
ARPA ORDER NO. 1SQ\

MEMORANDUM
RM-561M-ARPA
SEPTEMBER 1960

APAREL-A PARSE-REQUEST LANGUAGE

R. M. Balzer and D. J. Färber

s:

i —
o

D ^

^^z^g»^ ID
196S

iOlM" :
Ü
.11

PREPARED FOR:

ADVANCED RESEARCH PROJECTS AGENCY

Tfc ßflno ßvtpvuUim
SANTA MONICA • CAUFOtNIA-

TMrs DOCUMENT HAS BEEN APPBOVED EOS PUIUC RELEASE AND SALS: ITS DISTRULTIC» IS LNUMITED. 3^

AHPA ORDER NO. 189 1

MEMORANDUM

RM-5611 1 ARPA
SKPTKMBKK I, n»

APAREL-A PARSE-RE JST LANGUAGE
M. Balzer and D. J. Färber

Tlii- rc-JMr'll i- >-ii|i|K>il(>i| ii\ ihr Xilwinrrrl f{i-i .mil Propfl« A^'iiirv uiiilcr ri>nli.l(|
\ii. |)\rH |."i ft' (Olli. \ ifw- or rmii-lll«5urj« < (iiiLiinnl in llii~ 'liii|\ -lionM mil I«-
iiitriprrlnl a« n'lHi-rnlin'? ttir i>ni< i.il ujiiiiiim «r |Hi|irv of Mil*'.

IHSTIMUTION STATKMFNT
1 lii-. (ioruincnt has Iwi-ti iip|tr't\»-il for |iii!>lic .i Ir.i-i am! -air; ii- lii^lrilmiiiMi i- imlimili-il.

^Ili) 7<& r-v-Ti I I \ Jtfai/tatafiatt

Tlti- -luil\ i- jiifMMilrtl .1- .1 i .ilii|ii Inil In .ilinitil nf ihr vul.jii I. unrtln cpf pnl-
i. i In- Haiiil • •■■ | tin at inn »um hi'- fur I lit- i|inilil\ uf (In- rc-circh. witlioitl

I". inii..i-in • lln- ii|iiiiiii|i% .mil r.iiiclllMiHI* ■■(ihr .nilliul-.
In.
Hi n--.ill

I'ublishril by The RAND Corporation

-ill-

PR EFACE

Ti is Memorandum describes a parsing caoability embedded

within the PL/I programming language. This extension allows

users to specify the syntax of their parse-requests in a

BNF-like language and the semantics associated with a suc-

cessful parse-request in the PL/I language.

The APAREL system has been designed for "i wide range of

parsing applications including macro expansion, symbol manip-

ulation, on-line command parsing, analysis of programs, and

translation of programming languages.

This revised Memorandum, representing the actual imple-

mentation of the system, supersedes the authors' APAREL—A

Parse-Request Language, The Rand Corporation, RM-5611-ARPA,

October 1968.

APAREL has been developed as a basic tool for use in

man-machine communication studies at Rand under sponsorship

of the Advanced Research Projects Agency.

-v-

SUMMARY

This Memorandum describes APAREL, an extension to an

algorithmic language (PL/I) that, provides the pattern-

matching capabilities normally found only in such special-

purpose languages as SN0B0L4 and TMG. This capability is

provided through parse-requests stated in a BNF-like for-

mat. These parse-requests form their own programming

language with spocial sequencing rules. Upon successfully

completing a parse-request, an associated piece of PL/I

code is executed. This code has available for use, as

normal PL/I strings, the various pieces (at all levels) of

the parse. It also has available as normal PL/I variables,

the information concerning which of the various alterna-

tives were successful. Convenient facilities for multiple

input-output streams, the initiation of sequences of parse-

requests as a subroutine, and parse-time semantic checks

are also included.

APAREL has proven convenient not only as a general

string manipulator but also in building a powerful SYNTAX

and FUNCTION macro system, an algebraic language preprccessor

debugging system, an cn-line command parser, and a translator

for Dataless Programming.

-vii-

CONTENTS

PREFACE iii

SUMMARY V

Section
I. INTRODUCTION 1

II. APAREL—A PARSE-REQUEST LANGUAGE 3
Description of Parse-Requests 4
Parse-Request Sequencing Rules 8

III. PARSE RESULTS 11

IV. PARSE-TIME ROUTINES 13

V. ADDITIONAL FEATURES 14

VI. EXAMPLES , 18

VII. TRANSLATION RESULTS 26

VIII. IMPLEMENTATION 28

Appendix
BNF DEFINITION OF APAREL'S SYNTAX LANGUAGE 30

REFERENCES 31

JP^P

I

.1 i ■

LANK PAGE
-
-

-1-

INTRODUCTION

[licher-level descriptions of the problem of compiling

have attracted much interest in the past few years. Along

with the desire to develop higher-level specialized lan-

guages tailored to particular users, '-.he need has arisen

to develop similar specialized languages for the writing

of these co-ipilers. In general, these so-called compiler-

compiler languages are characterized by their facility to

define in a BNF-like manner the syntax of the target lan-

guage. In addition, they possess J programming language

designed to operate on and to direct the results of the

parsing.

