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ABSTRACT 

Surface pressure fluctuations associated with transitional and tur- 
bulent boundary-layer flows on a sharp,  slender cone at supersonic 
Mach numbers have been experimentally investigated in the AEDC-VKF 
Tunnel A 40- by 40-in. supersonic wind tunnel using a flush-mounted 
0. 25-in.-diam microphone.   The results at Mach numbers 3 and 4 
demonstrate the feasibility of locating microphones onboard wind tun- 
nel test models to measure overall pressure fluctuations and power 
spectral distributions in transitional and fully developed turbulent 
flows.    Transition Reynolds numbers determined using a surface 
microphone are compared with two other established methods of detec- 
tion.    Selected boundary-layer pressure fluctuation characteristics 
(power spectral density and root-mean-square values) and transition 
profiles are presented.    Methods of data acquisition and analysis are 
discussed. 

in 
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SECTION I 
INTRODUCTION 

The boundary-layer transition process has defied the development 
of a successful theoretical analysis for over six decades.   Consequently, 
the bulk of knowledge accumulated on this extremely important but 
equally complex fluid flow phenomenon has relied almost 100 percent on 
experimental data.   The importance of the transition process is partic- 
ularly emphasized at supersonic and hypersonic speeds where numerous 
aeronautical problems, such as friction drag, heat transfer, wake 
structure, flow separation, internal noise, and structural fatigue failure, 
are associated with high-speed viscous flows.   In general, the aerody- 
namic characteristics exhibited by these problems are directly related 
to the state of the boundary layer (laminar or turbulent) and, consequently, 
indirectly to the location of boundary-layer transition.    The optimum de- 
sign of many high-speed, high-performance vehicles is dependent on 
adequately defining the boundary-layer transition process with its inher- 
ent increases in mass and momentum transfers. 

Extensive and detailed experimental investigations of the boundary- 
layer transition phenomenon have been underway at the Arnold Engineer- 
ing Development Center (AEDC), von Karman Gas Dynamics Facility 
(VKF) for more than a decade (Refs.   1 through 5).    These studies have 
been directed toward,defining and evaluating,  qualitatively and quantita- 
tively, the many parameters that are known to influence the transition 
location and process. 

Various methods for detecting the transition location and providing 
information on the transition process have been used with varying degrees 
of success (Refs.   1 through 11).   Steady-state measurements of impact 
pressure,  surface temperature,  surface shear stress,  and boundary- 
layer growth through the transition region have been reported in Refs.  1 
through 6.    The hot-wire anemometer (Refs.  5,  7, and 8) has proven to 
be an invaluable instrument for studying the transition process at both 
subsonic and supersonic speeds.    The use of thin films to measure heat- 
transfer fluctuations at supersonic speeds has recently been successful 
(Ref.  9).    Optical methods (Refs.  5 and 10),  as well as visual observa- 
tion of thermal sensitive paints (Ref.   11), have also contributed experi- 
mental data on the transition process.    All of these various and varied 
methods of detection have made individual contributions to the under- 
standing of the transition process, and results from some of the methods 
have been correlated to provide a more complete picture.   However, 
there is no single instrument or measuring technique that has provided 
data sufficient for a complete understanding of the transition process. 
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This report presents a small portion of recent boundary-layer tran- 
sition results obtained at AEDC-VKF and describes the use of a flush- 
mounted surface microphone for measuring the location of transition, 
determining the region of transition from beginning of onset to fully 
developed turbulence, and as an instrument for providing additional 
valuable information on the transition process at supersonic speeds. 
Selected surface pressure fluctuation data,  root-mean-square (rms) 
levels and power spectral density distributions,  obtained in laminar, 
transitional, and fully turbulent flow on a slender cone at Mach num- 
bers 3 and 4 are presented and discussed. 

SECTION II 
EXPERIMENTAL ENVIRONMENT 

2.1  WIND TUNNEL FACILITY 

Tunnel A (Gas Dynamic Wind Tunnel, Supersonic (A)) is a continuous, 
closed-circuit, variable density wind tunnel with an automatically driven 
flexible-plate-type nozzle and a 40- by 40-in. test section.   The tunnel 
can be operated at Mach numbers from 1. 5 to 6 at maximum stagnation 
pressures from 29 to 200 psia, respectively, and stagnation temperatures 
up to 750°R (Mffi = 6).    Minimum operating pressures range from about 
one-tenth to one-twentieth of the maximum at each Mach number. 

