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SUMMARY 

This Report gives an analytical solution for the axial flow of gas in 

gas-film lubricated journal bearings with film thickness varying around the 

journal, when subjected to different constant end pressures. The mass flow 

formulae are shown to be the same as for stationary concentric circular 

cylinders, except that the clearance oubed is replaced by the mean of the 

clearance cubed. An extended form of Elrod’s mass content rule is also 

obtained. 
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1 INTRODUCTION 

Gas lubricated journal and thrust bearing assemblies are often arranged 

so that the journal bearing connects a pair of opposed thrust bearings. When 

an axial load is applied to such a bearing system, there is a flow of gas along 

the journal if the centres of the thrust plates are not vented to the 

atmosphere. This flow must be balanced by a coupled flow of gas across the 

faces of the thrust plates, which causes a reduction in the axial stiffness 
of the bearing system. 

1 2 Until recently ’ in gyro design, axial flow has been ignored largely 

because of the complexity of computation. One reason for this is that the 

clearance usually varies around the bearing, either because of deliberate 

mutilations of the surface intended to suppress the half-speed instability or 

because the bearing is deflected by a load. However under certain conditions, 

the axial flow through journal bearings can be found analytically. This 

simplifies the computations required for thrust plate performance. 

The axial flow analysis given in this Report applies to rotating seal 
bearings as well as gyro-type bearings. 

The condition? under which the axial flow can be found analytically are 

introduced in sections 2 and 3. Basically they are all introduced to make 

the Reynolds equation integrable. These restricting conditions are then 
listed in section 6. 

Section 4 gives an emended form of Elrod's^ mass content rule and in 

sectior 5 the integral around the bearing of the clearance cubed is found for 
typical clearance profiles. 

2 ELIMINATION OF TIME DEPENDENCE 

Consider co-ordinates 6, z fixed in space where 6 is the angle around 

the journal and z is the axial distance from the geometric centre of the 

journal (Fig.l). Let p and h be the pressure and clearance respectively 

at the point (6, z). Let t be the time, ^ the viscosity of gas, R the 

journal radius and m the angular velocity (ji, R and w are assumed 
constant). 

The steady-state Reynolds equation for isothermal flow with cylindrical 
co-ordinates fixed in space isS 
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■¡2 ai (p 1,5 ao) * À (p 1,3 H) = ■ <1) 

The steady-state condition implies that the moving surface must be circular in 

cross-section and rotating with its centre fixed. In practice this restriction 

is unnecessarily severe as can be seen from consideration of the time- 

dependent Reynolds equation. 

The time-dependent Reynolds equation for isothermal flow with co-ordinates 
L 

fixed in spac^ is : 

^ 'Ã (P h5 !o) * ^(P h3 fz) = (p h) * (p h)- (2) 

Introduce a co-ordinate £ measured from an axis rotating with angular velocity 

so that: 

Then: 

and: 

0 = Ç + t . 

(¾ = (*4 

:)6 = (¾ ■wi (¾ 

(3) 

(4) 

(5) 

Reynolds equation in rotating co-ordinates then becomes: 

^ 'à (p h3 ò|) + À (p 1,3 If) = ■ V it.(p h) * 12pit(p h) 

Now if ü)^ can be so chosen that: 

(£ (p »))E = 0 , 

... (6) 

(7) 

the time-dependent terms are absorbed entirely into the variable g and the 

axial mass flow may then be treated exactly as in steady-state case. For 

practical cases in aerodynamic bearings (7) is only true when: 



These conditions apply to a limited class of time-dependent cases, namely 

those where the pressure and clearance fields rotate with constant angular 

velocity cùj. In general at least one of the bearing members is circular in 

cross-section. One however may be non-circular in cross-section but 

possessing symmetry with a well-defined geometric centre. Thus the time 

dependent effects do not appear in the following three practical cases: 

(i) both bearing surfaces circular with their centres at a constant 

separation, the centre of the rotating surface orbiting the centre of the 

stationary surface with any constant angular velocity 

(ii) the rotating surface non-circular but concentric with a stationary 

circular surface (in this case =0)); 

(iii) the rotating surface non-ci* cular with its centre at a constant 

distance from the centre of a stationary circular surface, the centre of the 

rotating surface orbiting the centre of the stationary surface with constant 

angular velocity = co. 