With most compiler-compilers a problem arises both in

controlling the parse sequencing and in operating on the

results of the parsing. In particular, flexibility is

usually lacking in 1) the specification of sequences of

parse attempts, 2) the determination of the success or

failure of a parse attempt on o'iher than purely syntactic

grounds, and 3) the specification of when semantic routines

should be invoked. Furthermore, the semantic language is

usually a small speciaJ-purpose language with facilities

for the production of machine code. These systems ignore

such other, nonco.npilation applications for parsers as

on-line command parsers (which produce actions instead of

machine code), interpretive parsers (which produce pseudo-

code) , "natural-language" parsers (which produce semantic

trees), macro parsers (which produce source code), refor-

matting programs (which produce formatted listings), and

so on. In short, the nonmachine-code generation applica-

tions of parsers have generally not been well handled by

the translator writing systems.

APAREL attempts to provide a single system for all

these applications by providing the user with a powerful

general-purpose programming language (PL/I) for performing

-2-

the wide range of semantics required, and a flexible high-

level iyntax language for specifying parse attempts, to-

gether with facilities for controlling the sequencing of

these parse attempts, determining success and/or failure

on both syntactic and semantic grounds, invoking seman ics

when desired, and for manipulating the parts of a success-

ful parse. Also, the familiarity of programmers with PL/I

and the simplicity of the APAREL extensions and additions

make it feasible for potential users to design, implement,

and modify special-purpose languages without extensive

learning.

-3-

II. APAREL--A PARSE-REQUEST LANGUAGE

Our view of translation is composed of three parts:

1) A request to find sequences of syntactic con-

structs in the .source string to be parsed;

2) Context-sensitive validity checks to be luade

after successful syntactic parses; (For example,

has the label been defined before? Is the type

of a variab]' arithmetic? etc.)

3} Semantic rout.nes to be executed only if both

the syntactic parse and the context-sensitive

validity checks are successful.

This view of translation, while very general, is easy

for nonprofessional translator writers (but experienced

programmers) to use in constructing easily modifiable

translators.

Requests for parses are specified :n a language very

similar to BNF (rather than Floyd-Evans production lan-

guage) , because nonprofejsional translator writers tend to

conceptualize the pyntax of their language top-down (for

which purposes BNF-type languages are well suited). Pro-

fessional translator writers, on the other hand, have

learned that the bottom-up approach (for which production-

type languages are appropriate) is usually more efficient.

Furthermore, the former tend to think of both the syntax

and semantics at the statement level.

To keep the syntax language simple, while still rluow-

ing generality in describing conditions falling in thi- azy

area between syntax and semantics (which one would lik- to

verify before accepting a parse made on syntactic grounds

alone), we allow the specification of "pars^-time* routines

that return truth values. If they return a value of TRUE,

the parse will contiue. However, if a v=»1ue of FALSE is

returned, the parse will be unsuccessful, just as if the

»4-

syntactic parse failed. (The total perse may still be suc-

cessful if alternatives are available to the unsuccessful

subparse.) In addition to returning truth values, these

"parse-time" routines may do any semantic processing de-

sired. They are written in the semantic language described

below.

The semantic routine associated with a parse is acti-

vated upon successful completion of that parse and success-

ful returns from all the relevant parse-time validity checks,

if any, specified within the parse. The code for the seman-

tic routine immediately follows the request for the parse in

the syntax language. The semantic language, rather than

being a restricted special-purpose language, is full PL/I.

The wide range of desirable "semantic" actions resulting

from various syntatic parses necessitates a general-purpose

programming language; and a major shortcoming of most com-

piier-compilers has been their restrictions on the semantic

language.

To facilitate the semantics, the various pieces of the

successful parse are put into normal PL/I strings as speci-

fied in the syntax language; and the options chosen, where

alternatives were specified in the syntax language, are

made available in normal PL/I variables.

DESCRIPTION OF PAR!-^-REQUESTS

The syntax of the parse-request language, specified in

BNF, appears in the Appendix, However, the following exam-

ples are used to describe the language informally .

All parse-requests begin and end with a parse-delimi-

nator (a double colon). After the beginning deliminator,

the name of the request (the parse-request-name) is set off

by a colon. The remainder of the parse-request is a list

of the alternative parses (parse-alternative-list) desired,

separated by OR (|) symbols. The parse-request is ruccess-

ful if any one of the alternatives is parsed successfully.

-5-

These alternatives may be either parse-elements or lists

of parse-elements. Letting PE. represent a set of parse-

elements, we can describe the following parse requests:

:: A: PE-PE- :: (the parse-request named

"A" will succeed if and

only if the parse-string

contains PE, followed by PE-)

:: B: PE,|PE_ :: (the parse-request named

"B" will succeed if and

only if the parse-string

contains either PE.. or PE_)

:: C: PE, j PE-PE^E. :: (the parse-request named

"C" will succeed if and

only if the parse-string

contains either PE, or

the sequence PE-PE-PE.)

