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ABSTRACT

This research presents a systematic approach,to the optimal
design of spstisl structures for minimum weight subject to con-
straints on stress and geometry., The optimizaticn procedures dis-
cussed are genersl snd may be applied to structures which can be
analyzed by matrix displacement or finite element methods,

Tvwo methods of mathematical progremming are applied to obtain a
minimum weight design. The first ls the sequential unconstrained
minimization technique (SUMT), and the second is the method of con-
strained steepest descent with state equations (CSDS), Both of these
techniques require derivatives of the objective and constraint funce
tions to improve estimates of the optimum design. In many structural
problems, it is very difficult ¢» impossible to compute these deriv-
atives exactly; existing structural analysis algorithms are generally
not equipped to compute these derivatives. Ir order to take full
adventage of existing analysis car=uility, the programming techniques
in this research have been developed agssuming that such derivatives
are not available.

Optimal structural design problems are characterized by an objec-
tive function (the weight}, state variables (the stresses and deflec~
tions), design variahbles, state equations (the structural analysis),
and constreints vwhich may be fuactions of the design and state vari-

ables. When the state equations are used to write all of the
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constraints as functions of the design variables, a sonlinear pro-
graxming problem results. The sequential unconstreined minimization
technique reduces the constrained nonlinear programming probiem to a
sequence of unconstrained problems which can be solved using existing
unconstrained minimization techniques. A SUMIT program was written
for this reaearch using Powell's method of upconstrained minimization
without derivatives. The required xninimizaticn of e furction elong &
line uses a combination of a Fibonacci search (to tracket the minimm)
and a quadratic approximation of the minimum.

The method cof constrained steepest descent differs from the usual
nonlinear programning problem in that the siate equations and the
state variable constraints appear explicitly ir the formulatior. This
provides a natural matching of the essential features of the design
problem and the method used to obtain its solution. The design probe
lem is linearized about a candidate Gesign ani the desired improvement
in the design variables, éx, is required to be smell by demanding that
Sx oW Lex = £2, where £ is a small number and w is a positive gefinite
weighting matrix, The Kuhn-Tucker necessary conditions are then
applied to the resuwiting nonlinear problem. As & direct consequence,

§x is specified in terms of two compcunents; $x, which reduces the

1
objective function consistent with the constraints, and 6x2 vhich
directs the search for a minimum back to the feasible region if coa=~
strainias have been violated. The method was applied using both exact
and approximate derivetives, so that its effectiveness when derivatives

are not availarle could be assessed,
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A spetisl stimucturc which occurs frequently in practice is the
-/ d plane frame with cut-of=-plane loads. Although such structures are
generally made up of relatively few meaburs, they may have many
design variables since several issign parameters must be specifiad
for each member, The programming methods were applied to a number
of two and three member frames of this type. From the results, it
appears that CSDS has significant advantages over SUMT both in terms
of coﬁputatioml time and the number of times that candidate designs
" must be analyzed. The results also show that CSDS performs as well
vwhen derivatives are approximated 2s it does when they can be computed
exactly. The effectivensas of SUMT is reduced significantly if the

derivatives ave unavailable,

Abstrac: approvad: M__, dissertation supervisor
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structures, mathematical programming, spatial frames,
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g INTROUCTION

1.1 The Class of Problems to be Solved

- . The subject of optimum structural design hes received muchk atten-

tion in recent years. The optimal design of simple structural elements

A 6/ ahad fa awae #HOE

and structures consisting of these elements has been studied exten-
- sively. A number of investigators have considered plane frames and

trusses, but spatial fremes have received little attention. It is to

this topic that this research is directed. The problem to be solved

af ki o

A LA i 3

is the minimum weight design of a spatial frame subject to constraints

on stress and geometry.

Whiiowrdatiad o Mk

s

One type of spatial structure that occurs frzquently in prastice

RN SRS 1y
e pten e

is the plane frume with out-of-plane lomds. Similar frames are often

TR T
L YAR " X "

104

found in automotive, construction vehicle, and agricultural eguipment

a
st f st

3 applications. Real design problems of this type initiated this
i research and are used as example problems for the solution techniques '

{ . investigated. Although such structures are generally made up of rala-

tively few members, they may have many design variables since several

i design paramcters must be specirled for each mewber, In addition these

Ao man Rt Wit

| frames are often required to support or transmit loads at many points ;

in <ne structure. When suckh frames are mass produced the design which

requires the least material has a significant economin advantage.
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The design must also satisfy constraintas on stresses and geometry. In
moat cases the structure will fail by fatigue; therefore, the maximum
stresses in the frame musi be restricted to values well below the
elastic 1limit of the msterial. Limits on the design variahles of the
frame may be dictated bty current manufacturing capabilities or other
related limitations. It is apparent frc'xn this discussion that strue-
tural design problems, like almost all dcsign problems, have a merid
or objective function, & set of dzsign variables, a set of state vari-
ables, such as stresses or deflecticns which describe the behavicr of
the frame, a set of state equations which datermine the state &t a
given design point, constraints on the design variables, and con~
straints on the state variables.

Two methods of mathematical programming are applied to obtain a
minimum weight design. The first is the ssguential unconstrained
minimization technique, an& the second is =& c‘:anstra:lned. steepest
descent method which uses the state eguations directly ia the optimi-
z&tion process. Both of these technigues regudire derivatives of
objective and constraint fuasctiomz to predict better appruximations to
the optimum design. These derivatives may be cuubersome cor impossible
to compute oxactly. In addizion it is desiradle in structural optimi-
zation to take advantmge of existing analysis algorithme which in gen-
eral yield only function values, not derivatives. In order to take
full advantage of existing analysis capability, the prcsraraing tech-
niques should be effective wher only function vulues are availsble,

The optimization procedures discussed in this regearch sre general

A B T RO T T e | i R R AT R S R A R o S R K o L AR AR R R T ST SRS
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and may be applied to spatial frames analyzed by matrix displacement
or finite elenent methods,

In Chapter II the method of structural analysis 1s discussed and
the formulation of the optimization problem as a mathematical pro-
graxming problem is presented. The sequentisl unconstrained minimi-
zation technique is outlined in Chapter III and the constrained steep-
est descent method with state equations is developed in Chapter IV.

In Chspter V the application of the prograrming methods to some example
problems is discussed and the results for these examples ure presented.
Conclusions concerning the results and the relative merit of the design

methoas are discussed in Chapter VI.

1.2 Literature Survey

The field of optimum structural dasign has been exhaustively
surveyed fram Galileo to the present in review papers by Wasiutyuski
and Brandt [24] and Sheu and Prager [22]. In addition a review by
Gerard [9], which is particularly applicable to serospace vehicles,
contains numerous structural references. For extensive bibliograpiaies
covering all aspects of optimal design and evaluations of the current
state of the art, the reader is referred to these articles.

In recent years, & numb:r of investigators have applied the
methods of nonlinear programming to optimum structural design. Schmlt,
Kicher, and Morrow [20] solved the provlem of integrally stiffened
waffle plates using a method of alternate steps. In this method

steepest descent moves are macde until a constraint is violated. The
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step is then adjusted until the design is on or near a constraint.
This point is considered to be bound and an alternate step to a free
(wmconstrained) point is sought. The technique uses a random number
generator to create proposed alternate step designs which have the
same weight as the current bound design and which do not violate addi-
tional constraints. Gellatly and Gallagher [7] presented the theo-
retical basis for a design procedure which includes esteepest descent
and alternate step moves similar to those of Schmit, et. al. [20].
They apply this procedure to the design of plane trusses and stiffened
panels [8]. The objective function is linear in both cases, since
only one design variable per structural element is considered.

Others have also shown that optimum structural design can be
formulated as a nonlinear programming problem. Pope [15] solved plane
trusses by reducing the resulting nonlinear programmiang problem to a
sequence of linear prograrming problems, and Best [2] suggested the
uge of a gradient projection technique. Recently Brown and Ang [ 3]
applied the gradient projection method to the elastic design of WF
steel frames. A problem :involving four design variables and eleven
constraints was solved and forwe.,d finite difference approximations
were used to evaluate the derivatives required.

A somevwhat different approach was suggested by Schmit and Fox
{21]. Instead of developing designs, snalyzing them, and using infor-
mation from the objective funciion and the constraints o predict
improvad designs, a special function, ¥, is constructed and minimized.

The y function contains among other terms the weight (or other
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quantity to be minimized) and an estimate of the minimum weight. The
function Y is sc structured that when § = 0 all constraints and the
equations of equilibri-.n and compatibility are satisfied. In addition
the weight is decreased to the estimated minimum. "The estimate of

the minimum weight is ther reduced and the process is repeated until

TR S LSS RS AR

tne waight cannot be further decreased. At each step the solution
y = 0 i3 found by methods for unconstrained minimization.
A method of nonlinear programming known as the sequential uncon-

strained minimizetion technique (SUMT), has also received some atten-

L R T SN T SRR

tion. Nicholls [1l4] used the method to solve some plase truss prob-

lens, but had limited success. The lack of success was attributed to
the use of a first order gradient techaique for the unconsirained
mi:1imizations. Brown and Ang [4] have used SUMT to obtain starting
values for the gradient projection method and have note: the possi-

bility of solving structural design problems using SUMT instead of

ARG Db e

other programming techniques. A recent book by Bracken and McCormick
[1] discusses examplies of nonlinear programming problems to which SUMT
has been successfully applied. Among these is the design of a verti-
cally corrugated transverse bulkhead for an oil tanker. The design
is specified by six design variables and must satisfy sixteen con-
straints. The objective function is nonlinear sand there are both
linear and nonlinear constraints. Derivatives of the constraint
functions were aveailable without aprroximation.

The programmiryg problems associated with optimum design are

cften nonconvex. In general, therefore, a local minimum is obtainecd.

-

-
we s sbitish



Usually widely separated starting values are chosen and if the method
converges tu the same point each time, this point is taken as the
global minimum. Yoakley (23] discusses the problem of the global
optimum for statically determinate plane trusges. A change of vari-
able is introduced to obtain a convex ncalinear programming problem
which is then solved by reducing it to a sequence of linear program-
ming problems.

The literature concerning mathematical programming has also been
voluninous in the past several years. Recent books by Wilde and
Beightler [25], and Saaty and Bram [19] discuss a wide variety of
optimization techniques. The former treats all types of problems
while the latter has an extensive section on the methods of nonlinear
programming. A book by Fiacco and MeCommick [5] presents the theo-
retical basis of the sequential unconstrained minimization technique.
In addition, these books serve as a review ard bibilograrhy of all of
the major contributions to the field.

Fletcher's review [6] of unconstrained minimization techniques,
which do not require derivatives, is particularly pertinent 3o this
research. It suggests that, of the meShods available, the one due to
Powell [16] based on conjugate directions is the most effective.
Wortman [25] hes written a program which combines SUMT and Powell's
method. He reported extreme sensitivity to the starting values and
proposed that the technique could be used to determine binding con-

strainte. These constraints could then be used to decrease the




dimension of the optimizatior problem and SUMT could then be reapplied.
No results of this procedure were included in the report.

The growing literature availabdle on SUMT [5 and 1] indicates that
the method is most successful when derivatives of both the objective
and constraint functions can be computed exactly. One of the objects
ol this dissertaticn is to consider the applicability of SUMT to struc-
tural design problems when derivatives are not available.

As stated previously, almost alil design problems have an objec-
tive function, design variables, stste variables, a set of state equa-
tions, state constraints, and design constraints. The nonlinear pro-
gramming approaches cited above (except for Schmit and Fox [21]), use
the state equations indirectly to express all of the constraints as
functivns ¢f the optimization variables. The method of constrained
steepest descent with state equations, to be developed in Chapter IV,
differs from these methods in that the state eguations and state vari-
able.constraints appear explicitly in the mathematical programming
problem. This provides a very natural matching of the essential fea-

tures of the design problem and the method used to ovtain its solution.
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[ = CHAPTER II

ko FORMULATION OF THE PROBLEM

2.1 The Probhlem

This chapter prresents a general formulation for the optimal

design of minimum weight spatial structures, subjected to geometrical

.
IR

as well as stress constresints. The geometrical constreints are

PR

restrictions placed on the dimensions of the structure, whereas the
stress constraints correspond to a fullure criterion established by
one of the failure theories, The elements of such a structwre may

undergo extension, bending, twisting, and shear deformation. The

N R T R T T T T T I

formulation of the design problem in this chapter is general, but for

clarity in presentatv.ion, some examples which are characteristic of

PAEATM DRSO ey

the general class of problems will be used in the development.
Consider a structure vwhich consists of rectangular, hollov beams.
These beams are mutually perpendicular to each other and are jJoined
at their ends by rigid joints so that forces, bending moments, and
twvisting moments are transmitted from member to member, The structure
is loaded by concentrated forces locatad arbitrarily along eech of
the members. The frame shown in Figure 2.1 is an example of this
type of structure; Figure 2.2 shows a typical member cross-section.
Bending and twisting effecis in esach member will be considersd but

shear due to tiransverse loads and axial deformetion of the members

A A TN A R T e T N N A R S D R
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will be neglected., The thickness, t, of the hollow sections is

% constant and all members are assumed to be made of the same linearly

elastic material.

