
AFML-TR-67-423

r-i4

EFFECTS OF ENVIRONMENTAL FACTORS
ON COMPOSITE MATERIALS

1. C. HIALPIN

TECHNICAL REPORT AFML-TR-67-423

' 4 I '

JUNE 1969

This document has been approvedI for public release and sale;
its distribution is unlimited.

AIR FORCE MATERIALS LABORATORY
AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 4543

C [A R N G f- U v E



AFML-TR-67-423

EFFECTS OF ENVIRONMENTAL FACTORS
ON COMPOSITE MATERIALS

1. C. HALPIN

This document has been approved for public release and sale;
its distribution is unlimited.



APML-TR-67-423

FOREWORD

This report was prepared by J. C. Ralpin of the Elastomers and Coatings

Branch, Nonmetallic Materials Division, Air Force Materials Laboratory.

The work was conducted under Project No. 7342, "Fundamental Research on

Macromolecular Materials and Lubrication Phenomena," Task No. 734202,

"Studies on the Structure-Property Relationships of Polymeric Materials," and

was administered by the Air Force Materials Laboratory, Air Force Systems

Command, Wright-Patterson Air Force Base, Ohio.

This report covers research conducted from August 1967 to December 1967.

This report was released by the author in October 1968.

This technical report has been reviewed and is approve,,

~~ Chie

Elastomers and Coatings Branch
Nonmetallic Materials Division
Air Force Materials Laboratory

" ~Ir I



AFML-TR-67-423 j

ABSTRACT

Some of the environmental factors which affect the structural performance
of composite materials are discussed. Various possible mechanisms of

environmental factors ar examined, together with relevant experimental da.

Finally, an analytical approach for predicting environmental effects, based on

rate theory, is considered.
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SECTION I

INTRODUCTION

The superior strength and stiffness of composite materials are often corn-

promised in their structural usage by the uncertainty of the material behavior

under cyclic and impact loading and various environmental factors, e. g.,

exposure to water, water vapor or other corrosive environments, change in

temperature, and long-term physical and chemical stability. Since reliable

theory and experimental data are practically nonexistent, superior properties of

composite materials are severely penalized by the use of unusually large margins

of safety in actual design. Thus, the immediate future of composite materials

as a class of engineering materials may depend more on improved reliability of

present-day composites than on the production of new composites. Univers&7.

acceptance of composites as high performance materials will depend very much

on the confidence of the designer and user of the materials. Until the degradation

of composite materials by various environmental factors is better understood

so that corrective measures can be taken, the true potential of such materials

cannot be realized.

The apparent causes of degradation may involve several factors:

1. Loss of strength of the reinforcing fibers by a stress-corrosion

mechanism.

2. Degradation of the fiber-matrix interface resulting in~loss of

adhesion and interfacial bond strength.

3. Permeability of the matrix material to corrosive agents, such as

water vapor, which affects both I and 2 above.

4. Normal viscoelastic dependence of matrix modulus and strength on

time and temperature.

5. Accelerated degradation from the combined action of temperature

and moisture. As a result of these environmental factors, the utility of

composite materials is terminated when the stiffness is reduced sufficiently

to cause structural instability, and/or failure or rupture of the material is

induced.

- - . I
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SECTION II

MATHEMATICAL FRAMEWORK

Before each of the environmental factors is examined in detail, it may be

useful to define a generalframework through which the relevance of the

environmental factors to the structural performance of composite materials

can be properly established. One important characteristic of composite

materials is their macroscopic anisotropy. The properties measured in the

longitudinal direction of a unidirect.onal composite are, in general, quite

different from those in the transverse direction. Any attempt at understanding

the effect of environmental factors must take into account the inherent anisotropy

of the composite. One theory which has been found experimentally to yield

reasonably accurate strength prediction is Hill's criterion for orthotropic

materials (References 1 and 2). For two-dimensional orthotropic bodies, this

theory states that the strength depends on three principal strengths, viz., the

longitudinal, transverse, and shear strengths. Degradation of the principal

strengths by a given environmental factor will not be to the same degree,

e. g., stress corrosion of fibers will probably degrade the longitudinal strength

more than the transverse and shear strengths on a percentage basis, and

"plasticization!' of the matrix will probably affect the transverse and shear

strengths more than the longitudinal strength. Thus, a crucial question from a

designer's viewpoint is how to assess the environmental factors on the total

performance of the composite materials, which, in the most common configuration

are in the form of laminated anisotropic bodies. A large reduction of the

longitudinal strength alone may or may not have significance effects on the total

performance of the composite. This points toward the need of a mathematical

framework into which theoretical and experimental efforts can be properly

integrated. A great deal of existing work on the environmental effects has been

concerned with segmented problem areas, and it is difficult to assess their

relevance to the total performance of composites.

Although current mechanics theory of composites has not piovided a

reasonably re'listic yet tractable mathematical model of the general process

of degradation, the need for a consistent framework should be fully appreciated.

2



AFML-TR-67-423 I

The elastic properties of composite materials can be conveniently divided into

micro and macromechanics. Micromechatics siudy takes into account the local

heterogeneity, which reduces the study to the problem of multiple isotropic

inclusions, whereas macromechanics study is concerned with quasi-homogeneous

anisotropic layered media. The bridge between micro and macromechanics to the

unidirectional layer.

A similar approach of micro and macromechanics for the study of environ-

mental factors should be adopted. Basicoly, the behavior of a unidirectional

composite is orthotropic and can thus be described by four principal elastic

constants and three principal strengths. The number of the elastic constants

is exact in the mathematical sense but that of the principal strengths is only

approximate and depends on the theory used. It should be fruitful to describe

the environmental interaction in terms of the degradation of the orthotropic

elastic constants and strengths.

i3
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SECTION mI
FIBER STRENGTH

In principle, the strength of materials is limited by the magnitude of the

forces that bind atoms together. In practice, the "strength" of most solids is

determined or limited by imperfections or flaws. In glasses and other

amorphous solids, the important imperfections are surface cracks or other

flaws that grow under the influence of stress and chemical attack. It is common

experimental knowledge that, when subjected to appropriate environments,

many hard amorphous or crystalline solids exhibit a type of failure in which

the strength is markedly influenced by the time during which the load is

applied. For example, it is a known fact that humid atmospheres reduce the

breaking strength of silicate glasses, and that the strength of many plastics

is impaired when immersed in detergent solutions and solvents.

