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ABSTRACT

This research presents a systematic approach to the optimal

design of spatial structures for minimum veight subject to con-

rltraints on stress and geometry. Mhe optimization procedures dis-

cvssed are general asd may be applied to structures which can be

analyzed by matrix displacement or finite element methods.

Tvo methods of mathematical programing are applied to obtain a

minimum weight design. The first is the sequential unconstrained

minimization technique (SUMT), and the second is the method of con-

strained steepest descent with state equations (CSDS). Both of these

techniques require derivatives of the objective and constraint func-

tions to improve estimates of the optimum design. In many structural

problems, it is very difficult or impossible to compute these deriv-

atives exactly; existing structural ana3ysis algorithms are generall.y

not equipped to compute these derivatives. In order to take full

advantage of existing analysis caTr.'vility, the programming techniques

in this research have been de°veloped assuming that such derivatives

are not available.

Optimal structural design problems are characterized by an objec-

tive function (the weight), state variables (the stresses and deflec-

tions), design variables, state equations (the structural analysis),

and constraints which may be fuictions of the design and state vari-

ables. When the state equatLons are used to write all of the j

_-!



2

II

constraints as functions of the design variables, a nonlinear pro-

gralaming problem results. The sequential unconstrained minimization

technique reduces the constrained nonlinear programming problem to a

sequence of unconstrained problems which can be solved using existing

unconstrained minimization techniques. A ISM program was written

for this research using Powell's method of unconstrained minimization

without derivatives. The required minimization of a fuaction along a

line uses a combination of a Fibonacci search (to bracket the minimum)

and a quadratic approximation of the minimum.

The method of constrained steepest descent differs from the usual

nonlinear programming problem in that the state equations and the

state variable constraints appear explicitly in the formulation. This

provides a natural matching of the essential features of the design

problem and the method used to obtain its solution. The design prob-

lem is linearized about a candidate design and the desired improvement

in the design variables, 6x, is required to be small by demanding that

T -1
6x w 6x = ý2, where • is a small number and w is a positive definite

weighting matrix. The Kuhn-Tucker necessary conditions are then

Sapplied to the resulting nonlinear Problem. As a direct consequence,

6x is specified in terms of two components; Sx which reduces the

objective function consistent with the constraints, and 6x2 which

directs the search for a minimum back to the feasible region it con-j -- straints have been violated. The method was applied using both exact

and approxirmate derivatives, so that its effectiveness when derivatives

are not available could be assessed.
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A spatial structur4e which occurs frequently in practice is the
Splane frame with cut-of-plane loads. Although such structures are

generally made up of relatively few membis, they may have many

design variables since several design perameters must be specified

for each member. The progrzmming methcds ,ere applied to a number

of two and three member frames of this type. From the results, it

appears that CSDS has significant advantages over SUNT both in terms

of computational time and the nu;ber of times that candidate designs

must he analyzed. The results also show that CSDS performs as well

when derivatives are approximated as it does when they can be computed

exactly. The efectiveness of SUHT is reduced significantly if the

derivatives a-re unavailable.

Abstrac:c approved: __________,dissertation supervisor

, evA. title and department

67p date

Key Words -- Optimum design, minimum weight, structures, spatial

structures, mathematical progranming, spatial frames.

C4

7I



TABLE OF CONTENTS

LIST OF TABLES ...................... vi

LIST- OF FIGURES . . . . . . . . . . . . . . . . . . . vii

LIST OF SYMBOLS • • • . • • • i . • • . ......... riii

CHAPTER I: INTRODUCTION .. ............. 1

1.1 The Class of Problems to be Solved . . .1

1.2 Literature Survey . .... .. .... 3

CHAPTER II: FORMULATION OF THE PROBLEM ..... .. . 8

2.:. The Problem . . . . . . . . . . 8

2.2 The State Equations . .............. 10

2.3 The Objective Function ..... ......... 14

2.4 The Constraints . . . . . ...... . 15

92.5 The Mathematical Programming Problem ....... 16

CHAPTER III: THE SEQUENTIAL UNCONSTRAINED MINIMIZATION
TECHNIQUE . . . . . . . . . . . . . . . . . 21

3,1 General Discussion 21

3.2 Finding an Unconstrained Minimum . . . . . . . . . 24

• '•'~ 3.3 Etrapolation ..... ......... .... 28

3.4 Parameter Selection and Convergence Criteria . . . 30

IV



---

Page

SCHAPTER IV: CONSTRA.NED STEEPEST DESCENT WITH STATE
EQUATIONS . . . . . . . . . . . .. . . . . 32

4.1 Introduction . . ... . ......... a# 00 32

4.2 Description of the Method .9. 9....... . 33

4.3 Computational Considerations . . . . e . . . . . . 44

4,4 Convergence Criterion . . . . ...... .... 7
4.5 CSDS Algorithm . . .. .. .. .. .. .. . .. 51

CHAPTER V: APPLICATIONS * .. ............ 53

5.1 General Dis ssioL .................. 53

5.2 The Two Member Frame ............. .. 53

5.3 The Three Member Frame . . . . . . . . . . . ... 55

5.4 The SUMT Prcgram . . . .9.9 .. . . .... . 57

5.5 CSDS Program. . .. .. .. .. ... . .. 58

5.6 Application to Two Member Frames ......... 59

5.T Application to Three MemboFr mes .... . . 72

CHAPTER VI: CONCLUSIONS .............. 81

PIBLIOGRAPHY .... . .................. 85

APPENDIX: STRUCTURAL ANALYEIS. ............. 88

A.1 The Basic Equations ............... 89

A.2 Application to Vm Membe Frames . . . . . . . . . 96

A.3 Application -o Three Member Frames ........ 103

v



LIST OF TABLES

Table Page

5.1 Optimum Design of a Two Member Frame Using SUMT . . . . 62

5.2 Optimum Design of a Two Mezber Frame Using CSDS . . . 63

5.3 Optimum Design of a Two Member Frame Using CSDS . . . . 64

5.4 Optimum Design of a Two Member Frame Using CSDS . . . . 65

5.5 Optimum Design of a i Member Frame UsingSM . *. .. 66

5.6 Optimum Design of a Two Member Frame Using CSDS. . . . 67

5.7 Optimum Design of a Two Member Frame Using CSDS . . . . 68

5.8 Optimum Design of a Two Member Frame Using SUMT .... 69

5.9 Optimum Design of a Twc Member Frame Using SURT . . . . 70

5.10 Optimum Design of a Two Iaember Frame Using CSDS . . .. 71

5.11 Optimum Design of a Three Member Frame Using CSDS . . 74

5.12 Optimum Design of a Three Member Frame Using CSDS . . 75

5.13 Optimum Design of a Three Member Frame Using CSDS . . . 76

5.14 Optimum Design of a Three Member Frame Using CSDS . . . 77

.5.15 Optimum Design of a Three Member Frame Using CSDS . . , 78

5.16 Optimum Design of a Three Member Frame Using CSDS . . . 79

5.17 Optimum Design of a Three Member Frame Using CSDS . . . 80

vi

Cl



LIST OF FIGURES

Figure Page

2.1 Three Member Frame with Out-of-Plane Loads . . ... 9

2.2 Typical Member Cross-Section ............ 9

5.1 Runbering the Two Member Frame . . . . ....... 54

5.2 Numberin the Three Member Frame ......... 54

A.1 Two Member Frame and Typical Member Cross-Section . 90

A.2 Free Body Diagram for Two Member Frame ....... 90

A.3 Free Body Dagram of Member (1.,2) . . . .... 93

A.4 Free Body Diagram of Member (2,3) . . ...... 93

A.5 Frame Member Showing Reactions and End Displacements 94

A.6 Three Member Frame ................. 104

A.7 Free Body Diagram of the Three Member Frame .... 104

@ICWa

vii4



LIST OF SYMBOLS

t wall thickness of a hollow member

b width of a member

h height of a member

q generalized coordinates in structural analysis

V(q) total potential energy

U(q) strain energy

SI(q) potential energy of exteonal loads

A matrix used in triuctural analysis, unless
otherwise specified

Q vector of joint displacments

P vector of generalized forces unless otherwise
specified

M vector of member end reactions

F vector of "fixed end" moments and loads

C matrix used to compute stresses -unless
otherwise specifiee.

P vector involving external loads

Z ve:-.or of state variables

A coefficient matrin for state equations
P right-hand sid.e of state equations

Sx vector of design variables

V(x) volume of the frame

a normal stress

viii

J



ST shear stress

af failure stress

a maximum allowable failure stress
max

*(z) vector-valued constraint function of the
state vYriablesSXmin vector of minimum allowable design variables

x vector of maximum allo6able design variables

*(x) vector-valued constraint function of the
design variables

n number of design variables

L number of • constraints

m number of i constraints, unless otherwise
spec ified-

k number of state variables, unless otherwise
specified

h(z,x) vector-valued function of state and design
variables

R feasible region in design space

g(x) vector-valued constraint function in the
nonlinear progra~ing problem

rk single scalar variable used in SIMT

U(x,rk) unconstrained function to be minimized in SUMT

S(rk) scalar-valued function used in SUMTJo
I(x) scelar-valued function used in SUMT

direction vector in n space

k 
4*

2jx



pj estimate of the minimum in Powell's method

ysx convergence criterion in SUMT

C convergence criterion in Powell's method

C L convergence criterion for minimization alon2g
a line

H, H vector-valued function in Kuhn-Tucker necessary

conditions

~ - -- generalized Lagrange multipliers

X, X, AO, matrices used to define the linearized problem
in CSDS

I AJ vectors used to define the linearized problem

in CSDS

vector of * constraints which are violated or
identically zero

vector of * constraints which are violated or
identically zero

AO vector of changes duianded in 0

V• vector of changes demanied in

Sx small change in the design variables

6z sm=&3 change in the state variables

6xl, 6x2 component vectors of ix
SX 2

constant determining magntude and direction

of Sx

Tm= maximum allovwble vralue of ni

C convergence criterion for 3SDS

IA



, -

11

CHAPTE I

INTROMMCTION

1.1 The Class of Problems to be Solved

The subject of optimum structural design has received much atten-1: 4

tion in recent years. The optimal design of simple structural elements

and structures consisting of these elements has been studied exten-

sively. A number of investigators have considered plane frames and

trusses, but spatial fremes have received little attention. It is to

this topic that this research is directed. The problem to be solved

is the minimum weight design of a spatial frame subject to constraintsI
on stress and geometry.

One type of spatial structure that occurs frequently in practice

is the plane frame with out-of-plane loads. Similar frames are often

found in automotive, construction vehicle, and agricultural equipment

e pplicationsý Real design problems of this type initiated this

research and are used as example problems for the solution techniques

I-vestigated. Although such structures are generally made up of rela-

tively few members, they mav have many design variables since several

design parameters must !e specified for each member. In addition these

frames are often required to support or transmit loads at many points

S (-. in the structure. When such frames are mass produced the design which

.I requires the least material has a significant econominc advantage.
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The design must also satisfy constraints on stresses and geometry. In

most cases the structure will fail by fatigue; therefore, the maximum

stresses in the frame mus': be restricted to values well below the

elastic limit of the material. Limits on the design variables of the

frame may be dictated by current manufacturing capabilities or other

related limitations. It is apparent from this discussion that struc-rI
tural design problems, like almost all dsig.n problems, have a merit

oz objective function, a set of dosign variables, a set of state vari-

ables, such as stresses or deflections which describe the behavior of

* the frame, a set of state equations which determine the state at a

given design point, constraints on the design variables, and con-

strainta on the state variables.

Two methods of mathematical progruning are applied to obtain a

minimum weight design. -The first is the sequential unconstrained

minimization technique, and the second is a conmtrained steepest

Sdescent method which uses the state equations directly in the optimi-

zrtion process. Both of these techniques reqdre derivatives of

objective and constraint functions to predict better appr-orimations to

the optimum design. These derivativea may be ,:umbersome or impossible

to compute exactly. In adeition it is desirable in structural optimi-

zation to take advantage of existing analysis algorit-ims which in gen-

eral yield only function values, not derivatives. In order to take

full advantage of existing analysis capability, the pro-raaing tech-

niques should be effective when only function valuee are available.

The optimization procedures discussed in this research are general
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and may be applied to spatial frames analyzed by matrix displacement

S~or finite elenent methods.

In Chapter II the method of structural analysis is discussed and

the formulation of the optimization problem as a mathematical pro-

gramming problem is presented. The sequential unconstrained minimi-

zation technique is outlined in Chapter III and the constrained steep-

eat descent method with state equations is developed in Chapter IV.

In Chapter V the application of the programing methods to same example

problems is discussed and the results for these examples txre presented.

