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ABSTRACT 

The manager of a warehouse and repair facility must decide 
how many spares of each of many different part types to 
store in Inventory so as to insure, in some sense, the 
efficiency of the facility's operations.  Customers will 
bring to the repair facility failed parts.  If a spare of 
that part type is available from the warehouse, the customer 
will receive one and leave.  Otherwise he must wait until 
the repair facility produces a replacement. The failed 
part which was brought to the repair facility will be 
repaired in order to replenish the inventory in the warehouse. 

Having a budget constraint, and using information en the 
failure rates of the parts, the relative importance of each 
part to the other parts, and the amount of time necessary 
to repair a failed part, the manager must decide how to 
optimally allocate his resources in purchasing these spare 
parts. Furthermore, he might also consider allocating some 
of his funds in an effort to increase the capabilities of 
his repair facility. 

The paper first formulates various mathematical models and 
then, In each case, shows how one can obtain a sequence of 
undomlnated solutions. (   «;;  
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INTRODUCTION AND SUMMARY 

Let us suppose that there are many parts of different types In use 

and let us assume that each of these part types Is subject to stochastic 

failure. We wish to set up a service facility which will repair failed 

parts and will also serve as a warehouse to store an inventory of spare 

parts. Let us say there are r different part types and that we have an 

initial inventory of k.  spares of type i .  Assuming for the moment that 

k> 0 , the following will occur. Whenever the first failure of a part 

of type i occurs, a spare from the inventory will be issued to the 

customer bringing it in, and the failed part will go to the repair facility. 

Some time later, another customer might come with a failed part of type 1 . 

He, too, will give his failed part to the repair facility. If there is a 

spare part of type 1  in the inventory, he will immediately receive it. 

If not, he will have to wait and he will receive the first part of type  1 

to come out of the repair facility. If a part of type i comes out of 

tiie repair facility and no customer is queued up waiting for a part of this 

type, then the part goes into the inventory of type 1 . v 

Regardless of the situation with respect to other part types, if there 

are shortages in the Inventory of part type 1 , each customer who Is waiting 

for part type 1—called "customers of type 1"—will receive his replacement 

part on a first- in-first-out (FIFO) basis. However, if a customer of type 

J  Is also waiting for a part, he may or may not be given his part before 

those of type 1 receive their parts. In other words, there Is no queuelng 

discipline between types; only within types. 

As an example of a "real-life" system that this paper relates to, 

consider a company which maintains a large fleet of aircraft. These aircraft 

have many different parts that are subject to wear and even failure.  Such parts 
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might be propellers,  engines, navigational equipment,  flight  Instruments, 

etc.    When a part falls,  the customer brings the failed part  to the repair 

facility and It Is hoped that there will be a spare part of  the same type 

to give him so as to minimize the down-time of the aircraft. 

The manager of the aircraft maintenance facility must determine somehow 

the number of spare parts of each type to store In his warehouse. 

The problem we wish to Investigate then Is as follows: 

How can one best allocate his resources In the purchase of spare parts 

and/or additional service channels so as to minimize the expected number of 

shortages In the Inventory at some future time, long after the system has 

been in operation? 

Chapter 1 directs Its attention to the case In which only spare parts 

and no additional service channels may be purchased.    The method of approach 

in this chapter Is as follows: 

Section 1.1; 

Under the assumptions given in Section 1.1.1, an expression is found 

for the probability that there are n parts of type 1 in the system. 

By "in the system," we mean in the repair facility, whether actually being 

worked on or currently queued up waiting for servicing. 

We then derive an expression for the expected number of shortages of 

type i given that there were k. parts of type 1 initially in the inven- 

tory. We will denote this by L (k ) . 

Then we show (under more general assumptions than those of Section 1.1.1) 

that L.(k.) is convex In k. . 

This is followed by a discussion of the notion of dominance and the 

mathematical optimization problem which is formulated. 

A presentation of the algorithms of Proschan and Kettelle is given, 
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Finally, a generalization is made to the case in which for any part 

type, there is only a subset of the service channels which can work on it. 

The possible assignment of parts to service channels in defined for a 

specific case and the methods of Proschan and Kettelle are shown to apply. 

