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ABSTRACT 

This note considers the problem of estimation of an unknown probability- 

density function,   p(x),  and the derivative of the logarithm of that density 

function , 

f(x) [k lnp(x)] • 
given  N  samples from an ensemble whose probability density is p(x).    Our 

principle objective is to estimate   f(x)   since it has been shown that the 

optimal receiver for known threshold signals in additive white (but possibly 

non-Gaussian) noise consists of a filter matched to the signal preceded by a 

no-memory device whose transfer characteristic is 

z   =    f(x)   | 
x=y 

where   y  is the input to the device and  z  the output. 

Although our approach is primarily motivated toward obtaining a good 

estimate of f(x),  the method and results would appear also to be applicable 

to finding   "good" estimates of   p(x).     The   "goodness" of the estimation pro- 

cedure is investigated theoretically and experimentally. 

Accepted for the Air Force 
Franklin C.   Hudson 
Chief,   Lincoln Laboratory Office 
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I. INTRODUCTION 

This note considers the problem of estimation of an unknown 

probability density function,   p(x),  and the derivative of the logarithm  of  the 

density function 

f(x)   =   ± [lnp(x)] (1. 1) 

given n  samples from an ensemble whose probability density function is   p(x). 

Our principle objective is to find a  "good" estimate   f(x)  because of its use 

in communications theory applications.     For example,   it has been shown 

that the optimal receiver for known threshold signals  in white (but possibly 

non-Gaussian) noise is a filter matched to the signal preceded by a no- 

memory device whose transfer characteristic is 

z   -   f(x)| (1.2) 
x=y 

where   y  is the input to the device and  z  the output.    Although our approach 

is primarily motivated toward obtaining a good estimate of  f(x),  the method 

and results would appear to be applicable to obtaining   "good" estimates of 

p(x).* 

The topic of obtaining   "good" estimates of the density function has some 

relevance for our particular problem and so we first review some approaches 

proposed by other investigators.    Next,   we present our estimation procedure 

which is based on the assumption that   p(x)   is smooth enough over a finite 

interval ("the smoothing interval") such that  lnp(x)   can be accurately 

represented by a power series with a finite number of terms.     This allows us 

to characterize the problem of finding a  "good" estimate of  p(x)  and  f(x)  as 

one of estimating the power series coefficients. 

We find that a power series expansion with two terms gives a readily 

implemented estimation procedure (based on a maximum likelihood estimation) 

An approach somewhat similar to ours has been suggested by Liden      for 
estimating  p(x)  in connection with pattern recognition studies. 



for estimating   p(x)  and  £(x)  as well as lower bounds of the variance of the 

estimates.     The  "goodness" of the estimates in terms of bias and variance is 

examined experimentally using sample functions drawn from known ensembles. 

Finally,  we indicate possible use of this procedure in communications 

theory and pattern recognition studies. 

II. REVIEW OF PROBABILITY DENSITY FUNCTION ESTIMATION 

Despite the importance of problems related to density function 

estimation,   there is comparatively little literature regarding the estimation 

procedure for the case in which one has only a very vague idea of what the 

form of the density function might be.    At the outset,   it must be noted that 

all smoothing operations of interest assume some regularity of the function 

being estimated,   e.g.  the existence of derivatives,   or the vanishing of high 

order Fourier coefficients    etc.    We somewhat arbitrarily classify prior 

work we are aware of into three classes: 

3 7 1. "Distribution independent" linear smoothing [Bartlett,      Parzen, 
Q 

Rosenblatt   ] :    These papers consider the class of estimates of  p(x)   of the form 

+u(n)/2 
p   (x)   =     f       .   . /,   w    (x-s) d P   (s) (2. 1) rn J  -u(n)/2      n nv 

where   P  (x)  is the sample distribution function for   n  samples.    If w    (s)   is 

taken to be suitably well behaved     even function of   s   such that 

u(n)/2 
,   ,/,  L    (s) ds =   1 -u(n)/2 J    n 

it can be shown that by having the width,  u(n),  of the smoothing interval go 

to zero as   n-*00  such that  nu(n)-,0°,   then  p*   (x)   converges to  p(x)  in quadratic 

mean for all points of continuity of  p(x)  with the variance of p*   (x)  going to 

zer< o as  nu(n) I 
n 

* 7 s Parzen     shows that it is sufficient to require that OJ    (s) =  K   .—.   where  K(y) 
meets the conditions : _ 

1.      sup_ <<B|K(y)|<-2.1im      JyK(y)|= 0 3./       |K(y)|dy<» 



2. "Partial distribution dependent" linear smoothing [Whittle     ] : 

The class of estimates of  p(x)   considered is again of the form 

u(n)/2 
p   (x)   =    f    ,   w, u    (x-s) d P  (s). (Z.Z) rn <J-u(n)/2      n n \   •    / 

However,   in this case,  the GO    (s)  are chosen to minimize the variance of 

p   (x)   over a given family of density functions  [an example of this would be to 

obtain the appropriate to    (s)  when the apriori  p(x)   is taken to be Gaussian 

with unit variance and a mean uniformly distributed between  +10 and -10] . 

