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ABSTRACT

This paper extends the basic work that has been done

on zero-sum stochastic games to those thay are nonzero-
sum, Appropriately defined equilibrium points are shown

to exist for both the case where the players seek to
maximize the total value of their discounted period

rewards and the casc where they wish to maximize their
average reward per period. For the latter casc, conditions
required on the structure of the Markov chains are less
stringent than those imposed in previous work on zero-sum
stochastic games, extensions to n-person games and underlying
semi-Markov processes are discussed, and finding an
equilibrium point 4is shown to be equivalent to solving a
certain nonlincar programming problem.\
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CHAPTER 1

INTRODUCTION

A stochastic game combines a finite state, diccrete time scquential
decision process with two perscn game theory in the following way: at time
n , two players are jointly in some state { , 1 =1, ..., N, in which they
play a K1 x L, bimatrix game [Ai,Bil . If the players choose row k &nd
column £ respectively, then aii is the reward to player I and bil the
reward to player 1I. The players' choices also determine p?j » the
probability that the players move from state 1 to state j at time n + 1 ,

J=1, ..., N .

A stationary strategy for player 1 in state i {is a probability vector

X, = (xil’XIZ’ R ) where xik is the probability that player I
: i

chooses the kth row, and player I uses Xy whenever in state 1 ., Similarly,
a stationary strategy for player II in state 1 1is a prcbability vector

YT (yil'in' a0 o yiLi) where Yia is the probability that player 1I
chooses the 2th column, and player II uses A whenever in state { . If

the players have chosen strategies x, and Yy oo then player I's expected

i

reward for period n is

i i

K L
T oagx
)y TR IRAY)

k=1 Qe
and player II's expected reward is
Ki Li
I b ,x,y
ke"ik71¢

k=1l 1=1

At time n + 1 , the players will be in state j with probability
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Pgy © ) P:;"ikyu
k=]l g=]

where the bimatrix game [AJ,BJ] will be played, stationary strategles

x employed, and a transition to a new state made, The game continues

37
in this manrer over an infinite horizon, the movement of the players being
governcd by the Markov chain (pij) .

There are scveral possibilities for the objectives of the two players.
We will first study the case in which the players seek stationary strategies
X = (xl, S lones xN) and y = (yl, ™o yN) respectively which will uniformly
maximize, for all initial states, the discounted value of their total
expected rewards. Then we will examine the case in which the plavers desire
to maximize their expected reward per period, and scek stationary strategies
to do so. These will be referred to as the discounted case and average rate
of return case, respectively. It is clear that what is good for one player
may be bad for the other, so it will generally be impossible for both players
to simultaneously achieve these objectives (in the zero-sum game, this is
always the case since with Ai = “Bi » the players have directly opposing
interests). Hence, we turn to the concepts of a '"value" for a zero-sum
stochastic game and an "equilibr ium point" for a nonze-ro-sum stochastic game,
discussed in Chaster 2.

The literature on stochastic games is not extensive. The first article
appeared in 1953, when L. S. Shapley [15] first described the game. Shapley
proved the existence of an appropriately defined salue for & zero-sum gaume
with totai discounted rewards as the payoffs. He showed that an optimal

stratcgy that achieves the value can be taken to te stationary, i.e., the

players can use the same strategies every time they are in state 1

independent of the time period in which they arrive in state 1 , and he




provided an algorithm for thc determination of optimal strategies and the
valuc,

The average rate of return zero-sum guanmc was trcated by D, Gillette (4)
in 1957. Whereas the structurc of the Markov chain governing the transitione
of the players can be arbitrary in the discounted zero-sum game, Gillette
showed that this is not the case when average rate of return is the objective
if we hope to have stationary strategies yleld a valuc for the game. He
accomplished tils by proving that 1f all possible underlying Marlov chains
are irreducible, then a value exists and can be achieved by stationary
stratcgles, and he gavr an example of a game having a reducible chain for
which a value could not be attained by stationary strategies.

Gillette's results were rederived from a lincar programming approach by
Hoffman and Kerp [6]. Their results requircd the retainment of the
irrcducibility assumption. In addition, they presented an algorithm which
converges to stationary strategies ylelding the value of the game,

The results that follow generalize those above to nonzero-sum stochastic
games and provide a reiaxation of the irieducibility assumption in the
average rate of return case. Following the work of Nash (13] on nonzero-sum
games, the existence of appropriately defined equilibrium points for nonzero-
sun stochastic games is proven for both the discounted and average rate of
return games, In the latter case, the irreducibility assumption is weakened
to allow for sume transient states aa long as every possible underlying chain
has a single ergodic subclass of ctates. For the average rate of return
case, an equilibrium point is shown to be equivalent to solving a nonlinear
programming problem and extensions to n-person games and underlying s - mi-
Markov processes discussed. As a biproduct of these efforts in the discounted

case and average ratce of return casc with {rreducible chalns, we gct a




i characterization of the set of stationary optimal policies for a sequential
decision process, the process that results from letting one of the players

be a '"dummy" with only one possible action available in each state.
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CHAPTER 2

DISCOUNTED CASE

2.1 Introduction

Since a nonzero-sum stochastic game can be viewed as the marriage ot a
nonzero-sum game¢ and a discrete dynamic programming problem (s:quential

decision process), it comes as little surprise that the major results for

such games deperd heavily on the results and structure of both these subjects.

Underlying this relationship is the fact that the major element in proving
the existence of equilibrium points for noncero-sumn games is the character

of the set of optimal strategies for one player when opposing a given
stationary strategy of the other.+ But in a stochastic game, wnen a pleyer's
opponent fixes his strategy, the player is .aced with precisely a sequential
decisior process.

In the following two sections, reviews of Nash's work on nonzerc-sum
games {13] and discrete dynamic programming will be presented and notation
set up. Then, in 2.4, the results from these areas will be put together to
establish the existence of an equilibrium point for a nonzero-sum stochastic

game with expected discounted totals the objective.

