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ABSTRACT

The purpose of this work is to formulate and solve certain
optimization problems arising in the fields of engineering economics,
scarce resource allocation, and transportation systems planning.

The scope and structure of optimization theory is presented in order
to place subsequent work in proper perspective. A branch and bound al-
gorithm is rigorously developed which can be applied to the optimization
problems of interest. A rounding operation is defined, which provides a
powerful rejection rule and permits the calculation, at each stage of the
solution process, of an upper bound and a feasible solution in addition to
the usual lower bound.\\This double bounding technique implies Tittls cor
no extra computational effort.

Subsequent chapters are devoted to the study of various cases of
capital investment problems. Investment in sets of independent projec.
is considered first. For the (0-1) muiti-dimensional knapsack problem a
new formulation, interpreted as a network synthesis problem on a bipartite
graph, is given. This formulation permits the straightforward application
of the branch and bound algorithm, and allows the solution of the linear
program associated with each node of the solution tree to be obtained by
inspection.

This study is pursued by considering capital investment in a single
time period as a special case of the previous problem. Certain economic
interpretations are derived by investigating the dual program of the dis-
crete knapsack problem. A parametric branch and bound method is developed
which permits the solution of the knapsack problem for a range of values
of the budget ceiling.

Two formulations are proposed for a special case of deferred capital
investments, referred to as the multi-knapsack problem. The first formu-
iation, after a transformation by means of a model equivalent, leads to a
branch and bcund aigorithm which requires the solution of a standard trans-
portation problem with surplus and deficits and certain routes prohibited
at each step of the algorithm. The second model, although it may require
a larger tree before optimality is rea:hed, permits the soliution hy
inspection of the linear prcgram associated with each node of the solution
tree.




The final part of this thesis studies capital investment for
dependent proposals in the context of urban transportation planning. The
branch and bound algorithm is adapted to the link addition network design
problem, where a descriptive traffic assignment model is employed.

Finally, for the multistage link-addition network synthesis problem,
a normative model is formulated as a block-angular mixed-integer linear
program. A partitioning technique is employed to take advantage of the
highly-structured form of the model.

We conclude with a detailed presentation of the partitioning
technique of Benders, as applied to both continuous and mixed-integer
programming problems presenting a block-angular structure.
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CHAPTER 1

FUNDAMENTAL CONCEPTS OF OPTIMIZATION THEORY

1.1 INTRODUCTION

The goal of this chapter is to formaiize the concepts relevant to
describing the nature and scope of optimization theony. We begin by de-
fining the optimization problem and discuésing its complex natura. We
identify the fundamental steps in the solution process of optimization
problems as: i) problem definition, 1) feniulation of an optimization
model, iii) selection of a solution method, and iv) appifcation of the
solution method. Each step of the process and its implications is dis-
cussed in detail for a variety of applications.

A classification of optimization models and of solution methods is
presented. The material covered in this chapter and a historical survey
of optimization theory (cf. Appendix B) are intended to present a general
framework of the theory which will be applied in the main dody of this work
to specific types of optimization problems. Finally, we shall discuss
some important aspects of optimization in the context of analysis and de-
sign of engineering systems.

1.2 THE OPTIMIZATION PROBLEM

Whenever an engineer or decision maker is confronted with the problem
of selecting a course of action from a set of alternatives he will be com-
velled to choose, from the available alternatives, the best in temms of a
certain predetermined goal or set of goals relevant to the nature of the
priolem.

It is assumed that the degree to which the goal or objective of the
problem is reached for each alternative course of action can be evaluated
by a quantitative method. In other words, a measure of the u*ility of each

1



2 CONCEPTS OF OPTIMIZATION THEORY

course of action may be obtained, allowing the decisior maker to select
the alternative yrelding the maximum utility. The degree to which the goal
is obtained is the {igutre of menit for a particular solution.

DEFINITION. An optimization problem is defined as the one of selecting
among a set of various alternatives-(possibly infinite) of a certain prob-
tem, the one for which a given figure of merit is optimized (i.e., ‘
‘maximized or minimized).

1.3 OPTIMIZATION THEORY. THE NATURE OF THE OPTIMIZATION PROBLEM

The nature of optimization problems is often quite complex, and a
wide variety of cases presenting different characteristics is encountered
in practical problems. To visualize the complexity which may be present
in the nature of the problem, consider the following examples: i) a deci-
sion maker may be confronted with a problem having a clearly-defined ob-
jective to optimize; however, the problem may or may not be subject to a
set of constraints. He may also have to consider the solution to the prob-
Yem on the assumption of either deterministic or stochastic behavior.

1) the decision maker may have to interact and compete with other parti-
cipants, each of whom is attempting to make decisions which optimize his
own figure of merit. {ii) several decisions may have to be made on a
multistage problem, where the goal sought is a long-range optimization as
opposed to suboptimization of a particular stage of the problem.

It s this complex nature as well as the different structural char-
acteristics of the models (cf. Section 1.6) that clearly indicate the need
for a variety of techniques to cope with the solution of optimization
problems. The set of all these techniques, namely those included under
the specific names of mathematical programning, game theenry, statistical
decision theory, dynamic pregramming, control theory, caleulus of varia-
tions, etc., constitute with their theoretical foundations the general
theory of optimization. .

Optimizat1on theory in its widest sense is the unified branch of
mathenatical analysis that provides a formal approach to the solution of
optimization problgms.

e s ot e A bt




CONCEPTS OF CPTIMIZATION THEORY 3

1.4 SOLUTION PROCESS

The solution process for optimization problems may not be identical
in all cases and may differ depending on the special nature of the prob-
Tem; nonetheless it will always be possible to distinguish in the process
the basic steps indicated in Fig. 1-1. The various loops indicate possible
revisicn of the previous decision.

PROBLEM DEFINITION
———t -Parameteis
-Control variables

2

FORMULATION OF
MATHEMATICAL MODEL

-Objective Function
‘Constraints

SELECTION OF
SOLUTION METHOD I

I
S

APPLICATION OF
SOLUTION METHQD

Fig. 1-1. Optimization Problem Soiution Process

1.5 PROBLEM DEFINITION

At the problem definition stage the decision or control variables
governing the problem are identified, and the form of interactions among
the variables 1s specified. A rigure of merit must be defined in terms

Mo

e e e ey

oAl e e v




A CONCEPTS OF OPTIMIZATION THEGRY

| of the relevant control variables and the range of variation of the controls
| must be explicitly or implicitly specified. Finally, the constraints to
* be satisfied by the variable: must also be established.

1.6 FORMULATION OF A MATHEMATICAL MODEL

Once the problem has been properly defined, the subsequent step will
be to formulate an abstract model (usualiy a mathematical model), that
faithfuily represents tho essential structure of the problem and that may
be amenable to solution through application of a well-known procedure.
Whenever reference is made to models it will be understood in the sense of
Karlin*, "a model is a suitable abstraction of reality preserving the es-
sential structure of the problem in such a way that its analysis affords
insight into both the original concrete situation and other situations
which have the same formal structure".

It is clear that solution of the model will produce accurate results :
only to the extent that the model is representative of the original prob-
lem., If the problem has not been properly modeled, its soluticn may lead
to dubious results or completely erroneous ones; for instance, consider
the case of 2 linear programming mode! giving an unbounded solution as a
result of a constraint of the problem not being included in the model.

We shall now analyze some distinctive characteristics of optimization
models that will pemit their convenient classification. This will be use-
ful for further identification of the moacels that will be encountered ir
subsequent chapters.

We shall distinguish three main components of an optimization model:
1) the set of problem variables, ii) the figure of merit to be optimized,
ii1) the domain of definition of the problem variables (determined by the
constraints of the problem). The optimal solution for certain classes of
optimization probiems consists of numerical values taken by the probiem
variables, satisfying the censtraints and simultaneously octimizin the
figure of merit. Other classes of optimization rriublems seek to f\ d a

.Karlin. S., Mathamatical Methods and Theory in Games, Programing, and
Economecs, Vol. [, Addison-Wesley, 1959, p. 1.
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curve or function (var:ational problems), that satisfies a set of con-
straints and renders optimal a certain functional expression cf the set
of feasible solution curves.

For certain problems the objective will be amenable to a closed form
mathematical representation as a function of the control variables. For
other problems this closed representation might not be obtainable, and the
figure of merit for a g1ven set of values of the control variables may
only be known after a complex process has been completed (such as a simu-
lation process, an engineering analysis, the solution of an elaborate
computer program, or a table look-up).

Furthermore, the prublem may be constrained or uaconstrained. For
constrained problems capable of formulatvion in a closed form mathematical
representation, the nature of the constraint expressions may be quite di-
verse. For 1nstance they may be algebraic or transcendent expressions,
equalities or tnequal:ties, linear or nonlinear with the domain of the
variables being a discrete set or the continuum. Also some of the con-
straints may be differential equations or definite integrals.

In the light of the above discussion we have developed the tree-
structured classification of optimization models illustrated in Fig. 1-2.
The tree obviously may be expanded in both the vertical and horizontal di-
rections to make 1t as complete as is needed or desired.

We shall be atle to distinguish certain branches of the tree, repre-
senting specitic classes of problems, for which the solutien procedures
forin a well-established mathematical development. Fer instance, models in
the constrained optimization branch tor which both the constraints and
objective may be represented in closed algebraic form constitute that part
of optimization theory generally known as mathematical prcgrammeng.

As a second example, corsider the class of problems for which the
explicit objective function s expressed by a definite integral (functional
objective) with or without subs-diary conditions, The solution of such
models falls within the scope of the classccal caleulus of variations.

Finally, consider those models with constraints and/or objective
Tacking a closed mathematical representation  The optimization of such
mcdels must be attatned by any means short of urute force; the techniques
usually applied fall under the general name ot dinect svarch methods.
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8 CONCEPTS OF OPTIMIZATION THEORY

i

An example of this class would be a certain stochastic process (e.g. a
waiting line, 4 given renewal process) being analyzed by means of a costly
computer siaulation. The 1nput parameters may be varied and the simula-
tion executed tor each set of values. Associated with the output of each
run, a miasure of effectivencas (MOE), of the corresponding input para- !
meters may be estimated. If the problem 3 to select the input parameters : i
that op:imize the MOE, a direct search techn Jue 75 required n this case

to find the optimum while minimizing the number of simulated trials.

1.7 SOLUTION TECHN!IQUES

Solution technigues are the procedures and algorithms devised for the
solution of optimization problems. The actual solution usually entails
determination of numerical values of the control variables and the optimum
value of the figure of merit.

Optimization methods are usually broken down ‘nto two major categor-
ies: 4indinect and dinect methcas. With direct methods, the optimum solu-
tion is sought by directly calculating values of the objective function at
different points of the feasible domain. The values thus obtained are
compared and, by means of an a:xilvary criterion, a new point is next anal-
yzed which hopefully will improve the value of the objeccive function.

Alternatively, indirect methods look for a set of values of the
control variables that satisfv known necessary condit:ions for optimality.
The classical method of the d:iferential a'culus *s an exanple of the
indirect type. In effect, values of the ve-iables are sought for which
the first der:ivatives of the objective furction vanish, provided that con-
tinuity of the function and ex:stence of derivatives in the region of
interest are guaranteed In this way, the optimization prodlem has been
transformed 1nto a root-rinding problem.

The Swunplex algorithm of Yinear programming exhbrts features of both
the direct and indirect methods. It performs a direct search over extreme
points of the teas:ble domain only (points sat:s;fying the necessary con-
dition for an optimum) 1n such a way that the objective function is at
least as good as n the previous step. Finally, the optimum among the set




CONCEPTS OF OPTIMIZATION THEORY 9

of extreme points is detected when the indirect criterion of feasibility
of the complementary solution to the asioctated dual problem is satisfied.

For certain mathematica! models of optimization, a solution method
may include transform'ng the or:ginal mode] :ntd an equivalent one that
promises to be more tractahle than the former (cf. Chapters IIl and IV).
Consider the methodology of jemcotnce prigrameng™: in this case, the
polynomial optimization 15 formulated 1n terms of its dua! problem and this
is the model that 1s actualiy solved. Another example is the transforma-
tion Vnto a linear prugr2miiing probiem of a separabfe nonlinear program.

Direct techniques may be subdivided into two major groups:
simultaneous and sequens .al methods. Simultanedus zearch tecnniques cal-
culate values of the objective function or response surface at a set of
points determined a paiond by a certain search strategy. Sequential search
methods, on the other hand, deal with sequential examinaticn of trial solu-
tions, basing the location of subsequent trials on the results of earlier
ones. We present in Fig. 1-3 a subset of representative solution techniques
for each one of the classes of methods discussed in this section.

1.8 SELECTION OF A METHQD

The selection of a convenient solution method for a given problem
depends on the type of model employed, the existing soluticn techniques for
that particular model, and the computation facilities available to the
engineer-analyst.

In the selectinn process one may consider such factors as linearities
of the model, number of variables, number of constraints, special struc-
tures, separability or weak-coupling of variables in constraints and/or
objective, objective or constraint surfaces of readily interpreted geo-
metric character, etc.

The final selection of a welli-suited method for a particular problem
depends then on the detailed properties of the model as well as the solu-
tion techniques that form part of a software package of an available computer
installation,

*
Duffin, R J., E. L Peterson, and C. M Zener, Geometric Programing,
John Wiley, 1967
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12 CONCEPTS OF OPTIMIZATION THEORY

We have just presented a brief review of some classes of optimization
problems, the mathematical wodels applicable to these problems, and the
methods available for their solution. To place the developments of optimi-
2ation theory in proper perspective, the reader is referred to Appendix B
for a survey of the most significant contributions of different mathema-
ticians through the centurfes.

In the following sectfon we shall discuss concepts relevant to
engineering systems optimization, as a framework for the class of problems
undertaken in the main body of the text.

1.9 ENGINEERING SYSTEMS OPTIMIZATICN

The engineer uses analytical and experimental methods to analyze and
interpret the behavior of the physical world in such a way that appropriate
decisions can be made regarding investment of scarce resources for the
development of facilities of economic utility.

In general, the engineer seeks a design which satisfies a certain
specified perfcrmance of the facility in an economical manner. The mean-
ing of economical is subject to various interpretations. It may me2an a
least cost design including both construction and operating costs. dJn the
other hand, one may seek a design yielding the highest level of performance
consistent with the given construction and operating budgets; one may aiso
mix these extreme cases.

With this in mind, we can view the task of the engineer as that of
providing the best solution to the problem as described; therefore, the
engineer confronts an optimization problem in the sense discussed in
previous sections.

From the nractical, computational point of view, the majority of
engineering system design problens are sufficiently complex that one car-
not provide a mathematical mode! for the entire problem which could be
solvad by one of the solution techniqusc indicated previously.

Nowever, any'engineertng system design problem is defined in terms of
a set of boundaries which delineate the range of the Systems of interest,
These boundaries represent an arbitrary but presumably reasonable separa-
tior of the system under consideration from cther systems in which {t is
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imbedded. Hence, the design prublem can be viewed as a suboptimization of
a set of subsystems, the union of which compose the system of interest.

Therefore, it seems perfectly natural to tragment an engineering
system design problem into components, some of which may be sufficiently
1imited as to permit the application of optimizat:on techniques. It is
evident that the set of optimum solutions to the selected components will
not in g2neral constitute an optimum to the or:ginal system but simply a
suboptimal solution.

The traditional! process for solving an engineering system design problem
usually takes tnhe form of a trial and error procedure. However, in those
cases wnere spsl iy - % pruolems are su.l€xslul iy subjested to mathe-
matical opt:mization techniques, the engineer-analyst draws boundaries
about the fragment of the design problem so that a closed form mathematical
representation of the system is cbtained. Known optimization techniques
are then applied to this representation or model, and an optimal solution
to the design problem is calculated.

When it is possible to isolate a system fragment of significant phy-
sical extensiveness and calculate its optimum design by a convergent process,
we say that a synth»sis algorithm exists for the design of the system.

While it may not be pessible to isolate a section of a design problem
such that its optimization may be termed a synthesic procedure, cone ex-
pects to find parts of engineering design problems whose solutions will be
small-scale optimizations. The solutior of these small-scale cptimizations
which occur as parts of the total system w:ll be of special interest in the
incremental process of deveioping a total synthesis algorithm.

Throughout this work we shall be concerned with exploring parts of
engineering design problems, the solution of which may be solved hy known
optimization techniques. The first part of the material covers optimal
allocation of capital resources to a finite set of facilities. Problems
involving synthesis of transportation networks will be developed in the
remaining parts of the work,

R
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CHAPTER II

A BRANCH AND BOUND ALGORITHM FOR A CLASS OF
DISCRETE OPTIMIZATION PROBLEMS

2.1 INTRODUCTORY REMARKS

Branch and bound algorithms, a class of sclution methods for integer
programming problems, have been extensively studied since the first pro-
cedure of this class, offering a new and fresh approach to the solution of
cambinatorial problems, was published by Land and Doiy [1] in 1960.

The neme branch and hound is due to Little et al. [2]. These authors
successfuly employed a technique in this class to obtain a solution to the
traveling saleman probiem which was substantially more efficient than
sclutions previously available. This result encouraged further investi-
gation into the applicability of this technique. Improvements of existing
methods were carriad out by Dakin [3] and Driebeek [4], and further applii-
cations are due to Ignall and Schrage [5] on the job scheduling problem,
to Efroymson and Ray (6] on a plant location problem, Hershdorfer et al.
[12] on the assignment of numbers to rodes of a tree-dimensional grid so
that the bandwidth of the associated node-node incidence matrix is mini-
mized, and to Gavett and Plyter [7] on the ontimal assignment of facilities
to locations. A survey on the state of the art up to 1966 may be found in
the work of Lawler and Wood [9].

Various fomalizations of the general class of branch and bound methods
have been undertaken by Agin [8], Lawler and Wood [9], Roy, Nghiem, and
Bertier [10] and sthers. Most recently Ichbiah [11] generalized the work
of Roy, et al. and developed a parametric b=anch and bound technique.

In subsequent chapters we shall study various optimization problems
arising in the fields of iransportation systems anilysis and design, and
capiial budgeting for independent and dependent projects. These problems

15




16 A BRANCH AND BOUND ALGOR1THM

will be mathematically formulated as discrete-bivalent programming prob-
lems (i.e., one in which a pair of feasible values is specified for each
member of a subset of problem variables). These problems arise in appar-
ently independent areas but it is possible to develop mathematical models
for these problems, which in fact are closely related. These models can
all be solved by a branch and bound technique of the Land and Doig type
requiring the solution of network flow or transportation type problems at
each step of the iterative procedure.

Since each of the problems we shall consider is solved by a variant
of our branch and bound technique, this chapter presents the general formu-
lation of this method as a basis for the particular applications.

The problems that we shall study share the characteristic that a
feacible solution can be obtained with Tittle or no computational effort
at every stage of the algorithm. Associated with this property is a means
for developing both an upper and a lower bound to the objective function
at each stage of the procedure. This double hounding technique leads to
a reduction of the search space and to an increase in the efficiency of
the solution technigue.

The next section describes the mathematical structure associated with
our class of problems, and subsequent sections describe the common elements
of the sclution technique and prove its validity and finite convergence.

2.2 MATHEMATICAL FORMULATION FOR THE CLASS OF PROBLEMS

Let x denote a vector in E" and Sy a closed and bounded convex set
with boundaries defined by hyperplanes in E". Let T] be a2 finite non-
empty set of vectors in the same space, and denote hv 9 a finite subset
of S, cbtained by the intersection of S, and T,, 8; = S, T,.

Consiver the following discrete optimization problem the soiution of
which is to be obtained.

P :  Determine 5? and 2° s0 as to
Minimize z = #(x)
Subject to' x ¢ n‘

where f is a single-valued function of x.
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DEFINITION. Let us denote by AJ the j'th auxiliary continuous problem,
derived from P as follows:

*x, *,

Aj : Determine x (j) and z {j) so as to
Minimize  z(j) = f(x)
Subject to x € Sj s J=1,2,...

Fer j=1, S1 is given ancd for j>1, SJ is a subset of S] to be defined in
section 2.4, We shall assume that a finite algoritim, to be called after
Dakin [3], the sub-algorithm, exists for solution of problem Aj. Further-
more, it is assumed that a feasible solution to problem P may be determined,
for each j, by "simple inspection" of the solution to problem AJ. This
solutfon will be denoted by R(j), 7(§). The "inspection" to be performad
on the optimum solution to Aj tc ohtain a feasible solution to P will be
called a rounding operation.

2.3 THE DIRECTED TREE

The branch and bound algorithm for solution of problem P, to be set
forth in section 2.5, is an iterative technique that may be interpreted as
the generation of a directed tree: T(i) = [N(i), A{1)], where N{i) and
A(1) are respectively the set of nodes and the set of directed arcs at the
end of iteration i. At each 1teratioﬁ, except for the first one during
which only the root node of the tree is created, two new directed arcs and
nodes ‘will be added to the sets N and A.

Associated with each node jJeN(1) are a subset Qi of Qy and a subset
SJ of S, and associated with each arc (J.,k) € A(1) is a set ij (cf.
Sectfon 2.4).

At the end of the i'th {teration, the sub.et of N(i) corresponding
to the terminal nodes of the tree wiil be denoted by C(1)}. The set C(i)
will be partitioned further into three subsets, F{i). E{1) and R{1) such
that FiJEQJR= C. Set F will be called the set of feasible on active
nodes, £ the set of .nfeasible or excluded nodes, and R the set of
regected nredes. '

The &lgorithm starts by generating the root of the tree, node 1,
associating S] to it and solving A1. From then on, and in an iterative
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fashion, bifurcating arcs and their corresponding nodes are added to the
tree according to a branching operation. These directed arcs have as
origin a conveniently selected node from F(1). For each node j thus
created, the values 5f(j), z*(J) and £(J), Z(j) are obtained by solving
the auxiliary problem Aj and applying a rounding operation to its optimal
solution.

This iterative procedure teminates when the solution to the original
problem P, or sufficient evidence of the existence of no solution, has
been obtained. This evidence is given by the operations of bounding, ex-
clusion and rejection (to be defined), in conjunction with the branching
and rounding operations menticned above.