For the classes of p(x)   considered,   it is found that the variance of  p  (x) 
-1 n 

does not go to zero faster than   [ n] 

4 6 3. "Distribution dependent" smoothing  [Cramer,     Parzen,      and 

many others] .    In this case,   one assumes a model of  p(x)  that is completely 

specified except for the values of a finite set of parameters.    The values of 

these parameters are then estimated by methods such as maximum likelihood 

estimation or the method of moments.    In a case where sufficient evidence 

exists to suggest that a model containing a manageable set of parameters 

will fit the data,  this method probably offers the best procedure.    However, 

in many cases of interest,  the number of parameters required and the form 

of equations that result in obtaining parameter estimates make this method 

difficult to apply in practice. 

The first two approaches are analogous to determination of a suitable 

linear estimator of a continuous waveform given a received waveform whereas 

the third approach is analogous to determining the best (e.g. ,   maximum 

likelihood and/or minimum variance) nonlinear estimator of the continuous 

waveform.    For example,   in the case where the apriori density function is 

taken to be Gaussian distributed with zero mean,  the third approach (using 

maximum likelihood estimation) gives: 

pn(x)   =      2tTV_1/2     expl-x2/2vl (2.3) 

where 



A 

V   =   J      s    dP   (s) . (2.4) 
_ 00 

We note that the estimator of equations 2. 3 and 2. 4 is not a linear functional 

of the sample distribution function  P   (x). n 

For our particular problem,   the first two approaches discussed above 

have the liability that a good estimate of  p(x)  may not yield particularly 

good estimates of f(x) =  -r"—    .    Furthermore,   it is not exactly clear how 

one would operate on a  "good" estimate of p(x)  to give a good estimate of 

f(x).     The third approach gives a straightforward procedure for estimating 

f(x);   but as we have indicated,  it is often quite difficult to find a manageable 

form that fits the data over the required range of x. 

III.       ESTIMATION PROCEDURE 

In this  section,  we present the assumptions made as to the 

regularity of p(x)  and develop in detail an estimation procedure. 

The regularity condition that we impose is to consider the logarithm of 

the density function,   ln[p(x)] ,  to be a reasonably smooth function of  x,   so 

that in the vicinity of some value of  x,   say x =  x   ,  the function  ln[p(x)]   can 

be expanded in a power series in  x - x     with a finite number of power series 

coefficients. '    In this way,   estimating the value of  p(x) (and parameters such 

as   j— [lnp(x)] )  at  x     reduces to estimating the power series coefficients for 

the expansion around  x   . r o 

A model is assumed for the distribution of the sample density function, 

After this work was completed I became aware of the work of Liden      who 
M 

proposed the model  lnp(x) =   L 8.<p(x)  where   (p(x)   represent fixed functions 
i= 1 1   X                          * 

and the   9-   are estimated from the data.    Liden points out that his model is 
1 12 motivated by a result of Dynkin      that if there is a sufficient statistic of 

finite dimension M that characterizes the density function  p(x),  then  p(x) 

must be of the form above.    However,   Liden was not able to solve the resulting 

estimation equations for any cases that would be appropriate to our problem. 



p   (x),   conditioned on the  "true" value of this density function being   p(x). 

This allows us to obtain the likelihood ratio for  the observed sample density- 

function distribution conditional on the power series coefficients having 

certain values.    It is then easy to obtain maximum  likelihood estimates of 

the power series coefficients as well as Cramer-Rao  bounds on the variance 

of the estimates. 

From the assumption that  ln[p(x) ]   can be expanded in a power series 

of finite order   M  around  x     we have: 
o 

lnp(x)   =   lnp(x   )  +  df]?P^x)1 | (x-x  )   + r ro dx 'x=x o o 

A*   i / .M-l ,M-lr1       .   .. x-x 

*   *   •   • .  M-l 'x= x    (M-l) ! lJ-    ' dx o v 

M-l 
=   V      a.(x  ) (x-x  ) 

Li        1    o o 
i = 0 

where we have written a.(x   )   to emphasize that the power series coefficients 

will,   in general,  be a function of x   .    Equivalently,  we can rewrite (3. 1) as: 

M-l 
p(x|a)   =   exp[£      a.(xQ) (X-XQ)

1
] (3.2) 

i= 1 
—• 

where we have written  p(x |a )   to indicate that  p(x)   is a function of the power 

series coefficients    fa. ] . 
l 

Next we consider an appropriate probabilistic model for the distribution 

of the sample density function  p   (x)   conditional on  p(x).    In the cases of 

interest to us,   the sample density function  p„(x)   can be obtained from the 

relationship. 
n 

Ax Ax 
P  (x+-^)    -  P  (x--^) 

Pn(x)   =    Tk  (3-3) 



where the   Ax   is  chosen small  enough so that 

p(x|a) 
P(x+^ |a)- P(x- ^ |a; 

Ax 
3.4) 

where   P(x |a )   is the distribution function corresponding to   p(x|a).     The 

quantity   y(x)  =   np   (x)Ax   represents the number of samples of  x(t)   whose 
Ax A x values  lie in the interval   (x -   —- ,   x+ ——). 

