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ABSTRACT

~ The manager of a warechouse and repair facility must decide
how many spares of each of many different part types to

store in inventory so as to insure, in some sense, the
efficiency of the facility's operations. . Customers will
bring to the repair facility failed parts. . If a spare of
that part type is available from the warehouse, the customer
will receive one and leave. Otherwise he must wait until

the repair facility produces a replacement. The failed

part which was brought to the repair facility will be
repaired in order to replenish the inventory in the warehouse.

Having a budget constraint, and using information cn the
failure rates of the parts, the relative importance of each
part to the other parts, and the amount of time necessary
to repair a failed part, the manager must decide how to
optimally allocate his resources in purchasing these spare
parts. Furthermore, he might also consider allocating some
of his funds in an effort to increase the capabilities of
his repair facility.

The paper first formulates various mathematical models and
then, in each case, shows how one can obtain a sequence of
undominated solutions. { —e.
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INTRODUCTION AND SUMMARY

Let us suppose that there are many parts of different types in use
and let us assume that each of these part types is subject to stochastic
failure. We wish to set up a service facility which will repair failed
parts and will also serve as a warehouse to store an inventory of spare
parts. Let us say there are r different part types and that we have an

initial inventory of k, spares of type i . Assuming for the moment that

i
k, > 0 , the following will occur., Whenever the first failure of a part

i
of type 1 occurs, a spare from the inventory will be issued to the
customer bringing it in, and the failed part will go to the repair facility.
Some time later, another customer might come with a failed part of type 1 .
He, too, will give his failed part to the repair facility. If there is a
spare part of type 1 1in the inventory, he will immediately receive 1it.
1f not, he will have to wait and he will receive the first part of type 1
to come out of the repair facility. If a part of type i comes out ~f
tiie repair facility and no customer is queued up waiting for a part of this
type, then the part goes into the inventory of type 1 . ‘
Regardless of the situation with respect to other part types, if there
are shortages in the inventory of part type 1 , each customer vho is waiting
for part type i--called "customers of type 1"--will receive his replacement
part on a first-in-first-out (FIFO) basis. However, if a customer of type
J 1s also waiting for a part, he may or may not be given his part before
those of type 1 receive their parts, In other words, there is no queueing
discipline between types; only within types.
As an example of a "real-life" system that this paper relates to,
consider a company whichmaintains a large fleet of aircraft., These aircraft

have many different parts that are subject to wear and even failure. Such parts
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might be propellers, engines, navigational equipment, flight instruments,

etc. When a part fails, the customer brings the failed part to the repair
facility and it is hoped that there will be a spare part of the same type

to give him so as to minimize the down-time of the aircraft.

The manager of the aircraft maintenance facility must determine somehow
the number of spare parts of each type to store in his warehouse.

The problem we wish to investigate then is as follows:

How can one best allocate his resources in the purchase of spare parts
and/or additional service channels so as to minimize the expected number of
shor:ages in the inventory at some future time, long after the system has
been in operation?

Chapter 1 directs its attention to the case in which only spare parts
and no additional service channels may be purchased. The method of approach

in this chapter 1is as follows:

Section 1.1:

Under the assumptions given in Section 1.1.1, an expression 1is found
for the probability that there are n parts of type 1 in the system.

By "in the system," we mean in the repair facility, whether actually being
worked on or currently queued up waiting for servicing.

We then derive an expression for the expected number of shortages of
type i given that there were k1 parts of type 1 1initially in the inven-
tory. We will denote this by Li(ki) s

Then we show (under more general assumptions than those of Section 1l.1.1)
that Li(ki) is convex in k, .
This is followed by a discussion of the notion of dominance and the

mathematical optimization problem which is formulated.

A presentation of the algorithms of Proschan and Kettelle is given.
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Finally, a generalization is made to the case in which for any part
type, there is only a subset of the service channels which can work on it.
The possible assignment of parts to service channels in defined for a

specific case and the methods of Proschan and Kettelle are shown to apply.