2.4 BRANCH AND BOUND OPERATIONS

DEFINITION 1. Branching Operation. Let nj, a non-empty subset of
& (if 93 = ¢, no branching operation will take place, see Definition 3),
and SJC S] be the sets associated with node j. The branching operation
is defined by a partition of aj into two subsets . and 8 such that:

U 8, =9y (2.1)
an ;‘H'1 = & (2.2)

where ¢ is the empty set. This partition is achieved by creating two
directed arcs (j,r) axd (j,r+1) emanating from node j with associated sets
vj.r and vj,rﬂ and two nodes r and r+l1 with associatec sets Qr and QH]
such that:

[ Yy 8,
(2.3)

an Vire1 T 8y

We observe the following thecrem which characterizes Vj , and ‘/]. 1
’ o
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THEOREM 2.1 Given 8y, sufgiciont conditions jon Vg pand Vy 4 o define
a pantitioning satisfying (2.1) and (2.2) asi:

vmn Vi1 =0 (2.4)
2 €0y Uy ) (2.5)

Proof: Assume that (2.4) and (2.5) hold; then by intersecting both sides
of (2.4) with nj we obtain

U0 NVa) =000
and since the intersection of sets is distributive

(an Vj’r.) n (Qj n vj.H"l) =¢
Hence from (2.3) nrn Qg = ¢
Finally (2.5) is equivalent to

800U Yyl = 9,

or @0V UG AV ) -5

Hence, from (2.3) QrU Qi = QJ.. This completes the proof.

Next we associate to nodes r and r+1 the subsets Sr and S
as follows:

1’ defined

Se = S5 00 ¥y,
(2.6)
Spet = 5005

From the results of lemma 2.1 below, Qj is a subset of SJ. We observe

i
3
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that only the following condition is satisfied for Sr and Sr+]:
SpMSyy = ¢ (2.7)

That 1s, the sets Sr and Sr*l are mutually exclusive although they may not
be collectively exhaustive of SJ,

After a finite number of branching operations have been performed,
we may expect to have generated nodes t for which nt has been reduced to
a single element of the original domain - It is also expected that the
corresponding St is reduced to contain exclusively the same single ele-
ment, so that Q = St‘ We observe that this is possible for 2 since, by
hypothesis, Q 1s finite; but this s not so for St' since $ is infinite,
Hence, in order to guarantee that eventually Qt = St we have to restrict
vurther the sets Vj‘r and vj.r+] in the following way: it is assumed that
the sets VJ.r and vj,r+l are such that in a finite number of branching
operations, nodes with Q, containing one single element have an associated
St containing only the same single element. In the case of the particular
applications considered in the present work, this is a relatively simple
condition to satisfy. Finally, to initialize and make possible the branch-
ing operation, the sets Q and S] are assigned to the root node of the
solution tree.

LEMMA 2.1 Let Q. and S, be the sets associated with node ro§ T(d). Then
a,. {8 a subset of Sr'

Proof: By induction. In effect, for r =1, 3n,C S] by hypothesis. Let
us assume that for node j, QJSESJ is satisfied. Then letting r be the
immediate successor of j and by intersecting each side of (2.3) and (2.6)
we have

8,05 = @Y sp0v,
But from the previous assumption, ij1 Sj = QJ and therefore

an S, = an VJ,r
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Or using (2.3), Qrf\ S, = 8., or equivalently nr<;;sr’ which completes the °
proof.

Note that for a terminal node j=t with St containing a single element
X such that x € Q,, then Q = St'

DEFINITION 2. Bounding operation. Given the current set F(i) of active
nodes, the bounding ope}ation will be defined by means of the following
actions:

a) Lower bounding operation. This consists of selecting the node °
k € F(i) such that

() = mn 2760 (2.8)
JeF(1)

and of setting the value L;» the current jower bound for problem P, equal
to the value given by (2.8):

Ly = 2 (k) (2.9)

Node k is said to be the bounded node for iteration i, defining the node
from which branching will take place at the next iteration.

b) Upper bounding operation. This consists of finding the value

2(s) = min  {Z{ih (2.10)
JrF(1) '

which constitutes the current least upper bound of the problem, and of
settirg the value U equal to the value given by (2.10):

u, = z{s) (2.1)
Expressions {2.9) and (2 1) constitute, respectively, the best low~r and

upper bounds of the problem at the end of the i'th iteration. This
statement will be susstantiated by means of the following lemmas.
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LEMMA 2.2 1§ node J (o the immediate predecesson of r then

z'(J) < z'(r)

Proof: If gf(g) = 5f(r) then z*\r) Z*(J) slnce both A and A, share
the same objective function. Otherwise, if x (J) fx (r) and since

S C:Sj due to the way the branchlng was defined, problem A is more re-
stricted and consequently z (J) z (r)

LEMMA 2.3 Llet k be the buunded node of iteration i with associated value
L1 gaven by (2 6} 14 59, 2% (3 the optimal solution to P, then Li s 2°.

Proof: Let Li and L1+1 be the values given by (2.9), associated with any
two consecutive iterations  From lemma 2.2 and since branching occurs
from the last bounded node, 1t follows that Li < Liy and thus L1 < LZ ,

£ 2 1. Now assume that the process of branching continues until the entire
tree has been developed at iteration £ = t, The set F(t) will contain all
nodes associated with feasible solutions to P (guaranteed by branching
operation). Then L, = min [z*(j)] = 2% Hence Ly s Ly = 2°, which
completes the proof. jef(t)

From lemma 2.2 and the definitio. of bounding, we observe that at
each iteration the bounding operation indeed gives a lower bound to prob-
lem P as indicated by lemma 2.3; and also a better lower bound, (closer to
the optimum) than the previous iteration as asserted by lemma 2.2 and the
fact that branching occurs from the bounded node of the previous iteration.

LEMMA 2.4 ¢ x(3), 2(3) <> the feascble soluteon to problem P obtained
from a roundang cpeation at node j, then 2° < 2(3).

Proof: If x(3) = x° 1t follows that z° - 3(3). Otherwtse X(j) # x°, and
since x(3) 's only a feasible solution to P, then 2° < 2(3).

The rounding operation thus provides an upperbound on 2° at each node
it is performed upon. Now, since at the end of iteration i the best
lower bound corresponding to node k is L‘, and the best upper bound
corresponding to node s 13 U the following theorem results:
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THEOREM 2.2. At any «tenation, L, 5 U, and 4§ L, = U, the optimal solution
has been obtacned; «t corrnesponds to the rounded solution of node S of the
cwent Lteration.,

Proof: ihe first part s evident: from the definition of bounding and
from iemmas 2.3 and 2.4, 1t foliows that L1 s2%¢ U1 and therefore
Li S U1,

It remains to be proved that 1f L, ® Ui’ node s 15 an optimum solution.
Additional branching would make the lower bound greater than Ujs and since
a feasible solution to P associated with node s has already been found,
all other feasible solutrons t3 P rat yer discovered would yield no im-
provement in 2° given by s. Consequently, the feasible solution to P
associated with node s is the optimal.

DEFINITION 3. Exclusion. The exclusion operation is defined for a terminal
node r of C(i) for which the corresponding set Qr is empty. Since Qr is
empty, no need exists to consider further branching from node r and, as

part of the exclusion operation, the node is assigned to the set E(i) of
excluded nodes.

LEMMA 2.5 1 the sofuteon to A 1s «nfeasible, then Q. = 0.

Proof: If Ar is infeasible, 1ts domain of definition is empty: Sr = ¢,
From lemma 2.1, s:nce L, CS,» 1t follows that Q, = ¢

DEFINITION 4. Rejection The rejection operation on node r consists of
assigning the node to the set R(1) of rejected nodes 1f the following
condition is satisfied:

*
2 {r) > U‘_|

*
LEMMA 2.6 1§ 4ot node r af «terateon 1, Z (r] ¢ greaten than the
upperbound at the previeus cterateon, no further branchuig §ram 1
necessany.
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Proof: Consider the following possil.ie cases:

1) x(r) ¢ 0y and 2°(r) > U, _1: Since U, , is by definition an
upperbound of the problem, 1t follows that ﬂr does not contain the op-
timum solution to P, and no further branching is required.

i) 5f(r) € 9, and 2'(r) > U,_y: Although node r is a feasible
solution to P, the same argument as for case 1) holds.

DEFINITION 5. Rounding operation. Let 5?(3). z*(j) be the solution to
A, associated with node j. The rounding operation consists of obtaining
from 5?(3), Z.(J) a frasible solution x(3), Z(j) to problem ¥.

For the classes of problems considered throughout this work, unless
otherwise indicated, this operaticn is possible by conveniently rounding
off certain components of 5f(j). When tris operation is possible, the
double bounding feature of the algorithm may be employed, thus resulting
in an improved branch and bound method.

We note that if the operation is possible for each node j, then:

a) The uppertound Ui may be updated at each iteration, thus making
possible the execucion of the rejection operation. Since a rejected node
is assigned to the subset R(i), and the selection for branchirg is per:
formed among the nodes in subset F(1}, no further informatinp associated
with the rejected node is required,

b) The updating of the upperbound U, at each iteration reduces the
interval of uncertainty of the optimal solution 20 at each iteration,
since L, < 20 ¢ U,. Furthermore, if the branch and bound method is used
for suboptimization, and the process is terminated before an optimal
solution has peen obtained, the algorithm nonetheless provides valuable
information at that step In effect, the available information is
represented by a feasible scliution to the original problem F, pius a lower
bound on the problem that permits us to estimate how far the available
feasible solution is from optimality.

¢) A measure of effectiveness for the rounding operation is provided by
the algorithm. Hote that the set C(1) of terminal nodes of iteratioun i
contains exactly 1 nodes This 15 true, since 2. each i1teration two new
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nodes are created, r and r+1 and the node j from which branching occurred
is no longer temminal, hence the net increase is one terminal node.
Furthermore, according to the partition of C{1) defined eerlier, each
terminal node 1s assigned to one of the sets F(1), E(1) or R{i).

Thus, 1f we let a be number of elements in F(i) and B the number of
elements in R(1), a measure of effectiveness (MOE) of the rounding
operation may be defined as

MOE - B
2B

With the poss'dle operations and associated lemmas established, we
now proceed to describe the algorithm

2.5 SPECIFICATION OF THE ALGORITHM

The branch and bound algorithmn consists of an initial step that
generates the root of the u.rected tree (iteraticn 1), plus subsequent
analngous iterations, continued until either the optimal solution or suf-
ficient evidence of the existence of no solution 1s obtained. Note that
under the assumption that the rounding operation i3 possible, P will al-
ways have a feasible solution.

STEP 1. Set 1:=1 and create node j:1. Set F(1):=E(1)=R{1)=¢. Solve A].
[f the solution 1s infeasible, stop; problem P has no solution.
Otherwise, if gf(l) € R;, stop: the solution 1s optimal. if
(1) ¢ @), bound node T with Ly = 2°(1). Round node 1 to ob-
tain x(1), 2(1). Set U, = 2(1). If L, = U,, stop; the rounded
soluticn 15 optimal  Otherwise, L, < U]. Assign node 1 to F(1),
set 1 = 1 +1 and go to step

STEP 1 a) BRANCH Branch from bounded node j ¢ F(1). Deiete node J
from F{v) Create nodes r and r+i and directed arcs {j,r) and
(3, r=1)  Salve problems Ar and Ar+1' ard 1n both cases do the
following: 1f A (Ar',) 15 infeasible, evciude node r{r+l) by
assigning tt to E{1) Otherwise A (Ar’]) has ar optimum solution.
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If z*(r) (z*(r+l)) > U, _|» neject node r{r+1) oy assigning it to
*

set R(1) Otherwise, z (r) (z (r+1)) < U;_,, so assign node

r(rel) to set F(1).

b) ROUND. Round node r{rtl) if it was assigned to either F(i)
or R(1).

c.1) BOUND FROM ABOVE. Set U, = min [Ui-l’ Z(r), z(r+1)] for
nods r{r«1)c £(i) or R(1). Reject nodes of F(i) having '
*

z (3) > U, by assigning them to R(i).

¢ 2) BOUND FROM BELOW. Select node k € F(i) by using lower
bound operation, Lower bound node k with L1 = z*(k). If L1 = Ui'
stop; the feasible solution that provides the upperbound is
optimal. Otherwise, Li < Ui' Set i =1+ 1 and go to step i.

It remains to be shown that the algorithm indeed finds the optimal
solution in a finite number of steps. Since it is assumed that the round-
ing operation is possible, a feasible solution to P exists, and therefore
an optimal solution exists. Moreover, from the way the branching cperation
has been defined and the hypothesis that 91 is finite, the algorithm would,
in a finite number of steps, generate all feasible solutions to P. (i.e.,
solutions corresponding to terminal nodes). And finally, from theorem
2.2, the optimal solution may be identified.
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CHAPTER III

CAPITAL INVESTMENT ON INDEPENDENT PROJECTS

3.1 THE CAPITAL ALLOCATION PROBLEM

We shall refer to the problem of optimally allocating a fixed capital
budget imony a tinite set of competing proposals as the captal allocation
problem*. We can make 3 basic distinction between two classes of alloca-
tion preblems which will result in substantially different analytical
formulations and hence different techniques to be used in their solution
process. These correspond to the cases of «ndependent and of dependent
investment proposals. We shall consider as independent projects, after
Lorie and Savace ([1], p. 229), those for which "the worth of individual
investment proposals is not profoundly affected by the acceptance of
others".

In this and in the following chapter we shall be concerned with
optimal allocation of resources among independent proposals, while in
subsequent chapters, optimal capital allocation for dependent projects
will be studied for various problems in the context of transportation
network synthesis.

Special cases of the capital allocation probiem have been studied by
Lorie and Savage [1] for the case of independent projects. They first
consider the problem of allocating a fixed amount of mconey among competing
alternatives, each requiring a given capital outlay in a single time
period. The objective to be optimized is the sum of the net present values
of the investments (i.e., the algebraic sum of positive and negative costs
fiows discounted to the present, using the firms "cost of capital” as the
discount rate). Their proposed solution method is based on ranking the

L 3
Although the discussion in i(hi. chapter is in terms of money allocation,

it is in fact applicable to rliocation of a variety of other scarce resources.

29
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investment proposals in decreasing order of present value per dollar of
cutlay required, and accepting them in that order until the fixed budget
is exhausted. They do not, however, deal with the ranking of various
combinations of projects and therefore their method does not guarantee an
optimal solution.

Lorte and Savage also consider the case where projects require capital
outlays n several time periods, and they propose a method later shown by
Weingartner [2] to suffer from several serious defects. Weingartner in
[2] identifies capital rationing as an optimization problem and develops
an integer programming model. This model, for the single pericd case, -
corresponds to the Dantzig formulation of the (0-1) knapsack problem, [3].
The model employed by Weingartner in the multiple outlay case corresponds
to the (0-1) multi-dimens«onal kRnapsack problem (i.e., the knapsack prob-
lem with restrictions on weight, volume, height, etc.). Traditionally,
the knapsack problem has been solved by dynamic programming and most
recently by an enumerative technique developed by Gilmore and Gomory [4].
For the multidimensional knapsack problem, Weingartner and Ness [5] use
a recursive relation to solve the complement problem (where projects are
successively eliminated instead of accepted) and have reported interest-
ing computational results. Shapiro and Wagner [6] have also studied
these problems, demonstrating their connection with renewal problems formu-
lated by means of recursive expressions.

Cord, [7] formulates the single period problem for the case of
uncertain returns, and seeks to maximize the total return on investment
while maintaining the average variance for the total investment within a
certain predetermined value. Cord uses the method suggested by Bellman
[8] of incorporating one constraint into the objective function by means
of a Lagrange muitiplier and then, with a single constraint left, applying
the dynamic programming solution of the knapsack problem. A discussion
of the drawbacks of the methed, and the example probiem of Cord, may ve
found in [9].

Finally, we point out that the present discounted value used by
Lorie and Savage and by Weingartner has been a controversial fssue due
to the interest rate or “cost of capital” employed to obtain such dis-
counted values. Baumol and Quandt [10] have indicated the serious
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difficulties that this approach entails, and have suggested an alternative
objective function based on expliczit discount rates and subjective utili-
ties. Throughout this work, we shal! assume subjective utility functions
to express the corresponding figqre of merit of the models to be derived.

2.2 THE VARIOUS CASES OF INVESTMENT DECISIONS

We shall consider various cases of investment decisions on |
independent projects confronting a firm or a government agency. We sha]]_ i
derive programming models 1n each case which may be interpreted as network
flow problems on capacitated networks, with the additional constraint that
flow on a subset of the arcs must be either zero or the upperbound on the
arc. The solution technigues provided are special cases of the branch and
bound algorithm presented in Chapter 1I. The problems to be anaiyzed and
their characteristics are the following:

i) The capital investment problem requiring cash outlays in
various time periods for each project is formulated as a
maximum flow problem on a single-source single-sink capacitated
network, where flow on the arcs represents cash flow and the
flow on the arcs emanating from the source is restricted to
be either zero or at upper bound. Its analogy to a special
class of plant location problems is indicated. The branch and
bound algorithm, as adapted to the problem, permits the use of
the rounding operation; furthermore, the solution of the linear
programming problem associated with each node of the solution
tree may be obtained by simple inspection.

i1} The (0-1) knapsack problem is then considered as a special
case of the previous problem. The solution proposed by Lorie
and Savage (that of maximizing net present discounted value)
15 shown to represeni the root node of the branch and bound

E T TSR NI

tree.

Next part will be devoted to analysis of multistaged
resource allocation problems where the horizon and staging
are assumed to be given.
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The first ot these problems to be considered is a capital
budgeting problem requiringa single costs outlay per project
and subject tc capital rationing at each period; but the cash
outlays, and thus the investment deciston, may be deferred to
a later peripd.

Tne resulting mode! which we shall call the multi-
knipsazk problem 15 studied, certain of i1ts properties deter-
mined, and finaily an equivalent network flow mode® on a
bipartite graph 1s derived which resembles the fixed-charge
transportation problem considered in Chapter VI. The branch
and bound technique as applied to the problem, permits the use
of the rounding operation; the linear program to be sclved at
each node of the solution tree is a capacitated transportation
problem with surpluses and deficits and with certain routes
prohibi ted.

Finally, a special type of multi-knapsack problem is considered
in which all 1tems (projects) must be assigned to knapsacks of
given capacity so as to minimize the number of knapsacks re-
quired tc adequately allocate the items of the problem.

Problems 1i1) and iv), although presented within the framework of

capital budgeting, arise in a variety of fields and in particular two such
applications to optimal allocation of computer system facilities are
discussed in detail

3.3 THE MULTIPERIOD CAPITAL INVESTMENT PROBLEM

Consider a govi.”ment agency or a corporate division confronted with
the problem of allocating a multi-staged budget with ceilwmgs on each stage,
among a set of 'ndependent projects requiring capital outlays in various
time periods (Problem 1) Government agencies typically face this prob-

lem when the available amount ot capital 1s detemined exogenously by
legislature apprepriation ar by government budget pianners. In the case

of a rorporate division, top management may determine the budgets and

simultaneously cut oft the division from acquirtng additional funds from

the capital market
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Let Bj, J=1,...,n be the budget ceilings at each stage or time period
and let aij > 0 be the capital outlay reguired by project i, (i=1,...,m)
at time period 3. AssuTe a cartain utility f, associated with the
acceptance of project i , the fi might for example be subjectively deter-
mined by the decision maker. A set of projects must be selected for
investment so that the total utility is maximized while maintaining the
capital outlay at each stage within the corresponding tudgetary ceiling.

We derive an analytical model by considering a hipa~tite network
G = [N], N?, A], where N] 15 a set of m nodes each representing a project
proposal, and N2 a set ot n nodes each assocrated with one of the stages

n
considered. Let % a‘J be the "demand" or 1nput associated with node
3+
ie N] and Bj the "demand" or output associated with node j € NZ' Let
X355 the flow on the arc (1, j) € A, represent a capital outlay, and
capacitate these arcs with the upper bounds 513' Then the capital alle-
cation problem defined above may be expressed as follows: find a flow

pattern on the network so as to

n
P' : Maximze 2= T f y (3.1)
1=1
. m ¢
Subject to I x.. < B , J=l, .,n {3.2)
jzp W7D
n n
Eox vy, L , -1, . ,m 13.3)
g 1 Vs
02 xj, <9, » ¥ (1,5) € A (3.4)
y, Integer (3.5)

vhere the y, are decision variables assocrated with each node i ¢ N,
which may take or th. values 0 or 1 according to whether project i is

*
fi would represent the net present value of irvesting in project i,
discounted by the appropriate retc of interest, if the total present
value approach of Lorie and Savage is . .pted.
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rejected or accepted for investment. (By summing (3.4) over j and

comparing the result with (3.3), we obtain Y5 E a,; ¢ E aij; and since
J:] J j:]

by (3.5) Yy s restricted to be integer, it follows that the only possible
values for y, are 0orl.)

Constraints (3.2) restrict the capital investments incident on node
j to be within the available budget at period 3. Constraints (3.3) indi-
cate that 1f project 1 is accepted (y] = 1) the sum of the flows leaving
node i must be equal! to the total investment required for that project
over the entire horizon Coupled with the upperbounding constraints (3.4),
this condition forces the flow on arcs emanating from i to be at upper
bound as expected. By the same reasoning, 1f ¥; ® 0, then g xij =0 and
the fiows on the arcs x,; are at zerc level. 3=

Observe that the capital budgeting problem as interpreted in this
network flow context corresponds to a special class of plant location
probiems [11], [12]; however, in our problem we are maximizing, the flows
from plants (projects) to destinations (time periods) are capacitated,
and there is no explicit participation of the Xi3 in the objective
function.

Note that relations (3.3) permit P' to be exclusively expressed in
terms of the set of variables x_., as foilows:

1)
, o n '
P : Maximize 2= L L <X (3.6)
=1 j=1 1
m
Subject to I x .<B. , j=l,-..,n (3.7)
S Y J
0 < Xyy S84 ¥ (1,0) e A {3.8)
n n
y, = L x / L a  integer (3.9)
Jx‘ J J;] J

n

where ¢y * f1 / K aiJ represents the total utility of project i per
321

unit of investment, and thus al! arcs emanating from the same node i

incur the same cost c,
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We observe in passing that if constraint (3.9) 1s deleted, the
resulting problem may be decomposed into n mutual'y independent programs

'n
of the form Max Z; ]E: € Xyge ‘?‘ Xij § BJ. 0z STREAIT ¥,» each

one associated with time period j; the solution of which may be obtained
by simple inspection as will be shown later.

Before proceeding to develop a solution technique for problem P, we
shall show how the problem may be formulated 25 that of obtaining the
maximum flow that max'mizes tota! utility.

The bipartite network G with multiple sousces and sinks may be
transformed 1nto an equ:valent network with a single source and a single
sink. This may be done by adding artificial nodes s and t, and artificial
arcs (c,1), ¥ i ¢ N, and gj,t) ¥ J e Ny, with the following associated

values: Coy * 0, ug, = jfl a1J and Cjt =0, uJt z BJ; where Ugy and "jt

denote the upperbounds on the respective arcs. Furthermore, we shall
require that flow on arcs (s,1), 1 € Ny be efther zero or otherwise that )
it saturates the arc. The associlated network is shown in Fig. 3-1. The
first number on each arc represents cost and the second represents arc

capacity.
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The problem therefore may be expressed in terms of network flow
theory as an analysis problem: find the maximum flow from s to t that
maximizes cost on the network of Fig. 3-1, as well as {ts distribution
pattern, such that arcs (s,i) are either not used or saturated.