Let us define the   "smoothing interval" as the closed interval 

u(n) ,   u(n i x    - —^-£ ,   x    + -^-^-1 1    o Z o        2     ' 

along the x-axis in which equation (3.1) holds.    Next    we divide the smoothing 

interval into   Ns   non-overlapping intervals (i.e. ,    "bins") such that u(n)/Ns 

equals the quantity   Ax  of equations  3 and 4.     If successive values of  x(t)   are 

independent,  the joint distribution of the   Ns   values of  y(x)   corresponding to 

the various bins in the smoothing interval is then the multinominal distribution 

with  Ns +  1   exclusive events and  n  trials  [Cramer   (1948)] .     The likelihood 

ratio for the obs 

interval is then: 

ratio for the observed sample density function values   p   (x )   in the smoothing 

where   y 
m 

Pr [pn(x) |a] 

JL=  1 

np   (x     )Ax. rn    m 

n 
Ns -     Y; 
^S     [Axp(x. |a)]   J 

[3.5] 

Ns 
Ns                          _    n - YJ        y I 

1  - J]       Axp(xja)          l=  l 

1=  1                                                    J 

The maximum likelihood estimates (ML estimates)of the  a   are obtained 

from the set of simultaneous equations 

at;  {Pr[?n(.)|a]}  =   0  fo r  i =  0,   1 M-l (3.6) 



Substituting (3. 5) into (3.6),   we obtain the set of equations 

Ns 

Ns 

I VAx   n" k i j 
p(x|8f) " Ns 

J 1  - £      Axp(xx|a)J 

1= 1 

Ax 
dp(x. |a ) 

da. =   0 (3.7) 

for  i =  0,1,2,...   M-l. 

Equation (3.7) cannot be conveniently solved for cases of interest.    However, 

for the usual case of n large and 

Ns 
£      Axp(xA|a) < < 1 

1= 1 

we can set 

Ns 

-£i! 
Ns 

1 - YJ     Axp(x^|a) 

t= 1 

n (3.8) 

so that equation (7) becomes 

Ns 

-Z 
p   (x.) n    1        .  i 
p(x. la ) 

dp(x   |a) 
^x—*i— da. x 

(3.9) 

For later use in bounding the variance of our estimates of the  a ,  we 

note that (under the assumption of equation 8) the elements of Fisher 's 

Information Matrix   [Van Trees (1968)]   are 

J \l  -  E[ 
d£np[pn(.  |a)] d£np[pn(. |a )] 

da 
I ] 

dp(x. |a)    dp(x. |a) 
(3. 10) 

i p(x   |a ) 

See Appendix A for a discussion of this assumption. 



From equations (3.2) and (3.8),  we find that the ML  estimates of the power 

series coefficients at  x= x   ,  are found as the solution to the set of equations o 

M-l 

Z<vxo)le -~ BwVy (3-n> 
j j 

where  i = o, 1,2,...., M-l.    If M  is allowed to be greater than 2,  this set of 

equations cannot be solved conveniently.     Thus we limit the investigation to 

the case  M= 2.     This  restraint on  M  then sets a limit on the   j x. t  to be 

considered in obtaining the estimate of the   ja.l   at  x= x   :    we consider only 

those   |x.[    which lie sufficiently close to  x     such that the density function 

can be adequately described by the power series expansion of (3.2) with  M = 2 

In a later section,   we indicate the results of some experiments as to 

what a reasonable maximum range of  |x.|   around  x   ,   i. e. ,   size of u(n),   is 

for some well-known density functions.    In cases where  n  is very large,  one 

might well choose a  u(n)  that depends on n. 

In Appendix B,   we show that if the density function  p(x)  and its first 

two derivatives are continuous and if we shrink the smoothing interval width, 

u(n),   down as   n     1   where   0 < a,  < 1/3,  then the estimates of  p(x)  and 

f(x) =  d/dx    lnp(x)     using   M =  2   will be unbiased with variances that   -»0 

as   n- 

For the case   M =   2,  it is useful to define   p    =   e   °,   so that  p(x |a ) 

becomes 

p(x.|p     a.)   -   p   eai(xJ"xo) (3. 12) r    j iro'    1 o 

and  p   ,  the ML estimate of  p   ,   can be interpreted as the ML estimate of ro o r 

p(x)  at  x= x   .    Substituting (3. 12) into (3. 11) and carrying out the algebra, 

we obtain 



a,   = 

r;   (x.-x   )p   (x.) 
U      i     o   rn    j 
J - - 

LEpn(
x

j
) 

(3. 13) 

I P    x. 