2,2 Bimatrix Games

Consider a two-person nonzero-sum bimatrix game [A,B] , where A and

B are K x L matrices, K , L <= , (A) a . (B)i b Player I

1,3 7 1y P
(the "row player") ha: K pure strategies 19805 +oey where e is the

kth unit vector and player I's use of e, Tepresents his choice of the kth

row of the matrices A and B with probability 1, Similarly, player II

+'l‘he games considered are two person unless otherwise indicated.

i
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(the "column player") has L pure strategies €11€51 ovy € where player
11's use of e represents his chofce of the #th column of A and B with
probability 1. Corresponding to each pair of pure sirategies (ek,el) , one

strategy being taken for each player, are the rewards a and bkl to

ke
' players I and Il respectively. Mixed strategies x = (xl.xz, noog xK) and

y= (yl,yz, 0.0 G yL) represent probatility distributions over the choices of

purc strategies for the players, and when employed, result in expected reward

K L K L
XAy = 2 z a XYy for player 1 and expected reward xBy = f X b, x y. ‘
kel g1 KEKE Wl gLy Tk |

for player II.

A pair of strategies (xo,yo) is said to be an "equilibrium point" if
x° maximizes xAyo and yo maximizes xoBy . The appealing aspect of an
equilibrium point is the stability of such a point in the sense that each
player can do no better than to use his equilibrium strategy when opposing ’ '
the eqiilibrium strategy of the other. (For a discussion of equilibrium
points, their properties and drawbacks, see Luce and Raiffa (10].)

rash set up the problem of establishing the existence of an equilibrium
point for the above game by forming a closely associated correspondence whose

fixed points are precisely the equilibrium points for the game. Let

ek, ]
X={x | xekE x =1, x
{ " kel K k

v

0: be player U's strategy space

L
Z Y, " 1, Y, 0} be player Il's strategy space I

£=1

av

L
Y-gylyei ,
xeX

0 ={5 | max w7 - 35 ) |

02(§) -{ y | max xBy = xBy }.
yeY

Y xX
QI‘QZ.Y*X*Z .




Now (xo.yo) £ Ql(yo) x ®2(¥°) < x% ¢ ol(yo) and yo € @2(x°) . Hence
(xo,yo) 18 an equilibrium point of the game [(A,B] 1if and only {f (xo,yo)
is a fixed point of ¢, * ¢2 . Having established the correspondence betwecen
equilibrium points of the game and fixed points of the ~orrespondence

01 x ¢2 , 1t only remains to prove the existence of a fixed point for

ol x 02 . Since X and Y are nonempty, compact and convex, this can be
accomplished by Kakutani's fixed point theorem (9] which requires that

01 x 02 have a closed .graph+ and that ol(y) x oz(x) be convex and nonempty

for all (y,x) ¢ Y x X , all of which hold.

2.3 Sequential Decision Processes

Consider the classical sequential decision process with an infinite
planning horizon and discount factor 8 , 0 < 8 <1 .** At the beginning of
period n (n=1,2, ...) , a player (decision maker) finds himself in one of
a finite number of states (1,2, ..., N} , say i , and is faced with
choosing one of a finite number of actions {1,2, ..., Ki} . As a

consequence of choosing action k , the player experiences an immediate

expected reward, T and a transition to a new state j , the latter

N
occurring with probability p:j > 2 p:J = 1 . Note that both his reward
=1

and the probabilities governing his movement depend on the state he's in (i)
and the action he chooses (k) .

A randomized stationary strategy X, = (xil'x12’ ceoy x1K1> ’
i=1,2, ..., N, is simply a set of N probability vecotrs where, every
time the player i1s in state 1 , x is the piobability that he chooses

ik

action k ., It follows that the use of xi in state {1 will result in an

+A correspondence ¢ : U - V 1is said to have a closed graph if for every

scquence W > u® and v+ V@ with VI e ¢(uq) VvV g , we have vO e ¢(u°)

hLBn is the present value of a unit reward earned n periods in the future.




immediate expected reward

K

i
r(x) = |

r,. X
Loy CkTK

and a transition to a new state j with probability

%y

k
' Pyy(x) = kzl Piy*1k

Hereafter, the word "strategy'" will mean 'stationary strategy."
V(x) 1s defined to be a column vector whose ith component, Vi(x) .
is the expected total reward over all future time, discounted to the begin-

ning of a period when the player is in state 1 , and strategy x 1is

employed. It is clear that V(x) satisfies
Q) V(x) = r(x) + BP(x)V(x)

where r(x) is a column vector whose ith component, ri(x) , 1s the
immediate expected reward in state 1 and P(x) 1is the Markov chain,
whose ith row, Pi(x) » governs transitions from state 1 , when strategy

x 1is employed. From (1) we get

(2) Vx) = (I - 8] tr(x) ,

the inverse of [I - BP(x)] guaranteed since O <8<l
*
The strategy x 1s said to be optimal 1f it maximizes V(x) , i.e.,
*
if for any strategy x , Vi(x ) 2 Vi(x) sy 1 =1, ..., N. It is well

known that in the class of randomized strategies, such an optimal strategy

exists. (See Hadley [5].)

J




2.4 Exdstence of Equilibrium Pofnts in Discounted Casc

Using the mcethod of 2.2 and the structure of the scquential decision
process of 2.3, we wish to prove that an equilibrium point in stationary
stratcgies exists for the discounted case of a nonzero-sum stochastic game.
In order to establish this result, it will be useful to show explicitly that
when player 11 uses some fixed stationary strategy ; » player T is faced
with exactly the sequential decision process discussed in 2.3. To see this,
supposc player Ii employs y . Then if player I chooses action k when in

state {1 , his inmediate reward will be

by

0 ) = [ a7
1k pby Pk’ ae

and the players will move to state 3 with probability

exactly the situation of a sequential decision process. Player 1's total
discounted reward vector now depends upon the strategy of his opponent, ; 5

as well as his own and he will seek to maximize V(x,y) = (I - BP(x,;)]-la(x,;) c
Similar comments apply to player Il and his attempt to maximize his total

value vector W(x,y) = (I - BP(i,y)]-lb(i,y) , when player I uses strategy x .

