
« 
M.I.T. Fluid Dynamics Research \- 

• Laboratory Report No. 69-1 

/ 

/ 
f. 

AN ANALYTIC SOLUTION FOR 

TWO-AND THREE-DIMENSIONAL 
WINGS IN GROUND EFFECT 

by 

Sheila E. Widnall 

and 

Timothy M. Barrows» 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

FLUID DYNAMICS RESEARCH LABORATORY 

June 19ô^ 

1 



AN ANALYTIC SOLUTION FOR TWO- AND 

THREE-DIMENSIONAL WINGS IN GROUND EFFECT 

Sheila E. Widnall* 

«u,Uvu 59 

Timothy M. Barrows** 

Massachusetts Institute of Technology 

Abstract 

The method of matched asymptotic expansions is applied to the problem of a 

ram wing of finite span in very close proximity to the ground. The general lifting 

surface problem is shown to be a direct problem, represented by a source-sink 

distribution on the upper surface of the wing and wake, with concentrated sources 

around the leading and side edges plus a separate confined channel flow region under 

the wing and wake. The two-dimensional flat plate airfoil is examined in detail 

and rosjlts for upper and lower surface pressure distribution and lift coefficient 

are compared with a numerical solution. A simple analytic solution is obtained for 

a flat wing with a straight trailing edge which has minimum induced drag. To 

lowest order, this optimally loaded wing is an elliptical wing with a lift distri¬ 

bution which is linear along the chord. The resultant total spanwise lift distri¬ 

bution is parabolic. An expression for the lift coefficient at small clearance and 

angle of attack, valid for moderate aspect ratio, is derived. The analytic results 

are compared with numerical results from lifting surface theory for a wing in ground 

effect; reasonable agreement is obtained. 
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1. Introduction 

The possibility of using aerodynamic forces to support a high speed ground 

transportation vehicle gives rise to an interesting class of ram wing ' lifting 

surface problems » A ram wing can be defined as a lifting surface operating in close 

proximity to a solid boundary. A sketch of various types of ground transportation 

vehicles which operate in either open or enclosed guideways appears in Figure 1. 

The finite aspect ratio ram wing, also sketched in Figure 1, can be considered 

the simplest three-dimensional problem in this class. 

Close proximity has definite performance advantages. Very high lift coefficients 

and lift/drag ratios can be achieve with such vehicles. The optimum lift/drag ratios 

for a variety of configurations in close proximity were derived (Barrows and Widnall, 

1969) by considering the two-dimensional flow in the vortex wake far downstream 

of the lifting surface. For the ram wing in ground effect, the lowest order solution 

was shown to be 

C 2 
C - (1-1) 
hi ttKÆ 

where K « and e is the clearance at the trailing edge. In ordinary wing theory 
3tT£ 

KÆ. is called the effective aspect ratio, in this case it goes to infinity as the 

clearance goes to zero. The spanwise lift distribution for an optimally loaded wing 

in close proximity to the ground was shown to be parabolic as contrasted with the 

elliptical distribution for an optimally loaded wing in an infinite fluid. 

In the present paper the method of matched asymptotic expansions (cf. Van Dyke, 

1964 and Ashley and Landahl, 1965) is used to develop a full three-dimensional lifting 

surface theory in a series expansion in the clearance parameter e. The flow in the 

confined region beneath the wing and trailing vortex wake is joined to the outer 

flow in the region above the wing through edge flows at the outer boundaries of the 

wing and wake. The procedure can be extended to cover more complex configurations 

operating in enclosed or open guideways to obtain analytical predictions of the 

Si A. 
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aerodynamic characLeristics of these vehicles. 

2. Problem Formulation - The General Problem 

The finite wing in close proximity to the ground in an incompressible flow 

is sketched in Figure 2. There are two possible versions of this problem for the 

region beneath the wing, the linear and nonlinear problem. In the linear problem, 

the displacements of the under surface must be small in comparison to the clearance 

to chord ratio. This version is compatible with linearized lifting surface theory 

in which the lowest order solution everywhere is a free stream and the upwash boundary 

conditions are satisfied on the mean plane of the wing, at a height e above the 

ground. In the nonlinear problem, the displacements of the under surface are of 

the order of the clearance. The lowest order solution for the flow beneath the wing 

is not a uniform stream and the flow tangency boundary condition must be satisfied 

on the actual lower surface. This latter problem is more difficult and is currently 

under investigation. The linear problem will be examined in this paper and the 

results compared with numerical lifting surface theory. 

The wing upper and lower surfaces are described by 

S.(x,y,z) = z - ef„(x,y) = 0 on lower surface 
* (2.1) 

Su(x,y,z) = z - efu(x,y) = 0 on upper surface 

where f ,0(x,y) = 1 + -g .0(x,y). L 0(x,y) is an 0(1) function describing the dis- 

tribution of camber, angle of attack and thickness on the airfoil. 