Zai (x.-x  ) e   l * j     o' 

j 

(3. 14) 

where the function  g(. )   is defined by the relationship 

a (x.-x   ) 

g(a)   =-* 

Y(x.-x   )( 
4*    J     ° J 

a (x.-x 
Ee" •j 

(3.15) 

and  a.   is the ML estimate of f(x) at x= x 1 o The function of g(a) of equation (3. 15) 

must be obtained numerically,  but is a function only of the  jx.-x   }   and not 

x     alone.    Thus,   if for all  x   ,  we keep the set   Jx.-x   \  constant,   e(a)  and o o «io> >   o\    ' 
its inverse need to be computed only once as we compute  a.     and  a.   for all 

In Fig.   1    we show  g[a)   for  u(n) =   1,0,   i.e. ,   jx. \   covering the x-axis 

interval   (x   - .5,  x   +.5).    This particular  u(n)   has no particular significance 

until the relation of x to the statistics of x(t)  is known.    One x-axis scale 

for which Fig.   1 is particularly relevant for has X = value of x(t)   in root- 

mean square units from the mean; i.e.,   X =   fx(t) - x(t)] /a   ,, ,. 
x(t) 

IV.       BOUNDS ON THE ESTIMATION ERRORS 

Next we consider the Cramer-Rao bounds on the variance of p ° 
and a.   assuming that  p     and  a,   are unbiased.       Using equations (3.2) and 

'''Appendix B shows that by having u(n) and Ax-»0 in an appropriate fashion as 
n-*00,  that p    and a, are asymptotically unbiased.    For cases where n is large, 
but finite,  it is difficult to analytically establish whether or not p    and a, are 
unbiased and/or the degree to which the Cramer-Rao bounds are satisfied with 
equality in equations (4. 1) and (4. 3).    Thus,   we argue that the utility of these 
bounds can best be established by a consideration of how well they predict the 
observed deviations for the sample functions drawn from known density functions 
In a later section we present some simulation results that indicate that the 
bounds of equations (4. 1) and (4. 3) with equality are fairly good. 



4  9 (3. 10),  and the well known    '      expression for the Cramer-Rao  bound with two 

estimated parameters,  we obtain: 

Var (Po>  *  J     j      "j     J J00J11      J01   10 

<p0> (4. lc) 

Hp° ai (x.-x   ) . 
e   L    j     o'Ax 

;(x.-x   ) e* i^-VT 

1
]1^-XQ)

2
 e^YXo] le^l^r^] 

J J J 
where the   J.,    were defined by equation (3. 10).    It should be noted that the 

first term in the denominator of equation (4. lc) is the expected number of 

samples of x(t)  whose values lie in the   "smoothing interval",  i.e. ,  the x 

axis interval spanned by the   jx.l.    Because of the normalization implicit in 

the ML estimate of  p    (eq.   3. 14),  this first term is numerically equal to the 

number of samples of x(t) whose values lie in the  "smoothing interval".     The 

second factor 
S. ,   a,(x.-x  ) 

x.-x   ) e   lv  j     o' 

vo(ai) =   1 - 

[?<-J- 
.2   ai(x.-x 

x^)   e   ll  ; o)J   ^l^j-V] 
(4.2) 

in (4. lc) can be interpreted as a multiplicative factor by which the number of 

samples is reduced because of the slope (i.e.,  non-zero    a,) of   £n[p(x)] 

near  x = x 

10 



Similarly,  the Cramer-Rao bound on the variance of a.   is given by 

Var  I*ll   *J     J-J     J Jiroo 01 10 
(4.3! 

7(x.-x 
U     j     o 

,2   ai(x.-x   ) 
)    e   1V   j     o' 

l(nAx)   [p  Ve^YVlH J ;  
* L     . J1    Veal(xj-Xo 

The first bracketed term in Eq.   4. 3 is numerically equal to the  average number of 

samples of x(t) in the   "smoothing interval",   while the second term 

S. .    a,(x.-x   ) (x.-xo)e   1*   j     o' 

vl(ai) = 
V (x.-x   )2 eal(xj"Xo) 

A IV     J      ° 
V     ai(x.-x   ) 

j 

V     ai(x.-x   ) 
2,e     J   ° 

(4.4) 

can be interpreted as a multiplicative factor by which one multiplies the 

number of samples in the smoothing interval. 

In Figs.   Z and 3,  we plot the multiplicative factors depending on  a. , 

V   (a.)  and  Y Aa.,),  that arose in the expressions for the variance of  p     and o     1 11 r . ro 
a.   respectively for a symetrical  "smoothing interval".      Again we point out 

that the Cramer-Rao bounds represent lower bounds so that the usefulness 

of equations 4. 1  - 4. 4 is,  at this point,   inconclusive.    In a later section, 

we will present results that indicate that the bounds established here are 

meaningful. 