Section 1.2; 

An analysis is presented for the case in which there is a lag time 

in the delivery of a failed part to the repair facility. 

Section 1.3: 

In this section we discuss numerical solutions to the problem as 

previously defined, but for systems with generax arrivals to the repair 

facility. 

Chapter 2 handles  the case in which funds may be allocated to purchase 

both spare parts and additional service channels. 
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CHAPTER 1 

OPTIMUM ALLOCATION OF RESOURCES IN THE PURCHASE OF SPARE PARTS 

1.1 M/M/c Case 

1.1.1 Assumptions 

(1) The arrival of failed parts of  type    1    form a Polsson process at rate 

X     .    There is no lag between the time the part falls and the  time 

it  is brought  into the repair facility by the customer.    Therefore, the 

arrl\al of all part  types  to the repair facility forms a Poisson 

PiOccss  at rate    X ■    £    X.   . 
i-1 

(2) The repair time for all parts of all types is distributed exponentially 

at rate y , and is independent of the repair time of any other part. 

(3) There are c service channels, each of which can work on parts of 

all types. 

(4) There is no limit Imposed on the number of failed parts that can queue 

up in the repair facility. 

1.1.2 Derivation of the Steady State Probabilities 

r 
Let X ■ ^ X. ; c « number of service channels; and p ■ X/cy . 

i-1 

Assume p < 1 . So far as the repair facility is concerned, there is no 

f 
distinction among parts. Thus, we have an M/M/c queueing system in which 

M/M/c—Standard notation in queueing theory. The first "M" denotes 
exponential interarrival times to the system. The second "M" denotes 
exponential service in the system. The "c" means there are c service 
channels in the repair facility. When the first "M" is replaced by 
"GI," it denotes a general distribution for the Interarrival times, and 
when the second "M" is replaced by a "G," it denotes a general 
distribution for the service time. A "D" in place of the second "M" 
denotes deterministic service time. 
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Proof! 

By Induction on    n .    Let    n ■ 1 

d0 V1 ' 'I ' (1 - a)2 J  (1 - o) 2  * 

Now assume true for n and prove for n + 1 ; i. e. f assume 

do011"0' 

n! 

(1 - o) 
n+1 

.n+l 

da n+1 
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\1 - a/ " do ldon \1 - o/J " 

Using the general formula 

10' ^-[f(x)g(x)]  -    I    (C]f(k)(x)g(n-k)(x) 
dxn k-0 

where    f(x) = x    and    g(x) ■ "r-^—   we see that 

do [5 (T^)] ■ Ä [^ (r^) ^ fs^r (T47)] • 
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Thus, we have proved the following  theorem: 

Theorem 1.1; 

The steady state probabilities of the system under the assumptions of 

Section 1.1.1 are given by 
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1.1.3 The Expected Number of Shortages 

Let 
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cl(l - a^  1 , 
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^ > c  ,  ^(kj) I    n 

n+k. 

o      c! 

c-n-k. 

(1 - o^ 
n+k +1 

But this Is simply the second term that was just computed. We can now 

write out a general formula for L.(k.)  . 

c-k,          Ä       1      c-n-k, / / „ xU        c-n-k. u v 
r1      _Pi       r    1 ( (cqi) c it    +      +.,fM 

n=l 1        u=0 

k.+l 

c!(l - Q^d - oi) 
for    k.  < c - 1 

(2)    I^Ckj) - 

k,+l 

(i - Q4ra - o4) 
for    k.  > c - 1 



1.1.A Proof of t^e Convexity of L(k) in k 

Theorem 1.2; 

Under completely general assumptions on the distribution of the 

Interarrlval times of parts to the repair facility and on the distribution of 

the service times, and allowing any number of service channels from 1 to   *> , 

the expected number of shortages of a part type Is convex In the number 

of spares Initially In the Inventory. 