2.2 TEST MODEL AND APPARATUS 

The test model (Figs.  1, 2, and 3, Appendix) was a 10-deg total 
angle, stainless steel cone equipped with a tool steel nose section.    The 
model had a surface finish of approximately 10 juin.  and a tip total blunt - 
ness between 0. 005 and 0. 006 in.    A model length of 49. 05 in. was ob- 
tained by connecting three individual sections (nose, middle,  and aft) 
as illustrated in Figs.  1 and 2.   In order to maintain a perfect joint be- 
tween the sections, the model surface was refinished after attaching each 
model section. 

Model instrumentation included four surface static pressure ori- 
fices, two surface thermocouples, and one flush-mounted 0. 25-in.-diam 
microphone.    Specific instrumentation locations are provided in Fig.   1. 
Figure 4 provides a sketch illustrating the method of microphone installa- 
tion. 
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Pressure data were also obtained using a longitudinally traversing 
surface probe as illustrated in Figs.  2 and 3.    Surface probe measure- 
ments provide a well-established method for determining the location 
of transition.    The surface probe was remotely controlled and electri- 
cally driven and provided a continouous trace of the probe pressure on 
an X-Y plotter from which the location of transition was determined. 

SECTION III 

DYNAMIC PRESSURE INSTRUMENTATION 

3.1  MICROPHONE 

The transducer employed to measure the cone surface pressure 
fluctuations consisted of a Brüel and Kjar,  Model No.  4136,  0.25-in.- 
diam condenser microphone mounted as illustrated in Fig. 4.   The 
microphone cartridge, when connected to Brüel and Kjar types UA0122 
flexible adapter and 2615 cathode follower,  and powered by a Brüel and 
Kjar type 2801 power supply, has an atmospheric pressure frequency 
response of from 30 Hz to 70 kHz and a dynamic pressure range of from 
70 to 180 db(re = 0. 0002 microbars). 

Since the air mass inside the cartridge is used to provide critical 
damping for a flat frequency response at 1 atm of pressure,  the micro- 
phone has a resonant peak in its frequency response curve when operated 
at ambient pressures lower than 1 atm.    Figure 5 shows the change in 
sensitivity versus frequency at a pressure of 300 mm Hg.    This curve 
was obtained using Brüel and Kjar type 4142 calibration apparatus.    A 
Fourier analysis of tunnel data (Fig.  6) shows the effect of the micro- 
phone's resonance when operated at a low pressure and exposed to wide- 
band fluctuating pressures.    The output signals centered about the res- 
onant frequency will cause errors in the rms values of the fluctuating 
pressure.   To reduce these errors, frequencies above 25 kHz were 
filtered out of the tunnel data with a filter having a 12-db/octave roll- 
off. 

3.2  RECORDING AND ANALYZING EQUIPMENT 

The output of the microphone was fed through a Spencer-Kennedy 
Laboratories,  Inc.,  Model 302 variable electronic low pass filter to a 
Brüel and Kjar type 2409-rms voltmeter.    The rms values of pressure 
fluctuations were read directly on-line from the voltmeter,  and the time- 
varying pressure fluctuations, using the voltmeter's amplifier as a pre- 
amplifier,  were recorded on an Ampex Model FR1300 analog tape 
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recorder for posttest data analysis and for verification of the on-line 
rms values.   The data were recorded simultaneously on a direct and 
an FM channel having frequency responses of from 300 Hz to 300 kHz 
and direct current to 20 kHz, respectively. 

For analysis, loops were made from the data tapes,  and the re- 
corded signals were played back into a Technical Products Model 
TP-625 spectrum analyzer.    Power spectral density analyses were 
made from the recorded data using a 10-Hz bandwidth filter and cover- 
ing a frequency range from 10 Hz to 20 kHz.    Figure 7 shows the block 
diagram for the dynamic pressure recording and analyzing system. 

3.3 CALIBRATION PROCEDURE 

The voltage versus pressure characteristic of the microphone was 
obtained by applying known pressure levels to the microphone and re- 
cording the voltage output from the filter.    This calibrates the filter and 
microphone as a single unit.   Known pressure levels were generated 
using an oscillator,  a power amplifier,  a horn driver,  and a standard 
microphone.   Using a frequency of 250 Hz, the pressure levels were 
set with the standard microphone and then transferred to the working 
microphone.   The resulting calibration curve is shown in Fig.  8.   Since 
the sensitivity of a microphone is usually listed in decibels, appropriate 
scale factors were used to convert the sound pressure levels to pounds 
per square inch. 