Since breaking stresses are generally small in comparison with the

theoretical limits, the failure phenomena must include reference to defects
% r flaws, and since failure is time dependent, it is natural to conclude that the
defects are subject to change during the test. For example, the strength of

silicate glasses is notably sensitive to abrasion, and it is generally accepted
that surface flaws are controlling influences. Most workers have found it
logical to assume that delayed failure under constant load is caused by the

growth of these flaws, under the influence of a reactive environment, to a

critical size at which the stress concentration at the most critical flaw is
sufficient for spontaneous failure. The occurrence of fracture depends,
therefore, on the state of the material. If there is a flaw of sufficient
dimensions, which depends on the state of stress and the bulk properties of

the material, prompt fracture is certain; and if there is no such flaw, the

sample is sure to survive until a flaw qualifies through flaw growth, stress
increase, or time dependent changes in bulk properties.

In general, details of stress corrosion mechanisms for different materials
and environments are not well understood. However, all systems have similar

4
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attributes or consequences:

1. In inert environments or at low temperatures, where the reaction

rate of corrosion processes should be negligibly slow, the breaking strengths of

materials become independent of the duration of load and always reach a

relatively high value.

2. Equivalently high strengths are observed if the loading rate is rapid

with respect to the reaction rate.

3. Exposing these materials to reactive environments before, but not

during a test generally has little effect on test results, suggesting that the

corrosion rate is accelerated by the stress.

4. Exposure of these materials to reactive environments during a test

leads to delayed rupture at strengths substantially reduced with respect to

comments 1 and 3 above.

5. There is a continuous Influence of temperature on the relationship

between the time of loading and the failure stress. In general, a continuous loss

of strength occurs with increasing temperatures.

Thus, the usage of brittle high strength fibrous materials is limited by a

time dependent distribution of flaw sizes. If only strength degradation of fibers

occurs in a fibrous composite, the longitudinal strengtth of a unidirectional

composP! ; will be seriously affected, but there will be only a slight alternation

of the transverse and shear strengths.

v It is not suprising to discover that the coating of fibers or their incorporation

into a matrix provides a means of exploiting the properties of these high

strength reinforcement materials, for the coating or "coupling agent" acts to

protect the fibers from abrasion or other sources of surface flaws during

fabrication as well as providing, along with the matrix, a barrier between the

aggressive environment and the reinforcement. High strength reinforcements

are also developed with specific efforts devoted to achieving a chemical com-

position which is inert with respect to the anticipated service environment.

Extensive data on the effect of water or water vapor on glass-reinforced

composites are available and will not be covered here. Typical results for a

5
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glass-epoxy composite have been reported by Boiler (Reference 3) and are

shown in Figure 1. In these experiments the unidirectional composites

were under a constant uniaxial stress at constant temperatures in a water

environment as indicated in Figure 1. We found that relative humidity and

water immersion experiments lead to a continuous loss of strength with

increasing time, the rata of strength loss being greatly accelerated by the

immersion experiments. It is tempting to suggest that the total immersion

curve represents the extremely long time asymptote for the humid aging

environment characterizing the interaction between water-silica glass, time,

and stress. However, such a simple correlation must be tempered with the

knowledge that excessive absorption of water in the matrix induces a mechanical

damage to the matrix which may or may not be realized in long term exposures

to outer atmospheres containing reduced concentrations of water vapor. This

point is discussed in more detail in a later section.

Results of water-boil tests of boron-epoxy (Narmco 5505) composites were

reported by General Dynamics/Fort WorthDivision (Reference 4). After

boiling in tap water for two hours, the longitudinal strength of the unidirectional

composite was degraded by a maximum of 6%. Presumably, degradation of

longitudinal strength of boron-epoxy composites in humid atmospheres will be

substantially less than glass-epoxy systems; however, further data are needed.,

Qualitative information regarding the importance of the stress-corrosion

process can be obtained through measurements of the time dependent

longitudinal strength and stiffness, but other factors also influence the test

data so that it is rather difficult to obtain quantitative information. Detailed

investigations will require the examination of relationships of relative humidity

or water concentration in the composite with the "time to rupture" at a

particular value of the streas, and how the experimental variables change with

a change in temperature. It is an obvious experimental fact that the failure

of these systems is strongly influenced by a time-dependent stress-corrosion

phenomenon.

6
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SECTION IV

INTERFACE

Degradation of composite properties due to environmental effects may be

attributed to the loss of adhesion and bond strength at the fiber-matrix interface.

It has been shown that the passage of water along the interface is at a rate

much higher than permeation through the matrix in a glass-epoxy laminate.

if passage of water destroys the interfacial bond, this would result in some

form of degradation in the composite properties. Studies of interfacial bonds

are rather crude at the present time but we do have some qualitative information:

a) the addition of coupling agents promoting adhesion between phases results

in a slight increase in longitudinal stiffness and strength when tested in the

dry state; and b) when tested under wet conditions the untreated fibrous com-

posites posses low strength which increases strongly with coating agent

concentration until the "dry" strength is approached.

Failure of the interface bond is termed dewetting. Although this

phenomenon has been observed for some time in the study oi reinforced

elastomers and solid rocket motors, it cannot be predicted analytically with any

reliability. The "interfacial strength" may be easier to determine experimentally

from the transverse and shear properties of a unidirectional composite than the

longitudinal properties. Again, the intrusion of "environmental" factors will

greatly affect the analysis because the variability of the interface properties

will depend upon the time scale of observation.

