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Abstract 

The problem of inferring a grammar for a set of symbol strings 

is considered and a number of new decidability resulls obtained. 

Several notions of grammatical complexity and their properties are 

studied. The question of learning the least complex grammar for a 

set of strings is investigated leading co a variety of positive and 

negative results. This work is part of a continuing effort to study 

the problems of representation and generalization through the gram- 

matical inference question. Appendices A and B and Section 2a.0 

are primarily the work of Reder, Sections 2b and Jd of Horning, 

Section k  and Appendix C of Gips, and the remainder the responsibility 

of Feldman. 
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L.  PreliEinaries 

ia.  Introduction 

The problem of generaiiaaticn (induction, concept formation) has 

interetced workers from a wide range of fields. In this paper, a particular 

form of generalisation, grammatical inference, is discussed. The notion 

of grammatical complexity is introduced to help measure which grammar is 

the best one for a given set of strings. 

The grammatical inference problem is easy to state; one is interested 

in algorithms for choosing the best grammar from a given class for a 

sequence of symbol strings. For example, we would like to discover that 

the sequence of strings 

car, cdr, caar, cdadr, cddadadr, etc. 

can be described by the rule: each string is a 'c' followed by any 

sequence 0+' 'a's and 'd's followed by 'r' . Or in Backus-Naur Form 

<string> ::= c <3eq> r 

<seq> ::= a j d | <seq> a | <seq> d 

The question of now to infer a grammar and to measure how well you've 

done it will be the main topics of this paper. 

The grammatical inference problem has received relatively little 

attention. Th^ main theoretical formulation to date has been that of 

Gold [6?] which will be discussed in Section 3. Solomonoff [6k]  considers 

the prnblem as a special case of sequence extrapolation; we have argued 

against this notion [Feldman 6?] but are indebted to Solomonoff for some 

of the basic ideas on grammatical complexity in Section 2. There has 

also been some related work in Computer Science [Amarel 62, London 6k]  and 



Psychology [Miller 6, Suppes 56]. There is, of conrse, a vast literature 

on pattern recognition [Uhr 66], but it has been exclusively concerned 

with pattern descriptions which are sfcmcturally simpler than srar-iars. 

Early studies of grammatical inference referred to it as a form of 

induction. The term "induction" has been used as a description of 

generalization processes. Unfortunately, it has also cen used in dozens 

of other ways and is threatening to become meaningless. We favor 

restricting the term "induction" to statistical modes of inference such 

as those of Solomonoff \6k]  as is done currently in Philosophy. The 

particular model which we found most appropriate is the hypothetico-deductive-      lr 

empirical (HDE) mode of inference. An HDE inference consists of Torminfi 

hypotheses, deducing conclusions about the data and testing these conclusinn^ 

for validity. This characterises the scientific method and is quite close 

to the "scientific induction" of Lederberg and Feigenbaum [68]. m our 

case a hypothesis is a grammar rule, a deduction is a derivation, and the 

data are the sample strings. 

The results of this paper are one part of a many-pronged attack on 

the grammatical inference problem [Feldman 67]. The results here are largely 

theoretical, but include a heurittic program to infer grammars. Other 

efforts involve psychological study of human grammatical inference. we 

aiso nope to be able to relate theoretical results with the heuristics 

of the program and to consider how these "elate to human learning of 

language and other theories. To the extent that e.g. pictures [Killer 

aw 68] are well represented hy grammars, the grammatical inference 

vj  be of some practical use in pattern recognition. 
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II        lb. Definitions, Notation 

U This paper makes use of ideas from several research areas, and it is 

impossible to agree with all their notational conventions. We deviate from 

the usual formulation of context frea grammars in requiring all 

vocabularies to be subsets of a fixed collection of symbols» There is 

ll        no loss of generality in doing this, but many results in the literature 

ft        would require careful consideration of substitution rules [cf. Church 56]. 

The universal terminal alphabet T is the set of symbols [a^a-ja^ .,.} . 

The universal variable alphabet to is the set of symbols {X = Z, Z^Zp ...] . 

We will also use the following notational conventions. The string of 

zero symbols is denoted by c , the empty set by ^ . If S is any set 

of symbols, S'f is the set of finite strings of symbols from S and 

S+ r= S* - e . 

A context free grammar (efg) is a quadruple G = (V,T,X,P) where 

V,T are finite sets , V c to U 1' , T = T fl V , XeV-T , and P is a 

finite set of productions (rules) of the form Z -» w , with ZeV-T , 

W€V* . In such a production, Z is called the left side and w the 

right side. We will abbreviate a set. of productions Z -♦ w^Z •* W-,..., 

Z ■♦ w,  with the same left side as Z *♦ w. I w  j .,. w, . 

If G is a cfg, and w,y,EV* we write w « y if there exists 

teV* , ZeV-T and w ,w  in V* such that w a w Zw0 ,  y *  w tw 

and the rule Z -♦ t is in P . The string y is called an intermediate 

string. The transitive closure of =} is written 9 . In either case 

the subscript "G" may be omitted if there is only one grammar under 

consideration. 
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I--" w 71 y , ycT', we also say there is a derivation of y fron v? 

in G .  In this case, there is also a derivation of y from w in which 

each rule has as its left side, the leftmost ZeV-T of the preceding 

intermediate string [Ginsburg 66, p. 30]. This leftmost derivation is 

denoted d(y,w,G) , and when w = X will be abbreviated to \{y,G)   . 

We will be exclusively concerned with leftmost derivations.  If 

d(y,w,G) - <p ,p0,...^p, > with p.ep we define the derivation length 

^ - k • The length i(y) is the number of symbols in y . 

by 

■Th" language L(G) generated by a cfg G = (V,T,X,P) is defined 

L(G) = {y I yeT
+ and X £ y} 

We will sometimes omit mention of the grammar. The definition implies that 

we will be dealing 1th only e-free languages. With this restriction 

and some well-known results on cfg we can significantly constrain the 

form of cfg to be studied here, 

Def Ibl A cfg,  0 - (V,T,X,p) is said to be totally reduced and we 

write GcR iff. 

I 

5 ä 

C\ 

d) 

contains no rule of the form Z —> e 

b) p contains no rule of the form Z. -> Z 
1  i 

c) If X a w , weV* , there is a yeT  such that w =» y 

aeT , and peP is used in at least one 

rj , wher< is m .(G) . 

It is well-known that any e-free language derivable from 

some cfg can be derived from a cfg in ft . We will restrict 

ourselves to GeR unless otherwise mentioned. 
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Lemma lb2  For any GGR and any yeL(G) the derivation length 

id(y) <2 • I(y) . 

Proof Consider any derivation of y , d(y,G) == <p ... p, > . Each 

p. must either (a) add to the length of the intermediate 

§, string or (b) replace a variable by one or more terminal Symbols, 

• Since no peP can reduce the length of an intermediate string, 

there are at most i(y) instances of (a). In addition, there 

I can be at most l{y)    variables in an intermediate string and 

thus i(y) instances of (b). 

There is an extension of the notion of ordered sequence which will 

J be useful. A sequence <y ,y2,...> is said to be approximately ordered 

by a function f(y) iff for each k > 1 there is an integer T > k 

• fuch that t > T implies 

| f(yj 1- f(yk) • 

W Lemma Ibjg  If <y.> is a sequence which is approximately ordered 

by f and if <f(y.)> is positive and bounded then there is a 

t C such that 

lim f(yi) = C . 