SECTION IV 

DISCUSSION OF RESULTS 

4.1   TRANSITION DETECTION 

Presented in Fig.  9 are the surface pressure fluctuations (p/q^) 
measured with the microphone at station 45. 5 in. for Mach numbers 
3 and 4.    These data show a low p/q^ value to exist when the boundary 
layer was laminar over the entire model surface followed by a very 
sharp peak and then rapid decay with increasing p0 or (Re/in. )s,  as 
transition moved forward and the sensor was exposed to fully developed 
turbulent flow.    The finite p/q,,, levels that existed when the flow was 
laminar are believed to be the direct result of the noise level that radi- 
ates from the tunnel wall turbulent boundary as reported in Ref s. 1 and 2. 



AEOCTR.69.182 

Data as presented in Fig.  b in terms of rms alone can be mislead- 
ing,  as has sometimes occurred in the literature, when one is not aware 
of the limitations imposed by the microphone or data recording system 
frequency range.   The absolute values of the fluctuating pressure pro- 
file expressed as p and 4> are presented in Fig.  10 for M,,, = 3.   These 
data, as shown in Fig.   10a, more clearly indicate the relation of the 
absolute levels of the pressure fluctuation when the flow was laminar, 
transitional, or turbulent.    Four selected data points, designated points 
A, B,  C, and D, have been analyzed,  and their spectral distributions 
are shown in Fig.   10b.   As discussed in the preceding section, a 25-kHz 
filter was installed to eliminate the microphone resonance effects at fre- 
quencies above 25 kHz.    The spectral distributions presented in 
Fig.  10b show that a significant amount of the overall rms data in 
Figs.  9 and 10a was not recorded for test points C and D.    Based on the 
results of Refs.  12 and 13, it can be estimated that frequencies up to 
approximately 200 to 300 kHz are present in the cone turbulent flow. 
Consequently, the turbulent p data (Re/in. )ß > 0. 15 x 10^) presented in 
Figs.  9 and 10a are significantly lower than a true total overall rms 
would indicate. 

The sharp peak in the rms profiles or p/q,,, profiles suggests that 
the microphone is an excellent indicator of transition.   This conclusion 
is verified by comparing the rms transition profiles with transition pro- 
files obtained in this study using a longitudinally traversing surface 
pressure probe and recently published data (Ref.  9) obtained with a thin 
film. 

Thin-film gages differ from acoustic sensors in that they respond 
to fluctuations in the turbulent heat-transfer rate rather than the turbu- 
lent pressure fluctuations,  although the two are directly related.    The 
thin-film data from Ref.  9 are shown in Fig.   11 for comparative pur- 
poses with the p data in Figs.  9 and 10a.    The similarity in the profiles 
and very sharp overshoot in the region of transition is quite evident. 
Thus, it can be concluded that a surface microphone rms pressure 
fluctuation will produce transition profiles similar to thin-film voltage 
fluctuations.    Presented in Fig.  11a are typical pressure traces ob- 
tained when the surface probe was traversed along the surface.    These 
data also indicate the regions of transition, although the pressure over- 
shoot or peak was, in general, not as pronounced as the microphone rms 
signal. 

The peak point in the rms pressure fluctuation was selected to define 
the point of transition (it should now be clear to the reader that the tran- 
sition process occurs over a finite length rather than instantaneously at 
a specific location).   Transition Reynolds numbers for M,,, = 3 and 4,  as 
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defined by the peak locations in the rms pressure fluctuation profile 
and the surface probe pressure trace,  are presented in Fig.  12.    Also 
included in Fig.  12 are transition data obtained from viewing shadow- 
graph photographs.    Figure 12 clearly establishes that the location of 
transition as determined by a surface microphone is consistent with the 
accepted pitot and shadowgraph values.   Additional information on the 
subject of transition and the use of the pitot probe and other methods 
of detection can be found in Refs.   1 through 10. 