7
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SECTION V

MATRIX EFFECTS

A. IRREVERSIBLE TEMPERATURE EFFECTS

In many instances of military engineering interest, composite systems will

be exposed to excessive temperatures for varying periods of time. In general,

organic matrix materials are unstable with respect to increased temperature and

undergo a chemical breakdown which we shall denote as thermal degradation.

If the degradation reactions persist for a sufficient length of time or if they are

sifficiently rapid, then there will occur enough chemical degradation to cause

the matrix material to vaporize. Of course such drastic events compromise

the mechanical integrity of the composite system and provide an upper bound

on temperature in materials technology. One semiquantitative procedure to

follow and characterize the degradation process is the measure of the amount

of volatiles given off by the material as a function of time and temperature or

simply to record the weight loss as a function of time and temperature. Such

data (Reference 3) are shown in Figure 2 for a phenolic-glass system. At all

temperatures of 300' F and above, decomposition of the matrix is occurring at

a "rate" which is uniformly accelerated with increasing temperature. If the

weight loss curves are shifted relative to each other along the log t axis, the

curves overlap so as to form a single smooth curve, Figure 3. The shift

distances along the log time scalb nre denoted by the symbolism log aD. in

Figure 3, the data was shifted (Reference 5) to the 300' F curve and one can

readily see that the data obtained at different temperatures defines a composite

curve representative of the decomposition process. Hence, it appears that a

time-temperature superposition applies to this type of data.

It is expected that a temperature-time superposition will be valid in any

rate process for which the temperature influences only the rate constant k.

In such a case the process under consideratior will be a function of the product

kt, where t is the time for which the process has been going on. Even when the

temperature enters the mathematical function describing the behavior in a more

complicated way than this, it is still usually true that the major temperature

dependence is through the rate constant. If ko is called the rate constant at the

8
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at the reference temperature (i.e., the temperature for the data to which

the other data are shlfted; in our case, 300 0F) and k the rate constant 4
at any other temperature, then log (k/kI0 ) is the amount by which the data must

be shifted along the log t axis, our log aD. The values of log aD or log (k/ko)

are often plotted against reciprocal temperature with the following interpretation.

Nf the rate constant takes the form

k = A exp (-&H/RT)

then the ratio of the change in rate constants for temperatures T and To is

written

o D 2.3031R T To(2

where AH Is the activation energy and R is the gas constant. Thus, a plot of

log aD against 1/T should give rise to a straight line of slope AH/2.303R.

In Figure 4 a plot of this nature has been constructed (Reference 5) from the

data of Figure 3, from which an apparent activation energy of 7. 85 K cal/mole

was computed. This activation energy is considered to be of the proper order

of magnitude for the process involved.

Returning to Figure 3 we see that the experimental data can be approximated

by either
w (t) -wi(CD)w (0)- w() I-exp(-kt)
w (o) - wi0)

or (3)

w(t)-w(0) M i-exp(-kt 2 )
w(o) - w (W)

where -- (t) is percent weight loss at time t, w (a) at infinite time, in this

case 31%, and w (o) is condition at t - o, or zero. Figure 3 clearly shows that

exposure of this phenolic-glass composite to 300' F for times in excess of

values between 5. 0 x 103 and 104 hbors leads to a significant change in matrix

properties through thermal decomposition. If one now wishes to estimate the

extent of degradation at 500' F, one simply shifts the entire master curve of

Figure 3 to the left by two decades and so on.

9
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Nowq if matrix decomposition occurs, this must ultimately lead to a loss in

stiffness and strength which would parallel the loss of the matrix integrity. In

fact, Boller has obtained data in tension, compression, and flexure for the

phenolic-glass composite samples which were soaked at the same temperatures

presented in Figure 2 for different periods of time. The data generally shows the

same trends as those presented in Figure 2. If there is a deterministic relation-

ship between matrix decomposition and mechanical response, then the data can

be shifted by the same log aD values evaluated in Figure 4 to obtain master

curves of stiffness and strength loss. The results are shown in Figure 5, where

one can also see that the mechanical property loss is following the same rate
2

law, exp (-kt2), as the decomposition reaction. Also illustrated in Figure 5 is the

proportionality between the loss of modulus and the parallel loss in strength or

" Mt) = 0.01 E (t (4)

Thus it appears that ultimately rather simple deterministic relations between

thermal stability and matrix modulus to predict composite stiffness can be

developed, and in turn, a cause-effect relationship between the time-temperature

dependent stiffness and the "strength" of the composite. Hopefully, then there

would evolve a continuous theory going from the physical chemistry of composite

materials to the mechanical response of a structural unit.

We may further reinforce the ideas presented here by considering some data

obtained by Stevens (Reference 6) in fatigue experime- I- conducted at different

temperatures. Figure 6 represents experimental results for a phenolic-glass

composite. These results are typical for this type of experiment. An increase

in temperature clearly accelerates the rate of fatigue damage imparted at a

given stress level. For example, a maximum stress of 20, 000 psi gives

instantaneous rupture at 800' F, rupture after 250 cycles at 500' F, after

1.78 x 10 4 cycles at 300' F, and 2.0 x 105 cycles at 73V F. The data presented

in Figure 6 is strongly suggestive of a simple time-temperature relationship.

In Figure 7, the fatigue data have been superposed by employing the values of

log aD. determined experimentally by the construction of Figure 3. An can be

seen, the superposition is remarkably good considering the normal statistical

scatter of lifetime data, and defines an almost complete master fatigue curve

known as an S - N curve in conventional engineering practice. Clearly, an

10.
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understanding of the implications of these types of procedures in material and

engineering design will constitute a necessary step in the further progression of

the science of composite materials.

