of the thermal flux. 

We broke down the system of horizontal Isothermal and vertical adlabatlc 

planes,  using the elementary cell,  into Individual sections whose thermal 

resistances we determined  from the formula  for a  flat wall  (Figure  1,  b) 

(2) 

A diagram of the combination of thermal resistances of the sections 

constituting an elementary cell is given In Figure 1, c. The total (effect- 

ive) resistance R of the elementary cell is determined from the expression 

^"I^^IVVRS'C P7 (3) 

The effective coefficient of  thermal conductivity  A  of  the elementary cell 

and  its  thermal resistance R by definition are related by the function 

B=TT (4) 

Equating equations (3) and (A) and expressing resistances by formula 

(2), we get an expression for the effective thermal conductivity of the 

ordered fibrous system 

A-^[(l-mz)+miv--Y7if j'      A' (5) 
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Thus,   the effective  thermal  conductivity of  the fibrous  system with 
! 

X2 -fU2M,K.^2,). (6) 

Thermal  fluxes induced by molecular  transport q^w,   radiative  transport 

q„  ,  and convective  transport q       act  independently.     Therefore,  the total 

thermal  flux q equals  their  sum 

q * «u« *<\2* tCUK (7) 

Thermal flux q , effective thermal conductivity o , and temperature 

difference (t1 - t9) at the bounding surfaces of the elementary cell are 

associated by the relationship 

qi*<n(t,-ta).    1« 2M. 2K. 2*. (8) 

Thermal  conductivity o,   is  equal   to 
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ordered  structure A depends on  thermal conductivity of  the fibers,  A   ,  and N, 

1 
the gas-filler,  A0,  ana on  their bulk concentrations. 

The limiting transitions confirm the suitability of  function  (5) 

throughout  the entire range of change in bulk concentration of components. 

Actually,  when m„ =0,   A  « A-,   and when m„  = 1,   A  =  A„. ^ 

Further analysis involves  selection of numerical values of coefficients 

of  thermal  conductivity A    and  A   .     The coefficient  of  thermal conductivity 

of  the  solid  component   (fiber)   A     is  chosen from handbook data or from the 

results of  the investigators'   own measurements of  the  thermal conductivity 

of  the material of which  the  synthetic  fibers are made.     Further,  it  is 

assumed  that  the thermal conductivity of the original material remains 

unchanged  in the manufacturing of  the fibers. 

The coefficient of  thermal  conductivity of  the  gaseous component  A„ 

depends on a number of parameters 
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where S and 2A  •» cross-sectional area and thickness of elementary cell, 

respectively. 

From  (7)-(9)  it  follows that 

K ~ Aa„ * AaK-»A ZA (10) 

Let us represent  the sum of molecular and convectlve components of  the 

coefficient of thermal conductivity of the gaseous component in the following 

form 

In    -"an jl-   -AOH^*K).     K 
2H •ÄfH (ID 

Then expression (10) can be written as 

JUHO**)'* ■2M Z» (12) 

The calculations made show that  thermal conductivity of  the gas-filler 

in fibrous  systems at normal pressure  is practically the same as thermal 

conductivity of  the pure gas-filler \     throughout the entire possible range 

of change in concentrations of components,   fiber dimensions,  and  temperature 

drop,  that is. 

K ä 0   a^    AzM-.1**)\i - Xoli (13) 

Evaluation of  the radiated    component ov  the coefficient cf  thermal 

conductivity is made by a more complex approach,  namely: radiated     heat 

transport  is considered  not  in an elementary  cell,  but throughout  the entire 

fibroMS system as  a whole, with the characteristics of the bounding  surfaces 
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taken into account, especially important for thin-layer materials.  The 

fibrous system with ordered structure is represented in this case in the form 

of a continuous Isotropie medium attenuating thermal radiation.  Further, 

the following assumptions are made:  1) surfaces of the Isotropie attenuating 

medium are parallel isothermal planes; 2) scattering of radiation at fibers 

^=^54X0,02X(-L) o,302 -t {■ml (14) 

The expression we  obtained for  the radiated  component X„.   is substituted 

into  formula  (12)  and  is used  in determination of   thermal conductivity of  the 

gas-filler in the  elementary cell.     In this way we make one more assumption 

to  the effect  that  the   radiated   component  of  the  gas-filler calculated  for 

the  entire system as a whole equals  the radiated  component of  the coefficient 

of   thermal conductivity  in  the elementary  cell. 

In determining  the coefficient of attenuation a,  we use a method applied 

for a  system consisting of  opaque spherical  particles  uniformly distributed 

in a     transparent medium   [8]. 

We will hold  that  individual fibers  act     in the role of particles 

attenuating radiation  in a  fibrous system with ordered  structure.     Then, 

from  the definition 

(15) 

where it is convenient to take the surface of the elementary cell equal 
2 

to S = L as the surface on which radiation S impinges; and for the thickness 

of the layer b .in which attenuation of radiation takes place, the thickness 

of the elementary cell, that is, b = 2 A.  In this case, S     = surface J ' ' '    atten 
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f 
is  absent  (that  is,   the integral coefficient  of medium attenuation equals 

the  integral coefficient of  absorption T);   3)   the  index of refraction of  the 

medium equals unity;  4)   linear distribution of  temperatures is assumed  in the 

Isotropie attenuating medium.     In this case  it   is  possible to relate  the 

value of  the   radiated   component with integral characteristics of  the 

attenuating medium by a  function of  the  form  [7] 
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attenuating radiation and equal to the projection of fibers onto a plane 

perpendicular to the thermal flux. 

S0CA  « i2L - A)A. 

Substituting Into formula (15) values of parameters and taking cogniz- 

ance of expression (1), we get an expression for the coefficient of attenu- 

ation 

z 
i - m 

a - 1 - Mj ^ i-rn» 
2A      D (16) 

Thus, by knowing X , \   ,  m«, D, 7, and T, and using the functions (5), 

(12-14), and (16), we can calculate the effective thermal conductivity of the 

fibrous system with ordered structure in a dry state. 

However, the majority of fibrous materials are used under conditions of 

some moisture content. Moisture in the form of water vapor or accumulations 

of water droplets on fibers can lead to a considerable change in effective 

thermal conductivity of fibrous materials.  Empirical functions allowing us 

to take account of change in effective thermal conductivity in the presence 

of moisture are to be found in the literature [4, 9]. We will establish the 

effective thermal conductivity as an analytical function of the moisture 

content of a fibrous system.  Experimental measurements show that the normal 

moisture content of so-called air-dry material lies within the limits 

0-15 percent [9]. 

It is customary to take as the normal moisture content in standard tests 

of textile materials        the moisture content by weight (that is, the 

ratio of weight of moisture to weight of absolutely dry material) of the 

material kept for 24 hr under conditions of relative humidity (|) = 65 percent 

and at an air temperature of 20oC.  It is assumed that within the limits of 

normal moisture content, voids within fibers are filled with water, and at 

higher moisture content the water lies around each fiber [9].  This conclusion 
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allows us to assume that within the limits of the air-dried state (bulk 

concentration of moisture in material is less than 6 percent) the moisture is 

uniformly distributed within the fiber, that is, to assume that It forms a 

three-dimensional mutually penetrating structure with the solid fiber. 

The effective thermal conductivity A* of such a system is associated 

the thermal conduci 

i„f by the function [5] 

with the thermal conductivity of water X0f  and with its bulk concentration 

A' = A,[cJ.V,(1-Cf)^^fÜf^,], 

^^'     m2f = 2c?-3c^1. 

The effective thermal conductivity A of a moist (air-dried) fibrous 

system is calculated from the value found for the thermal conductivity of the 

moist fiber A*.  For unordered systems1 the calculation proceeds according 

to formula (17), and for ordered systems according to formula (5). 

A comparison of the redults of calculating the effective thermal 

conductivity with experimental data [1-4, 9-14] was made to test the suit- 

ability of the proposed method and to determine the range of its applicabil- 

ity. The results of the comparison are shown in Figures 2 and 3. The 

theoretical curve calculated from formulas (17) and (5) is plotted by a solid 

line on the graphs. 

The satisfactory agreement of calculation results with experimental 

results evidences the suitability of the method set forth above in calcula- 

tion of the fibrois systems. 

A graph of the effective thermal conductivity of fibers as a function of 

density \  = A(p) is often given in the literature.  A clearly pronounced 

minimum of effective thermal conductivity in the low-density region exists in 

such a graph (Figure 4, a).  The existence of a minimum can be explained by 

increase in the fractional representation of the radiative component for low- 

bulk densities and by a rise in the conductive fractional representation 

when there is an increase in the density of the fibrous system.  If the 

Sec. p. 95 
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function A » A(p) is transfonnad to A - A(m2), and we also graphically 

represent the function A. ■ AA(m„) for the established values of I,  e and D, 

it is easy to see (Figure 4, b) that an increase in A. corresponds to an 

increase in A for the same concentrations. Therefore, when we represent the 

graph in the form A/A_ - f(m2) the  minimum on the curve disappears. 

Symbols 

A ■ chickness of crossbar in elementary cell; L ■ width of elementary 

cell; m1 = bulk concentration of solid component; m_ ■ bulk concentration of 

gaseous component; A1 = thermal conductivity of solid component; 

A„ = thermal conductivity of gaseous component; A- and A„ ■ molecular and 

radiated components of coefficient of thermal conductivity of the gaseous 

compcnent in the fibrous system; k = coefficient that takes into account the 

convective component of the coefficient of thermal conductivity; T ■ mean 

arithmetic temperature of the bounding surfaces of the fibrous material; 

a = Stefan-Boltzmann constant; a « absorption coefficient of fibrous medium; 

Y = parameter dependent on the coefficient of absorption, degree of blackness 

of surfaces bounding the fibrous system, and the thickness of the fibrous 

system (values of the function Y = Y(a, e, I)  are tabulated in [8]); 

D = fiber diameter; A ■ thermal conductivity of gas-filler at temperature T; 

A  = thermal conductivity of water; mf = bulk concentration of water; 

e = degree of blackness of bounding surfaces of fibrous system. 
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Figure  1.    Model of ordered  fibrous  structure:     a)  Overall appear- 
ance;   b)  Elementary cell;   c)  Diagram of  thermal resistances of 
elementary cell 
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Figure 2.  Thermal conductivity of glass wool:  1, Calculated from 
formula (17) for v = A„  . /X,; 2, Calculated from formula (17) 

2 mm 1 
for v = \n /\„ ;  O, Experimental data from [11]; O, Exper- 

imental data from [12]; x, Experimental data from [13]; A, Exper- 
imental data from [14]. 
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Figure 3.  Thermal conductivity of wool and capron fabric (alr- 
A    - 0.21, A* - 0.25,  v - 0.108, x,  Exper- dried materials): 

Imental data of the Leningrad Institute of Precision Mechanics 
and Optics; O,  Experimental data of the Central Scientific 
Research Institute of the Garment  Industry [10]; A, Experimental 
data of the Central Scientific Research Institute of the Wool 
Industry  [4J; —, Calculated from formula  (5) 
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Figure 4.  Thermal conductivity as a function of density for 
fibrous materials: Ü,  Experiment; —, Calculated from formula 
(17). 
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Footnotea 

1.  To p. 91  We take nonordered structures to be fibrous systems 

with chaotic arrangement of fibers in all directions. 
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ANALYSIS OF TRANSPORT COEFFICIENTS OF MULTI-COMPONENT SYSTEMS 

Yu. P. Zarlchnyak 

It was shown in [1-4] that use of methods of the generalized conduct- 

ivity theory affords prediction of effective transport coefficients of 

mechanical mixtures if ehe nature of the structure of the mixture, char- 

acteristics of the components, and their concentrations are known. 

However, calculation of effective transport coefficients has been made 

mainly for structures with isolated inclusions of components, since func- 

tional relationships for calculating effective transport coefficients of 

structures with mutually penetrating components are semi-empirical in nature. 

A model for a structure with mutually penetrating components was proposed for 

the first time in [4] and a functional relationship for calculating effective 

transport coefficients was obtained free of •mpirical coefficients. Further 

development of the model was made in [5] and the method of calculation [4] 

for the case with any number of components was put forth in [4] along with 

the method of calculating the effective transport coefficients for structures 

that are combinations of the foregoing (with isolated inclusions of 

components, and with mutually penetrating components). 

Below we examine how suitable the proposed methods are for calculating 

the effective transport coefficients of various mechanical mixtures. 

Mixtures Containing Solid,Liquid and Gaseous Components 

Choice of functional relationships for calculating effective transport 

coefficients is governed by the structure of the mixture. The structure of 

natural petroleum- and water-bearing soil is as a rule ditDrdered. 

Investigation of the permeability of water- and gas-bearing structures (sands 

and sandstones) shows that the lubricating liquid or gas uniformly fills all 

porous space in the structure [6]. We use the model with) mutually pene- 

trating components in calculating the effect of transport coefficient A. 
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and the coefficient of thermal conductivity for such a structure is equal to 

[4] 

A-Ajc^-cV^lHS 
Here, C= geometric parameter associated with bulk concentration of 

the second component nu by the relationship 

ma -2c
3-3c^1 (2) 

Since structure components are geometrically interchangeable, the order 

in which indexes are written is of no importanc». For determinateness, we 

assign the index 1 to the solid component, index 2 to the liquid or gaseous 

component.  Experimental values of effective thermal conductivity of water- 

and gis-bearing quartzite sands and sandstones are given in [3]. The 

original parameters for calculating effective thermal conductivity are 

selected as follows. While the data on thermal conductivity of water A„ 

given in the handbook literature agree for practical purposes, the thermal 

conductivity of natural quartzite X     is a value not as definite which varies 

within the limits 6-8.5 watt/m'degree [7-9].  Indeterminancy in the values of 

the original parameters allows us to predict only the probable Jone of 

values of the effective thermal conductivity coefficients.  Calculated values 

of effective thermal conductivity of water-bearing soil have been compared 

with experimental data [31. shown in the graph in the form of rectangles, the 

length of whose sides is determined by the error of measurements.  Further, 

the scatter of experimental values along the vertical is caused by the error 

of thermal physical measurements, and along the horizontal — by the error 

of measurement of bulk concentration of the components. 

Comparison of experimental and calculated data affords satisfactory 

agreement. 

However, use of the function (1) in calculating thermal conductivity 

of gas-bearing soil leads to considerable deviation from experimental data 

(Figure 1). 
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It can be assumed that the cause of the deviation Is the Incomplete 

agreement of the selective model with the real structure of gas-bearing 

sandstone. Actually, It Is assumed In the model that we adopted In deriving 

the functional relationship (1) that the cross-sectional area of crossbars 

of the cubic three-dimensional lattice of any of the components can vary only 

within small limits, that is, that any abrupt «arrowing of the cross- 

sectional area is absent. When there is a small difference in transport 

coefficients of components, the existence of abrupt narrowing of cross- 

sectional area of the solid phase does not have any substantial effect on the 

value of the effective transport coefficient (curves 1 and 2 In Figure 1). 

The transport coefficient of the gaseous component A„ can be two orders or 

more of magnitude different from the transport coefficient of the solid 

component.  In this case we must take cognizance of the effect of narrowing 

in cross-sectional area of components. The model that takes into account the 

existence of narrowing when there is a considerable difference in transport 

coefficients of components (v ~ 0) was examined in [10].  The functional 

relationship in calculating effective transport coefficients is of the form 

2£-.~Al 
A -vÄ-cp^' r'i^- «) 

/t7 (4) 

The analytical and graphic representation of the function *(y, z) taking 

into account the additional resistance of narrowing, is given in [10]. 

The chief complexity in calculation based on the formulas (3, 4) given 

above stems from assigning the value y. As a rule, the value of the 

oarameter characterizing the narrowing dimensions is determined experiment- 

ally [3, 11]. This appreciably narrows the possibility of using calculation 

methods and does not avoid the necessity or conducting laborious experiments. 

Qualitative investigation of the structure of granular porous and sintered 

materials affords the assumption that the parameter y depends on porosity 

(bulk concentration of the liquid ci gaseous phase) and on the nature of the 
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structure of  the material,  and also allows us  to propose a method of 

determining its value.     Let us look at  the behavior of parameter y when we 

vary the porosity of different structures. 

It  is natural  to assume that  there are no narrowlngs of any kind  in a 

continuous solid body,   that  is,  y = 1.    We will arbitrarily produce  in a 

continuous body voids  that are not elongated  in form,  gradually increasing 

their bulk concentration.     For small values of  bulk concentration of  the 

voids, m„  < 0.2,  and  they are isolated or partially Interconnecting  inclu- 

sions. 

The emergence of  abrupt narrowing is of   low-probability   and  the value 

of y is close to unity   (cf.   curve 1,  Figure 2).     When the bulk concentration 

of voids is further  increased,   the emergence of abrupt narrowing of cross- 

sectional area of  the  solid  component becomes more probable, which at  high 

porosity m„  >  0.8 lead  to  the appearance of local breaks in the solid 

skeleton.     Further,   the effective transport coefficient decreases both owing 

to  the reduction in  the bulk fraction of  the conducting component,  as well as 

owing to the emergence of narrowing — necks  and breaks. 

When m„ approaches unity,  y approaches  zero.     Let us examine   variations 

of parameter y in a granular  structure.     The areas of contact of particles 
-2 

are very small in actual granular   materials   (0<y<5'10    )  and the value of 

y varies slightly with rise  in bulk concentration of  the solid phase all  the 

way  to m„  <  0.3   (cf.   curve  2,  Figure 2).    Under  the effect of external 

influences   (compression,   heating,  and precipitation of  solid phase at 

contact points),   the bulk concentration of voids continues to fall.     An 

abrupt rise in the value of y must occur,  and when m„  < 0.1,  y ~ 1.     Vari- 

ation of  the function y =  f(m„)  can become evident  for specific materials,  by 

investigating their geometry for a wide range of variations in bulk concen- 

tration of components  or by back calculation from experimental values of 

effective transport  coefficients.     Since actual  structures of sandstones and 

sintered materials  occupy  intermediate values  between granular structure and 

structure with mutually penetrating components with crossbars of constant 

cross-sectional area,   it   is  logical  to assign  linearity to y as a  function of 
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m2 (cf. Figure 2), that Is 

•y - 1 -ma (5) 

The linear approximation of the function y ■ f(m9)  does not contradict 

the physical sense and satisfies clarification at limiting transitions. 

Results of the calculation of effective transport coefficients by 

formulas (1) and (3) have been compared with experimental data [3, 12] for 

thermal and electroconductivity of gas-bearing sandstone and sintered porous 

specimens made of bronze, nickel and iron (Figures 1, 3 and 4). The zone 

of scatter of experimental values of transport coefficients are probably 

caused by a certain difference in technological sintering conditions for 

the specimens (temperature, specific load) for individual researchers. 

Investigation of the relationship of size of original powder particles with 

effective transport coefficient has shown that particle size has practically 

no effect on the value of the transport coefficient of a sintered specimen 

[12]. 

Analysis of results affords the finding that at low bulk concentration 

of the gaseous phase m« < 0.2, experimental data Is best described by the 

function (1) (model with crossbars of constant cross-sectional area). 

When the bulk concentration of the gcseous phase is Increased, especially 

in the case of a sharp difference in transport coefficients of the compon- 

ents, taking the existence of narrowing (3) into account leads to better 

agreement of calculation results with experimental data. 

Mixtures of Liquid Components (Solutions) 

The possibility of using the functional relationship (1) for calculating 

effective thermal conductivity of solutions is indicated in [13].  In the 

present study, results of calculation of effective thermal conductivity of 

15 different mixtures of organic liquids were compared with experimental data 

taken from [14] (cf. Table 1) and agree satisfactorily for mixtures of both 

normal as well as associated liquids.  The mean deviation of calculation from 

experiment is only 3 percent; the maximum deviation does not exceed 8 percent 

for the entire range of change in component concentrations. 
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.Symbols ■' —* " 

A  = effective transport coefficient of nlxture;   A    ■ transport coeffi 

clent of 1-th component;   C - geometric parameter of model;  y = parameter 

taking into account narrowing In structure, y ■ /s,/ST; 's.   * averaged contact 
area;   ST = averaged area of maximum cross section. 
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neizÜÖ OA   0,5   02  Q1 

0.1  0.2   Q5  OA 0.5 ma 

Figure  1.     For calculation of  thermal conductivity of water- and 
gas-bearing soil:    0,  Sandstone-air; K,  Sandstone-water; 
□,  Sand-water; ■,  Sandstone-heptane;  1,  Calculated from formula 
(1),  A       ;  2,  From formula  (1),   A.   ;  3,  From formula  (1),  *    er; »  *'    max min avci 
4,  From formula  (3),  A       :  5,  From formula  (3),  A       . ' max iBxij 

Figure  2.     Recording narrowing of  cross-sectional area: 
a,  Schematic representation of  narrowing;  b,  The function 
y = f(m9);  T,   Solid porous and  sintered materials;  2, Granular 

material;  3,  Linear approximation of  function. 

■*. 
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Ql    0.2    US   Q'* m 

m, 0.C    0.3    0,2    Ql 

Figure  3.     Transport coefficients  of  sintered porous bronze 
(Cu  89 percent,  Sa 11 percent):   1,   Calculation of effective 
electroconductivity from formula   (1);  2, As above from formula  (3); 
□ ,   Experiment;  3,  Calculation of  effective thermal conductivity 
from formula  (1);  4, As above from formula  (3),  0,  Experiment 

0.1    0.2   QS   0.t.m2 

m2 0M   0.5   Q2   0.1 

Figure 4.  Electroconductivity of sintered specimens of nickel and 
iron:  1, Calculated .' om formula (1); 2, As above from formula 
(3); V, Experimental data for porous nickel; 3, Calculated from 
formula (1); A, As above from formula (3); 0, Experimental data 
for porous iron. 
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COEFFICIENT OF VISCOSITY OF  LITHIUM VAPOR IN THE TEMPERATURE RANGE 

T = 3000-6000oK AND THE PRESSURE RANGE P = 1-100 BAR 

P. M.  Kessel'man and S.  F.  Gorykin 

Any kind of data on viscosity of dissociated lithium vapor are lacking 

at present in the literature. Still, such data can be of definite interest 

in solving a number of  special problems. 