The boundary condition of flow tangency is 

V4>«VSu ^(x,y,z) = 0 on Su^(x,y,z) = 0 (2.2) 

On the ground we require 

d± 
3z 

(2.3) 

where i is the velocity potential, satisfying Laplace's equation 

V2$ = 0 (2.4) 

To determine a perturbation solution valid for the region beneath the wing, the 

z coordinate is stretched. The notation <I>C for "channel flow" will be used for this 
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region. Let 

. , 3í 3$ 
z/e and -=- = e — 

3z oz 
(2.5) 

The boundary condition of flow tangency on the lower surface for $ is 

3$_ 

3z ea V2D at 5 = 1 + (2.6) 

“3 - 3 
where is the two-dimensional operator i + j . 

There are two small parameters in this problem a, the angle of attack, and e, 

the clearance. If a ^ 0(e), the boundary conditions must be satisfied on the actual 

under surface of the wing, if a ^ o(e), a Taylor series expansion of the boundary 

conditions about z ” 1 is permitted (Van Dyke, 1964) and an ordinary linear lifting 

surface problem is obtained. To compare with numerical lifting surface theory, only 

terms linear in a would be appropriate. 

An asymptotic expansion of the form 

or 

i>C(x,y,z) + ^-4)^+ af1(e)())2c + a4>3c + . . . 

c 2 c 2 c 
+ ae4>^ + ae f^(e)<f>3 + ae ^ . . . 

i,C(x,y,z) = X + aij) 
c 

(2.7) 

will be assumed. In the linearized problem 4>0C beneath the wing is simply x, 

the uniform free stream. In the actual development of the solution, the next functions 

of e would be determined at each stage in the process. From matching with the edge 

solutions, f^(£) turns out to be Ãn(l/e). anc* determine the lift 

c c c 
coefficient on the wing to 0(a). To determine the equations which , 4>2 and 

c c c 
satisfy we must determine the form of , and , respectively. 

Before examining further the flow beneath the wing we consider the outer flow, 

the flow above the wing in the limit e = 0, sketched in Figure 3. 
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The outer flow is a straightforward thin wing flow in both the linear and 

nonlinear problems 

<))0 = X + 014^0 + . . . (2.8) 

Interestingly enough, however, the outer flow is not a lifting problem but 

a rather intriguing thickness problem, i.e. the outer flow is a direct rather than 

an indirect problem. Figure A indicates the boundary conditions to be satisfied on 

the ground plane, z = 0. 

Mi° = _ liu 
3z 3x at z = 0 on S, 

3<))1 0 

3z 
S3 (x,y) at z = 0 on W, 

and for z = 0 off of W and S 

(2.9) 

where S and W are the projections of the wing and wake surfaces on z = 0. ct^(x,y) 

is the induced downwash in the wake due to the trailing vortex system. The singular¬ 

ities used to satisfy these boundary conditions are sources and sinks rather than 

the elementary horseshoe vortices which appear for the lifting problem for a wing 

far from the ground. In addition to the distribution of sources and sinks there 

are eigensolutions, concentrated sources (or sinks) of unknown strength located 

around the leading edge of the wing and side edges of the wake. These are absent 

at the trailing edge of the wing to lowest order because of the Kutta condition. 

Their purpose is to replace the fluid which has been removed by the excess of 

distributed sinks on the wing and wake surfaces. All of the properties of the 

outer flow potential can be found by solving lower order inner problems. 

The important feature of the outer flow is its very weak, 0(a), influence on the 

inner flow. For the linearized problem this means that the zeroth order flow beneath 
0 

the wing is a uniform stream and that ¢..0 = 0 at the leading edge and —^ = 0 at 
1 3x 
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the trailing edge. 

We now state the sequence of problems and boundary conditions associated with 

the flow beneath the wing and wake. 

With the stretching of the z coordinate as indicated in (2.5) the governing 

equation becomes 

1 924>C 
e2 3 z 

+ $ 
2D 

0 (2.10) 

0 
Applying this equation to the assumed form of $ of (2.7) and equating like func- 

Q 
tions of e gives a very simple set of partial differential equations for the <}>n 's. 

a2, c 
<Mn 
9 z^ 

0 0 < n < 3 (2.11) 

3(() 
Since Trir = 0 at z = 0, the solutions to these equations are simply functions of x 

dz 

and y. 

