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ABSTRACT

OBJECTIVE ANALYSIS OF A TWO~-DIMENSIONAL DATA F1ELD

BY THE CUBIC SPLINE TECHNIQUE

A procedure to use the spline interpolation technique on aa

arbitrarily prescribed two-dimensional data field is described. In

I order to use this technique it is necessary to obtain an initial
g

approximation to the data at the grid points. This is achieved by
fitting spherical surfaces to the data. Bi-directionzl spline inter-
polation is then appiied repeatedly on the grid point estimates of the
data to produce convergence to the true surface.

The spline interpolation technique and another cbjective analysis
technique developed by Gilchrist and Cressman are tested against an

3 exact solution and the resulting analyses are compared. Real tempera-

: ture, geopotential height, and wind data for various pressure surfaces
are analyzed by the spline method and the results are compared to

subjective analyses of the same data.
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1. 1Introduciion

With the development and continuing improvement of the electronic
computer came the beginning of practical numerical weather prediction.
The present day computers make it possible to use elaborate numerical
models to improve forecast accuracy; however, there are certain limi-
tatiors to this improvement which cannot be overcome by increasing the
speed and capacity of the computer or by improving the set of equations
which define the model. The two major limitations are: 1) the density
of the network of observation stations; and 2) the unavoidable error,
instrument or otherwise, which is introduced while making any type of
measurement. The first limitation imposes a well defined limit on the
scale of atmospheric motion whiqh can be resolved by the model. Of
course the solution to this problem is simply to increase the density
of the observing network thereby obtaining the "sca1e of data" necessary
for predicting the corresponding scale of motion.

The gsecond limitation is far more diffiéult to eliminate. Any set
of observations contains certain random errors aé well as some small
scale fluctuations (noise). In using this data in any numerical medel
it is of utmost importance to eliminate these étiors and the noise if
the final results are to be meaningfhl. Thisfhas‘bcen demonstrated, for
example, by the studies of Best (1956) and Bntﬁgrgn (1957). Since
meteorological prediction is sn initial value problem, it becomes impere-
tive to begin any numerical weather prediction with the "best possible”
reprcsentation of the real data.

Yarious attempts at solving this problem have been introduced in

meteorology within the past fifteen years snd shall be referred to as

-




"objective analysis'. An appropriate definition cf objective analysis
was given by Gandin (1963).

"Objective analysis includes the development and realization

of methods which make it possible to use the measufement

data of meteorological stations to reconstruct objectively

the fields of the meteorological elements [variable], or at

any rate to specify their values at the nodes [grid points]

of some type of regular network.

Actually, objective analysis includes three distinct functions:
1) elimination or correction of gross errois in the data field; 2)
interpolation of data to obtain values on a grid; and 3) smoothing of
the resulting values at the grid points.

Probably the first attempt at objective analysis of meteorological
data was by Kibel in 1949. Xibel used formulas based on the method of
least squares to describe the field of data by second and third order
polynomials. Also in 1949, Panofsky represerted a field by cubi
pclynomials and showed that the introduction of random observational
errors into the data field resulted in only minor variations in the
polynomial representation.

By 1954, the neced for a better objective analysis technique to be
used in conjunction with the rupidly developing field of numevical
weather prediction resulted in the nmethiod Jeveloped by Gilchrist and
Cressman (1954). Their method was based on fitt{ng a second degree
polynomial by the method of least squaves to the data in a limited area
artound each grid point. Wind values werce {ncorporated {a the scheme
by using the geostrophic asxumption to determine Th (where h {s the

deviation of height from the ztandard atmespherc) at a data point.




Thus each data point supplied three pieces of information, L, %%, and
%% to be used in the least squares fitting. For regions of little
data, this method proved to be inadequate since at icast six initial
pleces of informatior vere needed to determine the second degree poly-
nomials which defined the field. In fact, Cilchrist and Cressman found
that with less than ten pieces of data the calculation was subject to
significant error. In regions of sufficient data, however, they found
that numerical predictions based on the objective analyses were an
improvement over those based on subjective analyses.