Let
K1 Ki
Xo{x | x = (xl,xz, o 94 xN) X, € E" , kZl X " 1, X 2 0

be player 1's stratcgy space,
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L Li

Slis |
Y'YIY'(ylvyzl""yN)'yich »Zyu'loynio
L=1

be player 11's strategy space,

8. (y) = {x | max V(x,y) = V(x,y)
1 { xeX }

8. (x) = ; | max W(i,y) - W(;,;)
e { yeY }

B, x 8. : Y x X » 207X

1 2

Definition:

The pair of strategies (xo,yo) is said to be an equilibrium point if

x° ¢ el(y°) and yo € 92(x°)

For any pair of strategies, (§,;) , both 61(§) and 62(;) are

8, x @ is convex

1 2
and has a closed graph, then Kakutani's fixed point theorem can be applied

nonempty. So following 2,2, if it can be shown that

and the existence of an equilibrium point established.

Lemma 1:

6, : Y ~» 2x and 9

Y
1 p P b= 2

have closed graphs.

Proof:

A sufficient condition for 91

of V(x,y) . This is assured since the inverse of [I - BP(x,y)] always

and

exists and its elements are ratios of polynomials involving the Xk

and

are just bilinear terms in the Xk

Yie while the elements of a(x,y)

Yip ° An identical argument on W(x,y)

nature of 92 .

to have a closed graph 1s the continuity

and b(x,y) yields the closed graph

|
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l.emma 2:

61(;) can be characterized as a closed convex polyhedron whose extreme

points constitute the set of pure strategiec that are optimal responses to

y .

Proof:

Since player 1 is faced with a sequential decision process when player
I1 fixes his strategy at ; , it is necessary and sufficient to show that,
for a sequential decision process: (a) any convex combination of optimal
pure strategies is an optimal randomized strategy and (b) if some randomized
strategy is optimal, then it is a convex combination of optimal pure

strategies.

(a) Suppose x1 and x2 are pure strategics that are optimal. We

want to show that X, = Axl + (1 - A)x2 » 0 <A <1, 1s also optimal. We
know:

(1) vid) = ety + gpct)vin)

(2) V(xz) - r(xz) + BP(xz)V(xz)

(3) vih) = vid)

Now consider the strategy which consists of using Xy for the first period

and x1 thereafter. The total reward for such a strategy is:

r(x) + BP(XA)V(xl) el + (1= 0xZ) + 8P + - DxAVixD)

e Alrxh) + 8P OhVEDT + - D) + D) VxD) ]

« VD) 4 (1 - VD) - vxh)
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the last two equalities following from (1), (2) and (3). Hence, using X,
the first period and x1 thereafter achieves the same total value vector as
the optimal strategy x1 . Hadley [5] has shown that this 1s sufficient to
imply that the stationary strategy X, is also optimal,

(b) First express an optimal randomized strategy, x , as a convex
combination of pure strategies. This can always be done as follows: Le*

ey € be the pure strategy which chooses

‘klkz - (fkl'ekz' : kN)

alternative k1 in state { . Then

K
4) X = z 2 cee x x cee X @ .
1k o Lk *2k, Nk Tk, vee kg

To see why this representation is correct, consider the first Kl coordinates

of the right-hand side and write as
‘e

Since

K
Z X € " (xll‘x12‘ o= lel) -x .
1

i
Similar statements can be made about components z KJ + 1 chrough
b
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1+1
Z K, ,41=2, ..., N-1 ., Having shown x can be written as a convex
3=1
combination of pure strategies, let us simplify the notation of (4) by
Y 3
writing x = z Aje where {e” , j = 1, ..., M} are those pure strategics
i=1
eklkz ey with nonzero coefficients in (4) and (AJ y =1, ..., M)

3

are the corresponding coefficients. We want to show that all the e” are
optimal pure strategies. Suppose that el is not optimal. Then there

exists a state i for which
(s) ri(el) s BPi(el)v(x) < T (x) + B, (x)V(x)

because if not, > would hold in (5) for all { whkich would imply, by the
same argument used in (a), that e1 was also optimal. Since x 1s optimal,

we must also have
) r (el + op Ve s 0 v B v g m2, L,

Now multiply (5) by M and the equations of (6) by Aj

ri(x) + BPi(x)V(x) < ri(x) + BPi(x)v(x) , & contradiction. Hence, each eJ

and sum to get

is optimal.

Theorem:

An equilibrium point in stationary strategies exists for the discounted

case of a nonzero-sum stochastic game,

Proof:

Lemmas 1 and 2 imply that the nonempty 61 x 62 has a closed graph and

is convex. Kakutani's fixed point theorem can now be applied to infer that

61 x 62 has a fixed point and hence that the game has an equilibrium point

in stationary strategles,
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CHAPTER 3

AVERAGE RATE OF RETURN CASE

3.1 Introduction

The development of the average rate of return case basically follows
that of the discounted case. The existence of an equilibrium point in
stationary strategles §s established with the aid of a linear programming
formulation of the problem and assumptions on the type of Markov chain that
can underly the motion of the players, the latter consideration leads to
the study of three cases corresponding to the nature of the underlying
chains: 1irreducible chains, chains with a single ergodic subchain, and
chains with multiple ergodic subchains.

Once again, the analysis depends crucially on the fact that when one
player uses some given strategy, the other is faced with a sequential
decison process. The properties of the set of strategies that ontimally
answer a fixed strategy of an opposing player are used to justify the use
of a fixed point theorem in order to establish the existence of an

equilibrium point.

3.2 Multiple Chain Case

The objective of maximizing average rate of return in a sequential
decision process is the player's desire to find a strategy x so as to
maximize the column vector G(x) whose {th component, Gi(x) » is the
average reward per period when the initial state of the system is 1 and
strategy x 1s emnloyed every period. If G: is defined to be the average
reward per period, over all future time, when the initial state of the

system is 1 and optimal decisions are made at the beginning of every

®
period, then it is true that there exists a strategy that will achieve C1
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uniformly for all { . This can be accomplished by showing that for any
randomized strategy, x , there is a pure strategy that can achieve an
average reward per period vector at least as great as G(x) and by using
the policy-improvement routine of Howard [7). Hence, the player's objective
is a realizable one.