3
x>
5,

The design variables in this problem are the thickness, t,

width, b, and beight, h, of the individual members (see Figure 2,2).

o,
-,

.,.
& s
o~ WIS

These are to be chosen so that the objective function (the weight of
the structure) is a minimun and the constraints on stress and geometry

are satisfied, The state varisbvles, deacribing the bebavior of the

i structure for & given design, are the stresses at critical points in
the frame and the deflections at the joints, The state equations

which determine the state variables are the equations of structural

T e I SN Ao A i

analysis which are discussed in the next section.

2.2 The State Equations

The state variables are determined from a set of matrix equa=-

tions which are derived from energy principles. Matrix methods for

.
]
E
i
3 the analysis of structures have received much attention in receat
E literature. Books devoted to this subject include those by Ruben-
¢ svein [18), Przemieniecki [17], and Zienkiewicz [27]. The snalysis
E of the structures investigated in this research follows a method
E outlined bty Langhaar {[1l:;. When this method is written in matrix

notation, the resulting equations are of the same form as those used

B R R T O AT BT R S S A R

in the finite element and matrix displacemant methods of structural

analyeise., Details of the analysis aze given in the apperdix; the !

aPA)

principal features of the method are as follows.




The total potential energy of a structire and the applind loads
nay be weitten as
V(@) = u(q) + a(q) (2-1)
vhere U{¢) is the strain energy of deformation, 2(q) is the potential
energy of the externsal loads, and g is a vector vhose elements &re the
cartesian components of the independent kinematically admissidle
anguiar and linear joint displscements, ZFor sufficiently smell dis-

e | placements q,, the intersal strain emergy U(q) ic a positive definite

E quadratic form iu the generalized coordizstes U

: 1 (2-2)
U=7 % I a Qao 2=2
3 2 4 gm 13Uy

It is ahown in Leasnghesr's ook [11] that the required conditions for
equilitrium are

v
‘.‘ g "5"&;.'. Q i= 1. 2. seaq Ny (2"3)
!' vhere n is the mmber of generalixed coordinates. This principle of
; stationary potential emergy applied to eguavion (2-1) yields
B W, a8
.\f ?q-i-* ;;i" 0 1=1,2, ¢eep B (2"&)
. Using the definitior of the components of generalized force given
4 vy
:5 39
I T (2-5)
tke following set o. .quations is obtained
'~' n -6\
X P, 1 =31, 2, ceey Be 2=0}
( =2 143 T fuv e ’ ¢

In matrix notation these equations may be exvressed as

AQ=7P (2-T)
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Wiich corresponds directly to the basic equation of the matrix dis-

ran

o —

placement method of structural analysis [17].

R ARG RS 2R o, o

;

é .jg The elements of matrix A are known functions of the design vari- B
:‘% ables and the elements of vector P are functions of the external loads.
] %— Equation (2-7) may be solved for the joint displacements Q. In the

% appendix it is shown that the end reactions and the member stresses

% may also he written as matrix equations. For end reactions the fol-

% lowing equation is obtained

g” M=BQ+F, (2~8)

% in which M is the vector of end reactions, B is a matrix whose ele~

; ments are functions of the design variables, Q is the vector of joint

£ displacements, and F is a vectcr of the "fixed-end" momoints and loads.

The stresses may be computed from the following eguation

1 3 S=CM+ P (2-9)

T

vhere S is the vector of stresses calculated at ecritical points in

the structure (see Appendix), C is a matrix whose elemernts are func-

tions of the design variables, M is the vector of end reactions, and
P is a vector whose elements are functions both of the applied losds f
and the design variables. By ccmbiring equations (2-8) and (2-9),

the following equation is obtained

S = CBQ + CF + P. (2~10)

The anslysis of the structure may then he summerized by the fol-~

lowing equations

e’

s s A e e

- AQ=P
M=BQ+F
and S = CBQ + CF + P. (2-11)
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The fundamental equstions of the finite element technique are given
by Zierkiewicz {27] and are of the same form as equations (2-11).
Conceptually the optimization procedures investigated in this
research can then be applied to the broad clasaes of prcblems which
can be analyzed by matrix displacement and finite element techniques.
Equations (2-11) apply to linearly elastic structures under the
action of conservative external loads.

Physically the benavior of the frame is most often described by
the Joint deflections and stresses. Therefore it is natural to

define these variables as the state variables, Z,

Q
2= (2-12)
si.

Given the external loads and a set of design variables, the first
and third equations of set {2-11) can then be combined to yisid cne

matrix equation which determines Z. This equation is given by

AZ = B, (2-13)
where
. a0
A=}--Fp--
-~CBI I
v
1 o
and P
CF+p| .

The analysis of the structure (determination of the state variables)
"5 therefore reduced to the 3olution of a single set of simltaneous

equations.
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2.3 The Objective Function

Since all members are ussumed to be made of the 3ame msterisl,
the weight of the frame is the product of a single veight density,
and the volume of the frame. Therefore the problem of determining
the minimum weight is equivalent to that of determining the ninimum
volume. The volume of the ith remver of the frame is given by

v, = [oghy - (b, ~ 26,) (0 - 2t,)1C,
or

= - L2 -1l
vi [2tibi + 2tihi uti]ci (2-1h)

where ti, bi’ and hi are defined in Figure 2.2, and (:i is the length
of the member. The design veriables are systematically asgigned as

follows, m being in this case the number of frame mwembers,

=Y

i
34

x =h i= 1’ l..’ m'

Using this notation, equation (2-14) can be written in terms of the

design variables:

Vi(x) = [2x3i_2x31_1 + 2x31_2x3i - hx~3i.2]Ci. (2-15)
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The volume of the frame is obtained by summing the volumes of the

individual members and is a quadratic in the design variables.

m
Vix) = & Vi(x) (2-16)
i=1

2.4 The Constreints

Structural failure is said to occur when the state variables or
functions of the state veriables exceed certain preassigned limits.
In space frames failure may be due to either excessive stresses or
deflections. In the typical structures being considered, failure is
assumed to vccur when the combination of normal stress due tc bending
and shear stress due to torsion exceeds a maximm limit. The stresses
were combined according to the distortion energy theory of failure.

The failure stress gy is computed as follows:

o, =yo? + 3:2 (2-17)

where o is the normal stress and t is the shearing stress at a crivi-~
cal point of the structure. The statement that the failure stress

must not exceed & cpecified maximum is written
2 _ 2 _ -
Vo2 - 31 O ey <O (2-18)

and the general form of a state variable constraint is

w(z) < 0. (2-19)

The choice of design variables may also be limited. These limits

mey occur because of space restrictions or result from limits imposed

15
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by current manufacturing facilities. Constraints of this type are
introduced into the structural design problzam of interest by requiring
that the design variables satisfy the following inequality:

Xpipg XS X (2-20)
This inequality is equivalent to two constraint relationships, namely,
i = X 20 (2-21)
and

X=X o0 S 0 (2-22)
The general form of these constraints is

#(x) < 0. (2-23)

2.5 The Mathematical Programming Problem

The state equations, the cblective function, and the conscraints
associated with the optimal structural design problem have been
defined in the previous sections of this chapter. These funciions

may be used to define the following mathematical progrzmming problem:

minimize V{x) (2-2k)
sunject to

¢,{x) <0, i1, ey &

\l'i(z)_<_0, i=1, ..., m

and hi(z,x) =0, i=1, ..., k.

The ecuality constraints in problem (2-24) are the state equations
(2-13). The most common approach to this problem has been to use
the state equations to vrite"the state constraints as functions of

the design variables. This results in the following nonlinear

.
 ———yy,

MRS
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programming problem, which may be attacked by several available tech-

nicues (see Section 1.2),

minimize V{x) {2-25)
subject to
sJ(x)_<_o J=1, ..., mtl
where
é(x)
glx) =
v(x)|.

A design which satisfies =11 of the imporse” constraint conditions is
called a feasible design. The constraints define a feasible region,
R, in design space,
R = {x: g(x) < 0}. (2-26)

If the nonlinear programming problem (2-25) is convex, then it can be
shown that the solution attained is a globul optimum. It will now be
shoun that the structural optimization problem formulated in this
cha.;t.er is nonconvex.

The convexity of sets and functicns may be investigated by using

three theorems which are proven in {19).

Taeorem 2.1 The set of points R which satisfy a
constraint g(x) < O, where g(x) is & convex func-

tion is a convex set.

Theorem 2.2 The intersection R of a8 family F of

convex sets is a convex seat.

o— . o T b

facsiey,

Akt

T VISR S RIPI

SR AU ot et et W et + U wrd B e s ¢ Wk

PO TN

[T SVGURVISPIpR




18

Theorem 2.3 If V(x) is a twice differentiable

function in an open convex set R, it is convex

g

in R i€ and only if the quadratic form

n n 2
L 1 axaax Ay
i=1 g=1 %3 %%y

LI

o gt A T Ve e
————,
Faaanpes A ree S

is positive-semidefinite for every point x in R.

[zt

Because the state variable constraints are complicated functions

vy

of the design variables, it is difficult to apply Theorem 2.3 to

ST VK

these functions. Therefore one cannot immediately determine whether
or not the feasible region, R, is a convox set. Consequently, the
convexity of the objective function will be investigated by applying
the criterion of Theorem 2.3 assuming that the region R satisfies the
conditions of the theorem.

_; ; Consider the volume of the three member frame shown in Figure 2.1

V(x) = (2x1x2 + 2xy% - hxi)cl

2
.+ 2xhx6 - hxh)Ca

+ (2xhx5

+ (2x7x8 + 2xx, - hx%)c3. (2-27)

The matrix of second derivatives required in Theorem 2.3 is

Nk g L W
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2c,  2¢, 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
o 0 -8c, ¢, 2, 0 0 0
0 0 2c, 0 0 0 0 0
0 0 ac, 0 0 0 0 0
gt
i 0 0 0 0 0 o -8c; 25 2cy
5 2 0 0 0 0 0 2C, ¢ 0
| 0 0 0 0 0 0 2c, 0 o|.

The analysis ¢f quadratic forms, outlined in Langhear's book {111,
mey be applied to show that the quadratic form based on this matrix
is indefinite. Consequently, by Theorem 2.3, V(x) is a nonconvex
function when the region R is convex. Therefore problem (2-25) is
& nonconvex programming problen.

The most that can be guaranteed for a nonconvex problem is that

its solution is a local minimum. The most often used technique for &
3 3
3 seeking the global optimm in thic situation is to attempt to deter- ég
mine all of the local minima by starting from meny widely separated ’3‘
: B
; 3 - ‘i
initial points. ;!
§ In summary the optimal structural design problem has been formu-~ %
F: X o
3

%, lated as a mathematical preogramming problem in two different weys. g
Sl A
%_g In one case the constraints are considered to be functicns of tke ?3
%‘ @ design variables alone. The sequential unconstrained minimization Z
% technique will be applied to this problem in Chapter III. In Chapter
‘ %? IV the constrained steepest descent method with state equations, will

i
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E .t be applied to problem (2-2k). This formulation considers constraints
-3 ‘ T which are functions of both the state variabies and the design vari-

ables, and uses the state equaticns directly in the solution.
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CHAPTER III

THE SEQUENTIAL UNCONSTRAINED MINIMIZATION TECHNIQUE

3.1 General Eiﬂggﬂaign
In Chapter II it was shown that the optimum design of a spatial

frame cculd be formulated in the following way.

nminimize wv{x)

subject to (3-1)

Si(x) _<-O is= l’ 2. saey m+d

The constraints are comnlicated nonlinear functions of the design
variables. Bocause of this, the direct handling of these con-
straints in the nonlinear programming problem can be difficult.

The sequential unconstrained minimization technique (SUMT) handles
these corstraints indirectly and has been used successfully on

problems of this type, The theoretical basis of this technique,

as vell as belpful suggestions for computation, may be found in

the recent book by Fiacco and McCormick [5]. There are several
versions of SUMT vwhich may be applied to given problems depending
upon the nature of the objective furction and the constraints., For
problen (3-1) the interior method should be used, In this method

the quest for a minimum is always carried out within the fessible

“?‘W Fprty

[zt

G region and strict equality constraints arc not aliowed,

A

The method is applied by sugmenting the objective function to

apd
y
AW RS

define a nav function U(x,rk),
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U(x,rk) = V(x) + S(r,)1(x). (3-2)

[

The mumber r, is always positive. I{x) is a scalar function of the
design variables and is continuous in the feasible region R, where R
is defined by

R = {x: 81(1) < 0’ i= 1. 2. seey ML}Q

I(x) also has the property that if {xk} is any infinite sequence of
roints in R converging to x; such that gi(xB) = 0 for at least one

i, then

- 1im I(xk) » 4w,

ko

S(r,) is a scalar-valued function of the single variable r e azd has
the following properties. If r; > r, > 0, then S(rl) > S(r2) >0,
and if {rk} is an infinite sequence of points such thut

11mrk=0

Ko
then

lim S(rk) =z 0,
ke

These properties are basic to the convergence proofs which may bdbe
found in Fiacco and McCormick [5].