Abcut a year after Gilchrist and Cressman (1954) introduced their
objective analysis technique, Bergthorsseﬁ and Doos (1955) developed a
new approach to objective analysis. Their method,differed from
Gilchrist and Cressman's in that they,fi;sttdétermiuéd vhat is now
called the "preliminary field". This f;gla was computed from the
weighted mean of the forecast values at~thg grid points and the clima-
tological norms for that time. 'The.AQta obtained from the observation
stations was then used 1nra iequehce of three corrections which were
thén applied to the preliﬁinary field with different weights, depending
on the distance from station to grid point. The numerical predictions
based on the objective analyses t@chniquc of Bergthorssen and Doos were
approximately the same as the predictions based on the subjective
analyses.

Approxinately five yeare after the dcvﬁlopn.nt of his first objec-
tive analysis technique, Cressman (1959) introduced a modification of
the Bergthorssen-Doos aethod. In his new method, Cressman used a pre-

liminary field vhich was usually the forecast for the time of the

observation data. Weighted corrections, tased on the new cbservations,




were then applied to the preliminary field. The corrections were
defined as a function of the distance (d) from grid point to station.

The weight factor (W) for each correction is given by

e B2 -d? for d <
wTra ferdinm

= for d > n

where n is a multiple of N, the grid interval. The correction procedure
was then repeated for decreasing multiples of N. Cressman's new wmethod
of objective analysis resulted in better numerical predictions than
those predictions based upon his previous method of analysis.

Imprevements of existing techniques have been developed, most of
which are based on the inclusion of additional information such as
surface data, vorticity, geostrophic approximation, etc. (see Doos and
Eaton, 1957; Johnson, 1957; Sasaki, 1958; Aubert, 1959; Masuda and
Arakawa, 1962; and Teweles and Snidero, 1962).

Although the above objective analyses give satisfactory results
for regions of sufficiently dense observation stations, it remains to
develop a reliable technique which will operate satisfactorily over
regions of sparse data. An attempt to develop such a technique is

presented in the following sections.
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2. Basic Spiine Theory

The problen of passing s smooth curve through a given set of
roints (N} Las been solvel mechznically by vsing a thian elastic strip
to define the curve (Figure la). This strip is commonly called a spline.
21though a polynowial ot degree N-1 could be determined which vould also
pass thruugh the same set of points, the curve defined by the spline
wiil be smoother. From the theory of elasticity it ca» be shewn that
a spline will have the waimum possible strain eaergy (Love, 1934;
Holladay, 1957), that is

[Rids = minimus

where K is the curvature and ds is the arc length. Since strain energy
is a meésure cf the swoothness of a curve, the spline must define the
suoothest curve for a given set of points.

If, in addition to knowing the points through whica tke spline
pagsés, the slopes are prescribed at these points, the splire will
déglna a,ne?'curvg (Figure 1b) having a minimum of strain energy for
:cbe new sét\pf constraints.

” The~concepgrof‘ob§aining a;émooth curve -by passing 2 spline through
a_gi@e; sét of pb;nts may be;appiied to the analysis cf data. For this
purpose, the spli;e\curve'betﬁeen ahy tw§ data poiﬁts'vill have ;o_be
approximaﬁéd mathematically'by a polynomial representation. These

piecewise polynomiéls will ther. have to be joined together under certain

specified constraints like tre continvity of the function and its

derivatives at the Jlata points. Thesé”ccnstraints, of course, depend on
the natura of the phenomencn under;invescigatioh. Fowler and Wilson
(1966) have developed a method of determining a series »f cubic equa-

tions which, when spliced together with continuous slope and curvature




Fig. la: Spline passing through points A, B, C, and D.

Fig. 1b: Spline passing through points A, B, C, and D where

slopes have been prescribed at the points.

Fig. lc: Spline curve which results when one of the constraints

(poirt C) has been removed.




at the junction points, approximate a spline for a given set of data
and slopes. Pearce (1968) used piecewise quadratic polynomials to allow
for the sharp but real changes which occur in representing a vertical
wind profile.