¢) C = 4> C(x,y) 0 < n < 3 
n n — — 

(2.12) 

For the next order solutions the governing equations are 

|^4 = - ^ ^(x.y) 

= - V2D (02C(x,y) 

hfc = - VL 

(2.13) 

Since at z = 0, the solutions for <()^C> and are 

^4C = -1 v2d ^1° (x,y) + ^C(x*y) 

_2 
j V2D <j)2 (x,y) + (}>5 (x,y) 

_2 
o - I V^D <()3C (x,y) + ^(x.y) 

(2.14) 

W Q 
where is, at this stage, some arbitrary function of x and y. We now apply the flow 

tangency conditions on the undersurface of the wing. This will give a set of 

WWrW'T!SöWtiifffllUlBlB niaimm»MRMami&flQSUaHai' •, KT,, .. 
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equations for the unknown functions ij)^ , n = 1, 2, 3. The boundary conditions for 

these equations are obtained by matching with the outer flow around the edges of 

the wing and wake surfaces through an edge flow region. The flow tangency condi¬ 

tion of (2.6) expanded as a Taylor series about i = 1 becomes 

32$C 
(x,y,l) + YT2 U.y»1) 7 8o (x,y) + e 

(2.15) 

= ea v2d * v2d * (x’y»1) + • 

Using the assumed form for $ and equating like functions of a and e, the boundary 
c 

conditions for become 

3Z 
= 1ÍÃ 

3x 
at z = 1 (2.16) 

The boundary conditions for and are 

3z 
5 * 0, = 0 at z = 1 

3 z 
(2.17) 

- i1 

Using the solutions for , and of (2.14) in (2.16) we obtain essentially 

c c c c 
a set of partial differential equations for , 4>2 » and • ^or (x*y) 

(2.19) 

Physically this equation can be interpreted as conservation of mass in the two- 

dimensional region beneath the wing with known distributed mass addition provided 

by the flow tangency boundary condition on the lower surface. 

c c 
From the boundary conditions of (2.17) and the relation between <j>2 anc* ¢5 

c c c c 
and and b^ given by (2.14), b2 and b^ satisfy Laplace's equation 

V2D <t)2C(x’y) = °’ V2D = 0 

i.e. two-dimensional potential flow under the wing. 

Across the trailing vortex wake, the discontinuity in potential, Ab, must be 

a function of y only. Since the outer flow perturbations are 0(a), the perturbation 

(2.20) 
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potenUials and which are valid beneath the wake for distances behind the 

c 
trailing edge greater than e, are likewise functions of y only. However, ¢3 Js 

in general a function of x and y since the outer flow potential which contri¬ 

butes to A4> y) is a function of x near the wing. In the wake, (2.19) and (2.20) 
-r 

become 
,2 c 

d^ ^(y) 

,2 c 

5F2 -“2iW 
V2*3C = a3i(x,y) 

(2.21) 

These equations are interpreted as equations for the induced downwash for a 

known vortex strength in the wake; and are higher order contributions . 

To summarize, the relations, equations, and flow tangency boundary conditions 

have yielded a set of partial differential equations for the lowest order solutions 

to <f>3C. The equation governing 4>^C is that of conservation of mass in the 

two-dimensional channel beneath the wing with a known mass addition. The equation 

governing the other functions ie simply Laplace's equation for two-dimensional 

potential flow under the wing with no mass addition. From these solutions we 

can find the expression for the pressure on the underside of the wing. We can 

also solve for the structure of the wake and the strength of the edge sources in 

the outer flow. Inspection of the outer flow and edge flow solutions indicates 

that the boundary condition to be satisfied on the edges of the two-dimensional 

channel which represents the underside of the wing and wake are 

at the leading and side edges, 

(2.22) 

-¾ = 0 at the trailing edge. 
3x 

The boundary conditions on and <t>3C on the edges bounding the confined region 

under the wing are more complex and must be obtained from matching with the outer 

flow potential ¢¢10 through the edge flow solutions. 



3. Edge Flow Solutions 

Matching of the flows underneath and above the wing requires solutions which 

are valid near the leading, trailing, and side edges. For a two-dimensional flow 

in the xz plane, these are obtained using the magnified complex variable 

Y = X + iz 

where x = x/e, and z = z/e. 

That is, we now magnify x as well as z in order to focus on the properties 

of the region near the edge. This will be called the inner region in the usual 

sense of asymptotic expansions. For a general three-dimensional wing, x would be 

replaced by a local coordinate ñ normal to the edge. 

The edge flows may be written in the following form (see Figure 5) 

4)1 = e + a;L <t)B + a2 x + a3 (3.1) 

where $ = potential in the inner legion 

<t>A = solution whicn satisfies the downwash condition 9<j>/9z = -1 on the win 

ij>B = eigensolution with homogeneous boundary conditions — no velocity 

normal to the wing or the ground 

x = a local free stream 

a^ = constants to be determined by matching 

The solutions and may both be obtained using the following transform¬ 

ation 

Y = n + I [i + enïï] (3.2) 

where n = Ç + iç 

This transformation leaves the ground unchanged and transforms the wing and 

its image onto the lines ç = Í1. To obtain the eigensolution, transform the complex 

potential for a uniform flow in the n plane onto the Y plane 

F(n) “ 4>B + = Un (3.3) 

where U = constant. 
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Ellminating n between (3.2) and (3.3) gives 

Y 
U TT 

(3.4) 

Since ij/ = U on z = 1, we can substitute Y = x + i and F = t))« + iU and obtain 
B 

for the wing 

x 
T + £ [1 

sïï$B/U (3.5) 

This gives an inverse relation between x and on the wing. 