It should be noted that the important case of a non-circular rotating 

surface and a stationay circular surface with their centres fixed but not 

coincident, is not included. 

With the sufficient conditions applied (1) and (6) reduce to the form: 

^ (p 1,3 H) + À (P h3 If) = ^ -¾ <P h>- M 

the steaty-state case being a particular case, 00^ = 0. 

Now p, h and their derivatives with respect to z are all continuous 

and cyclic in g, so integrating (9) around the bearing gives: 

j = °- <10> 

Again since p, h are their derivatives with respect to z are continuous 

and cyclic in £, the order of integration and differentiation may be inter¬ 

changed, so that: 
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(11) 

or: 

(12) 

where k is a constant since the integral is independent of £ and there¬ 

fore of 0 and t. 

It will be shown in the next section that the axial mass flow is 

proportional to k. 

3 AXIAL MASS FLOW 

With the imposed restrictions the pressure-field is given by the 

solution of equation (9), subject to boundary conditions, as a function of 

£ and z : 

(13) P = pU> z) • 

The functional dependence of p will be taken as understood. 

Consider a bearing whose clearance is a function of £ only: 

(14) h = h(£) 

which is subjected to end pressures: 

p = P1 at z = - l/2 , 

p = P2 at z = + «/2 , 
(15) 

where p^ and p2 are independent of £, and l is the length of the 

journal (Pig.1). 

If M is the axial mass flow of gas then: 

(16) M 

o 

where p is the density of gas, y is the radial direction, and w is 

4.5 
obtained from the Stokes flow equation ’ : 
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» = i;y(y-h)-Ë dz (17) 

For isothermal flow: 

-ß- - -E_ 
pa pa ’ 

(subscript 'a* denoting sjnbient conditions), so that on integration with 

respect to y equation (16) yields: 

(18) 

M = 2A ^ h3(5) P |E de (= A k) , 

wherfe, 

P » 
A = - —i— 

24(i pfi 
Ai 
A8jipo 

(19) 

(20) 

Since h has been assumed a function of £ only, (12) gives! 

k = f j; tp2 h3te)i d£ * (21) 

Again interchanging the order of integration and differentiation (21) yields: 

, -1/2^3 
k = al d p h (S) ^ • (22) 

Integrating (22) with respect to z gives: 

k s + C = j p2 h3(s) (¾ , (23) 

where C is another constant since the integral is independent of £ and 

therefore of 0 and t. 

Using boundary conditions (15) in (23) gives: 

k = - 

/ 2 2v 
(p, - p,) 

C = 
(P? + Pg) 

. 
2 

I 
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where, I ^h5(£) d£ . (26) 

For convenience the angular variable Ç may be replaced by an angular variable 

9 where 9 is the angle measured from an arbitrary position on the non¬ 

circular member (Fig.2). Hence: 

I = ph3(<p) d9 . (27) 

By eliminating k from (19) the axial mass flow of gas (which as can 

be seen is independent of angular velocity) is given by: 

M 
^a /d\ 

Aß|i Pa -P2> n (<p) (28) 

4 MASS CONTENT RULE 

The extended form of Elrod's^ mass content rule is obtained by 

eliminating k and C from (23); it is: 

j>p2 h3 d£ = [“F“2 - (Pi’P^fj f h3(5) ^ . (29) 

The angular co-ordinate £ may be replaced by the angular co-ordinate 0 

which is measured from a space-fixed frame of reference, thus giving the 

required form: 

2 2 
P< + P2 j p2 h3 d6 = 1 2 2 - (p2 - P2) 7J ^h3(e) de (30) 

This equation is valid for all the cases for which the axial mass flow formula is 

valid, listed in section 6. 

5 EVALUATION OF THE PARAMETER I FOR TYPICAL CASES 

Consider one bearing member circular and the other member having n (* 2) 

equally spaced cosinei-shaped lobes*’ as in Fig.2. The illustration shows three 

lobes for simplicity. Let c be the minimum radial clearance between the 
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two bearing members when they are concentric. Let the lobe-depth be b 

(with 6 = b/2c) and the eccentricity e (i.e. the distance between centres 

is ce) with eccentric angle a. Since h is a function of 9 only, the lobes 

extend the full length of the journal but they need not cover the full sector 

2x/n, Let their sector angle be 2xv/n where 0 < v ^ 1j the case of no 

lobing is covered by b = 0. 