The parse-elements can either be a parse-group or a

^arse-atom. A parse-group is simply a named or unnamed

parse-alternative list enclosed in brackets ("<" and ","),

allowing naming of parts of a parse and alternatives within

a sequence of parse-elements. The parse-atoms—the basic,

indivisible components of a parse-request—consist of literal

strings, parse-request names, parse-request-sequence names

(described below, pp. 8-10), and primitive parse-request

functions; e.g., ARBNO (arbitrary but nonzero number of the

first argument separated by the second argument, if there

is more than one occurrence of the first argument), and BAL

(balanced strings). These atoms are the components that

deteimine whether a parse is successful or not. The lit-

eral strings require that an exact match be found between

the literal and the corresponding piece of the parse-string;

the parse-request and parse-request-sequence names require

that the named parse-request or parse-request-sequence be

•6-

successful on the corresponding piece of the parse-string;

and primitive parse-request functions require that the cor-

responding piece of the parse-string satisfy the conditions

of that particular function. There is no syntactic distinc-

tion ma -a between these atoms. The category determination

is made in the following way: First, the list of primitive

parse-request functions is checked. If the atom is not a

primitive parse-request function, then the list of parse-

names (both parse-request and parse-request-sequence names)

is checked. Finally, if it is not one of these, it is con-

sidered to be a literal. This mechanism alleviates the need

to quote most literals within the parse-request language.

Consider the following set of parse-requests to parse

PL/I UO statements:

:: do_statement: do iterative-specification

while_clause ';'::

:: iterative_specification: variable = expression

(to_clause by_clause |by_clause to^lauseN |::

:: to_clause: to expression]::

:: by_clausei by expression]::

:: while_clause: while '('expression1)'|::

The do_statement request requires the sequence of atoms

do iterative_specification while_clause ;

in the parse-string to be successful. Of these, the middle

two are parse-names and invoke parse-requests as they are

encountered in a left to right scan. The first and last

atoms are literals (because they are not defined as parse-

names or primitive functions), and require exact matches

with a piece of the parse-string. The final atom is quoted

because semicolons are part of the parse-request language

(explained below), and the semicolon here is used as a

literal.

The iterative_specification request requires either the

sequence:

-7-

1) Variable=e xpression

2) either 2a.
2b.

to_clause
by_cl?v!se

or 2a.
2b.

by __-lause
t ;_clrjuse

or NULL.

Variable and expression are primitives and are defined as

specified in the PL/I language specification [1]. Sim-

ilarly, a to_clftuse is the literal "to" followed by an

expression, or is null, and a while_clause is the literal

"while" followed by an expression enclosed in parentheses

(quoted because they are part of the syntax language and

are used here as literals), or is null.

Thus, the do_stateinent parse-request invokes parse-

requests for iterative_specification and while_clause, and

iterative_s;-jcification invokes parse ^«quests for to_clause

and by_clause and functions calls for variable and expression.

Unless otherwise specified, the parses allow an arbitrary

number of blanks (including nona) between pieces of the parse-

string and require that the parse start at the beginning of

the parse-string although it may be satisfied before the end

of the parse-string. Thus, with the above set of parse-

requests, successful parses will occur on the following parse-

strings;

üo I = 1;

do I = 1 by 5 to (n-3/2);

do;

do while (A-^B) ;

and will fail on the following parse-strings:

I = 1 to 10: (no initial do)

Now do I = 1; (no initial do)

do I = 1 to 5 (no semicolon)

do I = 1 to 5 to 6; (to_clause followed by to_clause)

-8-

The portion of the parse-request language described so

far allows fairiy sophisticated parse-requests to be speci-

fied easily and naturally in a language similar to the nor-

mally used syntax description languages (BNF or IBM's syntax

notation). However, this is not yet a useful facility, be-

cause neither the sequencing rules for initiating parse-

requests and for making sequencing decisions based upon the

success or failure of a parse-request, nor the method of

accessing the various parts of a successful parse have been

defined.

PARSE-REQUEST SEQUENCING RULES

A parse-request-sequence is composed of all parse-

requests occurring in a common do-group or block. This

does not include any parse-requeats contained in blocks or

do-groups within the common do-group or block forming parse-

request-sequences of their own. The order of parse-requests

within a parse-request-sequence is the same as their lexi-

cographical ordering in the block or do-group. The semantic

portion of a parse-request is the code between the end of

the syntax portion of the parse-request and the beginning

of the next parse-request in the parse-requesting-sequence,

or the end of the do-group or block if there are no more

parse-requests in the sequence.

A parse-request sequence begins with the first parse-

request. If the initial parse-request fails, its semantic

code portion is skipped, and the next parse-request in that

sequence is tried, and so on, until either a successful

parse-request is found or all parse-requests fail. If a

successful parse-request is found, the associated semantic

code portion is executed; then, normally, the parse-request-

sequence is terminated with a successful indication (see

Sec. V, Additional Features). Otherwise, the parse-request-

sequence is terminated with an unsuccessful indication.

-9-

There are three ways in which a parse-request-sequence

can be initiated. The first is as a parse-atom in a parse-

request. Upon termination, its success-failure indicator

is used in determining which alternatives, if any, are suc-

cessfully parsed. The second is through use of an explicit

command, INITIATE PARSE, which specifies which parse-request-

sequence to initiate and can be issued in any code portion.

Upon termination of the parse-request-sequence, its success

or failure is available (see Sec. Ill, Parse Results), and

control continues with the statement following the INITIATE

PARSE command. The third method is by program control flow-

ing into the first parse-request in a parse-request-sequence.

Upon complet' ^n of the parse-request-sequence, its success

or failure is available, and control passes to the end state-

ment at the end of the do-group or block in which the parse-

request-sequence occurs. Thus, if it is contained in an

iterative do-group, control will continue around in the loop

until iteration is complete. Otherwise, in blocks or non-

iterative do-groups, control will flow out the boitor of the

block or do-group upon termination of the parse-request-

sequence.