B. REVERSIBLE TEMPERATURE EFFECTS

In the last section we illustrated temperature-induced processes which lead

to an irreversible change in composite properties through rate processes. In

this section we shall be concerned with rate processes which are reversible with

changes in temperature. This area of investigation is called viscoelasticity. If

we restrict ourselves to levels of stress and strain which allow the material to

respond in a linear manner, we are dealing with linear viscoelasticity. It is

absolutely essential that we be aware of the differentiation between reversible

and irreversible phenomena. For example, if we measure the modulus of a

typical cold setting unfillel epoxy at room temperature, it exhibits a modulus

of roughly 300, 000 psi. If, however, the temperature is increased to 200' F the

modulus will be only 140, 000 psi. On returning to room temperature we may

regain the 300, 000 psi modulus. In comparison with the earlier decomposition

problem, an exposure of the material to 500 or 600' F would result in a

permanent change in the structure of the material with the natural consequence

that on returning to the standard temperature, the material will exhibit a modulus

value which is different from the original modulus. The same remarks are

equally true regarding strength properties where there can be large changes in

strength due to both reversible or Irreversible processes.

The normal viscoelastic response of typical organic matrix material exhibits

properties paralleling the data shown in Figures 2 and 3. For example, consider

the simple experiment in which we apply a step increase in length of a slender

rod of our material and measure the surface traction or stress required to

maintain the specimen in the extended configuration. The ratio of this stress to

the computed constant strain is the relaxation modulus or time dependent

Young's modulus for an isotropic material. If data are obtained as a function of

time and temperature and the time dependent modulus is plotted as ordinate and

log t as absissa, then we obtain a plot very similar in appearance to Figure 2.

The temperature region of rapid strength loss is denoted as the glass transition

temperature and is roughly 230' F for a cold-setting epoxy. Just as with the

U1
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decomposition data, a time-temperature superposition can be employed to obtain

a master curve of modulus against reduced time (log t/aT) as in Figure 3. See

for example the recent data of Kaelble (Reference 7) or Theocaris (Reference 8).

For reversible viscoelastic data, the time-temperature shift distance is denoted

by log aT. and is well approximated by Equation 2. For epoxy resins below the I

transition temperature, AH is in the range of 20 K cal / mole. Thus, viscoelastic

response has a much stronger temperature dependence than the decomposition

reactions. More importantly, the viscoelastic data is spread out over a much

larer time scale than is shown in Figure 3. While the steep descent of Figure 3

occurs in two decades, the transition in modulus due to viscoelastic processes

requires twenty decades In time or more. Consequently, modulus data is

represented as an exponential series

EM = MEn e-t/n 5)

i dtead of a simple exponential function. The quantity t is the "relaxation

time" of the "nth" term of the series and is the inverse of a rate constant.

Analytically, time-temperature reduction means t/rn--t/ r. a Thus H

the reduced master curve of log E (t) against log t/aT and the analytical form

of aT is known, then the modulus is known for any other temperature.

The next problem is to relate the time-temperature dependent material

properties to the constitutive equations describing time-independent response.

For example, the linear elastic constitutive equation for an isotropic solid is

given as

i [K-(2/3) AG + 2 Go (6)

ij UIi (6)

where

1 = oI f lj
=) I,*fi~j

cri stress tensor

Sel z stress tensor

K a bulk mcdulus
6 z heer modulus

Svolumetric strain

"12
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Now we shall assume that the components of the stress and strain tensors are

time dependent, and replace the material parameters K and G by time dependent

material functions K (t) and G (t). If p (t) is a component of the stress or strain

tensor, we define Its Carson transform p by the relation

PUPt

Similarly, the Carson transform m (p) of a time dependent material function

m (t) is defined as

of *-pt m (6Om (p):=p e td 8

0

The relationship involving time between the components of the.stress tensor and

the components of the strain tensor will now be in the form

LK( P) -(2/3) G(P)J + +2 G(P) 0~ (9)

This can be considered as the constitutive equation in classical linear isotropic

viscoelastic theory, and is the time dependent generalization of Equation 6. To

apply Equation 9 to the solution of boundary value problems, it is necessary to

invert this equation. The right-hand side involves the products of Carson

transforms, the inversion of which leads to a convolution Integral. Thus, the

inversion of Equation 9 gives

d(t) fot I[K(t- 2 G(t) )]d)

dei e (10)
+ 2G(t-8) d- }dO

This equation is called the superposition equation of Boltzmann. The super-

position principle is of the utmost importance for the description of viscoelastic

behavior under small stresses and strains. It tells how many and what kind of

measurements are necessary to characterize the viscoelastic behavior completely.

It tells further how the results of different forms of excitation history can be

13
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related to each other, for instance, how we can predict the result of a dynamic

stress-strain response from a creep experiment and conversely. The great

power of the superposition principle lies in its generality, since it is not

restricted to any special material: all its consequences remain valid independent

of the micro-structure of the material under consideration. The existence of the

elastic-viscoelastic correspondence principle is a direct and natural consequence

of the superposition Equation 10.

Engineering stress analysis of viscoelastic materials employs the "corres-

pondence rule," wherein transforms can be taken of the time dependent variables

azid forcing functions to obtain an associated elasticity problem in the transformed

variables. The solution of this problem, when transformed back into real-time

variables, gives the desired result, i.e., the same techniques employed in the

exercise of transforming Equation 6 into Equation 10. The use of the cor-

respondence rule is, of course, dependent upon our ability to solve the associated

elasticity boundary value problem; if the elasticity solution is intractable, the

viscoelastic solution will be more so. The actual mathematical details of the

treatment can also bo quite difficult at times. Although the above technique

provides a reasonable treatment for isothermal analysis, the problem of

transient thermal viscoelastic stress analysis is still without a general solution.

The difficulty here is the sensitivity of viscoelastic material response to

temperature which results in a simultaneous change in material properties with

the transient temperature distribution through the body.

These general procedures are also applicable to anisotropic viscoelastic

bodies. The details of the viscoelastic theory and stress analysis are reviewed

in References 9, 10, and 11. In the appendix of this report we have outlined a

procedure for closely approximating the viscoelastic response of fiber-

reinforced materials by employing the results of linear elastic micromechanicg

and the viscoelatic analysis used in References 9 and 10. There is, unfortunately,

a serious lack of reference material available at this time dealing with

viecoelastic response and analysis of composite systems, YIth the associated

critical comparison against the appropriate experimental drata. Further

complicating the problem is the fact that all composite systems exhibit a

strong nonlinear response for which we lack the suitable analytical tools.