For matching it is only necessary to invert this relation for the asymptotic 

cases of large x. As 00 the exponential dominates and we obtain 

x ^ — exp it ¢,,/1) 
TT B 

U I -I 
i ^ — î,n TTX 
Bu TT 1 1 

(3.6) 

Here the subscript u has been added since this represents the potential on the upper 

surface of the wing. For the lower surface ¢ The exponential decays giving 

(3,7) 

These asymptotic limits must match the outer flow and the flow under the wing 

respectively. 

The solution for ¢. follows a similar development except that the complex 

velocity is tiauoiormed, rather than the complex potential. The required boundary 

conditions are obtained from simple corner flow in the n plane. Take 

W(n) ® u - iv = n 

This is transformed to the Y plane using (3.2) 

Y W + - [1 + e1™] 
TT 

On the wing, v = -1, so that W = u + i and Y = x + i. Substituting 

, 1 r , ttu. 
x=u+— [1-e ] 

TT 

As before, we obtain asymptotic limits and attach appropriate subscripts: 

U Jin I TTX I 
U TT 

U ^ X- 
i TT 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
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The corresponding asymptotic values of the potential are as follows: 

<j>. £n(ïïx) - — 
Au TT TT 

_2 
„ X o % - x_ 

ïï 

(3.12) 

(3.13) 

4. The Two-Dimensional Wing in Ground Effect 

The use of the edge solutions is best illustrated by the problem of a flat 

plate airfoil of infinite span in close proximity to the ground. The perturbation 

potential <^°, introduced in (2.8) must have unit downwash on the wing and, in 

addition, must satisfy global mass conservation. The downwash condition is satis¬ 

fied by a lineal distribution of sinks; to satisfy mass conservation one can add 

eigensolutions, concentrated sources at the leading and trailing edges with a total 

mass flow equal to the mass intake of the sinks. However the Kutta condition serves 

to rule out the possibility of singularities at the trailing edge, so that the leading 

edge must have a single source of strength two. The complex potential for this 

flow can be written directly as 

F(Y) 
1 
TT 

Zn(Y - Y,) dY, + - InY 
1 1 TT 

(4.1) 

The perturbation potential evaluated on the upper surface of the wing, z “ 0, 

is then 

^ [(x - 1) £n(^) + 1] (4.2) 

For the flow underneath the wing (2.19) and (2.20) become 

.2 c 
= j 

dx2 

d%0c _ d2^c 
d^2 dx"2"3 

The complete solution for the perturbation potential ¢) , where 

(j) = - (t)1 + f1(e) <f>2 + <P3 

can then be written 
2 

^ = fé + G^e^x + 
with the unknown functions G(e) and H(e) to be determined by matching. 

(4.3) 

(4.4) 

(4.5) 
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At this stage one can formulate a strategy for matching the various regions 

of the flow. This will be done in the following four steps as shown in Figure 6: 

1. Apply the Kutta condition at the trailing edge and match the edge 

solution to the outer flow. 

2. Match the channel flow to the trailing edge region. The velocity 

here must match to the velocity above the trailing edge, which gives a 

boundary condition for d(}>C/dx at the trailing edge. There is an unknown 

discontinuity in the potential, however, due to the circulation. 

3. Match the outer flow to the edge flow above the leading edge. 

4. Match the edge flow to the channel flow below the leading edge. 

This gives the boundary condition for <() at the leading edge. 

Step 1. The Kutta condition at the trailing edge is imposed by stating that 

no eigensolution exists, since this solution gives infinite velocity at the edge. 

The solution is £<)>., satisfying the downwash boundary condition, plus a uniform 
A 

stream and a constant. The trailing edge variable x^ is used as in Figure 6. 

■= ^-[c^(e) exT + c2(e)] + e<t>A (4-5) 

where the factors 1/ïï and e are written for convenience. 

This is written in outer variables and expanded to 0(1) for the upper surface 

of the wing using (3.12) 

(4.6) 
^Tu = r ^XT(Ä,n XT + Än 7 + c]_ “ + c21 

01° is the outs'- limit of the inner solution near the trailing edge on the 
Tu 

upper surface of the wing. The outer solution in the inner variable xT is obtained 

from (4.2) with x = 1 + ex 

- [EXltn 

T 

e*£. 
1 + xa + 1] 

Expanded to 0(e) and re-expressed in outer variables, this is 

>OÍ 
T 

- [xT £n|xT| + 1] 

(4.7) 

(4.8) 

ÈÊ ■Ba ^t**^^*^ ir-ri-r,-'-.»™ ’~n': 
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Using the limit matching principle, must equal which gives 

= 1 - Jln(ïï/e) 
(4.9) 

Step 2. Beneath the trailing edge the potential is also given by (4.5) with 

the addition of the potential jump across the wake due to the circulation F. 