The most common forms for S(rk) apd I(x) are the following:

S(rk) =7 (3’3)
mn+l 1 a0
B . - 3 Y
. Itx) 121 g, (x) . (3

Using thege, the function U(x,rk) becomes

22

PR
n .

R U K O R R SR e S ME MR N VTR LTI NTATS s SBIGRE TR




BE 3. 20 "M____j ?‘ AT G LT AR Yo PR R R S b U P RT3 S A ARG I G N i S R AT R TR AT AR W A o e e v

-

23

m+l
U(x,rk) = V(x) - 1,121 E;}GT s gi(x) < 0, (3-5)

The penalty term ovides s steep gradient at the boundary o the
feasible region so that when the function U(x,rk) is minimized the
gearch is kept in the Zessikle region R. When gi(x) > 0, U(x,rk) = X,
where X is a large positive constart., This avoids difficulties which
nay arise in the unconstrained minimization if a constraint is inade

rertentiy violated.

The algoritim for finding the constrained minimum of a function

using interior SUMT is as follows,

N AR DR

(1} Choose ry and an estimate of the minimm x(o) interior to R,

(2) Determine the unconstrained ainimum x(rl) of U(x,:rl) in the

feagsible region R,

{3) Use x(rl) as a tew starting point to determine the mirimm

x(ra) of U{x,r,] vhere r; >r, > 0,

. (4) Continue the process, finding the local minisr of U(X.rk)

starting from x(rk_l? 2or a strictly monctonically decreasing

3 sequence {r }.
, Fiacco and McCormick show tiet if V(x) and gi{x), im1, 2, veey 2l
% are continuous, if I{x) and S(rk) satisfy the conditions stated previ-

ously, if thers exists a relative minimum X in R such that £(X) > f(x)

2or a1l x # x in some neighborhood of X, and X is not an isolated

point in R, and if {rk} is = monctone decreasing sequence vhich con-

verges to zero, then the sequence of locsl unconstrained minims
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obteined in the above zrocedure exists ard converges to a local
minimum of problem (3=i).

The use of SUMT is appealing in that existing uncounstrained
minimization techniques can be used to obtain the minimum for eaca
U(x,ry). The method, therefore, provides a means of reducing the
value of the objective function without vielating the constraints.
Furthermore it is not necessary to involve the constraintz directly
or to move along them toward the coanstrained minimm of the objective
function. This is a distinct advantage when the constraints are com-

icated nonlinear functions of the design variables as they are in
the class of probleme under consideration,

In the next section an unconstrained minimization technigue
vhich does not reguire derivatives will be discussed, Accelerstion
of ~onvergence by exirapoliation will be dissussed iz Seciion 3.3,
and other computational conzidersations will be presentad in Section

3.4, An evaluatior of the method as applied to the optimm struce-

tural design probles me; be found in Chapler V,

3.2 Finding an Unconstrsined Minimum

As stated in Chapter I, one of the gosls of this reseazch is to
investigate techniques that will be effective when derivatives of the
ohjective and constraint functions arz cumbersome or impossidle to
calculate. The method used %o Getermine the unconstrained minimum of
U(x,rk) in SUMT must thercfore be able to find a minimum using only

functicn values.
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The earlier technigues such as tabulation, random seexrch, or
improving one variable at a time are basically inefficient and unre-
liable. The first improvements of these methods were based on ad hoc
procedures. Only recently efficient techniques have been introduced
vhich are based on successive minimizations alcng conjugate directions.

In his review of minimization techniques that do not require the
calculation of derivatives, Fletcher [6] suggests that of the methods
available, Fowell's {16] is the most satisfactory. Powell's method
requires fewer function evaluations than other techniques and has the
advantage of guadratic convergence near the minimum. The method will
fird the minimum of a quadratic in a finite number of steps and con~
verges to the minimum from an unfavorable starting point more effi-
ciently than other available algorithms.

Powell's method is based on the minimization of a quadratic,

£(x) = xT[A]x + bx + c. (3-6)

Directions gl and €2 are said to be conjugate with respect to A if

T
El[A] £, = 0. (3-7)

T
BN St :
A AN b o

Each iteraticn starts from the best previous estimate to the minimum

~-

I i35

po. Successive searchnes for a minimum are made along a set of
linearly independent directions, &1, 52, eeey En. These directions
sre initially chosen &s the coordinate directions ~- that the first
itaration is identical to that cof changing one parameter at a time.
Each iteration generatves a naw directicn §, and for the second iter-

ation the set of linearl; independent directions is chosen tc be
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52, 53, ceey én, £E. The new direction £ is chosen soO that if a qued-
. ratic is being minimized all the directions will be conjugate after n
jterations. Powell proves that, as a direct consequence, the exact
minimum of the quadratic is found. One iteration of the basic method
g £ is as follows.

(1) For r = 1,2,...,n calculate A, 80 that f(pr_l + Arsr)

is a minimunm and define P. =Py + Argr'

(11) For r = 1,2,...,n-1 replace £ by Bl

:!* (iii) Replace £, by (pn - po).

(iv) Choose A so that f(pn + ).{pn - po}) is & minimum

T e
OGEE

and replace Dy by p + Ap, - po}-

The basic procedure may be unstable for non-quadratic functions
because it tends to choose nearly dependent directioms. Powell shows
that this difficulty csn be eliminated by using the following proce—

dure which allows a direction other than El +0 be discarded and under

gy )

some conditions uses the old set of linearly independent directions

again.

aanl £V Nm,,\!»-nxa(yn ot

(i) For r =1,2,...,n calculate } SO that f(pr_l + xrgr)

is e minimum and define P. =P + Argr'

(i) Find the integer m, 1 <m < n, so that ff(pm_l) - f(pm)}
is a maximum, and define A = f(pm_l) - f(pm).
) (111) Calculate fy = f(2pn - po) and define f, = f(po) and
} £, = £lp,).

(iv) 1If either £, > f. and/or

3=-71
- . e _ A2t _ s )2
(£, - 2F, + 1) (£, -f, - 8)2 252 (£; - £3)
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use the old directions El, 62, ceey En for the next iteration

and use P, for the next Pgs otherwige
(v) defining ¢ = (pn - po), calculate A so that f(pn + Af) is a

minimum, use 41’ 52, ceey Em—l’ €m+1’ Em+2’ ceny gn’ £ as

the directions and 128 + AE as the starting point for the next
iteration.

Complete theoretical jJustification of the above algorithm is given in
Powell's paper. One effect of step (v) above is that one of the previ-
ously determined conjugate directions mey be thrown away. In this
case the minimum of a quadratic will require more than n itevatioms.
However, Powell shows that this procedure ensures that the rate of
convergence will always be reasonable, therefore making the modifica-
tion veluable. In fact, Powell found it to be essential when mini-~
mizing a function of twenty variables, and highly desirable for func-
tions of five variables or more.

Powell suggests & very safe but lengthy convergence criterion.
This procedure was not used. Instead, in crder to decrease the num-
ber of function evaluations required, the iterations were terminated
when the results from two successive iterations agreed to within a
specified value, epe According to Fletcher [6], only the most diffi-
cult functions require the more stringent convergence criterion.

If Powell's method is to be effective, it is essential that an
efficient method of finding a minimum along a given direction Ei be
available. The objective function surface U(x,rk) is peculiar in

that at the boundary of the feasible region the function takes on a
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large positive value. Taking this into account the following proce-
dure was developed.
(1) Starting from Py, use & Fibonacci search 2long
the direction £ 1 to bracket the minimum within
the feasible region.
(2) Pass a quadratic through the three points brack-
eting the minimum and approximate the minimum of
the function along the line by the minimum of the
quadratic.
(3) Let the quadratic te determined by function values
corresponding to design points Xy X and x3,
and let the minimum of the quadratic be x min® 1r

|xmin-xi|<eL, i=1,2, 3

terminate. Otherwise retain the three points

which bracket the minimum and reduce the interval

of uncertainty, and repeat step {2).
The above algorithm was used in conjunction with Powell's method and
provided convergence comparadsle to +* reported by Powell in his

paper.

3.3 Extrapolation

Fiacco and McCormick show that the convergence of SUMT can be
accelerated by extrapolation. If p minima of U(x,rk) have been
determined, these may be used %o estimste the optimum (the minimum of

YV(x)) and the (p+l)st minimum of U(x,rk),

28
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The estimates of the oplimum are shown to converge more quickly
tc the solutiun than the sequence of unconstrained wminima. In addi-~
tion the estimate of the (p+l)st minimum can be used as a starting
value for the (p+l)st iteration which significantly reduces the
amount of coaputcthion required to find the optimum.

After p minima have been obtained, estimates of order p-1 can be
made. In practice, estimates are seldom made beyond order three due
to computer storage requirements and accuracy considerations such as
round~off error. The experience of Fiacco and McCormick is that even
first ard second order arproximations of the next U(x,rk) minimum and
the optimmm significantly accelerate the ccnvergence.

The extrapolation is based on the fact that the p minima which
have been fcftmd, Xys Xy eevs xp which correspond to rl, Ty eees rp
may be expanded in terms of the r as follows:

k

P"l J
x = Jﬁo aJ(rk) k=1,2, «eey D (3-8)

where a, are n component vectors. A set of recursion relations

J
based on this expansion leads to the following equations for first

and second order estimates of the optimum and the (p+l)st minimum of
the U function when Tyel
The first order estimate of the optimum is,

= rk/c, (c > 1).

ex_ - X,
B Tp2 (1-9)

x* =
c-1

and the second order estimate is given by
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3 2
CX -~ C¢°X - X + cx
x*® = b 2 -1 2 =1 P-2 . (3-10)

(¢2 - 1)(ec - 1)

The first order estimate of the (p+l)st minimum is

X + X ~-X
X4 = P p pl (3-11)

and the second order estimate may be written

3 2 2
cvx + c“x_ - c“x - X
I e = =X (3-12)

e3

These equations were used to accelerate convergence when SUMT was
applied to the structural optimization problem being considered. The
first order estimates were applied after two iterations had been can-
pleted and the second order estimates were used thereafter. The
estimate of the (p+l)st minimum was used as a starting value for the

(p*l)st iteration only if the estimate was a feasible point.

3.4 Parameter Selectior and Convergence Criteria

The experience of Fiacco and McCormick indicates that the con~
vergence of SUMT is not greatly effected by either the choice of T or
by the choice of the factor C by which ry is reduced at each iterationm.
This was 8- » confirmed by the author's experience when SLMT wes

applied to the structural optimization problem where values r, = 1,

1
and C = 4 were chosen.

When the differences between components of two successive minima

the

of the U(x,rk) function were less tuan a preassigned value, € x?

process was terminated. The choice of this preassigned value is not

arbitrary. Tn particular it cannot be less than the value used as a
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the convergence criterion for the one dimensional minimization must

convergence criterion in the unconstrained minimization.

be most stringent of all.
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CHAPTER IV

CONSTRAINED STEEPEST DESCENT WITH STATE EQUATIONS

4.1 Introduction

The nonlinear programming technique of Chapter III uses the
state equations indirectly to determine the values of the constraints
at & given point in design space. One way of using the state equa=-
tions more erplicitly in the nonlinear programming problem is to
introduce them as additional constraints oa the solution, and then
to use the design variables plus the state variables ss the inde-
pendent variables in the problem. Oftentimes, however, this may not
lead to a satisfactory solution, since in many problems the number
of state variables is large compared to the number of design vari-
ables. Thes dimension of the resulting programming problem beccmes
very large. For instance, one of the simplest examples discussec
in Chapter V has six design variables and ten state varisbles, vhich
would then lead to a nonlinear programmiug problem of dimension six-
teen. If the derivatives of the objective function and the con-
straints are cumbersome to compute or are otherwise not available,
the situation is even more acute in that the most successful minimi-
zation techniques, which do not require derivatives, seem to be

limited to problems of about twenty variables [6 & 16].
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In this chapter a method is introduced which exploits the state
equations by using them directly in the design process. The general
scheme is to liunearize the problem in the neighborhood of a candi-
date design in terms of the design und state variables, and then to
eliminate direct dependence upon the state variables by introducing
the linearized state equations. This results in a new nonlinear pro-
gramning problem to which the Knhn-Tucker necessary condicions are
applied. As a conseguence a step is chosen in design space which
reduces the objective function consistent with the constraints and
simultaneously directs tne search for an optimum back towards the
feasibie region if any of the constraints have been viclated. The
nethod was developed by Haug [10] who generaliized ideas introduced ty
Mel'ts [13]. Since the msthod is not yet availeble in the literature,
it will be discussed in detail in the following section. Section 4.3
will present the hasic algorithm and discuss some of the computational
aspects of the method. Convergence will be considered in Section 4.k

and an expanded algorithm is presented in Section L.5.

k.2 Dpescription of the Method

In Chapter II it was shown that when the state equations are
included in the formulation, the optimal structural design prcblem

may be stated as the following mathematical programming problem:

- - - “‘er‘g?mxg_
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< 3
: minimize V{x) '
o b subject to g
4 ¢,ix} < 0 i=2,2, o0y (h-1) <
hy(2,x) = 0 1m1,2, .., k 4
3 v (z) <0 1=1,2, ..., &
l. 3 g
i With minimal additional effort, the method of constrained steepest
«; descent with state equations (CSDS) can be derived for a more general g
.3
. ] case which ailows the objective functicn and the ¢ constraints to
. - deperd upon the state variables, z, as well as the design varisbles,
‘E . x. The more general problem may be stated as follows: &
33 minimize £{z,x)
subject to
3 ‘ ¢i(Z,X) i 0 i = l, 2’ LY m (h-a) g
i§ h{z,x) =0 1=21,2, .o, k 8
3 wi(z) i 0 i = 1, 2, eoey ‘£o
. ; If desired, the § constraints could be considered as & subset of the ]
‘ %. ¢ constraints. If the mathematical form of the two types of con- §
W3 :
gg straints is sufficiently similar, this will provide some simplifica- ’;?
. i
‘ ;; tion in the computational algorithm. If the forms of the constraints %
i1 ,
. ’ié are considerably diftorent, some computational advantage may be %
SN | g
. § gained by considering them separately. ¥For example, if the ¢é con- §
; 3 straints are very simple and the vy constraints complicated, then it H
ihet L d
.
. g may be advantageous to compute the derivatives of the ¢ constraints
‘-‘
E
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directly but tc approximate the derivetives of the ¢ constraints.