Section 1.2:

An analysis is presented for the case in which there is a lag time

in the delivery of a failed part to the repair facility,

Section 1.3:

In this section we discuss rumerical soluticns to the problem as
previously defined, but for systems with genera. arrivals to the repair

facility,

Chapter 2 handles the case in which funds may be allocated to purchase

both spare parts and additional service channels.
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CHAPTER 1

OPTIMUM ALLOCATION OF RESOURCES IN THE PURCHASE OF SPARE PARTS

1.1 M/M/c Case

1,1.1 Assumptions

(1) The arrival of failed parts of type 1 form a Poisson process at rate
xi . There is no lag between the time the part fails and the time

it is brought into the repair facility by the customer. Therefore, the

arri.al of all part types to the repair facility forms a Poisson

psocess at rate A = f Ai .
i=1

(2) The repair time for all parts of all types is distributed exponentially
at rate y , and is independent of the repair time of any other part.
(3) There are c service channels, each of which can work on parts of
all types.
(4) There is no limit imposed on the number of failed parts that can queue

up in the repair facility.

1.1.2 Derivation of the Steadv State Probabilities

r
Let )\ = z Ai ; ¢ = number of service channels; and p = A/cu .
i=]1

Assume $ < 1 . So far as the repair facility is concerned, there is no

distinction among parts. Thus, we have an M/M/c"h queuéing system in which

+M/M/c--Standard notation in queueing theory. The first "M" denotes
exponential interarrival times to the system. The second 'M" denotes
exponential service in the system. The "c" means there are c¢ service
channels in the repair facility. When the first "M" 1is replaced by
"GI," 1t denotes a general distribution for the interarrival times, and
when the sccond '"M" is replaced by a "5," it denotes a general
distribution for the service time. A "D" 1in place of the second "M"
denotes deterministic service time.
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the steady state probability distribution is given by

p fLep)?

o <
o ol for n<c
P =
n
ccn
) S for n> ¢
oclp -

c-1 n c
where P'-1 - Z fe) + —f{ep) + Let
o n=0 n! c!(l - p)

Ni = number of type 1 1iu the system

r
N = number of all types together in the system, i.e., Z Ni =N
i=1

0 for n>m
- A D W
vy 1 (G-

m=n

Assume first that n <c .
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m=c+1
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3, A Ai il A - Ai
g E u A T E ¢
= P {— + m. .
1 e 1 L
o\ n! 2 (m - n)! c! nl et (m - n)!
A - Ai
Let o, = p= » ¢ measure of the traffic intensity of all types other
A
than type 1 , and let Py = 7%
p: c-n (coi)u JCmn oim—n
P(N; &m) =P = = * = I m! regen vl B
u=0 -7 m=c+l
Now,
w o M o g O-n E g B
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m=c+1 n m=n n m=n n
But,
m-n
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Proof:

By inductionon n. Let n=1

_g_( g )_(1—0)(1)-0(-1_)__ 1
do \1 -0 (1_0)2 (1_0)2

Now assume true for n and prove for n+ 1 3;i.e., assume

1"__( on)= !
n\l-o¢ n+l

do (1 - o)
4 (on+1 )g-d—lé-n—-("nﬂ )]
don+1 l-0 do da" l1-o0

Using the general formula

n n
g_: [f(x)g(x)] = ] (:)f(k)(X)g(n_k) (x)
dx k=0

where f(x) = x and g(x) = 1 ’_‘ < Ve see that

._d_.ff_(c’m-l)_..d_ 09.?._("“ )+ dn-l(on)
do 1-0 do a\l-o/ 7% n1\1-04/]"

don do do

By the induction hypothesis, and using the fact that

dn c!n-l
= [f(x)] = (£(x)] + K , we have
n n-1
dx dx
o

d on! f n! d on! n!
=== ¢ b ——g do| = + - n!
do Qa - o)n+1 : Qa - <J)n+1 do [(1 _ o)u+1 a- o" ]



. d g 1 -39 _ I § 1 (n + 1)!
nt da[ o+ T ) 1] n! do[ n+1]" : 2

1 - 0) 1 -v0) (1 - o) 1-0)
n+l ( n+l )
. d o (n + 1)!
o1 Ca = = and the lemma 1s proved.
don+1 l-o - o)n+2
Therefore, for n <c ,
n u m-n ]
p. | c-n (eo,) c-n c 0
i i n! i
PN, =n) =P —=| [ + - 1 ml )
i o n! ue0 u! c! ((1 °1)n+1 men (m - n)!
n u u, ]
p, |e-n (co,) c-n c-n o
i i c n! i
=P | 1 + - 1 @+t —
o u=0 u! c! ((1 - g )n+1 u=0 ul
L i 4
nr u u
EL c-n (coi) cn 9y S0y
ol Al ) Iy ntl | °
-U=0 !(1 oi)
Now 1f n > ¢ , the reader can see that
n m-n
p, c-n g c-n
ic i nc 1
P(N, = n) =P — ] ml ——=T »p .
i on! c! 1B (m - n)! o 1 ¢! a - 01)n+1