In the first two cases, in which a parse-request-sequence

is explicitly named, it is specified by referring to the label

(which must be in the same block as the invoking statement) of

the do-group or block in which the parse-request-sequence oc-

curs. If the name of a parse-request is specified instead,

only that parso-request will be initiated, and no others in

its parse-request-sequence.

These sequencing rules allow the creation of sequences of

parse-requests to be attempted, and the control of the execu-

tion order of these requests based on the results of the

parses and/or explicit program control.

As stated previously, the semantic routine associated

with a parse-request is activated upon successful completion

of that parse-request and upon successful return from all the

-10-

relevant parse-Lime validity checks, if any, specified

within the parre-request. This is true whichever way the

parse-request is initiated. Thus, if a parse-request. Pi,

is initiated as a parse-atom or a parse-request, P2, and

if it is successful, then its semantic routine will be ini-

tiated at that point, in the midst of the parse of P2.

Semantics thus can be initiated at any point during a parse,

giving the user considerable flexibility. However, care

must be exercised when specifying "intermediate" semantics

because the parse may fail later in the parse element list,

which contained the parse-request that invoked the seman-

tics, and either move on to the next alternative or fail

completely.

•11-

III. PARSE RESULTS

APAREL also contains capabilities to make the results

of a successful (or unsuccessful) parse available to the

code portions of the language. This information is of two

kinds: 1) pieces of the string parsed, and 2) information

about which alternatives were successful in the parse.

Various parse-elements, such as parse-request-seqnences,

parse-requests, parse-alternatives, and parse-groups, can

have names specified in APAREL. These names are the means

by which tho semantic code portions can utilize information

about a parse. If "NAME" is the name of one of these parse-

elements, then after a parse, a PL/I varying length string

variable with the same name will contain that portion of the

parse-string corresponding to the named parse-element. (In

the case of a parse-request-sequence, the name is both the

name of the result string and the label of the DO-block.

APAREL contextually resolves all uses of this name to re-

move any ambiguity.) Also, a PL/I variable, whose name is

"NAMEjOPTION" (i.e., "JDPTION" is appended to the end of

the name of the parse-element), will contain the index of

the alternative selected within the parse-element. Thus

the semantic portions can manipulate desired portions of

the parse-string through PL/I's normal string-handling ca-

pabilities, and can iterrogate any portion of the parse-

tree to determine which alternatives were selected.

In applications with large syntax specifications,

changing the syntax—either by addition or deletion of an

alternative from the syntax—can affect the semantics, be-

cause alternative determination is made on an indexed

basis; and altering the syntax alternative alters the in-

dexing. To alleviate the problem, APAREL allows the user

to label any or all of the alternatives. If a labeled al-

ternative is selected, then the OPTION variable for that

group will contain the name of the alternative selected

•12-

rather than its index (APAREL contextually resolves all

uses of this variable so that it can, in effect, take on

either string or numeric values). This naming correspon-

dence is invariant under additions or deletions to the set

of alternatives.

-13-

IV. PARSE-TIME ROUTINES

Sometimes success or failure of a parse cannot be made

on purely syntactic grounds alone; or, it is desired to per-

form some semantic operations during a parse. For these

reasons, the parse-time facility has been included in APAREL.

Purse-time routines are indicated in a parse-element by

placing the parse-time routine name followed by its argu-

ments, if any, enclosed in parentheses after a semicolon at

the end of the parse element. Tne parse-time routine will

be initiated if and only if the parse-element in which it

occurs was successfully parsed. The initiation results in

a function call of the parse-time routine, passing its ar-

guments, if any. The parse-time routine, like the semantic

portions of APAREL, is -oded in full PL/I and can make use

of all the facilities of APAREL, such as initiating parse-

requests, manipulating parse-strings, and interrogating the

parse-trees. In addition, the parse-time routine can per-

form any semantics desired and return a true or false value

indicating whether the parse-element to which it is at-

tached should be considered successfully parsed.

Since parse-request-sequences initiated in the syn-

tactic portion of a parse can be a block or a do-group that

may begin with a code section or may not contain any parse-

requests at all, these parse-request-sequences can be con-

sidered parse-time routines that return a success or failure

indication (and are formally the same as the parse-time rou-

tines discussed above). Both ways of specifying these

parse-time routines have been allowed in APAREL, enabling

users to choose the one corresponding to their way of con-

ceptualizing its function in their particular application.

-14-

V. ADDITIONAL FEATURES

In the semantic portions of APAREL, very often one

would like to output a modified or "translated" version of

the parse-string. To make this operation simpler, a spe-

cial variable, TRANSLATION, has been defined; and whenever

an assignment is made to this variable, the value assigned

is output to the SYSPRINT data set. For more flexibilityf
the user may define additional variables as being output

variable of specified size and associated with a specified

file. When an assignment is made to one of these variables,

if th(j value can be added to the end of the present string

value without exceeding the maximum 3ize of the variable,

then the new value is concatenated onto the existing value.

If not, then the existing value is output on the file spec-

ified, and the new value becomes the value of the variable.

If the size is not specified, then outputting occurs with

every assignment. If neither a file nor a size is speci-

fied, then a user-defined procedure of the same name as the

output variable is called with the new value as the argu-

ment. This allows the user to define arbitrarily complex

procedures for outputting, and corresponds to the updating

routine (left-hand size function) definitional capability

of Dataless Programming [2] and CFL [3].