V.        APPLICATION TO DETERMINISTIC SAMPLE DENSITY FUNCTION 

As indicated earlier,   the key assumption that   i,n[f(x)]   can be adequately 

represented by a power series of low order was primarily motivated by the 

' The smoothing interval width of 0. 5 used for figures 2 and 3 might be 
appropriate in the case where  x  represents rms units from the mean. 

11 



observation that the logarithm of many common density functions is indeed a 

smooth function and by the fact that this assumption leads to computationally 

feasible results.    Thus we argue that an appropriate criteria for the utility 

of this approach is how well it does at estimating  p     and a.   for various 

density functions. 

In Figs.  4-7 we show the results of applying the estimation procedure 

to a (deterministic) sample density function whose form is 

Pn(x.)   =  -=T     exP   ["-5 xf] (5-1) J     72* J 

for various sizes of the  "smoothing interval".    In Figs.   4 and 6,  the  "x " 

represents  p(x)  at various  x values while the smooth line represents the 

m.l.e.   p  (x).    In Figs.   5 and 7,  the light line represents the actual slope of 

£n[p(x)] 

& r*np(x)i'x=x  = "xo <5-2> 
o 

A 
while the dark line represents a.(x), the ML estimate of the slope of  jjnp(x). 

By examining the differences between the  "true" values of the estimated 

parameter and the ML estimates of these parameters as a function of 

"smoothing interval" size for various density functions,  one can obtain a 

measure of the bias to be expected using the procedure outlined here. 

-x     2 
The results for the Gaussian fit is also of interest because e '  can 

be expanded about any point x=x  : 

2/.,            x                                   (x-x  ) 
-x '2              o               ,          >      v       o /c   .,, Xne =   -—    -xo(x-xo)-—l  . (5.3) 

We note that had we included the   (x-x )    term in our power series expansion 

for   Xnp(x),  we could estimate the   p(x) |   _        and -r- £np(x)|   _        exactly for 
o o 

12 



a sample density function of the form of Eq.   (5. 1).     The deviations of the 

ML        estimates from the   "true " values of Eqs.   (5. 1) and (5. 2) as shown 

in Figs.   4-7 thus give an indication of the error one might expect to arise 

from using a power series expansion of  lnp(x) consisting of only two terms. 

From equation (5. 3),   we see that the error gets larger as    |x-x    I   increases; 

the particular smoothing intervals used for Figs.   4-7 were chosen larger 

than one might use in practice   [particularly near the mode of p(x)] . 

VI.       APPLICATION TO NOISE SAMPLE FUNCTIONS 

Although in Appendix B we establish that the estimates of  p(x) 

and  f(x)  are asymptotically unbiased and normally distributed with variances 

given by equations (4. 1) - (4.4),  it is extremely difficult to analytically 

establish any useful results in the small or even medium sample cases.    Thus, 

we now present some results of applying the estimation procedure to sample 

density functions drawn from a variety of noise processes.    In each case we 

show: 

1. a plot of the sample density function  p   (x)  and the estimate   p   (x) 

of the density function 

2. a plot of the estimate   p   (x)  and the   "true",  i.e. ,   ensemble density 

function  p(x)  together with the Cramer-Rao variance bounds on  p  (x).     The 

variance bound curves plotted correspond to  p(x) ±  3 ^varf p  (x)]   where 

var(p  )   is given by equation (4. 1). 

3. a plot of the estimate,  a.(x),   of  f(x)  and the   "true",  i.e. , 

ensemble   f(x)  together with the Cramer-Rao variance bounds on  a.(x).     The 

variance bound curves plotted correspond to   f(x) ±  3 ^var [ a   (x)]   where 

var(a. )   is given by equation (4. 3). 

4. a plot of the expected number of samples in the smoothing interval 

centered at  x as a function of x. 

5. a plot of the sample exceedance probability,   1 - F  (x),  and the 

ensemble exceedance probability,   1 -F(x),  to give some information as to how 

13 



"typical" the particular sample function used was. 

Figures 8-12 show the results for  n= 50,000   and  u(n) =   1.0 rms units 

from the mean for a random number simulation of a noise process with a 
- \ x probability density function of the form  p(x) =   >e   A      for  x > 0.    This 

particular density function is of interest because the density function in any 

region of  x > 0,   will be fit exactly by our two term power series representa- 

tion of  ln[p(x)] .     We note that both the estimates are significantly different 

from the true values in the region of width   1. 0   corresponding to  x =   0.     This 

arises because the step in  p(x)  at  x =   0  makes the regularity assumption 

invalid.    Over the range of  x  for which our  regularity condition does hold, 

the estimates and  "true" values agree to within the variance bounds. 