Thus, we have proved the following theorem:

Iheorem 1.1:

The steady state probabilities of the system under the assumptions of

Section 1.1.1 are given by

s
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pz c-n ((coi)u e n cz) LY
Po n! uZO u! c! (u + n)! ul + n+l

(1) P(Ni = n) =

Dn c-n
i c
3y e e for n > ¢
o c! a - °1)n+1 V =

1.1.3 The Expected Number of Shortages

Let

L, (k) = ) nP(N, = n+ k).
n=1

Assume k, < c -1

i
n+k
czk1 pi i c-n-ki ((cci)u cc-n-k1 c:
L, (k) = NP T - (u+n+k)! 5
R | el o (n+ ki)’ u=0 u! c! 1’ u!
c-n~-k n+k
c 1a + k)1 ® o, 1 canplsy
+ L + ] olp L <
n’ki+1 ise=k. 41 o c! n+ki+l
i
n+k
c-k1 5 i c-n-ki o )u c-n—ki ou
- Z npo (n i k,)! Z u} - cl (u+n+ ki)! :%
n=1 i u=0
n+k
- 0 i c—n-ki
+ Z nP 1 e :
a=1 o cl! n+ki+1
Q- °1)

Now the second term is equal to



n+k ki+1

el - oi) o

where ©

n=1 n=1 (1 - 01)2
k,+1
Pt
Thus, the second term equals 2 . Now if
cl(l-20)°( - o0,)
i i
- g c-n-k
! c 1
kg 2 ey Lyl = 1 onfP, = k1 |
n=1 i

a- °1)

But this is simply the second term that was just computed.

write out a general formula for Li(ki) 3

i c
© <] Pcé6 ®
P c 1 z n[ i ] o) i z n o" 1
=] =]

i

We can now

n+k > - -
c ki 5 i c n—ki (co )u c-n ki ou
P 1 ( n Y - S Wtk ut
n=1 nE K =0 L
c k1+1
c 91
+ 3 for ki <c-1
el - 61) Q- oi)
(2) Li(ki) =
k,+1
c, 1
c 01

Po 2
c!(l - 91) (L ~o0

for k, >2c -1
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1.1.4 Proof of the Convexity of L(k) in k

¢

Theorem 1.2:

Under completely general assumptions on the distribution of the
interarrival times of parts to the repair facility and on the distribution of
the service times, and allowing any number of service channels from 1 to « ,
the expected number of shortages of a part type 1s convex in the number

of spares initially in the inventory.

Proof:
Let

k = # of spares initially in the inventory

Pn = P{n parts in the system (steady or transient state)}

L(k) = [ P
n=1

8 L(k) = L(k + 1) - L(k)
AZL(k) =L(k + 2) - 2L(k + 1) + L(k)
- nzl P2~ PPopier ¥ P!

b3 ~ 2 DR +m




Note that along the indicated diagonals, the sum is zero., Thus, the

total sum is merely P 12 0./

k+

1.1.5 The Optimization Problem

1.1.5.1 Notion of Dominance

For each allocation k = (kl’kZ’ 5900 kr) » there is a value (in the
sense of "worth'") and a cost associated with it, denoted by V(k) and

C(k) respectively.

Definition: Allocation k, 1is said to dominate allocation k, 1iff

V(-lil) > V(_lgz) and C@l) < CQSZ) .

Definition: Allocation 31 is said to strictly dominate allocation k,

iff at least one of the above inequalities is strict.

Definition: Allocation k, 1s said to be undominated if there does not

exist an allocation 52 which strictly dominates 1it.

Definition: A sequence S of undominated allocations is called a complete
fanily of undominated allocations iff for every allocation k ,

efther k € S or there exists an element of S which dominates

k .

Definition: A sequence S of undominated allocation, which is not a

complete family, is called an incomplete family of undominated

allocations.