4t - ï 1(1 - tn7)£;i + 1J - r + eía (4.10) 

This is expressed in the channel (or outer) variable x and expanded to 0(1) for the 

ic 
region below the wing using (3.13). The resulting expression is interpreted as 

the limit of the inner trailing edge solution as it tends toward channel flow 
V ^ 

4>iC VT£ 
+ —[-x„£n— + 1] - F 

2c it1 T e 
(4.11) 

This limit must equal the channel flow limit at the trailing edge. Since the value 

of the channel flow velocity rather than the potential is fixed by the Kutta condi¬ 

tion, (4.11) gives the boundary condition at x = 1, 

, c 
d(j> 

dx 

1 0 TT 
— £n — 
it e 

Also 

f1(e) = £n(l/e) (4.12) 

The boundary conditions for the individual terms become 

d!ic 

dx 

c 

0 

d<t>2 _ _ i 
dx ÏÏ 

—r-á --¿nir 

(4.13) 

dx TT 

Step 3. The matching over the leading edge is similar to step 1, except that 

the eigensolution is now allowed and all solutions are written in the leading edge 

variables. The solutions for the edge region are obtained from (3.5) and (3.9) 

(with appropriate sign changes, since the picture in Figure 5 must be reversed). 

The potential in the inner leading edge region is, using (3.1) 

¢11 = ¢3 + “ic3(e)ex + c4(e)] + (4.14) 

The matching to the outer solution in the region above the leading edge proceeds 

by expressing in the outer variable x and expanding to 0(1) above the edge. 

.1. - —.•. 
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1)^0 ^ -[U(e)£n-^- + c„x + c, - (xHn— - x) ] 
it e 3 4 e 

(4.15) 

It. is useful to write U(e) = U + eU. . When this is none and the resulting expres- 
o i 

sion rearranged we obtain to 0(1) 

(j)'*'0 ^ --[U Ü,nx - xÃ.nx + x(l - £n“ + c„) + U + c, ] 
^ir^o e3oe4 

The inner limit of the outer solution can be obtained from (4.2) 

. oi 
—[£nx - x£nx + x + 1] 

Comparison between (4.16) and (4.17) gives 

(4.16) 

(4.17) 

= ¿mr/e 

c, = 1 - Jlntr/e 
4 

Step 4. For the final step in the matching, the inner flow near the leading 

edge is expanded into the region under the wing giving a second boundary condition 

c 
to determine ¢) and hence F. 

The expression for given by (4.14) is now expanded in outer or channel 

variables below the wing using the asymptotic forms for and valid beneath 

the wing given by (3.7) and (3.13). To 0(1) 

a si _ ï. _ xU + 2(1 + *„!, - ita! 
* 2e e 1 it t ir c 

Applying the limit matching principle to (4.18) gives a boundary condition for 

c 
¢1 at the leading edge 

4>C (0) = - - £n- 
TT £ 

As in (4.13), the boundary conditions for the individual terms are 

(4.18) 

(4.19) 

^ (0) = 0 

4>oC(0) = 

(0) 

1 

TT 

1 

(4.20) 

¿ñu 

The boundary condition of (4.12) and (4.19) determines the final expression for ¢) , 

2 -i 
XC X X X . TT 1 . TT 
d> --£,n-in— 
T 2e £ TT £ TT £ 

By comparing (4.21), ‘4.11) and (4.18) we obtain 

U. = -[2 in- + 1] 
1 TT £ 

(4.21) 
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and F = — + -[2 in- + 1] 
2e ir e 

(4.22) 

Remembering that F as written here is the circulation normalized by a, the lift 

coefficient is 

(4.23) 

A uniformly valid composite solution for the flow above the wing can be constructed 

as follows: 

c o i 
A similar formula holds below the wing with <j> substituted for <{) and substituted 

for ¢^, etc. 

The upper and lower surface pressure distributions predicted from these composite 

solutions were compared with a numerical linearized thin airfoil solution which used a 

Glauert series with six terms and nineteen downwash control points. Boundary condi¬ 

tions were satisfied in the least squares sense and the ground was represented using 

the method of images. Figure 7 shows the comparison for a height to chord ratio 

e = .1; the agreement is essentially perfect. The pressure under the wing is linear 

over most of the chord with the edge flow solutions providing the proper local 

behavior at the leading and trailing edges. The first order solution is also 

indicated in Figure 7 for later comparison with the three dimensional results. 

Figure 8 shows the comparison for e = .3, Figure 9 for e = .5. The agreement is 

remarkably good for this latter clearance, considering that the "inner edge" 

regions for this case are so large that they essentially overlap. 

The lift coefficient to 0(1) given by (4.23) is shown in Figure 10 in compari¬ 

son with the numerical results. It is necessary to plot C c/a versus e in order 

to clearly indicate the behavior at e = 0. Strangely enough, Figure 10 does not 

reflect the same accuracy as the pressure coefficient results. This is suprising 

as, presumably, (4.23) simply represents an analytic integration of pressure 

distribution. The resolution of this anomaly is obtained by proceeding to the next 

higher order, i.e., 0(e £n e). It is found that a source and a doublet must be 
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added to the leading edge in the outer flow, and a sink to the trailing edge: 

41° =* ~ [ (x - 1) £n(.Lü) + i] + —2 £n—[£nx - i-n(l - x) + —] (4.24) 
it x tt¿ e x 

It is not worthwhile to go into the details of the matching which follow 

the previous analysis fairly closely. A small increment to the circulation is 

obtained . 