Recalling that when player II uses some fixed strategy ; player 1
is faced with a sequential decision process, he will wish to maximize
G(x,;) » while player II will seek the maximum over y ¢ Y of H(;,y) , his
average rate of return vector when player I uses some fixed x . If
X and Y are the players' strategy spaces and

¢, (¥) -{; I s G(x,y) = G(:_(.;')}

and

0™ =y | e HGoy) =BG}

we will again have the

Definition:

The pair of strategies (xo,yo) is said to be an equilibrium point

1f x° ¢ ¢1(y°) and y° ¢ ¢2(x°) .

An example due to Gillette [4]) demonstrates that in the average rate
of return case, stochastic games may fail to have an equilibrium point in

stationary strategles. Gillette's three state example is:




STATE BIMATRIX GAME AND TRANSITION PROBABILITIES

1,~-1 0,0
(1,0,0) ; (0,1,0)
1
0'0 1.—1
(1,0,0) | (0,0,1) b
0,0
2 (0,1,0)
1,-1
: (0,0,1)
i 1
2 Pie
where in state 1 , the entires (b:;,p:;,ptg) are the result of players'

I and II choosing actions k and £ respectively and represent their
immediate rewards and the probability vector governing their transition out
of state 1 . |

Notice that once the players are in state 2 , they remain there for
all time, and each receives an average rate of return of zero. Similarly,
once the players are in state 3 , they are sure to remain there forever
with average rates of return 1 and -1 . Hence, the players are only
concerned with their strategy choices in state 1 , to be chosen with the
intent of maximizing Gl(x,y) and Hl(x,y) s

To show that no equilibrium point exists, note that
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j{(o,m;l)} 1oy, >0

409~

l{(l.o;l;m 1 5, =0

(1,0;1;1) 1f ;1 = (0,1)
o2(§) -
{y | Yi2 > 0} |if §1 = (1,0) .

Hence, there is no palr of strategles that are mutually optimal responses,

i.e., there is no palr (xo,yo) for which x° ¢ ¢1(y°) and y° € ¢2(x°) 1
The crucial point to note here is the lack of continuity in the optimal

responses of player I to a sequence of strategies of player II. That is to

say, as ;12 -0, X, = (0,1) 1s player I's optimal response as long as

;12 >0 . But for ;12 = 0 , player I's optimal response is X, = (1,0) ,

certainly not the limit of a sequence of (0,1)'s . This condition, which

arises because of the multiple chain nature of the underlying Markov chains,

is what is preventing the existence of an equilibrium point. In the next

section, we'll see that 1f the underlying chains have only a single irreducible

subclass of states, the continuity described above will obtain, and an

equilibrium point in stationary strategies will exist.

3.3 Irreducible Chains

In 1ight of the multiple chain example of the last section, we see that
for a general proof of the existurce of an equilibrium point in the average
rate of return case, we must at lecast restrict ourselves to games where no
matter what pair of strategies, (x,y) , 1s chosen, the Markov chain determined,

P(x,y) , has a single irreducible subclass of states. In the current section,

an even more restrictive assumption on the chains will be made, while in the

e b Rl




next section, we will return to the minimal restriction mentioned above.,

Assumption A:

All pajrs of pure strategles, (eklkz"'ku ) y determine

, e
1122. * .lN

an irreducible Markov chain.

Note that this assumption is sufficient to guarantee that for any strategy
pair, (x,y) , P(x,y) 1s irreducible. For the rest of this section,
Assumption A is assumed to hold.

Since the chains, P(x,y) , are always irreducible, the starting position
of the players is irrelevant with respect to average rate of return, and
Ci(x,y) = Gj(x,y) and Hi(x,y) = Hj(x,y) for all 1 , J will hold for any
strategy pair (x,y) . So letting the scalars g(x,y) and h(x,y) be the
players' average rates of return, we may write g(x,y) = n(x,y)*a(x,y) and
h(x,y) = n(x,y)*b(x,y) where n(x,y) uniquely satisfies n(x,y) = n(x,y)P(x,v),

g ﬂi(x,y) =1, ﬂi(x,y) 20.
i=]

These inner products have the interpretation of weighted averages of
period rewards, i.e., in the long run, when strategy pair (x,y) is used, a
proportion ni(x,y) of the transitions are made through state { and each

time such a transition occurs, expected rewards ai(x,y3 and bi(x,y) are

earned. We can now simplify 01 and 02 as

¢, (y) = {x | max g(x,y) = g(x,y)
1 { xeX }

¢,(x) =}y | max h(x,y) = h(x,y)
2 { yeY }

and attempt to show that ol and ¢2 have closed graphs and are convex.

Once again, since a player opposing an opponent's fixed strategy is facing




|
!
)
'
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the usual sequential decisfon process, we can concentrate our attention on

the set of optimal strategles for a sequential decision process, i.c., thosc

x which solve the nonlinear programming problem

(1)

Maximize g(x) = n(x)r(x)

Subject to z Xk " 1 {=1, ..., N

n(x) = =(x)P(x)
N

I nx) 20
i=1

X,“(X)ZO

Manne [12] showed that (1) is equivalent to a linear program which in turn

was showr by Wolfe and Dantzig [16] to be equivalent to the generalized

linear program

(2)

where

Maximize rz

Lo - ()
Subject to Z Qizi =\

0N is an N-vector of zeroces and, for {1 =1, ..., N, Qi is a

column in the convex polyhedron Ci generated by the K, coxtreme points

Q. = (

with

i
k k k
pil, ey pii-l' s ey piN)l).k=1’ o0y Ki and if
Ki

Q = 1 1,Q
15,5 k1K
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N
L A =1, A > 0,
k=1 ik ik
then