Calculations show that  in the region of parameters the following 

dissociation reaction takes place  in lithium vapor: 

L\~2L (i) 

An attempt is made in  this present study  (the first,   as far as we know) 

to  theoretically calculate  the viscosity coefficient  of dissociated 

lithium vapor in the temperature range 3000-6000oK and a pressure range 

1-100 bar. 

The molecular-kinetic  theory gives us the following expression for the 

coefficient of viscosity of a two-component mixture   [1]: 

>»= 

"il ''12 ^-i 

^12^22 ^a 
DC, Xj  0 

[H.n   H12| 
lH12  H„| 

where H11 ,  H^ and H„„ have  the following rigorous mathematical expressions; 

3 A« 
ill (3) 
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•f, ^..107 = 266.9J-^f^CT?)      '   ^ 
(S) 

b    in7    o^Q^lIliryi^^^ 

(A) 

(5) 

(6) 

(7) 

Since  there  is a complete  lack of  experimental data with which we could 

directly determine the potential parameters:     e.,  a.,   £.,„ and  a,„,   for 
i      i      12 12 

lithium vapor,   in  the present  study  the method of  calculation is  the 

determination of   these parameters  from  the  corresponding data  for  the second 

virial  coefficient obtained by  theoretical  calculation. 

In  [2]   a method is  formulated   for  describing  thermal physical  properties 

of  chemically nonreacting gases,   based  on   the possibility of  representing  the 

interaction of  particles by some averaged  potential function with variable 

parameters   E  and   o  that are  temperature-dependent, 

U =4£(T){[6-(T)/r]11-[6-(T)/rlb] (8) 

This method  can be used  for  any compounds.     It  is   important   to  note that 

by using  this method.,  wlih    just  the potential parameters  eCr."), and   oij)  we 

can reliably describe not  only  equilibrium properties,   but  also  transport 

coefficients  of  gases for a wide  range  of   temperatures,   including also the 

high-temperature  region. 

To determine potential parameters  by means of  this method,   we must have 

original data  on virial coefficients. 
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Calculation of  the  second virial coefficient  B    corresponding to inter- 

actions of free atoms was made in accord with the method in [3].     Lacking 

the opportunity to dwell  in detail on the determination of the potential 

curves necessary in calculating B., we note that  they were chosen from 

literature sources,  or were calculated by the present authors  [8,  12,  13]. 

Table  1. Values of Potential Parameters of Lithium 

1°* 
j 

cm 
B   .  

1   mole h 
mole K 

0 

Sa1 

3G0O -5JL,0 m 134,» 2875 3,375 
3500 - 43,8 ~ 96,0 2860 5,371 
4000 - 38,2 - 68,2 2845 3,368 
4500 - 33,0 - 50,0 2830 3,366 
5000 - 28,2 *■ 38,2 2815 3,364 
5500 - 23,8 - 29,7 2800 3,362 
6000 - 19,6 - 25.3 2785 3,361 
6500 - - 17,9 2769 3,360 
7000 - - 13.2 2753 3,359 
7500 «• - 9,2 2734 3,358 
£000 ■H - 5k9 2709 3,357 
8500 - - 3,2 2678 3,356 
9000 - - 0,9 2651 3,355 
9500 m$ ■♦• 1,1 2655 3,354 

I000Ö - + 2.8 2677 3,353 

The corresponding data for B,  are given in Table  1.    We note that B. 

correcponds to  those  interactions among atoms  that  do not lead  to  the form- 

ation of stable  two-atomic molecules.     Therefore we can assume that  some 

averaged potential  function  (in the case of  interaction of particles with 

filled electron orbitals)   corresponds to  the second- virial coefficient  B 

referred to the entire  system of free atoms. 

Since in  the general case  the potential  function   (8)  can be used  for  any 

gas,   it  seems  reasonable   to  select  the corresponding  parameters  of   this 

potential,  using as  the  basis data for  the second virial coefficient  B  . 

These  parameters,   as  is   to be  expected,   are constant  and  have the values 

XJk =  27230K;   c^ =  3.207Ä. 
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Based on these parameters,   formula  (6)  was used  to calculate the 

viscosity coefficient  of atomic  lithium, which was  then employed  in 

calculating n  ,   ■     In evaluating  the reliability of  the  results obtained  for 0 mix ° J 

n, , we made a comparison with the corresponding data found in the literature. 

As we know, the viscosity coefficient of an atomic gas can be determined 
(2.2) 

theoretically by using collision integrals Ü     '       calculated and averaged 

over all potential curves of interacting atoms.  This has been done by a 

number of authors for atomic lithium [4-6]. 

Comparison of the viscosity coefficient calculated in the present study 

with the most reliable data by the author cited [4, 5] reveals good 

agreement of the values under comparison. Thus, the deviation of our data 

from the data in [4] does not exceed 7 percent for the entire temperature 

range T = 3000-6000oK under comparison. 

As for the reliability of results given in [6], which differ appreciably 

(by 30-40 percent) from the data in [4, 5], we note that we subscribe to the 

criticism of this study which was given in [4].  The analysis made allows us 

to conclude that the parameters e.. and a, obtained and that data on the 

viscosity coefficient of atomic lithium calculated by means of these 

parameters are sufficiently reliable and can be employed in calculating 

^   .   . mix 

Passing along  to molecular  lithium, we must  bear   in mind that obtaining 

parameters of  the potential   function   (8) by ordinary methods used for 

molecular gases,  that is,  based on experimental  data  for  compressibility,   is 

not possible owing  to  the absence of the latter. 

Therefore,   in determining   the  parameters  e„(T)   and  o7(T)  for the 

Li,.-Li9   interaction,   it   seemed  reasonable,   on analogy with  atomic lithium,   to 

take  as   the basis data  for  the  second virial  coefficient  of molecular  lithium 

B«,   calculating them by  a  theoretical approach. 

Statistical physics  affords   the possibility of  calculating the values of 

the  second virial coefficient   from  the formula 
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B = 2,3rN j[l-expu(r)/KTlr2dr . (9) 

if we know the curve of the potential energy u(r) of the particles under 

study. 

In the present study,  the potential curve for Interaction of  the 

Li2-Li2 system was calculated by the full pairing method  [7]  with account 

taken of dispersion forces of attraction at  large Intermolecular distances. 

The dlsperslonal energy,  as we know,   Is described with adequate preci- 

sion by the formula 

U    = - 
C (10) 

The constant  C was calculated from the Mllllken formula   [1].     Values of  the 

characteristic  energy and the polarizablllty of the molecule Ll„ necessary 

for the calculation were taken,  respectively,   from [8]  and   [9]. 

The potential curve obtained was u^ed  in calculating the second virial 

coefficient  for molecular lithium B?  in accordance with formula  (9) .     The 

calculation was made on an electronic digital computer using the Simpson 

formula. 

Data on B„,   by analogy with the foregoing,  were taken as  the  basis  in 

determining parameters of the potential  function  (8).    These parameters were 

obtained as unique quantities,   if both branches of the curve B(T)  were 

present  —  negative and positive.     For  this  purpose, data on B? were 

calculated  up  to T =  10,000oK. 

The parameters described and  the values of  B„ are also presented  in 

Table  1. 

It  is  clear  from  the  table that potential  parameters of Ll„,   like  those 

for other homonucleus diatomic molecules,  are weakly dependent on temper- 

ature.     These potencial parameters were used  in calculating the viscosity 

coefficient  of molecular lithium according  to formula  (6). 
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In calculating viscosity coefficient  1,01  we must know the parameters 

e,« and o.„ characterizing  the energy of  interaction of unlike particles. 
Iz iz. 

We note that corresponding to potential  function  (8)  is some generalized 

model,  according  co which any compound  can provisionally be considered as a 

pseudospherical gas with centrally symmetrical operation of forces.     This 

circumstance affords  the possibility of using  the  potential  function   (8)   in 

describing also dissimilar  interactions by using  the corresponding parameters 

e..„ and Oio» 

To determine these parameters, we can use well known empirical combining 

rules 

6"« = T fo * Ö'a) i   £i2 = Y £i £a . (11) 

which,  as we know,  are effective for the spherical model of a gas.     In  this 

way we obtained  the parameters e      and o,„  for  the  interaction Li-Li„  and 

we calculated the values  of  n-in in accordance with formula  (7). 

Calculation of compositions in this present  study was made with 

cognizance of   the  nonideality of  the mixture components.    For  reactions  of 

the  type  (1),   the  law of  reacting masses gives  the  following function: 

••f- ' -■-    •   ■ ■   ■■ (12) 

The nonideality of  the  components was   taken  into account by  introducing 

the appropriate correction K.   into  the  equilibrium constant 

K     a    gfi— (13) 

The quantity  k     Is  expressed by  Lhe  activity  of   the components j   and   t 

Ki =5 IL 
* . tz (1A) 
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Table 2.     Viscosity Coefficient  of Dissociated Lithium Vapors, 

n* 106 [n sec/m ] 

T0» 

P, bar 
3000 3500 4000 4600 500C 5500 6000 

I 2497 2879 3262 3633 3987 4328 ' 4647 

5 2591 2933 3296 3657 4004 4340 4667 

10 2703 2997 3338 3686 4026 4357 4681 

15 2808 3059 3379 3715 4055 4374 4693 
20 2907 3120 3419 3744 4070 4392 4707 

25 2997 3179 3459 3773 4091 4408 4721 

30 3086 3236 3497 3800 4112 4424 4734 
35 5172 3291 3539 3826 4135 4440 4747 

A0 3252 3346 3573 3856 4154 4457 4760 

^5 3329 3398 3610 588^ 4175 4473 4772 
50 3W2 3450 3646 3910 4196 4489 4785 
60 3539 3549 3717 3961 4236 4521 4811 
70 3665 3643 3786 4014 4276 4553 4837 
eo 3782 3730 3852 4065 4316 4585 4862 
90 3890 3819 3917 4115 4355 4616 4887 
100 3992 3902 3979 4162 4393 4647 4911 

s 

For the range of parameters described only by the second virial coeffi 

clent, the expression for the activity can be represented as: 

en], B.P (15) 
RT 

The value« of  the equilibrium constant K        were taken from  [11].     in 
eq0 

this way,  we have available all the necessary data for calculating nmlx- 

Since formulas   (2-7),  given by rigorous kinetic theory,   take  into account 

only pairwise  interactions, we are limited to  the range of pressures 

1-100 bar. 

The effect of  ionization was not  taken into acr.ount,  since  the fraction 

of  ions at  temperatures not exceeding  6000oK is negligibly  small   [6].     The 

results of  the calculation are shown  in Table  2. 
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Variation in n   .    with pressure must be  related to change in mixture mix e, 

composition. 

In conclusion we note that unfortunately we do not have  the opportunity 

to evaluate  the precision of the results  obtained with the corresponding 

experimental data,   in view of  the absence of  the latter.     However,   taking 

into account  the  reliability of  the method of  calculation used,  justifying 

itself in calculations for many mixtures   [3],   the authors believe  that  errors 

in the viscosity coefficient n   .    must not exceed 15 percent. 
mix 

Symbols 

x. = mole fraction of i-th component; M. = molecular weight of i-th 

component; T = absolute temperature; P = pressure; n = coefficient of dynamic 
(2.2)* , (I.11*  (1 1)* 

viscosity; K = Boltzmann constant; A* = Q /fi   ' ; Q      and 

(2.2)* 
Ü -  corresponding collision integrals tabulated in [1]; z  and 

(3) o = parameters of potential function;   f = correctional coefficient 

tabulated  in  [1];  T* = kT/e,  reduced  temperature;  N = Avogadro's number; 

B„ = second virial coefficient;   :: = distance between interacting particles; 

K        = equilibrium constant for  the  ideal-eas approximation;  K      =  equil- eq0        M f rr ,     eq M 

ibrium constant with nonideality of  components  taken into account; 

j.  = activity of component;  R = universal gas  constant. 

Indexes:     1,  Atomic component;   2,  Molecular component. 
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COEFFICIENT OF VISCOSITY OF COMPRESSED GAS AND ITS RELATIONSHIP 

WITH THERMAL PROPERTIES 

i 
P. M.  Kessel'raan and V.   R.  Kamenetskiy 

Establishing  the relationship between viscosity coefficients and  the anal 

properties of a compressed gas Is one  of  the iirgent problcas of presenc-day 

heat physics.     The  solution of this problem would afford the possibility 

based on existing  compressibility  data to obtain all the  information on the 

viscosity coefficient of  the compound  under  study for a wide range of  temper- 

atures and pressures without  resorting  to direct experimentation. 

The  first  attempt  In this direction was made by Enskog   [1], 

who obtained  an equation establishing  the  relationship between  the reduced 

viscosity  n/n    and   the equation of  state. 

The  Enskog equation was  theoretically justified,  however  it  is valid 

only for   the model  of  rigid spheres,   since   it was derived  on  the  assumption 

of elastic  Interaction among molecules.     Accordingly,   this equation is only 

of historic  interest and naturally has not  found practical  application. 

Well known attempts  to modify  this equation suitably  for  real molecular 

models have not yielded results owing  to specific shortcomings  inherent  in 

the original Enskog equation. 

Even existing  empirical  equations  do not  correspond  to  the  problem 

posed,  since  their  use necessitates availability of experimental data on the 

viscosity coefficient  of  the  compound  under   study.     We note  tha^   for   the 

range of moderate pressures,  when viscosity  is practically  independent ot 

pressure,   the problem posed has found  solution in  [2,   3].     Since  a single 

mechanism of  intermolecular Interaction is  responsible for  thermal and 

transport  properties,   in solving  such  a problem  It  appears  reasonable   to use 

some  potential  of   interaction capable   of  comprehensively describing all 

thermophysical  properties of  a compound. 
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In this respect, the potential tinctlon (6-12) with variable parameters 

Introduced for consideration in [2, 3] appears highly effective. 

This functio:i is of the form 

u-^wa-mi 
where the parameters a  and e provisionally depend on temperature. 

Without dwelling In detail on the various advantages of the introduced 

potential function (1)3 we note that by means of it it is possible to 

comprehensively describe using a single set of potential parameters a(T) and 

e(T), both the thermal and transport properties of a compound under study. 

In particular, a method of determining a(T) and e (") from compressibility 

data is elaborated In [2, 3] and It is shown that the parameters obtained can 

serve as a basis for satisfactory description of viscosity coefficient n (T) 
o 

for any compound, independent of its molecular structure. 

The aim of this present study is to establish a relationship between 

thermal properties and the viscosity of a dense gas ri(P, T) based on the 

potential function (1) described. 

It is convenient to seek this function in the form 

V^-fCfT). (2) 

where the density of gas p at given temperature and pressure Is known from 

the equation of state p = p(P, T) or from tables of thermod>namlc properties 

of the compound investigated. A breakdown of the righthand member of 

equation (2) appears possible if we make use of the methods of thermodynamic 

similarity, employing here the potential function (1) which is universal in 

the sense of applicability for any complex compound. 

Actually, it follows from the principles of thermodynamic similarity 

that if compounds are similar in thermal properties, they must be similar 

also in coefficients of viscosity.  In this way, if similarity exists with 
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respect  to compressibility  Z =  PV/RT  in some  system of  dimensionless para- 

meters u* and T* for all compounds,  then for the  same w* and T*  the values of 

the reduced viscosity coefficient  n/n    must be equal  for these compounds. 

In this case we could obtain from experimental values of n/n     for  some 
o 

limited number of compounds a generalized diagram n/n = "Hw*, T*), (valid 

for all gases), the analytic description of which would lead us to thp goal 

we seek. 

Let us show here that by using the potential function (1), we can find 

such a system of dimensionless coordinates w* and T* in which all compounds 

will be thermodynamically similar. Actually, describing the equation of 

state in the form 

L   - I + —rr~ +  vz V~   Vz (3) 

and   using  the  functions 

C =60
2'C*rT*) 

3 
where T* = kT/e,  b    =  2/3(trN0  ),  we get 

o 

Z=^-K(T>4lC*(T-)- ('.) 

If we take a point with  characteristic value:;  of volume and   temperature 

equal,   respectively,   to b     and   e/k,  as   the  support  point,   equation   (A) 

becomes 

Z =1 * B*(T*)(O^C*(T*)a;* V.., (5) 

where the dimensionless quantities oi* and T* are determined by coordinates 
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of the support point by the relationships 

V 6 (6) 

Since B(T), C(T), etc. are universal functions for all compounds 

(theoretical reduced vlrial coefficients for the potential (6-12)^ equation 

(5) in the system of coordinates Z, w* and T* Is general for all compounds, 

which demonstrate the assertion made.  Thus, all compounds are thermo- 

dynamically similar in this system of dlmensionless coordinates.  Therefore, 

in the system of coordinates n/n , u* and T*, they must also be similar, 

that is,   the general equation must hold for all gases 

JV>0 »f(a>* T*) 

The distinguishing feature of this established fact is that in this system of 

coordinates, the parameters of reduction (support point parameters) are not 

constant, but vary from isotherm to Isotherm.  Treatment in these coordinates 

of experimental data for many compounds (Ar, Kr, Xe, He, N„, 0„, C0„, H_, 

CH,, C H  C H  C-Hg, NH , H20 and CO), belonging to different molecular 

models (from spherical to complex polar molecules), confirmed that they are 

actually similar, since the isotherms of the reduced viscosity n/n for 

these compounds practically speaking coincide.  This fact is selectively 

shown in Figure 1, 

Further, the maximum scatter of points did not exceed 7 percent. 

In plotting the Isotherms of reduced viscosity, use was made of 

experimental data in [6] for CH., CJi,,  CJi,,  CO, CO-, 0. and NH., data in 

[7] for H2 and D«, data In [8] for N-, data in [9] for He, and data in 

[10] for Ar, Kr and Xe. 

Values of reduced viscosity for H„0 were calculated from data in the 

International Steam Table [11]. 

See p.125 
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The corresponding density values were taken from [12], and also from 

original studies, while the values of the potential parameters o(T) and 

>:(T) — from [3] and [13-15], where they have been tabulated for a large 

number of compounds. 

Smoothing out and mutual agreement of experimental values of n/n 
o 

according to the lines T* = const and w^ = const allowed us to obtain a 

network of support values o2  n/n = ^(u*> T*), which is general for all 

compounds, since in the established system of coordinates all compounds are 

similar. 

n/n we have arrived at was approximated by an equation according to the 

To obtain the analytical function (7), the network of support values of 

we have arrived at was approximat 

method.  This equation is of the form 

(8) 

Numerical values  of   the  coefficients  in equation   (8)   are given  in Table  1. 

Table 1.     Values  of   the Coefficients   in  Equation   (8) 

a, 6L CL dL eL 

1 -0,126297   2,^0252 -2,12956     1,0/265 -0,199718 
2 ü,Z8ft;92   0,101519 0,275<fl8 -l^&OB 0,98(065 
3 0,42259<( -2,94345 7,69111   -^,3Z3Z4 1,40170 
4 0,222556   2,60969 -6^702     *i,CH(,& -1,2826* 

Equation   (8)  was verified  by us  from experimental data  for a large 

number of  compounds.     Further,   the mean error did  not  exceed  5 percent,   and 

the maximum error  —  7   percent.     We  present  Tables   2  and 3 as  selective 

illustrations. 

The region of  applicability   for equation   (8)   is 
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m*  - 0-1.20, T* = 1-25, 

which in terms of the usual parameters is approximately 

p/pk » 0-1.8, T/Tk - 0.8-20. 

The values of the experimental parameters a(T) and e(T) reculred for 

the calculation can be found from compressibility data using the method set 

forth in [3].  Thus, equation (8) affords calculation of the viscosity of 

unstudied compounds for a wide range of parameters of state with an adequate 

precision.  Further, it is enough to have available as the original values 

data on density as a function of pressure and temperature or the equation of 

state of a real gas. 

Table 2. A Comparison of Calculated Values of the Cited Krypton Viscosity 

(Column I) with Experimental Viscosities [10] (Column 2) 

i 

I00ÜC I50ÖC 
p • atta I 2 I 2 

71,11 1,107 1,082 1,083 1,076 
. 133,1 1,240 . 1,213 1,167 1,174 

207,2 1,402 1,418 1,287 1,310 

279,* 1,578 1,655 1,413 1,456 

341,9 1,763 1.862 1,546 1,618 

411,3 1,945 2,068 1.668 1,770 
, 478,7 2,141 2,281 1,804 1,922 

546,7 2,391 2,490 1,937 2,058 

614,8 2,491 2,665 2,051 2,190 
633,5 2,653 2,846 2,IS3 ^,318 
752,6 2,817 3,017 2,302 2,420 
819,6 3,006 3,187 2,412 2,529 

>''• 
5.0 4.1 

ö^. 7. _ 6,8 ■• 6,1 
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Table 3.     A Comparison  of Calculated V ilues  of  the Cited Viscosity of 

Water  \/apor   (Column  I)  with Data of   [II]   (Column 2) 

P .   bar 
SCü^C 6500C 

i 2 I 2 

10 1,004 1,004 1,003 1,003 
25 1,011 1,010 T,,00S 1,006 
50 1,022 1,018 1,016 1,012 

100 1,04? 1,039 1,032 1,026 
mo 1,075 1,063 1,050 1,041 
200 1,108 1,095 1,069 1,058 
250 1,145 1,130 1,038 1,075 
500 1,190 1,176 1,109 1,093 
WO 1,312 1,299 1,156 2,136 
500 1,497 1,497 1,210 1,188 
600 1,734 1,700 1,270 1,246 
700 1,973 1,919 1,338 1,313 
800 2,196 2,099 1,413 1,386 

t 

1,2 
4,6 + 

1,2. 
1.9 

S vmbols 

n = coefficient  of  dynamic  viscosity  at   temperature T and  pressure  P; 

n    = coefficient  of  dynamic viscosity at   temperature T and atmospheric 

pressure;  a and  e = parameters of  the potential   (6-12);  k = Boltzmann 

constant;   N = Avogadro's  number;   p = density;   p.    =  critical density; 

T.   = critical  temperature;  T* = T/(t:/k),   reduced   temperature;   B.   C,...   = 
K 

= second, third, etc. virial coefficients. 
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o  (¥2 cy.  Q5 Q8  V)  1,2 W 

Figure 1. Isotherms of the reduced viscosity in the coordinat 
n/n , w* and T*: 1, Xe; 2, CO; 3, N2; 4, H20; 5, C02; 6, NH3; 

7, CH4; 8, C2H4; 9, C^; 10, H2 
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Footnotes 

1.     To p.   120    At present,   the first  four vtrial coefficients B,  C.  D and E 

have  been tabulated for  the potential   (6-12) ,-.. a function of T*  [A,  5]. 
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VISCOSITY AND THERMAL CONDUCTIVITY OF COMBUSTION PRODUCTS OF ORGANIC FUELS 

P. M. Kessel'man and A. S. Lltvlnov 

Study and practical use of öigh-temparature processes has necessitated 

the determination of transport coefficients for the combufation products of 

various fuels at  temperatures up to 5000-6000oK upon their combustion in air 

and oxygen-air mixtures with different oxygen content. 