J ^ 

S        Proof  We know <f(y.)> has a finite lira sup , call it C . If 
I 1 

there is a j such that f(y.) - C , then by approximate ordering 

I there is a T such that t > T implies f(y ) ■■=  C and the 

lemma is proved. 
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Suppose the lira sup C is not attained. Let c > 0 

be given, then there is a y  such that C-e > f(y ) because 

C is a cluster point. But then there must be a x  such that 

t > T.  implies 

C-€ < f(yT) 

Further, there are at most a finite number of i such that 

f(y.) > C because C is the lim sup of a bounded sequence. 

Let T0 be the maximum index of these and let T = max^r ,T,,) 

then for all t > i we have 

C-e < f(yt) < C , 

and the lemma is proved. We will be especially interested in 

cases where r{k)    is effectively computable. 

Pinallj', we must introduce a number of definitions relating to enumerations 

of languages. An information sequence of a language L , l(L) is a 

sequence of symbols from the set 

{+y | ycL] u {-y | yeT+-L} . 

A l-psitiy^ information sequence I+(L) is an information sequence 

of L containing only strings of the form +y . Notice that if we bound 

the number of occurences of any string y in I(L) then I(L) iz 

approximately ordered by l(y) . The set of all (positive) information 

sequences f01 L c T+ is denoted {S+)<S <    In Gold [6?], J  was called 

the set of text presentations and £   the set of informant presentations. 

Let I(L) be a (positive) infoifnation sequence, we define a (positive) 

| ; 
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1 : 



I 
I 

sample    S+,(l)    to 

sequence  is one in which there 

ocGurences of a string.    rP>.P c 

the unordered set;     S. fji  ^  ft-.,- 

■■■y^rvin f- 4 r.y. 

sequences is denoted (5)0, AD -'nfor^t^r, c. 

eacn string 

A  T-.,- 

i occurs m the sequence 

A positive information sequence is cr 

sentence of the language 

stated, we restrie 

^r a xang;age if 

/ W— v-t J. ij tne sequence,  unless exnlicitly 

urseives lo cotüplete seouenc^s  ^nf   *• 

sequences and samples will yccur in Sec+^ 

role in Section r-. 

■ion aQ a * iü pi-ay a central 

over its elements as follows: 

For each    +v.«-S  fl') f(r ^    n\       -\ 

v^     W -L bXJ a frequency distributi en 

I 
I 
I 
I 
I 
I 
I 

fCl^y^t) = f(l,y.,T-l) ■!■' 
y_ r y« 

1    if 

s tne '"e 1© 1" i vp 1 n    rV^a    ^4 
strings 

I  .    An information :quence    I    is cenver^e^-h  •.*•? 
"-' "    — ■*■ 

lim    f(l,y    t)/t ^ P. 

--Ö ^.XIQ xs nuii^zsj'o *",i~"-i^ 
i f-»---^.?: convergent 

ini or^at ^ o^ sequences is denoted    K 



Additional Notation 

np); if X is c finite set of objects (e.g. strings), then n(X) 

is the number of objects in X ; n(x) is the cardinality measure 

for finite sets. 

r: r = n(T) = the number of terminal symbols i in the alphabet T 

1^ = 0,1,2,...): Lk=LnT
k
; Lk is the subset of the language L 

which contains only strings of length k 

Lg):  L^a) = 1^ n a T* , Lja) is that subset of Lk 

prefixed by a € T* ; L (e) = L . 
K      it 

T^: Tk(a) = QT*n Tk 

which is 
[J 

f' 

n 
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2. Gramrnatical Complexity 

2a.o Introductory Measures 

There are a number of ways in which one could measure the complexity 

or information content of an abstract language. One traditional way is to 

consider the relative sizes of various subsets of the language and develop 

size measures for languages. Examples of size measures will be considered 

shortly'. Other types of complexity measures can be developed in terms of 

time and space bounds on the automata associated with a language; studies 

of this type are currently quite popular (e.g. Hartmanis [68]). Other 

possible complexity measures could be based on the complexity of algebraic 

decomposiu.on of the automata associated •ith a language. 

At this point a distinction should be made between complexity measures 

of a language and complexity measures of a grammar. To be independent of 

the various grammar(s) for L, a language measure of L should be sensitive 

only to the content of the subsets of L,  net to the structural form of 

the elements of these subsets. Measures based on the grammars or automata 

associated with a language often do not characterize the language, since 

the value of the measure can vary among weakly equivalent grammars (automata) 

of the language. The class of size measures of languages is one example 

of language measures which proves useful in studies of complexity. We 

consider briefly two particular size measures for arbitrary languages L c T*. 

10 



First-order (density) size measure 

(lO        (k) Consider the sequence <d > , where d ' is the proportion of strings 

of length k which are in the language L being measured: 

d(k) _ ^\' _    ^ K .  Suppose the sequence <d^ ^> converges 

n(Tk) a rk 

nCL,) 
to a limit d , so that d - lim then we would like to define 

d as the density of the language L ,  which can assume values in the unit 

interval 0 < d < 1 . The density is intuitively the limiting p*oportion of 

strings in the language. 

There are often, however, languages which seem to contain a well-defined 

(kl limiting proportion of strings, yet for which the sequence <d *>  does not 

converge. As a trivial example, consider the language which consists of 

precisely those strings of even lengthj in sane sense it seems that half 

'k) of the strings are in the language, but the sequence <dv ' > = <...,1,0,1,0,1,.. .> 

does not converge to any limit, let alone the desired limit of ^. The 

sequence <s^ > = < r ^3 d ^    does, however, 

converge to the desired limit of |, since s^k' =. /*  j. ' k eVen • 
|t + ^ j k odd 

(k) \ 
The sequence <d ' > is said to be Cesaro-summable to ^ (see, for example, 

(k) 
Kemeny, Snell and Knapp [66]). Since s   is the arithmetic mean of the 

first k proportioas, it seems reasonable to interpret the (unique) value 

(k) to which the sequence <dK ■> is summable as the density. This example 

motivates the following definition of density: 

n 

ii 

n 
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If the sequence <dv '> is Cesaro-Siimmable to a. then ä 

is defined as the first-order (density) siise measure 

of the language. If the sequence is not Cesaro-smamable, 

then the measure is undefined. 

O) 
Clearly if <dv > converges to a limit d, then it must also be Cesaro- 

summable to d. Cesaro-summability is well-known to be equivalent to 

other types of sequence summability (e.g. Euler-summabiiity) in the sense 

that, if the sequence sums to a value by one method, then it must also 

sum to the s ne value by the other methods. Although occasionally useful, 

we will not discuss other typas of summability. 

iH u 
so that 

Suppose that <dv"'> is an ultimately periodic sequence with period p, 

(kp+q) 
lim  d 

k -» «> 
% ; t = 0? • ,p-l. Then it can be shown 

p-1 

that <d^> is Cesaro-summable to d = - ^-t d_ , which again 
P q=ö H 

illustrates the usefulness of allowing Cesaro-summability as a more general 

convergence criterion than the commonly used simple "limit" . We shall 

adopt the notation b = dim b    to indicate that the sequence <b^ ■> 
k -» » 

is Ceskro-summable to b. 