Proof; 

Let 

k «■ # of spares Initially In the Inventory 

P ■ P{n parts In the system (steady or transient state)} 
n 

L(k) - I   nP 
n-1 

n+k 

A L(k) - L(k + 1) - L(k) 

^L(k) - L(k + 2) - 2L(k + 1) + L(k) 

I    n[P 
n-1 

- 2P     + P  1 
n+k+2   n+k+1   n+k" 

n      Pk+n+2-2 

+ <n + 1>Pk+n+3 " 2(n + 1)Pk+n+2 + (n ^ 



Note that along  the Indicated diagonals,   the sum is  zero.    Thus,   the 

total sum is merely    *V. ■,   > 0 .  // 

1.1.5    The Optimization Problem 

1.1.5.1 Notion of Dominance 

For each allocation k ■ (k-.k» k ) , there is a value (In the 

sense of "worth") and a cost associated with it, denoted by V(k) and 

C(k) respectively. 

Definition; Allocation k, is said to dominate  allocation k- iff 

VCkj) > V(k2) and CO^) < C(k2) . 

Definition:    Allocation    k,     is said to etriatly dominate allocation    k- 

iff at least one of the above inequalities is strict. 

Definition:    Allocation    k,    is said to be undominated if there does not 

exist an allocation    k.    which strictly dominates it. 

Definition; A sequence S of undominated allocations is called a complete 

fanily of undominated allocations iff for every allocation k , 

either    k c S    or there exists an element of    S    which dominates 

K • 

Definition;    A sequence     S    of undominated allocation, which is not a 

complete family,  is called an incomplete family of undominated 

allocations. 

1.1.5.2 Mathematical Formulation of the Optimization Problem 

Let us say  that each part of  type    1    has a cost    c.   .    Thus,  allocation 
r 

Jt has a cost associated with it of C(k) • ^ c.k. . Furthermore, let us 
1-1 x  i 
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say that  there Is a constant    v      associated with parts of  type    1   which 

is a measure of the relative importance of part type    i    which is a measure 

*  the relative importance of part  type    i    to the other parts.    For example, 

v      night be the cost in dollars for a shortage of part  type    1  . 

We wish to construct a sequence of undomlnated allocations to the 

problem with    V(k) - -W(k)   , where 

r 
(3) W(k)  -    I    v L  (k.) 

1-1    1 1    1 

and 

r 
(4) COt) «    I    c.k.   . 

1-1    1 1 

Having this sequence of undomlnated allocations,  one knows  that if 

* 
J(  is an element of the sequence then for any allocation Jc  with 

WQc.') < W(k ) , then it must be the case that CQc') > C(k ) . 

If the sequence is an Incomplete family of undomlnated allocations, 

the following problem arises. If exactly b dollars are allotted to be 

spent purchasing spare parts, and if in constructing the incomplete family 

of undomlnated allocations one finds no solution with associated cost 

exactly equal to b , but finds the two solutions k.  and k_ such that 

CCkj) < b < C(k2) , and CQt,) is closest to b from below while CQc«) 

is closest to b from above, then the optimal allocation vector to the problem 

Minimize U(k) 

(5) 
Subject to C(k) < b 

might be k, , but It is possible that there is an undomlnated allocation 

which the algorithm skipped over and this allocation has cort between CQc.) 
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and b .  In any case, If we choose allocation k. as the optimum vector 

of allocations to solve (5) above, then our error In the functional value 

Is no greater than WQt.) - W(k,) and the error in the cost is no greater 

than b - CQc.) . 

If, however, the generated sequence is a complete family of undomlnated 

allocations, the problem just stated does not arise. That is, the optimal 

vector of allocations to (5) is k, . 

1.1.6 Two Algorithms to Generate Sequences of Undomlnated Allocations 

1.1.6.1 Proschan's Algorithm 

The following algorithm is taken directly from reference [1].  The 

notation and wording has been only slightly changed to be more meaningful 

to this problem. 

Start with the cheapest cost allocation k « (0,0 0) . 
Obtain successively more expensive allocations as follows.  If 
our present allocation is k , we determine the index, say 1  , 
for which 

^ W 

is minimum over    i ■ 1,2,   ...,  r  .     (If  the minimum is achieved for 
more than one value of the index,  choose the lowest among these.) 
Then the next  allocation is    (^i»^?'   ■*',  ^  -I'^S  "H'Ki  +i»   •••» ^r)  » 

' o o o ' 
that is, we have ai!d*d a single unit of the i -th type to k . o ~" 

The    "A"    sign in the above expression is defined to be 

AL^) - L^kj + 1) - L1(ki)   . 