The clearance h is then given by: 

h = c(1 + e cos (<p - a) + T}) , (31) 

where: 

T] = Ô + Ô COS ^ 

for: 

(32) 

2%r _ tu» 
n n $ cp . 2ftr XV 

n n ’ r = 1,2, •••, n 

and: 

ri = 0, otherwise. (33) 

In the case of the bearing member being fully lobed (3I)» (32), (33) reduce 

to:- 

h = c(1 + e cos (9 - a) + 6 + 6 cos n 9) . (3^) 

Integration of (37) with h given by (3I), (32), (33) yields: 

... (35) 
where : 

Cn(v, a) = 2 sin C03 f0r n = 2; (36) 
x(1 - V ) 

and: 

Cn(v,a) = 0, for n > 2; (37) 
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where 2 ain ^ = 1, for v = 1. 
7,(1 - V2) 

Note that the value of I depends on the phase relationship of the eccentricity 
and the lobing for n = 2. 

Particular cajes of I are; 

no lobing : I = 2* cYl + ! e2' 

no eccentricity 

fully lobed : 
I = 24o(1+6)]5[l^^f' 

no eccentricity : I = 2^(1 - v) c^ + v[c(l + 

more than two 

lobes: I = 2k c' 2K 1 + 4 e2N\ + -rr (6 + 3e2 + 96 + 562) 

6 CONCLUSIONS 

In sections 2 and 3 restrictive conditions were applied in order to 

obtain the axial mass flow formula (28) and the mass content rule (30); they 
are listed below: 

(i) constant pressures at both ends of the journal; 

(ii) clearance varying only around the journal; 

(iii) at (p h) = 0 in space-fixed or rotating co-ordinates. In practice 
the last of these conditions is further restricted to one of the following 
alternative ’steady state* conditions: 

(a) the rotating surface circular with its centre fixed, the other 
surface being stationaiy; 

(b) the rotating surface non-circular but concentric with a stationaiy 
circular surface; 

(c) the rotating surface non-circular with its centre at a constant 

distance from the centre of a stationary circular surface, the centre of the 
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rotating surface orbiting the centre of the stationary surface with constant 

angular velocity equal to the rotational angular velocity (e.g. synchronous 
whirl caused by simple mass unbalance); 

(d) both bearing surfaces circular with their centres at a constant 

separation, the centre of the rotating surface orbiting the centre of the 

stationary surface with any constant angular velocity. 

These conditions are sufficient (though not necessary) for the analytic 
solutions (28) and (30). 

In all cases it has been assumed that one bearing surface rotates with 

constant angular velocity while the other surface remains stationary, because 

in practice this is usual. It is however easy to see that when both surfaces 

are circular and constant magnitude circular whirl is present, equations (28) 

and (30) will still apply even though both surfaces are moving. 

It may also be pointed out for example that, if p,| and Pg and known 

functions of £ it might still be possible to evaluate k and C from (23) 

with the new relationships at the boundaries. 

In conclusion it should be stated that all bearings which satisfy (ii) 

and are not included in the restricting conditions should be examined in their 

own right should there be a need to formulate equations of the form of (28) 
arid (30). 
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SYMBOLS 

constant (= - p R/22fu p ) a a 
lobe depth 

constant of integration 

integration function 

minimum radial clearance with bearing members concentric 

diameter of journal 

clearance % 
integral of clearance cubed around the journal 

constant 

length of journal 

axial mass flow 

number of lobes 

pressure 

end pressure at z = - ¿/2 

end pressure at z = + l/2 

ambient pressure 

journal radius 

dummy integer 

time 

velocity of gas in z-direction 

radial co-ordinate 

axial distance from centre of bearing 

eccentric angle 

b/2c 

eccentricity 

expression describing lobe-shape 

angle around journal from fixed line in space 

viscosity of gas 

proportion of surface that is lobed 

angle around journal from a line rotating with angular velocity 

density of gas 

ambient density 

angle measured from line fixed in non-circular member 

angular velocity 

angular velocity of rotating co-ordinate 
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