The highly combinatorial nature of the problem does not permit
network flow theory, in its current state of development, to provide a
labeling technique (primal-dual method) to cope with such a problem.

* However, since a duality theory for discrete programming has recently
been developed by Balas [13], a generalized concept of complementary
slackness may be derived for this class of problems and thus a generali-
zation of the out-of-kilter method [14] for networks with bivalent arcs
may be developed. The author has been working on such an approach, but
is unable at this point to present final successful resuits.

3.4 DEVELOPMENT OF A SOLUTION METHOD

We shall adapt in this section the branch and bound algorithm
presented in Chapter 1l as applied to the solution of problem-P. The
notation to be employed complies with that used in Chapter II. We shall
first define the sets S,, T, and Q, as follows:

m :
S| * [xiJ /.151 Xyq € BJ. 0 < x4y8 °1j]_ (3.10)

n n .
T = [xU / jfl Xig 4 JEI aija:.integer, x13=0 or a4, Wi,3)] (3.11)

We observe that the sets thus defined satisfy the assumptions made
in the original development. The set S, is a closéd convex set in E™"
obtained as the-intersection of the hyperplanes (3.7) and (3.8); it is
also bounded since each variable STTR from (3.8), ts bounded above and
below. T1 fs a non-empty set in the same space as Sl (e.g.

=0, ¥ (1, j) € Ty), and is also finite since Xgy * 0 or 3y 4e
Finally, from (3.12) 9, is finite, since T, {s finite.
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Note also that since 34 20and B, » 0, at least a feasible solution
exists, namely, the status juo, i.e. the policy of zero investment; and
thus an optimal solution always exists. v

Branching Openation. Given a certain node £ of the solution tree
with assocfated sets Q, and SL’ the branching 1s defined by their inter-
section with the sets

e DXy 73y =00 ¥1e g, = 0 (3.13).
Vol [x‘.j /xkj 3y Vu] > ¥ = (3.14)

for a given 1 = k. The sets thus defined satisfy the sufficient conditions
to form a partition of Q,, (cf. theorem 2.1):

Ve rfV Ve re1 " [x1J / Xyy ® 0, FRENT ¥3] =0 (3.15)

and since Qz s a subset of 91 (by branching operation) and from

(3.10) to (3.12), the variables Xy 5 in 2, may take on the values 0 or 35
Thus the intersection of Ql with (3.16) is Qz and the second condition for
sufficiency is also satisfied.

Finally, since at ea;h branching operation n variables Xij are set
either to zero or at upper bound, and since the number of variables is
finite, eventually we will obtain a terminal node t with S t con-
taining a single element of the domain 9 and hence all feasible solutions
to P may be enumerated in similar fashion by developing the entire
solution tree.

3.5 THE AUXILIARY PROBLEM AND ITS SUBALGORITHM

At each iteration of the branch and bound algorithm, associated with
each newly-generated node £ of the solution tree, a continuous auxiziany
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problem A, derived from P must be soived. Denote by I, Q;N] the subset
cf nodes of the network G for which ¥y ® 0. (1.e., nodes representing
rejected prejects); by L g;u, the subset of N| associated with 75 1,
(accepted projects); and by N] “ Ny - iy o I, the subset of projects

that remain "free" to be accepted or ~ejezted at this step of the solution
process. Yhen the auxiliary probl'em Al tal s the form

m
AL © Maximize 2 (&)= & % c, « (3.17)
r=1 3=1 U
n" N 1
Subject to AL] Xy < BJ c J=i,...,n (3.18)
iz v
0 < ST , ¥ (1,§)  (3.19)
g ? = 0 20

n n
-y-\: 13 x'/z

- 1 ) i L
Bt MU A5 el (3.21)

This problem is a !:near program whose soluticn may be obtained by
125pect1nn. Indeed, from {3.20), x:J =0, vel; From (3.21) and (3.18),
Xy = 3y4 1el The problem (3.17), (3.18), (3.19) with the remaining
free variables nay be decomposed into n mutusliy 4ndependert programs of
the form:

Maximize .- T ¢, x (3.22)

Subject to L x .+ B (3.23]
len‘ o=
- - {
0%, 7y, (3,24)

[

' Y
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where Bj = Bj - 1£I aij’ We may assume without, loss of generality that
i

the indexing of projects i ¢ N‘ is done in decreasing order of their
utility per unit of investment Ci» SO that €126 2 oo 2 G Under this
assumption it is obvious that the ¢ptimal solution to (3.22) - (3.20) may
be obtained by sintply setting the variables xiJ equal tc their upper bound
in the order of the index i until the budget B, is exhausted. If

z a,

> Bj, then one single variable will take on a value 12ss than
ieN ‘
1

J
its upperbound. The problem {3.22) - (3.24) may be solved for all j in
this fashion. Thus the optimal solution <o the auxiliary probiem AL will
be x;j =a . 1fa . < Ej, zero otherwise and:

13 1J
- ‘
0 , iIfre Io
ar‘J ., ifre I1
* I o r
Xpj = 2p; , if 151 Xij < Ej and ifl Xij $ Bj, re N] ,r>1
(3.25)
5 r-1 = ¢ r-1 * 5 J r x 5 R :
. - . y . . . . >
j 151 x1J s 1 lil x1J < j an 151 x1J > ; re 1 ? r
r-1 ¥
L0 , 1f E‘ X152 Bj' re N] , r>1

The cbjective function will have the following value:
2= x f o+ 1 I, X, (3.26)
Note that 1f for any problem Bj < 0, the corresponding Ai is

infeasible and the node of the tree may be excluded withcut furthe-
computation,
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Rounding operation. Observe that from the ogtwmal solution (3.25),
(3.26) to Ae, and trom (3.9), the set of y: may be determined, If all

of them are integer, then (3 25), (3.26) constitute a feasible solution
to problem P. If this 1s not the case, then a feasible solution to P may
be obtained without any additional computational effort by simply setting

* *
. yi,1fyi=00rl
Yy ® (3.27)
0 , 1f0«< y; <1

or equivalently, if 0 < x:J <3y then set iij =0 for all j e N,
”~ * - s “
otherwise set xiJ = xij. The value of the objective function is given by:

7 () I f.+ L T cC X, (3.28)
J

i 1 i)
iel] 1eN]

The solution thus obtained 1s feasible for P; note that in obtaining
iij’ the values x: have been reduced if changed at all, hence constraints
{3.7) and (3.8) are still satisfied. Also from (3.27), constraint (3.9)
is satisfied and the solution is feasible for D.

The rounding operation Jdefined by (3.27) and (3.,28) wil® .efore
permit us to perform rejection of certain branches of the branch and
bound tree, since (3.28) constitutes a lower bound on the optimal
solution to P,

3.6 THE BRANCH AND BOUND ALGORITHM

Having shown that the assumptions of the branch and bound algorithm
are satisfied and having developed a subalgorithm for sojution of the
auxiliary problem, we may now proceed to establish the solution mothod as
applied to our capital budgeting nroblem. fNote that we have simplified
the statement of the algor:thm (cf. Chapter II) and also have expressed
it in terms of a maximization probiem.
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STEP 1. Set 1 = ', generate nyde } by aO-vlﬂg Al (i.e.. P without
canstrants (3. 9/;. and ‘et 2, x‘J be the optimal solution,
From 13 9) abtain y . If all J/; are 0ori, stop, the solution
is optima? Othe~wise b:.11 node 1 with U] : z . Rouad node 1
to obrain (Z, ) setiy = Z, f -, =Uy. stop; the rounded
so'ution 15 optimal. Otherwise L, <« U,. Set i =1 + 1 and go
to step 1,

STEP i a) BRANCH. 8ranch reOm bounded node £. Select one y: having
a fractional vaide. C-eate nyaes r and ¢ + 1 and directed arcs
(2,r) and \L,rei). Soive probtem A.with y, = 0, adding k to
set I s and >o1«e problem A ~i with ’k 1, adding k to set I].
If 2 \r) ar 2 xrf‘; < L Y 1eject the corresponding node. If
one is infeasible, ¢x.£4da the corresponding node.

b) ROUND. Round nodes r ana r + 1,

c.1) BOUND FROM BELOW. Set L = max [Li-], Z(r), 2(r+1)].
Reject all nodes with z < L

c.2) BOUND FROM ABOVE. Select node £ such that z™(£) =

max {z ()}, for current terminal nodes. Upperbound node £ with
Uf = z'(L). if LG Ui' stop; the feasible solution that provides
the lower bound 15 optimal. Otherwise, L < Ui‘ Set i =141
and go to step !,

At each branching oper3at'on, one of the current functional y: must
be selected to take on the vaiues 0 and |, Tnere may be several such
variables and n general there 15 no clear cut selection rule that would
guarantee the fastest convergence td the optimum. Usua'ly certain heuris-
tic rules are discovered when sufficient computational! experience with the
algorithm is available. Our experience with problems solved by hand has
indicated that selection af the fractional y; having the largest total

investment % aer tends to result in infeasible nodes for the branch Yo = 1,

J
thus reducing the number of terminal nodes for which data must be preserved
and resulting 1n a reduced time of computation.
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3.7 SOLUTION OF AN EXAMPLE PROBLEM

Consider as an example the problem given in Table 3-1, taken from
[2], involving 10 projects and 2 stages. The budgetary ceilings are
By = 50, R, = 20.

f f.
ject I Project -
et ol an L ae mo || N | T | |22 m
AR 1]
J J
1 15 61 2 1.875 6 40 30 351 0.615
2 17 6 6 1.417 7 12 18 310.5M
3 15 6 7 1.154 8 17 54 710.279
4 12 61 6 1.000 9 14 48 4]0.269
5 14 12 3 1 0.933 10 10 36 3]0.256
T.3LE 3-1

To generate the root, {node 1), the auxiliary probiem A, must be
solve4, The solution is obtained for each time period by means of
expressions (3.25). Here I, =1, = ¢and Bj = BJ. The snlutions are:

x;] = [6, 6, €., 6, 12, 14, C, 0, 0, 0]
X:Z : [2' 6' 7' 5» 0, 09 0’ 0) 0: 0]: thUS

g
yo =00 1,0,10,12,14,0,0,0,0), 2z (1) = 47 + 30.82 = 77.82
! 2 15 8%

*
and by rounding y, we obtain

vi= 0,1, 100,0,0,0,0,0, 0], 20) =47

Therefore, L, = 47, U‘ = 77.82 and node 1 is bounded.
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The subsequent iterations and their pertinent data are shown

Step Feasible nodes Excluded Rejected Lower Upper
i F(r) nodes nodes bound bound
Ly Yy
1 " 47 77.82%
2 | 3 2 47 77.19
3 | 4,5 59 74.46
'O I S A =3 73.85
s {5 .8 ,9 7 70 73.59
6 | 5 ,9 .10 R 70 73.13
7 s ,9 ,13 12 70 7310
8 |9 ,13,15 14 70 72.95
9 |9 ,13,17 16 70 72.78
0 |9 ,13 18,19 | 70 71.68" i
n o9 20 21 70 70.56"
12 | 23 22 70 70.54
13 | 25 24 70 70.51
14 | 22" 26 70 70
* :  bounded node
’ t : search on a new branch uf the solution tree g
TAGLE 3-2 ;
in Table 3-2 and the actial soiution tree in Figure 3-3 A total of 27

nodes are generated although only 20 need be evaluated by means of
expressions {3 27), (The 1nfeasibrirty of excluded nodes s detected when
Bj < 0 for any 3) The second column of Table 3-2 indicates the number
of current terminal nodes for which information must be stored for later

use. Note that at any ore time no more than three such feasible terminal

nodes ex1st
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Fig. 3-2 grapnically shows the effectiveness of the rejection rule.
The difference between the 'ines a and b may be attributed to the selec-
tion rule employed 1n <hoos:ng the fractional variable Y to be fixed at
each 1teration. The difference between lines b and ¢ represents the effect
of the rejection rule, which in this case not only dampens the growth
rate of the set of feasible nodes, but in a certain interval makes the
size of the set decrease with the number of iterations. Finally, note
that since the number of feasible terminal nodes at the end of iteration
14 is only one; this indicates that the optimal solution, accept projects
1, 2,4, 5and 7, is unique.

Number of

nodes 14
12
10 2
8 b
6
4
2 - o Step i
02 4 6 8 10 12 14

a : terminal nodes cf the solution tree
b : terminal nodes excluding i1nfeasible nodes
¢ . terminal nodes excluding infeasible and rejected nodes

FIG. 3-2

In table 3-2 we have 'ndicated the steps at which a search along a new
branch of the tree s started This type of information is valuable in
the context of computer 'mplementation of the algorithm. In fact, at
each iteration, a search over all currently feasible nodes must be
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performed to determine the nade from which to branch next: ma? ) {z*(k)}.
keF(1

This is essentially an optimization p-oblem, solved by a table look-up
equivalent to an exhaustive search, I[f at each iteration the node numbers
of the best and second best (or as many as desired) z* values are stored
separately, and updated at each iteration, the number of table look-ups

is reduced. It 1s easy to verify that a table Took-up is not required
until after the number or tree branches sd far developed at least equals
the rumber of decreasingly best nodes stored separately. At this point,
the table look-up would praduce the next set of decreasingly best nodes
needed to begin the next Zycle of the operation.

In the example considered, 1f the three values with the best z*
values are available, the first table look-up would be required at itera-
tion 12 to determine that node 23 should be the one from which to branch
next. At that point, of course, the table consists of one singie element.

It may be worthwhile to point out that the dimensionality of the tree
depends largely on the numbei of projects considered rather than on the
number of time periods; the latter only implies extra computation of ex-
pressions (3.25) for all time periods at each node of the tree. That is,
the total number of nodes of the final tree is espected to vary slightly
as a function of the number of time periods considered.

Excellent results have been obtained with this branch and bound
technique. For a report on this computational experience, the reader is
referred to [15].
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CHAPTER IV

SINGLE STAGE INVESTMENT: THE KMAPSACK PROBLEM

4.1 THE (G 1) KNAPSACK PROELEM

The mult'-dimensional knapsack problem studied in Chapter ill, for
the special cases n = 1 (one single period) corresponds to the (0-1)
knapsack problem formulated by Dantzig. As we mentioned before, this
problem has traditionally been solved by dynamic programming. Gilmore
and Gomory (1] have recently developed a theory for knapsack functizas
{i.e., the ¢iil:zum colution zo(B) 1s a knapsack function of the budget,
which 1s considered as a parameter). Although they nave presented al-
gosrthins for the knapsack problems without upperbound on the variaples,
fer the (0-1) case they have only indicated how an algorithm based on
dvnamic programming should be derived to solve the problem for various
values of the budget.

[n this sectinn and forthcoming sections we shall study some
important economic nterpretations velated to the duai of the knapsack

problem. [n this context, we shail tirst relax the discrete restriction
on the variables, and later we shall aliso formulate the dual of the ori-
gnal knapsackh orcblem, making use nf Balas' discrete programming duality
theory. Two branch and bound solution methods w:ll be proposed based on
the generz! algerithm of Chapter 1. The ¢ st method corstitutes a
speciat case of the algor:thm develeoped for the suiti-dimensional knapseck
prodlem 1n Section 3 6. We shall discuss the simplifications resulting
rrom assuming an tnvestment horizon of one time perigd.  The second al-
gorithm, althgugh a beanch dnd bound soiution method complying with the
general theory of Chapter il. is closeiy related te the wdictee g rctim
of Ralas (2] in addrtion, this glgoriihm 18 va-aw e, in the s¢.ise
indicated by lchbrah [3], {1.2., the tree s muitaneou:ly solves the

Knapsack problem tor vartous vatues of the nudged
p p (
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4.2 ECONOMIC INTERPRETATION OF THE DUAL LINEAR PRNGRAM

By collapsing the index j in the formulation P of Section 3.3, the
knapsack problem of Dantzig may be modeled by the foilowing discrete
(bivalent) programming probiem:

m
Q : Maximize 2z = % Cy Xy (4.1)
i=1
m
Subject to z] Xy € B (4.2)
i=
0sg X; € 2y ' ¥ (4.3)
X1 =0 or a.l » 'V'i (404)

where (4.3) is obviously redundant, but has not been removed here for
reasons that will become evident, Let us assume that constraint (4.4) is
relaxed; that is, projects may be accepted for which the capital cutlay
is cr.ly a fraction of the total capital required, a- Under this assump-
tion the resulting problem, which we shall denote Q', is a linear program
whose associated dual program is the following problem D':

D' : Minimize z' =B v + ? 3, u (4.5)
i=1

Subject to v + ug; 2 ¢y (4.6)

Vg 2 0 : ¥ 14.7)

where v is the dual variable or shadow price associated with constraint
(4.2) and the u, the shadow prices associated with constraints (4.4).

Let us assume that ¢ = f1 / 38 > 0, and that as before, the ¢, are
ordered in decreasing sequence, (1.e., € 2¢2...2 cm). Under these
assumptions it is obvious that the optimal solution of ¢ may be determined
recursively by

R e
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Xy =J/ " » 1f a8,
R ,1fa, >8,
\ ‘
- r
[ a , If rzl x, <Band L X, <B, r>1 (4.8)
r P T |
i=1 i=1
- r-1 r
x: =< B - rzl x; y If L xf < B and I xf >B, r>1
. . 1 X 1
i=] i=1 i=1
r-1 =*
0 . Z X, >B, r»l
\ 'I “ 1

Denoting by r = s the index of the last accepted project, we see
from (4.8) that only X, may be less than ds and thus project s is the
only one partially accepted. The rest are totally accepted if r <s or
totally rejected if r >s. From (4.8), the optimal solution will satisfy
(4.2) as a str1ct equality (the constraint is active).

If x and v , u* are optimal solutions in their respective programs,
from duality theory of linear programming the following compl2mentany
sfackness conditions must be satisfied:

v £ oxi1e0 (4.9)
izl

u; [aj-x:] =0 (4.30)

* * *

X, [ui tyo- Ci] =0 (4.11)

m
From (4.9}, if vi >0 then T x: = B, which is the case under
iz}

consideration. Ther we conclude that for an oztimal solution, the budget
*

ceiling is a scarce resource and v may be interpreted as the value or

imputed rate of an additional dollar added to the budget. Note :hat this
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rate 1S always positlve* in the linear programming case, and its value will

be de'ermined below.
k4 . *
trom (4.10), uy * 0 for rejected projects, and for positive uy the
*
project is accepted. The values u_ represent the internal rate of return

1
of one dollar invested in project 1. From (4.11), for accepted projects
the following holds:

® ]

U g, v o2 0,1<s (4.12)
* *
We shall now proceed to determine the optimal solut.on v , u to the
dual problem. For an cptimal solution, both objective functions are
* *
equal, and taking into account the fact that Xg = 0 and uy = ¢ fori> ¢,

(i.e., for rejected projects) we obtain:

® §~l *
a;) =B ¢ 121 a; Yy (8.13)

SE]
i=]

s=1
i ¢, a

By substituting (4.12) in (4.13) and solving for v* the following condition
results: "

vV =2 ¢ (4.18)

and thus the optimal value of an additional dollar added to the hudget is
equal to the net present value per dollar invested of the iast project
«ccepted for in<estment in the optimal solution to Q. Finally, substi-
tuting (4.14) Dack in {4.12),

u: 2 €, ~C , 1558 (4.15)

which will be non negative since we have 2ssumed ¢y 2 ¢ for 1 <s. The
rate of return of one doilar invested in project, i, 1 ¢ 5, i1s the

- m
.Obviously v =0 for the trivial case L 3, < B.
121




T T T T T e

SINGLE STAGE INVESTMENT: THE KNAPSACK PROBLEM 53

difference, 1f any, between the net present values per dollar invested of
project 1 and project s (the marginally accepted project).

The values u: suggest a natural way to define investment priorities.
Lorie and Savage (4] propose a ranking strategy based on decreasing net
present values per dollar of outiay, that is in decreasing order of their
¢;o Thus, the ranking suggested by (4.15) and the one of Lerie and
Savage would result in the same projects selected for investmen+. We
emphasize again that this holds only for situations in which the marginal

e e ey oy i e o e i i ek e i g b

project accepted may be accepted as a fraction. We shall consider now
the dual of problem Q, for which avtempting project divisibility is an
absolute gaux pa-

4.3 THE DUnL OF THE DISCRETE PROGRAM

In this section we shall study the dual cf the all-bivalcnt program
Q based on the duality theory of discrete programmina, [5]. We shall re-
concile this theory with the dual program suggested by Weingartner [6]
for the single period 1n.estment problem,

Let us consider Q subjact to constraints (4.2} and (4.4) only, and
drop the redundant constraints (4.3) from further consideration. The
dual of such pregram 1s the following max-min problem:

D: MaxMin 2' =B v - @ S %,
LY =]

Subject to v -5, = . (4.16)

v>0,x =0cra ,¥

s‘ unrestricted

Since the slack variables s, are unrestricted, they effectively
nultify constraints (4 16) and probiem D may be rewritten as

~ I

m
D: MiniB v -Max (I (v cx) VA 0} (4 17)
v | [ 1-1

— Q
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where So ° {x/ X, = 0or a,}i As suggested by Balas, the solution of
problem Q may be obtained by solving the equivalent problem (4.17) using
the partitioning technlque of Benders (cf. Appendix A), thus obtaining
the optimum x and v . However, we shall assume here that an optimal
solution 5, to problem Q is already available (obtained for example by
the branch and bound technique cf Section 3.6).