F = -L + i (2Jln- +1)+ -^2 (4 i,n— + 2¿n2 -) (4.25) 
2e ir e tt¿ e e 

The important point is that nearly all of the difference between (4.23) and (4.25) 

arises from constants which are added to 4> as the solution is carried out to 

0(eS,ne) and 0(eiln2E). The velocity and pressure under the wing are unaffected to 

this next order. These constants represent additional contributions to the total 

lift from the leading edge region. The addition of these higher order constants 

to $ considerably improves the agreement with the numerical solution, as shown 

in Figure 10. 

The above analysis provides a base for the examination of the three-dimensional 

lifting surface problem. It has revealed the nature of the flow beneath the wing, 

the nature of the edge flow regions, and the influence of the outer flow. Comparison 

with the numerical solution indicates the accuracy of the predicted pressure distri¬ 

bution and total lift. 

5. Three-Dimensional Flat Wing Ground Effect 

We now consider the case of a flat plate wing with a straight trailing edge 

close to the ground. 

To lowest order, the expressions for the velocity potential above and below 

the wing are 

4>° = x + a4>^° + .,. 

and (5.1) 

= x + + . . . 
el 

which determines the essential features of the flow is unaffected by the outer 

flow. For a flat wing, the function describing the shape of the lower surface is 
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g;(^»y) = -X (5.2) 

Equation (2.19) becomes 

(5.3) 

for the flow under the wing, with boundary conditions given by (2.22). This 

problem is sketched in Figure 11. The flow tangency condition adds a net mass flow 

to the region under the wing. Because of the Kutta condition this flow cannot 

escape at the trailing edge but must go forward and escape out the leading and side 

edges. Thus the velocity under the wing is lower than free stream and lift is 

produced. 

The solution to (5.3) is 

2 2 
C X 

(5.4) 

where is any two-dimensional potential flow function and C is a constant. The 

form of the particular solution and the trailing edge boundary condition suggest the 

" 2 
function = A [x - y ], the potential function for corner flow. This form of 

c 
gives a parabolic spanwise lift distribution which for a wing in ground effect 

gives minimum induced drag. 

If we take an inverse approach choosing and solving for the wing planform 

which has minimum induced drag, the potential for the optimally loaded wing becomes 

(5.5) 

A = 1/4 corresponds to an infinite aspect ratio wing in ground effect, A = -1/4 

corresponds to a wing of zero aspect ratio, although the theory is not valid for 

AR 'v 0(e). The equation for <f) for can be manipulated into the form 

= u + ¿J 1 (5.6) 

where C has been chosen to satisfy the leading edge boundary condition at x = -1, 

y = 0. 
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Applying the boundary condition = 0 to the entire leading edge gives the 

equation for the leading edge 

yLE\2 f) -1 ■4+ ( (5.7) 

+ A 

- A 

which is the equation of an ellipse with b = 1^- 

c '4 
After solving for A, the potential 4>1 for a flat elliptical wing becomes 

2 1 
(), C = -k- [x2 + (y/b)2 - 1] 

2(b +1) 

where b is the semi-span/chord ratio. In the wake ¢.. (y) has the value 

.2 2 
[(y/b)2 - 1] 

(5.8) 

(5.9) 

1 2(b2+l) 
ct c 

The spanwise distribution of circulation to this order is F(y) =--^ (y) 

2 E 1 
F(y) = (7) 7-7— d - (y/b)2) (5.10) 

(b +1) 
since the outer flow perturbation are 0(a), 

The induced downwash a^(y) as given by (2.21) is constant in the wake and of 

magnitude 

a . « T-T—- 
X b'-d-x 

(5.11) 

For b approaching infinity, goes to zero which is the proper limit for infinite 

aspect ratio; for b approaching zero, a^ goes to one, the slender-body limit. 

Figure 11 shows the flow perturbation associated with this solution for flat 

elliptical wing. 

To this order of magnitude, all lift comes from the increased pressures on the 

bottom of the wing. Figure 12 shows a sketch of the lift distribution. As in the 

two-dimensional case, the distribution of lift is linear along the chord to lowest 

order, although at a reduced magnitude due to the finite span. The spanwise lift 

distribution produced by the elliptical wing is parabolic because a lift distribution 

which is linear with the same slope along every chord produces a local lift propor¬ 

tional to the local chord squared. Since c(y) ^ /1 - (y/b)2, the lift 

L(y) ^1- (y/b)2. 

distribution 
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Summariziug, the spanwise lift distribution is parabolic, the induced downwash 

in the wake is constant, and the wing is optimally loaded. 