Similarly, for input, a variable, PARSE_STRING, will

be automatically defined to hold the input to be parsed.

When the amount of input in thi^ variable falls below a

system-defined limit, new input will be concatenated to the

variable to fill it out to its maximum size. The user nay

define additional input variables together with their mini-

mum sizes, maximum sizes, and file fron which input is to

come. If the minimum and maximum sizes are not specified,

references to the input variable will invoke a user-defined

accessing function of arbitrary complexity, a la Dataless

Programming. These minimum and maximum sizes limit the

amount of backtr?cking that can occur.

-15-

The user also can control which of several input sources

is used via the CONSIDER command. He may later re-establish

an input source via the RECONSIDER command. These commands

stack and unstack respectively which input source is being

parsed. CONSIDER_LEVFL contains the number of input sources

so stacked, and CONSIDER_STRING is an array containing, in

ascending order, the names of those stacked input sources.

In parsing there are normally three requirements for

blank separation between the individual segments of the

parse-striny matched by parse-atoms. The first is that no

blank may occur between the segments. This is indicated in

a parse-request by placing a minus sign between the parse-

elements. The other two normal blank-separation requirements

are that either any number of blanks (perhaps none), or at

least one blank (perhaps more), separate the segments. Since

the need for each of these requirements is highly application

dependent, APAREL allows the »ser to define the normal mode

(used between pars^-elements unless otherwise specified) and

to request the other requirement by placing a period between

the parse-elemenLs. The normal mode is set by either NORMAL

SEPARATION IS 0 or NORMAL SEPARATION IS 1 command- The de-

fault setting is NORMAL SEPARATION IS 1.

Similarly, the cvo normal ways to view the semantic code

portion are either as open or closed subroutines. In an open

subroutine, flowing out of the bottom of a semantic coie

portion into a parse-request initiates that parse-request.

Whereas in a closed subroutine, flowing out the bottom of a

semantic code portion into a parse-request effects a return

to the caller of the parse-request whose semantics have just

completed. APAREL allows a user to define which of these two

modes he is using via the SEMANTICS OPEN and SEMANTICS CLOSED.

The default setting is SEMANTICS CLOSED.

Both the SEPARATION and SEMANTICS commands are compile-

time commands and affect the interpretation of all lexico-

graphically following parse-requests in the current or con-

tained blocks or do-groups, until either the end of the block

-16-

or do-group, or another mode command, overrides the present

normal mode.

Within a semantic code portion, the user may desire to

initiate a remote parse-request, or to terminate the seman-

tics for the present parse. These capabilities are avail-

able, respectively, through the INITIATE PARSE and TERMINATE

PARSE commands.

Tne TERMINATE PARSE command is also used to specify the

success or failure of a parse-request. TERMINATE PARSE

SUCCESSFULLY indicates a successful termination, while TERMI-

NATE PARSE UNSUCCESSFULLY indicates an unsuccessful parse.

TERMINATF PARSE with neither operand specified defaults to

TERMINATE FARSE SUCCESSFULLY. Thus, a parse-request can be

declared unsuccessful in three ways: 1) in the syntactic

specification of the parse-request when a syntactic parse

is unsuccessful; 2) in a parse-time routine; or 3) in the

semantics of a parse-request. The parse is successful only

if none of these indicates an unsuccessful parse.

When initiating a parse-request-sequence, a user often

wishws to be able to inspect and manipulate the results of

the parse-requests before accepting any translation produced.

Since these parse-requests should not (and need not) know

that they have been initiated from above, they must be able

to create translations just like any other parse-request.

Therefore, the user needs a way of telling APAREL to redi-

rect the translation (or output variables) of any parse-

request. This redirection causes the translation produced

for the specified output variables to be collected into the

specified strings for review and/or manipulation by the ini-

tiating routine. This redirection is specified as additional

operands (of the form x IN y , and separated by 'AND'

to the initiate parse-command. For example:

INITIATE PARSE k COLLECTING translation IN s AND

output IN def;

•17-

The parse-request-sequence named k will be initiated. All

translation it, or any parse-request it initiates, produces

in the output variable named "translation" will be collected

instead in the string named "s", and all translation produced

in the output variable named "output" will be collected in-

stead in the string named "def".

Finally, by placing a dollar sign {$) in front of

parse-names, parse-time routine names, or parse-atoms, the

user can indicate indirection; i.e., the parse-name, parse-

routine name, or parse-atom specified is the contents of

the named string. This facility, accomplished via a run-

time symbol table of all parse-related names (which must all

be unique), provides considerable flexibility for users de-

siring to alter the parse-requests dynamically. It also

facilitates context-sensitive parses requiring rep-+ ' "-ion of

a parse-element within the input string.

•18-

VI. EXAMPLES

One use of APAREL is as a macro prccessor, handling

macros of the type commonly referred co as SYNTAX and/or

FUNCTION macros [4], In such an application, a user passes

the macros over the source text, translating those portions

that satisfy the macro syntax while leaving the rest of the

text undisturbed. APAREL is easily restricted to this mode

by defining a parse-request that picks off source-language

statements, one at a time, from the input stream. The re-

sult of this parse, a single source-language statement, is

then passed through the various macros that produce the de-

sired translation when a parse request for a macro is sat-

isfied. If the source statement passes all the way through

the macros without matching, it is output unmodified. As-

suming the parse-request, PLI_statcment, has been predefined

and will pick off one PL/I statement at a time, the follow-

ing is an APAREL program that acts as a SYNTAX and FUNCTION

macro processor for any parse-requests defined in its body.