The saddle-point theorem of Balas guarantees that 1€ an optimal
solution 5?, z*, to Q exists, then an optimal solution v*, §f, 2" to D
exists, with z* =2

[ ] » » ]
THEOREM 4.1 (Complementany Stacknersl. I§ x , 2 and v, 2' are optimal
solutions to Q and D respectively, then

v [B- x] 0 (4.18)

{s]
Proof: Since by tne saddle poirt theorem z* = z'*. we have

: ] *
i - 5
9 < x = v* - I (v ci) %5

i=1 i=1
m
or O0=v 8- I x:]
1=

So for v* > 0, the buiget i1s a scarce resource, Alternatively, {f

the budget is a free good, ? x: < B and thsrefore v* = 0, The dual
12]

variable v‘ may be interpretad as in the continuous case: it is the value
or imputed rate of an additinnal dollar added to the budget.
* *
Once an optimal solutioa x , z to Q 1s avail>lle, then the optimal

*
dual variables may be determined as foliows: If ? X, < B, then from
1]

theorem 4 1 1t follows that v. = 0 and thus s: = - Cy.
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m *
If on the other hand, I x: = 8, then by substituting X; for X4 in
1a]

D we obtain the following square system of equations of order m + 1:

By - I s x ez (4.19)
j=p Y1

v oos ¢, ¥, (4.20)

v 20 (.21

. m
LEMMA 4.1 Fonr an optmal solutioa r, Lo Q, satisfyang I x: = B, the
equation (4.19) s redundant. A

Proof: Multiplying each member of {(4.20) by x: and summing over i we have
* M * m m
v L X - z sy x. = I i
=] i=1 Cis
*
but this expression, under the assumption that Xy = B, is equal to
(4.19). » !
It follows from the lemma that the rank uf ths system (4.20)-(4.21)
*
is m (the system 1s triangulir), and thus v may take any nor-negative
arbitrary value.

lfria

L]
We shall select for v the value Cq where s is again the project

among those acc2pted which has the minimum net present vaiue per dollar
invested. This choice will insure that all accepter projects have non-
negative benefit, that is, ¢, - v' 2 0. Thus, denoting by In the set of
rejected projects and by la the accepted set, we nave

»
- = ¢, -~ ¢ > M
Sy ® € ¢ 2 0 ,1¢ i
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Observe that 1t may st111 be possible that for a rejected project

¢y, > ¢ implying that this project has a positive benefit (c1 - C > 0).
We may contrast (4.22) with the linear programming ~a<: studied in

Section 4.2 where the following conditions were satisfied:

(4.23)

Thus 1n the integer programming context, as Weingartner remarks,
rgjected projects for which Ci.= € » 0 are essentially taxed or peralized
to eliminate any profit on them, thereby preventing their acceptance.

Finally we shall reconcile the results of the integer duality theory
developed above with Weingartner's “alternate dual values" approach to
establishing shadow prices in the integer capital investment problem. He
assumes ([6], pp. 103-106) that an optimal solution 5?, 2 to the primal
integer program Q is available (i.e., the sets I, and I, are given). He
evaluates the "aiternate - .al variables" by solving a linear programming
model constructed in such a way that it allows negative benefits only for
rejected projects. The model he proposes, re-expressed in our terminology

and notation, is as follows:

w : Minimize 2=Bv+ vy Xy

1ela
Subject to v + vy 2 ¢ ie la (4.24)
Veus Y, 26, telg (4.25)

where the benefit (c‘ =43 1s yiven by vy 2 0 for accepted projects and

by {u’ - y‘) for rejected projects. Uader the assumption that 3, > ¢ and
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¢ 2 0 and that Ia # ¢, Weingartner's prob?! 'm may be solved by inspection
as warranted by the foliowing theorem.

* » «
THEOREM 84 2 The ,alues . , Ve Y. :Jngcézitf an sptumal solution Lo w
L ® [ ] L ]
oy «§ v + Ui - Ly 4 € Ia and » 4 Vot Yo R E Io'

~ » ®
Proof: For any v >0, v, and Y, s 1 €1, exist satisfying (4.25) as a
strict equality without alte-'ng the value of the objectrve function. Now

consider constraints (4.24):

®

a) v =0 .
non-empty.

=0, ¥ = Id, 15 not possible singe Ia 15 assumed

b) if v 0, then u >0, (If v 0 for a subset of I , then

¢, * 0 or else the solution vl, v, is infeasible.) Assume also
Ve u >c¢, 1 e f,. Then each v} may e decreased without
vig. at1ng the ccnstra1nts (4.24) but with a decrease in the

| 4
value of the objective function. Thus v* AT

*

c) v >0, u: 0 for some 1 e I, and u > 0 for the rema1n1ng

1.5 Ia' Assurme also v > c for al1 i such that u = 0. Then
v may be cecrreased without violating the constratnts, causing
the ob3ect1ve function to decrease Therefore v = C, If v*

g u1f>0 still holds for i such that u > 0, then u may be
decreased wtithout violating the corstra!nt caus1ng the objective

« L]
to decrease Thus v ¢ v, =& Q=D

1

Furthermore, by taking the dual of w it an be shown that the
optimal solution 2' to w 1S equai tc the assumed known value 2" of the
integer problem Q. Thus the sclution of w 1s reduced to solving the
system of equations:
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Bv* + I u; x: a z* (4.26)
‘.ela
" "
VvV tyu ¢ , 1 el

L] 2 Py
Vou‘,Y,lZO

This system 1s solved as follows: If I X B, then {4.26) is

1
tela
® *
redundant ; then by selecting v = <y arbitrarily with <, being the
smailest ¢ , 1 - 1, the solution is

v, *c -¢c >0 Ctel (4.27)

Compaiing now the results of (4.22), cbtained by direct explioitation
of discrete duality theory, with {4 27), derived from Weingertner’s in-
tuitively constructed model w, we observe that they are the sawe, thus
sstablishing the eguivalence of both approaches in 6eterm€n1ng & system
nf shador prices for the capital investment problem under consideration.

* ¢ . 8 Lt e * » . .
I iii Xy < - solution is ¥ *»Q.ui=g',1ela,u‘-~ri=c{,\c
H
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4.4 SOLUTION OF THE KNAPSACK PPOBLEM

The branch and bound algorithm of Sectiun 3.6 may be directly applied
to solve the knapsack problem as formulated in problem Q. However, its » v
application to this sing’e period irvestment problem is totally deter- 8
ministic in the sense that when a branching operation is about to take :
place from a bounded node, the solution of the auxiliary problem for that
node contains only one varialbe with 0 < x: < a;. Hence this particular

variable must be a fentiond be fixed tu i1ts only possible values X; = 0

ot b aad

el corni e eneity

and Xy =2, in order to continue the execution of the algorithm,
To illustrate its application and to compare it with the aiternative
algerithm of Section 4.5, consider the following problem,

EXAMFLE

Assume that the ten projects of the example in Section 3.7 are
considered for investment with the same payaffs and with the same total
outlays required except that these outlays mist be invested in a single
time pericd. Table 4-1 shows the pertinent data. The projects are again
orucred in decreasing values of their C;- The budgetary ceiling is B = 70.

To initialize the problem and thus generate the root-node 1, problem
Q is solved ignoring constraints (4.4). We observe in passing that the
solution proposed by Lorie and Savage corresponds to the solution of the
auxiliary protlem associated with the root of the solution tree. This
sclution is z = 79.15 and x = [8, 12, 13, 12, 15, 10, 0, 0, O, 0],

*
where Xg = 10 is the ¢nly variable root zero or at upper bound; thus

£ £,

Prggect fi 2 E% ! Pragect f‘ 2, :%

WSS RS TURUN S - ,
s ) 8 |1.875 6 a0 | 65 | 6.615 ‘
2 vz oz e 7 12 | 21 057 .
3 15 | 13 | 1.154 8 7| 611 0.2m9 :
4 12 | vz | .00 9 it | 52| 0.269 :

& Le s foswf] o | v | w oz |

TABLE 4.1

5 P S
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the tranching will take place from node ' by fiaing X *° 0 and Xg = 65.
The rounding solution associated with the node 1s X : [8, 12, 13, 12, 15,
0,0, 0,0, 0] with 2 = 73, The optimal s0lutions of nodes 11 and 21 are
obtained after 11 iterations of the algorithm, The pertinent information
at each iteration 's recorded 'n Table 4-2 and the solution tree in Fig.
4.2, We observe that since the rounding operation at node 1 produces a
soluticn which turns out to be optimal, the t~imming of the sclution tree
by use of the rejection operation is very powerful tor this particular
example.

Rejected Lower Upper
STEP Feasible nodes Excluded nodes bound bound
i F(i) nodes R(1) L1 U,i
1 1" 73 79.15
2 3" 2 73 78,71
3 6, 5 73 75.79
4 s, 7 6 73 75.69
5 4, 9 8 73 75.56
6 8", N 10 73 74,73
7 n,az 13 73 74
8 n, s 14 73 73.28
9 "o, 16 73 73.27
10 n,e 18 73 9
n n, 2 20 73 73

* : bounded node

¢t 1 search on a new branch of the salution tree

TABLE &-2

Fai Table 4-2 we observe that infzrmation fur no more than two

nodes need be Stored at any step of the solulior process.

The number of

e
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nodes remaining in the feasible set at the last iteration, F(11), indicate
the number ot optimal solutions, For this example two strategies, both
not exhausting the budget, are avatlable: a) accept projects 1, 2, 3, 4
and 5; b) accept projects 1, 2, 3, 5, 7. Note that the optimal solution
has a total utility of 73, as opposed to 70 in the example of Section 3.7
where the buaget ceilings were given in two time periods.

Number of
Terminal ¢
nodes n
a
% b
6
1
C
2
—» Step i
2 4 6 8

a:cli), b FONURG), ¢ F(1)
FIG. 4-1

In F1g. 4-1, the difrerence between the lines (a) and (b) is fixed
since the branching operation is determintistic. Line {c) 1ndrcates the
~umber of terminal nodes to be stored at each 1teration The difference
between Tines (b) and (c) is the result of the rcrection operation of the
algorithm. Note that the rate of increase of terminal nodes with number
of iterations performed 15 drastically reduced by the rejection rylo in
this case.

According to the theory of Sectign 4.3, the wmputed dual prices
would be v' = 0, since the budget s a free good and s: -0
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THE KNAPSACK PROBLEM

-
z -19.15
2=173
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4.5 A PARAMETRIC BRANCH AND BOUND ALGORITHM FOR THE KNAPSACK PROBLEM

This section is devoted to the derivation of an alternative algorithm
for the solution of the knapsack problem. This method, as will be shown,
is a special case of the branch and bound algoriihm of Chapter II, with a
more elaborate branching mechanism. The algorithm has certain features
similar to the so-called wnplezet enumenation methods [7], [8], [9]. The
most important characterist'c of the method studied here is that it
possesses the special property that the final tree ccnfiguration contains
the optimal solutions for all similar knapsack problems with largei bud-
gets than the one utilized to generate the tree. The branching part of
the algorithm 1s simlar to the one emploved by Ichbiah [3] on a network
connectivity analysis problem which guarantees the parametric properties
of the resulting alyorithm.

Let us rewrite our bivalent linear programming formulation of the

knapsack problem where optimal 59 and z° are sought as to

_ m
Q : Maximize z(B) = ¢ ¢ X
i=]
m
Subject to Xy < B
121
0 <x. <a e

Here zo(B) 1s the knapsack functeon corresponding to a specific

value B ¢f the budget. Let (5 define the sets Sys T] and 9 as follows:

<a} (4.28)

S‘~{X ,‘/OSX

1 i

T, ® {x] / 1?} X; < B; Xg = 0 or ai) (4.29)

2 = s](\T' z f] (4.30)
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The set 51 is closed and bounded in Em; T] is a nonempty and finite
set for B > 0 and thus 91 is finite.

Branching Operatior. Given a certain node £ of the solution tree with
associated sets ) and Sg the brenching is defined by the intersection of
the sets

Veor T {x1 /% = agt (4.31)

Ve " {xi / X ® 0} (4.32)

for a given 1 = k. The sets thus defined satisfy the sufficient conditions
of Theorem 2.1, as may be easily verified. Also, since at each branching
operation one variable is set to its only possible values and the number
of variables is finite, the complete enumeration of solutions and thus the
finiteness of the algorithm is guaranteed.

Auxiliany Problem. Associated with a newly-generated node £ of the solution
tree, a continuous problem derived from Q must be solved. Denoting by
I ,1_, and I the sets of variables fixed at a zero level, fixed at the

0 a

upperbour.d, and free, probiem Az takes the trivial form:

A, : Maximize  2(£) = E]ci Xy

Subject to 0 < x; s 4 ,tel
xi=0 .iclo
Xy ® o, ,» 1€ Ia

Since we are maximizing over the set c¢f free variables, bounded from
above and since c, > 0 is assumed, this iinear program has as optimal
solution:
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0 ifrel
ey,

L
lar .‘frclyT

v
2

(4.33)

Note that A£ possesses always an optimal solutiun and therefore the
excluston operation, as derined in Chapter I[, will never be applicable
to this problem.

Terminateon Rule  Rejection operations will not be used in this approach,
hence the termination rile nezomes the f2''‘owing as mnay be easily verified:
terminate whenever the solution 5f to the auxiliary problem of the current
bounded node 15 feasible, (1.e., 5” e ).

L ]
LEMMA 4.2 A soluteon x 2o 4, 2 feasble 01 Q «f <t also salisfies
m »

Z x, <B.
=1
Proof: I; 5' 15 optimal for AE , then from (4.33) x: =0 or a, ¥ﬁ and
*
if aler ¢ x: < B, then from (4.29) 5* € T] and from (4,30), x € 91.
=]

]
COROLLARY 4.1. 1§ x o optumal gon Ap weth L x > B, the set Sz
el
a
assocdated with node & does not contawn a feasble solution to Q.

From the above corollary, & node r of the tree for which 2); >B
may be excluded. Observe however that for a larger value of 16la
the budget the condition of the corollary may not be satisfied and the
branch would not be deleted at that step.

Up tc here the development parallels the additive algorithm of Balas
as implemented by Geoffrion [8], with Coroliary 3.1 providing tne first
rejection rule of Balas. From the dbove discusston it has been Shown
that Balas' enumerative algortthm way be interpreted as a branch and

bound algorithm of the Land and Dolg type
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However, from here on our app~oach diverges from [8] in order to
provide the parametrir f2ature of the algorithm,

Fixed varcable sedect.sna  When a oranch'ag operatidn 1s to be performed
based on the currently bounded node £, one of the free variables must be
selected to be fixed at its two possibie values, We shall select the
following criterion that will render "deterministic" the generation of
the branch and bound tree: Select for branching x, - s e 1. such that

fo r:anr Lf,) (4.34)

If there 15 a tie, select the variable with greatest index. With
this selection rule we create the directed arcs (£,£') and (&,r). For the
new node £', Xg = Acs (project s 1s accepted), the optimal solution to the
auxiliary problem AZ' would be the same as the solution to AL; furthermore,
that solution 1s not feasible for problem QT Thus node £' will be denoted
a pseudo-node and no extra computation will be necessary whenever such a
node 1s generated. As for node r, the soiution to the auxiliary problem
A. has a value z*(r) < z*(C) where [z*(t) - z*(r)] is the smallest de-
crease possible in the objective function since, by (4.34), the variable
fixed to zero is the one that has the minimum payoff of the set of free
variables.

Whenever a pseudo-node £' s generated from bounded node £, then
z*(L') : z'(t) and the next bounded node of the solution tree would ob-
viously be &'  Accordingly, whenever branching takes nlace from £ to £',
an extra branch fro.. ' will alsy take place This aad:tional branch,
performed by fixing to 2er0 a new variagble selected according to (4.34)
will permit us to "1ook-ahead" on the solution tree We remark that the
branch from L' fixing the selected variable to 1ts upper bound remains to
be perfurmed and the algorithm must provide for its convenient generation.

N ,
In the sease that any run of the problem would produce the same tree.

1 IV 1t was, { being the bounded node, 1t would be ar optima! solution.
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4,6 STATEMENT OF THE ALGORITHM

Having satistied the assumptions of the algarithm of Chapter II, and
having indicated the branching me:hanism to be employed, we proceed to
state the parametrcc branzh aad borund algosrthm,

STEP 1. Set 1 - ' Generate node ! by solviag A, accarding to (4.34).
* ] *

L L4
Let 2 , x be the dptima'® sc'utton and dJet'ne B = 1L Xy If
1]

®
B < B, stop; the s2'ution 15 optima:. Jtherwise, bound node |}
x
with U, - 2 Set v : 5 + ! and go to step !

STEP i

A.1. BRANCH. Branch from bounded node £. Select the variabla Xg
according to (4.34). Create pseudo-node £' and node r, and directed
arcs (£,¢') and (2,r) Solve problem AL with x = 0. Set X = g for

pseudo-nede Z'.

BRANCH AHEAD Branch from pseudo node £'., Select a new
variable X, according tc (4.34). Create node r + 1 and directed arc

(¢', r+ 1) Solve problem Ar’] with Xy 0. If the unique predecessor

lo of boundea node £ 15 a pseudo-node, go to A 2; otherwise go to B,

A.2 BRANCH Branch from pseudo-node (o Let xp be the variable
fixed to zero assocrated with the arc (20,2) Create pseudo-node lé and
directed arc (80,80) Set " - ap for pseudo-nnde 80

BRANCH AHEAD Bransh from pseude-rode (5. The variable to be
fixed is Xy Create node r + 2 and drrected arc (26. r+2). Soive
probiem Ar*Z with X, = 0 GotoB

. BOUND Select npdi € such that z.(t) T max (zq(k)} for current
terminal nodes. If 8' < B tor node ¢, stop; ilne ssiutvon associated with
node £ 15 optimal  Otherwise, upperbound node € with U, = z.(i). set
{1 =1+ 1 and go to step
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The solution tree generated for a knapsask funition with B = Bo
contains the optimal solutions (projects ascepted as well as maximum pay-
off) for all kaapsack funztions with 8 > B,» a5 is shown below. In this
sense, the aigo-ithm 15 parametri:, By setting Bo - G and applying the
algorithm, a tabie may be 'onstructed with the optima! solutions to problem
G for any non-negative .3.Je Of the budjets‘y lerling,

LEMMA 8.3, 1ot ¢’ B 4l .° B by Tac RAsp 4R panit - §i1 W0 valued
0f the budget, 8 LB  Thea : 8 : B .

v

Proof: Assume 2°(B) z’iBo; and ‘et 1? oe the sptimal solutron for the

budget B, Since B : Bo, then 5? 15 also tegsib'e for the budget value

B, wence z(B; : z°(Bo) for 5?, a contradiction. Therefcre,

2°(8) > 2° (8,)

THEOREM 4.3 L2t T [Nj, AO] be the ganal tace genenated by determining
the optimal s0lutcon to Q §un B - B Thea §on any B > B thene exdists
a gode.h € No such that the so0lution Ty the auxcfoany problem A, sav

z, x , constetutes an dptumal soluteon fot the conresponding knapsack
problem.

Proof: Given B > Bo. the application ot the algorithm would generate a
tree T = [N, A] for which at ‘east one node k ¢ N corresponds to the
optimal solution. The tree T 1s a subgiaph of ro. that is, N g;No and
for all (v, 3) ¢ A, a'so (v, J) ¢ Ao In effect, since the algorithm is
deterministic, the nodes of To and T, gene-ated in the same crder, will
have the same assoc'ated solutions L0 the auxtiitary problems AE' It
remains to be proves that when generating T, the optimal node k corres-
ponds to a certain node of the generated portion 2: Io. Assume the
contrary, Kk ¢ No; then the solution to A, gives 2 {B) < zo(Bo), since any
additional dranching from YO reduces the upperbound value z°(8°). From
Lemma 4 3 this 15 a contradiction, and the solution for 8 > Bo is not in
the ungenerated portion of To’ hen.e k No' It alsp fcllows that 7 it
a subgraph of Yo




SINGLE STAGE INVESTMENT: THE KNAPSACK PROBLEM §9

We now give the following rule for retrieving the optimal node k.
The set of bounded nodes at eazh i1teration of the algorithm for B = Bo’
form a sequence [1, LZ’ 3 .C ] where Z‘, f € N° 1s the bounded node
used for branching at 1teration 1 and L 15 the 0pt1m node for B = B
Associated with each t there are two numbers. z (2 ) and B (l ) Due to
the way the branch and bound algorithm has been developed the z (Li)
values constitute 4 non-increasing sequence . Therefire, fo given value

a
B >B, 1t suffices to retrieve the first node for which B < B.

4.7 SOLUT'ON OF AN EXAMPLE ¢ROBLEM

As an example consider the following problem involving five projects
with payoffs and capital outlays as indicated in Table 4-3. Table 4-4
contains the necessary information for each iteration of the method. The
budgetary cei1ling considered is B = 10.

r_F_ro,ject f*‘1 a
No. i 1
] 6 3
2 4 8
3 3 €
4 2 4
5 1 2
TABLF 4-3

Note that a feasible solution is ohtatned at iteration 4 when node
5 is generated, but not unty] 1teration 7 can 1t be bounded. Note also
that av rteration 7 {when branching from node 13}, all variables for the
pseudo-node 13' are fixed, 1ts " value is greate: than the budget, and
therefore 1t may be eliminated from further consideration. The same may
be said of node 15.

The optimal solution for B8 = 10 1s then cbtained from node

oy

accept projects 1, 2 and 5 with )




10 SINGLE STAGE INVESTMENT.

THE KNAPSACK PROBLEM

From Table 4-4 any optima} salution for B > 10 may be obtained. It
L]
suffices to search down the column of B and read off the solution from
the row for whith the tirst B less than 3+ equal! to the budget of

Step rerminal nodes 8" for Uppe. oound
1 bounded U‘
node
1 1" 20 6
2 2", 3 T 15
3 3%, 4,5 16 14
4 4",5,6,7, 8 14 13
5 5,6,7,8, 9,10 14 13
6 5,6,7,9,10,11,12, 13 15 12
7 5%, 6 ,7,9,10, 11,12, 14, 15| 12 12
8 6%, 7, 9,10,11,12,14, 15, 16, 17| 10 n

* bounted node

TABLE 4-4

irnterest 15 encountered.

For B = 14 the fourth iteratlion provides an

optimum, Aith 2%{14) = 13 assoctated with the bounded node 4, namely:

accept projects 1, 2, and 3.
accept projects 1, 2, 4 ana 5.

An alternative optima is given by node 8:

In Fig. 4-4, the op .nai solutions for B > Q0 are indicated

graphically.

Fi1g 4-3 contains the reguired solutton tree,




a34f uoilnios 3yjg
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16
18
i6 14 -
12 13
1
e B
10 12 4 16 18 20
FIG. 4-4 Knapsack Function valuas
4.8 SUMMARY

In this chapter we have addressec ourselves to the solition of the
integer programming problem knowri as the knapsack probiem. We have ob-
tained the solutions to the duai provlems, both in e linea; cnd the
discrete case, ard have discussed the natural econumic interpretation
that may be crawn from such solutions. We have used discrete programming
duality theory to justity Weingartner’s approach t> caiculating dual
prices on the primal resourcas.

The branch and bound algorithm developed for the multidimensional
knapsack problem in Chapter [1]1 has been applied te the single period
capital rationing prublem with the consequent simplifications indicated.
Finally, a parametric branch and bound algorithm has been derived which
provides for sensitivity analysis studies of the optimal solution for
variations of the bucgetary cerling within a certain specified rang:.

e

e
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In the following chapter, formulation and solution techniques will-
be provided for the problem of capital allocation to independeni projects,
where the investment decisions may be deferred to later periods.

| B
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CHAPTER V

MULTISTAGE RESOURCE ALLOCATION PROBLEMS

5.1 [INTRODUCTION

[n the preceding chapter we studieu the proolem of optimally
allocating funds among competing alternatives, each requiring investment
in a number of time periods and with a fixed horizon, subject to budget-
ary constraints in each period. An effective solution technique was
developed. The purpose of this chapter is to study the proulem of capital
allocation among independent projects that arises in various planning
contexts, where the projects require fixed outlays in one time period, but
the decision of accepting them may be deferied to a later period. An ex-
pected net benefit (financial and social) is assumed to be known for each
project, and the figure of merit adopted is to maximize the total benefit.