It can be shown  that  for the function    L. (k.)    as given in Equation  (2) 

(where the subscript    "i"    has been dropped), 
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P o 

Ic-k-1   0
n+'c  c-n-k-1 ri \   /    \u 

nll    n (" + kTT  j0  [U + k + 1 - V ul 

/o(u -h n + k -H)   \  c^"-^1 ,     t M, o
ul 

" \      n + k + i  " c/ "~7i— (u + n + «' ^TJ 

cC9k+1 

cl(l - e)(l - a) for 0 < k < c - 2 

(6) AL(k) -i 

p ccek+1 

for k > c - 1 . c!(l - 8)(1 - a) 

r 
Proschan has shown that if W(k) ■ £ v.L. (k.)  Is convex In k , 

1"1 
then the previously stated algorithm produces an incomplete family 

of undominated allocations. Since Section 1.1.4 shows that 1.. CO is 

convex in k. , we know that W(k) is convex in k  ,    Thus, the algorithm 

applies. 

It should be noted that Proschan's algorithm will handle multiple 

constraints. But since this does not add to the purpose of this paper, 

a discussion of multiple constraints is omitted. 

1.1.6.2 Kettelle's Algorithm 

In this section, we construct a complete family of undominated allo- 

cations for the problem in which W(k) and C(k) are given by (3) and 

(4), respectively. The method employed is that of Kettelle. 

The algorithm works progressively in that it first obtains a complete 

family of undominated allocations for the subsystem in which only two of 

the r part types are present. Then it takes another two of the r part 

types and constructs a complete family of undominated allocations for this 

subsystem.  Now it takes these two complete families and Joins them in 

such a way as to generate from them a complete family for the subsystem 
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containing all four of the part types. The method proceeds in that manner 

so that at each stage, a complete family Is generated for successively 

larger subsystems from two smaller subsystems. There is no requirement 

that the subsystems be of equal size. Nor Is there any requirement of 

convexity of W(k) as there was in Proschan's algorithm. 

For the exact algorithm at each stage, the reader is referred to 

Kettelle [3]. 

It should be noted that Kettelle's algorithm Is applicable only when 

there Is one cost constraint. Proschan and Bray [7] have extended the 

method, however, to multiple constraints. 

As In the previous section, a discussion of the multiple constraint 

case Is omitted. 

1.1.7 A Simple Extension 

Let y.     represent the 1-th service channel. 

Let T - {all service channels} ■ (YJ I i " 1»2 c) 

T(l) ■ (y. I service channel J  can service part type 1} 

Assume the following: 

(1) T(l) ^ 0 for all 1 - 1,2, .... r . 

(2) For all    J   ,  there exists    1    such that    y.  t T(l)   . 

(3) T(i) c T    and    T(i) ^ T    for all    1 - 1,2,   .... r  . 

(4) If    T(i) 0 T(j) t 0 ,  then    T(i) - T(j)    for all    i.j -  1,2 r  . 

These assumptions result In a unique partition of    T    into    q    disjoint 

subsets. 

■ 
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T - T.  + T0 + ...  + T     . 12 q 

This  partition then separates   the entire system into    q    completely 

independent queuelng systems. 

Let each subset    T.     have a parameter    y      associated with it which 

Is  the rate at which all    Y,  e T      produce exponential service. 

We now wish to find a sequence of undomlnated allocations  to this 

problem with 

W(k) 

(7) 

C(k) 

1-1 jcT^    J  J     :, 

I        I    c k    . 
i-1 JET1    J J 

It is easy to see that the form of (7) in no way complicates the 

method of solution as outlined in either algorithm of Section 1.1.6. 

Thus, the methods of both Proschan and Kettelle readily apply to 

this extension of the problem. 

1.2 Lag in Delivery 

Suppose that upon failure of a part type, the failed part does not 

appear instantaneously at the repair facility. Rather, let us assume 

that there is a lag time D , a random variable with general distribution 

H(x)  (assumed different for each part type). 