Y

In this seciion the derivation for the design problem (4-2) is pre-

o
Lo,

gented

Th.s chapter makes use of matrix calculus nctation. A function

g of the vector x will be defined as follows:

o

The derivative of g{x) with respect to x is a matrix,

:.;

- i

2 g, (x) i
g,(x) 3

N

g(x) = 3

gm(x) s "‘;;

- L %
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of dimension noxn. A amall change in x will be d=noted by
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end a first order change in g(x) due to change 6x in x is dencted
by 6g and given by

P

% 8x.

ég =

The CSDS method is derived from the Kuhn-Tucker Necessary Con-
ditions. A proof of this theorem may be found in [5]. It is atated
for future reference in this section as follows.

Theorem 4.1 Kuhn-Tucker Necegsury Conditions

Let the vectors
B T
3%
9z
» 1e{i: ¢,(z,x) =0}

+3

ek
ax

Q
=3
13,

[
L}

1’ 2, o.o,k

+3

-
o
m

{i: &i(z,z) = 0}

be linearly independent at the solution of preblem (4-2),

x = x* and z = z*. Then there exist multipliers uy 2.0,

i=1, ..., m, vy 2 0, 1 =1, ..., £, and Ai,
i=1, ..., k, such thet for

SR M AR R it s
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H= £(z,x) + ATh(z,x) + uT¢ + va, (4-3)
then 3H/ax = 0 (hli)
3H/5z = O (4-5)

u; =0 if ¢i(z,x) <0

and

at x = x* gnd z = z%,

v; = 0 if wi(z) <0

One could attempt to use equations (L-4) and (4-5) of the theorem to

construct solutions of problem (h-2), but it is very difficuit to

determine which of the inequelities are strict equalities at the solu-

tion when the number of cconsiraints is large. Instead, the theorem

wili be used in this section to develop a direct method of solving

the optimal design problem.

let x be an estimate of the solution to problem (L4L-2) and z be

the state variables associated with this solution. The purpose of

the method is to determine a small change in x, 6x, which will

decrease the objective function and satisfy the constraints., To

cbtain this goal, the problem is first linecri~<d about the estinmete

to the sclution (x,z) where h(z,x) = O.

When this is done, the fol-

lowing first order changes in the functions of problems (L-2) result.

of 3
6f = 3z 8z + T 6x

(4-6)

(b-7)

(-8)
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Gwi = 32 6z (4-9)

It should be remembered that the partial derivatives in equations
(4=6) through (4-9) are evaluated at the estimate (x,z) of the solu-
tion. The change in the design variables and the resulting change in
the state variables must satis?y h(z + 6z,x + 8x) = 0. Therefore

it is required that éh = 0. If st the estimate of the solution the
inequality constraints are violated, then changes §¢ i = A‘i’ and

G\bi = Atpi are requested such that these constraints will be satisfied
within the linear formulation of the problem. If ¢i(z,x) = 0 and
¥3{z) = 0 then it is required that &¢, = O and &y, = 0. In addition
the accuracy of the linear approximation must be guaranteed by insur-

ing that the step size remains small, Therefore it is required that
T 2
6x"wéx = § (4-10)
where £ is & small number and w iz a positive definite weighting

matrix. The linearized version of the problem may then be written as:

minimize -g—:- sz + g-i- ox (4-11)
subject to
LT RPN T R .
52 82 + 35 6x =\ (4-12)
8h sh . _ _13)
5, 8z +3-6x=0 (b-13)
-ai < -
s 8z = Ay (4~1k)
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sxiwéx = E2
where

¢ = {63 ¢,(z,x) > 0)
and v= (o ¥, (z) > 0L

(4-15)

The linearized problem is solved by fir'at eliminating the expli-

cit dependence upon 8z and then applying Theorem L.l.

In order to

eliminate dependence upon 8§z, the matrices XJ, )‘¢, and )\* are defined

such that

9 T LY _
32)‘

These matrices and equation (L-13) are used to obtain

T T
3t J° ok Jd 3h
azsz-x azézs-k a-éx
- T T
——a¢ ¢ -B-E R - ¢ .a_l_l- e
7 8z = ) 32 5z A X &
= T T
and N sz =Y B sz x ¥ By
9z 3z 9x

(4-16)

(4-17)

(4-18)

(4-19)

(4-20)

(k-21)

which then allcw the linearized problem to be put in the following

! form:
JT
minimize A" éx

(h-22)
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subject to

6T -
A 6x = A (4-23)
o -
AT 8x = Ay (k-2k)
T 2
ox wox = £2, (4-25)
JT T \PT
The matrices A , I\ , tud AT , are defined as follows:
T T
J _ o h = . J n
A = '5; - ‘a—x' A (h~;6)
~ T T
¢ .94 dh ¢ o
A ox ox A (4-27)
v_ 3Ty
and A" = - = AN (4-28)

Theorem 4.1 may now be applied directly to obtain the solution of the
linearized problem (L4-22) through (4~25). The taeorem states that

there exist multipliers u, v, and 7, and a function

T . .
H=Ad 6x + u(a® 6x - 2¢)
T, g - s
+ v (AT 6x - AY) + g{6x wéx - EZ) (k-29)
such that

T T T
B _ N, T4, T T _
m-\/\ + W AT +vAY +2rsxw= O, (4-30)

This expression can be solved for the required change in x, §&x,

ox = - -12—;—w"1(1\‘T + 2%+ a%). (4-31)

If equation {k-31) is substituted into equations (4-23) and (k-24),

one may solve for the multipliers v and v. These are given by

Lo

Sl SOTANS

vt NN




gy

¥
7
z
E
kX
é,
k>~
E
£
b

ol

Byt

Sy N oo
e oot v S S TaL il mj».,-"-h::mi‘ﬂiﬂwwa I

AG

-

B JRi

3]

T - T
-(A¢ wrlA¢)~l{2cA¢ + A¢ wrlAJ

y =
P R S P P PIT LI P R
-~ AY v Mww[chw - 2tAY v AT (AT wTATY g + MwJ]} (L-32)
and
-1, - ¥E <1 ¢, 4% -1.¢y-1 =
v = M, {2g8y - 2gAY w AT(AY wAT) A + M) (4-33)
vy W
The matrix M¢¢ and the vector MwJ are defined as follows:
T T T
My, = AV T - At Aty It iy (b-34)
T T T
My = AR S LI LR U U ST (4-35)

It 6 is empty, is not defined. Similarly, when b is empty the

B> My
product A¢ w-lA¢ is not defined, so that provisions musi, be made to
properly define equations (4-32) through (4-35) for all cases. This
can be done using the following definitions. If ; is empty, set

2% = 0, A® = 0, and A"Tw'lA¢ = I. If ¢ is empty, put £§ = 0, Ay = O,
and Mw = I. :hese definitions will reduce equations (L4-32) through
(4-35) appropriately. The multipliers (4-32) and (L-33) are then

used to write the required change in the design variables in the fol-

lowing form:
=3 .
&x = - 5C 6x1 Gxe,
where
-1 PO S B YO EPC I SR, ST
xp = w [T = A(A" w A7)A w 2(A" - A Mwiqu) (4-36)
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it iz

T T
v T - 2t eI It

8x, = v

o T
Lay - Y wﬂ1A¢(A¢ w~1A¢)-1ﬁ3]

T -
v (A% v 1A% ag.
The vectors le and 6x2 have the following properties:

T
lev6x2 =0

(4-37)

(4-38)

(4-39)

(4-50)

(-41)

(L-k2)

(-43)

From these properties and from (L4-36) it is seen that 8x, is &

projection of the gradient vector on the planes tangent to the con-~

straints and thus reduces the value of the objective function con-

sistent with the constraints. The vector 612 is a ecrrection vector

which directs the solution towards the feasible region.

Furthermore

these two vectors are orthogonal with respect to the weighting matrix

w end are therefore in that sense independent.

The properties of le and 6x2,

used to determine the parameter g.

and equetion (4-25), can be
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From this expression it is clear that ¢ is not arbitrary. In fact, it

depends on £ which from (L4-bh) must satisfy

g2 3_6x§w&x (4-k45)

2.
In addition, if there are no constraints or state variables, the

expression for 6x reduces to

and the move to @ new approximation of the minimum is in the direction
of steepest descent, 'Therefore, it is required thet 7 > 0, One pro-
cedure that can be applied to determine the size of step made in the

dirzction of &x is to choose £ and then use (L-lil) to compute .

Alternatively, one can use the following expression,
x = -néxl + Gx2

and choose n > 0 and small. The prooiem of choosing the step size
will bve considered further in the next section slong with other com-
putational considerations.

The constrained steepest descent technique has been developed
for probiem (4-2). The optimal structural design problem being con-
sidered ir this research has been cast in the form of problem (L-1)
vhich is included in problem (4-2) as & special case. All that is

required is to note that, since the objective function and the ¢

k3

S raeh ey o AN e

Aviid Bn 74 sl

.
§ ALy,

Al

Ty

LIMAR G s 2V 25

LU 7 AEBARI W h s me T T bl B4R Tk ALllr s e Ale b o




VYT IPFER TR 5 BRI TR ”’""""’T'“Wg

-
N

B e e

(RO

-’

et o

yervs TR TITEGL®TTIET TFEWAT TEMNEY TIEEY TW rev—ac e wmame— wv = meme s oon o

constreints are not functions of the state variables, AJ = 0 and
»® = 0 from equations (4-16) and (4-1T7).
This simplifies the expressions for i apa A® — equations (4-~26)

and (4-27). The remaining expressions are not chenged.

4.3 Computatioral Considerations

The general procedure for determining “he optimum of problem
{4-1) cr (4-2) is outlined dbelow.

(1) Make an estimate of the optimal design vector, x(c).

(2) Solve for the state veriables, z, corresponding to the

($)

design vector x of the current iteration.

(1) Solve (4-16), (4-1T), and (k-18) for A7, A%, and Y.

(4) Determine AJ, A¢, and Aw, from equations (4-26), (L-27),
and (4-28).

(5) Choose A¢ and A) and compute M pp 504 M, from equations
(4-34) and (4-35).

(6) Compute 8x) and éx, from (k-36) and (k-37).

(7) Choose n > 0 and campute

A N néx, + 6x,.

(8) Check for convergence and terminate or go to (2).

x

There are several points in the above algorithm that require furtner

coment. First of all, in the course of computations two matrices,
T

(A¢ w’lfx‘p) and M W’ have to be inverted and therefore must be non-

singular. Secondly, the quantities A; and AE; must be chosen. A
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third consideration is the choice of the appropriate step size as
determined by the choice of n, and a fourth concern is related toc the
tendency of the method to keep a constraint satisfied once it becomes
identically zero.

The tvo matrices of concern are pogsitive semi-definite., In the

computational procedure they are assumed to be positive definite.

L5

Exparience with the algorithm has shown that this assumption is almost

always valid. Certain pathologicel cases can ar’se, however, when
this is not true. An exsmination of equation (L-~34) shows that M¢¢
will be singular when the ceclumns of A* are linearly dependent. This
follows from the fact that the rank of a product of two matrices can-
not exceed the rank of either factor. Similarly, linear dependence
between colume of A® will make the product (A¢?v-1A¢) singular.
Examination of equations (4-17), (L4-18), (4-~2T7), and (L4-28) shows
that the matrices A¢ and A* are :losely related to the gradients of
the 4 and § constraints. For example, vhen the ¢ constraints are not
dependent upon the state variables (as in the structural problem con-
sidered), then the columns of the matrix 1\¢ are just the gradient
vectore of the violated or sativfied ¢ constraints. If these gradi-
ent vectors are linearly dependent thep it follows di -ectly that
(A¢T9-1A¢) is singular, Furihermore, the sssumptioas in the Kuhn.