14
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These nonlinearities are particularly perplexing when one attempts to develop

a rigorous analysis of the ultimate properties of the system.

Just using the linear viscoelastic process greatly complicated the evaluation

of the expected structural integrity of a specific design. In all instances, the

rupture or failure of viscoelastic solids is strongly influenced by time-dependent

phenomena (Reference 12). If we assure that it is feasible to execute a stress

analysis for a given loading, specified material, type of anisotropy, and

geometrical configuration, it is still necessary to combine the stress distribution

with some statement of a criterion for failure. With very few exceptions,

viscoelastic materials are experimentally analyzed in an uniaxial stress state.

Although these efforts give invaluable information relating the rupture stress or

strain to the reduced time scale t/aT' or reduced strain or loading rate,_.L_

R aT, they do not provide the necessary information for the prediction of

viscoelastic failure in a multiaxial stress-strain state. This becomes a serious

problem, since the stress and strain distribution is multiaxial for most

geometries of engineering interest. Experience with isotropic solids exhibiting

very small or no time dependence does indicate that the octahedral stress or

von Mises criterion can correlate uniaxial and multiaxial states; but. no such

relationship has been verified for viscoelastic materials. Instead of a simple

unique correlation between uniaxial and multiaxial states for a time-temperature

independent body, the association of multiaxial states for viscoelastic materials1
must also include strain rate - or time scale t/aT. As a consequence

R aT

there cannot be a single failure surface characterizing fracture; there is,

rather, a multitude of closed surfaces, each surface characterizing the multi-

axial state for a specific value of 1_ or t/aT. The strength problem is
SaT

particularly complicated for the anisotropic body, because workers have not,

at this time, been able to experimentally verify the general multiaxial criterion

of Hill (Reference 1) or others for a time-temperature independent antisotropic

body.

**i. =time rate factor related to t or L, where R is approximately equal
dt dt

to time.
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In addition, time dependence in the fracture process complicates the

analysi, of the statistics of fracture in that we must now discuss fracture in terms

of a time dependent probability distribution of flaw strength as indicated in our

discussion of stress corrosion. Furthermore, time dependence in material or

fracture response leads to the phenomenon of fatigue or cumulative damage,

wherein the lifetime of the material is a strong function of the stress-strain-

temperature history of the sample or structure. In other words, how do we

predict a fatigue failure from constant strain rate or constant load failure data?

Finally, viscoelastic response necessarily requires energy dissipation in

response to vibrational excitation. This energy dissipation can lead to large

cumulative heating which can result in accelerated fatigue damage or strength

loss and In some cases to chemical decomposition of the matrix materials. This

phenomenon can be directly related to an interaction between the imaginary part

of the complex shear modulus, or loss tangent, and the natural frequency of the

design configuration. Design attention should be given to this problem when

composite materials are employed in structures subjected to dynamic loads.

C. PERMEATION

Permeation of water or other agents through thA matrix will have two effects

on the properties of the mtrix. The first effect is, for instance, that water will

swell the hard glassy matrix material and accelerate rate processes. This

means that the absorption of water vapor Is equivalent to increasing the

ambient temperature of the material, a process which is termed "plasticization"

in the chemical industry technology. Thus, if we repeat our stress relaxation

experiment at constant temperattire but at different concentrations of water in the

matrix we shall obtain data (Reference 9) similar to that in Figure 2 (where

temperatures on the curve are now concentrations of the plasticizing agent).

This experiment may be performed, for example, at constant temperature and

differing relative humidities. Superposition of the data similar to the operation

in Figure 3 can be performed with the time-plasticizer concentration parameter

ac being given as

-C 3 ( I- C/p 2 )
lg0 - C4 T + (I- C/p.) Ill

16
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(from Reference 9), where C is the concentration of swelling agent, p2 Is the

density of the polymeric matrix at temperature T, and C3 and C4 are empirical

constants to be determined by the experiment. A simultaneous change in

temperature and swelling agent concentration could then be approximated by

the reduced time t/aTac. Again, inducing time dependence by a swelling agent

leads to a viscoelastic response which can be handled within the framework of

linear viscoelasticity, and composite response can, in principle, be predicted

by employing the correspondence principle (Reference 10). It is also obvious

that the plasticizing effects cause a time or rate dependent decrease in ultime/.e

properties.

The above remarks suggest that swelling of an epoxy or phenolic matrix by

water can be treated in a straightforward manner; however, this is not quite

true because there are additional effects which are irreversible and separate

from the plasticizing action described above. The plasticizing action leads to

reversible property changes, but absorption by the swelling agent and the

subsequent redrying of a specimen of matrix material quite often results in

permanent irreversible property loss. To understand how this irreversible

loss occurs, let us examine the recent results of Alfrey, Gurnee, and Lloyd

(Reference 13). In their paper they point out that hard glassy crosslinked

polymers (matrix materials) when placed in contact with a solvent or swelling

agent give an "anomalous" diffusion effect not explicable in terms of the

Fickian process. Expr 5,.nentally, one observes that as the absorbed agent

penetrates into the material a sharp advancing boundary separates the inner

rigid core from the outer swollen softer shell. Behind the front, which advances

at constant velocity, the material seems to be in an equilibrium state with

respect to swelling agent concentration. Because the swollen material forms

a shell around the unswollen materials and is directly connected to the unswollen

core, the core will be placed under a state of triaxial stress. A stress analysis

performed on a cylindrical specimen would show (Reference 13) that the core is

under a large tensile stress, which increases sharply as the swelling front

advances into the material. When the swelling stresses reach a critical value

in the core, a fracture occurs. In some cases this effect can be predicted

analytically (Reference 13).

17
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In addition to matrix rupture, this mechanism could also lead to the

rupture of the matrix-fiber interface and, if very high swelling stresses are

produced, fiber rupture may occur. Thus, we have irreversible damage inflicted

by the swelling process which is clearly different from the plasticizing effect

described above. Moreover, the swelling rupture of the resin and fiber-resin

interface exposes the fibers to a high solvent atmosphere, which, when coupled

with the swelling-induced tension in the fibers, can lead to severe stress

corrosion of the reinforcement.