It is difficult to develop useful existence conditions for the density 

measure of an arbitrary language I^T*? since L clearly can be chosen in 

such a way that the sequence <dv '*> fails to exhibit any stationary behavior. 

Existence conditions become more tractable when L is assumed to be associated 

with a certain class of grammars cr autcmata. For example, it is shown in 

Appendix B that the density measure exists for all finite-state languages 

(if ue saro-summability is allowed to be a condition for convergence). 

- 
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The density measure can be useful as a means of comparing the relative 

size of languages. But relative size discrimination by means of density 

breaks down if the languages have eithor zero or unity density. Most 

languages we have occasion to investigate have zero density; accordingly, 

n more sensitive size measure is required for comparison of thf. relative sizes 

of zero-density languages (which could be used to compare unity density 

languages by comparing their zero density complements.) 

Second-Order (logarithmic density) size measure 

When the densities of two languages are zero, a more sensitive measure 

is needed to compare their relative sizes.  Consider transforming the 

(k) 
sequence <d > into a logxlog scaled sequence 

JLOd.     (k)  loe n ^  1   log n W <hK  J>,  where }i^J  = £- = -   ■  JL. 
log n (Tk)  log r     k 

(log n (1^) is taken as zero if 1^= 0). we define the second-order 

(logarithmic density) size measure h of L as 

h = dim h 
k -> <» 

(k) 

(h is undefined if <h^ > is not Cesaro-summable). The quantity C = (log r) h 

is the familiar measure termed the channel (codinp;) capacity of L 

(we have extended the standard definition of C by permitting Cesaro-summability 
log n (y (k) 
 r > = log r <ir '> rather than just strict of the sequence  < 

convergence). When it exists, logarithmic density satisfies 0< h< 1, 

Furthermore, it can be shown that 

(i) VLGT , if d exists and d > 0, then h exists and h = 1 

I 

■ 
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n (ii) if both d and h exist and h = 1, then d > 0 

(iii) if both d and h exist and d = 0, then h < 1 
n 

We thus see that logarithmic density is a useful size measure among 

minimal (zero) density languages, while density is a useful size measure 

among maximal (unity) logarithmic density languages. 

— 
1 i 

The logarithmic density (and thus the channel capacity) of a language 

_ is strictly a size measure, and is not essentially an information-theoretic 

L* language measure as the name channel capacity seems to suggest. The 

channel capacity is the maximum possible (limiting) mean rate of infor- I 

mation transmitted/symbol across a discrete noiseless channel. Several 

authors have termed the quantity C (or h) the entropy (or relative 

0 eatropy) of the language, a somewhat misleading terminology; in terms if 

II of classical information theory, C is the maximum rate (per symbol) 

of entrupy for possible "stochastic grammara" of the language. There 

are, at least for sane classes of languages, stochastic representations 

of grammars for the language which achieve this maximum entropy rate 

(channel capacity). In terms of "selective information theory" (Luce 60, 

1 Chomsky and Miller 63b), C is indeed the entropy rate of the language. 

I We emphasize that several stochastic grammars (automata) for a given 

language may have different entropy rates, but C is an upper bound 

j for them. 

11 



Other size measures 

The first and second-order size measures of a language L can be 

generalized as functions oi a given string a € T* : 

d(a) . clim 
n(Lk(a)) 

clim 
n(Lk(Q)) 

k-»« n(T»)   k-4«. rk_f(a^ 

log nCl^Ca)) 
h(a) = clim      t-   - , 

k^» log n(Tk(a))  log r k 

clim 
00 

log n (Lk(a) 

(Note: where Cesaro-suramability is used, it is understood that summation 

begins with k = l(a)+l rather than with k=:0. 

Note that substituting Qfee into d^) and h(') yields the size measures 

d and h, respectively. Discussion of d(a) and h(a^ with respect to stochastic 

grammars and selective information theory is an interesting topic, but un- 

fortunately exceeds the scope of this presentation. 

Ranarks; 

Chomsky and Miller [5ß] claimed that the probability of a randomly 

chosen string of length k being in any given regular language converges 

to either zero or one as k increases without bound. This claim is equivalent 

to stating that the density of any regular language is either zero or unity. 

To our surprise we have encountered rtstateraent of this claim by later 

authors (e.g. Kuich and Walk 65). The claim is false, as is shown in 

Appendix B. There appears to be two sources of error in Chomsky and Miller's 

development. First, there seems to be some confusion between first and 

second order size measure with respect to probability; Chomsky and 

Miller's argument was based on channel capacity (second-order measure) 

15 
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I 

rather than on first-order density; density is equivalent to the limiting 

proportion of strings in the language. Second, a matrix or "equational" 

representation of finite-state grammars was used by Chomsky and Miller - 

indeed, has been used extensively in the literature - which is inadequate 

for the class of all finite-state grammars; where are regular languages 

which cannot be generated by any grammar associated with the mstrix repre- 

sentation. The interested reader is referred to Appendix A for examples 

of regular languages for which the representation is not adequate, and 

for a suggested matrix representation which is adequate for all finite- 

state languages. 

2a. Introductory Definitions and Examples 

The concern here is with a representational measure of complexity. 

We will be interested in the following questions. How well does a given 

grammar fit a sample? How complicated is a grammar? What is the most 

satisfactory grammar from a given class for some sample set of strings? 

The results of this section are of some intrinsic interest and will be 

very valuable in the grammatical inference problem considered in Section J. 

The techniques described here, although discussed in terms of grananars, 

seem applicable to a broad class cf problems involving the fitting of a 

model to data, [cf. Feldman 6?]. The particular measures studied here 

are related to Bayes Theorem and to the measures of Solomonoff [6h]. 

16 



Def gal  Let G *  (V,T,X,P) a cfg| the alternative set A(p) of a 

production peP of the form Z -» w is the set. of productions 

in P with the same left side, Z , i.e., A(Z •♦ w) ^{(z - x)€ P}. 

We will be interested in measures which depend on the alternative 

set, and for most of the discussion will be concerned with a very restricted 

class of such functions. 

Def 2a2  A function p(p) is a density iff 

1) p is defined for all peP for any GeR 

2) 0 < p < <» 

3) For each peP ,   JZ     2'p(p,) 

p'€A(p) 
= 1 

A density is intended to describe how precisely a grammar "fits" a 

set of strings. The description of a set of strings in terms of a grammar 

will be more complex if the grammar generates many strings besides those 

in the set. Each step in a derivation will be considered more complex 

in a grammar which allows many derivations from that non-terminal (has a 

large alternative set). It is also possible to consider p from an 

information-theoretic point of view; p(p) is a measure of the information 

required to select p from the set of productions with the same left side, 

i.e., 2'p^}    is the probability oi a particular alternative. 

It is this information theoretic approach which gives rise to the 

specific density used here. If we assume that all productions with the 

same left part are equally likely, we get a local measure 

ff(p) = log^Mp)) 

where b(p.) is the cardinality of A(p) . 