Normally it is not desirable to fit a curve exactly through all the
data points, and so, some type of smoothing is performed on the data.
It is interesting to note now, that if one of the constraints in Figure
1b is removed, the resulting position of the spline (Figure lc) is one
of even less strain energy. That is, the spline defines a cmoother
curve. Thus an equation which apprcximates the new spline should give
a smoother representation of the data. However, since it is not desir-
able to completely eliminate any data points, the new spline could
instead be used to determine the magnitude and direction of the movement
of a data point such that "controlled" smoothing may be done. Fowler
and Wilson (ibid.) made use of this idea to smooth their series of

continuous cubic equa.iouns.




3. Mathematical Approximation to Splines

The mathematical development of the more widely used spline approx-
imation, the cubic spline, is described below. A cubic spline fitting
requires a general third degree polynomial between any two points of a
given set of data. Hence, ten initial conditions must be known. If the
coordinate system is translated and rotated so that the first point is
at the origin and the second is on the x'-axis, the general equation for

a third degree polynomial reduces to
y' = Ax"3 + Bx'"2 + Cx + D (L

where the primes indicate the new coordinate axes. The solution to this
new system requires only four initial conditions. Assuming that the
coordinates of the two points (endpoints) are known, it remains to
determine two additional conditions. These are obtained in the follow-
ing manner. Consider Figure 2. A circle is fitted to the set of points
defined by the endpoint B, and the two adjacent points, A and C. The
derivative of the resulting equation may then be solved for the slope

at B. Similarly, the slope at E is determined using points D, E and F.

The four initial conditions are then:

at the first endpoint x'ay'=90 (2)
slope = S1' 3)
at the second endpoint x' «d, y'=0 (4)
slope = §2' (5)

where d 1is the distance between the endpoints.

The equation for the slope is given by the first derivative of (1).

1 ]
g{—.- « 3Ax' 4 2Bx' 4+ C (6)




X —

Fig. 2: Determination of slopes at data points by fitting circles
to the data.

\ _ _ curve being
% \ (mlddle point Gppraximated

cubc spline ,end point >

x—-.'
Fig. 3: Normal position assumed by the cubic spline when fitted

to the endpoints of a three data interval.
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The system consisting of equatioms (1) through (6) may now be solved in
terms of S1', S2' and d. The resulting expression for y', then, is

gt = (8L #5829 .5 (251 + 82"
~A5L +52) _ (251" +827)

5 5 x'2 + S1'x'  (7)

Due to the rotation of the coordinate system, the endpoint slopes in the
originai system, S1 and S2, have been transformed to new values, S1' and

S2', in the primed system. This transformation is given by:

[] - Sl_TR_
S1' = T4 51 -
. _ 52 - TR
82" = 1% 57 - m

where TR is the tangent of the angle of rotation (6).

Now consider a data interval to be the interval defined by the
endpoints of three successive data points. A cubic equation fitted to
the endpoints of each successive interval for a given set of data will
usually pass between the curve to be approximated and the middle data
point of the interval (see Figure 3). This suggests an iterative
smootiing procedure which will result in the convergence of the data
towards the curve.

Starting with the first interval, a cubic is constructed for that
interval. The middle data point is then adjusted towezrds the cubic.
Since the location of the curve to be approximated is not knowa in most
cases, the middle point is only moved some fraction of the total dis-
tance hetween the point and the cubic curve. The procedure is repeated
in the succeeding intervuls. Figure 4a demonstrates this procedure

where the adjusted points are indicated by the higher subscripts. For
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---- cubic from Ao to C0 CO
+ses cubic from B_ to D
o o

~—— ~- cubic from C to E
o o

curve to be approximated

Fig. 4a: Set of three cubic splines approximating a curve.

-—-— A to C C|
o 1
ceee B1 to Dl curve to nhe approximated

—_— - Cl to E0

Fig. 4b: Second iteration in che cubic spline convergence.

-——= A to C — - C, to E
fo) 2

cene 82 to D2

Fig. 4c: Third iteration in the cubic spline convergence.

curve to be approximated




example, a cubic is fitted to Ay and Cy. The middle point, By, is then

moved toward the cubic to its adjusted position, Bj. In the next inter-
val, the cubic is fitted to By and Dy which adjusts Cy to C;. Similarly
Dy is adjusted to D; in the interval (Co, Eg). Upon completion of the
data adjustment for all intervals, the entire process is repeated until
satisfactory convergence is achieved or the benefit of additional
smoothings becomes impractical. Figures 4b and 4c depict the second

and third iterations in a series of three smoothing iterations for a

set of five data points. In general, spline interpolation converges
rapidly as shown by Ahlberg and Nilson (1963), and has the additional

property of being insensitive to round-off errors.