We begin by formulating the multistage capital allocation problem as
a {0-1) integer program. A special case is then considered where capital
outlays for all projects do not vary over time and any infationary effects
are taken into consideration by modifying the budget ceilings accordingly.
The problem is referred to as the mufi.-knapsack problem. A suitable
transformation 1s performed to obtain an equivaient model which is inter-
preted as an analysis-synthesis probiem on a bipartite network. The
general branch and bound aigorithm of Chapter Il 1s then adapted to
provide a convemient solution methcd.

Finally, a second formuiacvisn for the multi-knapsack problem is
derived for which a branch and bound algorithm 1s proposed. In this case,
the solution of the auxiliary probiem associated with each node of the
solution tree may be obtained by inspection

75
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5.2 MULTISTAGE CAPITAL ALLOCATION MODELS

Consider a certain govermment agency confronted with the problem of
allocating a multistaged budget with ceilings Bj >0, j=1,...,n, among a
set of m independent projects each requiring a unique capital outlay.

Let f1j be the expected payoff, determined from a linear utility function,
of investing in project i at time period j. Further, let aij > 0 be the
capital outiay required for project i if selected for investment at time
period j, and ¥ij the associated decision variabie that may take on the
vaiues 0 or 1 depending on whether project i is rejected or accepted for
investment in period j. Then the problem of selecting a set of projects
for investment so that the total utility over time is maximized, while
satisfying the funding dependencies represented by the budgetary ceilings,
may be formulated as

a + n
P] . Maximize Z= ? r f

i1 g1 1371
Subject to T B j=1 (5.1)
u Jec L0 if] a]j yij S J' [ ] J_ ,.-.,m .
2 <1 i=1,....n (5.2)
y:- s 'Y = gev oy -
=t
yij >0 . ¥3,j (5,3)
y1j integer , ¥3 j (5.4)

where constraints (5.1) express the budget limitations; and where
constraints (5.2) serve the double task of guaranteeing that project i,
if accepted at any one period, incurs a unique capital outlay and, con-
currertly with (5.3) and (5.4), that the variable Yij may only take the
values 0 or 1,

Problem P] 15 an all-intager linear programming p.oblem with (m+n)
constraints and nxn intrger veriables for which a feasible solution and
a lower bound are immediateiy available, corresponding to the status quo
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or reject-all-projects policy. Observe also that by collapsing the number
of time periods to one, the index j may be dropped and thus problem Pl
becomes, as expected, the (0-') knapsack problem studied in Chapter 1V.

The solution td problem Pi may be attained by direct application of
the branch and bound algorithm of Chapter ii. In this case, when constraint
(5.4) is relased the problem becomes the well-known weighted distribution
problem, sometimes called the generalized trunapintation problem. There-
fore the prima) method of Dantzig [1] or the dual method of Balas [2]
could in prinziple be used as subalgorithms for solution nf the auxiliarvy
problems associated with each node of the branch and bound tree.

we shall, however, address ourselves to the special cese of P] in
which the capita! outlay for each project remains the same regardless of
the pe:iod cnosen for investment; this amounts to assuming non-inflationary
costs throughout the horizon of interest. The problem thus obtained has
wide application to various resource allocation problems,

5.3 THE HMULTI-KNAPSACK FROBLEM. AN EQUIVALENT MODEL

Problem P, with the additional condition that the ajj are the same
for all j, which we shall call the mult(-knapsack problem, is a generali-
zation of Dantz1g's knapsack problem. It can be expressed as follows:
determine the optimum packing of a set of m articles 1nto a set of n
knapsacks, given the desirability fiJ of each item for each knapsack, the
weight a  of each 1tem, and the maximum weight BJ that each knapsack is
allowed to carry

This problem is of special importance 1n the operation of transpor-
tation terminals, where optimal cargo loading nto vehicles of varying
capacities is desired. Also, 1t arises in a computer environment. where
programs or files of o given siz2 are competing for non-connected fixed
size data storage pouls. These a-e but two examp'es of optimization
problems that can be modelled as multi-knapsack problems,

We shall study this problem in tevms of an alternative model
equivalent to problem P]‘ Wit this equivalent model, the problem will
be interpreted as a network analysis-synthesis problem vihich resembies
the plant location problem with fixed charges con links ~ith positive flows.
A branch and bound algorithm for the solution of tais problem will alseo
be developed.
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Consider problem P‘. with a | rep-a%ed by 4, 15 discussed above.
v
Replacing the set of variaoles Yay by the new va“iad.es 5T a, yij’ and
letting 5 * fil. we obta'n the fo’ ‘ow'ng egu-valent program:
a.

)]

m n
P . Maximice 2= Tk
, m
Subjeit to L X < B] » J31.0.,n (5.5

n ‘ ) )
LoX. <y L L RPN | {5.6)
S
i =0 9 L ¥y (5.7)

Problem P 15 4 discrete bivalent 11near programming problem where the x1j
represent capital outlays to be determined and the cij represent the
utility of project 1 at time reriod j, per un’t of outlay required.

Let us interpret the set N, = [V /1= ',...,m] as a set of "origin"
nodes, N, = (37 3=1,....n] a; a s2t of "dest'nation" nodes, and the
set A of ordered pairs {i.;' 35 3-c5 Jaaiag nodes i and j. Furthemore,
let a, de the "demand" o :nput 2f ndde * ¢ N1 and BJ the "demand" or
output of node ) e N2. any interpret x, . 3s flow on the arc (i,j). We may
then associate a bipartite network G = fﬂ‘, NZ‘ A] to problem P; or better
still an equrvalent network with a single source and a single sink.” This
latter step may be achieved by adding artificral nodes s and t, and
artificial arcs (s,'), ¥ 1 ¢ N} and (J,t}, ¥J € NZ' with the following
associated values: Cgy ° 0, U it -0, th = BJ; where Ug
and th denote respect:vely the upper bounds on the avcs (s,1) and{j,t }.
The associated network ts shown 1n F:g., 5-1, The first number on each

=3, and ¢

arc represents cost and the second represents ari capacity

IS




MULTISTAGE RESOURCE ALLOCATION PROBLEMS 79

FiG, 5-1

The multi-knapsack problem therefore may be expressed in terms of
network flow theory as an analys{s-synthess problem: find the maximum
flow from s to t that maximizes cost on the network of Figure 4-1, subject
to the restriction that arcs (1,3), 1 & N], Je N2 are either not usad or
saturated; and find as well 1ts distribution pattern Note that since the
upper bounds on arcs (s,1) are a s if project r is accepted only one arc
(r,j) will be activated.

The optimal solution determnes which projects will be accepted for
investment (not 21! arcs (s,1) need be saturated); and it determines to
which destination node they wil! be assigned, thus complieting the.synthesis
portion of the problem

Observe that problem P differs from a standard transportation problem
with surplus and defycit 1n that each origin, 17 used at all for sh{pping,
must supply a single destination node. (!t alsoc differs in that P is a
maximization problem) [f, however, the constrant {5 7) 15 relaxed so
that the g% are simply restricted to be non-negative, the resulting prn-
gram 1ndeed corresponds to a transportation problem with surplus and
deficit  Tms fact will be employed 1n proposing a subalgorithm for
solution of the auxiltary problem during our development of the branch and
bound soiutron method 1n Sectron 5 4

The model as presented 1n formulation P may be extended to consider
more flexible cases which might add relevance to the problem or be adapted
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to a more realistic situation. When budget deferrals are allowed, thus
transferring unused capital to a later period, the P formulation must be
modified, as indicated below, to account for such flexibility. Let sj be
the unused budget, if any, at time period j. Then 1t suffices to modify
the constraints (5.5), replacing them instead with the foliowing one:

b =B, , §+ (5.8)
i=] x‘j*sj-sJ"‘l- j ’j“ ’-.r,'.,n .

where s = 0. We remark that the coefficient of s, ; is one, hence no
present worth factor has been considered ir (5.8) and thus the slacks
simply represent idle costs. Other generalizations may be made, such as
lending and borrowing in the capital market. (See for example, [3],
Chapters 8 and 9.)

The network representation “9r problem P with (5.8) instead of {5.5)
would correspond to the one of Fig. 5-1 with additional directed arcs:
(n, n-1),...,(2,1). These arcs are uncapacitated (uniess deferred ex-
penditure is specifically bounded) and have zero costs.

5.4 DEVELOPMENT OF A SOLUTION METHOD

We shall derive a branch and bound method for the solution of
problem P by utilizing the same terminclogy and notation employed in
Chapter II. We begin by defining the sets S T] and 2 as follows:

m .
§y ¢ {x/ ¢ x;;<B,, I x,.¢<a.,x..20,¥(ij)}

1 1J -

We observe that S] 15 a closed and bounded convex set, since it is
defined as the intersection of a finite number of closed convex half
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spaces; furthermore, 2"y vector x with xij <0, ¥ i,) constitutes a*1ower
bound, and, for examp.:, X witn xij = BJ constitutes an upper bound . Also,
T1 is a finite non-empty set detemined by the 2™ " Lertices of the
ractangular poiyhedron defined by 0 s X0 S, ¥1i,j. Firaily, %, de-
fined as the inte-se:t:on of $) ard T}. 15 finite, since T] is finite, and
non-empty, since at least x = O pbe'ongs to the intevsection &]. Since 9]

is non-empty, 3n op*'ma. solution to problem P 3'way: exists,

Branchang op2ratesr  Given a certatn pode £ of the solution tree with
associated sets {2, and SZ' the tranching is derined by their intersection
with the sets

for a given i = s and J =t . The sets thus defined satisfy the first
sufficiency condition of Theorem 2.1, that is:

V£’ r‘ﬂ‘vt,r+1 = {x.. /x, =0, x,=al}=29.

'] st st S

Also, since QL 1s a subset of Q‘ (by the branching operation) then from
(5.7) the X,y vOmponents of the vector elements of Rp must be either 0

or a. Then sz\ (Vz’r(“\vf,r+]) = Q£(W {xig / Xgp = 0 or Xep = as} = QC

and the second condition for sufficiency of Theorem 2 t 1s also satisfied.

Finally, since at each branching operation one variabie is fixed to
each one of 1ts possibie values, the finiteness of the number of variables
assures that only a finite number of branching operations are required
before total enumeration of the elements of @y 15 accomplished,

* Obviously, no capital outlay may exceed the sum of all the budgets;
if so, 1t may be ruled out of the probiem.

B e I A

Fr—
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5.5 THE AUXiLIARY PROBLEM AND ITS SUBALGORITHM

At each iteration of the branch and bcund algorithm, associated vith
each newly-generated node £ of the solution tr2e, a continuous auxiliany
problem AL derived from P must be solved.

Denote by Iog; A the subset of arcs (1,}) ¢ A of the network G for
which Xy * 0 (1.e , investment on project 1 rejected at period j): by
Iag; A the subset of arcs with x!J s a, (1.e., project accepted in period
i); and by T, the set of "free" accs. Then the auxiliary problem AL
takes the form

m o m
AC : Maximize 2{L) «+ T L c.; %,

m
Subject to I x.,. <B. , j=l,...,n

j=1 W7

E X,, <2 i=1 m
ij- 1 1] [}

J=1

xij =0 y (1,3) € Io

ITREY » (1,3) e 1)

‘JZO ’(1'\1)8!

This 1s a transportation type linear program in inequality form with
some prohibited r0utes' and where maximization is sought. Therefore, thic
problem may be solved by any availadble transportation algorithm. In
particular, the generalized primal-dual algorithm of Fulkerson [4] is
perfectly suited for this problem. Indeed, at each node r of the branch
and bound tree, the solution to the auxiliary problem of the unique

*
The arcs {(1,§) ¢ 4 for which Yy " a, may be interpreted as
prohibited routes 1f 2 s first subtracted from the corresponding
nodes ! and )

s
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predecesscr node £ of r may be used as a starting flow. The out-of-kiiler
algorithm will then reoptimize this flow according to the status of sets
10 and Ia associated with node r. if r corresponds to the branch x1j = Q,
it suffices to set the lower and upper bounds on that arc equal to zero.
If, on the other hand, the branch corresponds to %13
upper bounds wil! ba set equal to a,.

Obsecrve a:so that if an optimal solution to A has been obtained,
given by

$ a4 the lower and

0 , if {1,) ¢ I0
. oo .
‘(ij' d' s 't\‘.J,‘ v, lj
\0 X, if (1,5) ¢ f

x
; 1f x. = ra,
x . 1 0o a,

i) €N ¢ o
0 , 1f0 <« xij < a;
This simple operatio~ permits the ise of the double bounding technique

as well as the rejection operation of tie branch and bound aigorithm, which
we proceed to enunciate:

STEP 1. Set i = 1 and create node 1 Sol.e A,. If if is such that all
*
x‘j =0 or a,, stop; the solution 1s optimal. [f at least one
“:J ? 0 or a . bound node 1 with U] = z”(l)v Round noda one tu
obtatn x, Z(1). Set L, = Z(1). Mere U, >L,. Set i =i +]

and go to step :

STZp ¢ a) BRANCH. Branch from bounded node £ Create nodes r and r + 1
and directed arcs (f,r) and (&,r+1). Select any xij such that
*
0 < ‘\J N fcr node £, and branch with ‘13 = 0 and xij e,

Solve R, using the subalgorithe and then Ar,] based on the
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solution to Art If A' or Ar+1 are infeasible, exciude them from
further consideration.

b) ROUND., Round nodes r and r + | to obtain Er and 2

r+1.

c.1) BOUND FROM EELOW. Set L, = max [L, ;, 2(r), Z(r+1)].
x*
Reject all nodes with z < Ly

c.2) B0UND FROM ABOVE. Select node £ such tnat z*(L) = max
[z*(k)], for current terminal nodes. Upper bourd node £ 5ith

U1 = z*(L), If Li = U;, stop; the feasible solutior. that provides
*he lower bound is optimal. Otherwise Li < Ui' et 1 = 1 4] and
go to step i.

5.6 ALTERNATIVE FOKMULATION FOR THE MULTI-KNAPSACK PROBLEM

In this section we present an alternative formulation for the multi-
knapsack problem which permits the solution of the auxiliary problems of the
brancn and bound tree by inspection.

Associated with each project i ¢ M, we introduce a decision variable
¥y restricted to take the values 0 or 1, which indicate rejection or
acceptance of the project i, respectively.

Then problem P may be formulated as follows:

. m n . 1
P, : Maximize 2= L Ly, 15.9)
| =g N
; m
k ‘ Subject to I ox.. <8, R NN (5.10)
. : i=] 12 J
E jgi T Ay 5y i=1,....m (5.11)
3 X, ; =0¢6ra, , V%1, {5.12)
.g = !
. y,rOer 1 ¥ (5.13)




MULTISTAGE RESOURCE ALLOCATION PROBLEMS 85

Here constraints (5.11) and {5.13) establish the fact that, if
project i is accepted, ¥y ® 1, the total outlay over all time periods is
a;. In addition, constraints (5.12) guarantee that the outlay 3y vill be
disbursed i only one of the stages considered.

We may express P2 in a more convenient form for developing a solution
method, as follows:

P2 : Maximize 2 = |gl Jg: c:‘j 3 (5.14)
: b B =1 5
Subjest to 1:] X1J s Jj » JE1, 000 ( -]5)

0 < Xij S y ¥ 1, 3 (5.16)
n ) . .
~§ Xi3 / a; = Oor 1, ¥i (5.17)
j=1

ST 0 or a, s ¥ i, ] (5.18)

We cbserve that, if the discrete constraints {(5.17) and (5.18) are
relaxed, the resulting linear program, (5 14) subject to (5.15) and (5.16),
may be solved by inspecition. Indeed, i% is composed of n mutually
independent linear programs, each one associated with one time period
je N2

Under the assumption of non-negative cjj. and after ordering the Cij
fer each j & Nz in decreasing order, the optimal solutions may be obtained
by an expression analogous to (3 25)

The branch and bound algorithm may therefore be applied directly to
problam Pz above

At each step of the algorithm, one variable, not currently satisfying
(5.18), 1s fixed to 1ts possible values, thus defining the branching
operation.
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We ramark that for a certain node of the solution tree the values of
¥y calculated according to (5.17) may be greater than one; in fact, they
may be as large as n, where n 15 the number of time periods.

Note also that a rounding operation may be performed at each
jteration. However, if the solution of the auxiliary problem results in
a certain project 1 with capital outlays a, in varfous time periods, more
than one feasible solution to P, may ke obtained by application of the
rounding operation.

When a comparison is made of the branch and bound algorithms developed
in Section 5 5 and the one indicated here, we may point out the following:
The first forwulation P requires the solution of a network flow

problem at each node, as opposed to the solution of n simple linear pro-
grams solved by inspection when the formulation P2 is used. However, the
second approach in general requires the search of a larger number of nodes
before optimality is reached.

5.7 OPTIMAL ALLOCATION OF PROGRAMS TO PRIMARY MEMORY

We conclude this chapter with the formulation of a problem which is
related to the multi-knapsack case and which arises in the context of
allocating programs to primary memory in a computer system.

Consider a set of m items of size LPY i=1,..., mthat are to be
1oaded into n knapsacks of .apacity Bi, J T,..., N. We assume

z BJ > z a. The problem is to aSSIQH items to knapsacks so that the
3=1 i=1

minimum number of knapsacks is used. The use of each knapsack incurs a
fixed cost fj, and thus the total cost of using the knapsacks is to be
minimized.

The problem may be formulated as follows:
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P3 : Minimize

Subject to

where the decision variable Y5 15 associated with each knapsack.

2+ £ fJ y

m oA,
togmy
S 1

x‘j = (0 or a
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(5.19)

(5.20)

(5.21)

15.22)

(5.23)

{5.24)

Constraints (5.22) guarantee that no flow w11l occur from nodes 1 e N1

to node j € N2 if ¥y * 0.

Again, problem P3 may be solved by direct application of the branch
and bound technique. We shall indicate here that if constraints (5.23)
and (5.24) are relaxed, the resulting linear program may be solved by
means of a network flow algor)thm.

Indeed, since we are minimizing, the optimal soluticn to P3 without

discreteness constraints will necessarily satisfy (u.22) as a strict

equality:
m Xy 0,17 Iy
L sy 23 2 - -
a1 8, yJ yJ m 151 8,

(5.25)

Substituting (5 25} in the objective functron, the problem to be sclved

is:
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m n
r I f1 X,

Minimize Z =
=1 =13, M

(-

m
Subject to I

’ X-]JBO

which obviously corresponds to a transportation problem, and thus a
network flow aigorithm may be employed for its solution.

5.8 NOTES TO CHAPTER V
[1] Dantzig, G. B., L«near Programming and Extensions, Priaceton
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Capital Budgeting Parcbilems, Prentice-Hall, Inc., Englewood Cliffs,
1963.

[4] Fulkerson, D. R., “An Qut-cf-Kilter Method for Minimal Cost Flow

Problems”, Jouwmac Soc. Indust. Appf. Math., Vol. 9, 1961, pp. 18-27.



CHAPTER VI

THE MULTISTAGE NETWORK DESIGN PROBLEM

6.1 INTRODUCTION

In this chapter we shall propose a programming model aimed at
determining an optimum transportatior network development plan for a
metropolitan area. The model to be derived synthesizes the best network
configuration among a set of suggested improvements maintaining ex-
penditures within expected future budget ceilings. The budgetary
constraints, projected into the future from trend studies of past trans-
portation expenditures, are assumed to be given up to a fixed horizon in
a predetermined staging sequence. The model furthermore assumes the
continuity of a stable technology over the entire period of interest.

The figure of merit selected for optimization is the total user
cost over all time periods. The required input data are the expected
origin-destination demands for all time periods over the existing network;
the subset of existing links selected for capacity improvement with the
corresponding capital requirement; and/or the construction costs of
specific links to be added to the current network and their total improve-
ment of capacity if selected for construction. Also required is the
topology of the existing network, with link capacities and estimated
users cost per link for all periods of interest.

The problem described is interpreted as a capital investment problem
with dependent projects, where the desirability of combinations of pro-
Jjects will be reflected in the redistribution of flow volumes and therefore
tn a reduction of total users cost. The projects' interdependency rela-
tionship. are taken into consideration by imbedding into the Sasic mode!

a network flow distribution submodel. In this fashion, the multistaged
network design probiem is interpreted as a combined network fliow and
capital budgeting nroblem.

89

< e




90 THE MULTISTAGE NETWORK DESIGN PROBLEM

The various topics considered in this chapter aie oirganized in the
following manner: we begin by presenting a general overview of the urban
transportation planning process with emphasis on the various classes of
network improvement evaluation models, their characteristics and main
drawbacks. "ext, a discussion of the various levels of network improve-
ments and a _view of existing models for each type of improvement is
presented. With this background material, the basic muitistaged model is
developed in terms of a highly-structured mixed-integer linear programming
formulation., The structure of the model is then thoroughly analyzed in
order to propose a convenient optimization technique for carring out its
solution. Tne propused solution procedure is the partitioning algorithm
of Benders (cf. Appendix A) which fully utilizes the decomposabie nature
of the multi-stage probliem.

6.2 THE URBAN TRANSPORTATION PLANNING PROCESS

The need for an integrated long-range transportation plan for
metropolitan areas has been widely recognized by civil engineers, city
planners, economists, sociologists, city officials, etc. in the postwar
era, as a result of the explosive increase in the size and complexity of
urban areas. The need for such a master plan has been officially endorsed
by Congress in the Federal-Aid Highway act of 1962, which grants federal
aid to urban areas of more than fifty thousand population, provided that
their projects are based on "a continuing comprehensive transportation
planning process...".

The planning process is primarily concerned with forecasting future
demand for transportation in a certain study area, as well as planning
transport facilities that provide a satisfactory level of service while
maintaining the co-responding capital expenditures within expected future
budget ceflings.

Comprehensive studies such as the Chicago Area Transbortation Study
(CATS), Penn-Jersey Transportation Study, etc., have been carried out
from a systems viewpoint; the attempt to consider all the interacting
elements that affect the demand for transportation, and to plan new
fac,iities in the light of their interaction with the existing network
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(as opposed to making local decisions or accepting small-scale palliative
solutions). For & general description of different issues akin to urban
transportation siudies see Moyer [1].

The relation of urban development to demand for transportation and
the effect of new facilities upon demand patterns have been carefully
identi1fied. Past research has focussed on the characteristic steps of
the planning process; quantitative approaches, such as use of mathematical
models and techniques, have been suggested for each step of the planning
process, and much experience and momentum has been gained from these studies.

Most transportation planning models are based on expeditina the
extrapolated trend of economical and enviranmental development.