/* Method: PL/I statements are picked off the input stream

one at a time and used as the parse-string input for

the user-defined syntax and runction macros contained

in the parse-request-sequence USER_MACROS. If no

parse-request ii. this parse-request-sequence is suc-

cessful, then the PL/I statement is output. Otherwise,

the translation produced is added to the front of the

string RESCAN. If this string is not already being

CONSIDERed as the input string from which PL/I state-

ments are picked off, it is so CONSIDERed. Thus all

PL/I statements in the translation produced by the

USER MACROS are processed before any more is taken

from the original input source. After RESCAN has been

exhausted, the original input source is RECONSIDERed */

-19-

next_PLl_statement:

INITIATE PLl_stateraent; /* get next PL/I statement*/

IF PLl__statenient_option = 0 /* was the parse successful*/

THEN DO; /* no, end of input must have been reached*/

IF CONSIDERED_STRING (CONSIDER_LEVEL)=,rescan'

THEN DO; /*reconsider the original

input string*/

RECONSIDER;

GO TO next_PLl_statement;

END;

ELSE /* we have exhausted the original input

string*/

TERMINATE PARSE; /* terminate the parse

in this manner in case we were

initiated by someone, and are not

the top-level routine*/

END;

ELSE DO; /* parse was successful, we now have a single

PL/I statement*/

CONSIDER PLl_statement; /* use result of ?L/I statement

as parse-string for user_macrc3*/

INITIATE user_macros COLLECTING translation IN partial_

translation; /* initiate users

syntax and function macro parse-

request-sequence contained in the

block or dc_group labeled "user-

macros". The translation output

of these macros is collected in

the PL/I string "partial_trans-

lation"*/

RECONSIDER; /* stop considering PLl_statement and

reconsider the parse-string in

effect before it*/

-20-

If user_nacros_option-i= 0 THEN DO; /* one of the parse-

requests in the userjmacros parse-

request-sequence was successful*/

rescan = partial_translational||rescan; /* add

partial translation to front of

rescan string so that it will be

retranslated first. Notice that

this defines a depth first

translation*/

IF CONSIDERED_STRING (CONSIDER_LEVEL)-, = 'rescan'

/* is rescan the currently considered

parse-string*/

THEN/* no it is not the currently considered

string*/

CONSIDER rescan; /* make it the current

parse-string*/

GO TO next_PLl_statement;

END;

ELSE DO; /* none of the parse-requests in the user-macros

parse-request-sequence were successful*/

TRANSLATION = PLl_statement; /* output the

PL1 statement th&t did not match*/

GO TO next_PLl_3tatement;

END;

Continuing the above example, two parse-requests are

shown below, both of which provide translations into PL/I.

They are placed in the do_group labeled "user_macros" to

conform to the preceding example/s initiation command. The

first is a syntax macro that translates increment or decre-

ment commands, and the second is a functional macro that

translates various notations for asking if a value is equal

to one of a number of items. Notice that the only differ-

ence between syntax and function macros is that syntax

macros require successful parses to be anchored to the

-21-

beginning of the parse-string, while functional macros al-

low successful parses anywhere within the parse-string.

The annotated parse-requests are given below, followed

by a set of example input parse-strings with their trans-

lations :

user_macros: DO; /* begin labeled do group that defines a

parse-sequence*/

NORMAL SEPARATION IS 1; /* unless otherwise specified

parse-elements must be separated

by one or more blanks*/

SEMANTICS CLOSED; /* upon reaching the end of the se-

mantics of a parse-request, auto-

matically generate a terminate-

parse command*/

:: Increment_command: command_type (updated_variable:

subscripted variable) by 'increment

amount: ARB^ . ';' :: /* ar. increment

command is a command type followed

by a possibly subscripted variable,

called "updated_variable", followed

by the literal "BY" (literal since

it is not defined), followed by an

arbitrary string called "increment

eunount", followed by a semicolon.

{The semicolon has to be quoted

since it is part of the parse-

request language.) The period

indicates that a space is not re-

quired in front of the semicolon.*/

IF conunand_type_option « "increment command" /* was the

option in command_type labeled

"increment_command" chosen*/

THEN /* yes this is an increment command*/

translation = updated_variable||'^||updated_

variable||'+'||increment-amount

-22-

! I ' ; ' ; /*output PL1 assignment for

incrementing variable*/

ELSE /* no, must be decrement command*/

translation = updated_variable|1'='||updated^

variable]|'-('|j increment_amount

j1') ; ' • /*output PL/I assignment

for decrementing variable enclosing

increment_amount in parentheses*/

/* the next statement is a parse-request in the same

block or do group as the present

parse-request; therefore, it

indicates the end of this semantic

code; and since semantics have to

be set closed, it automatically

generates a terminate-parse

command.*/

/* this parse-request will be activated if the preceding

parse-request failed*/

:: one_of:(front:ARB)(x: subscripted_variable><is|is among].

alternative_list<back:ARBN::

/* a one_of function macro is an

arbitrary string (the ARB primitive

parse-request function matches the

smallest string that allows the

rest of the parse-request to be

successful; this may require

backup and repeated attempts, each

time increasing the length of the

string matched by _ne ARB parse-

request function) named "front"

followed by a subscripted variable

named "x" followed by either "is",

"is" followed by "among", or by "=".