Direct experimental study of thermophyslcal properties at high temper- 

atures is difficult, therefore theoretical calculation Is widely used in 

these cases. As we know, statistical mechanics of nonequllibrium systems 

gives an expression for the vlsccslty and thermal conductivity of single-atom 

gases and their mixtures, presented In [1],  Strictly speaking, thi-; theory 

is applicable only for single-atom gases. For multiatomic gases, whose 

molecules also exhibit internal degrees of freedom, inelastic collisions are 

possible.  Further, kinetic energy is no longer preserved, while momentum is 

preserved.  Therefore, viscosity depends only slightly on the existence of 

internal degrees of freedom, and the theory of single-atom gases has been 

successfully applied to multiatomic gases and to gas mixtures. Tfking 

account of the influence of Internal degrees of freedom and calculating 

thermal conductivity of combustion products of fuels will be considered 

below. 

To calculate the coefficients of viscosity of combustion products 

according to formulas of kinetic theory, we must know the mole fraction of 

components and the component coefficients of viscosity. 

In the general case, at low temperatures combustion products of organic 

fuels contain H?0, CO , N and 0„   (for  sulfurous fuels S0„ can be related to 

carbon dioxide). At high temperatures combustion producls constitute a 

chemical reacting mixture in which, in addition to dissociation, formation of 

new molecular species takes place (at Lhe indicated P and T, lonizatlon is 
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insignificant), as the result of which they have a v«.ry complex composition 

(H20,  C02,   N2, 02,  H2,  CO,  NO,  OH,  H,  0, N and C), dependent on the original 

composition of the fuel,  oxidizer,   coefficient of excess oxidizer a,  temper- 

ature and pressure.    Dissociation of combustion products having the composi- 

tion described is determined by the following chemical reactions: 

C02=r CO + -J- C2i    H20 3=r H2 t J 02»     H20 = OH ♦ -J- Hg, 

fi2 ST 2Hj    o2=r 20,      J N 2 ♦ J o2^ NO, N2=r ZH  » 

co ^r c + o. 

To determine the equilibrium composition of combustion products of 

fuels,  a system of twelve nonlinear algebraic equations was derived, which 

consists of  eight equations for chemical equilibrium corresponding to  the 

reactions presented above,  three equations obtained from the equations of  the 

material balance of atoms,  and  the  equation of Dalton's law.     This system was 

solved by a method similar to  that  set forth in  [2].     The equilibrium 

constants were taken from  [3] . 

Due to  the slight carbon content in the combustion products, when we 

calculated  the transport coefficients the carbon content was  included with 

the CO. 

Component coefficients of viscosity were expressed by the collision 
(2.2)* 

integrals Ü '   '       ,  in the calculation of which we must  know about the 

potential function of interaction among similar and dissimilar molecules and 

atoms. 

In this  study,   to describe  the  coefficients of viscosity of the "pure" 

components,   we used  the potential of  interaction  (6-12)   that  contained 

variable potential parameters  o(T)  and  e(T) 

U  = 4£(T){[-^Ju.[^r)J6l (i) 

The method of determining potential parameters is described  in  [4,   5] 

The collision integrals are tabulated  in [1]. 
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The  reliability of this method  of describing therraophysical properties 

ol  gases was verified for many multiatomic  and polar gases   [5-8].       This 

same method was  3uccessfu].ly used  in   [5,   9]   in calculating  the transport 

coefficients and   the second virial  coefficient of  the atomic  components 0,  N 

and H.     Thus, potential parameters and the coefficients of viscosity of all 

components  of the  combustion products of  fuels can be found  in  [5-7,  9]. 

In describing  the interaction among dissimilar molecules and  atoms, 

potential parameters are found by combining  the corresponding parameters for 

the "pure"  components. 

These  combining rules,  when the potential  (1)  was used,  proved  to    o 

reliable  in calculating the viscosity of mixtures consisting of molecuiar 

components   [7].     Collision Integrals     for  the interaction N-0,  0-H,  H-H» 

0-0„,   etc.   have been calculated in   [10-12].     Comparison of  the latter with 

collision  integrals found by combination of potential parameters  gives a 

maximum deviation of 15-20%, which does not overreach the limits  of precision 

of  the calculations made in  [10-12] . 

Thus,  with  the mole fractions  of components and component coefficients 

of viscosity,  the  coefficients of viscosity of the combustion products of 

twelve fuels   (Saratov gas,  kerosene,   etc.)  were, calculated  from formula 

[1,  p.   422]   in the  temperature range 400-6000oK and the pressure range 

0.1-100 bar.     The  coefficient of  oxidizer  excess a = 1.0  (for  Saratov gas 

1.0,   1.1,   1.2 and  1.5),  and  the oxygen content 0    = 23.15,  40,  60,   80 and 

100%   (composition by weight).     As an  Illustration,  Figure 1  presents  the 

function of  the viscosity of  the combustion products of  Saratov gas when 

a =  1.0 and 0    =  23.15% at  several pressures,  from which it  is clear that 
o r 

n varies  insignificantly with rise  in pressure and only at  high temperatures 

does  this  change  amount to  15%.     The  function of the coefficient  of viscosity 

of combustion products of  Saratov gas  is  shown in Table 1 a.     The maximum 

variation was observed at  low temperatures  and is  20% when 0    is varied from 

23.15  to  100%. 

When  the coefficient  of  oxidizer  excess a rises  from 1.0  to   1.5,  values 

of  n  vary  by no more than  3%.     A similar  picture  is  observed   for  combustion 

products  of  other   fuels. 
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At high reaction rates,   the effective thermal conductivity of a 

dissoclacing gas mixture can be described as the sum of the member X for 
froz 

the  thermal conductivity of  the "chemically frozen" mixture    and  th.- member 

A ,  caused by the chemical reactions reac 

kCM •v*« (2) 

Table 1 a.    Coefficient of Viscosity of Combustion Products of Saratov Gas 
8 2 

(n'lO    n-sec/m ) As a Function of Oxidlzer 0    for a « 1.0 and p - 1.0 bar 
o r 

23,15 40 60 80 100 

500 zsn 2294 2175 2060 1951 
1000 5991 3960 3916 3866 3814 
2000 6393 6447 6506 6538 6506 
3000 8363 8467 8569 8660 8741 
4000 10386 10622 10834 II000 III37 
5000 12303 12728 I3I20 13425 13655 
6000 I45B7 I5I57 15543 15772 15780 

Table 1 b.    Coefficient  of Viscosity of Combustion Products of Saratov Gas 
8 2 

(rrlO    n-sec/m )  As a Function of the Coefficient of Oxidlzer Excess a 

for 0    = 23.15% and p - 1.0 Bar 

1,0 1,1 1.2 1.5 

bOO 2394 2415 2429 2465 
1000 3991 4007 4020 4048 
20C0 6393 6406 6417 6441 
3000 8363 8389 8404 8437 
4000 10386 I04I9 10447 10510 
5000 12303 12342 12375 12448 
6000 1458? 14728 14757 14831 

A formula for calculation of thermal conductivity of a mixture of 

nonreacting gases that includes effects of inelastic collisions was recently 

derived in [13].  However, calculation using this formula when there is a 

large number of components in the mixture is laborious and indeterminate 
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owing to the absence of data on the transient relaxation of dissimilar 

molecules.  Moreover, correction for the inelasticity is small, therefore 

the Hirschfelder-Eichen formula [14] proves satisfactory in calculating the 

thermal conductivity of a mixture 

K-** 

But, here, inelastic effects must be included in calculations of the thermal 

conductivity of the "pure" components X   . 
K. 

Table 2. Number of Collisions for Rotational Relaxation 

Gas H20 co2 o2 N2 CO 

Zrot 4,0 5,0 7,0 6,0 7,0 

Calculation of the translational component of the thermal conductivity 

of a mixture A,.   and calculation of the components X, similar to the 
froz r      k 

calculation of viscosity [1, p. 426] was made based on potential parameters 

in the potential (1) found above. 

Calculation of the thermal conductivity X. for Ho0, CO„, 0o, N„ and CO k 2 2       2      2 
was  carried  out using  the Mason and Monchick formula   [15]. 

(4) 

The last member  in  (4)  allows  for the  contrution    of  internal degrees 

of  freedom  to  the thermal conductivity by introducing  the number of colli- 

sions  Z        and Z  .,   for rotational and vibrational relaxation.     The number rot vib 
Z   .,   has a  faii ly large value,   owing  to which the contribution to the vib J        <=> - o 

thermal conductivity  of vibrational  relaxation was neglected.     Theoretical 

calculations  of  the excl.ange of  rotational energy are  still  inadequate,  and 
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experimental values of various authors differ widely.    Accordingly,  Z        was 

determined on the basis of experimental data for thermal conductivity and 

was adopted as average values not dependent on temperature (Table 2).     The 

rotational contribution to heat capacity c    ,   is taken as follows: 
o rot 

R = for linear molecules and -& - for nonlinear molecules  (for H-0,  the 

3 
values c.      = C    - -^ were substituted for c     ,.).    For nonpolar multlatomic mt        v      £. rot 

mo lecules, the relationship was pD/n = TA*.  For water vapor, the resonance 

exchange of rotational energy pD/n «= •cA*(l + Z'/Z )  was taken into account. 

The expression Z'/Z was obtained in [15] for different types of polar 

molecules. 

The values of the coefficient of thermal conductivity of the "pure" 

components of the fuel combustion products calculated by formula (4) are 

given in Table 3. Comparison with available experimental data for these 

compounds gives good  agreement. 

Calculation of  the thermal conductivity of  combustion products  caused 

by chemical reactions  is made on the basis of  formulas derived  in  [16,   17]. 

whore 

V 1 

A,» AHi 

A)/     A j,)    ...  Ayy    AH/ 

An A1?. ...  A,/ 
n^    f\tl    ...   A jy 

A i»i  Ajy   ...   A »v 

(5) 

^rV-^^s^p^^U,   Tthx*  xj (6) 

Seven of the first reactions given above are taken into account  in 

ilation 

data  in  [3] 

calculation of  X .     The  heats of reaction AH    have been calculated  from reac v 
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Calculation of  thermal conductivity was made for the same fuels, 

oxldizers,  coefficients of oxidlzer excess and  parameters P and T as for 

viscosity.     Figure 2 presents the function of  the effect of thermal  conduct- 

ivity of  Saratov gaa combustion products  foir  a = 1.0,  0    = 23.15 percent  for 

the pressures 0.1,  1.0,   10 and 100 bar.     For comparison,  the thermal 

conductivity of  the "chemically frozen" mixture  A..        at a pressure  of 
froz     r 

0.1 bar is plotted on the dot-dash line.  The contribution of the coefficient 

of thermal conductivity A    caused by chemical reactions is several times 
reac J 

greater than X, 6 froz 

We must  also note  that  in contrast  to  the viscosity the coefficient of 

thermal conductivity varies sharply as a  function of pressure and  temperature 

(when T >  2000CK).     This  is accounted  for by  the change in the composition 

of  the fuel  combustion products as a result  of dissociation and  formation of 

new molecular  species.     Thus,  for example,   the  existence of maxima  is 

caused b^  the dissociation of H„0,  C0„,  H    and 0„,  and the rise  in  the 

coefficient  of  thermal  conductivity at  low pressures for temperatures 

greater than 4000oK is  associated with the dissociation of N„. 

Symbols 

P = pressure;  T =  temperature;  M = molecular weight;  R = universal gas 

constant;  u =  intermolecular potential;   a and  c =  force constants of  the 

intermolecular  potential;  r = intermolecular distance;  n = coefficient  of 

dynamic viscosiny;  A  =  coefficient  of  thermal  conductivity;  D  7  = binary 

coefficient  of diffusion;   c    = specific heat  capacity at constant volume; 

c.   ^  = internal heat  capacity;  c        and c   „   =  rotational and vibrational 
int r        J      rot vib 

heat capacities,   respectively;  Z        and Z   ,,   = number of collisions  for 

rotational and vibrational relaxations,  respectively;  p = density; 
(2 2)* 

Ü (1 1)* (2.2)* 
A* = —r;—rz-r',   Ü     ' and  fi     ' = reduced  collision Integrals; 

Q(l.l)* B 

1 + Z'/Z    = correction  for resonance collisions  for polar molecules; 

x    and x,  = mole   fraction of  the k-th and   Z-th  components;   u  =  total  number 

of components  in gas mixture;  v =  total number  of  chemical reactions; 

AH    = heat  of  the   i-th  reaction;  n       =  stoichiometric coefficient  for  the 

k-th component  in  the   i-th reaction;   0    =  oxygen content  in oxidlzer; 

a = coefficient  of  oxidizer excess. 
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TRANSPORT COEFFICIENTS OF WATER VAPOR AND AIR AT T - 1000-6000oK 

WITH ACCOUNT OF THEIR THERMAL DISSOCIATION 

P. M. Kessel'man, A. S. Bestuzhev, Yu. I. Blank, and 

A. S. Lltvlnov 

A considerable number of studies have dealt with determination of 

transport coefficient of air [1-3]. Results of refined calculation of 

coefficients of viscosity and thermal conductivity of air with account taken 

of thermal dissociation are given in this present paper.  The following bulk 

composition of air was adopted:  N. « 78.084 percent, 0_ « 20.946 percent and 

t\r  = 0.97 percent.  For the temperature range studied at pressures 

0.1-100 bar air contains the following components: N., 0„, Ar, NO, N and 0. 

Estimates show that formation of NO-, N_0 and No0,„ and also ionizatlon at 2  2      2 4 
the indicated p and T may not be taken into account.  In this case, when we 

calculate the compositions of air it is necessary to pay attention to the 

following chemical reactions: 

N2 == 2N,     O2- 20, J N2 + J02S NO. 

It must be noted  that  there  is considerably less data on coefficients of 

viscosity and thermal conductivity of water vapor, and in the temperature 

range under study they are practically totally lacking with the exception of 

[4].     Dissociation of water vapor1  Is determined by four  independent equa- 

tions:   H20 ^ H2 + 1/2 02; H20 ^ OH + 1/2 H2; 0^ 20;  and H2 -* 2H. 

H^O, H„, 0-, OH, H and 0 can be present in the mixture. 

The equilibrium composition of air and water vapor is found by solving 

systems of nonlinear algebraic equations derived Jrom the law of active 

masses,   equations of material balance of atoms, and the condition T.x    » 1. 

"■"See p.   149 
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Since the solution of the above-indicated systems in general form does not 

appear possible, they were solved by an iterative method on the M-20 

electronic digital computer for specified values of p and T.  The values of 

the equilibrium constants were taken from data in [5], 

As we know, transport coefficients can be calculated from rigorous 

formulas of kinetic theory if the potentials of interaction among particles 

have been determined. The potential (6-12) with variable potential para- 

meters ö and e dependent on temperature [6] was used for molecular components 

(H-0, N», 02, H«, NO, and Ar). Potential parameters and the coefficient of 

viscosity for H-O, N- and 02  to SOOCK are given in [7]. Extrapolation of 

data to 6000oK does not present any difficulties and was carried out by the 

method given in [6]. Parameters for H», NO and Ar obtained from experimental 

data proved to be practically Independent of temperature and were taken as 

constant (for H , a = 2.934 Ä, e/k - 34.10K; NO, a = 3.495 A, e/k - 124.20K; 

Ar, a = 3.408 A; e/k = 119.4CK). The potential energy of interaction and the 
2 (2  2^* 

collision Integrals a fi     for hydroxyl were obtained in [8] to the 

complete pairing approximation. The second virial coefficient of OH, the 

values of which are given in Table 1, were also calculated with account 

taken of the dispersional member (58.4/r ev)2 based on the potential 
2 (2  2)* 

indicated. The integrals of! "   were obtained in the same way. 

The potentials of interaction of atomic components (N, 0 and H) are 

given in [10-12]; collision integrals for these are in fact calculated in 

[11, 12].  The indicated data was used in our present study. 

Potentials of interaction of dissimilar particles were determined by 

using the customary combining rules.  For this purpose, the interactions 

N-N, 0-0, H-H, and 0H-0H were approximated by the potential In [6]. Data 

on the second virial coefficients and the collision Integrals were used at 

an approximation. Table 1 presents the second virial coefficients obtained 

from the method given in [13] and the potential parameters a  and c/k found as 

a result of approximation. 

zSee  p. 149 
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The reliability of the combining rules for molecular interactions when 

use is made of the potential with variable parameters is shown in [1]. The 

suitability of the above-described method for the atom-atom and atom-molecule 

systems was verified by comparing collision integrals determined on the basis 

of combining rules with those determined from curves of potential energies 

taken from [11, 12].  Examples of such comparison are given in Table 2. 

Determining all component viscosities in the above-described way 

(corresponding tc the different possible interactions among gas particles) 

at a known composition using formulas in [14, p. 422], the coefficients of 

viscosity were calculated for water vapor and air, and they are shown 

graphically in Figures 1 and 2, respectively. 

The method of calculating the coefficient of thermal conductivity of 

chemically reacting systems is set forth in [15].  Also found there are 

values of the coefficients of thermal conductivity of all components present 

in dissociating water vapor and air.  Therefore, this present study gives 

only the results of the corresponding calculations relevantly for water 

vapor and air (Figures 3 and 4). 

It was of interest to compare the results of calculations made in the 

present study with the data of other authors.  Figure 5 presents a comparison 

of our calculated data with experiments and theoretical calculations by 

Tomas, Nansen, Stupochenko, etc. borrowed from [16]. As we see from the 

figure, our calculated data qualitatively best agrees with the experiment. 

However, quantitative deviations do exist, which can be seen in Figure 5. 

The results of other authors presented on the same graph do not agree even 

qualitatively, since maximum and minimum of the coefficient of thermal 

conductivity caused by dissociation of oxygen is absent.  It must also be 

pointed out that experimental points [16] lie with a marked scatter and the 

curve given in Figure 5 as experimental has actually been determined in [16] 

not precisely enough (with a 20-percent error). 
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gymbols 

T = absolute temperature; p - pressure; a and e ^ potential parameters; 

k  = Boltzmann constant; B = second virlal coefficient; Ü = reduced 

collision integral. 
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Figure 1.     Coefficient of viscosity of water vapor 
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Figure 2.    Coefficient of viscosity of air 
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Figure 3.  Coefficient of thermal conductivity of water vapor 
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Footnotes 

1. To p.140  Calculation of transport coefficients of water va^or was made 

for the same pressure range as for air. 

2. To p. 141 Polarizability values needed in calculating the dispersional 

energy were obtained according to the method given In [9]. 

3. To p. 142 Note.  For atomic nitrogen, the second virial coefficient and 

the potential diameters are given, beginning with T * 4000oK, since at 

lower temperatures its dissociation is practically absent, even at 

p » 0.1 bar.  Thus, at p = 0.1 bar and T - 4000% the mole fraction of 
nitrogen xN = 0.004. 

4.  To p. 144  Note.  1 ~ Data of the present study obtained using combining 

rules for potential parameters; 2 — data of the study [11]. 
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HEAT CAPACITY OF GASES AT ELEVATED TEMPERATURE« WITH ACCOUNT OF THEIR 

NONIDEALITY AND THERMAL DISSOCIATION (H20,  C02,  F2, AIR,  LITHIUM AND 
1 FUEL COMBUSTION PRODUCTS) 

P. M. Kessel'man, M. M.  Afanas,yev» A'  S.  Bestuzhev, 

Yu.   I.  Blank,   S.  F.  Gorykin, P.  A.  Kotlyarevskly, 

S.  K.  Chernyshtv and S. A.  Shchekatollna 

Knowledge of heat capacity of dissociated gases as we know is necessary 

in solving severa;  problems in hiat transfer. 

This paper considers a method of calculating the heat capacities C    and 

C    of chemically reacting gases with account of their nonideality.    Deviation 

from nonideality when calculations are made of properties of pure components, 

equilibrium compositions,  and compositions of mixtures  is allowed  for by 

the second and third virial coefficients, which ensures adequate precision of 

results for the entire range of parameters investigated.    Virial coefficients 

(N„,  09,  H,., CO, CO-, NO, H20 and Ar)  of moleculai- components have been 

obtained on the basis of experimental thermal data by the method in  [1],  and 

virial coefficients for F„r Li« and OH have been borrowed from  [2,  4]. 