Although the transportation studies carried on for various
metropolitan areas had to treat different problems according to the spe-
ciric areas of interest, they present virtually the same pattern in their
solution upproach. This pattern indicates the fundamentai steps of the
transportation planning proces<, which we proceed to enumerate.

i) Inventories for base year:

These consist of inventory, for a reference year Tb (base year), of
the relevant factors that will affect the future demand for transportation.
The inventories usually considered, mostly based on censuses, are listed
below.

1 land use inventory
11 population inventory
111 transportation inventory
v trend of transportation expenditures

i1) Inventories for target year: These a.e developed by forz-
casting, for the target year Tt (usually a 20 or 25 year interval). the
changes 1n the base year inventories.

This forecasting 1s usually attained, for each type of inventory, by
means of prediction wodels of varying sophistication Martin, Memmott
and Boae [2] present an analysis and detailed description of various
models often used 1n the planning process.

[t 1s interesting to observe that these first two steps are
invariably rejuired for an 1ntegrated study of the development and

mmprovement of any kind of facilities n a metropolitan area.
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i1i) Transportation Analysis:

Based on the demand for transportation at TB and on both the base year
and target year inventories, the future demand for transportation is fore-
cast, and a master transportation plan is developed. This arialysis con-
stitutes the core of the transportation planning process and its accuracy
will be a direct function of the accuracy and completeness of the
forecasting analysis.

6.3 TRANSPORTATION ANALYSIS

We shall briefly mention the now well-established steps into which
the transportation analysis phase is subdivided. For each step, well-
developed models are available, and a substantial amount of research is
currently underway seeking to verify and improve the accuracy of such
models.

i) Tnrip Generation. The purpose of trip generation is to
determine the number of trips starting (or ending) in a particular zone
of the study area for specified future years.

i1) Trnip Dustrnibution. Trip distribution is the process of
assigning destinations, by means of a distribution model such as the
gravity model, to the trips generated in each zone of the study area.

i11) Modal Split. The modal split analysis is used to estimate the
future breakdown of trips among the available iransportation modes. The
models most frequently employ multiple regression analysis, and are used
to predict future modal split for the modified values of the input
variables; this clearly implies that no major changes in transportation
technology are expected during the period of interest.

The medal split phase assigns each future traffic demand by mode to
the corresponding transportation network for that mode.

1v) Traggec Assigmment. The objective of the traffic assignment
is to determine flow patterns in specific transportation networks, where
flows are associated with the diiferent modes adopted in the planning
process. This step, being of special interest for the present work, will
be treated in more detail in forthcoming sections.

ot o S
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v) Transporntation System Evaluation. The traffic assignment step
is -usually performed for each mode and for alternative transportation
networks, with the main objective of obtaining substantial information
on the relative performance of the alternatives. This will hopefully
permit the rational selection of the transportation system that will best
meet the future demand with a suitable level of service.

The evaluation of the various alternatives is usually done by
standard techniques, such as cost-benefit analysis or rate-of-return
method. In a forthcoming section this evaluation step will be analyzed
and identi1fied 4s a capital budgeting probliem which car be systematically
and quantitatrvely sttiiked

The output of the evaluation phase, possitly obtained after several
iterative cycles of the totai process, will be the decired long-range
urban transportation plan for the area of interest

6.4 THE TRAFFIC ASSIGNMENT PROBLEM

In the context of transportation planning, the termm traffic
assignment means the determination of flow volumes on the links of a given
transportation network, where volumes per unit of time are specified be-
tween each zonal pair in a set of origin-destination pairs. The traffic
assignment permits the evaluation of the performance of network alternatives.

The question of how the flow distributes 1tself over the network
constitutes one of the most important issues 1n transportation planning.
Two different criteria, enunciated by Wardrop [3] and formaiized in
mathematical form by Beckman et al. [4] and Charnes and Cooper (5], have
1nitiated the development of two major classes of traffic assignment
models. These are generally given the titles of descruptve (predictive)
and nownatee (prescriptive) models. Each Wardrop postulate suggests that
the flow distributes 1tself over the netwo.k according to one of two
contrasting extremal principles:

1) Postulate of equal travel times: for a flow assignment, the
travel time beiween any two points on the retwork will be the same on all
routes used and less than the travel time on any other path joining the
same two points

A
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i) Postulate of overall minimization: for an optimal flow assignment,
the average travel time for all users of the network attains its minimum
value.

Descniptive Traggic 4asigmment Mudels

This family of traffic assignment models is based on Wardrop's
principie of equal travel times. The computer implementation of such
models has acquired great momentum as a result of their use in transpor-
tation studies of major metropolitan areas during the early sixties,

These programs implicitly use the game theory model of Charnes and Cooper,
where all travelers seek to minimize their own travel time,

The flow distribution is achieved by iteratively assigning traffic
from each origin node to all destinations according to current shortest
path-routes. After complation of each iteration, the resultant traveil
times on links are updated according to their current loads and the origins
will again take turns assigning portions of their flows,

The descriptive models used in different transportation studies
present variations in their actual calculation, but they are all based on
the principles indicated above. In [6] and [7] the reader will find a
complete description and comparison of the various models in use today.

Nommative Trafgc Assegnment Models

This class of models 1s based on Wardrop's postulate of overall
minimization and on the traffic flow analysis of Beckman et al. and Charnes
and Cooper: flows distribute themselves so as to minimize the total
travel time in the system, as opposed to individual travel times.

This cptimization problem has been formulated by Charnes and Cooper
[5], for congested networks, as a non-linear programning problem; the non-
Iinearity results from the fact that 'ink travel times incredase non-
Vinearly w'th flow volumes. They further simplify their model by suggesting
a piece-wis> linearization of .ne travel time-volume relationship,
accomplished by introducing multiple capacitated arce with increasing
travel times. The resulting mode! 1s a linear program known as the
mlticopy-cost-minim:zation network flow problem. This problem has been
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thoroughly analyzed and exploited by Pinnell and Satterly [8] and by
Hersdorfer [9].

Jorgensen [10] has studied both classes of traffic assignment models,
and shows that for the uncongested case (rural networks), both the
descriptive and normative solutions give the same flow distribution
pattern.

The actual computer implementation of normative models requires a
linear programming routine capable of handling a potentially large number
of constraints; or alternatively, with the additional! capability of ex-
pioiting the highly-structured form of the model by conveniently decompos-
ing the problem 1nt) Mo‘e tractablie subprograms.,

6.5 TRANSPORTATION NETWORK IMPROVEMENTS

The main goal of the traffic assignment is to determine the level of
service provided by a given network for a set of demands previously spe-
cified. When the demand expected for the target year is assigned to the
network configuration of the basic year, it is 1ikely that the latter will
not provide a satisfactory level of performance. This condition will be
reflected in the final assignment by an excessive number of links operating
under congestion.

On the other hand, if new urban areas are expected to be developed
by the target year, the network will have to be expanded to provide
transportation facilities to these areas.

This situation ciearly calls for a network improvenent plan to meet
the forecasted demand, making use of the limited capital resourcas expected
to be avaiiable for such purposes during the period of interest. Various
levels of improvement, some of which are 1isted below, may be underta‘en
to cope with the increasing demand pressures.

i) Augmentation of capacity in existing links. This improvement
may be realizable by varicus means, ranging from enforced parking re-
strictions in certain arteries to new lane construction and more expedient
traffic control systems.




96 THE MULTISTAGE NETWORK DESIGN PROBLEM

i1) Rearrangement of one-way and two-w» streets to provide an
optimal configucation.

i11) Addition of new link: to the existing network.

iv) Fer public transportation, construction of new terminal
facilities and links to connect these facilities with already existing ones.

in practice, the final long-range transportation plan may cail for
a mixea strategy utilizing various modes of network improvement. It is
obvious that a transportation planner has to analyze a iarge number of im-
provement alcernat:ves, before a final plan is adopted. The two classes
cf traffic assignment models studied previously provide totally differeni
approaches to solving such synthesis problems.

6.6 NETWORK SYNTHESIS VIA DESCRtPTIVE MODELS

To describe the synthesis solution when descriptive models are
empioyed, let us assume that a specific set of links proposed for con-
struction constitute tue type of improvement prescribed.

It is obvious that each project may not be analyzed independently of
the others, since the total network performance is highly dependent on the
combination of projects considered. On the cther hand, if m is the number of
possibie 1ink additions, 2" different alternatives exist, anc¢ its exhaus-
tive analysis s clearly impossitie for evan moderateiy large m, The
usual practice n the aonamic evaluation of tratf:c networks is to select
a puiond, a smail subset of the potentially large number of alternative
networks and accept the one that provides the best "measure of effective-
ress".

To determine that measure of offectiveness, a traffic assignment is
required for each altarnative network as provided by a given descriptive
mode!. The output of the traffic assianment (average daily traffic for
each link) may te converted into users' cost. The accumuiated users'
cost .for the entire retwork, and the total capital investment for the
plan presently considered, are the parameters needed for estimating 2a
ﬁeasu*e of effectiveness for that projeétf A detailed description of the
various elemenis réquired in such a process. as well as procedures and
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methods to obtain them, may be found in the work of Haikalis and Joseph
[11]. When the process just described has heen completed for the subset
of plans under analysis, the usual practi-e is to apply a benefit-cost
ratio analysis, a rate of return on marginal irvestment analysis, or some
other classicial economic method, to determine the best alternative amorg
those which have been preselected for consideration.

When a budgetary constraint is impnsed on improvement expenditures,
the synthesis prcblem may be solveu by direct application of optimization
methods for combinatorial problems. In particular, a direct search tech-
nique or an implicit enumeration method may be in order. We conjecture
here that 't muy be desirabie to apply an implicit enumeration technique
as described below. First, we assume th.* as the number of links added
to the network 1i1ncreases, the total user .nst declines. Let the MOE be
the user cost, with B the budgetary ceiling ~» capital investment, and y
an m component binary vector associated with tne acceptarze or rejection
of the links considered for construction. Hence, the new link addition
problem may be expressed in terms of B and the project costs a, as

J
S : Minimize  z = f(y) (6.1)
. m
sdbject to  Ig.y. < B (6.2)
=17
y,=0or 1 (6.3)

N

where z is the total users cost as a function of the vector y.

Problem S is a constrained optimization problem that may be
interpreted as capital rationing for dependent projects. The dependency
appears in the objective function (6.1,, which cannot be expressed in
closed mathematical form, but can only be evaluated as a result of a
traffic assignment for each vector y, (each network ccnfiguration)
considered.

SOLUTION METHOD. We shall propose an implicit enumeration technique
based on the general aigorithm of Chapter II,(See[18] for a complete
presentation), where

!
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Sy« by /0syy s ) (6.4)
T L By, = 0or 1} 6.5
] LvJ/j:]aist » ¥y = 0or (6.5)
8 s SNT = T, (6.6)

The auxiliary problem becomes:

A, : Minimize z - f(y)

Subject to 05_\/351 » jed
yj=0 ’jEJO

'yj:] sJEJ]

J where J is the set of free links, J, the set of rejected links and J; the
set of accapted links. Under the assumption that the value of z does not
increase, 2s the number of links added to the network increases, the
optimal solution to the optimization problem AL 1S

0, if je Jo

A »

(6.7)

1, otherwise

where the value z*(l) 1s determined after the output of a computer program,
which performs the descriptive traffic assignment and converts the 1link
traffrc volumes into user cost, 1s obteined, The branch and bcund al-
gorithm may then be stated as follows:
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STEP 1. S

Y

et i = 1. Generate node 1 by solving a traffic assignment with
* *

j® 1, ¥J). Let z (1) be the total user cost. Calculate

*

m
B - ):asy;,, 1f8" < B, stop; the network configuration is
3= '

optimal. Otherwise, bound node 1 with L1 = z*(l). Set i =1 +1
and go to step i.

STEP i

a) BRANCH. Branch from bounued noue £. Select one ¥y to be fixed
to zero and one. Create nodes r and r + 1 and directed arcs (£,r) and
(£, r + 1) Solve tne traftic assignment corresponding to Ar with Y = o,
adding k to the set Jo Solve the traffic assignment corresponding to
Ar+l’ with Y * 1, adaing k to 9

b) BOUND. Select node £ such that z*(t) = min {z*(r)}. for current
m =« r
terminal nodes. If zfﬁyJ < B for node £, stop; the solution associated
J:
with node £ is optimal. Otherwise, set i = i + 1 and go to step i.

6.7 NETWORK SYNTHESIS VIA NORMATIVE MODELS

The important advantage of normative models lies in thei: flexible
handling of synthesis problems, since the intrinsic nature of optimization
problems is such that a convenient solution technique takes care of the
combinatorial aspects, and finally selects the best project combination.

A substantial amount of research has been undertaken in this area,
and various model formulationc have evolved frem the study of various
types of network improvemeat problems.

The technique of continuous augmentatior of capacity on existing links
has been formuiated by Garrison and Marble [12] and by Quandt [13]. In v
the latter model, the construction .ost appears as a budgetary constraint,
‘rather than as part of the objective function, as treated by Garrison and
Marble.

Hershdor fer [9] studied the optimal one-way and two-way street
configuration by extending Chernes and Cooper's multi-copy network model
by an ad hoc introduction u! decision variables into the model.
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Hershdorfer, and also Roberts and Funk [14] have used Dantzig's
scheme of introducing decision variables in the upper-bounding constraints
on certain links, thereby obtaining a suitable formulation for the new
Link addition problem. Roberts and Funk consider rural network improve-
ment subject to a budgetary constraint as opposed to Hershdorfer, who
essentially assumes an infinite budget and congested networks. Recently,
Ridley [15] has developed a combinatorial approach which he calls the
"method of bounded subsets" for solution of the discrete augmentation of
capacity problem. :

The branch and bound algorithm developed in Section 6.6 is equally
applicable to the new link addition synthesis problem when normative
models are employed. In this case, the subprograms Al correspond to multi-
copy network flow problems, which can be s(1ved by means of a decomposition
form linear programming code.

The simultaneous optimal node and link selection for an urban public
transportation network, subject to a budgetary constraint, has been solved
by Ichbiah [16] by means of a parametric branch and bound technique. His
model does not directly consider flow volumes on the proposed network.

The set of models described above study network improvement problems
for a single time period (base year to target year). In fact, the budget
available for transportation investments is commoniy appropriated in a
multi-stage manner. Although the models indicated may be applied suc-
cessively for various time increments, what the long-range transportation

“plan calls for is a sequence of improvements of the traffic network so

that a convenient figure of merit is optimized over the total sequence of
planning periods. The purpose of this chapter is to formulate a normative
mode] that represents the goals indicated above, for different types of
improvements.
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6.8 NETWOGRK IMPROVEMENTS OVER TIME

Based on the discussion of previous sections, we may conclude that
the preparation of a long-range transportation plan for a target year has b
been sufficiently studied, and that a variety of mathematical models are
available to conveniently attack the problem. Considering the fact that
a master plan would be actually implemented in a stage by stage fashion,
and that available funds for transport expenditures are usually appro-
priated in fixed amounts for each planning period, a model taking this §
staging into account seems more appropriate. '
Research on network improvement overtime has been done by Kalaba
[16] for communication networks. The probiem that he considers, howeve:
is continuous augmentation of existing links' capacities. Roberts [17]
has studied the muitistaged link addition problem and proposes a solution

method based on solving each stage, commencing from the last one, with a
budget equal to the sum of the budgets up to the stage being considered.
Links not accepted in the last period, are deleted from further considera-
tion. His solution does not necessarily provide an optimum when the goal
is to minimize a figure of merit over the entire horizon.

Before developing a normative model for the multistage link addition
problem, we shall mention certain important aspects of the problem.

In the preparation of a transportation plan, before decisions can be
made regarding facility improvements which are feasible in terms of cash
flow, a preliminary planning of new facilities is required. The study of
deficiencies in capacity provides a bastis for such preliminary design.

We shall assume that a set of pessible new facilities, from which no
optimum plan or subset 15 to be selected has been establizhed.

We assume further that the construction costs for a specific type
of facility have been previously obtained. This is obviously difficult
since in order to obtain them, the facility must be located; and to es-
timate cost, certain standards must be fixed, which depend in general on
the flow volumes likely to use the facility.

Finally, the future demands for transportation required by the model
have been derived from forecasted land use patterns, but the new facili-

ties provided in the planning period will in turn modify the land use
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development pattern. We shall not consider this interaction directly, but
it could be treated with an iterative appliication of the model.

With these assumptions made we proceed to develop an optimization
model that permits us to determine, for normative traffic behavior, the
best improvement plan in time and space.

6.9 ANALYTICAL FORMULATION

Consider the graph G = [R, A] consisting of nodes which are denoted
in any order by the sequence of numbers 1, 2,...,N and of directed arcs
(i, §) joining nodes of the set R. The set of all arcs 1s denoted by A,
and will be partiticned into two sets X and Y such that XUY = A. The
set X cnntains the set of all arcs of the existing network of interest.
The set Y contains all arcs which form the set of proposals to be added
to the network over n time periods. Note that if X = ¢ we are confronted
with a complete synthesis problem.

Let the amount of flow of copy a (here a copy associates all of the
traffic flowing from or to a specific origin or destination) associated
with arc (i, j) € A at stage k be X?jk' Denote by ¢, ;, the discounted
unit cost of travel on arc (i, j) at stage k, and by uijk the capacity
or upperbound on the flow over arc (i, j) at stage k,

For each (i, 3) £ Y, let 3 ik be the capital outlay required to
build arc (1, j) 1f selected for construction at period k.

Denote by r?k
time period k, {or r?k <0 if the net flow 1s out), and by E, the node-
arc incidence matrix which dascribes the network G. The total budget
ceilings available at time period k will be denoted by Bk' Let n be the
number of time periods and N the total number of copies.

The problem of optimally selecting link proposals for construction
is that of satisfying the budgetc-y constraints at each period and mini-

> 0 the net amount of flow into node i of copy a at

mizing the total user cost over the entire interval. It may be formulated
as follows:
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M : Minimize z = § 7 P ey X* (6.8)
' a1 k=1 (i,§)ea 13K T3k '

N « _
Subject to 351 eiJ xUk = ¥i,a, k (6.9)

N o
afl Xiyk £ Y5k » (1,3)eX, ¥k  (6.10)

N o L ,
a x'i.jk s ule 'ijk , (i,5)eY, ¥k {6.11)

Yijk = Yijke1 £SO (1,3)eY, k=1, (6.12)
ceeg=1, n > 1 (*)

(ifj)ev 25k (Vg = Yygeer) S By ¥k (6.13)
gk 2 0 (6.14)
Yige T 0 or ! (6.15)

In this formulation, constraints (5.9) represent the conservation of
flow equations for all copies and all time periods, with eij being the
corresponding element of the node arc incidence matrix E.

The constraints (6.10) constitute the upperbounding constraints on
the sum of all copy-flows utilizing originally existent arcs (i,j) € X.
For propused arcs, (i,j) € ¥, a set of decision variables Yijk has been
introduced which can take the binary vaiues 1 or 0 as inlicated by (6.15),
depending on whether or not arc (i,j) € Y is avaiiable for use at time

* For n=1, constraints (6.12) have no parti.ular meaning and may be
dropped from further consideration.
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period k. Constraints (6.11) therefore guarantee that for a non-constructed
arc, the corresponding flows will vanish (y”k = 0), or otherwise that
they do not exceed the provided capacity (yijk =1)

The set (6.12) acts as a "turn-on switch", guaranteeing that if a
certain 1ink is adopted for investment at time period s (i.e., yijs =1,
with Yijk © 0, k <s), 1t will remain available for utilization in sub-
sequent periods (i.e., Yijk = 1, k> s).

Constraints (6.13) represent the budgetary constraints; here
yijo = 0 for all (i,j) € Y. The difference of the decision variables for
two subsequent time periods, in addition to (6.12), guarantee that a single
capital outlay is disbursed for each project.

If the problem being considered calls for multiple outlays once a
link has been selected for construction, e.g. when maintenance costs are
considered, it suffices to modify the budgetary constraints (6.13) and
replace it by

z d:.p, Yo SB "\“k (6.]6)
(1,§)e¥ ijk Yijk k

Finally, relation (6.14) simply expresses the non-negativity
conditions on the arc flows for all time periods.

REMARKS. We observe that for the single time period case, the index k may
be dropped; constraints (6.12) will no longer have any meaning and may
also be dropped. Constraints (6.13) reduce to a single budgetary constraint
and problem M becomes the link-addition probiem as formulated by Roberts
[17], except for the fact that construction costs are not part of the
objective.

If both indices a and k are relaxed, the resulting model becomes a
single period problem of capital investment in links of a gereral homo-
geneocus commodity network.

This problem 15 somewhat similar to the &napsack problem considered
in Chapter IV. The main difference, however, is that the payoff function
for a certain combination of 1inks may not be determined until a cost
minimization network flow problem for the configuration under analysis is
solved.
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Fina!ly we remark that the objective functidn 15 linear and represents
the total user cost over the entire interval of interest. Therefore, model
M in 1ts most general €orm 1s a (0-1) mixed-intege” !inear program of a
very complex nature, as may be imnediately recognized, but with important
structural characteristics that we shall ident fy in the following

section.

6.10 STRUCTURAL CHARACTERISTICS OF THE MODEL

Let us assume that the node-arc incidence mat~ix £ describing the
network G = [N, A] is constructed in such a way that all arcs (1,j) € X
occupy the first part of the matrix, while arss {i,J) € Y will be
associated with the remaining columns of E. Accordingly, we define the
following partition for E, € = [E, E].

Let 22 and gﬁ be the flow vectors for arcs (1,j) € X ard {i,j) € ¥
respectively, for copy o 'n time period k. Denote by Yy the vector of all
decision variables at time period k, by 5: the demand vector for copy a in
period k, and by v the upper bound vector on the flow of arcs (1,j) € X
at time pericd k. Finally, according to the partition defined for E, let
g: and §: be the user cost vectors for arcs (i,3) ¢ X and (i,j) € ¥
respectively, for copy a in time period k.

Our mode! M may then be rewritten in the ccndensed form depictea in
Table 6-1. Here [ is the identity matrix, Uk 1s a dragonal matrix having
the upperbounds Uy sk for (1,j) € ¥ as diagonal elements, and 3 s the
vector representing capital outlays in pervod k for all (1,3) € Y. The
non-nega*tivity conditions on the flows and che binary values of the yijk'
although not expi-Citly ndicated in Table 6-1, are tc be satisfied.

The arrangement of the variables in Table 6-1 1s highly suggestive
of 3 part:tion 'nto two sets, the first embodying the derision variables
Y ¥ k, and the second a:' the #low varyables for all time periods.
Furthermcre, Table 6-1 presents a $imilar structure to that of the class

of problems presented 1n Appendix A, {sce Page A-3), with additional
simplifizations.  Indeed, using the nctatron of the Appendix, we observe
that all tre B mat-:ces are 1dentical n our problem and are highly
structured a5 wel', tuggeiting that addrtiona! explortation 15 possible.

o AT T A M i W
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The A matrices are composed mostly of zeros except for the diagonal
submatrices Uk' Finally, observe that [ the cost associated with the
binary variables, is zero in this case, a fact which will further
simplify calculations.