As in Section 1.1, let us assume that the occurrence stream of 

failures of part type i forpis a Poisson process at rate X . We are 

interested in determining '.he arrival stream to the repair facility. 

Dropping the subscript i  for the moment, let us define 

S. - time the J-th failure (of part type i) occurs 
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D = lag time for j-th failure before It appears at the repair facility 

Y. ■ time of the j-th arrival to the repair facility (not necessarily the 

same as the time the j-th failure arrives at the repair facility). 

The following figure represents a possible outcome in the failure 

and arrival pattern. 

-H-+ H h 
S3    S4 

4-H- 
***^ 

FIGURE 1.1:     POSSIBLE OUTCOME IN THE FAILURE 

AND ARRIVAL PATTERN 

We must determine  the distribution of    Y        - Y.   ,   the interarrlval 

time of  failed  parts  to  the repair  facility.    To do this,   consider an 

imaginary    M/G/0"    queuelng system.    The occurrence of a part  failing will 

be an arrival  to  the imaginary system.     In this  imaginary system,   the 

part goes  immediately into service,  no matter how many parts have already 

arrived   (i.e.,   failed);   thus,  there are an infinite number of servers In 

the  imaginary system.    The service  is analogous  to the lag time    D  .    When 

the part  leaves  the imaginary system,   it has completed its  lag time and 

thus it arrives at our actual repair  facility. 

Therefore, we can say that  the arrival stream to our repair facility 

is  the output  stream of an    M/G/00    queuelng system, where  the service 

distribution is    H(x)   . 

Mlrasol  [A]  has shown that  the output stream of an    M/G/00    queuelng 

system is  a nonhomogeneous Poisson process such that if    4»(t,T)  ■ number 

. tomiUtt 
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of customers to leave during (t,t + T] , then 

t+T 

^(t,T) - PolssonlX  /  G(x)dxj . 

Taking the limit as  t -♦■ <D of the parameter shows that In steady 

state, the output stream Is a Polsson process at rate X , th& Input rate. 

Thus, even under these more general conditions, the Interarrlval 

times of failed parts to the system is exponential at rate X .  Introducing 

the subscript 1 again, we can say that the arrival stream of parts of 

type 1 to the repair facility is a Polsson process at rate X  . 

Let us say that for part type 1 , D ' H.(x)  and let us let 

00 

o. - J xdH. (x) , the expected value of D for the 1-th part type.  Let 

w,(k.) ■ the expected waiting time a customer incurs between the time the 

failed part arrives to the repair facility and the time a replacement is 

available for the customer, given that k.  parts of type i    are initially 

in the inventory.  Finally, let T ■ o + w.(k ) , the expected total time 

a customer of type  1 must wait from the moment his part fails to the 

time when he has a replacement from the repair facility. 

Let us assume the following: 

(1) There are an infinite number of service channels. 

(2) The service time required to repair a part of type 1 is a random 

variable with general distribution G.(x) . 

Under these assumptions, Proschan [6] has shown that the expected 

number of shortages (in steady state) of parts of type 1 , given k. 

of them are initially in the Inventory is given by 
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(8) W -Xi\ 

J-ki+1 
kl) 

(A1n1)J 

_ 

where     ^4  '   J    xdGJ(x)   • 
0 1 

In order to find    w.(k.)   ,  observe the following: 

We define an Imaginary queuelng system  (not  the one previously 

defined  In this section)  In which  the steady state probabilities    I      are 

given by 

I    - n 

V1 

j-0    J 

n+k. 

n - 0 

n > 0 

where    P       is  the steady state probability  that  there are    n    of type    1 

In  the system. 

Let    J ■ the expected number  In the Imaginary system.    Using the 

well known relation    "L - Xw"     (see   [2]) where    L    represents the expected 

number In  the system,     X    the arrival rate of customers  to the system,  and 

w    the expected waiting time a customer incurs  in the system, we have that 

the expected waiting time in our  imaginary system is    J/X.   .    But 

J - L.(k  )   .    Therefore, 

(9) Wl(ki) ' W^i  • 

If     T.   ,  as defined earlier  in this section,  is  the  expected total 

time a customer of  type    1    must wait from the moment his  part fails  to the 

time when he has a replacement  from the repair facility,   and if the 
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probability that an arbitrary customer  is of   type    i    is    X /X   ,   then the 

expected  total waiting time of an arbitrary  customer is given by 

Introductlng the constants    v      as was done previously,  and using  (9), 

do)     w(k) •= n v^+1 viLi(ki))A • 

Since be Section  1.1.4   L.(k )    is convex in    k    ,  it follows  that    WQc) 

Is convex in    k  .    This being the case,  both  the algorithm of Proschan and 

that of Kettelle apply. 