Figures  13-17 show the results for  n =   50,000  and  u(n) =   1.0 rms units 

from the mean for a random number simulation of a Gaussian noise process. 

In this case,  there are no steps or other abrupt changes in the ensemble 

density function and so our regularity assumption is approximately valid over 

the entire range of x.    In Figs.   13-17,   we see that the estimates agree with 

the   "true" values to within the variance bounds. 

Figures   18-22 show the results for   n =   50,000   and   u(n)  =1.0 rms units 

from the mean for a random number simulation of a Pareto process with 
4 density function  p(x) =   3/x     for  x >  1.    As in the case of the exponential 

process of Figs.   8-12    we see the effect of the step in  p(x)  at  x =   1   is to 
A .A 

cause the estimates   p  (x)  and a   (x)  to differ significantly from the  "true" 

values over an interval of width u(n)   centered at the discontinuity.     There is 

also some indication in Figs.   18 and 19 that the estimators are slightly biased 

(in the sense of giving estimates that consistently are slightly outside the 

variance bounds in one direction).    However,  this bias (if it indeed exists) 

would appear to be quite small. 

VII.     DISCUSSION 

In this section,  we discuss a minor extension of our estimation 

procedure as well as some possible uses of the procedure in communications 
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and pattern recognition problems.    In dealing with density functions of low 

frequency electromagnetic noise (which is known to be non-Gaussian),  we 

have found it helpful to use a small smoothing interval to estimate data near 

the mode (since the density function changes very rapidly near the mode) 

and a much larger smoothing interval for estimation on the tail of the density 

function (since there is a far smaller number of samples per unit of smoothing 

interval length out on the tails).    Since the estimation procedure is done 

separately for each bin of the density function,   it is easy to make the smooth- 

ing interval width a function of distance from the mode  [although function 

g     (a)   of equation (3. 15) must be recomputed every time the smoothing 

interval width is changed] . 

We have already mentioned the utility of  f(x)   in receiver design.    It 

can be shown (as will be done in a subsequent report) that the function  f(x) 

is also of use in estimation in non-Gaussian noise as well as in obtaining 

estimates of the error performance improvement that can be obtained using 

an optimal receiver in non-Gaussian noise.    Finally,   we note that our 

estimation procedure might also be of use in pattern recognition studies of 

the type considered by Liden. 
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APPENDIX  A 

In this appendix,  we discuss briefly the rationale behind the assumption 

that 

Ns 

»-Z y t 
 NIT — =  n <A1> 
1 " Yi     AXP(X

£ l» ) 

used in obtaining a solvable set of maximum likelihood equations.    Our 
4 

discussion makes heavy use of three results in Cramer    namely that 

E[yJ    =   nAxp(xJa) (A2) 

E|[y£-E(y^)]2|   =   n[Axp(xJa)]   [ 1 - Ax p(x£ |a )] (A3) 

and 

E{[YZ'E(Yl)]    [ym"E(ym)]}=    -n(Ax)2p(Xje|a)p(xm|a) 

for   a  4 m. 

We note that equation  (Al) can be written in the form 

 1 1  (A4) 
1  - Vp 

where   p      -   Axp(x    |a). 
Jo *> 

Equation   (A4)   clearly reduces to 
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1   Z(yl "nP£) 

Let us examine the statistics of 

Z^(y    -np    ) 

n    1-SPi 

From  (A2),   it is clear that 

E[R]    =   0. 

Using   (A3)  and   (A4),  we have 

Ns        Ns 
+ Z ,   Z  , Enyje-npje)(ym-^prn)] 

£ = 1    m= 1 * 
m^ £ 

. r Ns [Ns        Ns "I 
£np    (1-P   )-y X    ;P£Pm 

1 

•X'-SP,)' [svw-^-vL^'] 
-     'y       1    [-ZO^Z   f*»» + Z»J n(l - V  p )      L    I        m= 1 XJ 

Thus we have 
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Ns 

Var[R]    =   -i—  (A7) 
nd-^P   ) 

 (Probability of x(t)   in smoothing interval) 
(number of samples)(probability of x(t) not in the 

smoothing interval) 

Typically,  the probability of x(t)   in the smoothing interval is less than 

0.2,   so that the standard deviation of R  is 

a R * ^ . <A8) 

For cases where the procedure outlined here might be used,  we would 

expect  n  to be at least   100,  for which 

aR<  -05 . (A9) 

Thus,   setting 

n(l + R)   =   n (A10) 

should be a reasonable approximation for a  "worst case" of interest,   and 

represents an approximation that improves as we increase  n. 
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APPENDIX   B 

Asymptotic Behavior of  p     and a. 

In this appendix,  we show that if: 

1. the ensemble density function   p(x)  and its first two derivatives 

are continuous and finite 

2. the width,   u(n),   of the smoothing interval goes to zero propor- 

tional to  n     1   as   n  (the number of independent samples of x) 

goes to   <»  (where   0 < a^   < -r). 