Figure 13 presents a replot of the spectral data in Fig.  10b to more 
clearly show certain pertinent features.    The spectra of the laminar flow 
profile (A) (tentatively suggested to be directly related to the tunnel 
radiated aerodynamic noise levels, Refs.   1 and 2) are more clearly 
illustrated.   Also evident is the concentration of energy present in the 
transition profile (B) at the lower frequencies (f < 1000).    The exact 
source of the low frequencies associated with the transition process is 
not completely understood at this date,  but they are tentatively believed 
to be aerodynamic and not structurally generated.    Figure 14 presents 
photographs of the oscilloscope record showing the time-dependent 
microphone pressure fluctuation output for the selected data points A, 
B,  C,  and D,  plus a fully laminar point,  (Re/in. )g  = 0.054xl06. 

The ability of the flush-mounted microphone to measure the un- 
steady and mean values of the transition process at supersonic speeds 
is clearly illustrated in Figs.  9 through 14.   These results indicate the 
utility of the microphone to provide valuable information on the transition 
process at supersonic Mach numbers. 

4.2  OVERALL LEVELS AND POWER SPECTRAL DENSITY 

In addition to influencing flight performance, the state of the bound- 
ary layer also has significant bearings on the internal noise levels and 
structural fatigue failure of future high-speed aircraft.   Computation of 
the fuselage response and internal noise field requires a knowledge of 
the overall fluctuating pressure levels and the power spectrum- 

Pressure fluctuations,  rms values, obtained at subsonic velocities 
in fully developed turbulent flow have been shown to correlate independ- 
ent of Mach number when nondimensionalized by the dynamic pressure 
(Ref.   14).   Lowson in Ref.   12 has extended this correlation to supersonic 
speeds and demonstrated a significant Mach number effect,  as exhibited 
by the data in Fig.   15 taken from Ref.   12.    One general procedure for 
estimating overall sound pressure levels is to obtain a p/qg value from 
Fig.  15,  or a similar plot,  and estimate maximum p at the maximum q$ 
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to be experienced.   The transitional p/^5 values obtained in this investi- 
gation (Fig.  9) are included in Fig.   15 for M,, = 3 and 4.    These prelim- 
inary results indicate that pressure fluctuation levels in the transition 
region can exceed the turbulent values by one to two orders of magnitude. 
The significance of the result, although preliminary in nature, is quite 
evident.    Since the transitional p values (as are the turbulent flow values) 
are Mach number, Re/in.,  and configuration dependent, future aircraft 
and missiles can be expected to require experimental programs designed 
to investigate these very high p levels.   These results have shown that 
the small (0. 25- or 0. 125-in.) flush-mounted microphone can be success- 
fully employed to obtain these measurements in the supersonic Mach 
number range. 

The nondimensionalized power spectral density of wall pressure 
fluctuations for the fully developed turbulent flow profile (Profile D, 
Figs.   10 and 13, (Re/in. )6 = 0. 64 x 106) is presented in Fig.  16 as a 
function of the Strouhal number (w6*/U6), for example,  see Ref.   15. 
The agreement between the present data and data from Ref.   13 leads 
to the conclusion that small microphones can be located on board small 
test models and successfully used to measure turbulent pressure fluctua- 
tions at supersonic speeds. 

SECTION V 

CONCLUDING REMARKS 

It has been shown that the flush-mounted surface microphone can 
be used successfully for accurately locating boundary transition and for 
experimentally investigating the transition region at high supersonic 
speeds.    These results, obtained at Mach numbers 3 and 4 on a sharp, 
slender cone, have demonstrated the feasibility of locating small micro- 
phones on board wind tunnel test models to measure overall pressure 
fluctuation levels (rms) and power spectral distributions in transitional 
and fully developed turbulent flows.    Results presented indicate that max- 
imum surface pressure fluctuation intensities may not necessarily occur 
in fully developed turbulent flow at the maximum dynamic pressure but 
can be associated with the large pressure fluctuation overshoot which 
has been shown to be related to the transition process. 
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AMPEX 
FR 1300 

Fig. 7   Dynamic Pressure Recording and Analyzing System 
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Brüel and Kjar 
Type 4136 Microphone 
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Spencer-Kennedy Laboratories, !nc. 
Model 302 Filter 
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Fig. 8   Microphone Transfer Characteristics 
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M«: = 3.0 and 4.0 
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Fig. 12   Transition Reynolds Number Data from the AEDC-VKF Tunnel A, Sharp Cone 
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