The above remarks would appear to explain the "water boil" tests and why

these tests can inflict such extensive damage upon samples which are stored in

boiling water for only a few hours. But our discussion also raises the question

as to whether "water boil" is an accurate diagnostic accelerated aging test.

It is a fair question to ask if the storage of a composite panel in a normal

relative humidity atmosphere and at temperatures of conventional engineering

interest would ever be subjected to the same apparent magnitude of internal

stress as occur in the "water boil" test. In any event, the loss of composite

properties due to water or swelling agent permeation of the composite matrix

is a highly coupled mechanism, and much work must be done before useful

analytical treatment of the various processes can become available for engineering

design.

Since it appears that both large stress and strain (Reference 9) and/or

permeation of water through a resin matrix produces voids, it is of interest

to see whether we can predict the gross behavior of the unidirectional composite

as a function of void content. It is assumed that voids are randomly distributed

spherical cavities in the matrix. Then the effect of voids on the composite

properties can be predicted using the properties of a degraded matrix, i.e.,

a porous matrix. There are a number of equations for calculating the effective

stiffness and strength of a porous continuum, e.g., Mackenzie (Reference 14),

Kerner (Reference 15), and Hashin (Reference 16). All theories predict various

degree, of degradation as void content increases. Coble and Kingman

(Reference 17) showed that the Mackenzie equation (Reference 14) agreed well

with the data of sintered alumina. If we use this equation, i.e.,

18
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5( 3 Km+ 4 Gm) P + AP (12)
GM = 9 Km +- Gm

where G = shear modulus of the porous matrix; Gm, Km shear and bulk

moduli of the pure matrix; P = volume fraction of pores in the matrix; A = a

constant and assumes the matrix materials to be elastic and isotropic, then

KiM: Em/ 3 (l 21 m)
(13)

Gm :£m/2(l+m).

By combining Equation 12 and 13, and rearranging,

4/G6 1- (S1-Vm) P-AP 2  (14)

The constant A can be determined by setting

GW 0 when P a 1.00 (15)

Furthermore, pores in the matrix can be related to the voids in the composite

as follows:
P a Vv/Vm (16)

where vv = void content in the composite, vm - matrix content. By combining

Equations 14, 15, and 16,

=I-15 (I-Vm) vv 8-10 ,m vv 2(-G~t:~) (17)

A comparison of this equation with experimental data reported by General

Dynamics (Reference 4), reveals material properties that correspond to boron-
epoxy composites, i.e.,

Vm :0.35

Vm = 0.38

where it is assumed that the fiber content is 55%, and glass, 7%. It is also

assumed for the purpose of comparison that the matrix material (Narmco 5505)

is composed so that the ratio of the 6/G is the same as the ratio of the
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composite transvertse strength to the matrix strength. With these assumptions,

the theoretical prediction based on Equation 17 is shown as a solid line in

Figure 9 along with ,he corresponding experimental data and their variations.

Thus, the effect of voids on the transverse strength of unidirectional composites

is quite drastic. The effect of voids on the longitudinal strength should be

negligible, a fact which agrees with the measured data also reported in

Reference 4. The formation of voids due to the combined action of stress and

permeation will lead to a strong nonlinear viscoelastic response (Reference 9),

which will be largest in the shear and transverse properties and least in the

longitudinal direction of a unidirectional composite.
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SECTION VI

CONCLUSION

Preliminary evidence as indicated here established the feasibility of using

the conventional rate process theory, as employed in other areas of material

science, for the correlation and prediction of environmental processes on the

engineering response of composite structures. The mechanisms discussed

should lay the groundwork for establishing a unified experimental program to

define a more comprehensive and realistic evaluation of the performance of

structural composites than the empirical approach.

21
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APPENDIX

FORMULAS FOR THE ELASTIC AND VISCOELASTIC
PROPERTIES OF FIBER-REINFORCED COMPOSITES

The elastic properties of these unidirectional composites are governed by

a maximum of four independent macroscopic moduli, which can be computed

from a generalized formula. Since material properties U can be separated

from the geometric properties Vi in a laminated composite according to the

invariant theory (Reference 18) of composite materials, a direct link between

the properties of constituent materials and those of laminated composites can

be calculated through a set of simple formulas.

For example, consider the stiffness matrix for orthotropic materials

C CII C1 3 0 0 0

C2 2  C2 3 0 0 0

C33 0 0 0

C.. (19)
i| C4 4  0 0

C55 0

C6 6

For transversely isotropic materials: C4 4 = (C.. -C2 3 ), C. 2  C3 3 ,

C 12 = C13

For isotropic materials: C11 - C2 2 - C3 3 , C12 - C 13 - C2 3

C4 - C 5 5 - C6 6 -2(C 1 1 - C2 2 )

23
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In terms of a new notation proposed by Hill (Reference 19) and Hermans

(Reference 20):

For fibers in square or diamond array in the 2-3 plane, Figure 9:

S0 0 o 0

ktm k-m 0 0 0

=ii k+m 0 0 0 (20)
,#0 0

I o

For fibers in hexagonal or "random" array in 2-3 plane:

y=m (2=)

Hill showed that for any fiber array having two planes of identical symmetry

in the 2-3 plane, i.e., C22 = C3 3, n and t are dependent oniT. This can be

seen in the triaxial loadings illustrated in Figure 10. Thus,

a) If.3 = 0(plane stroin),- = k

b) If* II + 4F2x 0 ( unioxiol extension), O'p =.'T -n =P'3

Through simple algebraic operations, the following relations can be obtained:

V .9 vf + V M .'t Ml +(-_v. k.f- V k In (22)
L: i +V n f (k k V (22)

Vf" f m n M [kf-km f f mI'T n l K -K I V V V1
Sv, , + + V V +i-V -Vm kI n (23)

ff mn

2 V .2
ILI

F - IT +-n -4 225)
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Thus, once k is found for a unidirectional composite, a and n or, equivalently,

and can be found.