We can choose the bin width,    ^x,   so that the estimates of p(x)  and 

f(x)   =   -=— [In p(x)]   will be asymptotically unbiased with 

1. the variance of the estimate of  p(x)   going to zero as   (n        M 

2. the variance of the estimate of — [lnp(x)]   going to zero as 

(n 1) 

From the conditions on  p(x),   we can represent p(x)   in the smoothing 

interval by the power series 

(x-x  ) 
p(x)   =   p(xQ) + alP(xo)(x-xo) + p"(xo) f— (Bl) 

where 

P'(xo) d 
ai - WT = S [lnp(x)1 'x=x       • <B2> rK   o' o 

The proof goes as follows:   we will first show that a random variable 

closely related to the righthand side of equation 3. 13 is asymptotically 

normal with a mean equal to the true value and a variance that goes to zero 

as   (n 1)     .    From this,   we will show that the estimate  a     is therefore 

asymptotically normal with a mean value equal to a.   and a variance that goes 
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to zero as   (n 1)     .    Finally,   we will show that the estimate   p     is 

asymptotically normal with a mean equal to   p     =   p(x   )  and a variance that 

goes to zero as   (n        *)"   . 

First we consider the statistic 
Ns 

R, "—1 
_u2(n)J 

Y    (x.-x   )y. 

Ns (B3) 

2'j 

where: 

Ns   =  number of bins in  u(n)   = ' Ax 

y.     =  number of values of x(t)  that lie in the bin corresponding 
J to  x. 

J 

i'       Ns^   A x.     =   x    + (l —r—1  Ax 
J o 2 

5        =—¥-      T       (x.-x   )y. 
XV       nu3(n)       ji 1      J     °    J 

A        ,        Ns 

V   "  nu(n)    U_ 1   
yj 

(B4) 

(B5) 

Ax   = bin width   =   k   n     2   (0 < a?   < 1, (B6) 

Let us define 

p.   =    Ax p(x   |a ) 

q.   =    1 - p. 
J J 

j   =    1,2 Ns 

x  +u(n)/2 
Ns o     v 

J=l    J x^"u(n )/2 
p(x la )dx 

(B7) 

(B8) 

*L=    ! " PL (B9) 
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It is clear that as   n-.<» 

1 -a; E(y.)   =   np.   =   nAxp(x.)-»nixp(x   )   =   k  n p(x   ) 
J J J 

(BIO) 

Thus,  the  y  meet the conditions of Gnedenko's      "local limit theorem" 

from which we obtain 

p(y |a 
Ns 1 2 — q. z. 

2 3   J 

yz7TP, 

i     i 
2qLZL (BID 

where   z     =   (yj-np.)/ynpTqT 

Ns 
ZL   =   (n * Z ,   yj-nPL)/>PLqL 

As   n-.ro,  we have from   (B6)  through   (BIO): 

qrl 

qL   =   u(n)   (xQ/a) - 0 . 

Thus 

N 
P(y |a)   =   n      e 

i (yrnpi}' 
np^ 

*/27rnp. 
(B12) 

3( 

from which we conclude the   i y. I   are asymptotically normal and independent 

An interesting side note that indicates the rate at which the   y.   become 

independent is the behavior of correlation coefficient between y. and y, 

(j 4 k)  as  n-»oo 

E{[yrE(y.)] [yk-E(yk)][ np.pk  
DJk   :     ,v„„>v» Z   nV2 "   rJ ,1/2 [Var (y ) Var (yk)] [n PjqjPkqk] 

=    - J-J-^-   -  -  Axp(x   )   =   k0n"a2 p(x   ) vq.q, ^v   o' 2 r    o' 
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with 

E(y.)   =   np. (B13) 

Var (y.)   =   np.   . (B14) 
J J 

Thus,  the sums   S       and  S     are asymptotically normal with means and xy y '      r ' 
variances that are to be calculated. 

Let us now compute the mean and variance of  S        and  S     respectively. 
xy y 

From the body of the report and Appendix  A,  we recall that the  y  have a 

multinomial  distribution corresponding to  n  repetitions and  Ns + 1   exclusive 

events.    We will work out  E(S     )   in detail  to indicate the approach and then 
xy rr 

state the results for  Var(S     ),   E(S   )  and  Var(S   ).    Let us define  x. =  x. -x   . 
xy" y' Y J J      o 

Then: 

3.   , Ns Ns 

12 xy' U        j        VV U        j        **j 
j=l j=l 

Ns 
=   J     5Tj  [nAxp(x. |a)] (B15) 

j=l 

Ns                                                                             p"(xo) 2 