4, Two-Dimensional Considerations

The results cf approximating curves by splines have been so
successful (Curtis and Powell, 1966; Walsh, Ahlberg and Nilson, 19€2)
that it would seem desirable to extend the theory to approximate
surfaces. Birkhoff (1966) developed a method using bicubic spline
interpolation which approximates surfaces on a rectangular field given
the data value (u) at all grid points, the normal derivative (3u/3n) at
the boundary grid points of each elemental rectangle, and the cross
derivatives (Bzu/Bxay) at the four corners of the field. In practice,
however, most data fields are not known at a regular grid network and
the problem is therefore to interpolate the known data to the grid
points and smooth the resulting fields.

Since circles were used successfully by Fowler and Wilson (ibid.)
to obtain an approximation to the siope at each point in their curve
fitting routine, it would seem logical to fit spheres to the data to
approximate the surface and slope in a surface fitting routine. Since
the value of the surface is desired only at the grid points, the problem
may be reduced to one of splicing the surfaces of the spheres together
at a discrete number of points.

Given an arbitrarily located set of two dimensional data points,
the points are ordered according to increasing values of the x-
coordinate. A grid network is defined (grid length is arbitrary) to
cover the data field such that all data points fall within the network.
Since for a given grid point, not all the data influence the value at
that point, what shall be referred to as the "band of influence" is
defined for =ach grid line (y = constant). The vertical plane which is

coincident with the grid line is called the grid plane.

13




For a given grid line then, those data points which fall into the

band of influence are used to define the spheres. The surface value at
each grid point on the grid line can then be determined by substituting
the coordinate of the grid point into the equation for the appropriate

sphere. The equation for a sphere 1s given by:

(x - a)? + (y =b)? + (z =~ ¢)2 = r? (8)

Given four data points, (8) may be solved for a, t, and c, the coordi-
nates of the center of the sphere, and r, the radius of the sphere.

For a given grid line, y = y,, which passes through the sphere, and grid

3
point, x = X in the domain of the sphere, (8) may be solved for the

surface, z,,, at the grid point.

ij

In order to define the surface from the beginning of the grid to
the first data point, the first three data points in the band of influ-
ence are used to quadratically extrapolate backwards past the beginning
of the grid. Based on this extrapolation, three dummy data points are
created. The requirement on the location of these dummy points is that
the first two are located outside the grid boundary and the third lecca-
ted between the boundary and the first real data point. The reason for
this will be explained below. Three dummy points are also determined
at the other end of the grid to generate data from the last real data
point to the end of the grid.

The surface value at the first grid point along a grid line is
determined by fitting a sphere to the first four data points and sub-
stituting the grid point into the equation for the sphere. The first

grid point is always made to fall between the second and third data

points. If the succeeding grid point also falls between the second and
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third data points, its surface value is obtained using the same sphere.
As soon as the succeeding grid point falls past the third data point, a
new sphere is used to obtain the surface value for the new grid point.
The new sphere is determined from the last three data points of the
previous sphere and the next data point in succession (see Figure 5).
Thus, surface values at all grid points represent the '"midsection", so
to speak, of the data which defines each sphere.

This procedure is repeated for each grid line until an approxima-
tion to the surface has been determined at all grid points.