Ki
17 kzl ST

Problem (2) can be arrived at as a direct consequence of seeking
randomized optimal strategies. The key is to recognize that, when in say,
state { , choosing alternative k with probability xik'k 1, aavy K1 .
i{s, in terms of expectations, the very same thing as engaging in the single
alternative represented by the appropriate probability mixture of K1
"pure' actions. This is simply a restatement of the second paragraph of
Section 2.3. Hence, 1if Pk is the probability vector governing transitions

i

out of state 1 1f alternative k 1is chosen there, and rik is the

associated immecdiate expected reward, then employing the randomized strategy

x corresponds to choosing a single probability vector

Ky

k
P, (x) = Z P x ,
1 1k ,

in the convex polyhedron Pi generated by the P:'s , to govern transitions

out of state 1 and to earning the immediate expected reward

Ky

t,(x) = ] r,.x . .
! R

Thus, suppressing the x's , If P1 € Pi,i =1, ..., N determine the Markov

chain P = (Pl, ..oy PN) that governs state transitions, the assocfated
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N
averape rate of return can bhe found by solving w = ap z LA 1,
i=1

" >0 to get the statfonary vector © associated with P and then

-

I'T 1 ON
computing r . Since solving 1 l)“ - (1) for n  (uniquely)

Jeads to the computation of average rate of return, we would like to pick
those members of V’ that resolt fn the maximom averape rate of return.

Now woe can show how (2) arfses 1 we Jet

Py o
C’ = g()’ | Q n( 1 ) for some byoe Pi} 3

Problem (2) savs ve would like to sclect Q1 from Ci'i =1, ..., N, so

ON
1 that will maximize rz .

But the K, extreme points of C1 are clearly

N
Qy 1 '

and the weights on the extreme pofnts of C1 that determine

as to determine a nonnegative z from Qz = (

Ky

9 (x) = kEI Qie*qx

are preciscly the same weights on the extreme points of Pi needed to
determine the probability transition vector resulting from strategy x , {.e.,
column selection from Ci is equivalent to specifying weights on the

extreme points of C1 which 1s the same as specifying weights on the extreme
points of P1 y an operatfon {dentical to choosing a randomized strategy.

This catabhlishes a1 = 1 correspondence hetween solutfons to (2) and our

orlgtnal problem: {f a randomfzed strategy, x , results In an averaye rate
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K
i
of return g(x) , then the columns Qi(X) = kgj Oikxik and 2z solving

0
Q(x)z = (]ﬁ) will result in a value of the objective rz = g(x) in (2).

Similarly, a set of columns Q1 , chosen as a feasible solution to {2),
can be expressed as convex combinations of the extreme points of the Ci .
If we let the weight on Q1k necessary to express Qi be the probability
with which alternative k 1s chosen in state 1, a strategy will result
with average rate of return equal to the value of the objective in (2) for
this corresponding feasible solution.

For any strategy x , the rank of Q(x) 1is less than N + 1 since
the first N rows sum to zero. In fact, the rank of

T
CR )

is N as can be seen by considering the N x N matrix a(x) obtained by
arbitrarily deleting one of the first N rows of Q(x) . Assuming
a(x) is not of rank N implies there exists p # 0 such that 65 =0
(suppressing the x's). Because P 1is irreducible, there is a unique

nonzero bounded solution T to

0
N
(3) QO“(I),
N
more familiarly written o = oP , Z o, = 1 (Chung [1]). A contradiction
i=1

now occurs since 0 = 1 4+ p will also be a nonzero bounded solution to (3)
since the row deleted from Q can be written as minus the sum of the first
N -1 rows of 6 and the inoner product of each of the first N - 1 rows

of Q with both T and o 1{is¢ zero. The last row of (3) is satisfied

since the elements of T sum to one and those of o to

at

by
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zero. This latter fact also assures us that o cannot be zero.
We are now prepared to prove the existence of an equilibrium point
for the average rate of return case with irreducible chains. Following

Section 2.2 again, we will need to show the convexity and closed graph

properties of ¢1 and ¢2 .

Lemma 1:

¢l t Y+ 2x and 02 t X - 2Y have closed graphs.,

Proof:

A sufficient condition for ¢1 to have a closed graph is the continuity
of g(x,y) = n(x,y)r(x,y) where n(x,y) 1s the stationary vector of the
Markov chain P(x,y), and r(x,y) 1is the vector of immediate expected
rewards when strategy pair (x,y) 1is employed. Since the elements of
r(x,y) are just bilinear terms in the L and Yy » Ve only have to

demonstrate the continuity of n(x,y) , where n(x,y) solves

1 [ RN 1 1
0

or recalling the notation of Problem (2), Q(x,y)n = (:F) . As a consequence

of the result on the rank of Q(x,y) , we can arbitrarily delete one of the

first N rows of Q(x,y) to form 6(x,y) and write

0
(@) " e o‘l(x.y>(1"‘1) :

always assurced of the existence of Q-l(x,y) for all (x,y) . The elements
of Q—l(x,y) are just ratios of polynomials involving the Xk and Y
so that the (unique) solution to (4) is, in fact, a continuous function of

(x,y) . An iden {cal argument on h(x,y) yields the closed graph nature of

— e MR

|
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Lemna 2:

Ql(;) can be characterfzed as a closed convex polyhedron whose
extreme points constitute the set of pure strategies that are optimal

responses to y .

Proof:

As we have remarked several times in the past, when player II fixes

his strategy at ; , player 1 is faced with a sequential decision process

that we can put in the form of Problem (2):

Maximize a(;)z

(5) Subject to Q(y)z =

Since we will want to deal with a linear

on, it will be assumed that the
#G>=(?1J§ giﬁ‘
L ) e+ 0y b -
i =1 1174 =1 1112

program with full rank, from now

Nth row in (5) is deleted, so that

L

1
1, ...,

LA )
LNRTB BT

Pi(;) will be determined by the extreme points P:(;) and it, along with
Qi(;) and C1(§) will have the same interpretation as before except for

their reduced dimensionality. Now for any particular selection of columns

Ky

Q, (x,y) = REI Q (x,

from Ci(§),i =1, .» N, the system of Equations in (5) will be square and

K1 Li
a (;) = Z Z ai y,,1%x,, « This and earlier remarks and the irreducibility
1 k=1 \g=1 k& 12) "1k
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assumpt ion imply a 1 - 1 correspondence between strategies x and feasible
nondegenerate bases Q(x,y) .