For  the atomic components 0, H,  N, F and Li,  the  second virial coeffi- 

cients are relevant,   the method and  results of calculation of which have been 

presented  in  [3, 4]. 

Calculation of equilibrium compositions has been carried out  by solving 

a  system of nonlinear algebraic equations, a specific  form of which is 

determined  in the Individual case by  the equations of  the corresponding 

chemical reactions,  equations of material valance of atoms,  and the condition 

Ex.   =  1. 
i 

Since in the general form solution of this system does not appear 

possible, equilibrium compositions were determined by the iterative method on 

an electronic digital computer at specified values of T and p. 
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Further, the equilibrium constant was calculated from the formula 

^P = K. (1) 

in which k    is determined by  the expression 

tnK^SV^n^. (2) 

where 

tn^^^p^-^}. (3) 

Values of the constant k.  were borrowed from [5]. Determining the 

equilibrium composition by the method described and using the equation of 

state for a mixture in the form found in [6] 

Vc«=2:vtxi-z:2:xixJAV, (4) 

where 

AV 
r,     x      C8t-E>j)2o 
V - Oil ^—K^r V > RT (5) 

and 

öti =2^-6^-6; 
(6) 

We determine B      by  the usual combining rules  [3]. 

Based on  the equation of  state  for a mixture  [4],   it  is not difficult  to 

obtain an expression for  the  enthalpy of a chemically reacting gas mixture 
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(7) 

Substituting in (8) the expressions (5) and (6), after integration with 

respect to p, we get 

The formulas (3)-(9) presented above involve mole quantities. 

The specific isobaric heat capacity of a mixture of variable composition 

was calculated from the formula 

LpcM   SfVcJ, (10) 

which takes into account properties of the frozen mixture and the eff< ct of 

the heat of chemical reaction.  In (10) p . - rp.x., and H J  is given by mix i i' mix        6 y 

expression  (7). 

The specific heat  capacity C P C is calculated from the formula 

C;I-C«..Tä/(ä. 

The partial derivatives   (8x /8T)    and   (9x  /9p)     that are part of   (10) 

and   (11) were obtained  from a system of equations determining the equilibrium 

composition, which after uncomplicated transformations   (taking the  logarithm 

of and differentiating with respect to the appropriate variable)   is  reduced 

to a  linear system with respect  to the derivatives sought for. 
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The authors used  the above-described method  to calculate detailed  tables 

of  isobaric and isochoric  heat  capacities for water vapor,  carbon dioxide, 

fluorine, air, lithium and the combustion products of thirteen organic fuels 

throughout the entire range of temperatures and pressures of practical 

importance (up to 6000oK and 0.1-1000 bar).    The isobars of the specific heat 

capacity C    for one of  the most  complex systems of  the groups under study 

(combustion products of a stoichlometric mixture of Saratov gas and air) are 

given in the figure by way of example. 

Symbols 

T = absolute  temperature;  p = pressure;  K    and K      = equilibrium 
Po 

constants  for the real and  the ideal gas,  respectively;   y     ■ activity of 

component;  v.  « stoichlometric number of components participating in the 

reaction;  B,  and C.  =  second and  third virial confficients of the i-th 
1 1 

component;  V = molar volume,'   H =  molar enthalpy;  x = mole  fractions of 

components;  p.  = molecular weight;   R «= universal  gas constant. 

■155- 



1 

Cp 
kiloioules \ 

kg-deg 
9 

6 

7 

6 

5 

U 

5 

, 
^Qi bai 

/ 

/ lAl 

/ 11 u 
\' 

// yp0 

/// / \j 'K S ̂ -^oo 

2 j /// 
AA j- 

1 <** -H 
1000  2000 5000  OX» 5000 T;K 

Figure 1.  Isobarlc hea'. capacity of Saratov gas combustion 
products in air 

-156- 

--— - - >- ^ --- 



■157- 

References   

■ 

1. Kessel'man,   0.   M. ,   TVT,  Vol.   2,   p.   879,   1964. 

2. Kessel'man,  P.   M. ,  A.   S.  Bestuzhev,  Yu.   I.   Blank,  and A.   S.   Litvinov, 

Teplo- i MaaaoperenoB,   (Heat and Maae Transfer),  Vol.   7,   ITiMO Press 
■ 

of   the Academy of  Sciences,  Belorussian SSR,  Minsk,   1968. 

3. Kessel'man, P.   M.,  Doktorskaya Disaertatsiya,   (Doatoral Dissertation), 

Odessa Technological Institute  imeni Lomonosov, Odessa,   1966. 

4. Kessel'man, P.  M.  and S.  F. Gorykin, Teplo- i Massoperenoa,   (Heat and 

Mass Transfer),   Vol.   7,  ITiMO Press  of  the Academy of  Sciences 

Belorussian  SSE,  Minsk,  1968. 

5. Gurvich,   L.   V.,   G.   A.   Khachkuruzov,   V.   A.   Medvedev,  et  al.,   Teplo- 

fiziaheskiye Svoystva Individual'nykh Veshahestv. Spravoahnik, (The 

rmo-physiaal Properties of Individual Compounds. Handbook)} Academy 

of  Sciences  USSR,   Vol.   2,   1962. 

6. Kessel'man,  P.   M. , Sb.  Teplofizika i Teploteahnika,   (Colleation:    Heat 

Physiaa and Heat Engineering),   Naukova Dumka Press,  Kiev,   1964. 

-..-.  .. .. ^—JJ-.,-. 



Mtm ...u ,.....,..■.■« .^M^-^^-^mm^- - -      ^.-wr- 

TRUE AND TRACE DIFFUSION COEFFICIENTS OF GASES 

N. D.  Kosov and L.   I.  Kurlapov 

When  there is mutual diffusion of gases  in closed  Instruments,   the 

diffuslonal  baro-effect arises  [1,  2],  which is the cause for  the phenomenon 

of hydrodynamic  flow of the gas mixture.    This flow superimposed on diffusion 

currents,  equalizes  the transport of  the number of molecules of  each gas. 

The mutu.'l diffusion coefficient of  gases measured under  these conditions   LS a 

characteristic of overall mass  transport —  transport by chaotic  thermal 

movement   (diffusion proper)  and  transport by hydrodynamic current generated 

in the course  of diffusion. 

If measurements are made with strict observance of the isobaricity of 

conditions [3] (that is, in the absence of the baro-effect and the hydro- 

dynamic flow it generates), the diffusion coefficient determined by Fick's 

law will characterize transport caused only by thermal movement (diffusion 

proper), and it is conveniently called the true diffusion coefficient. In 

the general case, the true diffusion coefficient of the first gas Into 

the second does not equal the true diffusion coefficient of the second gas 

into  the  first. 

An  expression of  true diffusion coefficients using molecular-kinetic 

parameters   (for  the model of  solid  spheres,   using effective molecular 

diameters,  molecular masses and  the density of the number of molecules of 

each species)   had been given already by L.  Boltzman  [4],  and  the  relationship 

of  the true diffusion coefficients with the coefficient of mutual diffusion 

by 0.  Meyer  [5].     In  the Boltzmann-Meyer theory, diffusion coefficients  (true 

and mutual)  depend on the concentration of the diffusion gases  even  for 

the  simplest  gas model — solid  spheres   (the  concentration explicitly  enters 

into  the  formulas).     In the Chapman-Enskog theory  [6],   the coefficient  of 

mutual diffusion for  this model does  not depend on concentration,   to  the 
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first approximation.     Weak dependence on concentration was found only  in the 

second approximation.     The nondependence on concentration of  the mutual 

diffusion coefficient  in  the Chapraan-Enskog theory can be accounted  for by 

the fact  that  this  theory does not  take account  of  the effect on diffusion of 

the collision of molecules of a given species.     When the concentration of  one 

of the diffusing gases  is luw  (so-called  trace diffusion),  then in the 

Boltzmann theory  the effect of uomogeneous collisions can be neglected. 

However,  both these theories lead  to different values for the ratio of mutual 

diffusion coefficients  for  the two extreme cases   (when the concentration of 

the first gas is  small,   and when the concentration of the second gas  is 

small).     Hence,   it was of  interest  to  investigate mutual diffusion of  gases 

for these extreme cases.     Below are given  the results of measurements of 

trace diffusion coefficients of four  systems. 

True and Trace Coefficients 

According  to  Boltzmann  [4],   the  true coefficient of  the  i-th gas  in  the 

j-th gas with account  taken of  the persistency of velocities   [6,   7]   and  the 

mean free path as  a function of velocity  [7]   is written as follows: 

^^ t.QSI /^*T 

iTT^i (d-^uk^^^^On^J^p 1     *<ir>h^Jf4~r.>)*J7K?J^.A*.6tJmi2i (1) 

The coefficient of mutual diffusion is associated with the true coeffi- 

cients by the 0. Meyer formula: 

tyj =Ct^ -C^i (2) 

The diffusion coefficients, as Is seen from formulas (1) and (2), deoend 

on concentration.  In t'ie uniting cases (when c ->■ 0 or c„ ->■ 0, the true 

diffusion coefficient of the first gas in the second varies from the 

self-diffusion coefficient D  to the trace coefficient D* , 
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J'^0)=3i^:(i^j^ ^ (3) 

Similar expressions have been obtained also for extreme values of the 

true diffusion coefficient of  the second gas into the first: 

^ ,      n. 1.05l(2KT)/a      ^w 

^^  U;    3T^;(1-wu)p<ra
a  -D™ (6) 

The coefficient of mutual diffusion determined by formula  (2)  at extreme 

concentration values intergrades  into  the trace coefficient of  the first gas 

and  the  second gas,  respectively: 

I'12CCI-0) = J),(C1-0)»K (7) 

^Cc^Oj^zCCa-O)^ (8) 

The relationship of mutual diffusion coefficients for these extreme 

cases  is: 

■   ^(A-O)       S _JDr        m,0-a;t1)   . (9) 

We  note that when the persistency of velocities  is  left out of  the 

picture,   the relationship   (9)  equals  the  ratio of molecular masses,  which 
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does not agree with experiment.  Tills fact once served as one of the main 

reasons for nonacceptance of the Bnltzma.nn diffusion theory (cf., for 

example, [6-8]] in this respect). 

The Chapma.i-Enskog theory of diffusion gives the following expression 

for the relationship of trace coefficients of mutual diffusion In the second 

approximation for the model of solid elastic spheres [6]: 

a 

IXCcr-ol  " 1 r-^i , (10) 

The  concept of   trace diffusion coefficient  has  a quite  definite  physical 

meaning  in  the  Boltzmann  theory of  diffusion.     As we can see  from formula 

(i),   trace coefficients characterize    diffusion  under such  conditions when 

collisions of  dissimilar molecules  play an essential role and when collisions 

of molecules  of   the  "trace" gas among  each other can be  neglected,   that   Is, 

when 

i _ 

1-u^ Cv  1   fjj   V        2m, (ID 

From relationslilp (11), it is clear that trace diffusion occurs not only 

when C. *^ C, but also when masses of molecules and their effective diameters 
i   J 

at commensurable values of the concentrations of diffusing gases satisfy 

relationship (11). 

Measurement of Trace Pit fusion Coefficients b^ a Steady-State Method 

Usually, trace diffusion coefficients are determined by a steady-state 

method using a double-flask instrument, when its radioactive Isotope is added 

to the gas under study.  We used an earlier proposed steady state method of 

measuring mutual diffusion coefficients [9] for the measurement of trace 

coefficients.  Essentially the method amounts to the following.  Let the pure 

gas 1 move at a specific bulk velocity v through the upper tubing (Figure 1), 

and traces 2* of the second gas through the lower tubing with the same 
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velocity of gas 1. The tubings are connected by a capillary. A set of 

identical capillaries is used to increase precision of measurement. Tubing 

and the capillary set form a diffusion cell.  Diffusion will take place in 

capillaries connecting the tubings.  In mutual diffusion of gases the overall 

flow q1 of the first gas will equal the overall flow q» of the second gas, 

as has been indicated above. 

Before the gases are admitted into the tubings, they are passed through 

identical halves (only the left, or only the right) of two successively 

arranged identical interference cells. After diffusion, the gases pass 

through the other halves of the interference cells.  Upon attaining the 

conditions q, = q9 = q, that is, when mutual diffusion occurs, the optical 

difference of the path of the interferometer rays will equal zero, and the 

readings of the interferometer compensator cylinder will be zero. Then one 

of the halves of the cell is swept through with the same gas (or gas 

mixture) which is present in the other half of the same cell, and an analysis 

of the gas mixture in the other cell is made in the usual way. From the 

concentration of the gas following diffusion, the geometric dimensions of the 

capillary set, the coefficient of mutual diffusion is found from Pick's law 

^  Sue (12) 

In deriving formula (12), it is assumed that linear distribution concentra- 

tion holds in the cylinder, and the difference in concentrations Ac at the 

cipillary ends is calculated from the known initial and final concentrations 

with allowance of Its variation over the capillaries along the flow. 

Equating the flows q and q„ is achieved by varying the gas pressure in 

one of the tubings [3]. 

The bulk velocity of gases v is measured by liquid rheometers.  Their 

relative calibration by means of the interferometer [10] makes it possible 

to satisfy the condition of equality of v in both tubings with a high 

degree of precision (0.05 percent). 

The apparatus as a whole does not differ from that previously i 

described [3, 9, 11] for measuring true diffusion coefficients. To 
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increase measurement  precision,   the  main assemblies  of   the apparatus 

(diffusion  cell,  rheometers,  and  interference cells)   are   thermostated. 

Here  is  some data characterizing   the apparatus.     The  capillary set 

consists of  930 identical  stainless  steel  tubes,  with an  overall area of 
-4     2 -2 2.03  x   10      m    and  7.16  *  10      m long.     The velocity with which the 

gases  are swept   through  the   tubings   is kept  constant   throughout   the 

experiment   to a precision  of  0.1 percent and was 0.862  x   10      m /sec  in 

all  the experiments.     Special verification of  the equality of gas volumes 

after  diffusion was made prior   to measurement of  trace coefficients. 

For  this purpose,   the bulk gas velocities were measured  at  the outlet  from 

the diffusion  cell after  a steady-state  condition was  established with 

zero  reading  on  the  interferometer.     Within  the  limits  of   experimental 

error,   bulk velocities measured   by   the displacement  method proved  to 

be   the   same,   confirming  the equality  of   the  flows  q,   and  q„. 

Table  1  presents  the results of measuring  trace  coefficients  for  four 

systems  of  gases at a  temperature  of   298.20K.     Each value  of  the  trace 

coefficient   is   the mean of   four   to six measurements.     The  error  in 

determination of  trace  coefficient was  3-5  percent  and was mainly due  to 

error   in determination of   the  absolute  ^alue  of   the velocity with which 

the gases were swept  through the  tubings and error  in measuring  the area of 

the  capillary  set.     The relationship  of  coefficients   calculated directly 

from measured  values q =  cv was  determined more precisely   (the  error was 

1-2 percent),   since  it  did not  depend  on the  absolute value of   the 

velocity,   b-      depends  only  on   the  ratio of velocities   in   the  tubings. 

The values  of   the   customary mutual diffusion coefficients  of  systems 

investigated   [12]   lie between  trace  coefficients,   as   is   to be  expected. 

The measured relationship  of   trace  coefficients  for   three  systems 

agreed within  limits  of  experimental   error with  those  calculated  from  the 

Boltzmann theory.     For   the   third  system   (He-0„),   it  proved  to be  less   than 

is  to  be  expected  from formula   (9).     The relationship  of   the  trace 

coefficients   calculated  from  the  Chapman-Enskog  theory  for solid  elastic 

spheres was   7-16 percent  less   than  the experimental.     This   theory gave 

still   smaller  relationships  for  other  potentials   [6]. 
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Measurement results show that the mutual diffusion coefficient 

depends on concentration more strongly than was commonly believed [13]. 

The Boltzmann diffusion theory (taking account of persistence of 

velocities) better describes extreme values of the mutual diffusion 

coefficients than does the Chapman-Enskog theory. 

We note that Westenberg and coworkers [1A] obtained values differing 

little from those calculated by the Chapman-Enskog theory for the relation- 

ship of trace coefficients of the He-N„ and He-Ar systems.  The difference 

between the data we obtained and the Westenberg data can be accounted for 

by the fact that the latter used a relative method of measurement, 

graduating the apparatus beforehand with the He-Ar system, the mutual 

diffusion coefficient of which was adopted as a standard and did not depend 

on concentration. When graduating the apparatus, it is necessary to bear 

in mind that at the point of the concentration field where trace coeffi- 

cients are measured the numerical value of the standard coefficient must 

also be a trace coefficient. 

Symbols 

D.,   D.,,   D*    and D..   =  true,   mutual,   and  trace diffusion coefficient, 
i       ij 1 ii ' ' 

and self-diffusion coefficient;   w - persistence of velocities;  m and 

o = mass  and  effective diameter  of molecule;  o       =   (a,   + o   )/2;  k and 

n = Boltzmann  constant  at  number  of molecules per unit volume; 

c.  = n  /Zn.   = relative concentration;  T =  absolute  temperature; 

p = pressure;  L and S = length and overall area of capillary set;  q1  and 

q„ = overall flows of first  and second gases; v =• bulk velocity of gas  in 

diffusion  cell  tubing. 
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Figure 1. Diagram of diffusion cell 
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STUDY OF THE TEMPERATURE DEPENDENCE OF BODY LENGTH FROM CHANGES IN 

HEAT CAPACITY IN QUANTITIES CHARACTERIZING BODY STRUCTURE 

N. N. Madvedev and L. G. Savel'yeva 

Precision measureitents show that body length la a nonlinear function of 

temperature. Body length as a function of temperature Is usually expressed 

by the empirical formula; 

I .f.O-oa*/t») 
(i) 

We note that a physical quantity determined by the following expression is 

called the tiue temperature coefficient of body elongation: 

1       ft   dT (2) 

where t » T -   T ,  T    - 2730K,    Using expression  (2)  for formula  (1), we get 

0(i »ot + 2/t (3) 

Formula (3) shows that the true temperature coefficient of elongation in 

contrast to the coefficients a and 3 Is a function of temperature. 

The empirical formula (1) can be viewed as an expansion of the unknown 

function Z - f(T + t) in series in powers of t with a restricted number of 

members of this series. 

Expansion of the function Z ■ f(T + t) into a series can be repre- 

sented as follows: 

t'l ^m\:M^&®&^ 
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or 

where 

t «t0Ci*ott»jitVft*^tV..) 

1 fdl] 
<*   u 

e.idi 

^   iniidtvt.o 
(4) 

Let us find the analytic expression of the function I  ■ f(T).  For 

metal bodies, the energy of Interaction of particles in the body is deter- 

mined [1] by the expression 

r  ra 
(5) 

Equation (5) can be represented graphically (Figure 1). 

From the graph (Figure 1) it is clear that when there is a rise in the 

body temperature, atomic oscillations make a transition to a higher energy 

level and become increasingly anharmonic, which is expressed by the 

asymmetry of ^he  curve W = W(r). The mean distance r between oscillating 

atoms increases nonlinearly with temperature rise, that is, r = r(T) is a 

nonlinear function of temperature.  This is also cause for the nonlinear 

expansion of bodies on heating. 

It is plain from the graph (Figure 1) that to each set value of the 

function W = W(r) there correspond two real values of the argument r, the 

arithmetic mean of which r = (r1 + r-)/2 determines the geometric position 

of points having the coordinates (W, r), that is, describe the curve 

W = W[r(T)].  This fact can be used to find the function r = r(T), and 

consequently, the function I  = f(T). 

The constant b entering into equation (5) can be determined from the 

condition W = minimum [1] 

b = 
0.r 
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r ■ value of r at T - 0oK..  Substituting the value of b found into equation 

(5), we obtain 

w -  & ^ ar9 
Wj:""?-*T^ ' (6) 

On the other hand, a total energy of interaction of atoms in metal 

determined by formula (6) must be equated to the total Internal energy of 

the body referred to a single atom. This energy can be found if we assume 

that its change depends not only on change In temperature, but also on 

change in heat capacity of the body, that is, if we assume that 

dW = 1/N d(CT). 

Heat capacity C is viewed as a function of temperature.  In this case, 

it will be: 

V^SX^W (7) 

where W    =  integration constant. 

Compaicing expression  (6) and   (7)  and finding at T - 0*K,   the value 

W*  »*-£fS 

we  get; 

2(~ir-'£r*y*2o.r-ar**0 W 

Equation (8) is a quadratic in terms of r.  Hence, for ea^h value of T there 

are two roots of this equation r, and r».  The arithmetic mean of these 

roots determines the mean distance r between oscillating atoms, as a 

function of temperature, that is. 
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Using  the  properties of  roots of  a quadratic  equation,  we  find. 

r =■ 
I^CT 

Noting that r/a * £/£ and r /r  =K1„ where r = value of r at T = 273°K, 
o       o o o 

we get: 

t--l ^? CT (9) 

In the general case of a polyvalent metal fl], we can adopt the following 

expression for the quantity a 

a - aAe^z 2^5/3 

In  this  case,  we will have 

Z^*/3 

/VAe*zv,- roCT (10) 

Formula  (10)   is an analytic expression of  the  function I = f(T), 

Using formula   (10)   for  the mean temperature of  the  interval 

0  < 1 <  T, where T = T/2,  based on the expressions   (4) we obtain: 

27   Ä^^fi-^f^H£ 
(11) 

,dCa 
(12) 
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In obtaining formula (12) It was assumed that dC/dT - const.  Formulas 

(11) and (12) show that the coefficients a and B  depend on quantities 

characterizing the structure of the metal and its heat capacity. 

Hence it follows that we can refer to constancy of the coefficients a 

and ß in the empirical formula (1) only within the limits of preservation of 

a given type of structure, that is, in the absence of phase transitions. 