It is interesting to note that whether one applies one algorithm or 

the other,   the resulting sequence of undominated allocations will be 

identical to the resulting sequence if he had applied the same algorithm 

to the problem of minimizing the weighted sum of the expected number of 

shortages.    That  this  is true is evident from  (10). 

1.3    Systems with General Arrivals 

1.3.1    GI/D/" Case 

Assume the distribution of the interarrival times to the repair  facility 

to be    G. (x)     for  the    i-th    part  type.    Assume further that the service 

distribution for  this part type is deterministic at value    d.   .     Finally, 

assume that there are an infinite number of  servers available to work on 

failed parts.     Thus,   the underlying queueing system is assumed  to be    GI/D/"  . 

Let us solve for  the steady state probabilities of this system. 

Let    P  (t)  = P{n    parts of type    i    in system at time    t}   .    Then, 
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P (t + d.) + I    P. (t)»P{n parts of type 1 arrive during the interval 
n    1  j-0 •' 

(t,t + d.]} . Since the infinite sum above is one, we have as t -»■ " 

P «= P{n parts of type i arrive during an interval of length d., "long 

after" the system has been in operation} . 

Assume initially that n >. 1 . Let us condition on the arrival of the 

first of these n arrivals.  Suppose it occurs x units of time after the 

interval has started, and since n>l,0<x<d. . Then during the 

remainder of the interval, d. - x , exactly n - 1 arrivals must occur. 

Figure 1.2 illustrates this discussion. 

0 
-m 1—i- 

x ! 
first   n-1 arrivals 

arrival  during this 
interval 

FIGURE 1.2:  ARRIVALS DURING INTERVAL OF LENGTH d 
1 

Now the probability of exactly n-1 arrivals during the Interval of 

length d. - x is given by 

Gin"1)(di -X) " Gin)Wl-x> 

where G    is the n-fold convolution of G.  with itself. 

In order to determine the distribution of x , we note that x is the 

"residual life" or "excess time" until another arrival occurs. It is known 
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(see [8]) that in steady state, the excess time has the "equilibrium 

distribution1 of G. , denoted by G  , where 

*o - - / [1 - G1(u)]du 

no 

and VJ  "   J     udG (u) . 

Thus, unconditioning the above probability expression, we have for 

n > 1 , 

di r 1 

(11.a)  p
n -  /"  

GJn"1)<di " x> " Gin)(di " x) dGi(x) • 

For n = 0 , 

(11.b) P0 " 1 " Gl(di) ' 

The expected number of  shortages of part type    i    is  given by 

d, 
-      /   /•    f (n+k.-l) (n+k.) "I     t 

(12)    ^(k^  -    I    M/     [Gj (d1 - x) - G1      1  (d1 - y)JdGj (x)     . 

Since by Section 1.1.4,    L. (k.)     is convex in    k.   , we know that 
r 

^Ck) ■    1    V.L. (k.)    is convex in    k    and either of  the algorithms of 
i«!    1  i    1 

section  1.1.6 apply to generate a sequence of undominated allocations. 

As done  in Section 1.2, we could apply    "L ■ XW"    If we desired to 

minimize  the expected waiting time instead of the expected number of shortages. 

However,  as was  the case In Section 1.2,   the resulting optimal allocation 
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vector, Je  , would be identical to the optimal allocation vector obtained 

in minimizing the expected number of shortages. 

It should be mentioned that even though one might have an analytical 

expression for G.(x) , he will not, in general, be able to get a vorking 

expression for G^n (x) , or for that matter. Equations (11.a) and (11.b). 

Therefore, he will have to resort to a numerical solution to solve (11). 

This, though possibly time consuming even on a high speed computer, should 

not present too great a difficulty. 