As in Lemma 2 of Section 2.4, the proof will be accomplished if it {is
shown that: (a) any convex combination of optimal pure strategies is
an optimal randomizecd strategy and (b) {f some randomized strategy is optimal,
then it is a convex combination of optimal pure strategies,

(a) Suppose x1 and x2 are purce strategies that are optimal responses

to y . We want to show that x, = lxl + (1 - A)x2 , 0 A < 1, is also

<
=

A

an optimal response to y . The analysis used for the development of Problem

(2), and consequently Problem (5), enables us to say that x1 and x2

correspond to the optimal bases Q(xl,;) and Q(xz,;) and x, to the

basis Q(XA’;) = XQ(x1,§) + (1 - A)Q(x2,§) . If My is the N-vector of

(optimal) simplex multipliers associated with Q(xi,;) , 1 =1, 2, we

must have This is so because under nondegeneracy (which is

Ul"'uz-

implied here by irreducibility), the optimal multipliers must price

"1
out the columns in Q(x2,§) zero. (This need not be true if the optimal
strategv x1 results in sometransient states, for this results in degeneracy.
See Section 3.4.) Hence, a(xz,;) - ulQ(x2,§) = 0 which implies

M= a(x2,§)Q_1(x2,§) =M, It now follows that Hy o the simplex

multipliers associated with Q(XA’;) must also equal ul sirce

b Qex,,y) = plnq(xl,;) + (1 - 00649 = 2akh,y) + @ - Makd,d) a(x,,y) ,

so that Q(XA’;) must also be an optimal basis and, therefore, x an

A
optimal strategy.
(b) Suppose x 1s an optimal randomized strategy with associated

basis Q(x,;) and optimal simplex multipliers p . Recall that x can

be written as a convex combination of pure strategles:

"N
¥ ..kggl xlkl.”xNk.N eklv--kN.

»
f
— ~1 X
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IS . _
Therefore, Q(x,y) = 2 Adlo 2 ikt *Nk Q(Ok K .Y) and
10

kl-l kN-l 1 N

] ;1 ';N _
a(x,y) = ce Xk Xy a(ok ok ,y) .
el kel 1 by ke ky

By definition u satisfies a(x.;) - uQ(x,;) = 0N , 1.e.,

Since we want to show that the coefficieats x SRR in this sum are
1k NkN
1
positive only if e K is optimal, we break the sum into two parts,
l'.'N
one corresponding to the set, 0 , of actions kl’ e kN that are optimal,
and another corresponding to the set 0 of actions that result in nonopt imal

bases. Now we have

(6)

where, by the optimality of u , a(e .;') - uQ(e 0 .y) <0, for
kl...kN kl""N N

1o ky e

But under nondegeneracy, a vector of optimal simplex multipliers prices

all k

out all the columns of another basis zero if and only ifi the other basis
is optimal. Hence, the first sum in (6) vanishes (by the "if") and at least

one of the elements is negative in every vector a(e ,;) = uQ(e ,;\
kl...kN kl...kN |

in the second sum of (6) (by the "only if") . Therefore, we must have

x =0 for k;, ..., ko€ 0 1in order to maintain the equality

1k ""S«kN

1

-
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in (6), and the iemme is proven,

Theorem:

Under Assumption A, an equilibrium point in stationary strategies exists
for the average rate of return case of a nonzero sum stochastic game,
Proof:

Identical to discounted case with ¢i replacing 6, , 1 =1, 2.,

i

3.4 Chains with a Single Frgodic Subchain

Having dealt with the two extreme cases of finite Markov chains in the
last two sections, we are now left with the "in-between'" case of a Markov

chain that allows for some transient states, but only one irreducible subset

Ay Ay

0 P ) where every row

of states. Such a chain may be taken to look like (

of A2 has at least one positive element and the subchain P 1s irreducible.
(The previous section assumed A1 vacuous.) We will make an assumption
analogous to that of the last section and then show that equilibrium points
still exist on this middle ground, although the proofs of Section 3.3 must

be modified.

Assumption B:

All pairs of pure strategies, (ek e, determine a Markov
10"

1...1N) ’

chain with a single ergodic subchain.

This assumption is sufficient to guarantee that for any strategy pair

(x,y) , P(x,y) has a single ergodic subchain. For the rest of this section,
Assumption B is assumed to hold.
Once agafin, the initial state of the players will have no bearing on

their average rates of return which can still be expressed as
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g(x,y) = n(x,y)ra(x,y) and h(x,y) = n(x,y)b(x,y) since the solution to
N

n(x,y) = 10, y)P(x,y) , ny(xy) =1, m (x,y) 2 0 remains unique. The
i=1

generalized lincar programming approach (Problem (5) of Section 3.3) can
also be used again. The proof that the rank of Q(x,;) is N given in
the last section also holds under Assumption B and sustains the validity of
Lemma 1 and the 1 - 1 correspondence between strategies and feasible
bases. However, the fact that a basis Q(x,;) may now be degenerate
(corresponding to transiency in the chain P(x,;)) leads to the breakdown
of the convexity of ¢1(§) proved in Lemma 2. Specifically, u may be a
vector of simplex multipliers assocfated with an optimal basis, but may fail
to price out al) the colunns of another optimal basis zero, since under
degeneracy, cual feasibility of u 1s sufficient but not necessary for
optimality. Examples of the nonconvexity of ¢1(;) in the presence of
transient states are easily constructed.

At this point, the natural thing to do is to turn to a generalization
of Kakutani's fixed point theorem that would weaken the convexity requirement
on ¢1(§) , since, as remarked above, the closed graph property of ¢1(§)
still obtains under Assumption B. Such a generalization has been given by
Debreu [2] in an adaptation of a fixed point theorem of Eilenberg and
Montgomery [3]. Here, the convexity requirement is replaced by the require-
ment that ¢1(§) be contractible, the topological equivalent of convexity.
Schweitzer [14] has shown that ¢1(;) may be represented as a convex set
with convex protuberances, but such a set may in general fail to be
contractible, and i1t is not clear how to use the properties of the special
structure at hand to show that @1(;) is, in fact, contractible. However,
Schweitzer's decomposition of ¢1(;) leads to another consideration which

results in a way that circumvents the curvent difficulty.