With a precision quite adequate for calculating the coefficients a  and g 

when T = T , formulas (11) and (12) can be represented in the following more 

convenient form 

oi - r0 (CB * 2T. nrf 
/V/UV/S (13) 

^=l^T-rif^Z (14) 

Thus, the values of the coefficients a and ß, and consequently, also 

the value of the true temperature coefficient a» - a + 2ßt can be calculated 

theoretically fcr different metals and their alloys from known quantities 

characterizing their structure and heat capacity. 

For most metals the value of the Madelung constant can be taken as 

equal to A = 1.75. 

The value of the interatomic distance r can be found for various 
o 

metals  in handbooks   [3,  5],  and can be determined by X-ray structural 

methods  of  analysis  or alloys. 

The value of  the heat  capacity C and  its  change dC/dT can be  calculated 

for a given metal  from the known Debye characteristic temperature  9,   using 

here  the  tables  in   [2]  for C - f(f/T). 

If  the  Debye  temperature is not  known,   for example,  for alloys,   it 

can be determined  from the experimentally known value of  the heat  capacity 

and  then dC/dT can be calculated.     The values of  the quantities N,  e  and z 

are generally accepted.     If  the valency is not known,  it as an integral 

number always  can be determined from the value of the coefficient of 

linear expansion   [elongation] a that  is known in approximate  terms. 
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Table   1 presents  the  calculation of   the coefficients a,   ß  and  a    for 

different metals  and gives a comparison of  theoretical and  experimental 

values  of  their  coefficients of  linear expansion.    The distance r    between 

nearest neighbors  for the metals with a body centered cubic  lattice has been 

calculated  from the formula r    =  /3a/2   (where a = lattice parameter),  and 

for metals with a hexagonal  lattice r    =  a.     For the series  of metals  that 

have a face-centered cubic lattice,   the distance r    was  calculated  from the 
_ o 

formula r = a//2, and for the series of metal with face-centered and 
o 

raambohedric cubic lattice (Ni, Bi, As, Al, Cu, Ag and Pb) the distance was 

calculated from the formula r = a/2, that is, the distance is taken between 
o 

corresponding oscillators   [6]. 

The  temperature coefficients  of  linear expansion were  theoretically 

calculated  for several metal alloys  using  the formulas derived.     Table 2 

presents  a comparison of  temperature  coefficients of  linear expansion 

[elongation]   calculated by formulas   (13),   (14)  and  (3),  and experimentally 

obtained for brass  and steel.     Interatomic distances  for  these alloys were 

determined by  the Debye method on  the URS-50 IM unit. 

Word  Symbols 

1 and  1    = body length at  temperature t and t    = 0CC,  respectively; 

a and  ß = several  coefficients  constant  for a given body;  a    =  true  temper- 

ature coefficient  of linear expansion;  T = absolute  temperature;  W =  total 

energy of  interaction per single atom;  a and b = several  constant  quantities 

entering  into  the  formula W = f(r);   r    = value of r at T =  0oK;  N = Avo- 

gairo's number; C   = molar heat  capacity;   r    =  the value of  r  at T =  2730K; 

A = Madelung  constant;  e = electron charge;  z = valency of metal;   9 = char- 

acteristic  temperature. 
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Table  1.    Comparison of Theoretically Calculated  and Experiraeuually 

Determined Coefficients of Linear Expansion  [Elongation] 

llamtnt 
<     M 

Z 01      . •; 

3   «   .      5 6        7 

OH 

rttle«! niaiitol 
•c 

I 8 9     10 

Lithium    W* I 
Sodium       3,71 I 
Potassium'!-,62 I 
Rubidium  k,0Z 2 
Cesium      5,36 I 
Thallium  3,/;5 I 
Copper      5,05 2 
Silver     5,71 2 
Gold 2,83 2 

Beryllium 2,87 2 
Magnesium 3,20 2 
Calcium    3,93 2 

. Strontium*,3Ö 2 
Zinc 7,50 2 
Aluminum 5,73 '2 
Indium      6,92 2 
Tin 6,49 ? 

. Lead 7,00 2 
-. Vanadium 2,62 2 
'  Iron 2,43' 2 
.  Cobalt      2,51. 2 

Nickel     ^,90 2 

Palladiuin2,75 2 
Platinum 2,77 2 
Bismuth    6,70 5 

Chromium   2,49 3 
Molybdenum 2, ?2 3 

Radium      5,52 3 
Iridium    2,71 3 
Cerium      3,64 5 
Zirconium3,I2 4 
Germanium4,00 4 
Tungsten 6,70 4 
Arsenic   5,77 5 

22,8 
26,9 
23,3 
25,4 
26,8 
24,8 
24,3 
24,2 
25,2 

IM. 
2.4,6 
24,3 
'27,2' 
21,9 
25,1 
26,0 
24,2 
26,5 
23,8 
21,8 
26.2 
25,8 
26,1 
24,1 
25,6 
23,9 
22,1 
25,4 
25,1 
26,7 
25,2 
22,3 
23,6 
24,0 

0,033 
0,035, 
0,023 
0.025 
0,030 
0,001 
0,004 
0,004 
0,012 
0,030 
0,055 
0,012 
O,0C5 
0,006 
0,009 
0,020 
0,004 
0,011 
0,003 
0,018 
0,020 
0,015 
0,005 
0,006 
0,002 
0,015 
0,:08 
0,010 
0,016 
0,003 
0 005 
0,004 
0,010 
0,041 

52,2 
69,9 
83,1 
65,0 
94,9 
35,8 
17,5 
19,3 

12.1 
10,3 . 
J9,5 
16,6. 
17,0 
24,9 
22,9 
33,2 
22,5 
29,7 
2,6 

10,3 
12,3 
11,0 
10,4 
9.3 

11,8 
5,4. 
4,8 

10,1 

^03 
5,2 
5.6Ü 
4,92 
3,46 
4,5 

0,043 
0,053 
0,043 
0,051 
0,070 
0,001 
0,002 
0,003 
0,005 
0,009 
0,016 
0,007 
0,003 
0,007 
0,009 
0,018 
0,012 
0,010 
0,002 
0,006 
0,007 
0,005 
0,003 
0,002 
0,001 
0,003 
0,002 
0,004 
0,003 
^ 001 

■O.COl 
0,005 
0,002 
0,005 

5*f3 
72,6 
85,2 
87,5 
98,4 
35,9 
17,7 
19,6 
12,6 
13.1 
22,5 
18,7 
17,6 
25,6 
23,8 
35,0 
23,7 
30,7 
10,3 
10,6 
13,0 
11,5 
10,5 

9.* 
11*9 
5,7 
5,0 

10,5 
6,3 
6,9 
5,7 
5,8 
3.9 
5,1 

56.0 
72,1 
83,3 
90,0 
98,0 
33,6 
17,0 
19,0 
14,2 
13,0 
25,0 
22,0 
20,0 
27,0 
24,6 
33,0 
23.0 
29.4 
9,3 

11,7 
13,4 

13.3 
11,7 
8.9 

13,* 
6.2 
5.8 
8.5 
6,5 
7,1 

6,1 

5,6 

25 
25 
25 
25 
25 
50 
50 
50 
50' 

100 
100 
150 
100 
50 
50 
50 
50 
50 

150 
25 
50 
50 
25 
25 
50 

100 
50 
50 

150 
50 
50 

I5,' 
150 
150 
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Table 2.    Comparison of Theoretically Calculated and Experimentally 
Determined Coefficients of Linear Expansion   [Elongation] 

for Alloys 

Material 

Brass 

Steel 

ottXdeg-1    oVIO^deg-1   * 
Theoretical Experimentel 

18,1 

11.7/, 

18,4 

12,0 

t.'C 

50 

50. 

WO) 

-^-^r Thermal expansion 

[/ 
,ki, 

—T'-O'K 

Figure 1.    Graphic representation of the energy 
of interaction of particles in a body 
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THERMAL CONDUCTIVITY AND VISCOSITY OF A COMPRESSED LIQUID 

R. S. Prasolov 

In  calculating various processes  and in designing apparatus we must 

have data on  the thermophysical properties of a liquid at pressures up  to 
9        2 

~ 12,000 atm  (~ 10    n/m ).     However,   the unique experimental data of 

Bridgmen  [1]   are not very numerous,  and well known methods of calculating 

thermal  conductivity and viscosity of  a liquid for  these  conditions,  as 

shown  in   [2-5J,  are applicable  only for pressures up  to ~ 2000  atm 

(2-108 n/m2). 

Uaing  the concepts of  the molecular-kinetic  theory,  we made a 

calculation estimate of X and  n  of  a homogeneous  liquid  at ultrahigh 

pressures.     In the analysis,  we  introduced the following main  assumptions, 

which  are fairly well   3
.LIA   'ed   [2-6]; 

— elastic smooch teueres   (spherical intermolecular  potentials 

of   interaction)   are  the model  concept  of  the molecules; 

— gradients of  temperature and velocities in the  liquid  are small; 

— the velocity of all molecules   is identical and  is determined by  the 

Maxwell distribution. 

Essentially,  the analysis  cousirfts  in the  fact  that  the  transition to 

the  liquid  state is attained gradually  from the model of   ideal  gases  through 

the model of   compressed   (real)   gases   to the analogous model for  liquid. 

Further,   on  analogy with  the  concepts   of Enskog,  but by  an essentially 

different method,   corrections   are introduced  into  the  transport by colli- 

sions   (the  greater  rate of  propagation of perturbations   through  the 

molecules   themselves  is  taken  into account).     Moreover,   corrections  are 

introduced   in  the multiple  interactions of particles,   that  is,   consideration 

is  given  to   the fact   that  in  addition   to binary,   the  interactions are 
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ternary and quaternary, when  three and four molecules collide simultane- 

ously. 

At first we explain how  the classic relationship of the mean free path 

of molecules will change if we ccnsider multiple particle interactions. 

The number of binary collisions Z» by a single particle in the gas  is 

determined by the following  function  [7] 

Z^v/Ijre^nc (1) 

and the total number of binary collisions S_ of moving particles 

Si»-^ (2) 

since each interaction  embraces two particles   (and  two mean free p A  ) 

in one second n molecules traverse 2Z- mean free paths, which are confined 

into  the segments nc equal to  the overall path of n molecules  in one second. 

From this follows  the well known gas-kinetic relationship for an ideal gas 

A        nc.  „ nc       _   1  AoÄ25;    n^'VSjrQ^n (3) 

where  the multiplier  v2  appears as a result of   taking cognizance of 

molecular distribution by directions  (including noncentral collisions) 

[6,   7]. 

We used  the very  same method of reasoning  in taking account of multiple 
2 

collisions.     In addition to the cross section of binary collisions F„ =  TIO   , 

we  introduce  the cross  sections of ternary F~ and quaternary Fi  collisions. 

Then  the number of  ternary and quaternary interactions of a single particle 

must  be written in  the   form 

^«\/2-Fvnc,     a^^-r, k-nc (4) 

The  total number of  ternary and quaternary collisions,   if we take into 

account the fact  that  each of   them embraces  three and  four particles, 
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respectively,  amounts  to 

S = ^       6 - -^ (5) 
J>      3     ' <*       U 

As  a result,  we get   the  following relationship  for   the mean free path 

traversed by molecules with account  taken of binary,   ternary and quaternary 

collisions 

A nc  nc     _ 1 

252+5%*^   nOWiJ     V^nQTS^F^Fw (6) 

2 
in which  the cross  sections  TTO   ,   F„ and F,   are  summed  up.     Determination of 

the  relationship with  the  quantities F„  and F,   with  the  gas-kinetic diameter 

a  is  the  task of  further  calculation. 

Quantum mechanical  considerations  indicate  that  in   the general  case 

wave  fields   (fields of  interaction)  are  larger than molecular dimensions 

[5].     In particular,   covalent   radii proportional   to  the   smallest distance 

between  bound particles  are smaller  than  the van der Waals  radii  of   inter- 

action   (Lennard-Jones)   [6].     Therefore  it  can be  assumed   that  the   transport 

cross   sections associated with   interaction potentials   overlap  in dense media 

(Figure  1,   a).     An  impinging particle indicated  in  the   figure by  a point   can 

fall   in   the zone of  field   overlapping and  this will  correspond  to  ternary 

interaction. 

To  find  the doubled  area  of  segments   (overlapping   zone)  proportional   to 

the  cross  section F~,   we  find   the distance   I  averaged  over  time between 

centers   of  oscillating neighboring particles  of   the  liquid.     For short-range 

order,   particles  in  a  liquid   (a  strongly  compressed  gas)   lie  in a  tetra- 

hedral   three-dimensional  pattern.     The volume of   the  elementary equilaterdl 

tetrahedron can be  found  from  the  formula 

-V-^f^ (7) 

Summing  up  the volumes  of   these   elementary  tetrahedra,   we  can obtain  the 
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entire volume of  the  liquid,  and consequently,  express the elementary volume 

by the molar volume V and Avogadro's number,   taking into account  that  1/6 

of a molecule  is assigned  to such a tetrahedron.     Based on the  foregoing we 

get 

^•^ (8, 

The area of the doubled segment when a < 50° is estimated in approx- 

imate terms by the well known formula, which when we take into account the 

association between a, h, a and I,  leads to the form 

/^-TV^imT) (9) 

Several particles surround each particle for which the collision cross 

section is considered.  Figure 1, d shows the pattern of the tetrahedral 

structure, from which it is clear that, for example, in the plane of the 

figure the particle under study (dash line) is surrounded by six others.  In 

the plane passing through the dash line and two upper (cross-hatched) 

particles there are four spheres, etc.  Therefore, in an approximate fashion 

we assume that on an average five segmental cross sections of ternary 

collisions fit into the collision cross section of the molecule under 

consideration, if we consider the plane of collision cross sections averaged 

over directions. 

As a result, for the total cross section F_ we get the formula 

F^iiäVCsr-f)^-!) do) 

In a similar way,   we  can  also estimate  the   cross   section of  quaternary 

interactions   (Figure  1,   b)  which is proportional   to  the area of   the   curvi- 

linear  triangle.     We  replace  this  triangle,   in approximate  fashion,   by  the 

circumference described  in  it having  the radius 

2 Co«. JO« (11) 
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and  then F,   is  estimated  from the function 4 

F^5jrCS'-0.65^; (12) 

Hence, taking account of ternary and quaternary interactions leads to 

the following correctional multiplier in the kinetic formula (3) 

^i^vtRn^^fiCwjl (13) 

We now pass on directly  to calculation of  thermal conductivity of 

liquids.     For  this we  use   the  customary gas-kinetic  model schematically 

represented  in Figure     *■£*,   and to a line  of   thought   similar  to  that  given 

in   [9],  but   containing  a number of  refinements   compared with   [9]. 

The following  energy flux is  transported   through  an area with   temper- 

ature T  (flat  internal  problem) ;) 

V-f"wH(r*57*H^)]' (14) 

The quantity of the transport rate with cognizance taken of transport 

by collisions (through the molecules themselves) can be represented in the 

following form   [9] 

\ /     A + 'ocos'J r       S     '     ^ 
\    6rco6^ (15) 

if  we   take  into  account   that   C "^ C     [A,   5].     It   is   clear from Figure   1c, 

that 

* = A *■ Q-coiiP =: Af U -^1 co.M( ) 
(16) 

and   therefore  thermal   conductivity caused  by  collisions at an angle 
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from zero to Tr/2 amounts to the following,  with consideration of   (14)-(16) 

A«■=• n Wx-^ K * A0 0 *-I coaif f (17) 

Molecules can collide at any angle ^, and further the probability of 

collisions at angles in the range from $ to (ji + d^) is written in the form 

[9] 

Pajiin2^-dcf 
(18) 

Thus,   the correctional multiplier in  formula  (17) averaged over angles  turns 

out  to be expressed  as 

jr^ 

^ =JC1 * | co5M0^2cfd4>=l*|£4(£f ' (19) 

Based  on  the formulas  (16)-(19),  assuming A ^ (p), we get  the 

following function for the thermal conductivity of a compressed  liquid 

^.[^♦■K&n (20) 

in which the parameter a/A can be replaced by the relationship [9] 

^. =&-\r2jrnQ' * ~ = ,0 v (21) 

For  convenience  in discussing  the  results  obtained  and  in  making 

quantitative  calculations, we make  explicit   the significance of   the main 

variables  in formula   (20) by using  the  expressions  (8),   (13)  and   (19), 
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It  is clear  from function  (22)  that  the  thermal  conductivity as a  function 

of pressure  is not difficult  to calculate  if we know the relationship 

between  the molar volume and  the pressure,   since a ¥= f(p)  and  A    ^ f(p)   is 

on the  thermal  conductivity isotherm. 

Generally speaking,   the quantities  V,   A     and  o  can be estimated  in 

approximate   terms  by various methods  of  calcular.ion  [2-6], which however 

can give  sizeable  errors.     Therefore,   for  quantitative verification of 

formula   (22),  we  use  experimental data for V =  f (p),  and we  find   the 

quantity o  from  two support experimental points  — A    and  A   ,   corresponding 

to the thermal conductivity of an ideal gas   (p  <  p)   [sic]  and  the 

thermal  conductivity of   the liquid   (at  atmospheric pressure P-,)-     We make 

all calculations  for  the  thermal conductivity isotherms. 

Analysis  of   Bridgmen's experimental  results   [1]  and  recent  general- 

izations  of  experimentation  [10]   shows   that  in verifying  formula   (22) 

unfortunately  the  available necessary data  are  extremely limited  and embrace 

only alcohols,   pentane  and water.     It  is  precisely for these  compounds   that 

experimental  support  points A    and A     and   the  function V = f(p)  do exist. 

Figure     2a,   shows  experimental points   for  methanol,   pentane  and water, 

the vertical dashes   in which correspond   to  experimental error   [1].     Here 

however  the  lines   1-3  indicate  the  corresponding  calculated  isotherms 

obtained  from  formula   (22).     Values  of  o   for   the  calculated   curves  were 

found by graphic  solution from  (22)   based  on experimental data for   /«,  A 

and V     [1,   10]. 

■183- 

ti    ■ ir f"--J  i  - -     ^    ■ '     '   ■" iM 



A comparison of experimental and calculated data makes is clear that 

the deviation between them lies within the limits of error of  experimental 

determination of  thermal conductivity,  that Is,  is  about  3-4 percent. 

So satisfactory an agreement between calculation and experiment for the 

region of ultrahigh pressures where  the thermal conductivity of  liquid 

consisting of  complex multiatomic molecules is under consideration is 

unexpected,   since the basis of  analysis was taken to be  the simple model of 

spherically  symmetric particles.     A similar result was noted al:io in  [6] 

where,   for  example,  the following  is  related:    although  this  isi  hard  to 

prove  and appears strange,   the spherically symmetrical model  leads  to good 

results  in analysis of viscosity and of  the second virial  coefficient of 

compressed gases,  even for such  complex molecules as benzene,   alcohol and 

hexane, 

Taking  the result obtained  for   thermal conductivity  into  account,  let 

us   try   to calculate also  the viscosity  of a compressed  liquid  based on 

similar  considerations. 

It   is well known   [2-8]   that mechanisms of  thermal  conductivity and  of 

vißcqisity  in a  liquid,   in  spite  of  some  common ground  they share,  do have 

key differences.    This,  for example,   is evident from a comparison of 

Figure     2a    an^ Figure    2b  > where,  under otherwise equal conditions,  an 

incomparably greater effect  of pressure  on viscosity  compared  to  that on 

thermal   conductivity  is noticeable.     Therefore,   use  of   the  ideas   advanced 

above  requires   some additional  correction when we analyze viscosity. 

In elucidating  the differences between    \  and  n noted,   it  is  convenient 

to  represent  viscosity  in  the kinetic  form similar   to relationship   (17) 

^■=0,^99 nmWx (23) 

and first analyzed in [9]. 

In heat transport, all n molecules participate in transport of energy 

via thermal movement of particles, that is, their micromovement.  Viscosity 

in fact combines both micromovement as well as macromovement of 

neighboring layers of liquid with ordered velocities C*.  The transport of 
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macroveloclty C* from one layer to another will be possible if the particle 

is able to overcome the intermolecular potential of attraction in the layer 

where it is initially present. 

In determining the fraction of particles which can pass from one layer 

to another, we assume that thermal distribution of velocities is governed 

by the Maxwell distribution, and C ^ C*. We estimate in approximate terms 

the intermolecular potential of attraction from the component of the 

Lennard-Jones potential or the Stockmeyer potential for two particles [A, 

6], neglecting the components of repulsion and dipoJc interaction 

u*-Ud;C^)( (24) 

In reality, the particle under consideration lies in the potential 

field of many of its surrounding neighboring particles.  But, given the 

symmetric arrangement of particles in the structure of the short-order range 

within the bulk of the liquid, the passage of the particle under consider- 

ation into the "vacancy" of the neighboring layer can be simply viewed as a 

one-dimensional passage relative to the two mutually colliding molecules. 

The effect of the other particles, whose interaction potentials with the 

molecule under consideration are uniformly distributed over directions, 

is mutually compensated. 

Of the total number of n molecules the potential of attraction can be 

overcame by those part!cles whose kinetic (thermal) energy E exceeds U, 

E > I).  The number of such particles n can be found from the Maxwellian 

distribution over energies [8] 

"^iJ^-K-r)^ d^) (25, 

Calculation of the quantities I,   U and kT relevantly for the Bridgmen 

experimental data [1J for n and V using the corresponding constants r  and e 

for the interaction potentials in [2-4, 6] show that U * kT, and therefore 

the integral (25), with account taken of formulas (8) and (24), leads to 
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(26) 

Consequently, the formula for the viscosity of a compressed liquid in 

contrast to the function for thermal conductivity contains an additional 

correctional comultiplier in the form of the exponential (26). 