1.1.5.2 Mathematical Formulation of the Optimization Problem

Let us say that each part of type {1 has a cost ey - Thus, allocation

r

k has a cost associated with it of C(k) = [ c,k;, . Furthermore, let us

i=1

]
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say that there is a constant \ associated with parts of type 1 which

is a measure of the relative importance of part type 1 which is a measure
¥ the relative importance of part type 1 to the other parts., For example,
vy might be the cost in doullars for a shortage of part type 1 .

We wish to construct a sequence of undominated allocations to the

problem with V(k) = -W(k) , where

r
(3) W) = vl (k)
1=1
and
)
(4) ck) = ck, .
goq 14

Having this sequence of undominated allocations, one knows that if
_l_(_* is an element of the sequence then for any allocation k' with
Wk') < W(lc_*) , then it must be the case that C(k') > C(l;) .

If the sequence is an incomplete family of undominated allocations,
the following problem arises. If exactly b dollars are allotted to be
spent purchasing spare parts, and if in constructing the incomplete family
of undominated allocations one finds no solution with associated cost
exactly equal to b , but finds the two solutions _151 and _152 such that
c(gl) <b < C&z) , and Cle) is closest to b from below while C(‘SZ)

is closest to b from above, then the optimal allocation vector to the problem

Minimize W(k)

(5)
Subject to C(k) <b

might be Ll ’

which the algorithm skipped over and this allocation has coct between Cle)

but it is possible that there is an undominated allocation
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and b . In any case, if we choose allocation 31 as the optimum vector
of allocations to solve (5) above, then our error in the functional value
is no greater than W(BQ) - W(gl) and the error in the cost is no greater
than b - C(Ll) :

If, however, the generated sequ:nce is a complete family of undominated
allocations, the problem just stated does not arise. That is, the optimal

vector of allocations to (5) is k.

1.1.6 Two Algorithms to Generate Sequences of Undominated Allocations

1.1.6.1 DProschan's Algorithm

The following algorithm is taken directly from reference [1]). The

notation and wording has been only slightlychanged to be more meaningful

to this problem.

Start with the cheapest cost allocation k = (0,0, ..., O0) .
Obtain successively more expensive allocations as follows. 1If
our present allocation is k , we determine the index, say io >

for which

vy
:: ALi(ki)

is minimum over { =1,2, ..., r . (If the minimum is achieved for
more than one value of the index, choose the lowest among these.)

Then the next allocation is (kl’kZ’ 0000 ki -l’ki +1.ki +1° kr) 5
o o o

that is, we have added a single unit of the io-th type to k .

The "A" sign in the above expression is defined to be
ALi(ki) - Li(ki +1) - Li(ki) .

It can be shown that for the function Li(ki) as given in Equation (2)

(where the subscript "i" has been dropped),

el SR

Wt

Pl
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el (u+a+k)!—

cc—n-k—l ou
u!

cc6k+1
et -0)( - o)

for 0 <k<ec -2

—— o ——

(6) AL(k) =
P cc9k+1
_ o)
c!l(l -68)(1 -~ o)

for k>c~-1,

Proschan has shown that if W(k) = E viLi(ki) is convex in k ,
then the previously stated algorithm pros:tes an incomplete family
of undominated allocations. Since Section 1.1.4 shows that Li(ki) is
convex in ki » we know that W(k) is convex in k . Thus, the algorithm
applies.

It should be noted that Proschan's algorithm will handle multiple

constraints. But since this does not add to the purpose of this paper,

a discussion of multiple constraints is omitted.

1,1.6.2 Kettelle's Algorithm

In this section, we construct a complete family of undominated allo-
cations for the problem in which W(k) and C(k) are given by (3) and
(4), respectively. The method employed is that of Kettelle.

The algorithm works progressively in that it first obtains a complete
family of undominated allocations for the subsystem in which only two of
the r part types are present. Then it takes another two of the r part
types and constructs a complete family of undominated allocations for this
subsystem. Now it takes these two complete families and joins them in

such a way as to generate from them a complete family for the subsystem
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containing all four of the ;art types. The method proceeds in that manner
so that at each stage, a complete family is generated for successively
larger subsystems from two smaller subsystems. There is no requireuwent
that the subsystems be of equal size. Nor is there any requirement of
convexity of W(k) as there was in Proschan's algorithm.