-
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Suppose we denote by w1(§) that subsct of ¢l(;) that 1s the convex
"core" of ol(;) , 1.e., ¢1(;) - wl(;) composes the protuberances of
wl(;) . Convexity will no longer be a problem i{f we can show that w1(§)
has a closed graph, for then we can still use Kakutani's theorem to prove
the existcuce of a fixed point for w1(§) . This will be good enough to
insure the existence of an equilibrium point because elements of wl(;)
(and wz(;)) arc still optimal. Interestingly enough, in Schweitzer's
decomposition of ol(;) » the convex set from which convex protuberances
emenate is the set of all optimal strategies x with associated basis
Q(;,;) that determine simplex multipliers u(i,?) = a(;.;)Q-1(§,;) which
ar: dual feasible, i.e., price out all the extreme points (and hence, all
columns) of Ci(;) nonpositively for all {1 .

More formally, define:

vy (v) ={x l max g(x,y) = g(x,y) 4, 2, (¥) - w(,y)Q, (y) £ 0V 1,k
xeX
o o e |
where u(x,y) = a(x,y)Q (X.y)} .
wz(;) is analogously defined for the generalized linear program that arises

when Player II has to find an optimal responsc to Player I's use of x .

Lemma 1:

wl T Y~ 2X and wz HED G ZY have closed graphs.

Proof:

Let {y"} be a sequence of Player II's strategies converging to yo
and {xn} the sequence of corresponding optimal responses of player I, i.e.,
x" € wl(yn)Vr1, with x" » x® . We have to show that x° 1s an optimal

response to yo . Since x € lJJl(yn)V o 5 aik(yn) - u(xn,yn)Qik(yn) <0V

i, k, n. The continuity of aik(y) , u(x,y) and Qik(y) is assured as
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in Lemma 1 of the last sccetfon with Assumption B crucial here {n guarantecing
the existence of u(xn,y") = a(xn,yn)Q-l(xn,yn) for all n . Hence,

0 o o o o o - ) )
aik(y ) - ulx,y )Qik(y ) <0 giving x ¢ wl(y )« ¥,(x) has a closed

graph by the same argument.

Lemma 2:

w1(§) and wz(;) are convex.

Proof:

Theorem 10, Schweitzer [14].

Theorem:

Under Assumption B, an equlibrium point in statio -~ strategics
exists for the average rate of return case of a nonzero sum sotchastic

game.

Proof:

Identical to discounted case with wi replacing 6 i=1,2.

1 ]

3.5 Extensions

The above theorem is easily gencralized in two directions. The same
development follows if we have an n-person stochastic game where an n-tuple

of strategies, 8l s: » one for each player, is an equilibrium point

1’

if for any player, say the {ith, maximizes player 1i's average rate

(o]
54

of return when opposing the fixed strategies s° » 1 43, of the other

]

n - 1 players. We can appropriately define the correspondences oo Il

1’ n
each being a subset of the optimal solutions to a sequential decision process.

Consequently, Lemmas 1 and 2 ho'd for all ¢, , so that ¢ = wl LR I

i n

has a fixed point and an equilibrium point exists.
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Another pencralization concerns the undeiiying law of motion governing
the players' state transitions, 1f we assume that the players' joint choice
of actfons In a state not only determines thelr inmediate expected rewards
and transition probubilities, but also specifics a probability distribution
of the time to the next transition (that may depend on the state to which
a transition s made), then a semi-Markov process underlies the motion of
the players (rather than a Markov chain when the above mentioned probability
distributions are degencrate at a unit time) and their objectives become
maximization of long run average rate of return per unit time. Howard [8)
showed that for the one player case of this set-up, an optimal policy for
the sequential decision process only depends on the probability distribution
of transition times through their first mements.,

In addition, the problem can be formulated as a generalized linear
program just as in the Markov chain case. All chat is necded is to modify

(5) 1n Section 3.3 by changing the extreme points of Ci(;) to

[} o e 1
Qik(y) = Q) =

)
where
B
) 151 kY1
and Til is the mean time spent in state 1 1f the players use pure

strategy pair (Ok'el) . Lemmas 1 and 2 remain unchanged for the appropriately

modificd wl and wz so that the existence theorem also holds for this

more general case.

N
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3.6 An Equivalence Theorem

Just as it Is possible to pose a sequential decision process as a
generalized linear programming problem, it is possible to cast a two-person
nonzero-sum stochastic game under Assumption A as a programming problem,
although a nonlinear one in this case. Let
E(y) = (Qll(y)’ e Q1K1(Y)’ v Q) e QNKN(y)) be the matrix of
extreme points of the convex polyhedra Ci(y) , 1=1, ..., N, determined by
player II's strategy y and from which player I is to choose columns in
problem (5) of Section 3.3. F(x) 1is analogously defined to be the matrix of
extreme columns of the generalized linear program faced by player Il when

player I uses strategy x . Let

e(y) = (all(y), I alxl(y), Fy— aNl(y), .y aNKN(y)) and

f(x) = (bll(x)’ cees blLl(x)’ ceny le(x), S bNLN(x)) be the vectors of
associated rewards.

It is easily seen that the linear program

Maximize e(y)w

0
(1) subject to E(y)w =( N-l)
1

v > 0

is equivalent to Section 3.3's problem (5). Given a solution w to (1)
above, we can get a solution to (5) by letting the weight on column Qik(y)

needed to express Qi(y) be

and letting




33

;1

z, = w

i kel 1k

Similarly, given a solution to (5), letting Vi S 2%k e wvhere ik is

again the weight on Qik(y) nceded to express Qi(y) , solves (1) above for

a given solution to (5). Note that

) Xk > 0 1if and only if Vik 0.

Against player 1's n , player Il faces the linear program

Maximize f(x)z
0
(3) subject to F(x)z*=( i 1)
1
z > 0
Again, we have
(4) Yig > 0 1if and only if 24 0.