17 
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I      Another possibility is to assign some a priori likelihoods to each 

production p . This could be based on some conrplexity measure on p 

•      itself (such as its length). We will concentrate on proving properties of 

f      the general density p ,  but will use a in the samples. Before presenting 

examples, we must extend the notion of density to a complexity measure for 

derivations. I 

I 

Let d(y,G) = ^^ ...,ph> b. a derivation of y and let p(p) be 

a density, we define 

h 
^(d,y,G) = J[Ip(p,) • 

We can now define the complexity of a string relative to a grammar. 

Def 2a3  Let yeT+ . If y>L(G) we define the complexity u(y,g) 

to be «» . If yGL(G) and the derivations of y are 

d1(y,G),...,dk(y>G) we define 

^(y,G) = jZI^(d.,y,G) . 
i=l 

Def 2aU  Let S = {y^...^} c T+    the complexity of the set S 

relative to G , |j(S,G) is defined by 

n 
n(S,G) - Zru(y.,G)  . 

i=l  1 

Thus the complexity of a string is the average of the complexity of 

its derivations; the complexity of a set is the sum of the complexities 

of its members. 

18 



If S is a finite subset of T    ,i(S,G) = « iff S-L(G) p 6  . 

The value of n(y,G) is a measure of the complexity of a derivation of y 

from   G and might be usable as a measure of grammatical complexity. We 

defer the discussion of the relative merits of various complexity measures 

until Section Ja. 

Example 2a5  Let G = ({X},{a,b},X,{X -» a | b | aX j bX}) . 

This is the universal grammar over (a,b} . For this grammar, 

any string of length n requires a sequer-ce of n productions in 

its unique derivation. If w^ use the density s as p , each 

production p has p(p) = log^.(4) = 2 . Thus each ye{a,b}* has 

n(y,G) - 2 • l(y) . 

Let H = ({X^Ma^bJ^CX -* h  \ &Z1  \  bX, Z1 -» a j aX | bZ^) , 

This is the "even nuaib • of a's" grammar. Similar reasoning to the 

above will show that for any string y with an even number of a's: 

u(y,H) = logg(3) • i(y) . 

The example indicates that u corresponds to our intuition in 

declaring the universal grammar to have more complex derivations of strings 

having only an even number of a's. There is, however, a potential problem 

in the fact, that K itself seems more complex than G . We have, so ' ir, 

considered only the complexity of derivations. If, as in the grammatical 

inference problem, only a finite set of ütrings is available for testing, 

a very complex grammar may yield the lowest value of ^ . For example, 

the grammar which simply lists the sample set (ad hoc grammar) will have 
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a very lew measure. In the next section we will exparid the notion of 

gramnatical complexity to include a measure of the complexity of the 

grammar itself. 

2b. Grammar-grammar, Conrplexity of Grammars 

We will define the complexity of a gramma)1 as the oonrolexity of its 

derivation in some grammar-grammar^ 5 . The choice of G will determine 

which subclass of the context-free gramars is under consideration. 

Typical subclasses include the linear grammars, grammars in some standard 

form, and grammars restricted to a fixed number of variables. 

De^ 2bl  A grammar-grammar G = (V,T,X,f) on the terminaf   habet T 

is defined to be a cfg such that 

i)    (v-f) n UJ = jo 

S)  f cic u T U {-»} U {,} 

where It is the universe of variable symbols and "," is used 

to separate the rules of F 

It would be possible to sharpen this definition, e.g. to allow only 

ZeU; to appear to the left of "-»" in a string. It is not possible, 

however, to force g to produce only Geft , with a context-free G . 

There is the additional problem that V must be finite so a given G 

will only generate a class of languages with a fixed number of variables. 

The following definitions modify the grammar-grammar concept and make it 

more suitable for our purposes. It is also convenient to have the 

production arrow for grammar-grammars be "•■=" 
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1)6 f 2t£      A sequence of grarnrrar-grarninars    C = {5 ,G,.,...]       is a 

collection iff.    There is a    H    such thar for each    5. 
1 

1) 2 ::= Z0   | Z1   |   ... zi_1    in    Gi  . 

2) Z appears in no other left sides. 

3) No Zeus appears in any other rule, 

M  The Gi are identical except for the mile described in l). 

Tht; intent here is that 2 is the variable in all 5. which 

produces the i variables of the G. . 

Def 2b3  A representation elass C is defined as 

c = ( u   L(G)) fl R 
GeC 

where C is a collection. Thus, C is a «et of graramars 

defined by a collection C such that for any GeC , there is 

a GeC such that GsLfG) fl R . 

This definition allows subfamilies of cfg with an unbounded number of 

variables to constitute a representation class. For an - GeR and any 

class C it is decidable whether üeC . More frequently we will be 

interested in studying all the grammars in some class C . We will 

sometimes write G(k) for GeC such that Gel/S, ) fl R . 

The intrinsic complexity of a grammar G can now be defined as the 

complexity of its derivation from an appropriate grammar-grammar, u(G,G) 

using p - a    as density. The choice of the grammar-grammar G will 

depend on the set of granunars being compared. We now derive expressions 

for |i(G,G) for a number of interesting subclasses C of R on a fixed 

terminal alphabet T - fa ,...,a ,I . 

21 I 
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For all the examples we will have G = rv,f,X^p} with 

V =  {X^R^Tj U f 

T = (Zo, ...,Zn_1,ao,...,as_J,-->] (J {,] 

The general cfg with n variables Gan be derived from the collection 

The productions P cf CF  are C = {CF ] 
n 

j A-,H 

• • «   V.J 

i m j via 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

For b.  graiaiaar G in L(CF ) which has k productions, whose right 

sides have a total of 1^ variables and k-    terminals we have 

u(a,CFn) = k • (logc(n) + 10^(2)) +  k1 • (ic^ik)  + log2(n)) 

+ k2 • (log^iO + log2(m)) . 

For cfg in Greibach Standard 2-forn- (S2) and in modified Operator 

2-form (02) the measures have very similar expressions. The productions 

S2 

N -» R 

Z   7.       7 
0   1      n-1 

;- a 

LN i TM 

ra-1 

22 

02 

R 

= Q I x,q 

- N -♦ R 

= T | TN i NTN I NT 

= a | ... a , 
c      m-1 



and if a grajnmar G has k productions and k^k.,,;-^ rules whose right 

sides are of length 1, 2, 5 respectively, then 

^(0,32^) = k(log2(n)+log2(5)+log^(ffi)+l0g_(2)) + (v + 01^)  Iccln) 
— 5 ^ 

n{G,02n) = k(log2(n)+l0g2(^)+iog2(m)+iog2(2)) + (^ + OR.) loß^Cn) . 

Similarly, the linear grammars (LK) and finite state grammars (FS) 

have nearly identical 5 . The productions are: 

m Fs 
x 

Q 

N 

T 

R 

:= Q I X^Q 

:= N -♦ R 

n-1 

:= a^ I ... a , 
o      m-1 

TN m 

^k 

o ■ ••■  n-1 

= i I TN 

and if a grammar G has k productions and k^ rules vhose right 

sides are of length 1, 2 respectively, then 

a(G,LKn) = k(log2(n)+log2(3)+logs(m)+log2(2)) + k2log2(n) 

u(0,Fon) « k(log2(n)+log2(2)+log (m)+log (2)) + k0logQ(n)  . 