The resulting data values at the grid points are checked for error
by comparing the grid point value to the mean of the data values in the
band of influence being considered. If the difference between a grid
point value and the mean data value is greater than two standard devia-
tions of the real data, the grid point value is replaced by a linear
interpolation between the two nearest acceptable grid values along the
grid line (one acceptable grid value is taken from each side of the re-
jected grid value). If the first grid point is rejected, it is replaced
by the mean of the data in the band of influence. This procedure is to
some extent arbicrary, since the mean of the entire data field may be
used instead of the mean for the band of influence. Also, in some
analyses it may be desirable to restrict the magnitude of the extreme
values, thus, the number of standard deviations of the real data is left
as a variable input parameter. Since it is possible for two successive
grid point values to occur at opposite extremes within the prescribed
number of standard deviations of real data, the difference between two
successive grid values may be 4s large as twice the number of standard

deviations wnich was prescribed. Such a change may or may not be
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reaiiatic, go all grid poist vaiuves f{excest those 3% x = x:) are sub-
jected to aﬁ additional erroy check which is based Gpon the saximus
pefsissibie slcpe {MPS) tetween grid points. The ¥XPS is a fuoctica of
the Variabie being analyred and is therefore uxn input parameter.
Begianing with the second grid peinmt, T, the points, Xo» along the
Soundaxy, yi. of the grid are compared to the grid values at the iast
Aacceftable grad point, (xi,yz), and (xi,y3). If the slope from the
poi;t (xi,yi) to any two of the neighboring points is greater than XPS
the zrid point value at (xi,y!) is replzced in the same mananer as
describ=d above. For the points (xi,yj; i22,1<j« j!ax) each grid

value 2long the grid lines, yj, is compared to the two meighboring grid

1 . LY. d Y. . ). int .2¥.} €
values { iy yJ) an (x1 y]_2 If the slope from the poin (xl yJ) o

zither of the neighboring points is greater tian MPS, the grid point
value is replaced as described above. The error check at the boundary,
yjmax' is analogous to the error check at the boundary, Yy Exrors
occurring near the¢ end of a grid line may not have an acceptable adia-
cent grid value in the positive x-direction. In this situation a second
vrder Taylor's extrapolation is used from the last three acceptable
grid values to the end of the grid.

Starting with the first grid line, ¥i» each grid lire is smoothed
using the cubic spline routine as outlined in Section 3. Upon comple-
tion of smoothing in the x-direction, the entire field is smootned in
the same manner in the y-direction. Repeated smoothings in the x and ¥

directions eliminate directional bias, and after three or four of these

bi-directional smoothings, the grid peiat values converge to a surface.




5. Results

In order tc properly test the spline method it would be advanta-
geous to Imow an exact sclution for the surface. Thus, in addition to a
qualizative evaluation of the results, a quantitative mezsare of the
exror cocld be determined. This would hzve the additional advantage ot
being abie to compare, quantitatively, the error of the spline objective
analvsis to the error of other methods.

Sased on these consideratiocns, a test was coastructed using 2 solu-
tion for the stresm function for the upper level of a wo layer baro-
clinic spectral gemerzl circulation model. The solution was for the
oorthern hemisphere and could be interpreted as the height of the 250 =b
pressure surface. A toal of 356 2ata poiuts werz selected, most of
vhich are established radiosonde statiens (see Figure 6). Anm 18 x 72
grid (grid length = 5° latitude) was used 2nd the height at all grid
points vas determined from the zxact solutfos. The exact solution is
shown in Figure 7.

The vresults of applring the spline technique to the data at the
radicsonde locations ace showm in Figure 8. JAnother objective amalysis
technique (Cressman, 1959) was applied to the same datz ard the results
are shown in Figure 9. The standard error uas computed for both techk—
nigues with the result that the ervor for Cressman's technique was on
the order of twice the error of tre splise technique. The percent error
for the spiine sclution was calculated at each grid point and is showm
in Figuie 6. The only region waere greater than 10X errer occurs is
located over th-t section of the Pacific ccean where there is ar ttreme

lack of darta (see Figure 6). The mean error for the enlire northern
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Data point locations (marked by X) and percent error for

Fig. 6:
Areas not shaded are

the spline approximation to the exact solution.

less than 5% error.
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Fig. 7: Exact solution for the stream function for the upper level

of a two layer baroclinic spectral general circulation model.
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hemisphere was approximately 3% and in regions of good data coverage
this figure usually dropped to 0 to 2%.

