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ABSTRACT

OBJECTIVE ANALYSIS OF A TWO-DIMENSIONAL DATA FIELD

BY THE CUBIC SPLINE TECHNIQUE

A procedure to use the spline interpolation technique on an

arbitrarily prescribed two-dimensional data field is described. In

order to use this technique it is necessary to obtain an initial

approximation to the data at the grid points. This is achieved by

fitting spherical surfaces to the data. Bi-directionel spline inter-

polation is then applied repeatedly on the grid point estimates of the

data to produce convergence to the true surface.

The spline interpolation technique and another objective analysis

technique developed by Gilchrist and Cressman are tested against an

exact solution and the resulting analyses are compared. Real tempera-

ture, geopotential height, and wind data for various pressure surfaces

are analyzed by the spline method and the results are compared to

subjective analyses of the same data.
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1. IntroducLion

With the development and continuing improvement of the electronic

computer came the beginning of practical numerical weather prediction.

The present day computers make it possible to use elaborate numerical

models to improve forecast accuracy; however, there are certain limi-

tatiors to this improvement which cannot be overcome by increasing the

speed and capacity of the computer or by improving the set of equations

which define the model. The two major limitations are: 1) the density

of the network of observation stations; and 2) the unavoidable error,

instrument or otherwise, which is introduced while making any type of

measurement. The first limitation imposes a well defined limit on the

scale of atmospheric motion which can be resolved by the model. Of

course the solution to this problem is simply to increase the density

of the observing network thereby obtaining the "scale of data" necessary

for predicting the corresponding scale of motion.

The second limitation is far more difficult to eliminate. Any set

of observations contains certain random errors as well as some small

scale fluctuations (noise). In using this data in any numerical model

it is of utmost importance to eliminate these errors and the noise if

the final results are to be meanin~gful. This has been demonstrated, for

example, by the studies of Best (1956) and Berggren (1957). Since

meteorological prediction is an initial value problem, it becomes impera-

tive to begin any numerical weather prediction with the "best possible"

representation of the real data.

Various attempts at solving this problem have been introduced in

meteorology within the past fifteen years and shall be referred to as
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"objective analysis". An appropriate definition cf objective analysis

was given by Gandin (1963).

"Objective analysis includes the development and realization

of methods which make it possible to use the measurement

data of meteorological stations to reconstruct objectively

the fields of the meteorological elements [variable], or at

any rate to specify their values at the nodes [grid points]

of some type of regular network.

Actually, objective anaiysis includes three distinct functions:

1) elimination or correction of gross errois in the data field; 2)

interpolation of data to obtain values on a grid; and 3) smoothing of

the resulting values at the grid points.

Probably the first attempt at objective analysis of meteorological

data was by Kibel in 1949. Kibel used formulas based on the method of

least squares to describe the field of data by second and third order

polynomials. Also in 1949, Panofsky represented a field by cubic

polynomials and showed that the introlucrion of random observational

errors into the data field resulted in only minor variations in the

polynomial representation.

By 1954, the need for a better objective analysis technique to be

used in conjunction with Lit r~pidlv dcveloping field of numerical

weather prediction resulted in thti mathod developed by Cilchrist and

Cressman (1954). Their method wa, baised on fitting a second degree

polynomial by the method of least squares to the data in a limited area

around each grid point. Wind vaties werc incorporated in the scheme

by using the geostrophic assumption to determine -h (where h is the

deviation o( height from thc ,Landard atmospherc) at a data point.
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Thus each data point supplied three pieces of information, h, --h, and

3h to be used In the least squares fitting. For regions cf little
aa

data, this method proved to be inadequate since at least six initial

pieces of information .iere needed to determine the second degree poly-

nomials which defined the field. In fact, Gilchrist and Cressman found

that with less than ten pieces of data the calculation was subject to

significant error. In regions of sufficient data, however, they found

that numerical predictions based on the objective analyses were an

improvement over those based on subjective analyses.

About a year after Gilchrist and Creasman (1954) introduced their

objective analysis technique, Bergthorssen and Doos (1955) developed a

new approach to objective analysis. Their method differed from

Gilchrist and Cressman's in that they first determined what is now

called the "preliminary field". This field was computed from the

weighted mean of the forecast values at the grid points and the clima-

tological norms for that time. The data obtained from the observation

stations was then used in a sequence of three corrections which were

thwn applied to the preliminary field with different weights, depending

on the distance from station to grid point. The numerical predictions

based on the objective analyses technique of Bergthorssen and Doos were

approximately the same as the predictions based on the subjective

a&alyse$.