The lift coefficient of this wing is 

c b2 (5.12) 
L c 3TT b2+1 

This is plotted in Figure 13. 

The semi-circulav wing, b = 1, has half the lift of the infinite wing. The 

theory is not valid for aspect ratios of the order of the clearance but this is 

not a practical limitation. The aerodynamic center for this wing is at the 41% 

chord, measured from the root leading edge. 

The results for b/c ->• 00 do not approach the two-dimensional results since the 

wing remains elliptic in this limit. Although the flow becomes locally two-dimensional, 

since the outboard chords are shorter in comparison to their height above the ground, 

the lift decreases in proportion to the square of the local chord in contrast to the 

infinite fluid case. For a two-dimensional wing to lowest order 

JL, 
2D 

(5.13) 

whereas for b/c -> " 

C = --f- (5.14) 
L tin 

The matching procedure applied to the two-dimensional problem can also be 

applied locally to the edges of the three-dimensional wing. The perturbation velo¬ 

cities of i^C(x,y) are normal to the leading and side ed^s and the two-dimensional 

edge flow solution can be applied to lowest order since the radius of curvature is 

of 0(1), which is large in comparison to the width of the edge flow region, of 0(e). 

The details will not be carried out here; the results will be stated with reference 

to the two-dimensional results. The outer flow potential can be constructed from 

a known distribution of sources and sinks located over the wing and wake. Matching 

the channel perturbation potential to this outer flow through local normal edge flows 

gives a boundary condition on at the trailing edge and <|>C at the leading edge. 
d X 
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At a point s on the leading edge the inner limit of the outer solution will be 

4¡°i ^ log n - [n log n - A(s)] (5.15) 

3 i ^ 
where n is a local normal coordinate. U(s) is the local normal velocity, — . 

A(s) is the 0(1) effect due to distant sources. Matching this expression through 

a local edge flow solution gives the boundary conditions for <pC at the leading edge. 

(5.16) ♦ C(S) it 0 e 
U(s) + A(s) 

■ft n 

Similarly, for a trailing edge in three-dimensional flow, the outer flow solution will 

behave locally as 

oi 
(1 - 2i) 

[x log X ] + B(y) + C(y)x (5.17) 

The first term comes from the discontinuity in sink strength at the trailing edge 

where the downwash changes from a to as indicated in Figure 11. B(y) and C(y) are 

0(1) effects from distant sources. Matching th s through a local trailing edge 

3d>C 
solution gives a boundary condition for at the trailing edge to 0(1). 

[i-^i 
—^ log^+C(y) (5.18) 

Restating the governing equations for the individual terms in the expansion of (2.7) 

for (}>C, the potential beneath the wing, we have 

(2.19) 

(2.20) 
2 

The matching has provided the boundary conditions for these equations to be applied 

at the leading and trailing edges. At a leading edge 

V2^0 = 1 

2 c 
VZ<t>9C = 0, 

2 c 
V 4>3c = 0 

= 0 

1 
ri 3n 

1 M x 1 1 3(h A(s) - 11 + log IT ] — 

rmirnn. ... 
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At a trailing edge 

Sx 

= _ [1 
Sx 

ÇLL] L 
a ir 

(5.20) 

Ü3 = 
Sx 

- [1 - log TT + C(y) 
a 

With these equations, the lifting surface problem for a wing in close proximity to 

the ground becomes a direct although perhaps tedious problem. 

It is of interest to carry the semi-circular wing to next order. This can be 

Sb 
done relatively simply because is constant around the leading edge for this 

particular case. Stating the problem for ^(^y), we have 

V2<j>2C(x,y) = 0 

at the leading edge, (5.21) 

S X 2tt 
at the trailing edge. 

The solution can be found using complex variable image techniques, 

Using z = y - ix for convenience 

1 ' 

^2 + 1^2 ' 2tt2 
(z-1) log (z-1) +(7-1) log (7 - 1) 

Z z 

+(z+l) log (z+1) - (7 + 1) log (7+1) 
z z 

2 log z 1 
_1_ 
2tt 

The value of (y) along the trailing edge gives the additional circulation ^(y), 

r9(y) = - a ¿n 7 
c „ 1 

= - a í¿n — 2w/ “ e 2 

The additional contribution to the lift is 

( 1 ll-y2 
\ 2tt2 

y 
log -4 

1—V 
1+y 

(5.23) 

C = a ¿n(i-) - (7 + - - --2) 
L2 \e/ it \4 TT IT / 

For a circular wing to 0(aÄ,n c) 

CL=tÄ+a + ^2) 

(5.24) 

(5.25) 

The next term would be 0(1) and would involve contributions for both the upper and 

lower surfaces. 

. 4ai.■. 
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6• Comparison with Numerical Lifting Surface Theory 

Numerical calculations for two elliptical wings with straight trailing edges in 

an infinite free stream and in ground effect were performed using the method discussed 

by Ashley, Widnall and Landahl (1965), Two wings were chosen having semispan to 

chord ratios of 1 and 0.5. The numerical method was developed for wings in an infinite 

fluid with moderate aerodynamic influence from nearby surfaces. It was felt that for 

this technique convergence could not be assured much below e = 0.05. Of course, this 

region of strong influence is just where the analytic solution is expected to be valu¬ 

able. The numerical results for lift coefficient are summarized in Figure 14. 