This is followed by an alternative^

list followed by an arbitrary string

named "back". The separation between

= . s

-23-

these elements is one or more blanks—

except for the equal sign, which may

have zero or more blanks on either

side of it as indicated by the normal

separation override notation (the

periods).*/

translation = front||PLl_alternatives||back; /*the

string "PLl_alternatives" replaces

the function macro in the parse-

string, and the result is output as

the translation of the parse-string.

The PLl_alternatives string was

built up in the semantic portion of

the alternative_list parse-request

shown below*/

END user_macros; /* this is the end of the do-group.

It indicates the end of the semantic

portion of the one_of parse-request;

and, since semantics are closed, it

automatically generates a terminate

parse-command for that parse-request.

If this parse-request had failed,

then, since it was the last parse-

request in the parse-request-sequence,

the sequence would have failed.*/

/* the following are parse-requests referred to above.

Since they are defined in another

do-group or block than the preced"

parse-requests, they do not form

part of its parse-request-sequence.*/

subscripted_variable: variable (.'{'.BAL.')'.|N:: /*a

subscripted variable is a variable

followed by a left parenthesis

followed by an arbitrary strirn

balanced with parentheses followed

-24-

by a right parenthesis or a variable

followed by a null. The parentheses

and the balanced string do not have

to be separated by blanks. There

are no semantics specified for this

parse-request.*/

co;ranand_type: < increment_coinmand: increment | i ' incv'|

/decrement^ommand: decrement | d | decs> : :

/* a command type is either an

increment_command or a decrement^

command. These two types cun each

be indicated in one of three ways:

"increment", "i", or "inc" and

"decrement", " "; or "dec". There

are no semantics specified for this

parse-request */

alternative_list: Initial_semantics ARBNO(alternative,

^','1 or v) :: /* an alternative_

list is an initial_semantics followed

by an arbitrary number (with a

minimum of one) of alternatives

separated by either commas or the

literal "or". The parse-request,

initial_semantics, does not perform

any parsing, but is used to initial-

ize the string, PLl_alternative,

used in the semantics of "alterna-

tive". There are no semantics

specified for this parse-request.*/

alternative: expression: /* an alternative is an ex-

pression. Its semantics follow.

The same effect could have been

achieved by r^r-lacing alternative

in the parse-request alternative_list

by expression; ai<;ernative_semantics

-25-

where alternative_semantics would be

the name of the following semantic

routine. The choice is left to the

user depending on his particular

basis.*/

if -i first_alternative then PLl_alternatives=PLl_

alternatives!|'I'IlxlI,=lM expression;

/* the alternative is added to the end

of the alternatives already found.

It is separated from the preceding

alternatives by "|", and consists of

the subscripted variable (the value

of x from the parse-request, "one_of")

followed by an equal sign followed

by an expression just parsed above.*/

ELSE DO: /* this is the first alternative*/ first_

alternative = 'O'B; /* indicate no

longer first alternative*/

PLl__alternatives = xll'^'ll expression;

/* PLl_alternatives is set to the

first alternative found*/

END;

TERMINATE PARSE; /* indicate er.d of semantics*/

initial_semantics: DO; /* initial-semantics is a parse-request-

sequence containing no parse-request*/

first_alternative « 'I'B; /* indicate parse-request was

successful*/

END;

-26-

VII, TRANSLATION RESULTS

Using the APAREL program defined in Sec. VI, we indi-

cate below the translations that would result for various

input examples. If the input passes through unchanged, the

translation entry is left blank to facilitate recognition.

input

increment x by 5;

d abc by x-4;

i def by?;

decrement by 3;

if abc is x-3 or

0 then do;

R = (def is among

l,2,Z-4 or 9);

when h = 5, or 7

then do;

translation

X = X+5;

abc = abc - (x-4);

if abc = x-3 |

abc - 0 then do;

R » (def = 1 1 def

j def = Z-4 1

def = 9);

when h = 5 | h or

7 then do;

= 2

comments

the decrement

translation

supplies paren-

theses around the

decrement amount.

no separating

blank after 'by*

'by' is picked

up as the sub-

scripted variable,

but the parse then

fails because 'by'

cannot be found.

comma after 5

causes parser

to pick up "or"

as an expression

rather than as the

separator between

-27-

input

if x is 3,>5, or 0

if x = 1 or 4

then i x by x-1;

translation

if x = 1 | x = 4

then x = x+x-1;

comments

expressions. The

syntax of the

functional macro

should be cor-

rected to prevent

this error. Notice

how this error is

reflected in the

translation;

">5" is not an

expression.

-28-

VIII. IMPLEMENTATION

The initial implementation of APAREL, which has been

completed on an IBM~360 computer, consists of two parts:

1) a preprocessc" that converts APAREL programs into equiv-

alent legal PL/I pr grams with external calls for parse-

requests, and 2) the run-tir-■ parser, whi h provides APAREL's
parsing capabilities. The preprocessor is an APAREL program

that was bootstrapped into operation, and the run-time parser

is an assembly-language program. The current implementation

of each of these parts imposes the following restrictions on

the full APAREL language.