The number of independent composite moduli are t._e_ for transversely

isotropic composite, and four for orthotropic composites.

For orthotropic materials, the fai;owing relations exist:

(They apply to both constituent and composite modull.)

New Moduli Cij Engineering Constants

k(plane strain bulk E 22

modulus 2 22 +23 2 + - &,237 221 P "2

EP I E V12 E2 2

C12 : 13  1-Y3 -21"il I1 -"3-22l "12

E2 2

n+ r23

m (shear modulus at IE 2 2
w/4 from principal 2 (C2 2 -C23) 2(1+ a )
axes) 23

y(transverse shear C4 4  0 23
modulus)

it( longitudinal shear C5 5 2 C66I 2
modulus)

L2 2C 2
C-. - - 11

Ik II C2 2 + C23 11

2 [(C + )- 2 C 2C )
4(nk-A )m [ 1 (22 23 12 22 23' 2 2

2 CC-C 2

(k+m)n-L11 C227 12

S1212
2k C2 2 + C23
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2mL C 2(C2-C 2 3 )

(k + m)n it2 C C22 22

11 C2 -- Ci22 22

(k -m)nt 2  C 2
11I C23- C52

(k +o)n-L CAI C22 C12

For transversely isotropic materials mathematical relationships are the same

as above except that y = m. All the relations aboire can be applied to both

constituent and composite properties; bnrs are used to denote composite

properties, and subscripts f and m denote fibers (or fillers) or matrix,

respectively.

For isotropic materials, same as above except

k +m =n k-m = I n = ±

The relationships in terms of isotropic constants E E~nd P are:

E
k=2(I+v)(l-2v)

(j jrj2V = 2vk
#" ('I+v)(I-2vT v

n (I - = ) 1 (26)•, n= ~~~(1+00(-2yv) 2l-)

::M= Y'=ý= E(~v =G'-(1-2v)k

If fibers are transversely isotropic, e.g., Thornel fibers, the following

formulas shoud be used for the computation of the new symbols:

k ~E 2 C222(1-vz -2v! a'
J,= 2 31 =21 I-127 )FI

' E~22 (7

mn 23 2 1 '12 k, p :G12
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Using the following material properties of the constituents:

Material Epoxy Glass Boron Graphite (Thornel 40)

E 11 0. 5 x 106 psi 10.6 x 106 psi 60 x 106 psi 40 x 106 psi

E 22 0. 5 x 106 psi 10.6 x 106 psi 60 x 106 psi 1.5 x 106 psi

V12 0.35 0.22 0.2 0.2

'23 0.35 0.22 0.2 0.2

G 12  0. 185 x 106 psi 4.34 x 106 psi 25 x 106 psi 4 x 106 psi

The numerical values of the new symbols are:

Material Epoxy (psi) Glass (psi) Boron (psi) Thornel 40 (psi)

k 0.617 x 10 6  7.78x 10 6  41.67 x 10 6  3.47 x 106

(k/km) (12.6) (67.5) (5.62)

S0.432 x 10 6  3.41 x 10 6  16.67 x 10 6  1.39 x 10 6

(t/im) (7.9) (38.6) (3.21)

n 0. 802 x 10 12. 1 x 106 66.67 x 10 6  44.44 x 10

(n/nm) (15.1) (83.1) (55.42)

In = Y 0. 185 x 10 6  4.34 x 10 6  25. 0 x 10 6  2.08 x 10 6

(m/mm) (23.8) (135.1) (11.26)

tM 0. 185 x 106 4.34 x 10 6  25. 0 x 106 5.Ox 10 6

(23.8) (135. 1) (27.02)

Quantities in pirentheses are normalized properties in terms of epoxy.

The composite moduli for a maci-oscopically transversely isotropic ma-

terial, i.e., 14 ME, and j7 (F - i), can be expressed in terms of the

constituent properties as follows (after Hermans):

km(k f + Mm ) Vm+kf(km+mm)Vfk = (28)
(kfm )V +(k mm )Vf +28

"f ;m m m f

2Vf mf(km-- mm ) + 2Vm mm -+ Vkm(mf+mm!

M 2Vm (k +m )+2Vif mm +V k (m +m )="

p.: QJ.f+14 )p.) Vm + 21Lf fmVf (30)

I (pf +p.m)Vm+ 
2 p1mVf
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The mathematical model used consists of concentric cylinders surrounded by

an unbounded composite.

These formulas can be rearranged to conform to a generalized formula

as follows:

. = + Iv, (31)M ,- vf

where

Pf

m y-I(32)
P

p = a composite modulus, Z o, or I

Pf = corresponding fiber modulus, kf, mf, or ,&f, respectively;

p = corresponding matrix modulus, km, mms or 1ro, respectively;

= a measure of reinforcement and depends on boundary conditions

(the geometries of inclusions and loading conditions).

The elastic moduli for particulate (spherical inclusions) composites can also be

reduced to one generalized formula. The original formula derived by Kerner

and Hashin are:

K, V K V

3K. + 4G + 3Kf + 4G

3K m 4G 3K (33)

m m f In

VG VV

VfGM+ m(7-5V )G +(8-IOV )G 15(1-V )(7-GV)Gm m f mf4

mm Mm f M
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The composite moduli for hollow-fiber-reinforced unidirectional composites,

derived in Reference 16, can also be arranged to fit out generalized formula,

except that instead of y being the ratio of Pf/Pm' the following corrections must

be made:

t-a2 K
(I) For-k: K 232

(35)

1 -a2 Gf(2) For j = i+aG

where a is the ratio of the inside and outside radii of the hollow fiber. For

dilute composites, the generalized formula can be expanded into a power series:

S+I (I+ )Onvfu f+(t)Vf )2+-...] .r + - (36)

Pm

= I*I+)VfOnVf2 (37)

P-~ I+(I+ )Yvf (38)
m

This can be called the generalized Einstein's equation. If the inclusions are rigid,
i.e.,

PfT- = GD, then I• :I ,ond

the matrix is incompressible, i.e.,

Vm = ,and = forG

so that

II +k V (39)

This is the Einstein's original equation, intended for the viscosity of dilute

suspension.
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The limiting values of 7 are:

(1) For rigid inclusions, 71 = I

(2) For homogeneous material, 71 = 0

(3)Forvoids, p/p :0, then 1 =-I/C

f m

The limiting values of • are:

(I) ~ 0, Pi-7 V

A- Vi (40)

P p

T f "m

This is the series-connected model which gives the lower bound of a composite

modulus.