For the exact algorithm at each stage, the reader is referred to
Kettelle [3].

It should be noted that Kettelle's algorithm is applicable only when
there is one cost constraint. Proschan and Bray [7]) have extended the
method, however, to multiple constraints.

As in the previous section, a discussion of the multiple constraint

case is omitted.

1.1,.7 A Simple Extension

Let Yi represent the 1-th service channel.

Let T = {all service channels} = {Yi | t=1,2, ..., ¢} !
b |
$

T(i) = {Yj | service channel Jj can service part type 1} i

Assume the following:

(1) T{H) # 0 for all {1 =1,2, ..., r . '
(2) For all § , there exists 1 such that Yj € T(1) .
(3) T(A)ST and T(i) ¥ T for all 1 =1,2, ..., r .
4) If T NT() # 0, then T() = T(J) for all 1,§ = 1,2, .0\ T . :
t\
These assumptions result in a unique partition of T into q disjoint 3
Coa

subsets,
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T = T1 + T2 + .00+ Tq .

This partitivi. then scparates the entire system into q completely
independent queueing systems.

Let each subset '1’i have a parameter associated with it which

My
is the rate at which all Yj € Ti produce exponential service.
We: now wish to find a sequence of undominated allocations to this

problem with

W) = % ) ijj(kJ)
i=1 ch1
¢))

c(k) = E ) cjkj .
kljﬂi

It is easy to see that the form of (7) in no way complicates the
method of solution as outlined in either algorithm of Section 1.1.6.
Thus, the methods of both Proschan and Kettelle readily apply to

this extensinn of the problem.

1.2 Lag in Delivery

Suppose that upon failure of a part tyre, the failed part does not
apoear instantaneously at the repair facility. Rather, let us assume
that there is a lag time D , a random variable with general distribution
H(x) (assumed different for each part type).

As in Section 1.1, let us assume that the occurrence stream of
failures of part type 1 forms a Poiason process at rate Ai . We are

interested in determining the arrival stream to the repair facility.

Dropping the subscript {1 for the moment, let us define

Sj = time the j-th failure (of part type 1) occurs



Dj = lag time for j-th failure before it appears at the repair facility

Yj = time of the j-th arrival to the repair facility (not necessarily the

same as the time the j-th failure arrives at the repair facility).

The following figure represents a possible outcome in the failure

and arrival pattern.

‘ 4

D) D, 4 D A
i [\ 1 o i [l L | [}
L U B A e A

i
51 % v 53 5, ¢ v Ss
Yl Y2 Y3 Yé
FIGURE 1.1: POSSIBLE OUTCOME IN THE FAILURE
AND ARRIVAL PATTERN
We must determine the distribution of Y - Y, , the interarrival

i+
time of failed parts to the repair facility. To do this, consider an

imaginary M/G/= queueing system. The occurrence of a part failing will
be an arrival to the imagirary system. In this imaginary system, the

part goes immediately into service, no matter how many parts have already
arrived (i.e., failed); thus, there are an infinite number of servers in
the imaginary system. The service i1s analogous to the lag time D . When
the part leaves the imaginary system, it has completed its lag time and
thus it arrives at our actual repair facility.

Therefore, we can say that the arrival stream to our repair facility
is the output stream of an M/G/~ queueing system, where the service
distribution is H(x) .

Mirasol [4] has shown that the output stream of an M/G/® queueing

system is a nonhomogeneous Poisson process such that 1f ¢(t,T) = number
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of customers to leave during (t,t + T] , then

t+T

y(t,T) -~ Poisson | A f G(x)dx]| .
t

Taking the limit as t + @ of the paramecter shows that in steady
state, the output stream is a Poisson process at rate X , the input rate.
Thus, evenxunder these more general conditions, the interarrival
times of failed parts to the system is exponential at rate A . Introducing
the subscript 1 again, we can say that the arrival stream of parts of
type {1 to the repair facility is a Polsson process at rate A, .

i
Let us say that for part type { , D ~ Hi(x) and let us let

o, = .f dei(x) , the expected value of D for the i-th part type. Let
0

wi(ki) = the expected wajiting time a customer incurs between the time the
failed part arrives to the repair facility and the time a replacement is
available for the customer, given that ki parts of type 1 are initially
in the inventory. Finally, let =9y + wi(ki) » the expected total time
a customer of type 1 must wait from the moment his part fails to the

time when he has a replacement from the repair facility,

Let us assume the following:

(1) There are an infinite number of service channels.
(2) The service time required to repair a part of type i is a random

variable with general distribution Gi(x) .