Finally, the prcHucticns and measureb for Chomsky normal form (C2) 

Cg 

= Q I X,Q 

= N » R 

= Z     1 ... Z 
o       n-1 

are: 

m-1 

u(G,C2n) = k(log2(n))+log2(2)+?k2(logg(n)+log2(2))+k1(log2(m)) . 
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Example 2b^  Returning to our example of the universal grammar on strings 

(Example 2a5) with an even number of a's, we can now measure the 

complexity of the grammars G , H . We must first determine the 

appropriate class of grammars and parameters (n,ra) to use in the 

comparison. We have assumed that the terminal alphabet (and thus m  ) 

is known. Since both grammars are finite-state, the C called FS 

above is most appropriate. Now H (the "even a's" grammar) has two 

non-terminals. We use n = 2 for it and get the result: 

k = 6 , kQ = U 

u(H>FS2) = 6(log2(2)+log2(£)+log2(2)+log2(2)) + k  -   10^(2) = 28 . 

For the universal grammar G which requires only one non-terminal 

we could use n = 1 or n = 2 . The results are: 

u(G,FS1) = 12 

u(G,FS2) = 18 . 

Although G is simpler than H by either measure, there is a question 

of which measure to choose. We can see from the formula:, derived 

above for u(G,G-} that choosing the smallest possible n produces 

a bias in favor of grammars with few non-terminals. This seems desirable 

and has been adopted for use in this paper. 

We will need the following lemma in Section 3 which deals with 

grammatical inference. 

Lemma 2b^  Let C c R be defined by a grammar-grammar G in Standard 

2-form (E2) , then there is an enumeration J of C which is 

approximately ordered by u(G,G) in an effective manner 

2h 
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^oof  If C is finite the problem is trivial. If C is infinite 

ü(GiG) is unbounded on C . Given „he grammar-grammar G f  one 

can define a generating algorithm which will approximately order 

L(G) by the length of its strings (grararnarn).  Let 1 be the 

restriction of this approximate order to GeR , ^ is an enumeration 

of C . Now if in Jf   is given we must show there is an 

effective way to find k such that j > k implies 

u(a..,G) > uiG^G) 

Let    r=    th le miniüium density of   peP    and let    h    be  such thai 

h •  r >u(ö4,G)     . 

We can effectively find k such that j > k 

because Jf   is approximately ordered by i(G) 

have lAG.) =  f(G.) and thus 
a    3 3 

u(G^F) > h • r >u{a.,Q)     . 

implies £(G.) > h , 

Als'- for be: we 

The two co:nplexity measures developed here (the intrinsic complexity 

of a gramar and the complexity of a set of strings relative to a grammar) 

can be combined to form an overall measure of how well some grammar fits 

a set of strings. The problem of what combination of a(G,G) and u(S,G) 

to use in an overall measure will be discussed in Section 5c. For the 

present we will be content with an example. 

Def 2b--  Let G be a grammar in a class C defined by C .  Let S 

be a subset of T+ , then we define the measure ^,(S,G) by 

^(S,G) = u(G,G) + Li(G,G)  . 

2!> 
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We can now reconsider Example 2oh  using fL  .    The universal graranar 

G is simpler than H , but leads to more complex derivations. We 

then investigate which sets S will cause one to prefer H to 

grammar for S , i.e., make 

ve can 

G as a 

^FE(S,H) <^FS(S,G)   . 

Using Def. 2b6 and the intrinsic complexities computed for HjG this is 

equivalent to finding S such that 

u(S,H) + 28 < n(S,G) + 12 

or 

nf \v,\x)  - u^S,H) > 16 

■ Now from the results of 2a> this is satisfied hy any set of strings S 

satisfying 

I L* *(y) >39 . 
■ yeS 

Although it involves getting ahead of ourselves somewhat, we should 

sider this example more closely. In general, 57L,(S,G) will depend 

on the nature of S rather than some simple property as in this case. 

Here we have shown that any sample including 39 or more symbols and 

having only strings with an even number of a's makes H preferable 

to 0 . Notice that a single string with an odd number of a's will make 

u(S,H) = CD , The result above says nothing about other grammars which 

|        might be better than both G and H on some set S ; this is the 

grammatical inference problem and is the subject of Section 3. We first 

*        introduce a variation on complexity measures which plays a major role in 

f        the discussion of grammatical inference. 

con; 
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2c. Normalised Complexity Measures 

The complexity measures introduced In the last, section increase without 

bound with the length of strings. To overcome this difficulty we introduce 

a normalised complexity measure; this measure is bounded so we may also 

study its limiting behavior as the sample set of strings approaches the 

language. 

Def ^cl  The normalised complexity Tj(y,G) of a string yeT+ relative 

to a grammar G is defined by 

l(y,G) = u(y,G)/f(y) 

where u(y,G) is defined in 2a3 and i(y) is the length of y . 

The definition of TJ is extended x.c  sets, S , of strings by 

TI(S,G) = n(S,G)/^f(y)  . 
yeS 

Lemma 2c2  For any GeR , yeS 

that 

(a) r < n(y,G) < q 

(b) r <T)(S,G) < q . 

ICG) there are constants r,q > 0 such 

F*02£ (a) By lb2 the derivation length Ijy) is not. greater than 2 • |(y) 

If B is the maximum p(p) in G then 

q = 2 • B 

satisfies the right half of (a) because if there pre k derivations 

of a string y ,  we have: 
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i(y^) =—7^ El  ZI P(P k-ny) i=i :;=i ij' 

s^wS S B 

= 2 • B 

Let k(p) be the number of terminal symbols appearing in production P 

Let r be the minimum over G of p(p)/k(p) , then r satisf.es ^ 

left side of (a). The proof of (b) follows by straightfor 

from (a) and the definitions. 

srward analysis 

I 

The introduction of the normalized complexity measure n(S ,G) 

enables us to study the behavior of r,    as the sets St approach L(G) 

h'hen the limit exists ve  will write 

n(L,G) = lim T](3 G) 
t-*oo    t 

The following example will show that the limit may not exist. 

EXample 2a  Let G= (C^e^Z^JX^Z^X,?) where P contains 

X -♦ ajaX|cZ |c 

Z.-cZjc 

and let the density n = a . The language L(G) is the set of all 

strings containing a finite number of a's followed by a finite 

number of c's . We will show that there are information sequences 

for which ri(£t,G) does not converge. 
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Let a  be a string of a's of length 

of c's of length m . Then 

^(a ,G) = n • log2(4) 

n(cm,G) = log2(i+) + (m-l)logp(2) 

md be a string 

On a sequence of strings of the form a , we have ^(5,0) con- 

verging to 2 and on a sequence of c , i(S,G) converges to 1 . We 

will now show how to choose an information sequence which includes every 

string in L(G) exactly once and for which T)(S ,G) fails to converge. 

The first string is "a" and the subsequent strings are chosen as follows. 

After choosing a string a  we choose all strings of L(G) of 

length up to i and compute ^(S^G) on this set S,  of strings. There 

is a string cJ which, if chosen as the (t-H)st element cf I , will 

cause T}(St+1,G) to be less than l.k .    For example, if S = (aj , 

then Sg = {a,cj and j must be such that 

loggU + log2i+ + loggii + (j-l) 
l.h 

which is satisfied by j = 7 and S = {a,c,ecccccc} . We then select 

all new strings of length up to .j and compute T)(S. ,G) . There is an 
J2 

integer j2 such that 

ü2 
TJ(S. +{a j,G) > 1.6 . 

t2 

By continuing this process one can produce an information sequence 

on which T|(S,G) fails to converge. 