(2) 00, ??:0

tI 2 , (41)
Pm

This is the parallel-connected model, which gives the upper bound. Thus,

ois regarded as a measure of reinforcement which covers the entire possible

range of composite moduli as C goes from zero to infinity. Once the C factors

are known, the composite elastic moduli for fiber and particulate composites

are determined from the generalized formula.

Further simplifications can be made for purposes of interpolation from

existing micromechanics calculations by directly employing the engineering

constants Ef, Ems Vf, Vm, Gf, and Gm for pf and pm in Equations 31 and 32.

Thus p would yield directly an estimate of E 22 , G12, and V23 . Within the

spirit of these approximations o'-a may obtain reasonable estimates of the

composite elastic coefficients as follows:

E I 1E fV + E V 77(42)

V • fVfV+ V V (43)
Mm•

v2 -- fvt
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with

G12 /G., E12 /Emofd V2 3 ,Vm

being obtained from Equations 31 and 32 by the direct substitution of the appropriate

engineering constants for Pf/P." Reliable estimates for the C factor can be

obtained by comparison of Equations 31 and 32 with the numerical micromechanics

solutions employing formal elasticity theory. For example, Figures 11 and 12

show the predictions of Equations 31 and 32 for various reinforcements/matrix

stiffnesses and is compared with the results of Adams, Doner, and Thomas

(Reference 21). The approximate formula duplicates their results for all ratios

of pf/pm In Figures 13 and 14 we have a comparison of the dependence of

composite moduli, based upon Foye's calculations (Reference 22), as a function

of volume fraction for square fibers in a diamond array. For the predictions of

shear G12 , •G - 1 and for stiffness E2 2 , tE - 2 for the calculations shown in

Figures 11 - 14. In Figures 15 we show the results of our generalized formula

compared with the results of different micromechanics calculations. Note that

our approximate formula provides a good correlation with Foye's computations

for hexagonal array of circular fibers up to vf . 65%. At higher volume

fractions the results lie between te.• hexagonal and the square arrays. Although

there is some disparity between the results of formal analysis and our results,

in practical cases one does not employ high volume fractions of fibers, vf > 70%,

due to the impairment of the strength properties.

Further confidence can be gained in this interpolation procedure by returning

to Figures 13 and 14 and examining the dependence of the transverse stiffness

moduli and the longiudinal-transverse shear moduli upon increasing aspect

ratio for square filaments (Reference 23). The factors tE and ýG are

functions of the width thickness ratios and were found to be of the form:

t = 2(o/b)

and

log t z./3 log (o/b)
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These t factors were determined by fitting Foye's results and are represented

in graphical form in Figure 16. Results in Figures 13 and 14 indicaL good

agreement between our approximate formulas and elasticity calculations for

different aspect ratios and volume fractions. These results allow the extension

of the limited elasticity calculations to the prediction of, for example, the

dependence of the moduli, E22 and G12 , on aspect ratio, reinforcement stiffness/

matrix stiffness and volume fraction loading as illustrated in Figures 17 and 18.

On the premise that our model is a reasonable model for the determination of

composite moduli, closed form relations between the constituent moduli and the

composite moduli of laminated composites can now be derived. As shown in

Reference 18 on the invariant properties of composites, the elastic properties

of unidirectional AND laminated composites are governed by U1, U2, U3 , U4 ,

and U5 , and the lamina orientations as a function of z, i.e., 6 : O(z). The

following relations are needed:

U : (30 +30 + 20 + 40 )/8
I 11 22 12 66

U2 = Q1 1 - Q22"8

U3 = (Q!1 +'122 - 2Q12 - 4Q6 6 )/8

U4 2 IQI I + Q22- 61?2 - 4066)We

U5 = (QI I + Q22- ZQ12 + 4Q 66/8

for an orthotropic material. The components of Qij can be expressed in terms

of engineering constants if and only if Qi| is orthotropic:

Q I : E I/("-v1 PY21)

022 = E2 2 /(' - v12 v21)

Q12 = ',2 022- ' 21 QII1

Q6 6 = G12

Thus, for example, the stiffness matrix for an angle ply composite having an

angle ply angle (2a ) and any orientation angle S of the principal areas of the

laminate and the coordinate area of the applied stress can be evaluated as
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AlI z U,.+U2 cos2ocos2 4+U 3 CO 4 Cos 4

A2:U = -U2cos2ocos2 4+U 3 cos 4acos4

1A'2 = U4-U4COS 4 a Co 4
A6 = U5- U3 cos 4 a cos 4

AI16 = -I U2Cos 2 a SinZ 2) U coos4 asin 4
A26=- U C2 cos2 asin2 + U3 cos4asin4)

The inversion of AlI yields the engineering constants for the angle ply.

By using this approximate procedure for predicting moduli, elasticity re-
lations between the constituent and composite properties can be expressed in a
generalized formula. Designers can now make exact calculations, without

using computers, relating the constituent properties directly to the elastic

constants, of a laminated composite. Both constitutent materials may be
transversely isotropic. Designers can now assess the contribution of Vf P/Pm

and the reinforcing factor C to the composite moduli directly.

These results may be extended to viscoelastic computations by taking ad-

vantage of the very accurate approximation of direct substitution of pm (t/aT)

values as pointed out by Schapery.
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Figure 13. Comparison of Equations 31 and 32 with Finite Element Analysis
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