6.11 SOLUTION hcTHOD BY PARTITIONING

In this seciion we discuss the partitioning technique of Benders as
presented 1n Appendix A when it {s applied to our multiséaged Tink addi-
tion problem M. We shall use approximately the notation of Appendix A.
In the present case, the set S0 ts dafined by all T satisfying con-
straints (6.12), (6 13), and (5.15). At each step of the aljorithm, and
once the auxiliary (0-1) problem 3' has been solved yielding the optimal
vaives y?jk. these will be used to solve cach one of the subprograms:

P, : Minimize 2= % E cig X2 (6.17)
k a1 (1,))en 19k 1K
Subject to g e, X, =, ¥ (6.18)

je1 1 THEK T ke » @ o
N o o
af1 SRR T (1,d) € X (6.19)
N e} |
051 Xi ik <05k yijk , (1,3) e ¥ (6.20)
x?J.k >0, (1,3) ¢ A, ¥a (6.21)

for all values of k {all time perioas). However, problem Pk is essentially
¢ mlti-copy network flow problem and therefore, at each iteration of the
partitioning algoritnm, n problems of the form Pk must be solved for the
girven values 9?;& £ach of these problems presents ir turn a block-
anguiar structure and thus 4 higher 'evel of decomposition may be applied.
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! For example, the Dantzig and Wolfe decomposition method, as investigated
i by Pinnell [8] may be applied. When this scheme is used, the solution of
! each subproblem at each iteration of the decomposition procedure reduces to
[ firding its shurtest path “rre.
| As for the second part of the partitionirg algorithm, the solution
of a-. all-integer (0-1) programming pr.blenm is required with one or two
additional constraints at each iteration,
The =rodlem presents the following form:

B' : Min mize 2 - 2 Iy (6.22)
k=1
Subject to
igl ﬁ?kt ik - (1’j§EX skt Yijk - X1.J§€Y Pkt Yijk Yigk S Yk, (6.23)
te Tk
Yijk = Yigko) SO 2 (Bd) ey k2lyey =] (5.24)
(1 5oy ok Drsk ™ Yigier) 8 B ¥ (6.25)
ik © DOor ! ¥ (i,jdeY, ¥k (6.26)
Yy unrestricted, ¥ k {(6.27)

_ where [ﬂikt' ﬁ13kt] are the comporents of an extreme point t € T, of the
1 polytepe assoctated wrth the dvail of Pk‘

For the one copy case (n = 1) and for integer demands and capacities,
network flow theory shows that, the dual variables n are also integers.
Hence, from (6 ?'), the y, are ntegers. Probiem B' .- therefore an all-
intager program from which o feasible soiution ts alreudy avatlable (namely,
Yije © 0, (1,3) € Y. ¥ k) and the Young-Genzalez algorithm may be applied.
For the multi-copy (258, however, the n vaiues are not recessarily integer
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and the Yy may not be integer. B', in this case, is a mixed-integer
linear program.

We conclude with the following remark on proc’ems with a more flexible
budget structure.

REMARK. The basic model considered in formulation M may be extended for
the case of budget ceiling deferrals. The mechanism thai permits funds
which remain unused in a certain period, to be transferred to a later
period is given by a proper manipulation of the slack variables of con-
straints (6.13).

Let s, k-, n be the amount of unused funds of periud k. The
constraints (6.13} take the new form

4 §)€Y a5 (yijk - yijk-l)'sk-1 + 5, = B, k=l,...,n  (6.28)

with So =0, and with Sh representing the idle funds, if any, at the end
of the assignmeni. We observe that no present worth factor is attached
to the variables Si» SO they represent for-all cases, simply idle cash.

The solution to M with (6.28) instead of (6.13) is not substantially
altered. Its influence will be reflected exclusively in the solution of
the integer program, B', by augmenting the prohlem with the n slack
variables Spe 'f 3 ik and B, are assumed to be integer, then Sy ¥, will
aiso be integer.

e
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APPENDIX A

THE DECOMPOSITION PRINCIPLE FOR MIXED-VARIABLE PROGRAMS

A.1 INTROOUCTLON

In this Append:x we sha'i present in detail the pdrtitioning
tecinique d-vetnped by Renders (1] 45 appiiet to bath -antinujus and mixed-
integer linear programming problems presenting the so-called bLock-angular
structure. In the case of continuous linear programs the method, as noted
by Benders and also by Balinski [2], constitutes a dual form of the
Dantzig and Wolte decomposition principle [3]. We shall explicitiy show
this property. ‘

In the linear programming case, the partitioning technique requires
the solution of a linear program differing from the one of the previous
jteration by one or two constraints. Thus-the dual-sumplex meihod is

indicated to reoptimize the problem subject to the additional constraint(s).

For the case of the (0-1) mixed-integer linear program, the parti-
tioning technique requires the solution of an all-integer (0-1)
programming problem augmented at each 1teration by one or two additional
constraints. The Young-Gonzdlez algorithm [4], [5] 1s the method we have
selected for the solution ot the all-integer program, and a procedure to
reoptimize the solution of the previous i1teration 1s indicated

The partitioning technique developed here 1s directly applied in

chapters vV and VI to the solution of multi-stage network synthesis problems.

A.2 PROBLCM FORMULATION. CER.YATION OF AN EQUIVALENT PROGRAM

lie shall consider the class of mathematical programming problems with
the following analytical formulation:

A-1

PR P R e e




A-2 CECOMPOSITION OF MIXED-VARIABLE PROGRAMS

A : Determine x) and x) S0 as o
: L.
Mintmize 2 osgox ‘E‘ 5 A (A1)
Subject td Ao % * by (A.2)
A‘ 50 A B‘ 16 = E‘ 'Y “]’. . m (Ac3)
2,20 2l m (A.4) L
LI SO (A.5)

vhere A0 15 an (m x n ! matrix, A ts an (m' X no)-matrvx, Bi an

(mi X "1) matrix, x and ¢ are vectors with n, components and b, are
vectors with m components. The n, component vector X, is def{ped over
the region S We snhall define S  as the intersection of (A.2) and (A.5)
for the following special cases of‘SO: ‘

i) So the non-regative orthant. Therefore

Sy = g /A X =by vx, 20} (A.6)

i) 50 the discrete set defined by the vertices of the unit hyper-
cube. Therefore

o " 050-90' xOJ'OOr‘],Jﬂ,. .,no} (A.7)
For case '}, problem A becomes a linear program n standard form that may
be solved by applying the decomposition principle of Dantz'g and Wolfe to
its dual program  For (ase 11}, the resulting program 1s a (0-1) mixed
integer programming probiem. [t each A‘ =0, =0,1,.. ,m the problem
reduces to a set ot wulually -adipendinl problems of the form

Minz, =cor B x =D 1 s 0 In any case, the constraints of

probiem A present the rollowing assocrated structure Of block-angular
form:
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Ay % %
A8 LY b, (A.8)
Ay 8, 2] 1%

_‘\TI Bﬂ . l(m_l -.Qm_i

We shalt nuw deveiop @ prugram equivalent to problem A Denoting by
x = [x], Xp,.--X ] @ solution vector to A, the problem may be expressed
in the equivalent form

: + - m - v
Minim’ze [Eo Xo * min { Iog X, /Byx, sb - A X2 0}-] (A.2)
% € 5 )

-

The minimization problem within cunly brackets, for a given value of
_?’0 € So’ becoizes a standard linear program 1n x, which we denote as P.
Note that solving P 1s equivalent to solving the following set of m
mutually independent !inear programs and summing up their objective
function values:

. im -
P‘ Mirimi ze Z1 [

Problem P nas an assocrated dual program D that may be decomposed
into the following set ot subpicgrame corrvesponding to the dual programs
of Pi:
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D, : Maxymze 2 (b - A x)' 3

Subject to B u4, 3 o8

u, unrestricted
where the symbo' ‘) indicates transpose. By the duality theorem of
Tinear programming, 'f feas!o’" solutrons ex1st for both Py and D,. then
thetir optimal so0'lutidns z‘ and z? satisfy z : zf
Hence, expression (A 9) may pe expressed n tevms of the dusi

problems D, as follows.

Minimize ; n,. {\b ~A x ) u /B u ¢ c’]:] (A.10)
X e S, [}o % ° PRl B TR AT

Consider the convex polytope (a finite number of closed hal¥spaces)
S1 = {24 / B, u, < ¢,} Cbserve that S, is independent of the values of
X We shall assume temporarily that S1 is bounded (1.e., 1t is a convex
polyhedron). Then from (A.10) note that for any v~lue of X, € Sye the
maximan of each subprogram D, will occur at an extreme point of Si’ Denote
by g%k’ k € K, the extreme points of the polyhedron B\ u. < c;. We shall
assume that there are N such extreme points. Hence it suffices to cal-
culate the values of (b, - A 50)‘ Q‘K for each extreme point and select
the maximum value, yrelding the solution to D‘ tor a given value of Xy
From the above discussion, (A.10) 15 equivalent to

m i
mmm;ze [}0 [ .'f. Td; fib, - A 50) E»x}} (A 1)
%0 € % ‘ !
let y, - max f(b - A x)" u }; then tor each extreme point
! keX ' -4
1
Uy, the following condition ho'ds:

'
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If we proceed analogously for all extreme points of each Si’ then
(A.11) may be explicitly written in the form:

B : Minmize 2 (A.13)

z +
&%t by,

Supject td (gl - A, 50)' Ui S 9y =1, ..,m, keK1 (A.14)
. \
X €5, (A.15)

y; unvestricted » 1=51,...,m (A.16)

The relatonships 1A 13) to (A 16) define a new program in terms of
the variables X, and y,, which we shall now show to be equivafent to
problem A.

) if (53, 52) 15 an optimal solution to A, then 52 is an optimal
solution to Pi for L 53 Also, D1 will have an optimal soiution for a
certain extreme point Q{L. Hence, in problan B, expressions (A.14) will

be satisfied, and those corresponding to Q;k will be satisfied as strict

equalities, thus y? 2 (94 - A Q) 0o - [ x2. This implies that the

optimal solution to B, (gg, yi)jogive;kthe sam; value fcr the objective
function as that one obtained by A.

Conversely, assume that (53, y?) is an optimal solution to B. Then
for each 1, at least one value of G, will satisfy (A.14) as a strict
equality, say gﬁs corresponding to the extreme point optimal solution of
Di’ Then by solving the problems Pi for LI 53, we will obtain 5? with

?] <5 59 s ? y? Since .ne optimal solution to A for a value
éo 2 58 corréééonds to the solution of P s 1t follows that.(gg. 52) is
the optimal solution to A with the same value of the objective function
as the one obtsined for B

For a formal proof considering the unbounded as weil as the
infeasible case the reader 1s referred to the work of Benders [1].

We shall focus cur attention upon the solution of problem B “or the

two spectal sets 30 defined at the beginning of the section.

|
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A.3 THE CASE WHERE So {> THE NON-NEGAT.VE ORTHANT

We cansider prab'en 8 with So gi«en by the expression (A.6).
Problem B, wh:ch we shall ~al' the mastetr pirgwm, become:

B : Mintnrze . VU T y 1=h,. om (A 17)

Sub,ect to ‘Al u )’ K ¢ Yy 20 0 kN {A.18)

x >0 , Y, unrestricted

Thus, 'n passing f-om the 'inear program A i1n standard form to the
equivalent €uaiat stigtam B, by partitioning the set >f vartables into X,
| and the reman'ng x we have reduced the number of -3-1ibles from ? n
z 10
to ("o + m). At the same {'me, we have increased the number of con-

. m m
strawnts from & m tydm - I N}
10 14

| Direct solut:on df p-obtem B ha~dly p-oduces a positive net result,

i since such an 4pproath mpl:es the Cai:u'ation n advance of all con-

| straints of type A '8}, - e the zalcu’stron ot al’ the extreme points
of the canvex priyned-a S‘ Mi-eaver, 11 an Jptimum solution to B 15 ob-

tained, say 53. y?). then tne >3 uton to each of the m linea~ programs
P1 for L 12 's cequ-red 1n J-jer to rind the :)-responding optimal

vectors 53 vthy,m)
Howeve-, o the oplina’ ~2'at1on to B only a subset of (A 18) will
be active Tne Bende > alyd-itnm rgc ssiution ot problem B (cf Section
" A.5) makes use ot this ricr in attempting t) generite those constraints
' (A.18) tnat dete'mine optimi .ty r3- B  The procedue s0'ves B with a
small subset of canstravats A 18}; 1 opl m3 'ty 15 not obtained, the
subprograms D 3ve 30'ved t) generate addit’ons! constraints to the
maslet proglam o, WhiZh 1n tu'n wil! nhave to be redptimized This al-
termative process 's cepeated unti' an opt-mal solurron (1f one exists)
1s obtained 1n a rimite number Oof steps, Juacanteed by tne “act that the

E number ot :Jonst-3 2ty (A 18} 5 1in:te
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The solutron pracedure just sutlined close’y pavallels the
decompoo.l..n afgor.thm of Cantzyg and Wolfe. we shall now interpret it
in detam

By obtaining the dual of prypiem B we have

m Y,

N v ';. . (
C: Max'mze 2 ,f] kf- f‘K A‘K {(A.19)

N,

m .
Subject ta ifl k?f die Mg " A ¥, € 5 (A.20)
Y,
kz‘ N * ! (A.21)
Me 20

nr ri
", unrestricted

where f,, = b u . and q!k * (A Ui’

We ubserve that problem ¢ corresponds to the so-called masten or
extrenal piodblem Lf the dual of A, n the context of the Dantzig and Wolfe
decomposition principle. This justifies the name that we have assigned to
B in describing Benaers' decamposition principle. In C, the variables
e (11, m; k=1, N, ) are weights ty-ming a convex combination of

the extreme points u 9f the polyhed-on S

In the optimal Sglut‘on to prob em C, only a small subset of the
variables Mk will be basic The Dantzig and Wolfe method for sclution of
the dual program of A makes use of thrs ract; 1t trias to find the subset
of Ay that determines optimality tor C withcut examiiing al' basic
feasible solutions. This method fi-s5t obtains a basic feasib e solution
for C; 1f the solution 15 not optimal, the subprograms D’ are solved to
generate a new column (1 e , piope:al vozto1) that should go into the
basis of thc master program € Thas process 15 repeated until an cptimal
solution (1t one exists) 15 obianed 1n a tinite number of steps,
guaranteed by the 7act that the numbte- of extreme piints of the subprograms

Di is finite
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Finally we observe that for optimal solutfons to 6 and C,
(assuming non-degeneracy), to each basic variable }\?k of C there corres-
pends an active constraint of (A.18). “his t217aws from the complementary
slackness conditions:

0 s v 0,0 a
M > O® A U ) X0+ gy = by gy

A.4 EXVENSION TO THE CASE WHERE THE 5y ARE NOT ALL BOUNDED

If S1 1s 3n unbounded palytope, from convex set theory we know that
it possesses a rinite number of extreme points _@_ﬂ(. ke K, and a finite
number of extreme 1ays E‘i p e l.1 , gnanating from certain extreme points.

Hence it may occur that for a certain value of X, € So in (A.11), the
solution to one of the dual prograis D, tends to infinity (1.e., problem
D, 1s unbounded) alorg the half line

{uy 79y =24, ¢ Suyps K € Kyy Lely, 620},
The corresponding value of the objective functior may be expressed as
Xl Upy + &by - Ay xo) Uy,
If Z, -, wd since § > 0 “~om the previous expression, it follows that

(b, = Ay x)' g, >0 (A.22)

If D1 1s unbounded, problem P‘ and thus problem A are infeasidle for
values of Xy € So for which (A.22) holds. Hence, to prevent X, from tak-
ing on such values, 1t suffices to restrict (A.11)} or its equivalent
problem B with the following constraints assocfatad with all extreme rays
of 51:




P
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The extreme rays of Si may be obtained by finding the extreme rays
of “ts associated pclyhedral corvex cone {u, 7 By u, < 0} In this manner
the set L1 is determined and the set of constraints (A.23) may be
constructed. i

If constraints (A.23) thus constructed are added to problem B, then
any feasible solution (50, y1) to B, with X, then used in sc'ving the
problems P, will cesult 1n a feasible soluticn (5c’ ;) to the originai
problem A,

Finally consider the linear programming case of section A.3 with
constraints (A.23) included. Note that the resulting dual program C is
analogous to the one obtained by applying the Dantzig and Wolfe method to
the dual of a problem A containing unbourded subprograms.

A.5 THE PARTITIONING ALGORITHM OF BENDERS

The Renders' partitioning algorithm, instead of solving directly
problem B, solves 1teratively a less restricted problem B' with the same
objective as B. At each new i*eration, additional constraints are added
to B' and the problem is reoptimized. Since eventually B' would be iden-
tical to B, the optimal solutica to the latter must finally be found.
However, the method tries to reach optimality for B by solving problems
B' with only a small subset of the total number of constraints.

Let 1 be the set of indices i=1,.. , m, and I' a subset of I. Also
let K; be a subset of the set of extreme points K1 to subprogram i, and
L S;Li. Then problem B' may be fcrmuiated as follows:

0 7% and 2° SO as to

. .
B' : Determine X, Y,
. o - m .
¥ = *
Minimize 2 =0¢C X 151 ¥;
Subject to (b, - Ay X))’ g‘k <y srte ke K {A24)

<0 ;iel,tel; (A25)

;
i
]




A-10 DECOMPOSi1iON OF MIXED-VARIABLE PRIGRAMS

Assuming that an optimal solution with value 2° exists for B, and
that 2° is an optimal solution to B', 1t follows that ?° < z°, since B'
is Less restricted than problem B. That is, the solution to B' is a lower
bound on the optimal solucion to B.

The solution prozess consists of solving B’ and obtaining (gg, y?f

o Mmoo . ‘
and 2° = ¢ 53 v T 32, (1 B' 15 1nfeasible then it follows that B fs
vy

infeasible). Tne trral sp'ution 32 1s then repiaced in B and the problem
is solved for the satues of Iy Solving B 13- a given Xt 33 ic equiva-
lent to solving the subprograms Dl for that value of 5N and ¢ :teining a
set of extreme po'nts éﬁ« and 3 set of values y° Thus problem B for

x_ = %° has the salution iio Now z and 30

0 Y
7% Koo Yyl and 2 = ¢ Xov Loyl

=0 =0

are compared. Lf 2° < z, then the current constraints of B' do not
determine optimality; rew constraints generated from the extreme points
gdk cbtained from the solution to D1 are therefore added to B' to complete
one iteration nf the algcrithm. On the other hand, if 2° > z the solution
2° tu B' is optimal for B, and thus 1t satisfies the original problem A.

Next we shall restate the algorithm, considering all of the different
situations. For a rigorous proof of the termination rules, the reader is
referred to the work of Benders, [1].

INITIAL STEP. UObtain a subset of extreme points K; and/or extreme rays
L; to generate prieblem B'.

STEP a. Solve problem B'
a.l) Irf B' is infeasible, B is infeasible; stop, problem A has no
feasible solutton

a.2) 1f B' 1s unbounded below, take as the value of X, for step b
any feesible X of B' corresponding to a small value of 2.

a.3) Otheww se B' has an optimal solution 2° and (33. y?). s0 go to
step b

STEP b. Solve problem B for Xy * gg from step a. That is, solve all
subprograms D, for that value of Xy

e
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b.1) 1If one of the subprograms D, is infeasible, stop. Problem A
15 erther 1nfegsible or undounded below. (This case may occur
only durin) the first 1teration.)

b.2) For each subprogram D, that is unbounded above along the half
e {u, 7 u, - 4, *+8&d,l, add for “i£ a constraint of the
form (A.25) to problem B'. Tf also (b, - A, _o)' Gik > yi,

then u ik detftnes a constraint or the fonn (A.24) to be added
to B'. Go to step a

5.3) Otherwise all D have an optwma! solution ngc Calculate

. o

v? - ‘h' - A %) G) angd 90ty step ¢
[ gl LN e

- 9
STEP ¢. Obtain 2 - [ Sk ¥y

n M3

1

c.1) 1f 2% = z, stop; the solution z and (io, y1) is optimal for B.
By obtaining the solutions tn the probIems P1 we obtain xi,
and thus z and (x . x°) constitute an optimal solution for A.

c.2) If 3% < z then each of the u def1nes a3 nex constraint of the
form (A 24) tc be added to B' Go to step a.

We note the fcllowing properties of the algorithm:
1) Each time that st2p a is executed {i.e., problem B' solved),
3° constitutes a lower tourd on the optimal soluticn z° which is also a
better lower bound than that of the previous iteration.

i1) Whenever step b 1s executed (i.e., problem B i1s solved for
= 2°). either we obtain the optumal solution to B, (detectec by c.1)
or the solut1on to B constitutes an upper bound on 2° , (t.e.,
0 < ¢ o Q‘ y?). The best upper bound, however, does not necessarily

correspond 0 tne vailue uf the oojective function cf B obtained in the
current 1teration, but 1s obtatned as the minwmum vaiue of the objective
function of B over all 1terations performed 5o far

A.6 THE CASE WHERE 50 IS THE SET OF VERTICES OF THE UN{T HYPERCUBE

In this section we consider problem B in a slightly different fom,
in order to conveniently study the case where S0 1s given by expression (A.7).
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In erpression (A.11), set y = ¢, x + max { ) (by - Ay x)° ﬁ1k}i

[
00 kek, {1
then for any combinaticn of m extreme points taken one from each convex

set S1. the following condition holds:

v T ( A. x.)' U s kek
SoXot L 1B - AR Uy sy, kek,

Expression (A.11) may therefore be conveniently expressed in the
form of the equivalent problem to A:

B : Minimize z= Yo (A.26)
m n
Subject to ¢, x, + 151 (by - A, 50)' Uiy S Yoo

» 1=1l,....m; k € Ki (Ao27)

(_b_1 - A,’ éo). 'a‘il- s 0 » 131.-..,!“; l € Li (A.ze)

Ao %o - 99 _ (A.29)
Xo5 ° 0orl (A.30)
Yo unrestricted (A.31)

The (0-1) mixed-integer 1inear programming problem A is thus
equivalent to B. Except for the unrestricted variable Yo+ Problem B is a
(0-1) all-integer programming probiem with n, integer variables and a
potentially large number cf constraints. For certain network flow problems
involving decision variables and satisfying some additional integrality
conditions on the input data, the variable Y, may also be restricted to
be integer (cf. Chapter V). It is for this class of preblems that we
shall discuss the solution proceadure of step a of the Benders algorithm.