Under these assumptions, Proschan [6] has shown that the expected

number of shortages (in steady state) of parts of type 1 , given ki

of them are initially in the ianventory is given by
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3
=k, = (An)

(8) L,(k,) =e
1 kg ok 41 ! 731

where n, = _!; xdGi(x) q

In order to find wi(ki) » observe the following:
We define an imaginary queueing system (not the one previously

defined in this.section) in which the steady state probabilities In are

given by
( ki-l
1 P n=20
=0 3
I = <
n
\Pn+ki n>0

where Pn is the steady state probability that there are n of type 1
in the system.

Let J = the expected number in the imaginary system. Using the
well known relation "L = Aw" (see [2]) where L represents the expected
number in the system, ) the arrival rate of customers to the syscem, and
w the expected waiting time a customer incurs in the system, we have that
the expected waiting time in our imaginary system is J/Ai + But

J = Li(ki) . Therefore,
9) wi(ki) = Li(ki)/)‘i ;

1f Ty @ defined earli~r in this section, is the expected total
time a customer of type 1 must wait from the moment his part fails to the

time when he has a replacement from the repair facility, and if the
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probability that an arbitrary customer is of typc 1 is Ailk » then the

expected total waiting time of an arbitrary customer is given by

r AT
i1
z I\ =(

r r
) Aoyt Y )\iwi(ki))/)\ .

i=1 i=1

Introducting the constants v, as was done previously, and using (9),

- r
(10) W) = ( )

r
Avo, + vL(k))/x.
PR N A T T o !

Since be Section 1.1.4 Li(ki) is convex in ki , 1t follows that W(k)
is convex in k . This being the case, both the algorithm of Proschan and
that of Kettelle apply.

It 1s interesting to note that whether one applies one algorithm or
the other, the resulting sequence of undominated allocations will be
identical to the resulting sequence 1f he had applied the same algorithm
to the problem of minimizing the weighted sum of the expected number of

shortages. That this is true 1s evident from (10).

1.3 Systems with General Arrivals

1.3.1 GI1/D/> Case

Assume the distribution of the interarrival times to the repair facility
to be Gi(x) for the 1i-th part type. Assume further that the service
distribution for this part type is deterministic at value d1 » Finally,
assume that there are an infinite number of servers available to work on
failed parts. Thus, the underlying queueing system is agsumed to be GI/D/x .

Let us solve for the steady state probabilities of this system,

Let Pn(t) = P{n parts of type 1 1in system at time t} . Then,




Pn(t + di) + Z Pj(t)'P{n parts of type 1 arrive during the interval
3=0

(t,t + dil} . Since the infinite sum above is one, we have as t +

P = P{n parts of type 1 arrive during an interval of length di’ "long

after" the system has been in operation} .

Assume initially that n > 1 . Let us condition on the arrival of the
first of these n arrivals, Suppose it occurs x wunits of time after the
interval has started, and since n>1 , 0 < x < di « Then during the
rerainder of the interval, d1 - X , exactly n - 1 arrivals must occur,

Figure 1.2 illustrates this discussion,

i
e —
| 1 | t
1 !

first n-1l arrivals
arrival during this
interval

FIGURE 1.2: ARRIVALS DURING INTERVAL OF LENGTH d1

Now the probability of exactly n - 1 arrivals during the interval of

length di - x 1is given by

(n-1)

Gy

@, -0 -6V, -x

i

In order to determine the distribution of x , we note that x 1s the

where an) is the n-fold convolution of G, with itself.

"resjdual life'" or "excess time" until another arrival occurs. It is known

19
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(see [8)) that in steady state, the excess time has thte "equilibrium

distribution” of G denoted by Gi , where

i 1

t

ey L

HAOR, / (1 - 6, ()]du
0

and pi = ‘g udGi(u) .

Thus, unconditioning the above nrobability expression, we have for

n>1,

d

i
(11.a) P_-= / [cf“’l)(d1 - x) - cf“) 4 - x)] acs ()
A)

For n=20,

e
(11.b) =1 - Gi(di) .