In the example above, the failure of n(S,G) to converge depended 

on three factors: the density p , the derivation length !_, and the 
d 
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■ information sequence I(L) . By restricting these factors in various 

ways, one can show that there are cases where Ti(S;G) is known to 

■ converge. We first examine the case where p(p) is Cunstant; this 

amounts to using the length of a derivation as a complexity measure. 

■ We will use the notation irt(y) to denote the average derivation length 

■ of a string y , 

M        Theorem 2ch      Let Gec; be such that p(p) = r , a constant for all peP , 

then for any 1(G) for which 

lim ——  

the limit of   n(S>t,G)    exists,  and 

I t  1    
kiVW 

I n(st,a) = ^ \ ^  M L 

■ Co     rN        ^  1=1     1     h=l  1 T(St,G) = r  

limT](S+,G) = rCl 

Pyoof     By definition 

:=i     1 

but with    p(pih(.) = r    this collapses to 

TZ nyj 
1=1    i 

irny.) 
.i=i  i 
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which proves the 

Corollary 2a^. Let GtR be euch that 

1) n(p) = r    a constant  for all    pc 

2) id(y) = a  •   !(y)+h  ;    a,b    posit 

Then for any    1(G)    we have 

Urn n(St,G) * ra     . 

This shows that for a constant density p  and rTanniari, whose l^ 

Is simple, the normalised complexity measure always converges. This is 

interesting because many classes of grammars satisfy Condition 2 of 

Corollary 2c5. 

For the Chomsky standard form C2 , we have ^(y) = 2l(y)-l . For 

each of the representation classes  FS, LK, ü>, bd    we nave i^Kj) = lw) 

These relations are immediate consequences of the i'orrn of productions 

for each class. Ve now consider the results of allowing p to be 

non-constant. 

We present two versions of the 

T]{StG) with non-constant o - The 

prove and illustrates the nati 

is more useful when it applies. 

•onditions for 

re ct the nroDiem. 

onvergen 

-■it ' impxe to 

cond, Theoren 

Def 2cS      Let    u.jpj    be the number of .sec of production    J    in derivatior 

h    of the string    y.   .    Also Jet    u.(p 

over the derivations of    y.   . 

be the average ot 
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Theorem gc7  Let GcR be such thai P - [p,,...,p } , i.e., there are s 1 i.     s 

I 
I 
• productiuns in the granmar. A sufficient ccndition for the limit as 

I 
following  limit  exists 

(1) limit 

-» »   T» ,/■„ 

SLf C ZI 
„ / q ^ \ i=I     "1 h=l ,1 = 1 ~"  

Reversing the sums over h,j and using the definition of u.(p;) 

iz z. 5 ^P).o(l>) 

1=1 

reversing the order to summation again and separating out the 

rihuti-ns of each production p. as T,(3.,G) we hav^ 

P\P-;/ L*  u.(p.; 

I 
i=l 

Gcn-;e average mu^b^r of uses ot a production in deriving a set 
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ol strings should conv^^» ^n  ..:^.-,.,  ...   A -  \ 

hard to establish for a riven rranumar ard infoy M - . = 
6a.v .. ;JJ._J—ü ^HQ miormation seqisence. 

A more reasonable condition to establisl is the raf  f th 

?. to the total number of steus in de-ivine- fhr, ^+    c    ^ , . 

f.(S ) = 1=1 hal 1 

i=l h=l a l11 

Thus the frequency of a production p, in deriving the sei of 

string S  is the total number of uses of p  divided bv the —-^ .- 

production steps used for the set s    •.•- ,--M -.--*' • ^ -. . . -i._ o-.. u^   ,     „e wiii us« this definition to 

establish a condition under which nfS r,^ ..^v,..^^—^ „„^ 4-1 ».i^v-i n,  'I\"J.*w convergss and then discuss 

f0-(St) further. 

Theorem 2e8  Let GeR be unambiguous and bo suc}l -hp1 p  f       , ,_. ...        a oe such  >.hat    P = .p        .,p } 

dwy *W-o     lor ail ycL^Gj   .     Purtnor,   let    I(G)    be 

a bounded information sequence cuch +ha-' 

for each production p.ep , 

^hen 

^Q01"     Since    G    is unajnbigt-ous,  all    k.  = 1    and 

.--    /r.     \ 1=1        ~       " f.(SJ  = —  

ZT' ^ 

^^ 
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Separating the contributions of each p. as in the proof of 2ck  we 
•J 

have: 

:i-?^, ^^^ 

^ i=l x ü 

i=l    1 

Also; 

AS.  ) 

Cm*   dj IP4/ 
i=l " " 

I C (a • i(yj+b) 
i=l 

I 
i=l " ^ 

The advantage of Theorem 2c8 la that the convergence of f.(S ) may 

be provable under fairly general conditions. Ive are nov attempting to use 

■ stochastic matrix results to establish such conditions. Theorem 2c8 does 

not held for ambi^cus languages; this situation is symptomatic of a number 

Lng from ambiguity and will be discussed in some detail. 

Even very  simple grammars may have ambiguity (j^) which grows 

exponentially with the length of y. . An example is 

I 



H =  ({2,aMaJ,S,U-»a|aZ|Zaj) 

Since we defined    T|.(S ,G)     in terniS of th( 
j  '-■ 

the value of k. has essentially no pfff■• 

the total number of uses of a production \i 

of Example 2c3 with one additional product:! 

number of uses of p. , 

on T] .  For  f.. (S ) , however, 

used.  Consider the firairimar 

ui rule: 

X -» Xa 

In this grammar, each string k "a"'3 has 2k derivations  Rv mpth^rtc 

like those of 2c5 it is easy to show -here is an information sequence 

for which f.(S ) converges and T}.(S+,G) docs not, which fact relates 

Theorem 2c8 for ambiguous grammars. 

The choice of TJ(3^,G) as a function of the average complexity of 

the derivations of a string is open to question. Other possible choices 

wou3d be the sum, naximu^, minimum and a weirfilec 

definition of T\    has iciportant implies Tipij.cations inr the entire grammatical 

complexity problem. This issue is touched on in Section 5d and will be 

further discussed in Morning's dissertation. 

-55 



I 

T 

I 
I 

t 

I 

I 

3.  Grammatical Inference 

5a. Introduceion, Basic Model and Terminology 

The problom of inferring a grammar for a seL of strings is Just 

beginning to receive serious attention.  Our purpose here is to establish 

a number of decidability results as a foundation for the heuristic methods 

of grarmnatical inference now being programed. These results are extensions 

of the work of [Gold 67] who describes his study as follows: 

Many definitions of learnability are possible, b"t 
I only the following is considered here: Time is quantised 

and has a finite starting time. At each time the learner 
receives a unit of information and is to make a guess as to the 
identity of the unknown language on the basis of the information 

i received so far. This process continues forever. The class of 
languages will be considered learnable with respect "to the 

I specified method of information presentation if there is an 
algorithm that the learner can use to make his guesses, the 
algorithm having the following property: Given any language 
of the class, there is some finite time after which the guesses 
will all be the same and they will be correct. 