In practical weather analysis, quite frequently it becomes neces-
sary to analyze pressure gradient and/or temperature discontinuities
(fronts). Since one of the functions of most objective analyses is to
smooth the data, often the discontinuity is lost completely or is
smoothed to such an extent that its frontal characteristics are no
longer significant. Since it is usually desirable to maintain frontal
characteristics, a test was constructed to determine how the cubic
spline technique performs on discontinuities. The temperature data for
the United States on December 28, 1966 was selected for analysis. On
this date a particularly sharp cold front was located in the mid-section
of the country. Figures 9, 11, and 13, which are the spline analyses of
the front at various pressure surfaces, indicate that the loss of
frontal characteristics appears to be minimal, even at the 850 mb level
where the front is most intense. Figures 10, 12, and 14 are the corre-
sponding subjective analyses. A comparison of objective and subjective
analyses shows good agreement both along and across the front. It is
possible that the frontal characteristics may be even better resolved if
a quadratic spline is used as, for example, by Pearce.

‘For the same time and location as the temperature data, the wind
and height data were also analyzed objectively (Figures 15, 17, 19, 21,

23, and 25) and subjectively (Figuraes 16, 18, 20, 22, 24, and 26).

Examination of these and the previous results indicates that unless a

particular feature of a data field (for example, a steep gradient, a
maximum, or a minimum) is "supported" by more than one or two pieces of

data, the feature is smoothed rather markedly. More explicitly, the
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wind maximum located at x = 17, y = 16 on Figure 16 is defined by only
one piece of data. On the corresponding spline analysis, Figure 15,
this maximum is not well defined. Likewise, the wind minimum at x = 45,
y = 12 on Figure 20 does not show up well on the corresponding spline
analysis, Figure 19. Based upon one piece of data, the 500 mb tempera-
ture minimum is split into two sections in Figure 12, whereas the spline
analysis of the same data produces only one minimum region. Of course,
in most situations there are more than one or two pieces of data to
define the significant features and so there is generally good agreement

between the subjective analyses and the spline analyses.
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rFig. 9: Spline analysis of the 850 mb
temperatures for central United States, 00 GMT,
December 28, 1966.

Fig. 10: Subjective analysis of the 850 mb
temperatures for central United States, 00 GMT,
December 28, 1966. Radiosonde locations are
indicated by X.
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Fig. 11: Spline analysis of the 500 mb
temperatures for central United States, 00 GMT,
December 28, 1966.

Fig. 12: Subjective analysis of the 500 mb
temperatures for central United States, 00 GMT,
December 2B, 1966. Radiosonde locations are
indicated by X.
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Fig. 13: Spline analysis of the 300 mb

cemperatures for central United States, 00 GMT,
December 28, 1966.

Fig. 14:
temperatures for cantral United States, 00 OMT,
December 28, 1966. Radivaonde locations are
indicated by X.

Subjective analysis of the 300 mb
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Fig. 15: Spline analysis of the 850 mb winds
for central United States, 00 GMT, December 28, 1966.

254 | A ! "

Fig. 16: Subjective analysis of the 850 mb
winds for central United States, 00 GMT,
December 28, 1966. Radiosonde locations are
indicated by X.
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Fig. 17: Spline analysis of the 500 mb winds
for central United States, 00 GMT, December 28, 1966.

Fig. 18: Subjective analysis of the 500 mb
winds for central United States, 00 GMT,
December 28, 1966. Radiosonde locations are
indicated by X.
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Fig. 19:

X —»

Spline analysis of the 300 mb winds

for central United States, 00 GMT, December 28, 1966.

Fig. 20:
winds for central United States, 00 GMT,
December 28, 1966. Radiosonde locations are
indicated by X.

Subjective analysis of the 300 mb
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Tig- 23: Splime amales - of the S50 wb
geopotential heights fer cmtral Umited States,
00 OfT, Decemder 28, 1966.
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Fig. 24: Subjective analvsis of the 500 ab
geopotential heights for caatral Umites States,
V0 AT, December 28, 196v. Radiosomde locatiocas
are indicated by X.
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6. Conclusions

Objective analysis by the spline technique appears to be a satis-
factory method for two dimensional data analysis. Analysis of regions
with poor data coverage also appears to give satisfactory results except
in those situations where the features being analyzed are defined by
less than three pieces of data. The magnitude of the gradient of the
data to be analyzed does not seem to have any undesirable effects on the
performance of the technique, provided that the input parameters are

properly defined.
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