These considerations, if an attempt is made to describe viscosity based 

on formulas (23) and the relationships (15), (16) and (26), leads to the 

equation 

> ^il \*1 
(27) 

Quantitative verification of  the latter function was made on the basis 

of  the viscosity isotherms for water,  methanol and n-pentane,  similar to  the 

already considered viscosity isotherms for the same compounds.     This 

selection of  experimental data   [1]  for verification of  formula   (27)  stemmed 

from an effort  to compare values of o    obtained from experiments  on 

viscosity and thermal conductivity.     As in the calculation of  thermal 

conductivity,   the value of  a was found from the support points  n   ,  n,   and 

V1 .     For methanol and n-pentane,  the  constants r    and  E were  taken from the 
i o 

data for the Lennard-Jones  potential,  and for water —  from the Stockmeyer 

potential   [2-4,  6]. 

Results of comparing calculated curves and experimental data are shown 

in Figure     2b .    Analysis of  this figure leads to  the conclusion that in 

this  case as well,  a^so beyond  expectation,  the deviation  of calculation 

curves  relative  to experimental  points is  close to  the  experimental error 

(about  8-1C percent)  and can be random in nature  (not  systematic). 

In  the  table below a comparison is made of  the diameters of  interaction 

of   ideal gas  molecules  found by  the method set forth here  for therir.jl 

conductivity  and the viscosity  of a compressed  liquid.     These values were 

compared with values  of  o*   (in Angstroms)  which are  found   from  the 
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Lennard-Jones potential  (methanol and n-pentane)  and  the Stockmeyer poten- 

tial   (water),  if we equate   the  repulsion branch of  the indicated potentials 

with  the kinetic energy of   the molecules. 

Table 

Compound 

Methanol 
N-pantane 
Water 

so) 
3,W 
1,08 
2,65 

QW 

3,06 
3,8* 
2,4V 

3,41 
5,60 
2,70 

From fundamental considerations  fS,  11],  numerical values of the 

collision diameters  for various processes musu ..ave  small E-ystematic 

differences,  which is also  confirmed by the  table given above. 

In conclusion we note   that  qualitative verification of  formulas of  the 

form  (20)  and  (27) when various  transformations are used with precision up 

to numerical coefficients makes possible derivation of  a series of well 

known  theoretical and empirical  functions  found earlier by Predvoditelev, 

Vargaftik,   Osid,  Rama Rao, Brldgmen,   Bachinskiy and Stolyrov.     In the 

future   statistical treatment of  calculated errors which need  to be found by 

comparison with all known experimental data for X  and  n  for  liquids at 

ultrahigh pressures  is necessary. 

Symbols 

J,  V and T = pressure,  molar volume and absolute  temperature;  p^^ and 

z =  normal pressure   (1 atm,   10    n/m )  and temperature   (0C);   X  and 

n  =  thermal conductivity  and viscosity of gas at p;  X-   and  n^ ~ as above, 

for p,;   X     and  n    = as above,   in  the ideal-gas  state  p    < p   ;  k and 
^ 1'     o o 0 1 

N=  Boltzmann constant  and Avogadro's number;  U and  E  =  potential  of  inter- 

molecuiar  Interaction  and  thermal  energy of molecules;   ro and   t  =  constants 

of   the   interaction potential;   m,   c,   A,  a and n = mass„  mean  arithmetic 

veJocity of   thermal movement,   mean  free path,   gas-kinetic diameter,  and 

number  of  particle'-   per unit  volume;   i  and  A = number  of  degrees  of  moloc- 

ular   freedom  and  correctional  multiplier   (when   i   =   3,   A *» 2.5,  when   i   =■   'J , 

A * 1.9,   and when i = 6,   A;:=1.7);x = mean distance  between  center of 
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molecule and plane through which transport is considered; I  ■ distance 

between molecules of the liquid averaged over time and space; v ■ volume of 

elementary tetrahedral cell; Z_, Z., and 2, ■ number of collisions for a 

single particle per unit time for binary, ternary and quaternary inter- 

actions; S„, S-, S, are the total number of collisions per unit time with 

binary, ternary and quaternary interactions; F., F_ and F, * cross sections 

of binary, ternary and quaternary Interaction; f ■ function taking into 

account multiple interaction; <t> • angle between direction of movement and 

line of centers of colliding particles; P - probability of Interaction at angle 

(jj; c and C* « rate of transport by collisions (through molecules) and rela- 

tive velocity of neighboring layers of liquid; n* »= number of molecules whose 

thermal energy exceeds the potential of intermolecular interaction; q - specific 

thermal flux; A = mean free path of particles in the ideal-gas state; a* = 

diameter of particles found from E and U. 
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Figure 1.  Calculated diagrams used in taking account of 
multiple collisions and transport by collisions:  a, Overlapping 
of interaction fields having radius o in ternary Interactions; 
b, As above, for quaternary interactions; c, Diagram of transport 
for spherical molecules of diameter o; d, Diagram for estimating 
the coordination number of molecules in a plane averaged over 
directions. 

4000 . . MOO p. atu 

Figure 2.  Isotherms of relative thermal conductivity (a) and 
viscosity (b) of a compressed liquid: 1, Water, t « 750C; 
2, Methanol, t = 30oC; 3, n-pentane, t *  30CC. 
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CALCULATION OF  POTENTIAL  PARAMETERS  OF  INTERACTION  FROM  EXPERIMENTAL  DATA 

ON VISCOSITY  AND  COMPRESSIBILITY  OF GASES 

P.  Ye.   Suyetin,   B.   A.   Ivakln and  B.  A.   Kalinin 

In solving many physical and  technological gas kinetics problems, we 

need  to have reliable  information on kinetic coefficients governing  the rtte 

of  change  of  any particular macroscopic parameters with  time.     The fullest 

and most  reliable information has been secured experimentally for the 

viscosity  coefficients  of gases.     The enormous  range of  application of these 

coefficients  and the  relative simplicity of experimental arrangement helped 

bring  about  this state of  affairs. 

Less  reliable data,  and in  a narrower range of  change of experimental 

parameters were obtained  for coefficients  of  thermal conductivity,  diffu- 

sion and  thermal diffusion both by virtue cf experimental complexity,  and 

also owing  to stubborn side effects  complicating  treatment of experimental 

results. 

The  lack of  information on  these kinetic coefficients  can be made up 

for by  certain empirical formulas   that fairly well describe available 

experimental data.     However,  reliability of extrapolation of  these formulas 

has  always remained doubtful. 

To  solve  this problem use  of   formulas  of  rigorous   theory   [1]   is more 

warranted  from the physical point  of view. 

Kinetic  theory allows us  to  calculate all kinetic  coefficients  if we 

know the  potentials of  interaction between gas molecules.     At present, 

calculations  of kinetic coefficients based  on these  formulas  does not pre- 

sent any  problem,  since most  laborious calculations have been tabulated for 

different potential models  and are  given in  [2]. 
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The common ground of the approach to calculating kinetic coefficients 

that is afforded us by kinetic theory is preferable also in the respect 

that it  allow:, us to calculate some coefficients if we have experimental 

data for others. Additionally, when we have potential parameters calculated 

from kinetic properties of a compound, we can calculate the equilibrium 

properties of a gas, and vice versa.  The potential parameters obtained alto 

allow us to estimate critical properties of the compound and properties of 

crystals at lew temperatures. Thusly, potential parameters allow us not 

only to calculate kinetic coefficients, but also to determine a great many 

physical properties of a compound. 

However, for practical purposee we need to have quantitative estimates 

of  th.' applicability of kinetic formulas in calculating particular proper- 

ties. 

The aim of this study is quantitative estimation of the applicability 

of potential parameters derived from viscosity and compressibility of gases 

in calculating other kinetic properties of gases. 

We must select the potential model of interaction among gas particles 

to determine parameters. At the present time the two-parametric Lennard- 

Jones (6-12) model is fairly well physically validated and is the most often 

used.  Three-parametric models greatly complicating calculations are little 

refined in practical terms owing to the great indeterminacy in calculation 

of parameters. 

A large number of different parameters of the (6-12) model calculated 

by different methods for different ranges of change in experimental 

parameters Is set forth in [2]. We must state that existing methods (the 

method of intersections, the method of relationships, etc.) are not well 

enough validated, which introduces elements of arbitrariness into calcula- 

tions of parameters. 

Apparently, the two-parametric least-squares model with preliminary 

analytical graph treatment of experimental data, precluding their random 

scatter, is the most valid procedure in calculating the parameters of the 

model (6-12). 
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Let us look at this model by the example of calculation of parameters 

from experimental data on viscosity of pure gases as a functio*; of emper- 

ature. 

The viscosity coefficient in the first approximation is calculated from 

the formula in [2J: 

v    7   rt \/MT " 
HO = 266,93—a^u>a>(T1t;) (1) 

We bring  [1]  into linear  form with  respect  to a    and  c/k.    Further, we will 

assume  that we know o     and   (c/k)    from other sources   (for example,  from 
oo 

equilibrium or critical properties of the gas): 

^»wiy^ oö-Vo   3<d(e7*)7o , 
(2) 

where x and y 

(2),  we get: 

small corrections  to o    and   (c/k)   .     Substituting   (1)   in o o 

(2,1) 

(3) 

Using  the  recurrent  formula   (2), we have: 

(A) 

Following the least-squares method, we obtain: 

?K:^&w^")] z »min 
(5) 

The approximation to zero of the partial derivatives with respect to x and y 

is a necessary condition of the minimum (5) .  Making the necessary calcula- 

tions, we obtain the system of equations for finding the corrections. 
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(6) 

After deLermination of 3: and y from   (6), we find  the corrected values  of a" 

and e/k.    Adopting them as the new initial parameters, the process of 

refinement  can go on,    ^.3 a rule,  one or two iterations are enough. 

In spite of  the apparent  cumbersomeness of the method,  it gives  a 
2 

unique value for the parameters 0    and e/k, best describing experimental 

data within  the  limits of  the functional relationship  (1)  of  rigorous 

kinetic  theory. 

Table 1 presents potential parameters of  the  (6-12)  model calculated 

from experimental data on viscosity of  18 gases  [3].     The table sets forth 

inert,  polyatomic,   and polar gases.     As we can see from Table 1,  the 

viscosity of  all  inert gases,  except  for helium, given correct  calculation 

of potential parameters can be described  uy the theoretical formula  (1) 

with precision approximating the precision of  experimental data. 

Column 5  of Table 1 sets forth the main deviation from experimental quanti- 

ties in  the entire  temperature range  indicated in column 2.     Moreover,   it 

proves  to be possible both for polyatomic and polar gases  to select 

potential parameters with a precision adequate for technical purposes  that 

describe  the viscosity of pure gases as a function of temperature.     The 

greater deviation for hydrogen and helium is accounted for,  evidently,  by 

the necessity of quantum mechanical calculations and for chlorine — by the 

low reliability of experimental data. 

Coefficients  of mutual diffusion for 14 pairs of gases in  the  range of 

temperature change  273-1000<,K were calculated by using the derived potential 

parameters and  combining rules.     The experimental values proved  to be 

4-10 percent above  the theoretical, which either indicates  the  incorrectness 

of  the combining rules or points  to some systematic errors  in measurement 

of  the diffusion coefficients. 

We made an attempt at direct calculation of  the parameters  of  inter- 

action among dissimilar molecules from experimental data on the viscosity of 

gas mixtures.     The  above-described procedure was used in the calculations. 
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Table 2 sets forth the caiculatJon results for five mixtures.  The 

calculation was carried our for three different concentrations, however, 

as it turned out, calculatiin results .did not depend on concentration within 

the limits of precision of the experimental data. 

Table 1 

Gas 
Tempera- 
ture 
range,  0K 

6" • lO1.0 ^        - 
*l  Experimental 

I 2 3 4 5 

Ke- 273 ^1273 10,16 2,543 1.24 

Ne 273 T   873 27, W 2,845 0,20 

Ar 273 + 1273 114,5 3,450 0,54 

kr 275 ♦•   873 178,6 3,645 0,15 

Xe 27i f   873 230,0 4,üi54 0,13 

^ 200 * 1000 61,1    ' 3,722 0,67 

02 200 ♦ 1000 108,8 3,446 0,44 
Air 
C02 

273 
273 

*I273 
* 1275 

70,2 
208,6 

5,727 
3,893 

0,81 
0,48 

SFÖ 470 t   974 248,7 5,040 0,69 

CZH, 273 f   773 217,9 4,171 0,20 
h2 73 s- 1273 39,3 2,839 1.11 

cea 273 *   873 426,2 3,918 1,18 

CO 273 i-1273 122,7 3,ö63 0,35 

NO 275 + 1273 64,9 3,703 0,64 

S02 273 f 1275 319,2 4,151 0,93 
NQZ 273 *   773 259,2 3,747 0,36 

NH^ 273 * 1273 446,r» 3,057 0,66 

It  is  clear   from Table  2  that  potential  parameters obtained   from  the 

viscosity of mixtures and from combining rules  agree very well.     This 

result  that appears  to us  unexpected  is  accounted  for most  likely  by the 

specifics of  the  formula for   the viscosity of mixtures than by  the  reli- 

ability of   the   combining  rules. 

^See p.   198 
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Similar calculations were made with the aid of the second approximation 

of the theory tor the viscosity coefficient of puve gases.    Here it turned 

cut  that use of the second approximation does not Improve  the description of 

experimental resuJts, and in some cases even somewhat deteriorates the 

outcome.     Potential parameters obtained in this case and consideiably 

complicating all calculations differ little from parameters ol t-ained to 

the first approximation of  theory,   and Introduce no Improvement into the 

description of kinetic properties of gases. 

The  above-described method was used  to obtain potential parameters of 

pure gases  from experimental data on their compressibility  [4],     First of 

all,   the  least-squares method was  used to  calculate the second vlrlal 

coefficients for ten gases in the range of change of temperature and 

pressure shown in columns 2 and  3 of Table  3.     Then,  the potential para- 

meters were calculated from the temperature dependence of the second vlrlal 

coefficient.     Table 3 gives   us  the  results of  the calculation,  from which it 

is  clear  that  the potential parameters derived from experiments on compress- 

ibility differ considerably from parameters obtained from viscosity.     This 

fact has already been noted by almost all researchers.    We present here 

only some quantitative results. 

The viscosity of gases,  set  forth In Table 3, was calculated by using 

potential parameters obtained from equilibrium properties.     Comparison of 

the derived viscosity values with experimental data shows a devlat .on of 

6-14 percent,  and further this deviation Is as one-sidad as  in the case of 

diffusion. 

In conclusion,  we must note  that viscosity of gases given the corre- 

sponding selection of potential parameters  Is well described by the 

theoretical  formula  (1)   (with a precision of up to one percent).     Potential 

parameters given in Table 1 can be  recommended for calculation of other 

kinetic coefficients.     In the absence of experimental data on diffusion 

coefficients,   they can be calculated with a precision of up to 10 percent 

using the  theoretical formula  (1) with  the employment of potential para- 

meters from viscosity and the combining rules.     Data on potential 

parameters  obtained from compressibility of gases are poorly suited for 

calculating kinetic properties. 
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Table 2 

Tempera- From vJ ^cosiCy From combln- 
ture 
range, 'K 

of mixtures ing rules 
Gases 

'£/K) ^, e-u-io ,0, UM) i, ev< 
0
K M 0K M 

I 2 3 4 5 6 

He-Ar 295+Ö23 57,8 3,150 55,7 3,147 
He "He 293^73 17,6 2,687 16,6 2,694 
h^-COj 500töD0 100,2 3,370 91,1 3,391 
Hi-Ne 300*050 30,9 2,910 32,9 2,867 

'V rh 293 «{323 94,0 3,584 93,9 3,584 

Table 3 

Gases 

Fressure 
range x 
x  10-5,  n/m2 

Tempera- 
ture 
range,   0K 

I 2 3 /i 5 

h. 0,1    + 100 150 + 600 31,50 2,940 
Ar 0,1   * 100 100 +1000 118,7 3,420 
Oa 0,1   *. 70 200 f3000 115,4 3,526 
c^ 0,07 t- 1,4 2^4 i- 550 316,9 4,259 
iN, 0,1 t 100 220 tiooo 94,48 3,686 
He 0,1    t 70 200 t3000 100,2 3,637 
CO I       fr 90 273 ♦I 173 4,732 2,568 
CCZ 0,1    »• 100 250 fI500 209,8 4,120 
HjO 0,1    t 120 373 H273 585,9 4,259 
\0 0,1    t 80 573 + 823 395,0 2,671 

Symbols 

n,   and   n'ft "=  theoretical and experimental viscosity coefficients; 
i i 

T and T* = absolute and  reduced  temperatures;  M = molecular weight; 
(2 2) (2  3) K = Boltzmann   constant;   0     "       and Q = reduced  collision   integrals; 

t and o = corrections on potential parameters;  x and y = potential para- 

meters of  the   (6-12)  model. 

■4 
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1.  To p. 195  The sign i is  the 

Western usage — Tr. 

Footnotes 

Russian counterpart for the hyph en in 
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1   I 

CALCULATION OF THE VISCOSITY OF A STOICHIOMETRIC MIXTURE OF 

NITIOGEN TETROXIDE ANP  ITS DECOMPOSITION PRODUCTS 

A. G. Tabachnlkov and S. M. Mezherltskly 

Experimental data on the viscosity of the system under study1 in the 

vapor phase,   published thus far, are mainly limited to atmospheric pressure. 

The only study  [1] embraces the pressure range 0.5-5 atm  (at temperatures 

of 29b0-4430K).    Data in  [1] is  the most recent and the most reliable. 

The experimental study [2J  in the temperature range 277.6o-410.9oK up 
2 

to 300 kg/cm    (on the 310.90K isotherm the data is obtained up to 
2 

431.8 kg/cm )  is known on the viscosity of the system in the liquid phase. 

A calculation of the coefficient of dynamic viscosity of the system in 

the vapor phase is carried out in the present study in the pressure range 
2 

1-500 kg/cm    and the temperature range 3000-20000K.    The calculation 

results agreed with experimental results in the liquid phase which 

had previously undergone critical analysis. 

Calculation of the Viscosity of the System in the gas Phase 

We know that reaction effects only slightly influence  the viscosity of 

avi equilibrium reacting system  [3-4].     This allows us  the opportunity when 

cclculating viscosity to view this system in each state as a mixture 

constant in composition and corresponding to the equilibrium composition. 

Thusly,   for each state it  is necessary to determine  the value of the 

viscosity u'hich would occur at p ■ 1  atm for a mixture of  the given real 

composition,  and then to calculate the value of the excess viscosity 

corresponding  to  the given density. 

The method  in  [5]  employing a well known expression in   [3]  for  the 

viscosity  of  clean gases at low pressures has been adopted in  the  present 

'See p. 209 
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study for calculating viscosity at 1 atm: 

with the substitution in this formula of combinations of the potential 

parameters 

The reliability of this method has been verified by the authors [5] 

for a large number of mixtures In a wide temperature range. 

A generalized function [6] for multicomponent mixtures has been 

employed in calculating excess viscosity: 

()-)*)\ ^»OSi^PUSSw-ex^lIco1''"')] (2) 

further,  pseudocritical parameters were calculated from the following 

expressions: 

W?*^1    VK^^VKü    ZKC8?^*^ 

It is shown in [6] with a wealth of experiaental material that 

calculation of viscosity for various mixtures relying on the equation in [2] 

for a wide range of densities  (up  to to * 2) gives a mean error of 3.7 per- 

cent and a maximum error up  to 6 percent. 

The force constants of the Lennard-Jones potentials of the components 

adopted  in the  calculations are listed  in Table 1. 

Potential parametfers for ^^0,   and N0„ were derived from the condition 

of the best approximation of experimental data [1]  to the corresponding 

equation for calculation of viscosity  [3] based on the kinetic theory of gas 

mixtures.    Further,  rhey find good agreement with the values recommended in 

[7]. 
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Table 1 

£/K,#K 

^0^        NO, 

5*7 
3,71 
250 

NO 

3,47 
119 

o. ■ 
3,453 
113  ' 

The values of a and e/k for NO and 0, were taken from [3]. 

The values of the critical parameters used for the components are given 

in Table 2. 

Table 2 

^0, MOä |   NQ: 
Oa 

kg/-    ,. 
9* . kmole/m3     6'1<5 

♦50 

P« '. kg/cm2       70 
300 
00 
10,22 

180,2 
66,7 
.".3 

154,8 
51,8 
12,SI 

The values of the critical parameters adopted for N-O.   and N0? were 

derived  in  [8] from the condition of the best agreement of compressibility 

coefficients for the mixture N-O.-NO» calculated from experimental data on the 

density of the mixture  [9] and from the equation for mixtures in [10]. 

Additionally,  the compreSiSibllity coefficient for the components were deter- 

mined by relying on generalized functions in [14]. 

For NO and O«,  the critical constants were borrowed from [11]. 

Densities of Che system were adopted in accordance with experimental 

data  [9]  and from the results of the calculation made in  [8]. 

Compositions of the system in each of the states is calculated with the 

aid of  the  following equations: 

KP,  « 
4ott

2 

i - ot: -P . (3) 

p»      (2^1(1-00^' 
(4) 
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in which 

The  fugacity coefficients  of  components y.  were  taken according to  the 

generalized functions in  [14]. 

Equations  (3) and  (4)  are written on the assumption that reactions I and 

[I  occur  successively. 

This  presupposition,   though  fundamentally not  rigorous  enough, does much 

to simplify the calculation without  introducing substantial  errors.    Possible 

errors  in determination of  the mole  fraction here,  as analysis has shown,  do 

not exceed  0.001-0.002. 

The main errors  in determining  system compositions stem from imprecise 

values of K      and k    , which at high pressures and low temperatures can have 
Y1 Y2 

errors up  to 15 percent   (owing to  imprecision of  critical parameters of N»0. 

and N0„,   and alsc  on account of  the use of generalized functions for calcu- 

lating YJ ) •     We must however note  that,  as analysis has  shown,  possible 

errors when real mole fractions of  components are dtermined,     proved all  the 

same to be  considerably less  than  their difference  from mole  fractions of an 

ideal system. 

The  calculation made for the vapor phase has  shown that  viscosity drops 
2 

only slightly up to ~ 20 kg/cm    with rise in pressure on isotherms,  and then 

slowly rises.    This is brought  about  by the fact  that with  the pressure 

build-up  equilibrium shifts  toward  the  side of  increased content of the less 

viscous N^O,   and therefore  in the  region of low pressures where  the value 

(n-n*)  is  negligibly small,  viscosity of the system decreases. 

With  further pressure build-up  the influence of nonideality,  responsible 

for a rise  in viscosity,  begins  to play a dominant  role. 

Analysis  of Data on the Viscosity of  the System in the Liquid Phase 

As has been noted above,   experimental determination of  the viscosity of 

N.-O,   has  been made by Richter,   Reamer and Sage  [2], who used  the rolling 
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sphere method to determine the value of the viscosity on five Isotherms, and 

then graphically extrapolated them to saturation pressures for the purpose of 

determining the values of n' on the left boundary curve. 

The values of n* obtained in [2] at high temperatures raised doubts 

based on the following considerations. Extrapolation of the saturation curve, 

and also the critical Isobar from the liquid side to the critical temperature 

T = 431.40K gives a viscosity value at the critical state equal to 

~ 150 micropoises.  This value proved to be appreciably less than the value of 

the viscosity at p = 1 atm on the critical Isotherm not only for the system 

itself (n* = 228 micropoises), but also for clean N„0. (n* ■ 174 micropoises), 

the lat ter value was obtained via calculation. 

"till, we know that the following relationship [15] exists for particular 

compounds as between viscosity at the critical state nT, p^ and at 1 atm on 

the critical isotherm nÄ, : 

?T.,f..(V^2,5)C (5) 

If we further consider  that at the critical state the system,  in addition 

to N„0,, contains a considerable amount  (> 50 percent) of the more viscous 

N0„, doubt over the reliability of the value of nT,    pk " 150 micropoises 

bacomes clear. 

Accordingly,   an agreement was made between the lower boundary curve and 

the results of calculation of viscosity of dry saturated vapor, and the 

nature of the 377.6°  and 410.90K isotherms was  somewhat modified.    And a 

saturation curve was  obtained on the side of the liquid, which gave a more 

acceptable value of  n™,    ^ = 385 micropoises and did not contradict.  In 

principle,  the experimental  results  [2],  since,  by raising sections of  these 

isotherms near the  saturation curve somewhat higher  than was done  in   [2], 

some experimental points had  to be shifted  from within limits of scatter, 

and others better fitted.     In the process of reconciling the data,   the 
2 

isotherms were graphically extrapolated to 500 kg/cm  . 

2 
In the temperature  range 410o-460oK for pressures P >  100 kg/cm  , 

viscosity values were obtained as a result  of merging experimental  liquid-phase 
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isobars with vapor-phase calculated isobars;   the regularity of the resulting 

curves were checked by the appearance of  tie isotherms.    The results of 

calculations and the agreement are given in Table 3(n  in micropoises). 

Appraisal of preclsion 

In appraising the precision of the viscosity values obtained,  errors in 

evaluating critical parameters,  calculation of  actual compositions,  system 

densities,  and also  the  intrinsic error of  equation   (2)  the error when 

calculating values of  n* were taken into account.     The maximum error  can be 

~ 15 percent in the 480oK region, where the error with respect to densities 

was  evaluated at up to 6 percent for the general  case.     Here we also adopted 

the maximum error of equation  (2),  though it should have been expected close 

to (i> ^ 2, while in this region the maximum reduced density Is only ~ 1.5. 

Thus,   the actually indicated maximum error must be lower. 

At temperatures  >  .I)20CK,   the error drops  to 5-3  percent.    We must bear 

in mine  that the values  in the near-critical region have to be viewed as 

approximate,  since experimental data here is not  reliable enough.    Data in the 

liquid phase,  in accordance with the scatter of experimental points  in  [2], 

have a precision of ~ 7 percent. 

Discussion of Results 

In  [16],  the authors  used  for  (n-n*)  the generalized function  In  [17] 

obtained via  treatment of  experimental data for individual gases  in calcul- 

ating the viscosity of  the system N90,-NO_-NO-0„  in the temperature range 

300o-1500oK and  the pressure  range 1-150 atm.     Here,   the authors   [16] 

viewed the system under study as some pure compound of variable molecular 

weight with wholly determinate critical state, whose parameters they used  in 

forming the reduced coordinates. 
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Table 3 

\P.kg/cm, 
T/K\ I 4 10 20 80 100 ISO 200 290 300 400 600 

290 4330 4335 4350 4370 4452 4620 4628 4720 4620 4920 5110 5300 
320 151,0 3069 3068 3060 3125 3195 3280 1306 3380 5394 3490 3595 
350 179,3 166 2119 2157 2186 2255 2309 2360 2403 2440 2515 2555 
400 213,0 206 203 196 873 1132 1265 1335 1390 1435 1500 1550 
♦50 236 235 234 233 239 275 350 460 575 685 830 930 
500 259 258 258 258 267 280 310 340 390 445 530 645 
600 305 303 303 303 306 319 332 347 3ft 578 426 ♦72 
700 3SI 351 351 3SI 351 356 363 373 384 395 422 452 
800 390 389 387 388 389 393 401 409 417 425 440 455 
1000 461 459 458 456 456 459 462 467 472 476 486 496 
1200 522 5a 520 520 520 521 524 527 S3I 534 540 547 
1400 576 576 576 576 576 578 560 582 564 587 591 597 
1600 628 628 628 628 628 630 632 634 636 638 642 646 
1800 678 678 678 678 678 680 682 684 685 686 690 693 
2000 726 726 7Z6 726 727 728 730 751 732 753 736 739 
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Actually,  a chemically equilibrated  reacting mixture,   like a single- 

component system  (according to Glbbs),   is very analogous to pure compounds 

and,  in particular,  has  a wholly determinate critical point which reflects the 

limiting state of  existence of the phases.     However,  it does not at  all 

follow from this fact  that thfs system can be thermodynamlcally similar to 

clean gases,  and  the critical point reflects all of  Its specific features. 

Critical parameters used  in this case do not characterize the properties of 

the reacMng system in a wide range of parameters, which corresponds to the 

totality of states of mixtures of different compositions, while at the same 

time the critical state refers to mixtures of wholly determinate composition. 

These considerations make use of the function In [17]  theoretically poorly 

validated. 

Meanwhile,  it  turns out that when calculating the viscosity of the 

reacting system under Investigation,   fairly reliable results can be secured by 

using the method in  [17]   if the variable molecular weight Is properly taken 

account of. 

The calculation made according to  the method in  [17] with the use  of true 

critical parameters  of  the system N„0,-NO„-NO-0„  and molecular weights 2 4       2 2 
corresponding  to actual  compositions,  gave good  agreement with the results of 

the above-described determination of viscosity according to   [6]. 

This is accounted for by the following circumstances.     First of all,  as 

shown by comparison with  the experimental data of a number of mixtures,   the 

method in   [17]  is applicable when calculating their viscosity If  into  the 

calculation expression pseudocrltical parameters  combined according  to the 

method in  [6]  are substituted.     Secondly,   though  the  relationships of pseudo- 

critical parameters  T,      .   /p,      ,    for different  states of  the system deviate 
k-mix IK-mix 

appreciably from T /p  (true critical parameters), this fact does not have a 

substantial effect on the values of (n-n*) determined according to [17]. 

Thus, the method in [17] used in [16] to determine (n-n*), though 

unsubstantiated from the standpoint of first principles, nonetheless can give 
HI 

an acceptable result.  Doubts arise however over the reliability of the '% 

calculation made in [16].  A result of this calculation was a decrease in the 
v. 

viscosity of the system on Isotherms not only in the low-pressure region 
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(about which we have remarked above), but as far as 150 atm.  This function 

cannot be derived If the compositions of tha system in each of the states are 

determined reliably enough. We note that It is precisely this aspect of the 

question in [16] that has received very little attention, and the lack of 

numerical values for n does not allow us to make the needed analysis. 

Symbols 
2 

n = coefficient of dynamic viscosity of a mixture a    given p  [kg/cm ) 

and T [0K]  of a mixture, mlcropoises;  n* ■ viscosity at temperature T and 

p = 1 atm;  ui * V,       /V       « reduced volume; V.        » pseudocritlcal molal 
K   .      mix K 
mix ,, mix        1 ,„    ., , 

volume of the mixture, m3/kinole; C - T,      .  /^(x^JI '   'p,     ^    - coeffi- 
k~mlx 1 1 k—mlx 

cient in equation (2);   (e/k)    and a,  ■ force constants of the  (Lennard-Jones 

(b-i'Z) potential for the component;  x,  " mole fractions of component; 

a.  = degree of dissociation of NjO,;  a- ■ number of moles of 0^ formed as a 

result of decomposition of NO« and referred to a single mole of starting 

N?0.;  K »,   and K -.» — ideal-gas equilibrium constants of t'.ie decomposition 

reactions of N204    (reaction I)  and N02(reaction II) adopted  from [12]  anrf 

[13],  respectively. 
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Footnotes 

i. To p. 200 The system is formed as a result of the dissociation of 

NLO, and N0o In accordance with the reactions N-O. -*■ 2N0- -»■ 2N0 + 0, 
242 2 4 ■*-   2 *■       i 
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METHOD OF CALCULATED DETERMINATION OF THEFMOPHYSICAL CHARACTERISTICS 

OF REAL GASES FROM MOLECULAR DATA 

A.  L.   Tsykalo 

The rapid growth of heat power engineering, chemical technology and other 

branches of the national economy that require detailed knowledge of thermo- 

physlcal characteristics of a wide range of compounds has led to Intensive 

stud^  r piopertles of real gases, liquids, and mixtures.  However, 

experimental data unfortunately Is available at present only for a relatively 

small number of compounds and, as a rule, for fairly narrow ranges of change 

In external parameters. Consequently, It Is quite understandable that there 

is mounting Interest in developing calculation methods of determining proper- 

ties of compounds that are of interest. 

Some successes in solving this problem were achieved only by solving the 

problem of determining thermophysical properties of rarefied gases. Efforts 

at taking into account interactions of three and more molecules in most cases 

do not lead to satisfactory agreement with experiment. By way of example we 

can note calculations based on the Enskog theory [1] the theory of Snider and 

Curtis  [2, 3], the theory of Hoffman and Curtis  [4], the tneory of Flynn and 

Ross [5], and the theory of Stogryn and Hirschfelder [6] for the second vlrial 

coefficient of viscosity and thermal conductivity.  Relatively fair results 

came from using the theories of Stogryn and Hirschfelder [6] for calculating 

the second vlrial coefficient of thermal conductivity and Kim, Flynn and Ross 

[5] — for calculating the second vlrial coefficient of viscosity.  However, 

even in these cases appreciable deviations of experimental and calculated 

values were observed for some gases. 

In particular, appreciable deviations occurred for xenon (viscosity and 

thermal conductivity), nitrogen (thermal conductivity), etc.  Unfortunately, 

rigorous solution of the problem encountered both fundamental and calcula- 

tlonal difficulties, so that simplifying assumptions were used in the 

-212- 

— - - ^- 



■»»• 

above-mentioned theories. 

Methods of determining transport properties based on use of the principle 

of corresponding states have enjoyed relatively wide acceptance.  However> 

this approach has two substantial shortcomings that reduce the importance of 

this method and greatly limit its application. These shortcomings include the 

need to know thermophyslcal properties at the points of reduction (for 

example, at the critical point), and in addition, allowing for existing 

differences between the compounds investigated and those used as standards is 

hampering, and these differences can sometimes lead to considerable devi- 

ations from the law of corresponding states. 

In light uf the foregoing, it appeared useful, in addition to u, ing the 

results of theory, to resort to considering experimental data for well 

studied compounds.  Comparing numerical results of theoretical calculations of 

thermophyslcal properties with the corresponding experimental data, we can, 

by analyzing the corresponding deviations, account for molecular character- 

istics of the compound under study and the assumptions made, and thereby judge 

the shortcomings of theory in each particular case. 

Consider the case of viscosity and thermal conductivity of a moderately 

compressed gas lor which it is necessary to take into account, in addition to 

pairwlse, also ternary interactions.  In this case the coefficients of 

viscosity and thermal conductivity can be represented in the form: 

Comparison of experimental values of the reduced virial coefficients b* 

and ß* with the values calculated with the aid of various theories [1-6] is 

given in Tables 2 and 3. This comparison makes clear that when the theories 

in [5, 6] are used for certain gases, agreement is satisfactory.  However, in 

some cases (Xe) the deviations are very great. 

A common assumption in the theories used [1-6] was the customary assump- 

tion of the additivity of the potential energy of Interaction of particles. 

Careful analysis, however, allows us to conclude that in calculating b* and 
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ß*, we must also take Into account the nonadditive component of the potential 

energy of Interaction of three particles, the need for taking this into 

account when calculating the third virial coefficient of the equation of state 

was demonstrated in [7, 8].  It is quite natural that allowing for the 

nonddditlve component is highly Important also when calculating transport 

properties that are highly sensitive to the function of potential energy of 

interaction of the system's particles. 

We know that the potential energy of a system of three particles depends 

in a complex way on distances between particles and or. the angles of the 

triangle formed by the Interacting particles [7, 8]. Calculating the second 

virial coefficient of transport properties with the aid of ordinary relatlon- 

shi,  iii this case Imposes great difficulties, even if simplifying assumptions 

are adopted. Accordingly, in the present study an approxiraational method of 

allowing for the nonadditive component of the potential energy of Interaction 

is proposed, founded on use of the conventional effective Lennard-Jones 

potential function, corrected with account taken of the fact of nonaddltivity 

of the interaction of a three-particle system. In principle an approximation, 

this method insures acceptable precision; an advantage of the method is the 

possibility of its employment for the case of interacting particles when 

their number is greater than three, in which case precision calculations 

becoire practically impossible. 

This method is based on using the results ot  calculating the third virial 

coefficient of the equation of state made by Sherwood and Prausniz [7], 

Sherwood, de Rocco and Mason [8] allowing for the nonadditive component of the 

potential energy of interaction of three particles for several model 

potentials. The results of these authors, including two expansion members in 

the expression for the reduced third virial coefficient of the equation ol? 

state can be written in the form 

The functions log C* = f(log T*), plotted for various values of a* and 
1/2 

E*   (Table 1), can, by the well known Lennard-Jones method by a parallel 
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transport relative to the coordinate axes, be combined with the function 

log C*,j = ij)(log T*). Here, it is easy to find the values of the corrections 

A log e and A log c allowing us to determine the force constants of the new 

effective function of pairwise interaction e1 and o', corrected with allowance 

for the fact of nonadditivity of the potential function of interaction. This 
i 

new potential function can be used in calculating the second vlrial coeffi- 

cients of transport properties by the aid of the theories in [5, 6]. 

Table 1 presents the values of a, z,  a' and e' for Ne, Ar, Kr and Xe, and 
1/2 

also the values of a* and e*  .  Results of calculating the reduced second 

virial coefficients of viscosity and thermal conductivity in Tables 2 and 3 

are compared with experimental values and with values calculated on the 

customary assumption of additivity of the potential energy of interaction 

of particles. 

The comparisons made demonstrate that in the case of Xe, Ar and Kr when 

ihe nonaddltlve component is allowed for, it is possible only to slightly 

Improve the results of calculation, which for these gases find satisfactory 

agreement with experimental values.  In the case of Xe an appreciable 

improvement in agreement between calculation and experimental values of b* and 

ß* is observed.  This doubtless is accounted for by the considerably greater 

contribution of the nonadditive component of the potential energy of inter- 

action in the case of Xe than in the case of the first three substances. 

It must be noted that, as shown by calculations of the third virial 

coefficient, the contribution of the nonadditive componen^ to the first 
1/2 

approximation is proportional to the quantity k* = (2.8a* - e*  ). This 

is manifested in particular in the fact that the values of A log (e/k) and 

A log o, determined as noted above by the Lennard-Jones method and allowing 

us to advance on to the effective function of pairwise interaction, are 

similar for substances characterized by similar values of k* (cf. Ar and Kr in 

Table 1). 

Analysis of experimental data and the results of theoretical claculation 

of b* and ß* with the aid of theories In [5, 6] shows that when T* = 0.8-2.0, 

the following approxlmational relationships hold: 
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Table 1.     Interaction Potential Constants and a*.   e*
1/2 

N 

and k* 

without aiipwlns     Aiiowinifpr , 
SubiMnet «ornonaddltlv« noniddltlvt 

oumponwt cemnoiwnt _,»-«* ^ 

2,79     35,7 

cX* c«^ £-«    K- 

- -    - "   ^ SiSS r 
Table 21.    Comparison of Calculated and Experimental Values of b* 

• Subittne«       s     »p»» "   
«c      I ■xparhnanf      AutHor'i from  ..._    - —   ""    ■— 
*- r _   , w    ' From    ^wm     From Prom 

Table 31 

.     r,vm     rrom rrun 
 /57 .^UMonA/  A7  /2.3/  /5/  /y 

207,98 0,76^0,12 0,62   1,10 0,44       -     1,15 0,61 
25 2,16 1,01 t 0,07 1,04   0,57 0,65   1,32   0,65 1,05 
20 1,37 0,97^0,03 0,96   0,46-0,12 0,32   0,49 0,95 
25 I.I7 0,77 t 0.05 0,84   0,42 -0,50 -0,06 0,42 0,93 

Comparison of Calculated and Experimental Values of 6* 

SubiUnei      i, 

•c 
T- 

fi" 

■nparlmont 

/57 

Author'!    "OBI From 
e«ieul«tlen 

From     From 

6,12   3,49 
3,95   3,18 
3,29   3,88 

From 

60 
25 
20 

9,10 
2,16 
1,15 

3,98 
3,38 
4,07 

3,60     4,00   3,18 
3,36     1,88   3,42 
4,00     1,41   2,08 

2,12 
4,76 
5,76 

^ee  p. 218 
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These expressions can be directly used in calculating  b and  ß if  first 

the values of the force constants a'  and e'  are determined by the above- 

iescribed method. 

Symbols 

p  = density;  n    and A     =• values of  the coefficients  of viscosity and o o 
thermal  conductivity,   respectively;  C*   , = reduced  third virial coefficient of 

the equation of state calculated In the usual assumption of additivlty of the 

potential  energy of  interaction;  a* = a/a-1,   E* =  ea/e  ,  a  ■ polarizability; 

e  and a = force constanty of  the paired potential;   AC* and 6C* = corrections 

associated with nonadditivity of dispersional and  repulsive  forces, 

respectively,  and tabulated  in  [7,   8]. 

I 

\ 
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Footnotes 

To p. 216 The values of T* (column 3) and of b* and ß* of the experiment 

and the calculations (column» 4 and 5) were obtained by reduction with the 

aid of force constants o' and e'. The remaining values of b* and ß* were 

obtained by using the force constants a  and e. 
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THERMOPHYSICAL PROPERTIES OF TWO'- AND THREE-COMPONENT SEMICONDUCTOR ALLOYS 

A. F.  Chudnovskly 

The formal similarity in structure of differential equations describing 

the behavior of mechanical, thermal,  electrical and magnetic phenomena is 

well known and has been used in describing an extensive class of processes of 

generalized conductivity.    These procedures have proven especially productive 

for purposes of analyzing heterogeneous multiphase and in general complex 

systems.     There are numerous studies in which various aspects of the method of 

generalized conductivity are developed and which are extended for an ever 

broader range of materials and an ever increasing list of their properties. 

A.s we know,   two kinds of objects are usually distinguished — a statistical 

mixture and matrical systems.    For the former, for which dispersional powdered, 

granular and fibrous masses can be calculated,  the equivalents of all 

miscible phases of the system is characteristic:    the main phase (index 1) and 

the inclusion phase  (index 2), such that Interchanging of indices is not 

reflected in the final value of the generalized conductivity for the system. 

For the latter,  such as porcelain,  ceramics,  asbestos, rlastics,  cable 

insulation and the vast majority of metal alloys, the existence of a single 

main phase is characteristic — the matrix in which the second phase is 

included in the form of minute particles, grains and other elements,  and for 

which interchanging of phase indi-ces   (1) and  (2)  leads to a substantial 

change in the overall conductivity of the system. 

Denoting by the generalized conductivity A and of the quantities entering 

into the analogy list — coefficient of thermal conductivity,  diffusion, 

dielectric permeability, Young modulus,   the Poisson modulus,  etc.,  the listed 

characteristics of each of the two kinds of materials can be written in the 

form: 

-220- 

* -     ~      •     •*"rk- 



r»'      ^ 

r(AtlAa,V1,Va)=r(A2.A,,Va/V1) 

rfA^A^v^vj^rrA^A^v^v,) 
(i) 

V1   and V„ = bulk concentrations of the main and secondary phases In  the 

system.    We will not dwell on a survey of  the numerous studies in which: 

1)  a number of formulas  of generalized conductivity have been established or 

proposed  [1,  8-13];   2)   the practical use is  proposed in various fields 

of dielectrics and metals  [2-5,  14]j  3)  the generalizations derived for 

electrophysical parameters are extended for  thermophysical characteristics of 

materials  [6,  15]• 

Throughout all  this multlfaceted range  of activity attention has  failed 

to be directed  to  aspects associated with  the specifics of semiconductor 

compounds,   some of which can be placed in  the class of statistical mixtures 

(sintered or pressed briquettes of metal oxides,   thermal resistances,   ceramic 

and alumina materials),  and others — and  the class of matrlcal systems 

(intermetalllc alloys and solid solutions) .     In the case of solidifying 

alloys both a statistical as well as a matrlcal system can be obtained.    We 

know only of one or  two studies of S.  V.  Ayrapetyanets   [16], who investigated 

tnermoelectrlc systems viewed as  two-phase  compositions,  for which the 

formulas of Odelevskiy were applied  [7].     Here expressions were obtained  for 

the coefficients of  the thermoelectromotive  force  (ot..   and a„),  eiectro- 

(o..   and a„),  and thermal  conductivity (A.,   and  A»)  of both phases  (V..   and V„). 