1.3.2 GI/G/c—Simulation Studies 

In some cases, It will not be feasible to make the simplifying 

assumptions of the previous sections with regards to the arrival stream 

and/or the distribution of service times. Unless one is able to derive 

an analytical expression for {P } under his particular set of assumptions, 

he will be forced to use simulation.  If one uses simulation, there is,  of 

course, no restriction on the number of service channels he may specify 

for the model. 

Having obtained the {P }  through simulation, one may then numerically 

proceed with the analysis to obtain an expression for W(k) , and, by 

virtue of Section 1.1.A, he may apply either of the algorithms of Section 

1.1.6. 
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CHAPTER 2 

OPTIMUM ALLOCATION OF RESOURCES  IN THE PURCHASE OF SPARE PARTS 

AND ADDITIONAL  SERVICE CHANNELS 

2.1 Introduction 

Consider the problem of  Section 1.1 with  the following change. 

Instead of being allowed  to spend  the resources only on spnre parts of 

each  type,  we are now allowed  tu allocate an unspecified proportion of 

the money to purchase  (or create)  additional service channels.    How then 

should we allocate our resources? 

2.2 Algorithm 

We assume wc start with c service channels and the cost of these Is 

zero. Let s be the number of additional channels, and let Q(: ) be the 

cost to purchase them. Two assumptions on Q(s) are made: 

(1) AQ(8) - Q(s + 1) - Q(s) > 0   for all s - 0,1,2, ... 

(2) lim Q(s) - » 

In view of Assumption (2), and since it is not unreasonable to assume 

a space constraint, let us say that under no circumstances will we purchase 

more than q additional service channels. 

We now wish to construct a complete family of undomlnated allocations 

to this generalized problem. The algorithm that we will employ is as 

follows: 

I. Using Kettelle's algorithm, assume c + s service channels, and 

construct a complete family of undomlnated allocations. Do this 

for s ■ 0,1,2, ..., q . 

II. Construct the following table: 
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H of 
Service Zero-th First n-th 
Channels Allocation Allocation Allocation 

c (o.o   .w00) %l'b01,W01) %n'b0n'V- »     • 

c + 1 (o.b10.w10) (k11,b11,W11) 
^ln'bln'V- • 

c + 2 

• 

(o.b20.w20) 

• 

(k21,b21,w21) 

• m 

• 

• 
• 

c + q 

« • 
• 

wv 
• 
• 

(k    .b     ,W    ).     , 
^nqn    qn    qn ■ 

III. 

IV. 

where Jc.  is the n-th member of the complete family of 

undominatcd allocations, assuming c + i service channels, 

b.  is the cost of the allocation vector k.  plus the cost In —In K 

Q(J)  of i additional service channels, and W   is the 

functional value W(k, ) . 

t - 1 

O^.b^W^ - (0,0,W00) 

j0 - 1 ; J1 «= 0 for all i - 1,2, ..., q . 

i ■ 0. Compare W  to W 

(a) If W < W   , set Ji " J4 + ! and repeat IV-(a) 

(b) If W > W   , continue 

i - 1 + 1 

If  1 > q , go to V 

Otherwise, go to IV-(a) . 

«■*!- . |B| 
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V.     t - t + 1 

Let    s    be the index such that 

b   .    - Mln    b.. 
8j8        1     I  ^i 

If there Is a tie, choose s such that W ^  Is the fflinlmum of 
8js 

all those with equal cost. 

Set VVV ■ {Kie^s-\) 
j - j + 1 Js  Js 

Go to Step IV . 

The resulting sequence represents a complete family of undominated 

allocations for the generalized problem, as proved in Theorem 2.1. 

Theorem 2.1; 

The allocations obtained using I-V constitute a complete family of 

undomlnated allocations. 

Proof; 

First we will show that all allocations found by the procedure are 

undomlnated. 

Assume the contrary .  Say there exists m,t such that W < W  and 
m   t 

b < b , and both of these solutions were picked by the procedure. 

Steps IV and V tell us this is not possible because if allocation t 

were chosen, then any succeeding choice would have higher cost and lower 

functional value. 