1) The BAL primitive parse-request function is not

implemented.

2) The scan of parse-requests is strictly left to

right. Thus, in the parse-roquest

^AIB^

if A is matched, B will be skipped; if C then

fails, the sequence B followed by C will not be

tried. This can be remedied by

<AC|BC)

3) The parser matches the maximum string possible.

This applies only to the nonlitfiral matches; e.g.,

ARBNO and the blank scan, which ma<-ch as much as

possible. Note that this will prevent the parse-

request

ARBNO (A,") A

from being parsed successfully because the aroitrary

number of A's separated by NULLs will include all

such A's in the input, forcing the final A after

the ARBNO to fail.

4) Left-recursion is handled in a rather unique way.

The state of the parser is determined by two vari-

ables: 1) the position in the input string, and

-29-

2) the position in the parse-request. Before at-

tempting a match for any alternative, the parser

checks to see if the present state has occurred

before (during the current initiation of the

original parse-request). If it has, a left recur-

sive loop has occurred, and the pan r simply

moves on to the next alternative to break this

left recursive loop. This, therefore, would cause

the rule

number: number digit]digit

to fail on more than two digit numbers. Taxs can

be remedied by using the ARBNO function, which

allows iterative specification rather than nested

recursive definition. Thus,

number: ARBNO(digit,")

A number is an arbitrary nonzero number of digits

separated by NULLs. Or even more elegantly:

expression: ARBNO(expression,operator)|(expression)

| variable]number

]unary_operator expression

An expression is an arbitrary nonzero number of

expressions separated by operators, a parenthesized

expression, a variaole, a number, or a unary opera-

tion followed by an expression.

-3C-

Appendix

BNF DEFINITION OF APAREL'S SYNTAX LANGUAGE

,PARSE_REQUESTN := ''PARSE_DELIMINATORv>''PARSE_NAMEv :
(PARSE_ALTERNATIVE_LIST) (PARSE_DELIMINATORv-

(PARSE_ALTERNATIVE LIST) := /PARSE_ALTERNATIVF_NAMEN

(PARSE ELEMENT LIST) ! (PARS _ALTERNATIVE_NAME)
(PARSE-ELEMENT LIST) '1' (PARSE ALTERNATIVE_L1ST^

^PARSEJSLEMENT LIST) := (PARSE_ELEMENT) !
^PARSE_ELEMENTN;(PARSE_TIME_ROUTINE_NAMF^ j
(PARSE_ELEMENTN(PARSE_ELEMENT LIST) \
(PARSE_ELEMENT >.(PARSE ELEMENTJLIST)

/PARSE_ELEMENT,> := (PARSE_ATOM)]" < PARSEjSROUP)
''PARSE_GROÜP) := '(• (PARSE_ALTERNATIVE_LIST) ')' |

'(' (PARSE-NAME):<PARSE_ALTERNATIVE_LIST) ,N,

(PARSE_ATOM> :■-= ^ PARSE_NAME) | ''TEXT LITERAL)
^PARSE_NAME) :=(PL/1 IDENTIFIER)
(PARSE_ALTERNATIVE NAME) := ((PL/1 IDENTIFIFR))
(PARSE_DELIMINATORy := ::
'PARSE-TIME ROUTINE NAME) := (NAME OF A PL/1 BIT VALUED FUNCTION v

-31-

REFERENCES

1. PL/I Language Specification^ IBM Corporation, form
C28-6571-4.

2. Balzer, R. M,, Dataless Programming, The RAND Corpora-
tion, RM-5290-ARPA, July 1967. (Also Proceedings of
the AFIPS FJCC (1967), pp. 535-544.)

3. Strachey, C. (ed.), CPL Working Papers, London Insti-
tute of Computer Science and the University Mathe-
matical Laboratory, Cambridge, 1966.

4. Leavenworth, B. M., "Syntax Macros and Extended Trans-
lation," Communications of ACM, Vol. 9, No. 11,
November 1966, pp. 790-793.

5. Backus, J. W., "The Syntax and Semantics of the Proposed
International Algebraic Language of the Zurich ACM-
GAMM Conference," Proceeaings of the International
Conference on Information Processing, UNESCO (1959),
pp. 125-132.

6. Cheatham, T. E., "The Introduction of Definitional
Facilities into Higher Level Programming Languages,"
Proceedings of the AFIPS FJCC (1966), pp. 623-637.

7. Färber, D. J., R. E. Griswold, and I. P. Polonsky,
,,SNOBOL3," Bell System Technical Journal, August 1966.

8. Feldman, J. A., and D, Cries, "Translator Writing
Systems," Technical Report #CS69/ Stanford, June 9
1967.

9. Gauer, B., and A. J. Perils, "A Proposal for Definitions
in ALGOL," Communications of the ACM, Vol. 10, April
1967, pp. 204-219.

10. Irons, E. T., "A Syntax Directed Compiler for ALGOL 60,"
Communications of the ACM, Vol. 4, January 1961, pp.
51-55.

11. McClure, R. M., "TM6--A Syntax-Director Compiler," Pro-
ceedings of the 20th National ACM Conference, 1965,
pp. 262-274.

12. Mondschein, L., VITAL Compiler-Compiler Reference Manual,
TN 1967-1, Lincoln Laboratory, January 1967.