Conclusions concerning the results and the relative merit of the design

methods are discussed in Chapter VI.
IJ

1.2 Literature Survey

The field of optimum structural design has been exhaustively

surveyed fram Galileo to the present in review papers by Wasiutyuski

and Brandt [24] and Sheu and Prager [22). In addition a review by

Gerard [9], which is particularly applicable to aerospace vehicleE,

contains numerous structural references. For extensive bibliographies

covering all aspects of optimal design and evaluations of the current

state of the art, the reader is referred to these articles.

In recent years, a numb•nr of investigators have applied the

methods of nonlinear programming to optimum structural design. Schm:It,

Kicher, and Morrow [20) solved the problem of integrally stiffened

waffle plates using a method of alternate steps. In this method

I steepest descent moves are made until a constraint is violated. The
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step is then adjusted until the design is on or near a constraint.

=• This point is considered to be bound and an alternate step to a free

(unconstrained) point is sought. The technique uses a random number

generator to create proposed alternate step designs which have the

same weight as the current bound design and which do not violate addi-

tional constraints. Gellatly and Gallagher [7] presented the theo-

retical basis for a design procedure which includes steepest descent

and alternate step moves similar to those of Schmit, et. al. [20]

They apply this procedure to the design of plane trusses and stiffened

panels [8). The objective function is linear in both cases, since

only one design variable per structural element is considered.

Others have also shown that optimum structural design can be

formulated as a nonlinear programming problem. Pope [15) solved plane

trusses by reducing the resulting nonlinear programmiAg problem to a

sequence of linear prograirming problems, and Best [23 suggested the

use of a gradient projection technique. Recently Brown and Ang [3]

applied the gradient projection method to the elastic design of WF

steel frames. A problem :involving four design variables and eleven

constraints was solved and forw•.ý'd finite difference approximations

'were used to evaluate the derivatives required.

A somewhat different approach was suggested by Scbmit and Fox

[21). Instead of developing designs, analyzing them, and using infor-

"- mation from the objective function and the constraints to predict

improved designs, a special function, *, is constructed and minimized.

The $ function contains among other terms the weight (or other



quantity to be minimLized) and an estimate of the minimum weight. The

Sfunction * is so stt•uctured that when =0 all constraints and the

equations of equilibri-., and cenpatibility are satisfied. In addition

the weight is decre•ased to the estimated minimum. line estimate of

the minimum weight is then. reduced and the process is repeated until

tae waight cannot be further decreased. Alt, each step the solution

S=0 11 found by methods for unconstrained minimization.

A method of nonlinear prograumin6 known as the sequential uncon-

strained minimization technique (SUMT), has also receivee. some atten-

tion. Nicholls [2.4] used the method to solve same plane truss prob-

lems, but had limited success. The lack of' success was attributed to

the use of a first order gradient technique for the unconstrained

m3--iimizations. Brown and Ang [4] have used SUMTf to obtain starting

values for the gradient projection method and have noteCd the possi-

bility of solving structural design problems using StIMT instead of

other programming techniques. A recent book by Bracken and McCormick

Ell discusses examples of nonlinear programming problems to vhich SLT

has been successfully applied. Among these is the de•sign of a verti-

cally corrugated transver.se bulkhead for an oil tanker. The design

is specified by six design varriables and must satisfy sixteen con-

straints. The objective function is nonlinear and there are both

linear and nonlinear constraints. Derivatives of the co)nstraint

O functions Yere available without a;p~roxime•÷ion.

LIP

The programming aroblems associated with optimum design are

often nonconvex. In d eneral, therefore, a local minimum is obtained.

the. mn,- mum- wegti hnrdcdadth rcs srpae ni
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Usually widely separated starting values are chosen and if the method

converges tu the same point each time, this point is taken as the

global minimum. Toakley [23) discusses the problem of the global

optimum for statically determinate plane trusses. A change of vari-

able is introduced to obtain a convex noknlinear programing problemu

which is then solved by reducing it to a sequence of linear program-

ming problems.

The literature concerning mathematical programming has also been

voluminous in the past several years. Recent books by Wilde and

Beightler [25], and Saaty and Bram [19] discuss a wide variety of

optimization techniques. The former treats all types of problems

while the latter has an extensive section on the methods of nonlinear

progranming. A book by Fiacco and McCoxxick [5) presents the theo-

retical basis of the sequential unconstrained minimization technique.

In addition, these books serve as a review avd bibliography of all of

the major contributions to the field.

Fletcher's review [6] of unconstrained minimization techniques,

which do not require derivatives, is particularly pertinent to this

research. It suggests that, of the me'hods available, the one due to

Powell [16] based on conjugate directions is the most effective,

Wortman [25] h&s written a program which combines SUM and Powell's

method. He reported extreme sensitivity to the starting values and

2) proposed that the technique could be used to determine binding con-

straints. These constraints could then be used to decrease the
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dimension of the optimization problem and SUMr could then be reapplied.

No results of this procedure were included in the report.

The growing literature available on SU'T [5 and 1] indicates that

the method is most successfUl when derivatives of both the objective

and constraint functions can be computed exactly. One of the objects

of this dissertation is to consider the applicability of SUMT to struc-

tural design problems when derivatives are not available.

As stated previously, almost all design problems have an objec-

tive function, design afariables, state variables, a set of st&te equa-

tions, state constraints, and design constraints. The nonlinear pro-

gramuing approaches cited above (except for Schmit and Fox [21]), use

the state equations indirectly to express all of the constraints as

funct;.vns cf the optimization variables. The method of constrained

steepest descent with state equations, to be developed in Chapter IV,

differs from these methods in that the state equations and state vari-

able.constraints appear explicitly in the mathematical programming

problem. This provides a very natural matching of the essential fea-

tures of the design problem and the method used to obtain its solution.

O1

0:
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CHAPTER II

FORUILATION OF THE PROBLEM

2.1 The Problem

This chapter presents a general formulation for the optimal

design of minimum weight spatial structures, subjected to geometrical

as well as stress constraints. The geometrical constr&ints are

restrictions placed on the dimensions of the structure, whereas the

stress constraints correspond to a failure criterion established by

one of the failure theories, The elements of such a structure may

undergo extension, bending, twisting, and shear deformation. The

foraulation of the design problem in this chapter is general, but for

clarity in p.resentation, some examples which are chaacteristic of

the general class of problems will be used in the development.

Consider a structure which consists of rectangular, hollow beams.

These beams are mutually perpendicular to each other and are joined

at their ends by rigid joints so that forces, bending oments, and

twisting moments are transmit.ted from member to amber. The structure

is loaded by concentrated for'ces located arbitrarily aloug eOch of

the members. The frame shown in Figure 2.1 is an example'of this

type of structure; Figure 2.2 sbows a typickl amber cross-section.

Bending and twisting effects in each mcber will be considered. but

shear due to transverse loads and axial deformation of the meabers

I.
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FIGURE 2.1 Three Member Frame with Out-of-Plane Loads

t

SFIGURE 2.2 Typical M ember Cross-Section
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will be neglected. The thickness, t: of the hollov sections is

constant and all members are assumed to be made of the sa linearly

elastic material,

The design variables in this problem are the thickness, t2

width, b, and height, h, of the individual members (see Figure 2.2).

These are to be chosen so that the objective function (the weight of

the structure) is a minimnu and the constraints on stress and geometry

are satisfied. The state variables, describing the behavior of the

structure for & given design, are the stresses at critical points in

the frame and the deflections at the joints. The state equations I
A which determine the state variables are the equations of structural

analysis which are discussed in the next section.

2.2 The State Equations

The state variables are determined from & set of matrix equa-

tions which are derived from energy principles. Matrix methods for

the analysis of structures have received much attention in recent

literature. Books devoted to this subject include those by Ruben-

evein [18], Przemieniecki £173, and Zienkievicz [2T]. The analysis

of the structures investigated in this research fllows a method

outlined ty Langhaar El.I, When this method is written in matrix

notation, the resulting, equations are of the same form. as those used

in the finite element and matrix displacement methods of structural

analysis. Details of the analysis are given in the uppendix; the

principl features of the method are as follows.

*1'
'4 m e•w ••llllMme•emeel~



The total potential energy of a strvactvwe wa the app•i.d loads

may be written as

".F.• (q) - u~q) + Q(q) (2-l)

where U(q) is the strai, energy of deformation,, Q(q) is the potential

energy of the external loads, amd q is a vector whose eltents are the

cartesian components of the inependent kinematically admissible

angular and linear joint disp~lacaments. For sufficiently W8.11 dis-

placements qi, the internal strair, energy U(q) ic a positive definite

quadratic form iu the generalized coordiLtes jig

n Iaijqiqj. (2-2)
2iml j al

SIt in shown in Lengl~arls book CLI3 that the required conditi ",,, for

qi- 
li

Siequtiibriia are il,..n(2)

},where zn is the number of genersliaed coordi~tes. This princilple of

4 stationary potential energy applied to equatioun (2-i) yields

Using the definitioL' of the cmponentu of generalized force given

by

-j3q (2-5)

the following set o. quations is obtained
S~n

I: ai•q, = P• i .1,2, ... , n. (2-6)

In matrix notation these equations my be expressed as

AQ = P (2-7)

-l .



tt

II
At 12

Whiich corresponds directly to the basic equation of the matrix dis-

placement method of structural analysis [17).

•I The elements of matrix A are known functions of the design vari-.

ables and the elements of vector P are functions of the external loals.

Equation (2-7) may be solved for the Joint displacements Q. In the

appendix it is shown that the end reactions and the member stresses

may also be written as matrix equations. For end reactions the fol-

lowing equation is obtained

M = BQ + F, (2-8)

in which M is the vector of end reactions, B is a matrix whose ele-

ments are functions of the design variables, Q is the vector of Joint

displacements, and F is e vector of the "fixed-end" mwrnts and loads.

The stresses may be computed from the following equation

s = CM + (2-9)

where S is the vector of stritsses calculated at critical points in

the structure (see Appendix), C is a matrix whose elements are func-

tions of the design variables, M is the vector of end reactions, and

P is a vector whose elements are functions both of the applied loads

and the design variables. By combining equations (2-8) and (2-9),

the following equation is obtained

S = CBQ ? CF + P. (2-10)

"The analysis of the structure may then be summarized by the fol-

lowing equations

AQ= P

M = BQ + F

and S = CBQ + CF + P. (2-11)
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The fundamental equations of the firdie element technique are given

by Zienkiewicz [2t] and are of the sam form as equations (2-11).

Conceptually the optimiza:ion procedures investigated in this

research can then be applied to the broad classes of problems which

can be axalyzed by matrix dioplacement and finite element techniques.

Equations (2-11) apply to linearly elastic structures under the

action of conservative external loads.

Physically the behavior of the frame is most often described by

the joint deflections and stresses. Therefore it is natural to

define these variables as the state variables, Z,

z = (2-12)
"S

Given the external loads and a set of design variables , the first

and third equationis of set (2-3l) can then be combined to yield one

matrix equation which determines Z. This equation is given by

AZ - , (2-13)

where

-CB

and i~i

CF+4 .

The analysis of the structure (determination of the state valiables)

.... s therefore reduced to the :aolution of a single set of siwltaneou3

equations.
i s I
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2.3 The Objective Function

- •Since all members are assumed to be made of the 39M material,

the weight of the frame is the product of a single weight density,

and the volume of the frame. Therefore the problen of determining

L the minimum weight is equivalent to that of determining the minimum

thvolume. The volume of the i member of the frame is given by

Vi = bih -(b -2t)(h -2ti)C

or

v. = [2tlbi + 2tihi - 4t21C (2-14)

where ti, bi, and hi are defined in Figure 2.2, and C is the length

of the member. The design variables are systematically assigned as

follows, m being in this case the number of frame members,

Sxl=tl

x 2 =bI

x3 h13 1

x3 1- 2 =ti

x 11 b i
x3 h i= , ... , m.

Using this notation, equation (2-14) can be written in terms of the

design variables:

Vi(x) [2x 3i_ 2 x3 i1- + 2x 3 1- 2 x31 - 4, 3i-2'Ci (2-15)
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The volume of the frame is obtained by summing the volumes of the

individual members and is a quadratic in the design variables.

m
V(x) = E Vi(x) (2-16)

i=l

2.4 The Constraints

Structural failure is said to occur when the state variables or

functions of the state variables exceed certain preassigned limits.

In space frames failure may be due to either excessive stresses or

deflections. In the typical structures being considered, failure is

assumed to occur when the combination of normal stress due to, bending

and shear stress due to torsion exceeds a maxim'm limit. The stresses

were combined according to the distortion energy theory of failure.