Approximately five years after the development of his first objec-4

tiv* analysis technique, Cressman (1959) introduced a modification of

the Bergthorssen-Doos method. In his new method, Creasman used a pre-

liminary field which was usually the forecast for the time of the

observation data. Weighted corrections, based on the new observations,
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were then applied to the preliminary field. The corrections were

defined as a function of the distance (d) from grid point to station.

The weight 2actor (W) for each correction is given by

W= n2 - d2  for d < n

=0 for d > n

where n is a multiple of N, the grid interval. The correction procedure

was then repeated for decreasing multiples of N. Cressman's new -method

of objective analysis resulted in better numerical predictions than

those predictions based upon his previous method of analysis.

Improvements of existing techniques have been developed, most of

which are based on the inclusion of additional information such as

surface data, vorticity, geostrophic approximation, etc. (see Doos and

Eaton, 1957; Johnson, 1957; Sasaki, 1958; Aubert, 1959; Masuda and

Arakawa, 1962; and Teweles and Snidero, 1962),.

Although the above objective analyses give satisfactory results

for regions of sufficiently dense observation stations, it remains to

develop a reliable technique which will operate satisfactorily over

regions of sparse data. An attempt to develop such a technique is

presented in the following sections.



2. Basic Spilne Theory

Thk problen of passing a smooth curve through. a given set of

points (N) has been solve-i mechanically by using a thin elastic strip

to define the curve (Figure la). This strip is commonly called a spline.

P.Ithough a polynovial ot degree N-I could be determined which would also

pass thruugh the same set of points, the curve defined by the spline

will be smoother. From the theory of elasticity it cav be shown that

a spline will have the m-nimum possible strain energy (Love, 1934;

Holladay, 1957), that is

fK 2ds = mwnin*

where K is the curvature and ds is the arc length. Since strain energy

is a measure of the smoothness of a curve, the spline must define the

smoothest curve for a given set of points.

If, in addition to knowing the points through which the spline

passes, the slopes are prescribed at these points, the spline will

define a new curve (Figure ib) having a minimum of strain energy for

the new set of constrainrs.

The toncept of obtaiting a smooth curve Kby passing a spline through

a givel set of points may be applied to the analysis ef data. For this

purpose, the spline curve between any two !ata points will have to be

approximated mathematically by a polynomial representation. These

piecewise polynomials will thern have to be joined together under certain

specified constraints like tre contintity of the function and its

derivatives at the .iata points. Theseconstraints, of course, depend on

the nature of the phenomenon under-investigation. Fowler and Wilson

(1966) have developed a method of determining a series of cubic equa-

tions which, when spliced together with continuous slope and curvature

5



6

D

r C

Fig. la: Spline passing through points A, B, C, and D.
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Fig. Ib: Spline passing through points A, B, C, and D where

slopes have been prescribed at the points.
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C

Fig. Ic: Spline curve which results when one of the constraints

(point C) has been removed.
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at the junction points, approximate a spline for a given set of data

and slopes. Pearce (1968) used piecewise quadratic polynomials i:o allow

for the sharp but real changes which occur in representing a vertical

wind profile.

Normally it is not desirable to fit a curve exactly through all the

data points, and so, some type of smoothing is performed on the data.

It is interesting to note now, that if one of the constraints in Figure

lb is removed, the resulting position of the spline (Figure lc) is one

of even less strain energy. That is, the spline defines a rmoother

curve. Thus an equation which approximates the new spline should give

a smoother representation of the data. However, since it is not desir-

able to completely eliminate any data points, the new spline could

instead be used to determine the magnitude and direction of the movement

of a data point such that "controlled" smoothing may be done. Fowler

and Wilson (ibid.) made use of this idea to smooth their series of

continuous cubic equa.ions.



3. Mathematical Approximation to Splines

The mathematical development of the more widely used spline approx-

imation, the cubic spline, is described below. A cubic spline fitting

requires a general third degree polynomial between any two points of n

given set of data. Hence, ten initial conditions must be known. If the

coordinate system is translated and rotated so that the first point is

at the origin and the second is on the x'-axis, the general equation for

a third degree polynomial reduces to

y' - Ax'3 + Bx' 2 + Cx+D ()

where the primes indicate the new coordinate axes. The solution to this

new system requires only four initial conditions. Assuming that the

coordinates of the two points (endpoints) are known, it remains to

determine two additional conditions. These are obtained in the follow-

ing manner. Consider Figure 2. A circle is fitted to the set of points

defined by the endpoint B, and the two adjacent points, A and C. The

derivative of the resulting equation may then be solved for the slope

at B. Similarly, the slope at E is determined using points D, E and F.