=   L     x.nAx [p(xo) + a1p(xo)(x.-xo)+—^ (x.-xj   ] 

j=l 

which,  as  n-.ro,   becomes 

n[-^-p(xo)+-f- alP(xo)+if-  p»(xo)|   
2       ] 

u(n) 
2 

u(n) 

=)  nalP(xo) -^ fuWl3 (B16) 
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so that 

E(S     )   =   a.   p(x   )      . (B17) xy 1 r    o 

Similarly,   in the limit as  u(n)_ 0,   it can be shown that 

E(S   )   =   p (xQ) (B18) 

P(XO) 

Var(V   =   n^nj <B19> 

12 p(x   ) 
Var(S     )   =    = —   . (B20) 

xy' 3,   > 1 nu   (n) 

-a Substituting   u(n) =  k,n     1   into (B19)  and   (B20),   we find that as 

n-,<» 

Var 

Var 

(S   ) _ 
y 

(S     ) xy 

P(XO) 

kjii1""! 

12p(xQ) 

"* k^n1"3"! 

(B21) 

(B22) 

From   (B21)  and   (B22),   we conclude that as  n-»<»,    S     converges in 
y 4 

probability to the constant  p(x   ).    Thus,  from Cramer (pages 254-55)   ,   we 

conclude that the density function of   (S     /S   )   is asymptotically normal with 

S E(S     ) 

^•fL)   =   plx^   '   ai <B23> y r     o 

Sxv           Var(Sxv'           [12/k3p(x)] Var(-f*)  =   ^-   = —yr^ 2_ . (B24) 
y        [P(

X
0)1 n       i 

Next we wish to consider the statistical behavior of the estimate of a   • 

A -1  I u   (n)        xv"I ,,-, _ -, ai   =   *       L     12        S     J (B25) 
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where 

As   n-'oo, 

rt 1     \ 

Ns                 ^(x.-x  ) 
7   (x.-x   )e       J     ° 

1(71' Ns       T)(X.-X    ) 
V              J     ° 
L e 

j=i 

/-1 1       \ 

I    (x.-XQ)e                  Ax 
1= 1    J 

1\v> Ns     r,(x.-x   ) 
V               J      ° 
L   e              &x 

j=l 
u(n) 

2 

u(n) J          x  e71    dx 
2 

("   2      e ^ dx 
J_u(n) 

2 

(B26) 

(B27) 

Let  77     be the largest (finite) value of  71 for which we wish to know the 

value of q(7i).    Then as   n-»m 

h*l  *   IrJol^   =    |t»0l«T,n"ai"*    ° (B28) 

so that we can make the substitution 

eT'X   =    1 + TJX (B29) 

and thus obtain 

2,   , 
q(T?)   =   ^^TJ (B30) 

so that for 

u  (n)      xy        u  (n) 
12       S 12     ^o 

y 

(B31) 
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we have 
S S 

ai = (-#Y) £or-F *^o • (B32) 

y y 

Now from our previous results for the ratio  S     /S   .  we realize that by 
jxy   y 

choosing   77     > a. ,   we can assert that for   0 < a,   <-~ , 

S 
Pr (-^    s   r?Q) U   0 (B33) 

y 

n-»co 

Thus,   a     is asymptotically normal with mean a.   and variance 

*a\Z   =   ,3   ;       "l-Sa. <B34> 1 k. p x     n 1 1 r    o 

 12_.  
2 

[expected number of samples of x(t)   in the smoothing] ' 
interval u(n) 

Finally,  we consider the statistical behavior of our estimate of  p(x   ) 

,      Ns 
4-7  y- n^x L 1 

yj 

o Ns   a,(x.-x 
lx   1     o e J 

(B35] 

Z 

As long as   a.   is less than some finite constant  A,   as   n-»oo, 

•NT A  / \ u(n) Ns a   (x.-x   ) ' 
V    Ax e   1    J     °    _    P   l      (1 + a x)dx  =   u(n)    . (B36) 

2 

A 

From our results regarding the asymptotic behavior of a.,  we know that for 

any A1 > a 
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Pr(a.  > A.) -• 0  as  n-»« 

Thus,  from   (B5),  we have 

- [nu(n)S   ] 

^o u(n) y i**-"i 

so that asymptotically  p     is normally distributed with 

and 

E(po)   = p(xQ) 

Var(pA
o) =   VarfS 1 y 

P(XQ) 
J         nu(n) 

2/     t P   (xQ) 2/     v P   (xo) 

p(xQ)nu(n) "   ^n^l 

tP(xn)]2 

(B38) 

(B39) 

expected number of samples of x(t) 
in the smoothing interval  u(n) 
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Fig.   20.     Comparison of estimated and ensemble -j— [in p(x)] for 
Pareto ensemble density function. 
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Fig.   21.     Expected number of samples in smoothing interval 
for Pareto ensemble density function. 
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Fig.   22.     Comparison of sample and ensemble exceedance 
probabilities for Pareto ensemble density function. 
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