The failure stress af is computed as follows:

Of = 2 + 312 (2-17)

where a is the normal stress and T is the shearing stress at a criti-

cal point of the structure. The statement that the failure stress

must not exceed a specified maximum is written

a2 _ 3T2 _ a <0 (2-18)

and the general form of a state variable constraint is

*(Z) < 0. (2-19)

The choice of design variables may also be limited. These limits

may occur because of space restrictions or result from limits imposed

r3
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by current manufacturing facilities. Constraints of this type are

introduced into the structural design problem of interest by requiring

S" that Vhe design variables satisfy the following inequality:

x .n_< x_< x= (2-20)

This inequality is equivalent to two constraint relationships, namely,

Xdmn - x < 0 (2-21)

x-x < 0 
(2-22)

The general form of these constraints is

O(x) < 0. (2-23)

2.5 The Mathematical Programing Problem

The state equations, the objective function, and the cons'craints

associated with the optimal structural design problem have been

defined in the previous sections of this chapter. These functions

may be msed to define the following mathematical progruming problem:

minimize V(x) (2-24)

suoject to

i •i~6 xW < .o 0i =, , . .

' (z) _0, i = 2, .,., m

and hi(z,x) = 0, i 1, ... , k.
The equality constraints in problem (2-24) are the state equations

(2-13). The most common approach to this problem has been to use

the state equations to write the state constraints as functions of

the design variables. This results in the following nonlinear
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programming problem, which may be attacked by several available tech-

niques (see Section 1.2),
Sminimize Vix) (2-25)

subject to

gW(x) 0 j 1, ... , 0m+

where

(g(x)

A design which satisfies i-1 of the impos•e constraint conditions is

called a feasible design. 11%e constraints define a feasible region,

R, in design space,

R = {x: g(x) < 0}. (2-26)

If the nonlinear programming problem (2-25) is convex, then it can be

shown that the solution attnined is a globa.l optimum. It will now be

Sjshoin that the structural optimization problem formulated in this

chapter is nonconvex.

The convexity of sets and functicns may be investigated by using

t1cee the:rem: which are proven in [19].

7aeorem 2.1 The set of points R whic-h satisfyJ a

constraint g(x) < 0, where g(x) is a• convex func-

tion is a convex set.

C) Theorem 2.2 The intersection R of a family F of

convex sets is a convex set.
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Theorem 2.3 If V(x) is a twice differentiable

function in an open convex set R, it is convex

in R if and only if the quadratic form
n n 32V

i=1 j=1 •x~j

is positive-semlidefinite for every point x in R.

Because the state variable constraints are comolicated functions

of the design variables, it is difficult to apply Theorem 2.3 to

these functio=3. Therefore one cannot immediately determine whether

or not the feasible region, R, iJ a conv-= set. Consequently, the

convexity of the objective function will be investigated by applying

the criterion of Theorem 2.3 assuming that the region R satisfies the

conditions of the theorem.

Consider the volume uf the three member frame shown In Figure 2.1

V(x) = (2x.l x 2+2x3 - 42x)C

+ (2xx + 2xx 6 -M) C

+ (2xTtx + 2xoxg - •• 2 )c (2-2T)

The matrix of second derivatives required in Theorem 2.3 is

j)I

LI
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--8C1  2C1 2C 0 0 0 0 0 0
1 1 01

2C1  0 0 0 0 0 0 0 0

2C 0 0 0 0 0 0 0 0

0 0 0 -8C 2% 2C 0 0 0
2 2 2

0 0 0 2C 2  0 0 0 0 0

o 0 0 20 0 0 0 0 0

0 0 0 0 0 0 -8C 2C 2C
I3 3 3

0 0 0 0 0 0 2C3 0 0

0 0 0 0 0 0 2C3 0 0.

The analysis of quadratic forms, outlined in Langhaar's book [111,

may be applied to show that the quadratic form based on this matrix

is indefinite. Consequently, by Theorem 2.3, V(x) is a nonconvex

function when the region R is convex. Therefore problem (2-25) is

a nonconvex programming problem.

The most that can be guaranteed for a nonconvex problem is that

its solution is a local minimum. The most often used technique for

seeking the global optimum in this situation is to attempt to deter-

mine all of the local minima by starting from many widely separated

initial points.

In summary the op.timal structural design problem has been form-a-

lated as a mathematical programming problem in two different ways.

In one case the constraints are considered to be functions of the

design variables alone. The sequential unconstrained minimization

technique will be applied to this problem in Chapter III. In Chapter

IV the constrained steepest descent method with state equations, will



be applied to problem (2-24). This formulawdon considers constraints

Ii

which are functions of both the state variables and the design vari-

ables, and uses the state equations directly in the solution.

i

L -
I!

~fIIi

20t

-i.

be aplid t prolem(2~14).Thi fomulaionconider costrint

- hc r ucin fbt h tt aibe n h einvn
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CHAPTER III

THE SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE

3.1 General Discussion

In Chapter II it was shown that the optimum design of a spatial.

frame cculd be formulated in the following way.

minimize v(x)

subject to (3-1)

gi(x) < 0 i 1, 2, ... , m+t

The constraints are complicated nonlinear functions of the design

variables. Because of this, the direct handling of these con-

straints in the nonlinear programing problem can be difficult.

The sequential unconstrained minimization technique (SUMT) handles

these corstraints indirectly and has been used successfully on

problems of this type. The theoretical basis of this technique,

as well as helpful suggestions for computation, may be found in

the recent book by Fiacco and McCormick [5). There are several

versions of SUMT which may be applied to given problems depending

,,pon the nature of the objective fuw'ction and the constraints. For

problem (3-1) the interior method should be used. In this method

the quest for a minimum is always carried out within the feasible

region and strict equality constraints are not allowed.

The method is applied by augmenting the objective function to

define a new function U(xrk),

_ _F__ M I
-- 'WA1
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U(x,rk) V(x) + S(rk)I~x). (3-2)

The number rk is alvays positive. 1(w) is a scalar function of the

design variables and is continuous in the feasible region R, where R

is defined by

R - {x: gi(x) < 0, i - 1, 2, ... , m l.tl.

I(x) also has the property that if {xk} is any infinite sequence of

points in R converging to xB such that g(x)) a 0 for at least one

i, then

"mr 1(1k) +

(r k ) is a scalar-valued function of the single variable rk, and has

the following properties, If r > r > 0, then S(rl) > S(r 2 ) > 0,

and if {rkl is an infinite sequence of points such that

then

lie S(rk) • 0.

These properties are basic to the convergence proofs which may be

found in Fiacco and McCormick [5).

The mst comin forms for S(rk) wM I(x) are the fmlloving:

S(rk r (3-3)
m+t•

I(X) E-Iiim
Using these, the function U(x,rk) becomes

It
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U(xrk) = V(x) r Z gx) 0 o. (3-5)

0
The penalty term pi ovdes a steep gradient at the bo-mnd•ary• the

feasible region go that when the function U(x,r ) is minimized the

search is kept in the 0easible region R. When gi(x) > 0, U~x,) K,

where K is a large positive constant. This avoids difficulties which

may arise in the unconstrained minimization if a constraint is inad-

.ertentiy violated.

The algorithm for finding the constrained minimum of a function

using interior SUMT is as follows.

(1) Choose rI and an estimate of the minimum x(0) interior to R.

(2) Determine the unconstrained minimum x(rI) of U(x,! 1 ) in the

feasible region R.

(3) Use x(rI) as a tew starting point to determine the mininum

xr)of U~x,r2) where ri > r2 > O.

(4) Continue the process, finding Vie local mini Of U(xrk

starting from x'r for a strictly monotonically decreasing

kIl
sequence {rk.

Fiacco and McCormick show that if V(x) and g.(x), i - 1, 2, *..,

are c.ontinuous-, if I(x) and S(r ) satisfy the conditions stated previ-

for all x in sme neighborhood of £. and £ is not an isolated

0 oint in R, and if irk) is a monotone decreasing sequence which con-

verges to zero,, then the sequence of local unconstrained minima

n
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obtaized in the above procedure exists and converges to a local

minimum of problem (3-i).

The use of SW14T is appealing in that existing uncoustrained

minimization techniques can be used to obtain the minimum for each

U(x,rk). The method, therefore, provides a means of reducing the

value of the objective function without violating the constraints.

Furthermore it is not necessary to involve the constraints directly

or to move along them toward the constrained minimum of the objective

function. This is a distinct advantage when the constraints are coa-

plicated nonlinear functions of the design variables as they are in

the class of problems under consideration.

In the next section = unconstrained minimization technique

which does not require derivatives will be discussed. Acceleration

of convergence by extrapolation will be dmscu-ased in Section 3.3,

and other computational considerations will be presented in Section

3.4. An evaluation of the method as applied to the optimum struc-

tural design problem maw be found in Chapter V.

3.2 Finding an Unconstrained Minimum

As stated in Chapter i, one of the goals of this research is to

investigate techniques that will be effective when derivatives of the

objective and constraint functions are cumbersome or Impossible to

calculate. The method used to determine the unconstrained minimum of

SU(x,rk) in ST*4T must therefore be able to find a minimum using only

function values.

- .... _____- -- _____
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The earlier techniques such as tabulation, random search, or

fr improving one variable at a time are basically inefficient and unre-

liable. The first improvements of these methods were based on ad hoc

procedures. Only recently efficient techniques have been introduced

which are based on successive minimizations along conjugate directions.

In his review of minimization techniques that do not require the

calculation of derivatives, Fletcher [6] suggests that of the methods

available, Fowel1's r16] is the most satisfactory. Powell's method

requires fewer function evaluations than other techniques and has tne

advantage of quadratic convergence near the minimum. The method will

find the minimum of a quadratic in a finite number of steps and con-

verges to the minimum from an unfavorable starting point more effi-

ciently than other available algorithms.

Powell's method is based on the minimization of a quadratic,

f(x) = xT[A]x + bx + c. (3-6)

Directions & and &2 are said to be conjugate with respect to A if

T
&1 [A] 2 = 0. (3-7)

Each iteration starts from the best previous estimate to the minimum

P0. Successive searcnes for a minimum are made along a set of

linearly independent directions, E' 2 ' n These directions

are initially chosen as the coordinate directions :-D that the first

iteration is identical to that of changing one parameter at a time.

Each iteration generates a new directicn a, nd for the second iter-

ation the set of linearlr, independent directions is chosen to beiv
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•2' • "''' •n' E" The new direction t is chosen so that if a quad-

ratic is being minimized all the directions will be conjugate after n

iterations. Powell proves that, as a direct consequence, the exact

minimtu of the quadratic is found. One iteration of the basic method

is as follows.

(i) For r = 1,2,...,n calculate Xr so that f(Pr-I + Yr~r)

is a minimum and define Pr = Pr-I +

(ii) For r = 1,2,p...,n- replace by F.

(ii) R rle eplace n by (Pn- P0)

(iv) Choose X so that f(Pn + X{pn -pO)) is a minimum

and replace pO by Pn + XPn - PO).

The basic procedure may be unstable for non-quadratic functions

because it tends to choose nearly dependent directions. Powell shows

that this difficulty can be eliminated by using the following proce-

dure which allows a direction other than •i to be discarded and under

some conditions uses the old set of linearly independent directions

again.

(i) For r = 1,2,...,n calculate Ar so that f~pr-l +

is a minimum and define pr =Pr- + Xr~r"

(ii) Find the integer m, 1 < m < n, so that f(Pm-l) -f(Pin

is a maximum, and define A = f(Pm_) - f(Pm).

(iii) Calculate f f(2pn - pO) and define fl = f(po) and

*; ~f 2 = f(pn)"

(iv) If either f3 > fl and/or

(l-2f2 + fB)(fl - f 2 - A)2 > A (fl - f )2

(f 22+f .f f
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use the old directions 1' &2' "" n Fn for the next iteration

Sand use p for the next po, otherwise

(v) defining ( = (pn P0 ), calculate X so that f(pn + XE) is a

minimiun, use g 1, F2 ' ... nm-l' ým+l' ým+2' "''' Fn, F as

the directions and o + X& as the starting point for the next
-n

iteration.

Complete theoretical justification of the above algorithm is given in

Powell's paper. One effect of step (v) above is that one of the previ-

ously determined conjugate directions may be thrown away. In this

case the minimum of a quadratic will require more than n iterations.

However, Powell shows that this procedure ensures that the rate of

convergence will always be reasonable, therefore making the modifica-

tion vaLluable. In fact, Powell fovnd it to be essential when mini-

mizing a function of twenty varLables, and highly desirable for func-

tions of five variables or more,

Powell suggests a very safe but lengthy convergence criterion.

This procedure was not used. Instead, in crder to decrease the num-

ber of function evaluations required, the iterations w'ere terminated

when the results from two successive iterations agreed to within a

specified value, c . According to Fletcher [6], only the most diffi-
p

cult functions require the more stringent convergence criterion.

If Powell's method is to be effective, it is essential that an

(-1_ efficient method of finding a minimum along a given direction F; be

available. The objective function surface U(xrQ) is peculiar in

that at the boundary of the feasible region the function takes on a
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large positive value. Taking this Into account the following proce-

• ddure was developed.

(1) Starting from pi- use & Fibonacci search along

the direction E to bracket the minimum within

the feasible region.

(2) Pass a quadratic through the three points brack-

eting the minimum and approximate the minimum of

the function along the line by the minimum of the

• quadratic.

(3) Let the quadratic be determined by function values

corresponding to design points X x'2' and x3,

and let the minimum- of the quadratic be Xmin f I

IXmin -Xil < eL, i = 1, 2, 3

terminate. Otherwise retain the three points

which bracket the minimum and reduce the interval

of uncertainty, and repeat step (2).

The above algorithm was used in conjunction with Powell's method and

provided convergence comparable to *" reported by Powell in his

paper.

3.3 Extrapolation

Fiacco and McCormick show that the convergence of SUMT can be

-accelerated by extrapolation. If p minima of U(x,rk) have been

determined, these may be used to estimate the optimum (the minimum of

V(x)) and the (p+l)st minimum of U(x,rk).

------
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v11.2 estimates of the optimum are shown to converge more quickly

to the solution than the sequence of unconstrained minima. In addi-

tion the estimate of the (p+l)st minimum can be used as a starting

value for the (p+l)st iteration which significantly reduces the

amount of camputetion required to find the optimum.

After p minima have been obtained, estimates of order p-i can be

made. In practice, estimates axe seldom made beyond order three due

to computer storage requirements and accuracy considerations such as

round-off error. The experience of Fiacco and McCormick is that even

first and second order approximations of the next U(x,rk) minimum and

the optimum significantly accelerate the convergence.

The extrapolation is based on the fact that the p minima which

1ýJ

have been founds xI, x2 , ... , X which correspond to rI, r 2 , ... ,

may be expanded in terms of the rk as follows.

p-i
p-! aj(rk)j k = 1, 2, ... , p (3-8)
J=Q

where a are n component vectors. A set of recursion relations

based on this expansion leads to the following equations for firs';

and second order estimates of the optimum and the (p+l)st minimum of

the U function when rk+I - rk/c, (c > 1).

The first order estimate of the optimum is,

cx -X
x* =- 0-~9)

c-i

and the second order estimate is given by
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CI~l c2X -- ÷•

x*= P CP-1 +Cxp- 2  (3-10)~~ 1c )(c - 1)

The first order estimate of the (p+l)st minimum is

x + cX
X p+p =(3-311)

and the second order estimate may be -iritten

c3l P + c2 x - c2 x_ 1  !p-2 (3-1)Xp~l c3 cI
These equations were used to accelerate convergence when SUMT was

applied to the structural optimization problem being considered. The

first order estimates were applied after two iterations had been cm-

pleted and the second order estimates were used thereafter. ThE

estimate of the (p+l)st minimum was used as a starting value for the

(p+l)st iteration only if the estimate was a feasible point.

3.4 Parameter Selection and Convergence Criteria

The experience of Fiacco and McCormick indicates that the con-

vergence of SUMT is not greatly effected by either the choice of rI or

by the choice of the factor C by which r, is reduced at each iteration.

This was a' - confirmed by the author's experience when SLHT was

applied to thie structural optimization problem where values rI = 1,

and C = 4 were chosen.

When the differences between components of two successive minima

of the U(x,r ) function were less thaan a preassigned value, ca., the

process was termpnated. i he choice of this preassigned value is not

arbitrary. Yn particular it cannot be less than the value used as a
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convergence criterion in the unconstrained minimization. Similarly,

the convergence criterion for the one dimensional minimization must

be most stringent of all.

-- i

YII

3
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CHAPTER IV

CONSTRAINED STEEPEST DESCENT WITH STATE EQUATIONS

4.1 Introduction

The nonlinear programming technique of Chapter III uses the

state equations indirectly to determine the values of the constraints

at a given point in design space. One way of using the state equa-

tions more explicitly in the nonlinear programming problem is to

introduce them as additional constraints on the solution, and then

to use the design variables plus the state variables as the inde-

pendent variables in the problem. Oftentimes, however, this may not

lead to a satisfactory solution, since in many problems the number

of state variables is large compared to the number of design vari-

ables. The dimension of the resulting programing problem becaMeE'I
very large. For instance, one of the simplest examples discusseL

in Chapter V has six design variables and ten state variables, which

would then lead to a nonlinear programmiig problem of dimension eix-

teen. If the derivatives of the objective function and the con-

straints are cumbersome to compute or are otherwise not available,

the situation is even more acute in that the most successful minimi-

zation techniques, which do not require derivatives, seem to be

limited to problems of about twenty variables [6 & 16].

*1 -

.1
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In this chapter a method is introduced vhich exploits the state

equations by using them directly in the design process. The general

scheme is to linearize the pinblem in the neighborhood of a candi-

date design in terms of the design hmý state variables, and then to

eliminate direct dependence upon the state variables by introducing

the linearized state equations. This results in a new nonlinear pro-

gramming problem to which the Kuhn-Tucker necessary conditions are

applied. As a consequence a step is chosen in design space which

reduces the objective function consistent with the constraints and

simultaneously directs tne search for an optimun back towards the

feasible region if any of the constraints have been violated. The

method was developed by Haug [10) who generalized ideas introduced br

Mel'ts [13]. Since the P.wthod is not yet available in the literature,

it will be discussed in detail in the following section. Section 4.3

will present the basic algorithm and discuss some of the c.omputational

aspects of the method. Convergence will be considered in Section 4.4

and an expanded algorithm is presented in Section 4.5.

4.2 Description of the Method

In Chapter II it was shown that when the state equations are

included in the formulation, the optimal structural design problem

may be stated as the following mathematical programing problem:

ii
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minimize V(x)

subject to

'ix) _< 0 1 , 2, .. ,€•I

hi(z,x) = 0= 1, 2, ., k

< o 1 = 1, 2, ... ,

With minimal additionsa effort, the method of constrained steepest

descent with state equations (CSDS) can be derived for a more general

case which allows the objective functicn and the 0 constraints to

deperd upon the state variables, z, as well as the design variables,

x. The more general problem may be stated as follows:

minimize f(z,x)

subject to

*i(z,x) < 0 i = 1, 2, ... , m (4-2)

hi(z,x) = 0 i 1 1, 2, .. *, k

Vi(z) < o i = 1, 2, ... , L.

If desired, the • constraints could be considered as a subset of the

Sconstraints. If the mathematical form of the two types of con-

straints is sufficiently simtlar, this will provide some simplifica-

tiln in the computatioial algorithm. If the forms of the constraints

are considerably different, sue computational advantage may be

gained by considering them separately. For example, if the * con-

straints are very simple and the * constraints complicated, then it

may be advantageous to compute the derivatives of the * constraints
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directly but to approximate the derivatives of the i constraints.

In this section the derivation for the de3ign problem (4-2) is pre-

sented

Th4,s chapter makes use of matrix calculus notation, A Punction

g of the vector x will be defined as follows:

g~~x) - (x)

92(x)
g(x)

where

i - .

• i of dimension ntxn. A Sm all change in x will be denoted by

21

S.

Lxnj

~----~--f
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end a first order change in g(x) due to change 6x in x is denoted

by 6g and given by

a)x

The CSDS method is derived from the Kuhn-Tucker Necessary Con-

ditions. A proof of this theorem may be found in [5). It is stated

for future reference in this section as follows.

Theorem 4.1 Kuhn-Tucker Necessira Conditions
Let the vectors

IS~IL~- i 1 i: *4(z,x) 0)
L T

Fh i
az

I = 1, 2, ... , k

mah,

and

a, i C i: :(,X) 0

be linearly independent at the solution of prrblem (4-2),

* x = x* and z = z*. Then there exist multipliers vi • O,

i = I .. , m, i 0 0, i 1 ... , and i

"i = 1, ... , k, such that for

;I
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H =fihz,x/ + X~hqz,x) + 1p$ + V* (4-3)

then aHl/ax 0 (4-24)

BHlaz - 0 (4-5) 1
ii = 0 if *(zx) ( 0

i
and vi = 0 if ()<0

at x x and z = z*.

One could attempt to use equations (4-4) and (4-5) of the theorem to

construct solutions of problem (4-2), but it is very difficult to

determine which of the inequalities are strict equalities at the solu-

tion when the number of constraints is large. Instead, the theorem

-ill be used in this section to develop a direct method of solving

the optimal design problem.

Let x be an estimate of the solution to problem (4-2) and z be

the state variables associated with this solution. The purpose of

the method is to determine a small change in x, 6x, which will

- decrease the objective function and satisfy the constraints. To

cbtai•n this goal, the problem is first lineari!d about the estimate

- to the solution (x,z) where h(z~x) - 0. When this is done, the fol-

lowing first order changes in the functions of problems (4-2) result.

6f= F z + 6x (4-6)

z= x (

ahi ahi6h 6i- z + _ 6x (4-8)
i za ax

II
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*, - 6z (4-9)

It should be remembered that the partial derivatives in equations

(4-6) through (4-9) are evaluated at the estimate (xz) of the solu-

tion. The change in the design variables and the resulting change in

the state variables must satisfy h(z + 6z,x + 6x) a 0. Therefore

it is required that 6h = 0. If at the estimate of the solution the

inequality constraints are violated, then changes 4 i = A,, and

"64= Alp are requested such that these constraints will be satisfied

within the linear formulation of the problem. If $i(z,x) - 0 and

%z) = 0 then it is required that 6+, = 0 and 6 i =O. In addition

the accuracy of the linear approximation must be guaranteed by insur-

ing that the step size remains small. Therefore it is required that

6 *V.C=& (4-10)

where & is a small number: an& w is a positive definite weighting

matrix. The lineari zed version of the problem may then be written as:

minimize zf + fx (4-1)

subject to

2 -•h6z+ 6x=A_ (4-12)

6z + x =0 (b-13)

S. .. ax

6z A; (4-14)

az
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(Sx TWX &2(4-15)

where

{0i: *i(zx) > 01

and 4' {4i: * i(z) > 01.

The linearized problem is solved by fti:st eliminating the expli-

cit dependence upon 8z and then applying Theorem 4.1. In order to

eliminate de)pendence upon 6z, the matrices XJ, X• and A* are defined

such that
ah T j Bf Ti - (4-16)az 5-z

aiT Taz 8X (4-17)

T -T
8:a' (4-18)

These matrices and eqxuation (4-13) are used to obtain

8f 6z = •TT 8h.Th
B- 6zu z =6z = -X -T 6x (4-19)

azT TXh

3;6Z-• X T Bh z = -X T a f (4-o)

and 6- ' 4z = T 6 (4-21)

which then allow the linearized problem to be put in the following

\form:

minimize A 6x (4-22)

r-

41
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subject to

^OT 6x -A; (4-23)

A*' 6x =x- (4-24)

6x T x= (14-25)

The matrices A T, AT , d AT are defined as follows:

J T T
A = .T T- X (4-26)

-T T
AO . X0 (14-2T)ax ax

:+and A0 = Xh (4-28

Theorem 4.1 may now be applied directly to obtain the solution of the

linearized problem (4-22) through (4-25). The taeorem states that

there exist multipliers v, v, and C, and a function

TT
H AJ 6x+V T(AýTfx-A;)

! • uT
+ VT (A* - A-) + ý(6x -w 2) (4-29)

such that

__ ~ ,TTT T (40
ia(H =xAJ T A+T + 2C6x~w = 0. (4-30)

This expression can be solved for the required change in x, 6x,

x 1 w-1(AJ + AU + A*v). (4-31)

' t - IIf equation (4-31) is substituted into equations (4-23) and (4-24)"

one may solve for the multipliers P and v. These are given bylI

-n • mm • u m •n a l m m rmaalz ln
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|A

T T
p -(AO w_ A') 1{20A + AO w Alt7

j A 'T - -AT(A. 1W- A * + M1 JA.(4-32)
*-4

and

V -M 1  -2A -rA v,,TW- )-A + M' (14-.33)

The matrix M and the vector M are defined as follows:

T T T
M =A*' OW [I _1 A A o-o i A 1A A (434

T T

-1

M =A• v -OW w--- 1 A w.A .(4-35)

If is empty, M is not defined. Similarly, when is empty the
T

product A 1 A is no~t de.?ýned, so that provisions must be made to

properly define equations (4-32) through (4-35) for all cases. This.1 can be done using the following definitions. If i is empty, set

A; A=O0, AO 0, and AO v1AO = I. if 4'is empty, put L4' = 0, A*' - 0,

iI

and M,, = I. .These definitions will reduce equations (4-32) throughI

I -2, x1 62

j where

6 = w71 I [1 A(A w71A')Y fit v](AJ A4'M-14 'J (4-36)
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T )- OT w_ A*M6Z2 w-ill A¢(AoTw-l^€-.T l.-

.1. ~ ~ ~ - 4-l _ 0

62= VII- A; .n1 F1  w ]A M'J

(A•Vw-A' l, A*. (4-3T)

The vectors 6xI and 6x2 have the following properties:

6xvT6x =0 (4-38)T-

0l6x2 = 0 (4-39)

*T
A A 6x2 = L (4-4o)

T0 xi = 0 (4-141)
1

7m

A*' Sx1 = 0 (4-42)

A 6xI > 0 (4-43)

From these properties and from (4-36) it is seen that SxI is a

projection of the gradient vector on the planes tangent to the con-

stzaints and thus reduces the value of the objective function con-

sistent with the constraints. The vector 6x2 is a ccarrection vector

which directs the solution towards the feasible region. Furthermore

these two vectors are orthogonal with respect to the weighting matrix

v and are therefore in that sense independent.

The properties of 6x and 6x 2 , and equation (4-25), can be

used to determine the parameter g.

li A



6xT 2 2 (4-144'

From this expression it is clear that C is not arbitrary. In fact, it

depends on t which from (4-44) must satisfy

2 2 (14- 45)

In addition, if there are no constraints or state variables, the

expression for 6x reduces to

1x A5X = - 2I AJ

and the move to a new approximation of the minimus is in the direction

of steepest descent. Therefore, it is reqouired that • > 0. One pro--

I cedure that can be applied to determine the size of step made in the
•2 direction of 6x is to choose & and then use (4-44) to compute c.

Alternatively, one can use the following expression,

6x = -6xI + 6x 2

and choose n > 0 sand small. The problem of choosing the step size

will be considered farther in the next section along with other corn-

putational considerations.

The constrained steepest descent technique has been developed

for problem (4-2). The optimal structural design problem being con-

sidered in this research has been cast in the form of problem (4-1)

which is included in problem (4-2) as a. special case. All that is

required is to note that, since the objective function and the €
!i

vi
I
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constraints are not functions of the state variables, XJ = 0 and

= 0 from eqlxations (4-16) and (4-17).

Ibis simplifies the expressions for A ar A- equations (4-26)

and (4-27). The remaining expressions are not changed.

4. 3 Computational Considerations

The general procedure for determining the optimum of problem

(4-I) or (4-2) is outlined below.

(i) Make an estimate of the optimal design vector, x

(2) Solve for the state variables, z, corresponding to the

design vector x(j) of the current iteration.

() Solve (4-16), (4-17), and (4-18) for XJ, X and X

(4) Determine AJ, AO, and A*, from equations (4-26), (4-27),

and (4-28).

(5) Choose A; and A$ and compute M and M from equatones

(4--34) and (4-35).
(6) Compute 6x. and 6x2 from (4-36) and (4-37).

(7) Choose n > 0 and compute

X+1 x -6xi +6x 2 .

(8) Check for convergence and terminate or go to (2).

There are several points in the above algorithm that require further

comment. First of all, in the course of computations two matrices,
T

(A w 1 AO) and M , have to be inverted and therefore must be non-

singuls!. Secondly, the quantities A; and A; must be chosen. A

IIi
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third consideration is the choice of the appropriate step size as

determined by the choice of n, and a fourth concern is related to the

tendency of the method to keep a constraint satisfied once it becomes

identically zero.

The tvo matrices of concern are positive semi-definite. In the

computational procedure they are assumed to be positive definite.

Experience with the algorithm has shown that this assumption is almost

always valid. Certain pathological cases can arise, however, when

this is not true. An examination of equation (4-34) shows that m,
will be singular when the columns of A* are linearly dependent. This

follows from the fact that the rank of a product of two matrices can-

not exceed the rank Qf either factor. Similarly, linear dependence

between columns of AO will make the product (AO -IY) singular.

"IExaination of equations (4-17), (4-18), (4-27), and (4-28) shows

that the matrices A and A4 are .:losely related to the gradients of

the € and * constraints. For example, when the € constraints are not

dependent upon the state variables (as in the structural problem con-

sidered), then the columns of the matrix A are Just the gradient

vectors of the violated or satitfied 0 constraints. If these gradi-

ent vectors are linearly dependent th.en it follows di.,-ectly that

(A • is singular. Furthermore, the assumptions in the Kuhn.-

Tucker necessary conditions are not satisfied. The matrix M can

I -" also become singular if A# Is a square matrix. This -ill happen

when the number of € constraints violated is equal to the number of
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design variables. The d°irect consequence is that the product

,YI.V(OT -IA•' - -1
Aij W A ) w becomes the identity matrix making M 0.

Other such c&ses could probably be identified. The author's experi-

ence indicatzs that these are the exception, rather than the rule,

and resulted from the introduction of redundant constraints or a poor

choice of n in determining step size. In all cases the cause of the

singularit-y was readily identified and corrected without altering the

basic algorithm.

Equation (4-37) which is used to compute 6x2 , requires the

quantities A; and Aý. The vector 6x2 is the correction component of

the vector 6x which directs the search for the optimum, back towards

the feasible region. The magnitude of this correction depends upon

the values assigned to the vectors A; and A;. in the structural

design problem the values A = -, and A* = -4, were assigned. This

choice is simple and effective.

The value of n controls both the direction and magnitude of the

change in the design vari.ble vector 6x. Several methods of choosing

ri were tried. The most successful of these was to specify a maximum

value of n and to use n = n.. unless the constraints were violated

beyoni •ertain preassigned limits. For example, for a maximum allow-

able stress o 4O,O000 psi, n = n was used unless the stresses

obta3.ned using this valae exceeded 44,000 psi. In other words a ten

- • per cent violation of the constraints was allowed. This sped up con-

v bi vergence by allowing bigger steps to be taken without excessively
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violating the constraints. if an ur"'cceptable violation of the con-

straints occurred, the current value f- n was reduced by ten per cent

and the constraints were checked again. This process was continued

until an acceptable value of n was obtained or until n became zero.

If this occurred, the value of n was set to 10-6 and computations were

allowed to proceed. A zero value of n is not alowed. since at otier

points in the algorithm division by n is required.

When an estimate of the solution is such that some of the con-

straints are exactly satisfied, the method demands that they continue

to be satisfied. It may be advantageous if the search for the mini-

mum i- allowed to .leave such a constraint. Theorem 4.1 states that

the multipliers, v and v. which exist at a solution, must be positive

or zero but that they cnnot be negative. Therefore, at each suc-

£ cessive iteration of the optimization process the multiplier vectors

u and V are compated. If elther of these has components which are

negative, the constraints corresponding to these components are

removed from the appropriate constraint, set ; or W. This procedure

proved effective when tne method was applie'd to the optimal s;ructural

design problem.

4.4 ConvergenceCriterion

A convergence criterion must be established for Step (8) in the

al4goritha of Section 4.3. It wi:LL be shown that, if the sequence of

0 solutions rf che linearized problem converges to a '"cal solution of

t.he nonlinear problem, then x z 0. The result is obtained by the
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direct application of the Kuhn-Tucker necessary conditions to both the

nonlinear and the linearized problems and comparison of the resulting

equntions.

Theorem 4.1 states that at the solution of the nonlinear problem

(4-2) there exist multipliers

Ij i ! -- O , 1 1 , . . . , m

and 1i i 9 = ,... k

such that for

H = f(z,x) + X.Th(z.x) + •T•T(zx) + ,T,(z)

then

+l + af Tx T (4-46)

3H 3 f T Bh T+ a.,vT + -+ (4-47)
_z a -rz az 3z az

I+ •i =0 if 0(zx) <

and v. =0 if p.(z) < 0.

"Define 4 and * such that

L'I

and p and v which contair only the components of ji and v respectively,

corresponding to the constraints in j and j. Using this information,

equations (4-406) and (4ý-M7) can be %written in the follc-img form,
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af •, T a + ;T 2j. 0 €(,-5o)
+ G+

-af A.T 3h +;Ta; +;T 0 . (4-""l)

Using equations (4-16) through (4-18), equation (4-51) may -e

vritten
T T T

4h T ah h+-S + dh+ + & * 2h .o. (4-52)az - as az

The matrix is nonsingular, therefore

)Ij + X + *; +X*;- =o. (4-3)

Equiation (k-53) may be used to eliminate Xk froa equation (4-52) to

obtain

af T+ ;# ;X T)ah4;T (4-54)

Collecting coefficients on ; and ;, and using equations (4-26) through

(4-28) yields,

p j.A*; - -(A- + A*;). (4-55)
If equation (4-55) is presvhltiplied by A* V- 1  the following expression

for ; is obtained

T T
-(.A v-A+)-A+ v!1 (Aj + A*;) (4-56)

It should be noted that it has been assiued that (A* •^) is non-

singular. If equation (4-56) is substituted into (4-55),

[I - (A # A ) • A'# v'i#A[A + A*;) - 0 (4-5T)

is obtained. Prmultiplying by A V- and using equations (4-34) and

(4-35)4 equation (4-57) beceses
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S - - -+ o -0

orr

As L• result equation (4-5T") my beritten

,n sT if ',- - O -

Therefore by equation (4-36), at the solution of problem (4-i2), it is

necessary that 6x. - 0. Furtheruore in the limit * * 0 and 1 )

so that A-; 0 and Ah - 0 An by eqution (4-3T) 6X2 aO. S0 ncS ej

I 6z a *(440)Axms also approach zero if the prcedure converges, astisfetio

-o t
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4.5 CSDS Algorithm

1 0 The following algorithm is an expansion of the procedure defined

in Section 4.3 and incorporates the additional features discussed in

Sections 4.3 and 4.4.

(1) Estimate the optimal design vector, x(0).

(2) Determine the state variables z corresponding to the

Qi)design variables of the current iterat' ,n, x

(3) Solve (4-16), (4-17), and (4-18) for xJ, x€, and X

(4) Determine j and i.

(5) Determine AJ, A , and A* from equations (4-26), (4-27),

and (4-28).

* 1 (6) ~Choose A; n

CT) Compute M.and 14,Tfrom equations (4-34) and (4-35).

(8) Determine the multipliers v and v from (4-32) and (4-33).

(9) If any of the components of v and v are negative, remove

the corresponding constraints from the sets ; and ; and

return to Step (5). If all components of U and v are non-

negative, continue.

(10) Compute 6X, and 6X2 from (4-36) and (4-37).

(11) Choose n = r6.

(12) If n 0, set n =10- and go to Step (15),.

(13) Compute
Sxj+l -xi _1X + '2Sn~1

~i
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(14) Compute the values of the constraints for x If the
cone.traints have been violated excessively, reduce n and

return o Step (i.), othervise continue.

(15) If 6xi < E' I, ... , n terminate. Otherwise return

to Step (2).

The application of this algorithm to the optimal structural

design problem, and the ensuing results, are discussed in Chapter V.

t

- 0

71j
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CHAPTER V
O ~APPLICATIONS

5.1 Gerneral Discussion

The optimization methods presented .n Chapter III and Chapter IV

wer: applied to the design of several two and three member frames sub-

Jected to.,% variety of loads. In order to aid discussion the frame

members and loads are numbered as shown in Figure 5.1 and Figure 5.2.

All dimensions and limits on dimensions are given in inches, the loads

are in pounds and the stresses are in pounds per square inch. In
Section 5.2 ad! 5.3 a general descr )tian of the frames to be opti-

mized is given. Sectiors 5.4 and 5.5 present a brief discussion of
the programs used and some -.s:-ect!3 of their application. The result-

ing designs are pVeqiented and discussed in Sections 5.6 and 5.7.

5.2 The Tw Memer Frae

The two member frames -'hich vere optimized are shown -n Tables

5.1 through N.10. In each case there were six design vearlables to 4

be d,-termined, ten state variabhles, and seventeen constraints to be

satisfied. The design v&riables are the tu.311 bVh,ckness, t, width, b,

and height* h, (see Figurf. 2.2) of each member. These variahles must

satisfy the fol1lowing inequalities for the iph meber:

I m Nm 'mmmam~~• inm"mmm,.m mwmmm m e m ber:~mmm -mmmmw.• "
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FIGURE 5.1 Numbering the Tw Member Frame

Mmber 3
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P,
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Member 1 Meber 2 4

FIGURE 5,2 Fumbering the Three Member Frame

H
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0.1--< ti -< 1.0

2.5 < b, _ 10.o (5-1)

2.5 _. hi 1.10.0.

The state variables are the thro- displacement components of the

joint, the torsional stress in each member, and the bending stresses

at the five critical points of the structure. The critical points

are the ends of each member and under the applied load. The stresses

must satisfy the following inequality at the i critical point:

1)1 +J3 - 4oooo < 0 (5-2)

where ai is the normal stress due to banding and ti is the shear

stress due to torsion at the point.

The sequential unconstrained minimization technique and the

method of constrained steepest descent with state equations were both

applied to the two member frames. The comparative effectiveness of

these two approaches is diecussed in Section 5.6,

5.3 The Three Member Frame

The three member frames optimized are shown in Tables 5.31

I|through 5.17. For each frame nine design variables were chosen sub-

ject to eighteen de-ign variable constraints. There are eighteen

state variables and twelve stalte variable constraintss. The design

variables are the same as those for the two member frame. The state

- variables consist of six joint displacements and twelve stresses.

The stresses are the torsional stress in each member plus three

~I
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11 critical bending stresses in each member occurring at the ends or

under the applied load. For the frames in Tables 5.11 through 5.15,

ththe stresses at the i critical point were required to satisfy the

condition (5-2), and the design variables were required to satisfy

(5-1).

The dimensions and loads shown in Tables 5.16 and 5.1? were

chosen to approximate a frame that the author encountered in an

industrial application. In both cases the stresses at a critical

point are required to satisfy the following condition:

J'of + 3Ti - 20,000 <0 . (5-3)

The design variables for the frame in Table 5.15 satisfy

.109l < t< 1.0

2.0 < bi < 10.0 (5-4)

6.0 <_hi <. 0.0 for i lt 3,

and

.25 j_ t 2 < .0

3.0 < b2 < 10.0 (5-5)

3.0 C h_2  oo10.0.

The design variable constraints which the frame in Table 5.16 satis-

fied are,

.109 <-ti <-1.0

2.0 < bi _.5.0 (5-6)

6.0 < hi < 12.0

for members 1 and 3, and (5-5) for member 2.
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Because of its superior perforrance on the two member frames,

only the method of constrained steepest descent with state equations

was used in the optimum design of the three member frames.

5.4 The SUMT Program

The sequential unconstrained minimization technique was pro-

grammed using the algorithms of Sections 3.1 and 3.2. Acceleration

by extrapolation was included and proved to be effective both in

decreasing the number of function evaluations and in giving better

convergence to the optimum, but only when the caLzuaations were done

in double precision. Fiacco and McCormick alude to this when they

discuss the significant effect of round-off error in the extrapola-

tion procedures.

Certain safeguards must be introduced into the program to insure

that the search for a minimum always takes place within the feasible

region as required by the development in Chapter III. In the

Fibonacci search increasingly larger steps are taken until the mini-

mmn is bracketed. When the minimum is near the boundary of the fee-

sible region, it is possible for a step to violate a nearby con-

straint. Therefore any time a new step is taken in the optimization

Iprocess a che•:k must be made to see if a constraint has been violated.

If violation occurs, then appropriate measures must be taken to return

the search to the feasible region. These procedures axe ad hoc and

significantly reduce the efficiency of the unconstrained m.-.'.imtzation.
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Three convergence criteria, •x:' E and L must be chosen for

SUNT. Of these cL shouWld Iive the smallest value,, since the greatest

accuracy is required in the minimization of a functiou along a line.

C cannot be less than the values of rither e or cL" The choice of±

these parameters significantly affects the convergence of the method

and in almost all cases experimentation was required before a satis-

factory set was obtained.

5.5 CSDS Program

The constrained steepest descent program was written usiug the

algorithm of Section 4.5. All computations are done in double pre-

cision and the program is written so that the required derivatives

can be computed cxactly or from finite difference approximations.

Derivatives of the state e-istions, constraint functions, and objec-

tive functions are required by the algorithm. The derivatives of the
S:1 state equations with respect to the design variables are the only

derivatives approximated since the remaining functions are simple and

the derivatives can be computed exactly without undue effort. Each

frame shown in the tables wau optimized using both exact and approxi-

mate derivatives. A simple forward difference scheme wag used ini.-

tially to obtain the approximate derivatives. Some difficulty was

experienced but results were improvead when the interval of the approx-

Simation was reduced. Still, for some three member frames, the method

did not converge properly when the derivatives were approximated.

-I 2

II a
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This problem was eliminated at the expense of more function evalu-

S• ations by using a central difference approximation.

Two parameters, e and ,max, must be chosen when the program is

used. n is the maximum step size allowed and c is the convergencemax x
criterion. A value of E = .lxlo-4 was chosen. This is somewhatx

more stringent th:n the value of csx used is SUMT; but if the method

conVerges at all, it has no difficulty satisfying this criterion.

Some minimal experimenting may be necessary to choose . For large

values of lmax, fewer iterations are required if the method converges,

but sometimes situations may be created which the algorithm cannot

correct. These are immediately apparent and eesily eliminated by

reducing the value of ax"

5.6 Ali cation to Tw Member Frames

"Three different design problems are shown in Tables 5.1 througn

5.10. These designs were optimized using both the sequential uncon-

strained minimization technique and the method of constrained steepest

descent with state equations. The frame shown in Tables 5.3 t'1ouagh

5.4 has members of different lengths with the lowi applied at the

Joint, The computation time for the solution uaing SUMT (Table 5.1)

is considerably greater than the time required using CSDS (Tables 5.2

through 5.3), even though the convergence criterion c for SUHMT is

considerably less restrictive than the criterion c used in CSDS. In
S~SUMT the state of the structure is computed for each ftmction evalu-

ation. In CODS the state is compuated about, ten times Dw iteration.
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Using this value the number of functional evaluations required for

the design of Table 5.3 is about 140 compared to the 8,633 'valu-,

ations required for SLUT. The results of Tables 5.1 through 5.3

zh-L^ th'm different starting values converge to the sane minimium.

Howev•r, when the starting values of Table 5.1 were used in the CSDS

method, another local minimum was obtained. This is not surprising

in view of the nonconvex nature of the programming problem.

Another frame was optimized using SUMT (Tables 5.5 through 5.6)

and CSDS (Table 5.7). The large difference in computing time for the

two methods is again apparent. Starting from the same values, the

S~two methods converged to two different local minima. Several

attempts were made to start in the neighborhood of the minimum deter-

mined by SUMT using CSDS, but the latter technique always converged to

the symmetric results of Table 5.7. An additional trial (Table 5.6)

was made using SUMT with a starting value in the neighborhood of the

symmetric solution. The results are close to those of Table 5.7.

The volume i. smallest for the symmetrical design.

I, The third two member frame that was optimized is shown in Tables

5.8 through 5.10. Two trials using SUMT and one using CSDS were made.

The resulting volumes do not differ greatly, but the design variablers

Sshow significant differences. About 840 funation, evaluations

•I (assuming ten per iteration) are required when CSDS is used compared

1to 11,610 required by SUMT (Table 5.9). The amount of computing time

! required shows a similar advantage for CSDS.

S!
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The results show thar. the method o-f constrained steepest descent

T with state equations has significant advantages over the sequential

unconstrained minimization technique. Both the computation time arA

the number of times that the state of the structure must be evaluated

are considerably less than those required for SUMT. Furthermore, the

same results are obtained with or without the exact calculation of

derivatives.

-I Ac
I

•jI
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'10

£ P = 10,000 lb.

100 50"

O= 3 9 , 9 4 5 psi. at 1

Initial Optimu

Values, in. Values, in.

= xl-2  t 0.9 0.1010

-x = Xi0-4 9.0 a.5oyo

C -5
S= .ixlO hi 9.0 2.5070

t 0.9 0.1012

b 2 9.0 9.4234

h 2 9:0 9.9827
-i--1

Volume, n1 3_'4,3Th•00 291.59

Number of iterations 6

Compitting time, sec. 370

Number of function evaluations 8,633

-t • TABLE 5.1 Optimum Design of a Two Member Frame Using SUI"T
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P 1 i0,000 lb.

I00" "-.. , 50"

Of =40,000 psi. at 1

Optimam Values, in.
initial ObI, eel _ Usin__
Values, Exact Approximate

in. Derivatives Derivatives

max = .I 0.10 0.10000 0.10000

b b 2.50 2.50000 2.50000
1

h 2.50 2.50000 2.50000

t 0.11 0.10000 0.10000
2

b2  10.00 9.52614 O.52614

h 10.00 10.00000 10.00000
"2

Volume, in. 313.58 289.26 289.26

Number of iterations 9 9

Computing time, see. 20 20

TABLE 5.2 Optimum Design of a Two Member Frame Using CSDS

-iO
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Li

4i

P =109000 lb.

100",
S• 50"

40,O00 psi. at 1

Initial Cptimm Valuewi in.
initial nedI

Values, Exact Approximate
in. Derivatives Derivatives

.! tI 0.11741 0.10000 0.i_000

x .lx10- b1 2.5246 2.50000 2.50000

h 2.5217 i.50000 2.50000

t 0.22061 0.10000 0.10000

b2 3.2585 9.52614 9.52614

h2 3.2544 10.00000 10.00000

Volime, in3 246.93 289.26 28926

Numbiubr of iterations 14 14

Computing time, sec. 14 14

- TABLE 5.3 Optimim Design of a Two Member Frame Using CSDS
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P 1 10,000 lb.

J

I ~50"

f 40,O000 psi. at 1,2

Initial Optimum Values, in,
Obtained Using

Values Exact Approximate
)erivatives Derivatives

I Tmax =. t1  0.9 0.11373 0.11373

ex .Ix10- b 1 9.0 10.00000 10.00000

h 9.0 10.00000 10.00000

t 2  0.9 0.23599 0.23598

b2 9.0 10.00000 10.00000
2

h 2 9.•0 2.50000 2.50000

Volume, in3 4, 374.00 733-59 733.59

Number of iterations 19 19

SCamputing time, %ec. 18 lip

OTABLE 5.4 Optimum Design of a Two Member Frame Using CSDS
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P P10,000 lb.

100". 100"

f = 39,998 psi. at 1

Initial Op'.timumij Values, in. Values, in.

S sx - • Il02 t 0.9 0,1001

S= xl0 b 9.0 2.500Z
Ci a "lxl°- hI 9.0 2.5005

t2 o0.9 0.1971

b 2  9.0 9.9969

2 9.0 9.9981

Volume, iun 5,832.0 868.87

Number of iterations 10

_Computing time, sec. 190

Number of function evaluations 5*598

TABLE 5-5 Optimum Design of a Two Member Frame Using SUN4T

3: 1

1tl
IL
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I

0I
P 1 0,000 lb."kl , 2I

Of "39,998 psi. at 1.2

Initial Optimum

Values, in, Values, in.

Cex = "Ixi0"2 t 0.15 0.1007

4 x = .lXI0"3  b1  9.90 9.9938

€I =-ihO~ 1h 9.90 9.9978

t 2 0.15 0.1007

b 2 9.90 8.9359

2h 9.90 9.9976

Volume, in3. 4 X170.00 775.89

Number of iterations 11

Ccuipting time, sec. 353

Number of function evaluations 10,414

I C)-TABLE 5.6 Optimum Design of a Tvc Member Frame Using CSDS
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P ' 10,000 lb.

2

100" 100"

Of =40,000 psi. at 1,2

Optimim Values, in.SInitial Obtained ?si

Values, Exact Approeimat
in. Derivatives Derivative

x .ii tl 0.9 0.10000 0.10000
ex =.1X.10- b, 9.0 9.54T38 9.54T38

h2 9.0 10.00000 10.00000

Volue , o iteation 15320 15-9 738

Computing time, sec. 22 22

TABLE 5.7 9ptimut Design of a Two Member Frre Using CSDS

II
ii
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IRI
S P 1 0,000 lb.

""0--,,t.

100".• • _...5011--W"

Of= 39,994 psi. at 1

Initial Optimum
Values, in, Values, in.

C = .•xlO t 0,2 0.100

x5 = .x-O b 5-0 4.319

.lxlO h 9.0 8.253

t 0.2 0.100

b 3.0 2.502

h2  9.0 9.075

Volume, inS 776.00 362.07

Number of iterations 9

Computing time, sec. 310

Number of function evaluatio. J 11,251

TABLE 5.8 Optimum Design of a Two Mamber Frame Using SUMT
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P =10,000 lb.

100""

Of 39,994 psi. at 1

Initial Optimm

Values, in, Values, in.

-1.
csx = xl0 1  tI 0.9 0.100

x .ixlO- 3  b 9.0 4.196

ixl0- hI 9.0

A0.

b 9.0 2.502

ih2 9.0 9.381

Volume, in. 5,832.0 363.18

Number of iterations 9

Computing time, sec. 395

Number of function evaluations 11,610

TABLE 5.9 Optimum Design of a No Member Frame Using SUMT

it
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a = 40,000 psi. at 5

Initial Obtained Using

Values, Exact Approximate
in. Derivatives Derivatives

. 1 t 0.9 I 000 0.10000
C lx l = I1-4 bl1 9.0 4 .4o827 4. 40827

h1 9.0 8.58807 8.58807
2

t 0.9 0.10000 0.10000
2

b 9.0 2,50000 2.50000
V2

1h2 9.0 8.07038 8.07038

2i

Volume, in. 4,374.00 359.63 359.63

Number of iterations 84 84

Computing time, sec. 72 72

TABLE 5.10 Optimem sign of a Two Member Frame Ulsing CSDS

!U
Ia
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5.7 Aplication to Three Member Frames

The results of Section 5.6 show the advantages of the method of

constrained steepest descent with state equations over the sequential

"* unconstrained minimization technique Awen optimization without com-

puting exact derivatives is required. Furthermore, as the number of

design variables is increased, SW!&T will become iucreasingly more

difficult to apply because of the nature of the algorithms used to

determine the unconstrained minima. Therefore, the optimization of

the three member frames was carried out by using only CSDS.

A variety of symmetrical and unsymmetrical load sets were(I
Sapplied to several different three member frames. The minimum weight

designs obtained are shown in Tables 5,11 through 5.17. The &gree-

ment between designs obtained using exact and approximste derivatives

* is particularly noteworthy. This was improved dvring the course of

the applications by introducing a central difference formula to

approxzmate the derivatives of the state equations. The improvement

that resulted may be seen by comparing the results of T-bles 5.13

and 5.14. The designs of TCbles 5.15 through 5.17 also show the

value of this modification, sirne the results flr these frames using

exact and approximate derivatives agree exactly,

The application in Table 5.12 illustrates a. ther very useful

feature of CSDS. In this case the method did not converge within the

maximum allowable itert ions, but; the value of Sx had decreased an&

-2
was of the order 10 .Thus,, the necessary conditioa tiAt 6x U0
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(Section 4.4) is approximately satisfied, indicating that the results

-~are probably in the neighborhood of a minimum weight design. Conse-

quently, further iterations are not absolutely necessary. Another

feature of CSDS shown by the results is that constraints may be satis-

fied exactly. In SUMT (see Section 5.6) constraints are only approx-

imately satisfied.

An unsymmetrical framie (Table 5.15) required several attempts to

obtain the design shown. This is not uncomon in that jome experi-

mentation is almost always required to choose c and nmax properly.

Furthermore an unfivorable starting point may be inadvertently chosen.

The designs prezented in Tables 5.16 and 5.17 illustrate the

dependency of the results both on the configuration of the basic

frame and the assignment of the design variable constraints (see

Section 5.3).•

I°I

11

. . . ... . .
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lot  I 0
100" 100000 lb.

Of= 40,000 psi. at 1.2

Initial Optimm Values, in.• !• nital Obtai Ssing --

Values, Exact Approxinate
in. Derivatives Derivatives

% a "xl-0 t1  0.9 0.19816 o.19816

C x WO .x1 1  b1  9.0 10.00000 10.00000

Ih 9.0 10.00000 10.00000

t 0.9 0.!0000 O 0.10000

b2  9.0 2.50000 2.50000

9.% 2.50000 2.50000

t0.9 0.19816 0.19816

b3 9.0 •10.00000 10.00000

h-V:ýei 9.0 10.00000 10.00000
V volume, in.3 8,748.oo 1,649.85 1,609.85

Number of iterations 26 30

SComputing time, sec. 84 100

"TABLE 5.311 Optimum Design of a Three Member Frame Using CSDS

I'i
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Of 402000 psi. at 1P203

Optimum Values, in,
; Initial Obtained .Using

Valus mr-ct Approximate

in. DerivativesiDerivatives

'z=.5x10"2 tI 0.9 0. 10449 o. .B0

bao bI 9.0 9.02133 9.0676o'x 1

hI1 9.0 10.00000 10.00000

t1 2 0.9 1. 0000

b2 9.0 5.64220 5.64298

h2 9.0 7.87559 7.87507

t 3 0.9 oao0W 0.2M•8

b3 9.0 9.02133 9.0676o

%3 9.0 10.00000 t0.00000
3

Volume, in3. 8,748.00 lo052.66 1,051.52

Number of iterations 50 (limit) 50 (limit)

Computing time, sec. 93 93TABLE 5.12 Optimum Design of a Three Member Frame Using CSDS

1 2

I!(
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IP 1 309000 ib]

12

100" 100

af =40,000 psi. at 1,2

Initial Optimin Values, in.
Ibtained Usin

Values, Exact Approximate

in. Derivatives Derivatives

0.ax : 0.1 t 0.9 0.19908 0.19913

x= "IxlO-1 b1  9.0 10.00000 10.00000

h 9.0 10.00000 10.00000

t2 0.9 0.10000 0.10000
b2 9.0 2.50000 2.50000

h2 9.0 2.50000 2.50000

t' 0.9 0.19908 0.19913

b3 9.0 10.00000 10.00000

h 9.0 10.00000 10.00000

Volume, in. 8,748.00 1,656,91 10657.30

Number of iterations 16 78

Computing time, sec. hl 195

TABLE 5.13 Optimum DeEigr of a Three Member Frame Using CSDS

'I
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P 1 10,000 lb.

100" 100""

of = 40,O00 psi. at 192

4 -Optimum Values, in.
Initial Obtained Us-Ii-
Values, Exact Approximat

in. Derivatives Derivative:

.1max. t1  0.9 0.19908 0.19908

Cx "x10-4 b1 9.0 10.00000 10.00000

h 9.0 10.00000 10.00000

t02 0.9 0.10000 0.10000
b2 9.0 2.50000 2.50000

2

h 2 9.0 2.50000 2.50000

t3 0.9 0.19908 0.19908

Ib_ _3 9.0 10.00000 10.00000

h 9.0 10.00000 10.00000

Volume, in. 8,748.00 1,656.91 19656.91

Number of iterations 14 14

Ccmputing time, sec. 46 48

TABLE 5.14 Optimum Design of a Three Member Frame Ur[hi CSDS
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78

]50'' P 10,0000 b.o

af r&0,000 psi. at 1

Initial Obtained Using

Values, Exact pproximate
in. Derivatives €)erivatives

1ix lxlO1 t 0.9 0.10000 0.10000

x .1x1O- b1  9.0 9.53870 9.53870

hI 9.0 10.00000 10.00000

t 2  0.1 0.10000 0.10000
b2  2.5 2.50000 2.50000

h2 2.5 2.50000 2.50000

t 3  0.1 0.10000 0.10000

b 3.0 2.50000 2.50000

3h3 3.0 2.50000 2.50000

Vplume, in. 3,051.00 506.77 506.77

Number of iterations 32 32

Computing time, sec. 80 80

TABLE 5.15 Optimum Design of a Three Member Frame Using CSDS
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T9

P 564 lb.

76.06"[

I =20,000 psi. at 1,2

Optimum Values, in.
Initial- Obtained Using

Values. Exact Approximate
__ in. DeIrivatives Derivatives

%ax = "•i0-! ti 0.9 0.13394; 0.13394

X = "IxlO -4 bl 9.0 10.00000 10.00000

hI 9.0 10.00000 10.00000

t2 0.9 1.00000 1.00000

'b 2 9.0 3.00000 3.00000

.12 9.0 3.00000 3.00000

t3 0.9 O0 13304 0.13594

b 9.0 10.00000 10.00000

h3 9.0 10.00000 10.00000

Vle, in3 5,_1.00 _1,088.05 1,088-05

Number of it erations 35 35

Computing tine, see. 77 77

STABLE 5.1.6 Optimum Design of a Three Member Frame Using CSDS
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P p.564 IbK

76.06" 35.5"
af= 20,000 psi. at 1,2

Optimiizi Values, 5rs.
Initial Obtained Using

Valtves Exact Approximate
in. •ivatives Deriv.-tive

nMax = .2x10-1 t 0.9 0.20687 0.20687

Ex =lxlO-4 b1  4.9 5.00000 5.00000

hl 11.0 12.00000 12.00000
1

t 1.0 0.25000 0.25000

b2 10.0 3.00000 3.00000

1h2 9.0 3.00000 3.00000

t 3  0.9 0.20687 0.20687

b3 4.9 5.00000 5.00000

h 13 11.0 12.00000 12.00000

Volume, in. 5,067.81 1,141o52 1,141.52 1"
Number of iterations 28 28

Ccmputing time, sec. 70 70

Ti "U

TABLE 5.17 Optimum Design of a Three Member Fra ue Using CSDS
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•s 0 CHAr iER VI

CONCLUSIONS

The results of Chapter V show that a class of spatial stru:'vures

can be optimally designed by the method of conetrained steepest

descent with state equations. In particular, this method appears to

be superior to the sequential unconstrained miniaization technique

wheu necessary derivatives cannot be computed exactly. The class of

problems which can be solved by the method is broad and includes

those structures that can be analyzed by matrix displacement and

finite element methods.

In large measure, the effectiveness of CSDS results from the

fact that its formulation so closely matches the essential feaiures

of the original design problem. This is a more natural approach to

the problem and leaves the associated functions in their most simple

form. Other progremmizing methods tend to complicate the formulation.

In SUM2 the surface created by adding a penalty term to the objective

function exhibits characteristics that even the most r bust uncon-

strained minimization techniqueaz hbae difficulty coping with. In

other approache3 - state equatioas are used to urite all of the con-

straints as functions of taq design variables; as a consequence, cOM-

plicated noulinear function3 are obtained. Another method defines

the set of optimization vari.'bles to consist of the design vwriables

S: LI a
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rplus the state variables. For the structures considered in this

, research, minimization problems of dimension sixteen and twenty-

seven would result. Such problems are formidable particularly vhen

the minimization must be accomplished without calsulating derivatives.

The method of ccnstrained steepest detcent with state equations

avoids these pitfalls because the state equations and constraints

involving the state variables are inclAed directly in the formula-

tion. Conoequently, a great deal of flexibility is introduced into

the solution since the functions are retained in their simplest form.

Therefore, derivatives ar'e approximated only when it is absolutely

necessary since, in the case of simple functions, derivatives nay be

computed exactly without andue effort.

CSDS is an effective solution to the optimum structural design

problem for two additional reasons. First of all, much o,- the "art"

is reoved, since only two parameters must be chosen - i and P.

In SUMT thare are five -- SX2 cp, c,,, r,, and C. Therefbre, the

amount. of numerical experimentation that must be don4 for a given

"problem is greatly reduced, Secondly, the procedure has been written

so that existing structural analysis techniques can be used to full

advantage. Conaequently, currently available algorithms based on

matrix displacement and finite element techniques may be used in the
optimLi•tion procedure vith minimal effort fkr b-- tation.

"•In this research, a basic configuration of the Gtructure Vas

first chosen and then the limensions of individual members were

,J1
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determined using methods of optimal design. There are some inter-

esting variations of this problem which may stimulate further invea-

tigation. These variations involve both the structure and the loading.

Structures of greater complexity can be generated by increasing

the nimber of the members or increasing the number of design vari-

ables per menber. LI the first case, the methods daveloped in this

research apply dtrectlyS since the basic form of the i'unctions

involved is not changed. The incorporation of existing structural

analysis algorithms would be a natural way of coping with the

increased size of the problem. An example of the second case is the

introduction of linear variations of the height and width of the mem-

bars. A problem of this type will requfir an effective moauns of

determining the points of maximim stress in the structure and more

* extensive numerical work in the structural analysis.

The optimumn design problem can be formulated to include the

basic configuc-azion of the structure by adding the lengths of the

members as design variables. This will increase the complaxIty of

the functions invelved. For example, the objective function will be

a cubic in the design variables.

In practice, spatial structures may be subject to a variety of

raudomly applied loads. In addition, the state variable constraints

may change for different loadings. An o-ftima3 design procedure for

spatial structures with multiple load. sets and multiple constraint

sets should be developed for this type of problem.
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fi

The method of constrained steepest descent with state equations

may have to be extended or modified to eff eztively solve some of

these problems. For exanple, steepeet descent methods converge 1.
slowly when the objeetive function has a long valley. Several

methods have been developed to deal with problems of this type in

unconstrained minimizz.tion and perhaps modifications similar to these

can be introduced into CSDS. The method is certainly not limited to

structural design, but may be appllied to a wide v-arlety of finite

dimensional design problems. The magnitude &nd complexity of the

prcblems that this method can successfully solve is n;t yet known

and should be investigated further.

:13.I

•i"
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APPENDIX

STRUCTURAL ANALYSIS

A.l The Basic Ecuations

The structural analysis used in this research follows a method

discussed by Langhaar (11]. TI-e analysis of a two member frame will

be done in detsil to illustrate the application of the method. The

ireiations and associated matrices required for the analysis of the

three member frame will then be shovn.

Cozsider the two member frame in Figure A.l. The horizontal

frame is coaposed of hollow rectangular members vhich are joined

perpendicular to each othar. The joint is rigid and transmits thear

force as well as bending and twisting momentse The load, P, is

applied normal to the frame at an arbitrary point along member (1,2).

This point is denoted in Figure A.l as point 4. The members are

clamped at points 1 anm 3. The reactions at these points are shows

on the free body diagram in Figure A.2. The deformation of the frame

is completely described by the displacements at joint 2. These die-

placements are the vertical deflection of point 2, and the rota-

tions of the joint about the axes of the two members.

The behavior or itate of the frame is specified by the value

of the maximum fcilure stress occurring in the frame. This failure

stress is calculated from the maximum distortion energy failure cri-

terion using the following expression:

I
p
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FIGURE A.I Two Member Frca and Typical Menber Cross-Section
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FIGURE A.2 Free Body Diagram for Two Member Frame
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OfVO + 3-c 2 (A-1)

where a is the bending stress and r is the shear stress which results

from twisting the members. Twisting moments are applied only at the

ends; therefore, the shear stress due to torsion is constant along

the members. The bending moment varies along a member but will be a

maximum either at the ends or under the applied load, since the cross-

section is constant.

The failure stress will be a maximum when the bending stress is

a maximum since the torsional shear stress is constant along a given

mmber. Consequently, the maximum value of a u st occur at one of

five points on the two member frame. The five possible points are the

ends of each member and under the appli.ed load. A free body diagram

of member (1,2) is shown on Figure A.3. The twisting moment at any

section is

1T Ti (A-2)

and the bending moments at the three critical points are:

at point 1 (x 0)

M - -H1 , (A-3)

at point ) (x - C1 )

M W -Mi + RIC 14 9

aad at point 2 (x a C 12

S= -M1 + "IC,2 - P(C12  - C1 )

Similarly, for member (2,3) (see Figure A.5), the twisting moment at



92

any cross-section isSftT - T3  (A-14)3I
and the bending moments at the two critical points are:

at point 3 (x 30)

M - (A-5)

and at point 2 (x =C 2 3 )

M _-M3 + R3 2 3 e (A-6)

The shear stress due 'o transverse loads has been neglected..

The bending stresses are compivted from the equation

o= M(h/2) (A-T)

where M is the bending moment, h is the height of the rectangular

section, and I is the area moment of inertia of the section. Using

the theory of torsion of thin tubes, the torsional shear stress is

obtained as

T
T--(A-8)

where T is the tviating moment, A is the cross-sectional area, and t

is the thickness of the tube. The stresses can be calculated using

equations (A-7) and (A-8) if the and reactions of the members are

The frame member shown in Figure A.5 is subject to bending and.

•. ~twisting, The strain energy due to bending may be written in terms

of the displacements of the ends of the member*
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R1

FIGURE A.3 Free Body Diagram of Meiber (1.2)
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M-3

R3

FIGURE A.4 Free Body Da of Member (2.3)
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U K ÷Le2 + e e+0 2 - 30(0I ÷ 3+2] + Conat (A-,9)

L L

The strain energy due to torsion is

J2L (A-10)

where a is the relative angle of twist between the ends of the memiber.

The potential energy Of the externai load is

where both p and y are funytions of x, For the pr3blems di.scussed

herein p is a conwentrated load. The deflection, y, may be written

as & function of the end dismnlacemeto as follows:

Y, + 92l ÷ l (28, + 2 "34) + (61 + e2 -2#) +3 contr.

L2

(A-12)

]Equations (A-9), (AW-0), and (A-Il) are used to c.btain the total poten-

tial energy of the frame and the applied loads,

V UT + i, (A-13)

where UT is the total strain energy, and 1T is the total -joUtntial

energy of the external loads. By the principle of stationary potential

energy, the required conditious for equilibrim are that

0 3, 2, ... n, (A-14)

h ar l
wahere the Cij are generalized coordinates (the three displacement

* A
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components et point 2). Equation (A-14) represants a set of n simul-

taneous linear equations in the n unknown generalized coordinates.

Once the deflections have been determined. the end reactions Pay

be computed using the following:

1+ 20 - 34) - (A-16)

2 2L 2

S 6 2#) +Pb 2-(L +2a)
1 1 2 L3~e

and S (8 + e 2#) - -1Pa(L + (A-18)
2 L 1 2"

It should be noted that it is not necessary to write siDilar wcWres-

sions for zhe twisting maments. Due to the relationship of action

and reaction, the twisting moment in one member is just & benlins

moment in an adjacent member.

A A.2 AMlication t• Two Member Frames

The generalized coordinates are assigned as follows. The verti-

cal displacement of point 2 is q1 , the joint rotation about the axis

of member (2,3) is q. end the joint rotation about the anis of member

(1,U2) is q3 h

-~ 1 Using equation UA-11) thO 3train energy due to bending is

~2 q q,~lt~ 2

"12 12 12

W1
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Using equation (A-2) the strain energy due to twisting may be written

as
GU 1 q3. (A-20)

For member (2,3) the strain energy due to bending is

u •a2---! q•-3(-)q3 + 3(_•)] (A-21)

223 2U23

and the strain energy due to twisting is

U - -23 . (A-22)

Equations (A-19) and (A-12) are used to obtain the potential energy

6of the pplied loads.

3C2 CC2'0J P - _ -- -' _( (1.._ ) )2 (A-23)

SC2 2C3 C2 C
412 12 12 c1

c0 c c12 c 2
"1•c2 2•3 c ÷ 2

+ 22 123 GIJ212 6E2112 6E31 23 qq

c23 +212 " cc q ~2" c3

3-q - -] - -- - (A-24)

II(2 32
it~C __ __
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I When the principle of stationary potential energy is applied, three

equations in ql, 2, and q3 are obtained from equation (A-24)

3Ca

p[i . - 0 1A-25)

a 6E1211 2  2I2 G12J2

12 12 23

- 4- 14- :0 (A-25)

C2 C3

12 12

6E 12 41 GJ
2 123 23 22 (A-2)

223 C12

S~These three equations may be written in matrix form.
CAQ - P (A-28)

here:2

.21 123 22

7r 3  C2  C 2C'q

12E1 2 112 + 12E23123 -I 1 2 02 3 623123

A " 6E12-12 2112 + 2 0

12 12

a23123 0 4E2 I2 G1 2 J312

C223 C CIt~~2 23 12_- _____
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3C2 2C3 1

C2  C
12 12

0

Equations (A-T) through (A-10) are nov used to obtain the end

loads on the members. Only the loads at pivnts 1 and 3 (see Figure

A-2) are required to determine the stressis.

2E121 1 2  -" 1 PCI14(CI2 - C1 4 )2  (A-9)

- 2-3;= - (A-2 4)C12 C2

C12 12

6E12 11 2  1  12 - Cl14] i (A-30)

T1R -2232•[q - 2 =-=3 (A-30)
1CC212 

C3
12 12

23 23 -73
T E31 2 [q 3" 3 l 

(A-31)23 23

2E 23123I

Ei ( 2' 3 2 3 2 3 (A -32)C23 23
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6E 23 123 q

R . . Cq 3 - 2 -l (A-33)

23 23

q •l C, (C - Cl.)
T 21212 21 14 12 14 (A-34)

3 C 1 2  C12 C

These equations may also be written in netrix form

M a BQ + F (A-35)

The vector of joint displacements Q was defined previously. The

matrix B and the vectors F and H are given below.

1T3

12

0

PC (C - c)

,_ (: 2

12

ii(ii~ ~ ~ ~~~~~1 Clh)2(C12____________________ +___2r-14)____
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61112112 4,2• 0

1F12112 6-2112

-0

6E23123  4E 2 3 1.2 3

C23  C2 3

Ba

E'23123 02Z23123
A0 -

c23 
C2 3

12"323 4E23123

23 23C23 C

6E 2! 1 2  
1 E 12112

--- 0

The stresses are computed using equations (A-') and (A-8). As

can be seen from these equations, and equations (A-2) through (A-6),

the stresses will be linear functions of the end reactions. Expressed

in matrix form the stresses may be computed from the following equa-

tio: iM +th (A-36)

where M is the vector of end reactions defined previously. The matrix

C and the vectors P and S are defined below.
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0 0 0 0

12

-= 0 0 0 0
212 01

312

1112 o hUC12
02 0 0 0 0

12A212

2112 1S

o 0 0
23 23

= 0 0 0 0 0
12

i 2~3 0 0 0 0

011 21 12 1)5
0 8 3

Pu0 S S 4

0 S5

0 S 6

-j The components SI, S2, and S3 are the be41ing stresses at points 1, 2,

ana 4, respectively, on member (1,2). S5 and S6 are the bending

-I
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%1

stresses on member (2,3) at points 2 and 3. S4 and S7 are the shear-

ing stresses due to torsion in member (1.2) and (2,3).

A.3 A2plication to Three Member Frmaes

EquatIons (A-1) through (A-18) may be applied to the three member

frame by following the procedures outlined in Section A.2. The

resulting matrix equations, (A-28), (A-35), and (A-36), are repeated

here.

A4 = P (A-28)

M = BQ + F (A-35)

S - CM + r (A-36)

These equativns may be used directly by defining the necessary vectors

and iatrices for the three member frame shown in Figure A.6.

The deflections, Q, are defined as follows:

ql is the vertical displacement of joivt 3;

q29 the rotation of joint 3 about axis (3,4);

W the rotation of Joint 3 about axis (1,3);

q4, the vertical displacement of joint 5;

q5 , the rotation of Joint 5 about axis (3,5);

and q6, the rotation of joint 5 about axis (5,7).

The vectors M and S are defined using the free body diagram in

Figure A.7.

S

I
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1M7M

T3

T5

°2

iS i

vhr a,, Is the bending stress at point 1 on member (1.i3),-.

a, 2, the bending stress at point 2 in member (1,3);
a 3' the bending stress p• point 3 in member (1,3);

! • c•, he torsional stress in member (1.3);

••a5 the bending stress at point 7 in rdembw (5,T)-,

0 6., the bendlin,- stress at point 6 in member (5,");

al -t1, the bending stz-,txs &t point 5 in member (5,7)11

C8 the t,-rsioual stress in member (5,7);

'F:i
I I Im m m • m mm u m m l 1 m m l m l l I II ] i : Y | l
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09, the bending stress at Point 3 in member (3,5);

01i0, the bening stress at point 4 in menmr

all, the bending stress at point 5 in member (3,5);

an a12, the torsional stress in member (3,5).

The other matrices and vectors required for equations (A-28), (A-35)v

and (A-36), follow. The notation Cij denotes the distance between

point i and moint J on the frame.

SP13[ -_a1] + P35[ C, 34• + :2C4]C2 0C2 C3
12
-13c CC2 C

13 13

P3 5 [C34 - C2

P 35 35
3C2  2C3 2 C3

35 C2 C3 5 C2  C3

35 3557 T

c3 c2

357c2 C3 j
35 3

o
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E 6E13 2KI13F 0 0 0 0

',C2 c2c

CCa C13

13 1

13 13

0 0 0

.•,(; c 11336EI

•'"0 000

c2  57
5,57

6EI 24EI 6EI 2EI
0 -3j --- 35 0 :

CZ5  C CC

35C 3 5'35 '35

J2EI, 6Ex. 0E1

350 0 0:

12EI 6E~l
00 0 0 0

--

IL_____
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113

P1 3C12 (C13 - C12
C2

132 13 1

P571C56 ( 57 - 56 )

02
57

P3 rc 3 4 (c 3 5 - C )2

C2
35

F=

c25
-~ 35

ip (c - c )2 (C *2C )13 13 12 13 12
C3

131
c(ca

:13
P I(c +2

'N 3

1~57
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problems which can be solved using existing unconstrained minimization

techniques. A SUJMT program was written for this research using Powell's
method of unconstrained minimization without derivatives. The required

minimization of a function along a line uses a combination of a Fibonacci

search (to bracket the minimum) and a quadratic approximation of the

minimum.

ThM method of conatrained steepest descent differr from the usual

ncnlinear programming problem in that the state equations and the state

variable constraints appear explicitly in the formulation. This provides

a natural matching of the essential features of the design problem and the

method used to obtain its solution. The design problem is linearized

about a candidate design and the desired improvement in the design variables,

Sx, is required to be small by demanding that 6xT w 16x = r2 where E is a

small number and w is a positive definite weighting matrix. The Kuhn-Tucker

necessary conditions are then applied to the resulting nonlinear problem.

As a di.rect consequence, 6x is specified in terms of two components; 6x1

which reduces the objective function consistent with the constraints, and

6x2 which directs the search for a minimum back to the feasible region if

conatraints have been violated. The method was applied using both exact

and approximate derivatives, so that its effectiveness when derivatives

are not available could be assessed.

A spatial structures which occurs frequently in practice is the plane frame

with out-of-plane loads. Although such structures are generally made up of

reiatively few members, they may have many design variable.i since several design

parameters must be specified for each member. The pr)grammning methods were applied

to a number of two and three member frames of this type. From the results, it

appears that CSDS has significant advantages over SUMT both in terms of compu-

tational time and the number of times that candidate designs must be analyzed.

The results also show that CSDS performs as well when derivatives are approx-

imated as it does when they can be computed exactly. The effectiveness of SUMT

is reduced significantly if the derivatives are unavailable,
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