Gold's definition of learnability derives from his earlier work on 

limiting recursion [Gold 65]. We will present, some new results using this 

definition and show that by relaxing some of its conditions, one can greatly 

enlarge the class of solvable cases of the grammatical inference problem. 

In addition to the concepts previously defined, we will need a number 

of new ones. We assume time is quantised and is expressed by 

- - ■'■, ~)   j   .. • 

A grammatical inference device D is a function from samples S 

into the sev of grammars {Gj in some class C . The grammatical inference 

5 b 
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problem is modelled as follows: An information sequence is presented to 

the device D at the rate of one element per time step. At each time^  t 

we compute 

At = D{St(l),C) . 

We say that a class of languages, L(C) , is identifiabi^ in the limit, if 

there is a function D such that for any GcC and any infernation 

sequence l(L(G))6cJ there exists a T such that t > T implies both 

a) A, = A^ 

b) L(A ) = L(G) . 

This differs from the function D being recursive in uie following way. 

A recursive function D would, at some T , be able to ignore all further 

information, i.e., would be able to stop and demonstrate the right answer. 

Since we have allowed an information seque to contain repetitions oi a 

string, not even the class of finite langxiages is recursively identifiable. 

Before considering the properties of inference devices, let us look 

at the notion of information sequence. Gold [Gold 6?] has shown that there 

is no effect in the limit on learnability caused by the difference between 

an ordered (e.g. by length) I and a random one for ItcS . He also shows 

that in this case allowing the device D to select the next string y to 

appear as - y in I does not change things. While these different methods 

of informing (teaching) i.he device do not affect the learnability of language; 

in the limit, they do have powerful effects on the heuristics of efficient 

learning. Sclomonoff [6^] considers the grammatical inference problem a 

special case of sequenca extrapolation ana his methods rely heavily on the 

order of presentation of examples. Another crucial consideration is 
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whether the information sequence contains complete information. The 

effects of complete samples is the subject of Use next section. 

Jb.  New Results on Grammatical Inference 

The main results of [Gold 67J deal with the great difference in 

learnability effected by allowing information sequences with negative 

instances, IcJ , (informant presentation) rather than just positive 

instances, le*- , (text presentation). We will informally outline certain 

key proofs and then extend them in various ways. 

All of the methods are based on the denumerability of various classes 

of grammars; the primitive recursive, context-sensitive, context-free, and 

any other class we might be concerned with here can be enumerated.  Let 

A ~  (G,, ...] be an enumeration of such a class. Also let =$ = {!] be 

the set of all complete information sequences over some alphabet T 

(each yeT  occurs as - y in every I ). A class C of grammars is 

admissible iff C is denumerable and for all GcC , yeT+ the relation 

ycL(G) is effectively computable. A grammar  G is compatible with a 

set of strings S = S^U S  iff S c L(G) and S c T+ - L(G) . 

Theorem gbl (Gold) For any admissible C there is a device D(S,C) 

such that for any GeC and any l(L(G))€c9 ,  L(G) is identifiable 

in the limit through I . 

Proof The device D simply sequences through the enumeration if of C . 

At each time, T , there is a first GQ^ which is compatible with 

5,(1) , it is the guess At of D at time t . At some time T , 
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AT will be such that L(AT) =  L(G) . Then A^ will be compatible 

with the remainder of the information and will be the constant result 

of D . 

Thus with informant presentation, a very wide: class of grammars can 

be learned in the limit. By restricting the information to only IeJ 

we give up learnability in the limit almost entirely.  Let everything 

be as before except that the set of information sequences «9 = (Ij 

contains only stqu^nces of the form <+y ,+y ,...> . 

Theorem 3b2 (Gold) Under these condition;; any -lass C generating all 

finite languages and any one infinite language L  is not learnable 
GO 

in the limit. 

Proof We show that for any D , there is a sequence I , which will 

make D change its value A^ an infinite number of times for L . 
00 

Since D must infer all finite languages there is a sample which 

causes it to yield some G(Ln) such that L, C L . Now consider 

an information sequence which then presents some string xeL - L 
eo    1 ' 

repeatedly. At some time t , D(S+>C) must yield a grammar of 

1^ U (x} = 1^ because all finite languages are inferred. This 

construction can be repeated indefinitely, yielding an information 

sequence I which will change the value of D an infinite number 

of times. 

This unlearnability result is so strong that we were led to try to 

consider it further. The remainder of this section is  devoted to the study 

of conditions under which learnability from positive sequences only is 
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attainable. Let us first consider the repeated occurrence of a string y , 

in an information sequence I . The proof above is based on the possibility 

of having some string occur indefinitely often; it dues not seem unreasonable 

to bound the number of occurrences of any string in an information sequence 

and thus restrict our attention to J?+ , 

By restricting consideration to bounded information sequences, we 

have made the problem of identifying finite languages trivial. The 

classes of grammars which are now identifiable in the limit can be 

characterized by the following two lemmas. 

Lemma 3bg  Any class of cfg C c R which contains only a finite number 

of grammars which generate infinite languages is identifiable in the 

limit from any l(L(G))e^+ . 

proof  The device D(S ,C) which will identify C in the limit will 

be defined.  Let J* be an enumeration of the grammars of C which 

generate infinite languages. At each time t , the device D will 

form a guess A+ as follows. A  is the first grammar in &   which 

is compatible with S+ and which generates the minimum number of 

strings of length less than or equal to k , where k is the 

length of the longest string S . If the language Lea) is 

finite then I(L(G)) terminates at some t and a grammar 

for L(G) can be picked out of C - ^ : we will now consider 

the case where L(G) is infinite. If HeC is any language such 

that L(G) - L(H) = (yj $■ $ ,   then after the first appearance of 

a y in l(L(G)) ,      K will never be guessed by JJ . If HeC 

is such that L(G) C L(H) there is a length ^.      such that for all 

ko 



k > ki , H Generates more strings uf  length less Mian or equal 

to k than G and thus li will not be t-uessod bv D   Time n 

will eventually guess only the first -ranmiar Arj, SUQ^  that 

L(G) = L(A) and the lemma is proved. 

Thus requiring an information sequence to bo bounded has produced a 

somewhat larger class of inferrable languages. Although some Infinite 

sets of infinite languages can bo identified in the limit, the following 

lemma shows that there are some very simple classes which cannot be 

identified in the limit from lej/ . 

Lemma 3b^ The finite state languages are not  identifiable in the limit 

from lea    . 

iua ^ud.      we Proof   The proof is an adaptation of Oold's proof 

form a     subclass of the finite  state  lane-uaffp«!  for wMi-v    n    «•? n 

change its value an infinite numbnr of times.     Let  this of=ss 

C =  {^j    be defined as  follows. 

L(H0)  = a*b* (any sequence of P'S  followed by any sequence of b's) 

and 

for    i > 0 ,     L(K,)  =    U aJb* 
1        .1=1 

The languages H. , 1 > 0 all hnvo finite state grammars,  ^c will 

show that for any D(S,FS) which will identify in the limit all the li. 

i>0 there is an lOy which will cause D to change its guess an 

infinite number of times. The sequence 1(1^)  star^ with enough 

ycLCl^) to cause D to guess ^ ; the assumption that I)    infers H 
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guarantees the existence of such a sample. Then iUv)) continues with 

I 

ny I(H0) uf this enough yeL(Kp) to cause D to guess Hg , etc. 

nature would cause D to change its guess an infinite number of times. 