Tucker necessary conditions are not satisfied. The matrix MW can

also become singular if A¢ 18 a square matrix. This will heppen

when the number of ¢ constraints violated is equal to the rnumber of
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design variables, The direct consequence is that the product

T R
~ A% w4 vl vecomes the identity matrix meking M, = O

w =
Other such cases could probtably be identified. The author's experi-

e

ence indicetza that these are the exception, rather than the rule,

and resulted from the introduction of redundant constraints or a pooxr

wan vy

choice of n in determining step size. 1In all cases the cause of the
singularity was readily identified and corrected without altering the
basic algorithm.

: Equation (4~37), which is used to compute 6x,, requires the
quantities A5 and Ay, The vector 5x2 is the correction component of
the vector 6x which directs the search for the optimum back towards
the feasible region. The magnitude of this correction depends upeon
the values assigned to the vectors A¢ and Ay, in the structural
design problem the values A$ = -5, and Ay = -5, wvere assigned, This

choice is simple and effective,

T

The value of n controls both the dircction and magnitude of the

change in the design varisble vector éx. Severel methods of choosing

n vere tried. The most successful. of these was to specify a maximum

nan vaanae e

value of n and to use n = n unless the constraints were violated

beyoni zertain preassigned limits., For example, for a maximum allow-

i able stress o. 40,000 psi, n = n was used unless the stresses

obtained using this value exceeded 44,000 psi. In other words a ten

.-

" per cent violation of the cuonstraints was allowed. This sped up cone

vergence by allowling bigger steps to be taken without excessively
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violating the constraints. If an ur-cceptable vioiation of the con-

straints occurred, the current value - f p was reduced by ten per cent
and tke constraints were checked again, This process was continued
until an acceptable value of n was obtained or until n became zero.

If this occurred, the value of n was set to 10-6 and computations were
allowed to proceed., A zero value of n is not allowed since at ot.er
points in the algorithm division bty n is required,

When an estimate of the solution is such that some of the con~
straints are exactly satisfied, the method demands that they continue
to be satisfied. It may be advantageous if the search for the mini-
mum is allowed to leave such a constraint. Theorem 4,1 states that
the multipliers, u and v, which exist at & solution, must be positive
or zero but that they csnnot be negative. .Therefore, at each guc-
cegsive iteratioa of the optimizstion process the multiplier vectors
u and v are computed. If eiither of these has compenents which are
negative, the constraints corresponding to these components are
removed from the appropriate constraint set $ or q;. This procadure
proved effective when the methed was applisd to the optimal siructural

desigp problem.

h.h  Convergence Critaxrion

A convergence critsvion must be established for Step (8) in the
algoritim of Section 4.3, It wiil be skown that, if the sequence of
sclutions ¢f she linearized problem convergea to a “ncal sciution of

the nonlinear problem, then thl = 0, The result is obtained by the
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direct application of the Kuhn-Tucker necessary conditicns to both the
nonlinear end the linearized problems and comparison of the resulting
eguations,

Theorem 4,1 states that at the solution of the nonlinear problem

(b-22) there exist multipliers

ui _>_0, i "‘1’ seey It
V,' :.0, i Sl’ X XYY L
m Ai” i al’ ...’ k

such that for

H = £(z,x) + A h(z,x) + uT¢(z,x) + vy(z)

then
W _af, Tom, T
ax-3x+)‘ TR 3x=0 (b-46)
B _3, T3, T T
TR TR T T 3z = 0 (b7)
uy = o ir cbi(z,x) <0

and v, =0 ifv.{z) < 0.

Define & and § such that
¢ = (8,2 ¢,(2x) 2 0} {4-k8)
p = fo;s wi(2) 201 (bL9)
and ﬁ and v which contaip only the componrents of y and v respectively,
corresponding to the constraints in ¢ end §. Using this information,

equations (4=46) and (s-2T) can be written in the follcwirg form,




B k9

B gV e a0 (4=50)
z {
¥ ‘:) ::+AT dh+uT§9-+ T-!--O. (h=51)

Using equations (4-16) through (4-18), equation (L-51) may ve

Equation (L-53) may be used to eliminste A from equation (4-52) to

% written

£ W, + x‘ B, Ly (4=52)
3 3! - 3 oz 9z *

i .

; The matrix -g-% is nonsingular, therefore

2 . Weaeatsa¥ =g, (4=53)
4

2

A obtain
32 _ (JT . é° ST, ah, T 3§
Tx—-(A st +af ) =e iyt 2ao, (4=5k)

Collecting coefficients on u and v, and using equations (k=26) through

(b-28) yieids,
i A% = (a7« AY9), (4=55)

T
It equation (4=55) is premvltiplied by A* v~1, the following expression

for u is obtained

o VIR 4 A% (4-56)
T

It should be noted that it bas been assumed that (A* v'lA’) is nop-

*E singular., If equation (k=56) is substituted into (k-55),

5

- [z- WSO T o %] m 0 (hesT)

is obtained. Premultiplying oy I\ v'l and using eguations (4-3k) and
(k-35), equation (k-57) becomes

- — e e - e —— L e ———————— .~ -
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Y -
v .b(;*u-“o (,‘ 58)
As © result equation (U=57) may be written

T T
- A% w2 0N - A D =0, (R-59)
W oW
Therefore by equation (k-36), at the solution of problem (i-2), it is
necessary that &x, = 0, Furthermore in the limit ¢ = 0 and ¥ = ()

30 thet A¢ = 0 and Ai: » 0 and by equation (k-37), 6:2 = 0, 8ince

&x = =ndx, + &x,, (k- 50)

éx must also approach zero if the procedure converges. sSatisfiction

of this criterion is used in the algoritim given in th: next zection.
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L.5 CSDS Algorithm

The following algorithm is an expansion of the procedure defined

in Section 4.3 and incorporates the additional features discussed in

Sections
(1)
(2)

(3)
(%)
(5)

{6)
(1)
(8)
(9)

(120)
(11)
(12)

(13)

4.3 and L.k,

Estimate the optimal design vector, x(o) .

Determine the state variables z corresponding to the
design variables of the current iterat’.n, x('j).

Solve (4=16), (4-17), and (4-18) for 2%, 2%, and A",
Determine § and .

Determine A7, A?, and AY from equations (4-26), (4-27),
and (L-28).

Choose A¢ = "5;: and A\I:i = -i:i,

Compute MlP v and M‘J’J from equations (4=34) and (4=35).
Determine the multipliers p and v from (4-32) and (4-33).
If any of the components of u and v are negative, remove
the corresponding constraints from the sets ; and ; and
return to Step (5). If all components of u and v are non-
negative, continue.

Compute &x, and éx, from (4-36) and (k-37).

Choose n = Nax®

If n<0, set n = 10-6 and gc to Step (15).

Compute

x‘j"':L = x‘j - nde1 + Gxa.

51
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(14) Ccmpute the values of the constraints for L, 1 the

conttraints have been violated eacessively, reduce n and
return to Step (11), othervise centinue.

(15) 1f &x, < € LT 1, evsy n terminate. Othervise return
to Step (2). -

The application of this aigorithm tc the optimal structural

design problem, and the ensuing resultis, are discussed in Chapter V.,
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CHAPTER V
APTLICATIONS

5.1 General Discussion

The optimization methods presented in Chapter III and Chapter IV
wer. applied to the design of several two and three member frames sube
Jected to.a veriety of loada. In order to aid discussion the frame
members and loads are numbered as shown in Figure 5.1 and Figure 5.2.
All dimensions and limits on dimensions are given in inches, the loads
are in pounds ard the stresses are in pounds per square inch. In
Section 5.2 asd 7.3 & generel descr >tisn of the frames to be opti-
mized is given. Sections 5.4 and 5.5 present a brief discussion of
the programs used and some asyects of their spplication. The result-

ing designs are presented and discussed in Sections 5.6 and 5.7.

5.2 The Two Member Frame

The two nember frames vhich were ¢ptimized are shown .n Tables
2.1 through 5.10. In each case thers were six design variadbles te
be datermined, ten state sariables, and sevexteen constraints to be
satisfied. Tbhe design variables are the well ttickness, t, width, b,
and height, h, (see Figure 2.2) of each nmember. These variaules must

satisfy the following ipnequslities for the i?'h newber:
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0.1 < ti.f_ 1.0
2.5 £ b, £10.0 (5~1)

2.5 < h, < 10.0.

The state variables are the three displacement componente of the
Joint, the torsional stress in each member, and the bending streases
at the five critical points of the structure, The critical points
are the ends of each member and under the applied load. The stresses

must satisfy the follewing inequality at the ith critical ypoint:
Vof + 312 - 140,000 £ 0 (5-2)

where o is the normal stress due Lo bending and T 1 is the shear
stress due to torsion at the point.

The sequential unconstrained minimization techaligue and the
method of constrained steepest descent with state equations were both
applied to the two member frames, The compsrative effectiveness of

these two approaches is diccussed in Section 5.6,

5.3 The Three Member Frame

The three nmember frames cptimized are shown in Tables 5.11
through 5.17. For each frame nine design variables were chosen sub-
ject to eighteen design variable constraints. There are eighteen
state variables and twelve stste variable constrainis. The design
variables are the same as those for the t{wo member frame. The state
variables consist of six Jjoint displecements and twelve stresses,

The stresses are the torsional stress in each member plus three
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critical bending stresses in each member occurring at the ends or
under the applied load. For the frames in Tables 5.11 through 5.15,
the stresses at the ith critical point were required to satisfy the
condition (5-2), and the design variables were required to satisfy
(5-1).

The dimensions and loads shown in Tables 5.16 and 5.17 were
chosen to approximate a frame thet the author encountered in an
industrisl application. In both cases the stresses at a critical

point are reguired to satisfy the following condition:

\/o§ + 3t - 20,000 £ 0. (5-3)

The design variables for the frame in Table 5.15 satisfy
«109 < ti < 1.0

2.0 £ by < 10.0 (5-l)

6.0 <h; £10.0 for 1 =1, 3,

25 <t 1.0

2 2
3.0 £ b, < 10,0 (5-5)

3.0 < h, < 10.0.

The design varisble constrainte which the frame in Table 5.16 satis-
fied are,

.109 < %, < 1.0

1
2.0 £ b; < 5.0 (5-6)
6.0 < by < 12.0

for members 1 and 3, and {5-5) for member 2.
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Because of its superior perforrance on the two member frames,
onLy the method of constrained steepeat descent with state equations

was used in the cptimum design of the three member frames.

5.4 The SUMT Program
The sequential unconstrained minimization technique was pro-

gramaed using the algoritims of Sections 3.1 and 3.2. Acceleraticn
by extrapolation was included and proved to be effective both in
decreasing the number of function evaluations and in giving better
convergence to the optinum, but only when the cai:.lations were done
in double precision, Fiacco and McCormick alude to this when they
discuss the significant effect of round-off error in the extrapola-
tion procedures.

Certain safeguards must be introduced into the prougram to insure
that the search for a minimum always takes place within the feasibie
region as required by the develomment in Chapter III, In the
Fibonacci search increasingly larger steps are taken until the mini-
mum is bracketed. When the minimum is near the boundary of the fea-
sible region, it is possible for a step to violate a nearby con~
straint., Therefore any time a new step is taken in the optimization
process & chetk must be made to see if a constraint has been violated.
If viclation occurs, then sppropriste measures must be taken to return
the search to the feasitle region. Thesc procedures are ad hoc aad

significantly reduce the efficiency of the unconstrained miximization.
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Three convergence criteria, €ax? &p" and €y,a must be chosen for

SUMT. Of these € should have the smallest velue, siuce the greatest
accuracy is required in the minimization of a functiou along a line.
€ax cannot be less than the values of sither sp or €. The choice of
these parameters significantly affects the convergence of the method
and in almost all cases experimentation was required before e satis-

factory set was obtained.

5.5 CSDS Program
The constrained steepast descent program was written usiug the

algoritim of Sectior 4.5. All computations are dore in double yre-
cision and the program is written so that the required derivatives
can be computed cxactly or from finite difference approximations.
Derivatives of the state e~wwstions, constraint functions, and objec~-
tive functions are required by the algoritim., The derivatives of the
state equations with respect to the deaign variables are the only
derivatives approximated since the remaining functions are simple and
the derivatives can be computed exactly without undue effort. Each
frame shown in the tables was optimized using both exact arnd approxi-
mate derivatives. A simple forward difference scheme was used ini-
tially to obtain the approximate derivatives, Some difficulty was
experienced but results were improvad when the interval of the approxe
imation was reduced, Still, for same three member frames, the method

did not converge properly when the derivatives were spproximated.
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This problem was eliminated at the expense of more function evalu-
ations by using a central difference approximation.

Two parameters, €y and Mnax? must be chosen when the program is
used. n e is the mazimum step size allowed and €, is the convergence
criterion, A value of e = .1x3.0"h was chosen, This is scmewvhat
more stringent than the value of €ax used is SUMT; but if the method
converges at all, it has no difficulty satisfying this criterion.

Some minimal experimenting may be neceasary to choose n max For large
values of Noax fewer iterations are required if the method converges,
but sometimes situations may be creasted which the algorithm cannot
correct. These are immediately apparent and eesily eliminated by

reducing the value of n .

5.6 Applicstion to Two Member Frazes

Three different design problems are shown in Tables 5.1 throwgn
5.10. These designs were optimized using both the sequentisl uncon-
strained minimization technique aps the method of constrained steepeat
descent with state equations, The frame shown in Tables 5.1 ithzough
5.4 has members of different lengths with the lowi applied at the
joint, The computation time for the solution vaing SUMT (Table 5.1)
is considerably greater than the time required using CSDS {Tables 5.2
through 5.3), ever though the convergence criterion €ox for SUMT is
considarably less restrictive than the criterion €, used in CSDS. In
SUMT the state of the structure is ccmputed for each function evalu-

ation. In CSDS the state is computed about %ten times per iteration.
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Using this value the number of functional evaluations reguired for

RN i

X

. the design of Table 5.3 is sbout 140 compered to the 8,633 ~vaiu~

» s
~

ations required for SUMT, The results of Tables 5.1 through 5.3
chow thar different starting velues converge to the same minimum,

E Howavar, when the starting wvalues of Table 5.1 were used in the CSDS
method, another iocal minimum was obtained. This is not surprising
in view of the nonconvex nature of the programming problenm.

Another frame was optimized using SUMT (Tables 5.5 through 5.6)
and CSDS (Table 5.7). The large difference in computing time for the
two methods is again apperent. Starting from the same values, the
two methods converged to two different local minima. Several
attempts were made to start in the neighborhood of the minimum deter-
nined by SUMT using CSDS, but the latter technique always converged to

the symmetric results of Table 5.7. An additional trial (Table 5.6)

T R R T e e RS

Ril

was made using SUMT with a starting value in the neighborhood of the
symmetric solution. The resulis are close to those of Table 5.7.

< 2 The volume is smallest for the symmetrical design.

The third two member frame that was optimized is shown in Tables
f‘ 5.8 through 5.10. Two trials using SUMT and one using C3DS were made.
| The resulting volumes do not differ greatly, but the design varialles
show significant differences., About 840 funittion evaluations

_‘ (assuming ten per iteration) are reguired when CSDS is used covpered

to 11,610 required by SUMT (Table 5.9). The amount of computing time

required shows a similar advantege for CSDS,
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The results shov that the method of constrained steepest descent
with astate equations has significant advantages over the sequential
unconstrained minimization technique. DBoth the computation time ard
the mmber of times that the state of the structure must be evaluated
are considerably less than those required for SUMT. Furthermore, the
same resulis are obtained with or without the exact calculation of

derivatives,
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gp = 39,945 psi. at 1

P = 10,000 1b.

Initial Optimu
Values, in. Values, in.
€ = .1x107° % 0.9 0.1010
sx 1
=} .
ex = ,1x10 bl 9.0 2.5070
=5
el = ,1x10 hl 9.0 2.5070
ta 0.9 0.1012
b2 Q.0 9.423k
h2 9.0 9.9827
3 .

Volume, in? 4,374.00 291.59
Number of iterations 6
Computing time, sec. 370
Number of function evaluations 8,633

TABLE 5.1 Optimum Design of a Two Member Frame Using SUMT
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o, = 40,000 psi. at 1

P = 10,000 1b.

"
100 \/ 50"

Optinun Values, in.
Initial Obteined Using
Values, Exact Approximat
in. Derivativesi Derivatives
n = ,1 t 0.10 0.10000 0.10000
max 1
e = lxlo-h
x ° 'b1 2.50 2.50000 2.50000
hl 2.50 2.50000 2.50000
t2 0.11 0.10000 0.10000
b, 10.00 9.52614 0.5261L
h2 10.00 10.00000 10.00000
Volume, ind 313.58 289.26 289.2€
Number of iterations 9 9
Computing time, sec. 20 20

TABLE 5.2 OJptimum Design of a Two Member Frame Using CSDS
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i
) &\ P =10,000 lb.
100" e }
”n Py
o, = 40,000 psi. at 1 :
Initial Cptinum Vf.luei::, in.
Values, Exact Approximate
in. Derivetives|Derivatives
n = .1 0.11741 0.1C000 0.20000
€ = .mo"‘ 2.52k46 2.50000 2.50000
2.5217 <+350000 2.50000
0.22061 0.10000 0.10000
3.2585 9.52614 9.5261k
3.25L4 10.00000 10.00000
Volume, ind 246.93 289.26 289.26
Rumber of iterations 1k 1k
Caaputing time, sec. 1k ik
TABLE 5.3 Optimum Design of a Two Member Frame Using CSDS
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P = 10,000 1b.
v
lOO"\L/ J
50"
3 g, = 40,006 psi. at 1,2
k! '
E Optimum Values, in. i
E Initial Ovtained Using
Values Exact Approximat i
4 Derivatives | Derivatives i
3 £
gy = o1 ty 0.9 0.12373 | 0.123713 i
e, = J1x107Y b, 9.0 10.00000 | 10.00000 ‘
B k
: by 9.0 10.00000 | 10.00000 ;
E t, 0.9 0.23599 | 0.23598 ;
3 v, 9.0 10.0000¢ | 10.00000 i |
| b, 9.0 2.50000 | 2.50000
4 3
- 3
g ) $
B
Volume, ind I, 374,00 732.59 733.59 i
i
gl Number of iteraticns 19 19 3
: .; %
E Computing time, sec, 18 18 3
3 TABLE 5.4 Optimum Design of & Two Member Frame Using CSDS g
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P = 10,000 1b.

100" '\I/ 100"

O, * 39,998 psi. at 1

e = .1x2072

e, = .1x10"

= .1x10‘h

Initial
Values, in,

Optimum
Values, in,

0.9
9.0
9.0
0.9
9.0
9.0

0.1002
2.500k
2.5005
0.1971
$.9969
9.9981

Volume, inl

5,832.0

866.87

Number of iterstions

10

Computing time, zec.

150

Number of function evaiustions

5,598

TABLE 5-5 Optimum Design of a Two Member Frame Using SUMT
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P = 10,000 1b.

100'\ 100"
o, = 39,998 pei. at 1,2
Initial Optimum
Values, in¢ Values, in.
= .1xi0~2 t c.1 ©.100
esx . .15 . T
g = .ix10™3 b 9.90 9.9938
g = .mo"‘ h 9.90 9.9978
t 0.15 0.1007
b 9.90 8.9359
h 9.90 9.9976
Volume, in3 1,170.00 775.89
Number of iterations 11
Computing time, sec. 353
Kusber of function eyaluations 10,414

TABLE 5.6 Optimum Dezign of a Twc Member Frame Using CSDS
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o, = 40,000 psi. at 1,2

P = 10,000 1b.

100" \ /

100"

N Optimum Vslues, in,
Initial Obtained Using
Values, Exact Aoproximat
in, perivatives | Derivative
Nax = ,1 tl 0.9 0.10000 0.100G0
e, = .10 b 8.0 9.54738 | 9.54738
hl 9.0 10.00000 10.000C0
t2 0.9 0.10n00 0.10C00
b2 9.0 9.54738 9.54738
h2 9.0 10.00000 10.00000
Volume, %a3 5+832.00 T73.89 773.89
Number of iterations 15 15
Coputing time, aec. 22 22

TABLE 5.7 Optimum Design of a Two Member Frure Usiz;g SIS
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P = 10,000 1b.

so"

~_ \L/ 5o

Op = 39,994 psi. at 1

Initial Optimum
Values, in{ Valuves, in.
e = .1x107% t 0.2 0.100
[:3'4 1 ’ *
e, = .1x1073 by 5.0 4.319
g, = .1x10°h hy 9.0 3.253
t2 0.2 0.100
b2 3.0 2.502
h2 9.0 9.075
Volume, ind 776.00 362.07
Number of iterations 9
Computing time, sec, 310
llumber of furction evaluatio. s 31,251

TABLE 5.8 Optimun Design of a Two Mambar Frame Using SUMT
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r\ P = 10,000 1b,
? ,‘ 50"
11
| Ay,
f 100" J
\L/ 50"
- Op = 39,994 psi. at 1 '
o Initial Optimum
. Values, ind Values, in.
= .1x107t t 0.9 0.100
§X ¢ 1
‘ e = .1x1073 b 9.0 %.196
,r§ X L 1
g g, = .1x10 hl 2.0 8.280
t, 0.9 0.100
b, 9.0 2.502
5 n, 9.0 9.381
H 4
3
; Volume, in3 5,832.0 363.18
L Nunmber of iterations 9
Computing time, sec. 385
: Number of function evaluations 11,610
4

TABLE 5.9 Optimum Design of a Two Member Frame Using SUMT
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P = 10,000 1b,

]

150"
\*/ 50"

A A RS

2 g b P YIRS

gp = 40,00C psi., at 1 7
Optimun Values, in. 5
4 Initial Obtained Using
i Values, Exact Approximat ’
g in. Derivatives | Derivatives

i

. n = .1 t 0.9 0.10000 0.10000

s AR M ErY

s e_ = .1x10 b 9.0 b.40827 | b.ho82T
hy 9.0 8.58807 | 8.58807 ;
t, 0.9 0.10000 0.10000 ]
{ b 9.0 2.50000 | 2.50C00

9.0 8.07038 8.07038

:
Volume, ind 4,374.00 359.63 359.63

- Number of iterations 8k 84

Computing time, sec. 12 T2

(3

o

TABLE 5.10 Optimue Design of & Two Member Frame Using CSDS
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5.7 Application to Three Member Frames
The results of Section 5.6 show the advantages of the method of

constrained steepest descent with state equations over the sequential
unconstreined minimizetion technigque when optimization without conm-
puting exact derivatives is required. Furthermore, as the number of
de3ign variables is increased, SUMT will become incressingly more
difficult to apply because of the pature of the algorithms used %o
determine the unconstreined minims, Therefore, the optimizstion of
the three member frames was carried out by using only CSDS,

A variety of symmetrical and unsymmetrical load sets were
appiied to seversal different ?;hree menmber Iframes. The minimum weight
designs obtained are shown in Tables 5.1l through 5.17. The agree-~
ment between designs obtained using exact and approximate derivatives
is particularly noteworthy. Thies was improved during the course cf
the applications by introducing a central difference formuis to
approx.mate the derivatives of the atate equations. The improvement
that resulted may be seen by comparing the resuits of Tables £.13
and 5.1%. The designs of Tebles 5.15 through 5.17 slso show the
value of this medificaticn, since the resultg for these frames using
exact and approximate derivatives agree exaatly,

The application in Teble 5.12 iilustrates another very useful
featuwre of C3DS, In this case the method did not converge within the
naximum ellowalle itoraiions, bub the value of éx had decreassd and

wag of the order 10'2. Thus, the necesssry condition tlat éx = Q
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(Section h.4) is approximately satisfied, indicating that the results
are probably in the neighborbood of a minimun weight design. Conse-
quently, further iterations are not absolutely necessary. Another
feature of £SDS skown by the results is that constraints may be satis-
fied exactly. In SUMT (see Section 5.6) constraints are only approx-
imately satisfied.

An unsymmetrical fraue (Table 5.15) required several attempts to
obtain the design shown. This is not ‘uncommon in that some experi-
mentation is almost always required to choose € and Max properly.
Furthermore an unfivorable sterting point mey be inadvertently chosen.

The designs pre::enteé in Tables 5.16 and 5.17 illustrate the
dependency of the results both on the configuration of the tasic
frame and the assigmment of the design variable constraints (see

Secticn 5.3).
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o, = 40,000 psi, at 1,2

P

-——”””’—"”—P = 10,000 1b.

= 10 000 1N

>

Optimum Values, in.

. Initial
Values, Exact Approximat
in. Derivatives] Derivatives
Moy .1x107t t 0.9 0.19816 | 0.19816
g, = .1x10‘h b, 9.0 10.00000 10.00000
hy 9.0 10.00000 10.00000
t, 0.9 0.15000 0.10000
b, 9.0 2.50000 2.50000
h, 9.0 2.50000 2.50000
t3 0.9 0.19816 0.19816
by 9.0 -10,00000 10.00000
hs 9.0 10.00000 10.00000
Volume, in3 8,748.00 | 1,649.85 | 1,649.85
Kumber of iterations 26 30
Computing time, sec. 84 100

TABLE 5.11 Optimun Design of a Three Member Frame Using CSDS
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) / é& P= 10.000 1lb.
1 i\ r“’so"
100" '
\'r/,/ 100
0p = 40,000 psi. at 1,2,3
Optimum Values, in.
Initiel Obtained Using
Values, Exect Apprcximatj
in. Derivatives; Derivative
Mo = .5x10"2 ty 0.9 0.10k49 | 0.10408
{
e = .1;:10‘h by 9.0 9.02133 9.06760
‘ hy 9.0 10.00000 | 10.00000
t, 0.9 0.10000 0.10000
3 b, 9.0 5.64220 5.642938
h, 9.0 7.87559 | T.87507
Q tq 0.9 0.10bk9 0.20408
3 by 9.0 9.02133 | 9.06760
" hg 9.0 10.00000 | 10.00000
| Volume, in3 8,748.00 |1,052.66 | 1,051.52
'i§ Number of iterations 50 (1imit) | 50 (1imit)
»; Computing time, sec. 93 93
TABLE 5.12 Optimum Design of a Three Member Frame Using CSDS
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= 10'000 1b,

P = 10,000 1b.

100" =~ / 100
Op = 40,000 psi, &t 1,2
Optimum Values, in.
Initial Obtained Using
Values, Exact Approximatej
in. Derivatives| Derivetives
nma.x = 0.1 tl 0.2 0.19908 0.19913
_
e, = .1x10 * b 9.0 10.00000 | 10.00000
hl 9.0 10.00000 10.00000
t2 0.9 0.10000 0.1000C
b2 9.0 2.50000 2.5000C
h2 9.0 2.50000 2.50000
tj 0.9 0.19908 0.19913
b3 9.0 10.00000 10.00000
) hy 9.0 10.00000 | 10.00000
Volume, in3 8,748.00 ]1,656,91 |1,657.30
Number of iterations 16 78
Computing time, sec. L1 195

TABLE 5.13 Optimum Design of a Three Member Frame Using CSDS
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o, = 50,000 psi. at 1,2

2

P = 10,000 1b,

100" \1/ :l.(')()"_’—/"‘1

P = 10,000 1b,

i . Optimum Values, in.
Initial Obtained Using
Values, Exact Approximate
in. Derivatives] Derivatives
nma.x =,1 tl 0.9 0.19908 0.19908
€ = .lxlo-h bl 0.0 10.00000 10.00000
hl 9.0 10.00000 10.00000
t2 0.9 0.10000 0.10000
’b2 9.0 2.50000 2.500C0
h2 9.0 2.50000 2.50000
ts 0.9 0.19908 0.19908
b3 9,0 10.60000 10.00000
h3 9.0 ~.00000 10.00000
VOlume, 1n§ 8.7&8.00 1.656.91 19656.91
Number of iterations 1L 1k
-
Computing time, sec. 48 48 \

TABLE 5.1% Optimu Design of

8 Thres Memiuer Frame Uriug CSDS
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3 j i} r\so.‘. P = 10,000 1%,

100".___
~— se"
g, ~40,000 psi. at 1

& Optimam Values, in.
& Initial Obtained Using
3 Values, Exact throximate
’; in, Derivatives Derivatives

B -l Y
| My = - 1X10 ty 0.9 0.10000 0.10000
¢ e, = +1x10™" by 9.0 9.53870 | 9.53870
| h, 9.6 10.00000 | 10.00000
E
3 t, 0.1 0.10000 | 0.10000
1 b, 2.5 2.50000 2.50000
1 h, 2.5 2,50000 | 2.5€000
E ty 0.1 0.10000 0.10000
2 b, 3.0 2.50000 | 2.50000
E i g -
B hy 3.0 2.50000 2.50000
A
3 Volume, in} 3,051,00 506.77 506.77
Number of iterations 32 32
Computing time, sec. 80 80
£ )
'3 - TABLE 5.15 Optimum Design of a Three Member Frame Using CSDS
E
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0, = 20,000 pei. &t 1,2

76.06"

\4/ 38,51

Optirum Values, in.

Initial Obtained Using
Velues, 3 Exact Approximat
in, Derivatives Derivative:
Mo = -2K07T |ty 0.9 0.1339% | 0.1339%
€, = .1x10'h b, 9.0 10.00000 10.00000
By 9.0 10.00000 | 10.C0000
t, 0.9 1.00000 1.00000
b, 9.0 3.00000 3.00000
32 9.0 3.00000 3.00000
ty 0.9 0.13324 0.1339%
b, 9.0 10.00000 | 10.00000
' hy 9.0 106.00000 | 10.00000
Volume, in3 5,471.00 1,088.05 1,088,05
Humber of iterations 35 35
Computing tine, sec. T7 1T

TABLE 5.26 Optimum Design of a Three Member Frame Using CSDS
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Lo ), P = 564 1b.
1 / —_— 2 P = 564 1b,
l \y
" 1
76.06 \‘, 35'5"
/
op = 20,000 psi., at 1,2
Optimum Values, in.
Initial Obtainea Using
Valies, Exact Approximat
vetives | Derivetive
Mook = 2x107t | b 0.9 0.20687 | 0.20687
€, = .lxlO-h bl 4.9 5.00000 5.00000
» hy 11.0 12,00000 { 12.00000
s' t, 1.0 0.25000 0.25000
i b2 16.0 3.00000 3.00000
1
h2 9.0 3.00000 3.00000
) t 0.9 0.20687 | 0.20687
< 'b3 4.9 5.00000 5.00G00
; hg 11.0 12.00000 | 12.00000
i Volume, in3 5,067.81 1,141,552 |1,141.52
Number of iterstions 28 28
Ccmputing time, sec. T0 TO
- TABLE 5.17 Optimum Design of a Three Member Frane Using CSDS
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CHAT JER VI

CONCLUSIONS

The results of Cbhapter V show that a class of spatial struziwres
can be optimally designed by the method of congirained steepest
descent with state equations. In particular, this method appears to
te superior to the sequential unconstrained miniiaization technique
vhen necessary derivatives cannot be computed exactly. The class of
problems which can be sulved by the methcd is broad and includes
those structures that can be analyzed by matrix displacement and
finite element methods.

In large measure, the effectivenegs of CSDS resuits from the
fact that its fermulation 30 clocely matches the esaential features
of the original design problem. This is & more natural approacn to
the problem and leaves the associated functions in their mcst simple
form, Other progremming methods tend to complicate the formulation.
In SUMT the surface created by adding a penally term to the objective
function exhiblis characteristics that even the most rybuast uncon-
strained minimizevion techrniquec have difficulty csping with, In

other approechsa . - state equations are used to write gll of the cone
streints as funciions oY the design varishles; sz a consequence, comw=
plicated monlinear functions are ¢btained. Another method defines

the set of optirization varizhles to consist of the design variables
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plus the state variables. For the structures considered in tnis
research, minimization problems of dimension sixteen sand twenty-
seven would result, Such problems are formidable perticularly when
the minimizetion must be accomplished without calzsulating derivetives.

The method of ccrstrained steepest descent with siate squations
avoids these pitfalls because the state equations ard constrainis
involving the state variables are ircluded directly in the formuls-
tion, Consequently, a great deal of flexibility is introduceé into
the solution since the fuactions are retained in their simplest form.
Therefore, derivatives are approximated only when i% is sbsolusely
necessary since, in the case of simple functions, derivetives nay be
camputed exactly without andue effort.

CSDE 1is an effective solution to the optimus structurzl design
problem for two additiopal ressons. First of all, much o” the "art”
is removed, since only two pursmeters must be chosen = Tmax and £ypo
In SUMT thore are five = €ayd cp, €2 Tps and C, Therefvre, the
amount of numerical experimentstior that must be done for s given
prodblem 1is greatly reduced. Secondly, the proceziure has been written
so that existing structural ansiysis techniques can be used to fuil
advantage. Congsequently, cwrrantly availabie slgorithms besed on
matrix displacement and finite element Techniques may be used in the
optimizaetion grocedure witk minimal e?fort for sdaptation.

In this resesrch, a baslc configuration of the siructure wes

first chesen and then the dimersloans of individual nembers were
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determined using methods of optimal design. There are same interw
esting veriations of this problem vhich may stimulate further inves-
tigation. These variations involwve both the structure and the luading.

Structures of greater complexity can be generated by innreesing
the number of the members or incressing the mmber of design vari-
ables per member, Ia the firet case, the metheds developed in this
research apply directly, since the basic form of the functions
involved is not changed. The incorporation of existing structiral
analysis algorithms would be a natwral way of ceping with the
increased size of the problem, An example of the second case is the
introduction of linesr variations of the height and width of the mem=
bers. A problem of this f:.:{pe will require an effective means of
determining the points of maximum stress in the structure and more
extensive pumerical work in the structural analysis.

The optimum design problem can be formulated to include the
basic configuration cf the structure by adding the lengths of the
memvers as design variables, This ¥iil increase the complaxity of
vhe functions inveclved. For exemple, the objective functien will be
& cubic in the design variables,

In practice, spatial structures may be subject to a variety of
racdonly applied leads. In addition, the sheie variable constraints
usy chenge for different loadings. An ojtimal desiga procedure for
gpatial structures with multiplie load sets apd muitiple constraint

sets should be developed for this type of problem.
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The method ¢f conatrained sterpest descent with state eguations
may have to be extended or modified to effectively solve scme of

these prcblems. For exsnple, steepeet descent methods converge

slovwly when the cbjective function hes a long velley. Several
methods have been develcped to deal with problems of this type in
unconstrained ninimization and perhaps modificatiors similar to these
can be introduced into CSDS. The methed is certeiply not limited to
structural design, but may te appllied to = wide variety of finite
dimensional design problems. The magnitude snd complexity of the
prcblems that this method can successfully solve is nst yet known

and should be investigated furtber.
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APPENDIX

STRUCTURAL AHALYSIS

A.1 The Basic Equations

The structural analysis used in this research follows a method
discussed by Langhaar [11], T-e analysis of a two member frame will
be done in deteil to illustrate the application of the methcd, The
equations and associated matrices required for the snalysis of the
three member frame will then be showm,

Coigider the two member frame in Figure A,1. The horizontsl
frane is composed of hollow rectangular members which are joined
perpendicular to each oth'ln'. The Joint is rigid and transnits sheur
force as well as bending and twisting moments., The load, P, is
applied normal to the frame at an arbitrary point along member (1,2),
This point is denoted in Figure A,1 as point 4, The members are
clampad at pointas 1 anl 2, The reactions at these points are show:
on the free body diagram in Figure A,2, The deformation of the frame
is completely described by the displacements at joint 2, These dig-
placements are the vertical deflection of point 2, and the rota-
tions of the joint about the axes of the two members,

The behavior or state of the frame is specified by the value
of the wmaximum railure strese occurring in the frame, This failure
stress is calculated from the maximum distortion energy failure cri-

terion using the following expression:
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FIGURE A.l Two Member Froxa and Typicali Meuber Cross~Section

FIGURE A.2 Free Body Diagram for Two Member Frame
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vhere o is the bending stress and 1 is the shear stress vhich results
from twisting the members., Twisting moments are applied ouly at the
endsj therefore, the shear stress due to torsion is constant along
the members, The bending moment varies along a member but will be a
maximum either at the ends or under the applied load, since the cross-
section is constant,

The failure stress will be a maximum when the bending stress is
o maximum since ithe torsional sheax stress is constant aiong a given

member, Consequently, the maximrr velue of o, must cccur at cone of

b ¢
five points on the two member frame, The five possible points are the

ends of each member and wider the applled load, A frea body diagram
of member (1,2) is shown on Figure A.3. The tvwisting moment at any

section is

T=T (A=2)

and the bvending moments at the three critical points are:
at point 1 (x = 0)

M= <M, (h=3)
at yoint 4 (x = clh)

M= +RC,,
aud at point 2 (x = C_,)

M= M +RCy, = P(C, =Cp).

Similarly, for member (2,3) (see Figure A.5), the twisting moment at
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any cross-gection is
and the bending momeats at the tw criticel points are:
at point 3 (x = 0)
M= -M3o {A-5)

and at point 2 (x = c23)

M= ..u3 + 33023. (A=6)

The shear stress due "5 transverse loade hac been neglected,

The bending stresses are compvted from the equation

o= }ﬂ%ﬂ . (A-T)

vhere M is the bending moment, h is the height of the rectangular
section, and I is the area moment of inertia of the section, Using
the theory of torsion of thin tubes, the torsional shear stress is

obtained as

T*Ef}:c-. (A=8)

- where T is the twisting moment, A is the cross-seciional ares, and ¢

is the thickness of the tube, The stresses can be calculated using

- equations (A-~7) and (A-E) if the ena reactions of the members are

known.
The {rame member shown in Figure A.,5 is subject to bending and
twisting. The strain energy due to bending may be written in terms

of the displacements of the ends of the member,
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Free Body Diagram of Member (2,3
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FIGURE 4.3 Free Body Diagram of Member (1,2)
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U= x{ai +9.0,+ eg - 3@(91 + ez) + 3¢2] ¢ coset {(A<9)

- I
wasre G“-&f}' and Kzg-?-.

The strain energy due to torsion is

U=zl (A=10)
where a 18 the ralative angle of twist between the enmds of the mexber,

The potential cmergy of the extornsl loed is

L
0= »...S pyex, (A=11)
0

vhere both p and y are funetions of x, For the problams discuszed
herein p is & concentrated load. The deflection, y, mey be written
a8 & function of the end displscensnts sz follows:
x2 %3
TRy, f 8% - (28 ¢ vy - 34) T+ (8, +8, - 2¢) §+ const,
. (a-12)

/

Equations (A~9), (A~10), and (A<1l) ere used to ohbtain the total potan-
tial energy of the frame and the applisd loads,

V = Up + Oy (A-13)

whare UT ie the totel strain energy, snd ﬂT is tae total potantisl
energy of the externsl loads. By the principle of stationary potential

energy, the required conditious for equilibriwm ars that

= i ’], 23 ese Ny (A-iié)

vhere the q, are generslized coordinates (the three displacement
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couponents at point 2). Equation (A~1h) represants a set of n simul-
taneous linear equations in the r unknownm ganeralized coordinstes,
Once the deflections have been determined, the end reactions may

be computed using the following:

Pab*

M, = oK(20, + 8, - 39) + -;-2- (A=15)

M, = =K(3; + 20, = 34) = -?-2-23 {A=16)

31’“'%'(91*62’2’)*'2&%;% (he27)

and 82:-%(914»92-2”-1‘3%-1&1. (A28}
L

It should be noted that it is not necessary to write siniis> expres-~
sions for the twisting momeénts. Due to the relationship of action
and reaction, the tvisting moment in one member is just & bending

moment in an adjscent member,

A.2 Application to Two Member Frames

The generalized coordinates are assigued as follows, The verti-
cal displacement of point 2 is 9 the joint rotation about the ax’s
of member {2,3) is Lo nnd the joint rotation about the axis of member
{1,2) is qge

Using equation {A-31) the 3train energy due to bending is

Eoln he h,2
012 2 Cl2 2 c12 ( 9}

A2 4 e Mo §
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Using equation (A~2) the strain energy due to twisting may be written

as

G, J
12712
U= =53 qg. (A=20)

12

For member (2,3) the strain snergy due to bending is

2E,.I q q
U= 33 23 [qg - 3(3-—1-)q3 + 3(-5-1-)2]. (A=21)
23 23 23

and the strain energy due to twisting is

G,.J
s 22323 2

23

Equations {A-11) and (A-12) are used to obtain the potential energy

of the spplied loads,

3c2 203 C3 c2
Q= .p(...l-.)‘. - g - p(_];h. L %, (A=-23)
¢2 ¢3 ¢z, ¢
12 12 12 12

Adding the results of equations (A-19) through (A-23), the total

potential energy of the frame is

. 6E I 6E,.I 2E I G, oJ
i uroa2he, 23232 , (i22 , 233

] 2
3 3 2C L7
c, c3; 23
e e T T T 6E531p3
+{ b ===t - ———"=1q,q, - %, q
Coq 2C, 3 o2 192 o2 193
12 23
3¢2, 2c3 c3, c¢2
Y L s L S ar L ._li]qe, (A=2k)
¢ e3. L c2, ¢
12 12 12 12
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When the principle of stationary potential energy is applied, three

equations in Qs 9y and Qg are obtained from equation (A-24)

2 (iohe  BExlay Sl 6Ty
g, c3 s n 2. 2. 3
12 23 12 23
32, 2c3
B f‘ - f‘} 0 (A-25)
€12 1
6E, I Le I G,.J
W, e, Poae, %l
99, c? 1 c c %
12 12 23
c3, 2
- P['fi - 5.0 {A-26)
€2 i
6E 12 h32312 612J12
av a--—&iq +[ +————]q =0 (A.a"{)
) c2, 1t c c 3
23 23 12
These three equations may be written in matrix form.
AQ=P (A-28)
wvhere: —— -
PRohp | 12530 TRt _ EBalas
3 3 2 2
®12 C23 €12 C33
A ety Ml %l
2
€12 €12 Ca3
i 61-;2312: 0 ?23123 . 60792
2
C23 Ca3 C12
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Equations (A-T) through (A-10) are now used to obtain the end

loads on the members. Only the loads at prints 1 and 3 (see Figure

A-2) are required to determine the stress:s.

, 2
210110 4 P (Cp - Cyy)
M=~ (e, =351+ >
€2 12 €12
- 2
T Ve LY [, POy - 0 )20, + 2y,)
. 2 2°°T, c3
12 12
2E_.I,. €L
T, = --—(:2"3--‘?*‘[2q,3 - 35-1-3
23 23
ZEx3la3 e}
377G, -3
23 23

(A-29)

(A=30)

(A-31)

(A=32)
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cZ, 23
2
2k, 5105 9 PR (€, - Cy)

T,xe—7—[2q,-3571-

3 2
12 12 012

These equations may also be written in metrix form

M=BQ+F

The vector of joint displacements Q was defined proviously.

matrix B and the vectors F and M are given belov,

My
Ry
T
M=
My
Ry
T3
2 —y
Pclh(c - clh)
iz
2
P(Cyp = Cq,)2(Cy5 + 2€,,)
3
Cio
F= 0
1 (G0 = Cp)
2
T _

e e T TR

CATC PSS
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(A=33)

(A=34)

(A=35)
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6E)5T15 e ter) o
2
€12 €10
) 68,11, .
3 2
Cio iz
6253723 0 _ Epslag
2
C23 Ca3
B = i
OE,3105 o _ 2Ey3lag
2
€23 Co3
12]'?“23123 0 - 6323123
2 2
€23 C23
6B 1.5 ) YE o155 o
2 2

The stresses are computed using equations (A-7) and {A-8). As
can be seen from these equatious, and equations (A-2) through (A-6),
the stresses will be linear functions of the end reactions. Expressed
in matrix form the stresses may be computed from the following equa-
tion:
§ = CM + P, (A-36)
vhere M is the vector of end reactions defined previously. The matrix

C and the vectors P and S are defined below.
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H 12 12
é 1
: C= 0 0 e 0 e o
2A, 5%,
§ h h..C
; 0 0 0 '2';'2'1 0 - .%-3,..2_3.
: 23 ‘23
3 h,.
i 0 0 0 2123 0 o
] 23
0 _l
T 0 0 0 0
N 2Ar3tas _
)
i Pty 5(Cy5 = Cy) 5y
21
12 S,
0 85
P= 0 sa |8
0 S¢
0 Sg
! .
E - — _Sh
HE
N 3 The components S;, S,, and 5, are the be'ding stresses at points 1, 2,
{
i

and 4, respectively, on member (1,2). S5 and Sg are the bdending
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stresses on member (2,3) at points 2 and 3. 5, axd 37 are the ghear-

ing stresses due to torsion in member (1,2) and (2,3).

A.3 Application to Three Membér Frames
Equations (A-l) through (A-18) may be applied to the three member

frame by following the procedures outlined in Section A.2, The

resulting matrix equations, (A-28), (A-35), and (A-36), ars repeated

here.
AQ = P (A-28)
M=BQ+F . (A-35)
S=CM+P (A=36)

These equaticns may be used directly by defining the necessary vsctors
and patrices for the three member frame shown in Figure A.6,
The deflections, Q, are defined as follows:

3 is the vertical displacement of jJoint 33

gps the rotation of joint 3 about axis (3,b);

qz» the rotation of joint 3 sbout axis (1,3);

Qs the vertical displacement of Jjoint 53

qgs the rotstion of joint 5 about axis (3,5)3
and qg» the rotation of jJoint 5 about axis (5,7).

The vectors M and S are defined using the free body diagram in

Figure A,.T.
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FIGURE A.6 Three Member Frame

FIGURE A.7 Free Body Diagram of the
Three Member Frame
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=
(V)

-3

3
[ A B V3 )

where
0y. 18 the bending stress at point 1 on member (1.3):

O, the bending stress at point 2 in membder (1,3);

05y the bending stress .. point 3 in member (1,3);
c),> the torsional gtress in member (1,3);
o5 the bending stress at point 7 in member (5,7)3

oG the bending stress at point 6 in member (5,7);

T the bendiing st as st point 5 in member (5,7);

ogs the torsional stress in member (5,7)3
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% 69, the bending stress at point 3 in member (3,5); 3
K =
] 5
23 Iy 9300 the bending stress at point 4 ip member (3,5); %
E 011» tbe bending stress at point 5 in member (3,5)3 ;§

and 0, the torsional stress in member (3,5). f%
&
The other matrices and vectors required for eguations (A-28), (A-35), £
and (A-36), follow. The notation Cy4 denotes the distauce between 3
point i and moint J on the frame, g
- 302 aoc3 302 203 7] §
P [—-]‘2-- 12]+P [1--—2-4-——33-] 3

13 cé c3 35 c2 c3

13 13 35 35
3 2 E
€12 Cip -
P, [== « == T
1372 ¢ A
13 C13 4
¢ c¢3 ‘§
P..[Cy - N -] S
35-734 2 %
35 C35 :
P= g
3c2 oc3 3c2 oc3 ;’%
p, =t o By 4 p_16 6
35 c2 c3 57T c2 c3 2
3B 73 5T 5T 3
:::Q‘_
C3 c2 ?j;
P [.lé - -.7_6. :%
5Tc2. ¢
5T ST g
cs c2 ;é
I ¢
3572 c g
35 735 | 3
§ :

g -
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136 €103 = C15)
2
Ci3
2
15522(C, 13 Cy0)
2
13
2
57%56(%57 = Cs¢)
2
€57
cZ
35
F=
2 -
P: éc:! (c 35 C3."_).
2
35
_ 2
P13(°1§ c.,) (c]§L+ ,,)
3
Ci3
2
) P13€1p(Cy3 + 25
Ci3
Ps1 56(° + 2)
57
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- problems which can be solved using existing unconstrained aminimization

techniques, A SUMT program was written for this research using Powell's
method of unconstrained minimization without derivatives, The required

minimization of a function along a line uses a combination of a Fibonacci

. ,wﬁ,ﬂwm@e‘ﬁ?ﬁmgﬁwmgn ;
5 .
’ ;
e X erend s o

! search (to bracket the minimum) and a quadratic approximation of the

minimum,

The method of constrained steepest descent differ from the usual
ncnlinear programming problem in that the state equations and the state
variable constraints appear explicitly in the formulation, This provides
a natural matching of the essential features of the design problem and the
method used to obtain its solution, The design problem is linearized
about a‘candidate design and the desired improvement in the design variables,
$x, is required tc be small by demanding that SxTw-lsx = 523 where £ is a
small number and w is a positive definite weighting matrix. The Kuhn-Tucker
necessary conditions are then applied to the resulting nonlinear problem,

As a direct consequence, ox is specified in terms of two components; 6xl
which reduces the objective function consistent with the constraints, and
8%, which directs the search for a minimum back to the feasible region if
constraints have been violated, The method was applied using both exact
and approximate derivatives, so that its effectiveness when derivatives

are not available could be assessed,

A spatial structures which occurs frequently in practice is the plane frame
with out-of-plane lcads, Although such structures are generally made up of
reiatively few members, they may have many design variable.; since several design
parameters must be specified for each member. The prigramming methods were applied
to a number of two and three member frames of this type. From the results, it
appears that CSDS has significant advantages over SUMT both in terms of compu-
tational time and the number of times that candidate designs must be analyzed.

The results also show that CSDS performs as well when derivatives are approx-
imated as it does when they can be computed exactly, The effectiveness of SUMT

is reduced significantly if the derivatives aye unavailable
L ]




¥

G2, 23 7

Y

Unclassified
Sccunty Classification

DOCUMENT CONTROL DATA-R&D .

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report Is classllled)

1. ORIGINATING ACTIVITY (Corporats autho.) 28. REPORT SECURITY CLASSIFICATION
. ] Unclassified
University of Iowa 2 CROUD
NA
3. REPORT TITLE
OPTIMUM DESIGN OF SPATIAL STRUCTURES
4. DESCRIPTIVE NOTES (Type of report and Inclusive dates) -
Technical Report
. AUTHORIS) (First name, middle Initial, last name)
Donald L. Bartel
. REPORT DATE 74, TOTAL NO. OF PAGES 7b, NO. OF REFS
August 1969 125 27

2a, CONTRACT OR GRANT NO.

DAAF03-69-C-0014
b, PROJECT NO. Project Themis Report No. 12

9a. ORIGINATOR'S REPORT NUMBER(S)

9b. OTHER REPORT NO(S) (Any other numbers that may bo assigned
this zeport)

d. /

10. DISTRIBUTION STATEMENT

Distribution of this report is unlimited.

11. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

U. S. Army Weapons Command
R & E Directorate
Rock Island, Illinois §1201

13. ABSTRACT

A spatial structure which occurs frequently in practice is the plane
frame with out-of-plane loads. Although such structures are generallly
made up of relatively few members, they may have many design variables
since several design parameters must be specified for each member. The
programming methods were applied to a number of two and three member
frames of this type. From the results, it appears that CSDS has signifi-
cant advantages over SUMT both in terms of computational time and the num-
ber of times that candidate designs must be analvzed. The results also
show that CSDS performs as well when derivatives are approximated as it
does when they can be computed exactly. The effectiveness of SUMT is
reduced significantly if the derivatives are unavailable.

D FCUM 2473 REPLACES DD FORM 1478, + JAH 64, WHICH 18 e
$ NOV a8 OPSOLETE FOR ARMY USKE. Unclass;fled

Securitly Classification

» lagh s =ty g T

P




T RIS T I T DO,

hant S

L]
Unclassified « .
Security Clacerfication
14. KEY WORDS . LINK A LINK 9 LINK ¢
ROLE NT ROLE wT ROL E W

optiium design

minimum weight

structures

spatial structures

mathematical programming

spatial frames

!
Unclassified
Security Classification

i TTTTTTTY e st a o X Sy T PN Mo e e oeniE