Lemma:

Under Assumption A, a necessary and sufficient condition for the
strategy pair (xo,yo) to be an equilibrium point is that there exist uo

o)
and v such that

1) ley?) - WVEGDHIK® =0
(11)  (£x%) - VIF()]y® = 0

(111) e(y®) - vEG°) < 0

A

(1v)  £(x%) - VF®) <0

A

(v) x e X

(vi) yeY
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Note:

o o
u and v must be the vectors of simplex multipliers associated with

x° and yo and problems (1) and (3) above.

Proof:

The existence of a uo satisfying (1) and (ii1) is guaranteed by (2)
and the nccessary and sufficient conditions for optimality of the non-
degenerate (Assumption A) linear programming problem (1). Syummetrically, the
existence of a vo satisfying (11) and (iv) 1is guaranteed by (4) and the

optimality conditions of the linear programming problem (3).

Theorem:

Under Assumption A, a necessary and sufficient condition for the
o o o o
strategy pair (x ,y ) to be an equilibrium point is that x , y , and

some uo 3 w2 solve the nonlinear programming problem

Maximize  ({ely) - pE()Ix + [£6) = wEG)Iy)T

subject to e(y) - uE(y) < 0
(*) £(x) - vF(x) < 0
x € X

yeY.

+
Letting 6ij =0 for 1 #3J and 61j = ] for 1= J , the objective can

be written
Ki N-1 Li
(ai'Pkl"'G)uxy n
im1 kel §=1 g=1 ' K& T4 T1/75TEKTR

N Syl My

) ! (bi - Pk2+ $ )v x
= y,, = (. + v
1=1 k=1 §=1 g=1 ' K& 13/ 31k’ 12 N N)
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Proof:

Sufficiency: Let x°, yo , 10, v% solve (*) . We will show that

(1) through (vi) in the lemma hold. Fcasibility guarantees (1i11) through

(vi) and

(5) [e(y®) = WEGD N + (16 - V() )y <0

But by the c¢xistence theorem of Section 3.3, there exist x . ; R " , V
satisfying [i) through (vi). Hence, there exisis a fcasible solution to
(*) with the value of the objective equal to zerc so that equality must
hold in (5). Finally, equality in (5) and (1if) through (vi) imply (i)
and (ii) are satisfied. Now we can apply the suftficiency part of the leuma
to infer that (xo,yo) is an equilibrium point.

Necessity: Let (xo,yo) be an equilibrium point with associated
simplex multipliers w2 and v . Then (i) through (vi) hold implying
x° . y0 , po . v?  are feasible for (*) and, in fact, solve (*) since

zero is achieved for an objective that is nonpositive for all feasivle

solutions to (%)

Several comments can be made about the equivalence theorem. For a one
state problem (N = 1) , the theorem reduces to a theorem given by
Mangasarian [11] for bimairix games. Another note of interest is the fact
that the average rate of return for players I and Il associated with

equilibrium point (xo,yo) is u: and v; respectively, a consequence of

0
the duality theorem of linear programming since uo( 2—1) = u: and

0 0
vo( T—l) = v: ,( T ]) being the right-hand side of both players' linear

programs. Finally, only the sufficiency part of the theorem holds under

Assumption B since,, under degencracy, some equilibrium points (x,y) may

have associated simplex multipliers that are not dual feasible, i.e., fail to




36

satisfy (ii1) and/or (iv).

The complexity of the equivalent nonlinear program {ndicates that 1t may
be most difficult to find its solutions. An intuitively appraling approach is
the following {terative scheme: at the nth iteration, x and y are fixed
at some x(n) , y(n) . The associated optimal simplex multipliers, u(n)
and v(n) , to the linear programs determined by x(n) and y(n) are then
found. Then (*) is solved with u and v fixed at p{(n) and v(n)
respectively. This determines x(n + 1) and y(n + 1) to be used for the

(n + 1)st itceration. Hopefully, x(r* and y(n) converge to an c¢quilibrium

pair. But there is no guarantee that this process will converge to a solution

to (*) (and hence an equilibrium point) since the possibility exists that the

scheme will get hung-up around a set of variables x , y , u, v where |

- - -

and v are simplex multipliers determined by x and ; and x and ;
solve (*) for the fixed ; and ; . It is interesting to note, however,
that to find the (unique) equilibrium point of a zero-sum stochastic game,
this procedure works and is precisely the same algorithm as the one given by

Hof fman and Karp [ 6] for determining the value and optimal strategies for

zero-sum games.

3.7 Possibilities for Further Research

Both applied and theoretical problems related to the results given here
present possibilities for further research. Many authors have discussed the
formulation of an infinite horizon periodic review inventory model as a
sequential decision process. The state at the beginning of a period is the
inventory on hand and the actions available to the system operator correspond
to the level up to which he orders while the expected immediate rewards
correspond to the expected net revenue for the period: expected sales minus

expected ordering, holding, and shortage costs. The probability distribution

of demand and a particular choice of order levels determine the transition
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probabilities that govern state transitions.

Now consider two operators of inventory systems who stock the same item.
If a demand is unsatisfied by the first operator, it is reasonable to assume
that this demand may revert to the second operator rather than be backordered
with the first, and thus affecting the demand pattern and reward structure of
the second. A similar statement is true about a demand unsatisfied by the
second operator. Hence, the policies of the two operators may be considered
as a nonzero-sum stochastic game since the reward structure and transition
probabilities clearly depend on the operators' joint actions. Rational
operators (in the game theoretic sense) of such inventory vystems will tend
to seek equilibrium operating strategies.

Consideration of such a problem leads directly to two possible extensions
of a theoretical nature. A characterization of the set of all equilibrium
points (perhaps making use of the equivalence theorem) of a nonzero-sum
stochastic game would be helpful in resolving situations where one
equilibrium point is preferred by one operator and a second equilibrium point
by the other, or a situation where one equilibrium point is better (for both
players) than all others. A second extension would deal with the problem of
paritial state information, i.e., a player has some idea about the state
he's in (fur example, his inventory leval) but lacks total state information
(for example, his opponent's inventory level).

Other areas for further work readily follow from the consideration of
extensions to basic game theory and sequential decision problems, e.g.,
co-operative games, various solution concepts, and allowing for a countable

number of states and actions.
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