The class of languages learnable from positive information sequences 

will now be extended by introducing a weaker notion of Icarnability. The 

enmparison of the two definitions of icarnability will be deferred until 

alter the theorems. For the remainder of Section 3 we will restrict 

ourselves to bounded information sequences and to the class R of completely 

reduced context-free grammars. Several of the results could be made more 

general, but these are sufficient +nr our purposes and allow of simpler 

trea tment. 

I 

I 

Def gjg A language L(G) in a class C is approachable from above 

ly a device D iff for each HeC such that L(G) C L(H) and 

each information sequence I(L(G)) , there is a t such that 

t > T implies 

D(S (I},C) f K . 

Thus a language is approachable from above if every grammar 

prod icing a larger language is eventually rejected. We can define 

approtchable from below ^n a somewhat similar manner: 

Def 3b6 / language L(G) in a class C is approacnable from below iff 

for each HeC such that L(G) - L(H) f  0 and each l(L(G))  there 

xs a T sue \ii  tnai xmpiies 

■•'i i. D(S (I),C) ^ H 
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fhfit is, any gzassaaj H , whose lantruage dues i 

is pventually rejected, fhis eondifeion is IrivinJii 

reasonable device for positive iniunnation seauefieei 

any    yfL(G)  - L{H)    will eventually appear in every 

>t contain    L(G) 

incorporated in any 

"'■is  is  because 

l !'r (n\\ 

Pef IM    A languaere    Lfa)    is aftproacl'a 
- -■- 

pnd below. A clasu L(c) of lang 

a device D(ö,C) under which each 

through any l(L(G^)eeS . 

'(c; approachable 

Theorem 3b8    For any a^issable class of granünar;: 

device    D(S,C)     such thai,  for an 

i'  approachacle ferougjj    I . 

C c ft    there is a 

use    ana    i^wj/o^ ,      L^G) 

Proof    For    L(G)    finite the problem is trivia] 

Let    l(L(a))  = <y1>y.,)...>cS+  . 

«\Vf^       13   iHtixnXvS 

igt   JS<   ba 

XLi^j    to be for each    G    in   £   defir 

k    generated by the grtuarar    0    and 

k 
Z 

j=l ü 

The device ^(£,,0) proceeds as follow 

D   wil] 

;numeraticn of    C    ar 

strines of l€ — i.       o • 

Hk(G) =   £ n.(G: 

eacn tune. 

loose tne next grammar G^ from J and Lhe next string 

yt€l(S) forming the sanplc 

s
+ = £. T u (y.3 

It will also compute    i,  =max(i(y))    over    yt3^ 

also form the s-_t of pos .ible guessee    C 

Qt = [G|Gc{ai,...  GJ    and    S   c L(G)J 

device will 
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If Qz    is empty, the dtviee vill chouse ^ore granmars from i- 

until a. is non-empty.  Finally the device will compute its guess 

At at time t by choosing one of the grarümars G in a+  for 

which rr^(G) is minimal. The procedure for breaking ties is 

immaterial. 

The fact that D is elTective follows easily from textbook 

results. ve now .hov ^hat ^ approaches G fro.  above. That is, 

if HcC is such that L(a) ^ L(H) there is £ time T such that 

ft) t > T implies At / H . 

If L(G) ^  L(K) there is an integer h such tnat k > h 

implies 

%ia) > R (K) . 

I,et T1 be the first value of t for which i+ = h and r^ 

be the first value of t for which G appears in ^ . Then 

T = maxCt^T.) is a finite value of time foi which (l) holds. 

Since L(G) is always .pproachable from below through any conplete 

positive information sequence, the theorem is proved. 

The procedure used by the device D in the proof above can be made 

-re efficient in a number of ways. ^ E Unit*  language necessarily 

has a finite information sequence over ^ , D could restrict its guesses 

to gram^rs wh-n prcd.ced infinite lan^ages. In practice, ^ would break 

•ies for At by choosing the best grammar relative to some complexity measure 

such as those of Ce^tion 2. The question of inferring ■'good" gx- mars will 

be discussed in Section 3c. 
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Üc? il€rvi- 

~'r i':S^-JC -XI sn' 

t «^   :. f": G 

There is a progrössive weakening or the fur^ni counterpart oi  tae 

intuitive concept of "Icarnii^: a graamar" as one goes fror; recursive to 

limiting identifiable to approachable. An inference device which can 

identify a class of laagucges in the llsit will rind a correct grfusiar, 

but will not know that it has done so. I 

of languages, it may not. ever settle an a 

progressively closer as the sainpic sine grows,  üniortunaitriy, 

best kind of result possible in the absence of neg 

The device D used in the proof of Theorem 5 

negative strings to reduce the set Q,     considerea aceoprauxc «e nine 

One sight conjecture that there is a devi 

in an information sequence without knowiag whether or nut it was eomplere 

(that is, whether all or only some of the negative ctrings occur) and 

achieve the behavior of Theorem 3bl for complete seouences and ot  gQO lor 

incomplete ones. This conjecture is false: an argument similar to the proc 

of Lenana Ych will show that: 

-:**ST!aT 1 Pffl 

Corollary 3b9   If   D    is a device v'iich will approa 

language    L{it)    t^r anj    lKL\(t))£4f+    ^sea fcaei 

gramEar   H   and an infor-mati' 

r   to change its guess ar infinite number of times. 

seauence    xm/^,     wme 

lenxxe suace 

fhich will cause 

intuitively, the device of The jreic gbl adopts a vei-y conservative 

strategy; it chooses the first grammar which is ccmpatible with the sanvple. 

It succeeds because the negative strings in a eofliplete sample guarantee 

that any incorrect grammar will ultimately be incompatible. The device of 

Theorem jjbo does not have this guarantee, so it must constantly look for 
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"better" grarrjnars and thus cannot be guaranteed to eventually remain at the 

same value. The question of learning good grammars and making good guesses 

is the subject of the next section. 

3c. Learning Good Grammars 

The preceding discussion has established the solvability of the 

grammatical inference problem under a variety of conditions. We now 

extend these results by considering when a good grammar (in the sense of 

Section 2) can be learned. 

There are several properties which would be desirable in an overall 

measure which v.-as an increasing function of both intrinsic complexity, 

^(S^G) and derivational complexity, u(G,G) . For a fixed grammar, the 

complexity of a sample should be bounded so that the convergence results 

of Section 2c are applicable. Finally, the relative weight given to the 

components of the measure should be able to be specified in advance. 

Another important property of a measure, effectiveness, is actually a 

consequence cf the other requirements and the general conditions of the 

oroblem as the following lemma and theorem will show. 

Lemma gel Let & -  {G. j be any emuneration cf a class C c R 

which is approximately ordered by length and let S  be a 

sample of some I(L(G)) , (azJf  . Then there is a computable 

index k such that j > k implies there is an h < k such 

that 

n(s+,aj < TW^GJ  . 



Proof The proof is based on the fact that If a grammar is too 

large, there must bo soine .-edundant rules.  Let 

U(SJ = )[ ^ . |{yj 

From Lemira lb2 we know that the total tiusber of -ages of productions 

in deriving S,. is less than U(S+) . