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ABSTRACT

Acoustic wave characteristics in the upper atmosphere are deduced

from temporal and spatial electron density variations obtained with the

Arecibo back-scatter sounder. A theory is developed which relates the

observed wave characteristics to the power spectrum of the wave

ii sources.,

X.
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ACOUSTIC WAVES IN THE IONOSPHERE

I. Introduction

Observations of the lower ionosphere and upper D region (the

region from 80 km to 150 km) show that there the atmosphere is in

a state of random motion. Since only a limited aMii.t of statistical

information can be obtained .fc m l git rgmneA e xperiments, it is natural

to attempt to use ground based measurements to obtain information about

the random state of 8 jqgwp.r ionosphere. Thil vjog!r is a report of one

attempt to obtain a reasonably complete physical picture of one class of

ionospheric motion@: those corresponding to randQr internal acoustic

waves.

The radar facility at Arecibo, Puerto i~gg offers the best avail-

able spatial and temporal resolution of the backscattered power, and the

least ambiguity as to the cross-section of the scattering process. For

altitudes greater than 110 kr, the eanp free path of the gas is greater

than the wave length of the radio wave (70 cm), which is in turn greater

than the Debye length of the gas (10 cm). Under these circumstances, it

can by shown that Thompson scattering occurs, so that the backscattered

power is proportional to the electron density of the gas. (2) Furthermore,

the conditions of the theory are approximately met down to about 80 kin;

electron densities determined by rocket borne measurements are in fairly

good agreement with the radar data. (3) Thus, a measure of electron

density is available in the 80-150 km region, with a spatial resolution of
-l

about 6 km in the horizontal and vertical, a time resolution of 10 sec.

and a 10 percent accuracy in backscattered power.
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We shall be dealing then with a random electron density which

depends on spatial position and time. However, a further simplification

is available in the 80-150 km region, when data are taken only around

noon. It is thus: if the phenomena which we wish to observe have time

scales T less than about 30 minutes, we may suppose that the electron

density variations are proportional to the bulk fluid density. For example,

to have diffusion be unimportant in a cube of size 1 during a time T, we126

rnuft have T<-!1. But a typical diffusion coefficient might be 106 cm 2 /sec
D

at 110 km, if 1 is 6 km, T must be less than several days. Again, if

photo chemical reactions are present, and have a characteristic reaction

time TrR then TR> T. At around 100 kin, TR might be one second. Thus,

one would expect the electron density fluctuations to be in photochemical

equilibrium. When the sun is overhead, this equilibrium implies a

constant electron concentration. Eirially, it has been shown that electron

density fluctuations are the same as the neutral density fluctuation in an

acoustic wave in this altitude region( 4) , even though the electron velocity

is not the same as that of the bulk cluid, due to magneto-ionic effects.

For the purpose of the following discussion, we assume that the

backscattered power received by the Arecibo antenna measures the bulk

density of the gas. The purpose of this paper is to describe how the

statistics of the bulk density fluctuations can be used to determine the

motions of the gas. In particular, we show how such measurements as

described above can be used to deduce the source strength of random

acoustic waves. The methodology of the analysis required to distinguish

random waves from other kinds of random motions, such as turbulence,

is reviewed. The data from the present observations is presented. A

theory is presented which is consistent with the present observations.
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Using. this 'theory, the power spectrum of, the sources of th-e

acoustic waves is determined. A discussion of the results, and their

geophysical significance, is given.

II. Methodology and Data Collection

The correlation method has been described previously ( 5 ) ' (6) and

will be presented in an abbreviated form here. Suppose the signal re-

ceived, contains both a component due to random waves, and a component

due to noise, n, which may include receiver noise, or turbulence. The

crux of the idea is that the component due to waves must be correlated
over larger distances and times than the noise if the waves are physically

distinguishable from the noise.

Suppose z is vertical upward, and the waves satisfy a dispersion

relation

w ((w)

where k is the wave number vector. Then we assume the signal may be

written as if a is the percent fluctuation in electron density.

a = dA (z,- ) e1"t ei + n( -x, t) (2)

Here, A is the random amplitude of thewave field. We suppose that the

waves are not altered by the presence of the noise, so that A and n are

uncorrelated. Then the correlation function has the form

R= { '(x, t) (x+&Z, t+At) }
S ~~ ~ -- W - Z'St - i k Ax -

= P (z, Az, k)d k e e + p (AxX, z, At) (3)

Here P is the correlation function of the noise. The correlation functions

depend on z as well as Az due to the inhomogenity of the media.

Now suppose this data a is collected while the antenna is

pointed in a fixed direction s. Then Ax=4 s; that is, the optical stages

I

I.
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in (3) are taken along s If At and 6are allowed to become very large,

then p will vanish exponentially rapidly( 5) , whereas the wave-like com-

ponent of R varies algebraicly

il m R 1,l m iS ---- kA

S R A i P(z, Az, k) dke i ° t- ikAx0- - 00 i
AxI AxI

This integral may be approximated by the method of statiorary phase,

the stationary point is

grad_. wo

At At

grad ( 8 (4)
k i

Provided AZ At are sufficiently large, all the contributions to R will

come from wave numbers and frequencies which satisfy (4). It is only

when A-x and At become large that the wave-like component of R may be

separated from p . Hence, we obtain the following rule: If the antenna

is held stationary, the waves seen will be those -%hose group velocity is

parallel to the -orientation of the antenna, s.

Consider now a still atmosphere. The internal waves which

may propagate in such an atmosphere have the following general proper-

ties (see ref. (7) ): For s oriented at an angle e to the vertical, there

are two internal gravity waves -I k and one acoustic wave T which2'

satisfy equation 4. Thus, one is faced with determining three amplitudes

from R. If winds of unknown magnitude are assumed to be present, then

the difficulties are magnified.

However, there is an important simplification available when

the antenna points directly vertical. In this case, there is only one

solution to equation (4), which is an acoustic wave propagating vertically.
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This is the case studied here.

The data were collected in December 1965 and have been re-

ported in ref. (6). The two main features of the data which we wish to

describe are shown in Fig. 1, which shows the oscillatory character of

the correlation function for large Az, At and Fig. 2. Fig. 2 shows the

z'roes of the correlation function for large lags. The error bars are

estimated as in ref. (6).

The main features of the data are:(a) the amplitude of the

oscillations does not increase with Az, and (b) the zeroes of R are nearly

straight lines parallel to the Az axis.

III. Theoretical Model

In this section we present a simple model of vertically propagating

disturbance which has the following properties. 1) the dispersion re-

lationship yields the distribution of zeroes shown in Fig. 2, and 2) the

amplitude is nearly constant with altitude as in Fig. 1.

Recall that in a constant temperature atmosphere, an internal

wave would grow exponentially with altitude, provided viscosity were

not important. It is known ( 8 ) that for long gravity waves, viscosity is

an important filter in the 100 km range. However, such waves propagate

nearly horizontally, and hence, at a given altitude, viscous forces have

a long time to act on a wave packet. Because viscous forces at a given

altitude act only for a short time on an acoustic wave packet propagating

vertically, it seems plausible that viscosity would become important

only at altitudes higher than 100 km.

If c is the speed of sound, p is fluid density, and t the viscosity

of the gas, and H a scale height, then for acoustic waves, an appropriate
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Reynolds number (the ratio of viscous to inertial forces) is

Re = pcH

Fig. 3 shows that this parameter is quite large in the 100-200 km altitude

range, indicating that viscous effects are unimportant in this region.

This result is consistent with the results of Maeda (1964) who found that

acoustic waves were damped by viscous action around 300 km for waves

of 100 sec period (see Fig. 11 of Maeda 1964). Since the period of the

oscillations in R is nearer 300 sec, Maeda's calculation suggests that,

these disturbances should not be attenuated by viscosity below about

400 km. Furthermore, the detailed calculations of Yanowitch (1967)

on the viscous damping of the acoustic wave may be used to compute the

expected form of the correlation coefficient R. When this is done, one

finds:l) the damping effect switches on exponentially fast at some altitude,

and 2) above that altitude, the oscillations in R increase in period.

Neither of these effects is observed.

Fig. 5 shows that in the 80-150 km region, there is a strong

temperature gradient. We now show that this temperature gradient can

be invoked to explain the amplitude dependence of the data. The analysis

below is analogous to that given by Maeda (1964), except that low frequency

waves are considered. If D/Dt is the substantial derivative, p the

pressure and u the fluid velocity taken vertical, then the equations of

motion are

Continuity

I + = 0 (1)
p Dt at

__ L

... L ." . . , -. - - --- ,,% . . .... . .
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Momentum

Du P(2)
Dt g 0

Energy

- c V-- - (3)
Dt Dt

By linearizing these equations and cross differentiating, one obtains

(see Maeda 1964)

8 2u 2 u 8821 - c 2 + Yg = 0 (4)

Here c = ,y' the speed of sound, g is the acceleration due to

gravity and Y is the ratio of specific heats,

A simple approximate solution, valid for small temperature

gradients, will suffice. Set

ii(zo~
0 I

Then, upon substitution into equation (4) gives

ZA /2 2d2 ^ _ - ( VnT,1 (6)2  + u T 4(R )2 2RT 8 z
d z2 u-Ro 4(RT 0

We assume that the temperature increases exponentially with altitude

(seeFig.4); hence

T = T (z 80 km) exp z/P
0
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Using this, the amplitude factor in equation (5),

A exp RT( ) exp- zl , (7)

varies by at most 50%, as 1< z/P < 2 in the 120-150 km altitude range.

Here T(0) = To(Z = 80 kin). In this range, u has the approximate form
0

A ikz _/2
u ek, k 2 - 1 1 (8)

-yRT o 4H2  2HP

Here, H, the scale height, is RT /g. As P 40 kin, and H 8 km, it

is seen that the main effect of the temperature gradient is to reduce the

exponential increase in amplitude of the wave while leaving the dispersion

relationship nearly unchanged.

IV. The Power Spectrum

In this section we use the approximate solution of the preceding

section to estimate the form of the correlation functions of the waves.

According to equation (7), (8), the disturbance in density (which is

proportional to U'due to linearity) has the form

dA ( w, z) exp g exp - z I i'wt e.2RT(0)ex +

where k is given by equation (8). Forming the correlation coefficient

R, we have
* coi At -ikAz

R = < dA (w, z) dA * (w, z + Az) > e iWte iz

exp -- exp exp z)+ Ax
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In the limit of large At, Az this integral has a stationary point at

dk At
do Az

which can be shown to be

At W
Az - RT k

In terms of frequencies this result may be written as

yRT yR T (At)2

( 2 . 2 H) 0 2
T yRT 0 (At)-(z

Referring now to figure 3, it is clear that (yRT ) (At) >> (Az)

so that we may expand the formula for w as

¥4H 2R °  (1 - (1 + yRT 0 (At) 2  (9)

According to this model, the acoustic cutoff frequency in a temperature

gradient is

ART° 1 - (10)
14E

which is lower by a factor- 2-- ) from the isothermal case. Using

formula (9) one can associate oscillations occurring in R at given values

of Az, At with a frequency of the source of the disturbance, W
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The amplitude of the oscillations is easily worked out to be

2 2
R =P(w, z, Az)Al(z) Cos yRT 0  [(i -- 2H [ +I

~w er 14142 [ TrJ

where A (z) has the form

exp - g [exp

F or (t 2 ,yRT Az,the amplitude of the oscillations may be approxi-
mated by

R A(z) P(w, z, Az) Cos{J RT °  + (1)

It will be seen shortly that the observed oscillations are very

close to the acoustic cutoff frequency. In this case, the lines of constant

phase are straight lines, parallel to the A z axis . The period of these

oscillations, taking account of the finite temperature gradient, is about

310 sec at I00 km. The observed zeroes of R (lines of constant phase)

(Fig. 2) form straight lines parallel to the Az axis, and their mean

spacing yields an observed period of 320 sec.

To construct a power spectrum of the source strength of the

waves, a value of Az, At is selected, and the amplitude of this is

estimated from the data. This amplitude is a measure of the power

spectrum P(w, z, Az). The frequency is found by equation(10).
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Using this method, the results shown in Fig. 6 have been

deduced. It is reassuring to note that the amplitudes for various A z,

A t, reduce to a single curve when plotted this way.

V. Discussion

One might compare these results with a simple nonpropagating

disturbance, of the form u -ei 'At. Experimentally, the correlation

function, R, should behave as e1iA~t independent of z. Actually, in the

region of A z, -/ t space where the oscillations are observed, this is

nearly the case. Clearly, the equations which would describe small

oscillations and the acoustic cutoff frequency are the same as those

presented in Section III. For all practical purposes, then, these waves

are very nearly standing waves.

Because of this fact, a calculation of the energy flux carried by

the wave is uncertain, involving the difference of two small numbers.

The present estimate is 1. 4 x 10 . 4 watts/rn2 . This value is comparable

with that predicted by Hines (1965) for the energy flux due to iaternal

gravity waves. Although it can be shown that the disturbance from a point

source of energy in the lower atmosphere, ignoring the ground effect,

is equally divided between acoustic and gravity waves, it does not

necessarily follow that the energy flux at 100 km from these two wave

modes is equal. The present data do suggest this.

Another explanation of the data supposes that the disturbances

observed have their origin in internal gravity waves at a ground level.

Consider an internal wave very near the gravity wave cutoff frequency

at ground level, propagating upward. As such a wave encounters the

temperature variations in the atmosphere, it will, in some regions,
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become damped. We suppose that as the wave propagates through the

temperature field of the atmosphere, a mode conversion process occurs,

in which the damped gravity wave becomes an acoustic wave when the

temperature drops so far as to allow the disturbance to propagate as an

acoustic wave.

According to this model, the power spectrum of the waves

should be bounded above by w G the gravity wave cutoff frequency at

ground level, and below by w A the acoustic cutoff frequency at 100 km.

A calculation on these lines shows that one can adequately explain the

width of the spectrum observed with these ideas. However, one would

expect that the energy flux would be an order of magnitude down from that

of internal gravity waves with this model. It is not clear if this is the

case.

Finally, it should be emphasized that the methods presented

here may be used to analyze internal gravity waves also; provided the

antenna is directed at an angle to the vertical.

I,
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