These formulas   have  the following form: 

— for the matrlcal system at low inclusion concentration 

(2) 
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for the matrlcal system at low concentration of the metrical phase 

0^=01, C^fri 

^(2-t*)' 

for the matrlcal system at any concentration of components 

h       ffa-c-/ 
  (4) 

A..AV (5) 

— for the statistical mixture at any concentration of components 

Q     *    * » 

d4 "" (2ff*et)(2A*A",) (7a) 

where 

<s-*a<*fa ^^ 

^ 4 
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Jl x^ + laf^T (8a) 

where 

The interesting work of S.  V.  Ayrapetyants can be expanded and developed 

in various directions. 

1. There is the possibility of supplementing the earlier obtained 
2 

conclusions by finding a complex quantity Z « a o/A,  effectiveness of  thermo- 

electric materials. 

2. It appears possible to find, by using  the expression for a,  a :ind A, 

that concentration at which conditions for obtaining the maximum value of the 

thermoelectric parameter arise.    These conditions evidently are determined 

from the relationship: 

dv,-  dv; "dv^ 

Here,   the prerequisites  on the smallness  of one of the faces are  retained. 

3.    An avenue is  opened up for the use of   those variants of  the  formulas 

which are applicable  for the relative equivalents of both phases,  when  the 

value of V1  does not differ much from V_.     Here we are referring to methods of 

obtaining thermoelectric compounds by other than the widely accepted 

approaches. 

Above all we have  in mind powder metallurgy methods, where the compound 

of interest  to us can be obtained not by  alloying, but by pressing  the 

original powders.     For  such mixtures,   formulas of the type  (A-8)  with  allow- 

ance for the conditions V   * V„ are wholly applicable. 
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A graphic example of this kind of object are thermistors,  studied only 

from one point of view, namely as semiconductor thermal resistances, and have 

not at all been considered from the aspect of their thermoelectric properties. 

Still,   there can be no doubt that for these materials which are subjected 

either to pressing or sintering,  calculations of generalized conductivity are 

wholly applicable and that by this approach their thermoelectric character- 

istics can be discovered, which can find use for measurement purposes. 

Here also methods of obtaining thermoelectric materials by reversible 

pressing at elevated temperatures  [17]  are of Interest. 

As has been established by the authors of this method,  as a result of 

pressing and sintering without fusion.  It is possible to produce material with 

good  thermoelectric parameters. 

Thus,  use of the generalized conductivity formulas Is wholly possible 

under this method.    Here we must bear in mind only the following.     Increasing 

the effectiveness of the value of Z involves searching for materials and 

conditions for their use that satisfy requirements corresponding to the 

highest values of Z and a and the smallest possible values of A.     We need to 

underscore that such requirements must necessarily be corrected allowing for 

the requirements of practical expediency,  economy and  technological simplic- 

ity.     In taking up the question from this point of view,  it must be stated 

that it  is not obligatory under all conditions to obtain only larj^e values of 

the parameter Z.    A whole series of tasks can be formulated that are most 

expeditiously solved when there are not  sufficiently high absolute values of 

Z.    The only important thing is that depending on concrete scientific- 

production conditions the values be either reduced, but optimal out of all 

possible values. 

How then can such situations be formed?    Let us cite a number of 

examples. 

1. We were Interested in obtaining for hot and cold junctions  thermal 

elements of moderate, but not of maximum possible temperature drop. 

2. We were  limited to semiconductor material  in short supply and were 

interested  in economizing it.    Then, when V.. * V.,  owing to the reduction in 

N 
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in the overall Z,  we can use one of the component elements customarily 

discarded as rejects, adding it to another element with a high Z parameter. 

3.    At high  temperatures we were limited in .selection of a heat-resistant 

semiconductor material; then we could use even metal or metal-like arms with 

low values  of a,   and consequently,  of Z.     Additionally,  as shown  in  [18], 

substitution of  the semiconductors with metal promises a whole series of 

other advantages. 

Let us now turn to a brief exposition of the essentials of the problem 

formulated. 

Beginning with formulas  (2-5),  we obtain expressions for the thermo- 

electric parameter Z = a    /A of the matrical system for the case of low 

concentrations of  inclusions  (V- < 1) and  for the case of low matrical phase 

concentrations   (V   < 1), and we also calculate for each of these cases 

optimal component  concentrations at which  the value of C reaches  an extremum. 

To calculate the variable, dZ/dV is conveniently expressed in the form 
2 

a a/X;  then after transformation we obtain the condition of extremum in the 

form 

oU6-'-d.ey*2XC*' = 0 
(9) 

The values of a, o and A were obtained by simplifying the original formulas, 
2 

in which it was taken into account that when V„ < 1, V_ * 0, and when V.. < 1, 

V * 0.  The values of a', a' and A' were obtained by differentiation of the 

starting formulas, where members containing V- were dropped in the results. 

Thus, we have the following. 

1.  For the matrical system at low inclusion concentrations 

ff = 5i.^M_v, 
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^*2ff, cower,)*v* 

2. For the matrlcal system at low concentrations of the matrlcal phase 

(V1 « 1) 

ff._ (g.-e-t^g^gO  2(gi-g»^2g^6rt) y 
y "   äff",    ^    9g,*    Vl 
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The reduced expressions were substituted Into equation  (9).    We obtained 

the following results: 

1.     For  the case  (V    < 1) 

(2ff,'60 - 2ff, A, (a, -a*^2ff,A, ^?0]) 
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^ ^,(^-2^)6^2^      ^ ' (11) 

2.     For  the case  (V    < 1) 

(12) 
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Below we give the solution to the problem for the more complex three- 

comp» n at system. As we know, the general expression for the system 

consisting of any number of phases 1 Is of the form [18]: 

A +2A V( «0 (14) 

here A.  = generalized conductivity of the component phases of the system, 

V = their bulk (In percentages or fractions of unity,  since V. + V. + ... 

V = 100 percent or 1)  content in the system,  «md A • generalized conductivity 

of the system as a whole.    We must understand by A, and A the coefficients of 

thermal conductivity and electroconductlvlty, dielectric permeability,  thermo- 

electromotive force,  the Young modulus,  shear, etc.,  for each of the compon- 

ents and for the system as a whole, respectively.    We will use formula  (14) 

for the system 1 = 3.    Thus, we are referring to finding a function of the 

form: 

^n'A,.A4.AJ,ya(v,) (15) 

It  is easy to see that  the task reduces to solving the equation 

Ai - A ,. T/.,.-A& lA-y 
A,-2A 1     A^IA* 

Ai-A ■ 
A>*2A 

(16) 
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Omitting all the intermediate operations, we present the solution of 

(16)   in the finished form;   it will reduce to the following equation: 

Here we list the following symbols: 

k (17) 
3ot 

q   S~&1 --&C        d (18) 

P   =  ^T-^ (19) 

o^ = 4 (20) 

6= -(n^^nJ^njV,) 

m4 *2A1Al*Al(U>'b,) 

n , = 2(2A,-Aj-A^ 

n2 =2C2Aa-A1-AJ) 

na ^S^A-A.-AJ 
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(21) 

(22) 

(23) 

m, = 2A1A^A>(2At-A2) (24) 

.^z = 2A,A1*A1(2A1-A,) 
(25) 

(26) 

(27) 

(28) 

(29) 

k. ..,,.   ■ A-A. - - j 



We will give a number of examples In which It Is possible to use the 

formulas (17-29). 

The first task in calculating coefficients of electroconductivlty a, 

thermal conductivity A, thermoelectromotive force a  and thermoelectric 

efficiency Z of three-component alloys. The values of o and X are found 

from formulas (17-29) by simple substitution of the values A and A, , 

respectively, by a and o and by X  and A,. As far as the value of a is 

conoorned, below we present the results of its calculation 

1 

(30) 

here: 

r = 3 ;i, Vi 
2it*&%)iZX*X,) (31) 

n = 3X V* 
(2e«ffa)(2Ä 

+ ^».) 
(32) 

n =- 3AVJ 

(26,*6'j)(2X ^A^) (33) 

From here it is easy to find the values of the thermoelectric efficiency 

Z, where X  and a  are found from formulas (17-29) and a from formulas (29-33). 

The second task is to find visible parameters of the third phase known 

from characteristics of two components and from measurements of the effective 

values of the entire three-component composition.  In this case it is possible 

to formulate three equations: one equation (17) in which X  is measured; a 

second equation (17) [sic — Tr.], in which o is measured and A- and A„ are 

known; a third equation (30), in which a is measured and X.,  A„, o    and o„ 

are known. As a result, the task boils down to calculating three unknown 
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parameters A„, o„ and a- from data of measurements of X, a  and a and based 

on the earlier found characteristics X , \   f  a.., a_, a1 and c.. 

Naturally, this task reduces to making the following functions explicit 

«fCrt^cX^Ö-,,^-, A,,Äa;ot.flrJ,V,;Vt>V>) 

and can be solved also In the following two versions: 

= f i*z\ «V. Gz'Gi' ^z' A»i «^.X^.V,. V) 

and 

sz | = f (<v.<V'e;; e»;-^ A*'<*.M.v.; vt: v4) 

The third task Is determining the percentage content of a given component 

In the mixture. 

In this assignment we are faced with the problem of calculating the bulk 

fraction of any of the phases In the overall compound based on measurements 

for earlier set characteristics of the physical parameters both of the entire 

mixture as well as of its components.  It Is precisely here that we must find 

out what the porosity or moisture content of the materials Is. 

Since we know that V.. + V- + V = 1, to solve the formulated task it is 

necessary to know the following values:  a, o, A, a , a., X , V .. and V „. 
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Symbols 

A, A., A2, ..., A - general conductivity of the entire system and of Its 

components; A, \y  X2, ..., X^^ " as above, for the coefficients of thermal 

conductivity; a, a^, a., ..., a - a» above for the specific «lectroconduct- 

ivity; a, 0^, a2 JI^^ « as above, for the coefficients of the thermo- 

electromotlve force; Z, Z^, Z^ Z - as above, for the parameters of 

thermoelectric efficiency. 
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PROBLEM OF CALCULATING TRANSPORT COEFFICIENTS FOR GASES 

G. F.  Shaikh lye v arid A. G. Ustanov 

Thus far n considerable amount of experimental material has been 

accumulated on transport coefficients of gases that are comprised of molecules 

of various forms, symmetries and polarities.    However, only a small amount of 

this material finds agreement with calculations according to the following 

equat ions: 

^ = 266,93-^^Ä,^^'^7, (2) 

9 9'1  (r*£<"5*(T*)      • (3) 

derived on the basis of rigorous kinetic theory of gases [1, 2]. 

The observed disparities between the results of measurement and calcula- 

tions are accounted for mainly by the lack of a realistic model of inter- 

molecular Interaction necessary in determining collision Integrals. The 

nature of change In collision integrals calculated based on idealized models 

and according to equations (2) and (3) based on experimental data for the 

transport coefficients is shown in Figures 1 and 2. These curves have been 
(2 2) 

plotted in the coordinates Ü    '   '(T) and T for Ar and CO.. Here are also 

presented curves of the potential functions obtained based on viscosity data, 

and the curves for tha Morse and Gugenheim-McGlashan potentials — from data 

of crystalline structü.e and to the second virlal coefficient. In most cases 

agreement between äxperimental and calculated collision Integrals of momentum 
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transport (Figures 1 and 2) is observed. When these are used as the starting 

point in measurement of thermal conductivity, deviations increase as the 

molecule becomes more complex, starting with argon and extending to carbon 

dioxide gas.  The latter evidently Is accounted for by the increment in the 

neglected influence of internal degrees of freedom on the process of energy 

transfer. There is little experimental data on self-diffusion coefficients, 

therefore it is difficult to make an analogous examination.  Experimental 

values of the collision integrals of momentum transport agree with those 

calculated from many potential functions for the gases under study at 

atmospheric pressure.  In describing the collision integral of heat transport 

allowing for the effect of internal degrees of freedom, we did not have 

available the appropriate potential functions.  Selection of interaction 

potentials is even further complicated with increase in valency, change in 

polarity and in molecular form.  It was of interest to search for ways of 

reducing the number of variables in calculating collision integrals of mass 

transport, momentum transport and heat transport. 

Earlier [41, starting from statistical considerations, the following 

criterlal equation was obtained: 

a am (4) 

which was used in generalizing experimental data on transport coefficients 

in gases and liquids.  Here, only the valency of gases was taken account of as 

a condition of unambiguity in the first studies, and later the simplex S /R, 

reflecting individual characteristics of molecules participating in the 

process. The form of the function $ in (4) proved to be dependent on the 

form of transport and the number of atoms in the gas molecule. The function 

(4) is easily presented in the following form applicable to thermal conduct- 

ivity: 

T -T,  T\S,' 
(5) 

A. J J — 



Experimental data on transport coefficients have been satisfactorily 

generalized on the basis of (4).  Therefore It was of interest to compare the 

functional relationship (4) with the expression for the relative value of any 

transport coefficient obtained on the basis of rigorous kinetic theory. Let 

us take the thermal conductivity as such a coefficient, because it gives the 

greatest deviation from experiment and requires Introduction of the Euchen 

correction for polyatomic gases.  For temperatures T and T-, we obtain: 

* -(r^Q^'lrn (6) 
A, "TO Q^-CT") 

Experience In the application of (4) and (5) shows that they allow us the 

opportunity to calculate coefficients of thermal conductivity based on 

generalized functions plotted for a group of gases. From this It follows that 

4)(S/S ) In equation (5) must be equivalent to the multiplier 

<f-2)*(T*)/n(2-2)*T*) 

In equation (6).  Therefore it can be anticipated that replacing the reduced 

collision integrals in (l)-(3) by the entropy function must preserve the 

possibility of their application in calculating transport coefficients. 

Starting from these prerequisites in equations (l)-(3)f we replace the reduced 

integrals by the relationship: 

Q:(s).-(ayLy (7) 

Then instead of the reduced collision integrals,  fi*(S),  f2*(S) and Ji*(S) u n A 
enter into   (l)-(3),   respectively. 

^2i™-pF^m-° 
/TVM       ...7 (8) 
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V/T/M ■ 
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<y8^;cs) 
10 

(9) 

(10) 

In order for equations (8)-(10) to be applied in calculations, it Is 

necessary to determine the exponent n In (7). This can be readily done based 

on available experimental data on transport coefficients. Table 1 presents 

results obtained.  From these results it follows that the value of the expon- 

ent depends on the kind of transport and the number of atoms In the molecule 

(an exception Is He and Ar). It is retained constant throughout the entire 

temperature range investigated. For the case of diffusion and self-diffusion, 

the exponents n prove to be independent of the properties of the molecules and 

equal 1.5. We note that in these calculations the interaction diameter a  is 

taken in each case as constant and equal to such in the Lennard-Jones (6-12) 

potential. Table 2 presents by way of example numerical values of a  and e/k 

for Ar, N- and CO-. 

Table 1. Exponent As a Function of Kind of Transport and Valency 

Kind of Transport Exponent based on equation (7) "" 

He 
Self-diffusion 1,50 
Viscosity 1,20 
Thermal conductivity 1,50 

Ar [ CO.NtßliHiXO1.S0lNi0: CHj : C2H« 

1,50 1,50 IfP0 1,50 1,50 
1,35 1,20 1,50 0,50 1,40 
Itb5      1.80     3,00    4,00    4,00 

Table 2. Force Parameters for the Lennard-Jones (6-12) Potential 

Gas 
Viscosity |Thermal conductivity    Diffusion 

e-   £/K £/K £/K 

Ar 5,48 116 3,48 116 3,48 JI6 

Nz 3,76 78,5 3,C0 31,4 3,63 79,8 

CO, 4,18 116 3,85 213 4,00 200 
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As Table 2 shows, force parameters change when we go from viscosity to 

thermal conductivity or diffusion. This has been taken note of also in [1, 

13,  14].     Reduced collision Integrals of heat and momentum Q*(S) and 

ü*(S)  are generalized for valency as a function of temperature by multiplying 
n 
them by some constant b, which proves to be similar in magnitude to the inter- 

nuclear distance re [15] (Figure 3). Thus, use of some entropy function 

instead of model collision integrals gives better agreement with experiment. 

The validity of the assumptions stated can be demonstrated also by the example 

of polar gases. Let us take water vapor. Its coefficients of viscosity and 

thermal conductivity have been investigated for a wide range of temperatures 

and pressures [6], 

Figure 4 presents the results of calculating collision Integrals from 

equation (7) and from the Stockmeyer potential [10]. Table 3 presents the 

values of a and n at various pressures. It must be noted that the values of a 

drop off with rise in pressure, and that the exponent n approaches unity. 

Table 3. Parameters of Water Vapor for Calculation According to Equation (7) 

p ni ^ "A 6-* 

I 3,0 3.93 5,0 3,88 
100 2.0 3,56 3,0 3,M 
200 1,0 ' 3,39 2,0 3,205 
300 1,0 3.35 1.0 2,87 
400 1,0 3,28 ' 1.0 2,80 
500 i.o 3,23 1,0 2,27 

At supercritical pressures, it proved necessary to select data relating 

only to the vapor phase.  The curve of heat capacity maxima was adopted as the 

provisional boundary between liquid and vapor. 

Coefficients of viscosity and thermal conductivity of water vapor were 

calculated from data in Table 3 and from equations (9) and (10) at pressures 

100, 200, 300, 400 and 500 bar and temperatures 700-1000oC, that is, in the 

range of those parameters for which there are as yet no support data 

(Table 4). 

1 
^ 
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Table 4.    Transport Coefficients of Water Vapor at High Parameters 

\   p Viscosity, 
g/cm'aec 10"° 

Thermal conductivity 
calorie/cm-sec  "K 10" 

T \ 100 200 300 400 500 100 200 300 400 bOQ 

1075 
1173 
1273 

386 
420 
451 

405 
435 
460 

426 
456 
484 

444 
478 
506 

469 
501 
535 

28,3 
31,2 
34,3 

29,9 
32,7 
35,; 

32,3 
34,6 
36,9 

35,1 
37,7 
40,1 

38,2 
41,2 
43,7 

Thus, use of some entropy function in place of model collision integrals 

makes  it possible to employ with no less success equations   if rigorous kinetic 

theory of gases in calculating transport coefficients. 

Symbols 
2 

D = self-diffusion coefficient  (cm /sec);  n " viscosity coefficient 

(g/cra'sec);  A «■ coefficient of thermal conductivity (calorie/cm'sec 0K); 

T = absolute temperature (0K); P » absolute pressure (bar); M = molecular 

weight;  a - interaction diameter (A);  QK  '      (T*) * reduced collision 

Integrals;  T* = kT/e = reduced temperature; e * depth of potential depression 

(ergs);  k = Boltzmann constant; U        = relative rate of process, which as 

applied to thermal conductivity is taken as the ratio of heat fluxes q<,-S, 

and mass flux q.„ corresponding to change in entropy at the boundaries S and 

S1 and AS = sys^      q^-WT-T,)i '   C|4S->«(T; -T,)     ;  As_g    and A^ = mean 
i * 

coefficients of thermal conductivity;  T,  T-, and T    =  temperatures correspond- 

ing to the entropies S,  S  '   and S  ;   S = absolute molal entropy of the «as; 

R = universal gas constant;  a = dimensional constant  in equation  (7),  found 

to be equal  to unity;  fi*(S)  * reduced collision integrals with  respect to 

entropy, where L    denotes the kind of transport;  re = internuclear distance 

(Ä);  (()(r)  * potential energy  (ergs). 
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Figure 1, Collision Integrals of heat transport and momentum 
(2 2) 

iransport Ü (T) of argon as a function of temperature T (0K): 
1, Buckingham (epx-6) potential [1]; 2, Lennard-Jones (6-12) 
potential [1]; 3, Model of potential deoression [8, 9]; 4, Gugenheira- 
McGlashan potential [7, 12]; 5, Kikhara^ potential [7]; 6, Morse 
potential [11]; 7, Solid sphere model; 8, Experimental viscosity 
data [5]; 9, Experimental data on thermal conductivity [5] 

200 300«J05000to70Oe0O9OOT 
Figure 2. Collision integrals of momentum transport and heat 

(2.2) 
transport 0  °  (T) of carbon dioxide as a function of temperature 
T (0K):  1, Lennard-Jones (6-12) potential [1]; 2, Square well 
model [8, 9]; 3, Sutherland model [1]; 4, Morse potential [11]; 
5, Experimental viscosity data [5]; 6, Experimental thermal 
conductivity data [5]; 7, Solid sphere model. 
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Figure 3.     The quantities bn*(S) and bfi*(S)   (cm)  as a function 

of  temperature T (0K)  for diatomic and trlatomlc molecules: 
1,  N2  (re = 1.094 A);  2,  CO  (re = 1.282 A);  3,  02  (re = 1.278 A); 

4,  H2  (re = 1.260 A);   5,  N20  (re = 1.186 A);  6,   S02   (re = 1.110 A); 
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Figure 4.    Collision integrals of heat transport TL (S)  and 

momentum transport  Ü  (S)  of water vapor as a function of temperature 

T (0K) calculated from equation (7) and Table 3. Experimental 
data in [5, 6]: 1,1 bar; 2, 100 bar; 3, 200 bar; 4, 300 bar; 
5,  400 bar;  6,  500 bar;   7,  Collision integrals of momentum transport 
Ü  (S);  8, Collision Integrals of heat transport Q,(S);  9, Stock- 

n A 

meyer potentials [10]. 
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Footnotes 

1. To p. 240  Transliterated from the Russian — Tr. 
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