The four initial conditions are then:

at the first endpoint x' = y' - 0 (2)
slope - Sl' (3)

at the second endpoint x' - d, y' - 0 (4)
slope - S2' (5)

where d is the distance between the endpoints.

1he equation for the slope is given by the first derivative of (1).

d5' -3Ax' + 2Bx' + C (6)
dx'

8
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Fig. 2: Determination of slopes at data points by fitting circles

to the data.
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Fig. 3: Normal position assumed by the cubic spline when fitted

to the endpoints of a three data interval.
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The system consisting of equations (1) through (6) may now be solved in

terms of S1', S2' and d. The resulting expression for y', then, is

y (Sl' + S2') ,3 _ (2S1' + S2') _,2 + Sl'x' (7)
d2  d

Due to the rotation of the coordinate system, the endpoint slopes in the

original system, S1 and S2, have been transformed to new values, Sl' and

S2', in the primed system. This transformation is given by:

SI' Sl - TR
I + S1 • TR

S2' = S2 - TR
1 + S2 - TR

where TR is the tangent of the angle of rotation (e).

Now consider a data interval to be the interval defined by the

endpoints of three successive data points. A cubic equation fitted to

the endpoints of each successive interval for a given set of data will

usually pass between the curve to be approximated and the middle data

point of the interval (see Figure 3). This suggests an iterative

smoothing procedure which will result in the convergence of the data

towards the curve.

Starting with the first interval, a cubic is constructed for that

interval. The middle data point is then adjusted towards the cubic.

Since the location of the curve to be approximated is not known in most

cases, the middle point is only moved some fraction of the total dis-

Lance between the point and the cubic curve. The procedure is repeated

in the succeeding intervals. Figure 4a demonstrates this procedure

where the adjusted points are indicated by the higher subscripts. For
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.... cubic from.B.to.

-... cubic from C to Eo o

-- cubic from C to E
0 0

curve to be approximated

Fig. 4a: Set of three cubic splines approximating a curve.

B , & .. ............ ...

0---A° to Cl CI

.... B to D1  curve to 6e approximated

- C1 to E

Fig. 4b: Second iteration in chlc ubic spline convergence.

BB2

A ... ............ .. .

A to C2 C2 to E

B 2 to D2  curve to be approximated

Fig. 4c: Third iteration in the cubic spline convergence.
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example, a cubic is fitted to AO and Co. The middle point, BO' is then

moved toward the cubic to its adjusted position, BI - In the next inter-

val, the cubic is fitted to BO and Do which adjusts CO to C1 - Similarly

Do is adjusted to D, in the interval (CO, EO). Upon completion of the

data adjustment for all intervals, the entire process is repeated until

satisfactory convergence is achieved or the benefit of additional

smoothings becomes impractical. Figures 4b and 4c depict the second

and third iterations in a series of three smoothing iterations for a

set of five data points. In general, spline interpolation convergee

rapidly as shown by Ahlberg and Nilson (1963), and has the additional

property of being insensitive to round-off errors.



4. Two-Dimensional Considerations

The results of approximating curves by splines have been so

successful (Curtis and Powell, 1966; Walsh, Ahlberg and Nilson, 19(2)

that it would seem desirable to extend the theory to approximate

surfaces. Birkhoff (1966) developed a method using bicubic spline

interpolation which approximates surfaces on a rectangular field given

the data value (u) at all grid points, the normal derivative (ýu/In) at

the boundary grid points of each elemental rectangle, and the cross

derivatives (3 2 u/3x3y) at the four corners of the field. In practice,

however, most data fields are not known at a regular grid network and

the problem is therefore to interpolate the known data to the grid

points and smooth the resulting fields.

Since circles were used successfully by Fowler and Wilson (ibid.)

to obtain an approximation to the slope at each point in their curve

fitting routine, it would seem logical to fit spheres to the data to

approximate the surface and slope in a surface fitting routine. Since

the value of the surface is desired only at the grid points, the problem

may be reduced to one of splicing the surfaces of the spheres together

at a discrete number of points.

Given an arbitrarily located set of two dimensional data points,

the points are ordered according to increasing values of the x-

coordinate. A grid network is defined (grid length is arbitrary) to

cover the data field such that all data points fall within the network.

Since for a given grid point, not all the data influence the value at

that point, what shall be referred to as the "band of influence" is

defined for each grid line (y a constant). The vertical plane which is

coincident with the grid line is called the grid plane.

13
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For a given grid line then, those data points which fall into the

band of influence are used to define the spheres. The surface value at

each grid point on the grid line can then be determined by substituting

the coordinate of the grid point into the equation for the appropriate

sphere. The equation for a sphere is given by:

(x - a)2 + (y - b) 2 + (z - c) 2 = r 2  (8)

Given four data points, (8) may be solved for a, b, and c, the coordi-

nates of the center of the sphere, and r, the radius of the sphere.

For a given grid line, y = y1 , which passes through the sphere, and grid

point, x = xi, in the domain of the sphere, (8) may be solved for the

surface, zij, at the grid point.

In order to define the surface from the beginning of the grid to

the first data point, the first three data points in the band of influ-

ence are used to quadratically extrapolate backwards past the beginning

of the grid. Based on this extrapolation, three dummy data points are

created. The requirement on the location of these dummy points is that

the first two are located outside the grid boundary and the third loca-

ted between the boundary and the first real data point. The reason for

this will be explained below. Three dummy points are also determined

at the other end of the grid to generate data from the last real data

point to the end of the grid.

The surface value at the first grid point along a grid line is

determined by fitting a sphere to the first four data poincs and sub-

stituting the grid point into the equation for the sphere. The first

grid point is always made to fall between the second and third data

points. If the succeeding grid poitt also falls between the second and
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third data points, its surface value is obtained using the same sphere.

As soon as the succeeding grid point falls past the third data point, a

new sphere is used to obtain the surface value for the new grid point.

The new sphere is determined from the last three data points of the

previous sphere and the next data point in succession (see Figure 5).

Thus, surface values at all grid points represent the "midsection", so

to speak, of the data which defines each sphere.

This procedure is repeated for each grid line until an approxima-

tion to the surface has been determined at all grid points.

The resulting data values at the grid points are checked for error

by zomparing the grid point value to the mean of the data values in the

band of influence being considered. If the difference between a grid

point value and the mean data value is greater than two standard devia-

tions of the real data, the grid point value is replaced by a linear

interpolation between the two nearest acceptable grid values along the

grid line (one acceptable grid value is taken from each side of the re-

jected grid value). If the first grid point is rejected, it is replaced

by the mean of the data in the band of influence. This procedure is to

some extent arbicrary, since the mean of the entire data field may be

used instead of the mean for the band of influence. Also, in some

analyses it may be desirable to restrict the magnitude of the extreme

values, thus, the number of standard deviations of the real data is left

as a variable input parameter. Since it is possible for two successive

grid point values to occur at opposite extremes within the prescribed

number ot standard deviations of real data, the difference between two

successive grid values may be as large as twice the number of standard

deviations wntch was prescribed. Such a change may or may not be
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realistic, se, all grid polot values texce- those at x = x,) are sub-

jected to at a4ditional errom c~heck which is based upon the saxsii

persissible slope %MFPS) between grid points. The MPS is a functiC4 of

-.he variable being analyzed and is therefore 3w inat parameter.

Beginning vwh the second grid point, a , tMe points, xi, along the

""oundary, y, of the grid are compared to the grid values at the last

aectT•Lable gri, point, (x,,y), and (x 4 ,y 3 ). If the slope froe tLe

point (xiy,) to any two of the ne'.ghboring points is greater than MPS

the grid point value at (xiYl) is replaced in the same manner as

described above. For the points (x.,y i ; . 2, 1 < j - j . each grad

v.lue along thne grid lines, y., is compared to the two neighboring grid

values (m i-1 y) and (xiyj_'). If the slope fro the point (xisY ) to

"ither of the neighboring points is greater than .MPS, the grid point

value is replaced as described above. The error check at the boundary,

Y Jmx3 is analogous to the error check at the boundary, y,. Errors

occurring near the end of a grid line nay not have an acceptable adja-

cent grid value in the positive x-direction. In this situation a second

order Taylor's extrapolation is used from the last three acceptable

grid values to the end of the grid.

Starting with the first grid line, yl, each grid line is smoothed

using the cubic spline routine as outlined In Section 3. Upon comple-

tion of smoothing in the x-direction, the entire field is smootned in

the same manner in the y-direction. Repeated snoothings in the x and y

directions eliminate directional bias, and after three or four of these

bi-directional smoothings, the grid point values converge to a surface.



S. Results

In order to proper)y test the spline method it voui~d be advanta-

geous to kacu an exact solution for the surface. Thus, in addition to a

qualitative evaluation of the results, a quantitative measure of the

error conld be determined. This would hazve the additional advantage ot

being abie to comare, quantitatively, the error of the spli ne objective

analvsis to the error of other me-thods.

lased on these considerations, a tost was constructed using a solu-

tion for the stream function for the upper level of a two layer baro-

clinic spectral general circulation mixtel. The solution was for the

northern henisphere and could be interpreted as the height of the 250 mb

pressure surface. A to'ýal of 356 data poingts were selected, most of

which are established radiosande statiorec (see Figure 6). An I'S x 72

grid (grid length - 5b latitude) was used end the height at all grid

points -aas determined from the exact solution. The exact solution is

sbon in Figure 7.

rhe resultz of applying the spline tehnaique to the data at the

radiasondt locations ace shown in Figure 5.- Another objective analysIs

technique (Cressman, 1959, was appllie to the sam data and the results

ere shows in Figure 9. "The standard er-ror vas computed for both tech-

njqL'es with the result that the error for Cressman' s technique was on

the order ol twice the error of ti:e spline technique. the percent error

for the sp. >ne solution was calculated at each grid point and is shown

in Figure 6. The only region wacere greater Elkan 10O error occurs is

located over th--t section of the Pacific ecear where there is ar. -ctreme

lack of data (see Figure 6). The imean error for the entire northern
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hemisphere was approximately 3% and in regions of good data coverage

this figure usually dropped to 0 to 2%.

In practical weather analysis, quite frequently it becomes neces-

sary to analyze pressure gradient and/or temperature discontinuities

(fronts). Since one of the functions of most objective analyses is to

smooth the data, often the discontinuity is lost completely or is

smoothed to such an extent that its frontal characteristics are no

longer significant. Since it is usually desirable to maintain frontal

characteristics, a test was constructed to determine how the cubic

spline technique performs on discontinuities. The temperature data for

the United States on December 28, 1966 was selected for analysis. On

this date a particularly sharp cold front was located in the mid-section

of the country. Figures 9, 11, and 13, which are the spline analyses of

the front at various pressure surfaces, indicate that the loss of

frontal characteristics appears to be minimal, even at the 850 mb level

where the front is most intense. Figures 10, 12, and 14 are the corre-

sponding subjective analyses. A comparison of objective and subjective

analyses shows good agreement both along and across the front. It is

possible that the frontal characteristics may be even better resolved if

a quadratic spline is used as, for example, by Pearce.

For the same time and location as the temperature data, the wind

and height data were also analyzed objectively (Figures 15, 17, 19, 21,

23, and 25) and subjectively (Figures 16, 18, 20, 22, 24, and 26).

Examination of these and the previous results indicates that unless a

particular feature of a data field (for example, a steep gradient, a

maximum, or a minimum) is "supported" by more than one or two pieces of

data, thi feature is smoothed rather markedly. More explicitly, the
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wind maximum located at x = 17, y = 16 on Firure 16 is defined by only

one piece of data. On the corresponding spline analysis, Figure 15,

this maximum is not well defined. Likewise, the wind minimum at x = 45,

y = 12 on Figure 20 does not show up well on the corresponding spline

analysis, Figure 19. Based upon one piece of data, the 500 mb tempera-

ture miniminn is split into two sections in Figure 12, whereas the spline

analysis of the same data produces only one minimum region. Of course,

in most situations there are more than one or two pieces of data to

define the significant features and so there is generally good agreement

between the subjective analyses and the spline analyses.
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Fig. 11: Spline analysis of the 500 mb
temperatures for central United States, 00 GMT,
December 28, 1966.
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Fig. 13: Spline analysis of the 300 mb
zemperatures for central United States, 00 GKT,
December 28, 1966.
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6. Conclusions

Objective analysis by the spline technique appears to be a satis-

factory method for two dimensional data analysis. Analysis of regions

with poor data coverage also appears to give satisfactory results except

in those situations where the features being analyzed are defined by

less than three pieces of data. The magnitude of the gradient of the

data to be analyzed does not seem to have any undesirable effects on the

performance of the technique, provided that the input parameters are

properly defined.
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