Now suppose m Is such that allocation m was not chosen by the 

procedure. And let us say that allocation m dominates allocation z which 

the procedure chose. Denote this by 
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A   >  A m z 

By  the definition of dominance in Section 1.1.6.1, 

A>A<=VW<W      andb<b     . 
in        z in z in        z 

Let  the sequence of chosen allocations be 

S ■ tA-jA«, ...»  n* n+1* "*'•  y* •••' • 

Let n be such that b < b < b ., . n   m   n+i 

Since W < W ,. and W < W , we have W < W ,. which implies A 
z   n+1      m   z m   n+1 m 

dominates all allocations from A .,  to A . 
n+1     z 

When A ., was chosen as the allocation after A , either A  was 
n+1 n m 

"checked" or it was not. By "checked," we mean that in Step V, A  was 
si 

one of the q + 1 allocations which were compared.  If A  was Indeed m 

checked, then by virtue of this fact. 

(13) V < W  and b > b . 
m   n      m   n 

Since A ., was also checked, 
n+i 

(14) W ^ < W  and b ^. > b 
n+1   n      n+1   n 

Since by Assumption    A   > A    -   , 

(15) W    < W ^   < W      and    b    < b    < b ^1   . m       n+1        n n        m       n+1 

But if this is true, A  would have been chosen over A ., , and 
m n+1 

A ,, would never have been chosen. Thus, A  could not have been checked. 
n+1 m 
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Now If A  ws" uot checked, there are two possibilities. 
D 

(I) A  was already discarded as a possible choice. 

(II) A  has not yet been checked. 

Suppose (1) is the case.  But since W < W  , A  could not have been rr m   n   m 

discarded because Step IV of the procedure will discard A  only if 

W < W . Therefore,  (1) is not possible. 
n — in 

Suppose (11) occurs.  This means there exists A  in the same row of 

the table as A  such that 
m 

(16) W < W  and b > b  . 
m   v      m   v 

Let  as  say that A,, is being checked as a possibility to become A .. 
v r                    '           n+1 

First note that A could not have been the one chosen for A .. 
v n+1 

because A V A ., , but A ^ A  . 
m   n+1 m   v 

Now since A  was checked, the algorithm says 

(17) Wv < Wn and bv > bn . 

And since A .. was checked and chosen over A  . 
n+1 v 

(18) W j, < w  and b i, > b 
n+1   n      n+1   n 

and 

<19> bn+l < bv 

Inequalities (16) - (19) imply 

b >b  >b..>b 
m   v   n+1  n 
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But we have alrealy  said that b ., > b > b J n+1   m   n 

Thus, (11) is not possible and we have shown that no allocation In 

the table dominates a chosen allocation. 

In order to prove that all chosen allocations are undomlnated, It 
I 

remains to show that if we have an allocation A  which Kettelle's m 

algorithm did not choose when Step I was performed, then A  could not 

dominate any chosen allocation In S , 

Assume otherwise. That Is, there exists A c S such that A V A . z m   z 

Since Kettelle's algorithm did not choose A , there exists A , an e m t 

allocation with the same number of additional service channels as in 

allocation A , such that A.. ^ A m t   m 

Now A  ^ S , for if It were, then since 

A.> A > A  , t   m   z ' 

we would have two chosen allocations In S , one of which dominates the 

other.  This is not possible. 

But even if A  were not chosen, we have just proved that no allocation 

in the table (such as A ) dominates a chosen allocation in S  (such as 

V 
Now we must show the :onverse: I.e., If A ^ S , there exists m 

A c S such that A ^ A . z z   m 

Since A ^ S , there had to be some point at which It was eliminated m 

from further consideration to become a member of S . Let us say that A m 

was eliminated when we were looking for A . , having Just chosen A . 

If A  was eliminated, then Step IV says that W < W  and since A m r J v - m m 

was checked,  b > b . tt> v 

Thus,  A > A  and there exists a chosen allocation which dominates v   m 

D 
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It should be noted that the chosen sequence of allocations might 

have elements which would be dominated by an allocation in which the number 

of service channels exceeds c + q . But since we have said that c + q 

Is the maximum number of service channels which we will consider, there Is 

no need to be concerned over this. 
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