Po

The expected number of shortages of part type 1 1is given by

d

- 1 [ (k=1 (o, ) ] -

(12) L (k) = nzl a / G, @, -0 -6 @, - »|deiw] .
0

Since by Section 1.1,4, Li(ki) is convex in ki y we know that
r

W) = J ViLi(ki) is convex in k and either of the algorithms of
i=1 ’
section 1.1.6 apply to generate a sequence of undominated allocations.

As done in Section 1.2, we could apply "L = AW" if we desired to

minimize the expected waiting time instead of the expected number of shortages.

However, as was the case in Section 1.2, the resulting optimal allocation

DR -

R ——
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vector, gf , would be identical to the optimal allocation vector obtained
in minimizing the expected number of shortages.

It should be mentioned that even though one might have an analytical
expression for Gi(x) » he will not, in general, be able to get a vorking
expression for Gin)(x) , or for that matter, Equations (11.a) and (11.b).
Therefore, he will have to resort to a numerical solution to solve (11).
This, though possibly time consuming even on a high speed computer, should

not present too great a difficulty.

1.3.2 GI1/G/c--Simulation Studies

In some cases, it will not be feasible to make the simplifying
assumptions of the previous sections with regards to the arrival stream
and/or the distribution of service times. Unless one is able to derive
an analytical expression for {Pn} under his particular set of assumptions,
he will be forced to use simulation. If one uses simulation, there 1is, of
course, no restriction on the number of service channels he may specify
for the model.

Having obtained the {Pn} through simulation, one may then numerically
proceed with the analysis to obtain an expression for W(k) , and, by
virtue of Section 1.1.4, he may apply either of the algorithms of Section

1.1.6.



22

CHAPTER 2

OPTIMUM ALLOCATION OF RESOURCES IN THE PURCHASE OF SPARE PARTS
AND ADDITIONAL SERVICE CHANNELS

2.1 Introduction

Consider the problem of Section 1.1 with the following change.
Instead of being allowed to spend the resources only on spare parts of
each type, we are now allowed to allocate an unspecified proportion of
the money to purchase (or create) additional service channels. How then

should we allocate our resources?

2,2 Algorithm

We assume we start with ¢ service channels and the cost of these is
zero. Let s be the number of additional channels, and let Q(.) be the

cost to purchase them, Twu assumptions on Q(s) are made:

(1) 4Q(s) =Q(s +1) - Q(s) >0 for all s = 0,1,2, ...
(2) 1im Q(s) = =
g

In view of Assumption (2), and since it is not unreasonable to assume
a space constraint, let us say that under no circumstances will we purchase
more than q additional service channels.

We now wish to construct a complete family of undominated allocations
to this generalized problem. The algorithm that we will employ is as

follows:

I. Using Kettelle's algorithm, assume c¢ + s service channels, and
construct a complete family of undominated allocations. Do this
for s = 0,1,2, ..., q .

II. Construct the following table:
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# of
Service Zero-th First n—-th
Channels Allocation Allocation Allocation
c (g_’o ’woo) (kol ’b01 ,wol) L] ] 1] . . %n’bon’won) . » .
SRg L @bygsHyp) | QypobypsWyy) e o e e | Gy by oWy
SR @bggoWpg) | GeyyabpysWp) | o v v v o ] GepobyaWip ) o
c + q (O,bqo,wqo) (qul’bql’wa) . . . . ) @qn,bqn,qu). 2 .
where gin is the n~-th member of the complete family of
undominated allocations, assuming c¢ + i service channels,
b is the cost of the allocation vector k plus the cost
in =in
Q(i, of 1 additional service channels, and win is the
functional value W(gin) 5
ITII. t =1
Uy obpsW) = (0,00,
jo =1 ; ji =0 for all {1 =1,2, ..., q .
1v.

i = 0. Compare Wt to wiji

(a) If W ¢ wij1 » set j, = j, +1 and repeat 1V-(a)

(b) 1If wt > W , continue

iji

i=1+1
If {1 >q, go to V

Otherwise, go to IV-(a) .



24

Vo t=t+1

Let s be the index such that
b = Min 3b : .
s",s i iji

If there is a tie, choose s such that WB is the ainimum of

js
all those with equal cost.

Set (kb W) = (g?j ,bsjs,wsjs)

3 =4, + 1

s

Go to Step IV .