Foe the wing in ground effect, C e/a is plotted versus e to focus on the behavior 
Ju 

for small clearances. The first order linear theory predicts C^e/a to be a function 

only of aspect ratio. The limits for b/c = 0.5 and 1.0 are indicated at e = 0. For 

large clearances C approaches the free stream limit C so C e/a increases linearly 

with e. This asymptote, C e/a is indicated in Figure 14. The results of the numer- 
LjCO 

ical lifting surface calculations for the two finite wings in ground effect are 

shown for e = 0.05, 0,1, 0.3, and 0.5. 

The numerical results indicate a reasonable approach to the e = 0 limit. For 

finite values of e, however, one is tempted to proceed to higher order in e, the 

next terms in the expansion for 0 e/a being vQ(e In e), and 0(e). This proved to be 

quite easy for the semi-circular wing and the two-dimensional wing because the 

perturbation mass flow normal to the edges is constant. 

The two-term expansion for the semi-circular wing as given by (5.25) is shown 

in Figure 14 and shows reasonable consistency with the numerical results, although 

one more term in the expansion would be required for the same quality of comparison 

as shown for the two-dimensional results. 

A comparison of the lift distribution on a semicircular wing in ground effect as 

predicted by the simple first order theory and as obtained using numerical lifting 

surface techniques is shown in Figure 15 for a height to root chord ratio e = 0.05. 
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The first order theory gives the simple linear lift distribution. The lifting 

surface result contains the proper leading and trailing edge behavior which would 

appear in the analytic solution for higher orders in e as in the two-dimensional 

case. The agreement is quite good in those regions away from the edge. 

7. Summary and Conclusions 

Using the method of matched asymptotic expansions, the linearized lifting 

surface problem for a wing very close to the ground has been formulated. Unlike the 

lifting surface problem in an infinite fluid, the lifting problem close to the ground 

is a direct problem involving a source/sink rather than a vortex distribution. Flow 

in the confined region beneath the wing and wake is a two-dimensional channel flow 

with known boundaries and known mass addition, coming from the flow tangency boundary 

condition on the lower surfaces. The thickness and lifting problems do not decouple 

for a wing in strong ground effect, in fact, to lowest order the lift coefficient is 

only a function of the shape of the wing lower surface and planform. 

The two dimensional linearized flow problem for a lifting flat plate close to 

the ground is particularly amenable to solution by this method. Analytic solutions 

may be obtained up to fourth order (i-e. e £n e) without undue difficulty. Higher 

order terms are available, although their usefulness is questionable. The third 

order result for the pressure distribution on the upper and lower surfaces are 

remarkably accurate, showing good agreement with numerical calculations for clear¬ 

ances as large as c = 0,5. The singularity at the leading edge shown by the flat 

plate solution could be removed by a method similar to Lighthill's technique for 

correcting flows around blunt leading edges. 

A remarkably simple analytic solution is obtained in the case of an optimally 

loaded flat elliptical wing with a straight trailing edge. The lift distribution for 

minimum induced drag is a distribution which is linear along the chord, dropping to 

zero at the trailing edge to satisfy, to lowest order, the Kutta condition An analytic 

expression (5.12) gives the lift coefficient of such a wing to 0(l/e); this equation 



is valid for all aspect ratios grtater than e. 

For the semi-circular flat wing the flow perturbations can be found analytically 

to 0(ln c) giving a two term expansion for C^. The analytical results are compared 

with numerical results from lifting surface theory for a finite wing in ground effecg. 

For good accuracy up to e = 0.1, the solution should be carried to 0(u). In the 

expected range of operation of high speed ground transportation vehicles, say 

e = 0.01, the simple first order solution should give accurate results. 

The method of matched asymptotic expansions gives a very powerful approach to 

attack the wide variety of problems associated with lifting systems operating in 

close proximity to solid boundaries. The non-linear lifting problems in which the 

changes in the clearance due to angle of attack are of order of the clearance can be 

treated using this technique and some of the effects of viscosity in the inner channel 

flow region can also be incorporated. 
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UPPER AND LOWER SURFACE PRESSURE D ISTRI BUTIONS 

ON A FLAT PLATE IN GROUND EFFECT £=0.1 
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Fig. 14 COMPARISON OF NUMERICAL LIFTING SURFACE THEORY 

WITH THE ANALYTIC SOLUTION FOR A FLAT ELLIPTICAL 

WING IN GROUND EFFECT WITH CLEARANCE £ 
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Fig. 15 COMPARISON OF ANALYTIC AND NUMERICAL RESULTS FOR LIFT 

DISTRIBUTION ON A SEMICIRCULAR WING IN GROUND EFFECT 