The problem B', (B with a subset of (A.27) and (A.28), will then
contain Ny * 1 integer variables and may be s0lved by means cf a branch
and bound algorithm (cf. Chapter Il). However, we consider that the prima)
all-1integer algorithm, developed independently by Young [4] and Gonzfle:
(5] and deroted here as the Young-Gonzdler afgorithm, is more suited to

R T
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the conditions of the probiem. [ndeed, the following properties indicated
by Gonzilez [5] fully apply to the solution of B':

i) Gonzdlez presents a special procedure for treating unsigned
variables, whict applies in our case to the integer and unrestricted
variable v, n 8.

11) He also presents a spectal way to handle integer variables
restricted to take on the vaiues 0 or 1.

1i11) Given the nacure or the objective function, (i e., Yo I8 the
only variable and has a positive coefficient), the 1nitial tableau
already $at'stics Jpt Ma “ty v7trsl row elenents € U) althougn it mey not
be primal reasible Therefore 1t suffices to apply the Gonzdlez pro-
cedure to ohtain a starting feasible solution.

Finally, we have observed that each time a new constraint is added
to a problem after step b. of the Benders algorithm, problem B' may be
reoptimized simply by updating the <onstraint in terms of the current
tableau. Since the slack of the ronstraint will b2 negative, and it is
restricted to be positive, we apply the Gonzdlez method to remove the
infeasibility of the slack variable. Thys operation may alter the
optimality of the first row If this . {he case, the tableau is then
reoptimized From the properties we have indicated, we consider that the
application of the algorithm in Chapter V for the solutiun of the mult: -
stage 1ink addition proSiem 1s Justitied.

A.7 SOLUTION OF AN EXAMPLE PROBLEM
Consider tne following prob.em:

A:Minz - 7\] * 6A2 . 5;3' 4;4 . 3‘5- ‘2&6

4‘] + 2;2 * 5x3

v

4!1'31\2'!«3 >8,%x 20
5‘1 toxg 3x6 > 5
2l * 1 % - 41 :6

] s €
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‘Although the problem s not in standard form, we shall not add slack
variables, but w'i' use the graphical representation of the sets Si“
Conside< two subprograms’S, and 555 Indicated in Figs. A-1 and A-2
respective’y. T"hen the varidus elements of problem A are

Xz X 3(4 xs !(6

SO IO K R

S, + %, ¢ x . %20

Sy - {(u,,uz) !/ 2uy v 3u2 < 6. 5uy ¢ uy < 55 uyps Uy 2 0}

INITIAL STEP  We shall assume that an extreme point for each S, 1s known,
say Uy * 10, 0) ana u,, - (0, 3),

ITERATION 1
STEP a, We solve B', To reduce the number of var:iables in 3' to 2,
(i.e., %, and y), thus pemntt °g a graphical solution of this step,

2 .
x. v I max (,t_)_‘-»A.x)'

we shall sety : ¢ U, .
00 . keK Poon Sk
' : Min2:y
.;"‘:]:‘8
X, : 0 y unrestricted

By inspectron (see F-g A-3; the optimal sdlution 1§ 1% . 18, and i? = 0.

STE2 b. We so'.e the »ubp-d3-ams 0, and 0, tor « = 2? * 0.

uZ “4‘
(¢
/// / (4\3)
0,2) ’
L9 20) /
17 73
(‘.0, (4'0)
- -y

(0,0) " ’ ‘ 3

SRR

> mn e i
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Dy : Max z; = u; + 8uy D2 i Max z, = Su3 + 6u,
Zu] + 3u2 <6 uz s 4 -
Suy + uy g5 u < 3
Ups Uy 20 = 3uy -4y, <12
Ugs Uy 2 0

Dy : optimal sa'.tron z? 16, %, < {0, 2!

52 : optimal solurion zg‘;’38, Qez = (4, 3)

STEP c. We obtain z for the current value of Xtz 7. i? +z? + zg = 54;

therefore z = 18 < z = 54, and the optimal solution 2% is bounded
as follows: 18 5 2° ¢ 54

ITERATION 2
STEP a. B' : MinZ=7
- 213

y+237% 24 (new constraint)
iL > 0, ¥ unrestricted

Optimal solution, (see Fig. A-4): . 19,5, and i? - 1.3

STEP b. We solve D, and 02 for Xy * R? = 1.5 4

Gl s Max Z, = -Su, + 2u2 Dz : Max z, = -2.5u3 + 3u‘

(ui. uz) € S‘ (u], uz) £ S2




s

A-16 DECOMPOSITION OF MixED- VARIABLE PROGRAMS

Dy : optimal solution z? < 4, le = (v, 2)

D, : optimal s0.ut107 zg - 9, dyy - (0, 3

STEP ¢. 2z - 71? . z? . zg : 23 6; theretore 22 = 19.5 < z = 23.5 and the

updated bounds for 22 are 19,5 < 2% < 23.5.

ITERATION 3
STEP a. B' : Min2 -y

ne

y- % 2o

j o231, > 54

o 7i] > 34 (new constraint)

-

¢ s y unrastricted

Optimal soiution, (see Fig. A-5): 2 = 20 and 2? = 2

STEP b. We solve D, and D, for x, = x? =2

D] + Max 2, * -7u3 D2 © Max 22 = --Su3 + 2u4

(u]. “2) €S, (u,. uz) € 52

D] : Optimal solutron z? = 0, and e:ther gq, = (0,0) or QJZ = {0,2)

. A by o, i =
02 : Optimal soiution Z, 6, 92] (0,3)

STEP ¢: 2 - 7 %] + 2]+ 2)- 20, and 1° s z, optimality.

0

fhus the optimal soluytion is: 0 s 20, x? + 2, Uy = 0, ug 2 0or

) 0
uy * 0, Vg 3.

To obtain the optimal values of the primai variedles Xps X3s Xg4
Xg and *g s 1t suftices to solve the ‘inear programs Pl and P2 for

Xy oay s V3

s T

DT T e

o
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P] s Min 2, * 6x2 t 5x3 P2 : Min z, © 4x4 + 3x5 - !sz
2 Xz + ‘13 2 - 7 X4 - 3X6 2 '5
3X2 + X3 Z 0 xs - ‘Xs R 2

M 'o= onoa
P1 . Optimal solution, 5 0, Xo & Xg 0

. ¢ 3 0 2 0 = 0 =
P2 : Opt'mal solution, 2" = 6, Xg 0, X %? » Xg 5/3
Normally this step of solving P] and P2 is avoided since, for most

algorithms, the solution to problems D, and D, also determine the optimal
solution to their dual programs P, and PZ'

¥y

FIG. A-3

!

{1.5,18.5:

V
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APPENDIX B

HISTORICAL SURVEY OF OPTIMIZATION THEORY

B.1 EARLY DEVELOPMENTS

It is now geherally accepted that the first investigatiuns of
optimization were carried out by the Greek geomeiricians of the first
Al:xandrian School (circ. 300-30 B.C.). The well<known historian of
mathematical thought, Moritz Cantor [1], attributes to Euclid (Book VI,
prop. 27) the first ex:~ ‘e of an extremal preblem in the history of
Mathematics. Th> proposition proves by synthetic means that if a straight
line segment 1s divided into two parts the product of both parts i1s maxi-
mum whe:n the paris are equal No less familiar to Euclic were the
fcilowing prchiems:  “lhe perpendicular ic the minimum among all straight
lines that may be drawn from a point to a line " and “The diameter or a
circle is the maximum among all inscribed lires."

The othewz twe geometers who share with Euclid the fame accreditec to
the Greeks of fhat school are Archimedes and Apollonius of Perga, who also
were corcein:d with problems of maxima and minima. The 'former, in tne
second book of his work on the Sphene and Cylinder, proposes the following:
"of all spherical segments whose surfarces are equal the hemisphere has the
greatest volume". The latter, celebrated for his work on the conic sec-
tions, determines in his fifth book "tha shortest line that may be drawn
from o point to a given conic section”.

Pappus of Alexandria, who belenus to the second /lexandrian school
(30 8.C. - 641 A.D ) is credited with the solutiun of several "isopheri-
metric problems”. The first ten propositions of his fifth book, [31, zra
directed towards the proof of the proposition that amonc all figures of
sar.e perimeter, the circle has the greatest area. He later romarks that
if most of the properties of the sphere had clready been found, one

B-1
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remained to be proven: "of all the solid figures having the same area
the sphere has the greatest volume" His proof is not general and the
problem became one of the most controversial issues of mathematical history.
Its rigorcus solution was not obtained until the second half of the
eighteenth century by means of the calculus of variations.

In his book VIL, Propcsition 61, Pappus solves, by synthetic geometry,

tne following problem: "Minimize the function x-: a-xa = "3 his solu-
tion is much siipler and rdre elegant than its anal}t1c gounterpart using

the differential calculus.

In the seventeenth century, after a deep 'apse of mathematical
progress characteristic of the Middle Ages, and before Newton and Leibnitz
developed the calculus, Fermat published his Methodu: ad disquinendum
max.imum et munonum.  Ball [2] suggests that his method was developed after
a remark by Kepler, that the values of a function in the neighborhoed of
an extreme point on either side must be equil. He sglves the probi~m
treated by Euclid of finding two numbers such that its sum is given and
its product is to he minimized. Has method is equivalent to taking a
neighboring vaiue of x, nam2ly x + e, where e *s vary "maill, and setting
x(a-x) = (x+e) (a-x - ¢). Simplifying the algebra and ultimately setting
e = 0, the solution is obtained for x = %. Later Huygens, from the Hague,
stated in general terms the ruie used by Fermat. Abcut 1673 hLe solved
the prcblem: two points P‘, P2 nct on the <travgit line AB are given.
Find a point P on AB such that ?F? + FFg is a minimum.

B.2 CLASSICAL PERIOD

The epoch of formal development of c'acsical opZimi.iation theories
(indirect methods based on the differential calculus) begins with the in-
vention of the caiculus. The theories obtain necessary conditions to be
satisfied by an optimum point  Sutficiency was seldom satisfied and new
means to prove 1t remained to be discovcred. The main contributors were
Newton, who applied his method of ﬁZJALOuA to provlems of maxima and
minima, and Letbnitz, who publisned 1n nis Acta frudctonam of Octob - 1oB4
a ceneral method for finding maxima and minima.
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During the second part of the 2ightrenth century a large class of
optunizaticn problems, the optimization of a uefinite integral, was studied
by the Berngullis and Eule- and systematized by Lag-ange. This new branch
of optimization theory was temed the Calculus 5§ varwatedns, a name
suggested by Euler Previous developments 1n mechani:zs suggested to Euler
that all natura! phenomena present extrema, ind h1s later work constitutes
an important app'icat'an of optimization thedry to mechanical systems.

A complete account ot optimization problems 1n mechanics zan be found in
[10]. On the so'ution of optimization problems subject to subsidiary
conditions, a systematic method was given by Lagrange 1n his Théorie des
Foncteons, which determines a set of necessary condirtions for an extremum
of a function subject to equality constraints.

In the nineteenth century the work of Welerstrass of the University
of Berlin served to formalize the theory of maxima and minima. He was
primarily concerned with existence conditions, which had been somewhat
disregarded probably due to the fact that n many physical applications
either a maximum Oor a minwmum obviously exists. His existence theorem,
based on the work ot Bolzano, states that: «§ a funct.on §lx} <& contdnu-
ous 41 a - x . b, thete vieata ;‘ and &2, a g] shy s gy b, for which
the functeont atiawiy s Lagest valuz M aad &ty smaléest value m.

Jacob Steiner, anather mathematicran of the University of Berlin,
representative ot the geometric schoo!, solved 1n the ecrly nineteenth
century ¢ problem posed earlier by Fermat, whicu hias had mportant applhi-
cations i1n genera'rzed for: to location theory  The probiem 15: given
three points AB C 'n a plare, tind a fourth point P such that the sum of
the Euchidran dristunces teom each of the three points to P 1s minimized.
This problem has been widely publicized by Courant and Robbins [11] and
has lately been treated by Kuhn in [12] to present in interesting duality
concept 1n non'ine4r programming

Another source of salution methods for aptymizat:on probiems which
has proved efrective 15 the jeneca! theory ot 1negualities (see for
example (6] or (1511 1t 15 worth mentioning that the application is re-
ciprocal: namely, 1nequility theorems may be proved with the auxiliary
sclution of a maxin:m and minimum problem, while certain optimizatign
problems may be solved by the use of known inequalities This reciprocal
character is formalized by Chrystal 1n [5])
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An tnequality that has largely contrtbuted t> the method mentioned
above and that has been a basic cornerstone of the latest development of
optimization tnhey-y, Geometrr¢ Peogramming, [7), ts the sa-called
geometn . «n: aal.ty  This nequality states that for a finite set of non-
negative numbe s, the a-i1thmettc mean 1s at least as great as the geometric
mean. The Eng'tsh mathematizy3n MacLaurin 15 credited wrth the first
general proot ot tne geomet-1: 1negual'ty He enunciated the theorem in
the following geometric form, [8]: 14 2 Line 4B o dasdded wuto any
numben o4 parrt-, the prodacl 4§ 2Ll thias parls w L be a maxonum when the
ports ave ¢y«4f g themsel.eo  "he best kniwn anaiytical proof of this
classical inequa''ty, however, 15 due to Cauchy, ['6].

In the work of Hare1s Hancock [12], [13] pubtished 1n 1917, we find
an excellent summary of what may be considered the state of classical
‘optimization theory up to that time In [13], Hancock indicates that
several inaicuracies carried through from the developments of Lagrange were
corrected when a major reviston of the theory of maxima and minima, sug-
gested by Peano ot Turin, was carried through by the work of Scheeffer,
Stolz and Dontscher In [13], sectrons 109-112, he presents the treatment
of constrained optimization probiems subject to inequality restrictions,
and makes use of quad-atic slazk variables to reduce the problem to
equality constraints

B.3 MODERN PERIOD  FIRST DErCADE

1t 15 du7'ng tne modern per1od that the theory of maxima and minima
has been wtdely b-oadened and given tne now Jenerally accepted name of
Optumezat. .+ Tio vy Primar:'y responsible for such a task are the
American siventists =no car-1ed on the development of the theory during
and after World war [

The modern periad ot aptimizaton theory (or "renatssance", as Nemhauser
(17] Vikes to put 1t), started in 1947 with G Dantzig's Simplex method
for the solut:yn of linear programs  In the two decades stnce that event,
the development ' sptrmization thed y has been estremely fruitful in both
pure analytical te nn-gues 30d app'!tcarions to the managerial sciences,
the milttary, eng'nee-1ng, an1 the physical sciences
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As 1n various other fields, the substantial new developments that
took place in the middle fifties are due in great part to the zdvent of
the digital :omputes as a common too) in scientific research and develop-
ment. This fact may very we'll lead in the future to the study of the
history ot sciences by dividing 1t into two parts: before the computer
and after the computer This 1S no less true 1n the case of optimization
theory.

The first decade of the modern perod, 1947-1957, 1s characterized by
the formal solution of the linear programming problem and the rigorous
analysis of 1ts underlying mathematical theory The work performed during
the two yezrs 1937-'949 was presented at the a.w histori: C:ales Commission
confenenze 1n Chicago 'n 1949, and selected papers were published in
Activaty Analysc: of Producteon and Allocateon, edited by T. C. Koopmans.

A number of applications in business and industry followed, associated
with the names of Charnes and Cooper, who published with Henderson in 1953
what constitutes the first textbook on the subject matter [18]. The book
of Gass [19], although published in 1958, may also be considered a product
of the early developments of linear programming

The principles of the mathematical theory, as well as the statement
of duality, were laid down by von Neumann. The rigorous studies on duality
and linear :nequality theories were carried cut and published in the work
edited by H. Kuhn and A Tucker of the Princetor school 1n 1556, l.inear
inequaletees and Redated Sys tems »

The success and achievements of this decade stem largely from the
development of computer codes for the solution of linear programs which
bridge the gap between theory and practice and open a wide avenue ¢f
applications

Almost 11 paraliel with linear programming, R Bellman [20],

S. Oreyfus (/5] ard others have developed another powerful cptimization
technique, dytanc: prwedwwnneyg, of particular apphization to preblems of
optimal control and mulfistage deCision processes

For a complete azcount of the background of and contributors to the
modern development of mathematical programming, the reader 1s referved to
Dantzig's own acccunt, [21]
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8.4 MODERN PERIOD. SECOND DECADE

The second decade of lic :1072rn period has been mose prolific by far in
the development ot new methodologies of optimization It has seen the
verification of Dantz:g's prediction 1n his opening address to the Third
Symposium Oon Mathematica! Programming held in Santa Monica, California,
in 1559, [22]. “Today, we who are gathered here are about to witness
the start of an explosron "

We shall mention br1efly the highlights of such accomplishments and
the principal contributors to each field.

The special uawmodularcty propenty of certain classes of linear
programs observed by Dantzig [22], has been a keystone of the development
of network flow theory The principal contributors have been Ford and
Fulkerson [23], [24] who proved the maximum-flow-minimum cut theorem for
homogeneous commodity flow in networks; Berge [25] with his rigorous work
on graph theory; and Kuhn [26] with his work on (cwbinatorics and the
assignment problem. Generalizations of network flow theory have been made
by Gomory and Hu [27] on multi-terminal flows and by Jewell [23] on multi-
commodity flow problems

In discrete and 1nteger programming, this decade has seen the systema-
tic development of cutting plane methods by Gomory [29], and the so-called
branci arnd biund techniques by Land and Doig [31], Little et al. [30], and
Balas [71), (ct Cnapter I!) For detailed information on the subject,
the reader s referred to the excellent work uf Balinskr [32] which con-
stitutes an exhaustive survey of integer programming

Pressed perhaps by the growing number o7 cpplications with the ever-
increasing stzes ot probi- s, particutar attention was given, starting
around 1959, tc the explottation of special structures presented by certain
classes of problems  From tnese studies evolved the Decomposition Principle
of Dantzig and Wolfe [33), wtthout a doubt, a major contr:bution to the
operational sol-tiron ot linear progrems  QOther types of partitioning
algorithms have been proposed by Benders [34], alas (69], Rosen [70], and
others

In the area of stochastic programming, initiated by the two-stage
mode! of Dantzig [35) and the work of Tintner [36], much remains to be
investigated Tne last ten years have witnessed the work of Charnes and
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Cooper and their chance constrained model [37] as well as the most
important work of Madansky [38], (39]. Of special interest in the last few
years is the work of Dantzig [40], van Slyke [41], and Wets [42] on the
integration of mathematical programming and optimil control theory, and the
application of the two-stage approach of stochastic programming to the
latter. As Madansky [43] puts 1t, the n«sk introduced into the programming
problem has to do w'tn the probability distribution of the random variables
of the problem when these are completely known, The uncertainty arises
when the probabitity distribution is known 1n form but one or more para-
meters are unknown An important aspect likely to be developed in the
future 1s tre 1 recdizt on of Bayostan conzepts in the multistage models,
providing the capability of updating the probability distributions asso-
ciated with the problem as more information is available in the process.

The remaining topic, and its basi: theoretical paper by Kuhn and
Tucker in 1951, [44], generalizing Lagrange's method for the case of in-
equality constraints, 1s the topic of nonlinear programing. Approximate
solution methods were developed during the first decade by Charnes and
lLemke [45] and Dantzig [46] The special case of quadratic programming has
been weil-studied by Beale 1a 1955 [47], Frank and Wolfe [48], and Wolfe
[49]. Other solution techniques of classical nature known as gradient
methods dating back to Cauchy, were consolidated in the early book edited
by Arrow, Hurwicz and Uzawa [50] and the later work of Lemke [51], Rosen
[52], Zoutendijk [53], Davidon [541, Doerfler [55], and others.

from the field of numerical analysis several methods for unconstrained
optimization have deen developed i1n the sixties, and 1n several instances
they have been generalized for handling constraints Of the indirect
optimization type we mention the work of Fletcher and Reeves [56]. The
d:rect search methods are based generally on the work of Hooke and Jeeves
[58], and the random search methods on the work of Karnopp [59] and Brooks
{60].

As a final remark on nonlinear programming, we mention again the
latect development that seems (o be a very cromising optimization tool
fcr engineering design, constituting a generalization of the use of in-
gzualities 1n the solution of extremum problems The work has been given
the name of Gewme{x. o Frogimwming by 1ts developers, Zener, Duffin and
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Peterson, 1967, [7], and 1t deals with the optimization of unconstrained
or constrained "posynomials" (positive pclynomials). It has already been
generalized for the case of negative terms by Passy and Wilde, [61]..

In all, the difficult field of nonlinear programming has not yet
ylelded to a systematic treatment; we feel that a unifying theory remains
to be presented.

Of the text books of the second decade, we mention the two books of
Hadley in linear and nonlinear programming [62], [63]. The latter, if
perhaps not a complete or perfectly oirgarized work, is the first general
text in tnis area. The book of Dantzig [21], that of Vadja [64], and
probably the best text so far in linear programming, the translation by
Jewell of Simmonard's textbook [65], also were published in this period.
Finally, we mention the book of Wilde and Beightler [61] and the book on
nonlinear programming edited by Abadie [67].

B.5 FUTURE RESEARCH

The Sixth international Symposium on Mathematical Programming that
took place at Princeton in August 1967, marks the beginning of the third
decade of research and development on optimization theory. From the work
presented there, it is possible to infer which are tiie currents of research
1ikely to be developed in the near future. Although substantial research
seems to be underway in most areas of optimization theory, we feel that
special effort 1s being devoted to the following areas of research.

The field of discrete linear programing is very likely to develop
rapidly, as it is row provided with a dvality theory analogous to its con-
tinuous counterpart, developed by Balas [72]. Aiso, important contribu-
tions have been made by Balinski [73] on a pair of related problems known
as the maxgmum malen and the munumum covewng probfems. Primail-dual
methods are therefore likely to be developed which might be of special use,
for example, 1n network flow tneory for problems involving networks with
disjunctive arcs (1 e., fiow either zero or at upper bound). Such ne’work
models are particularly suited for solvinc tne class of problems treated
in Chapters [I] and [V. The author is currently engaged in this specific
problem.
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In nonlinear programming, more and more applications in the context
of engineering destgn seem likely. Also, theoretical extensions of geo-
metric programming such as the one presented by Avriel and Wilde [74] on
stochastic geomet<'c programming, may be expected. The samc may be said
about the wmportant topic cf control theory. Finally, we feel that the
efficient exploitation of highiy-structured optimization models will
necessarily lead to new schemes for solution of large-scale problems.

To close this appendix we shall mention that the development of
integrated optimization systems, employing new computer technology and the
wealth of optimization tecnniques currently available, holds great promise
in the solut’on or large-scaie optimum design problems. The need for
powerful synthesis algorithms such as those mentioned in the introductory
chapter of this work will contribute tg this development.
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