The resulting sequence represents a complete family of undominated

allocations for the generalized problem, as proved in Theorem 2.1.

Theorem 2.1:

The allocations obtained using I-V constitute a complete family of

undominated allocations.

Proof:

First we will show that all allocations found by the procedure are

undominated.

Assume the contrarv. Say there exists m,t such that Wm < wt and
bm < bt , and both of these solutions were picked by the procedure.

Steps IV and V tell us this is not possible because if allocation ¢t
were chosen, then any succeeding choice would have higher cost and lower
functional value.

Now suppose m 1s such that allocation m was not chosen by the

procedure. And let us say that allocation m dominates allocation 2z which

the procedure chose. Denote this by



A >

A
z
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By the definition of dominance in Section 1.1.6.1,

A>ASUW <V
m 2z m z

and b < b
m z

Let the sequence of chosen allocations be

S e’ (Al’Az, seey An,A

Ol ol | (=5 AP o

n+l’ z

Let n be such that b < b < b .
n m n+l
Since wz < wn+1 and Wm < Wz » we have wm < Wn+1 which implies Am
dominates all allocations from A to A .
n+l z

Vhen An+1

was chosen as the allocation after An , either Am was

"checked" or 1t was not. By 'checked," we mean that in Step V, A, vas

one of the q + 1 allocations which were compared. If Am was Indeed

checked, then by virtue of this fact,

(13) ko<W, and b > b -
Since An+l was also checked,

(14) W, <W and b . >b
Since by Assumption Am > An+1 ~

(15) wm < wn+1 < wn and bn < bm <b

n+l

But i{ this is true, Am would have bcen chosen over An+1 , and

A would never have been chosen.

nt+l

Thus, A
m

could not have been checked.
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Now 1f Am war ot checked, there are two possibilities,

(1) A was already discarded as a possible choice. -

(i1) A, has not yet been checked.

Suppose (i) is the case. But since Wm < Wn , Am could not have been

discarded because Step IV of the procedure will discard Am only if

LS LA Therefore, (i) is not possible.

Suppose (i1) occurs. This means there exists A, in the same row of

the table as Am such that

(16) W <W and b >b .
m v m v

Le: us say that Av is being checked as a possibility to become An+1 .

First note that Av could not have been the one chosen for An+1 -

because Am> An+l , but Am" Av .
Now since Av was checked, the algorithm says

(17) Wv < Wn and bv > bn .

And since A was checked and chosen over A ,
n+l v

(18) wn+1 < Wn and bn+1 > bn
and
(19) b <b

Inequalities (16) - (19) imply

bm > bv > bn+1> bn .



But we have alreai; said that bn+1 > bm > bn .

Thus, (ii) is not possible and we have shown that no allocation in
the table dominates a chosen allocation,

In order to prove that all chosen allocations are undominated, it
remains to show that if we have an allocation Am which Kettelle's
algorithm did not choose when Step I was performed, then Am could not
dominate any chosen allocation in S ,

Assume otherwise. That is, there exists Az € S such that Am> Az .
Since Kettelle's algorithm did not choose Am » there exists At » an
allocation with the same number of additional service channels as in

allocation A_, such that A > A .
m t m

Now At ¢S, for if it were, then since
At> Am> A,

we would have two chosen allocations in S , one of which dominates the

other. This 1is not possible.

27

But even if At were not chosen, we have just proved that no allocation

in the table (such as At) dominates a chosen allocation in S (such as
Az).

Now we must show the :onverse; 1i.e., if Am ¢ S, there exists
A_ €S such that A_> A_ .

z z m

Since Am ¢ S , there had to be some point at which it was eliminated
frem further consideration to become a member of S . Let us sav that Am
was eliminated when we were looking for Av+1 y having just chosen Av .

If Am was eliminated, then Step IV says that wv S Wm and since Am
was checked, b > b .,

™ v

Thus, Av > Am and there exists a chosen allocation which dominates

A ./
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It should be noted that the chosen sequence of allocations might
have elements which would be dominated by an allocation in which the number
of service channels exceeds ¢ + q . But since we have said that c + q
is the maximum number of service channels which we will consider, there 1is

no need to be concerned over this.




(1)

(2]

(3)

(4]

(5]

(6)

(7]

(8]
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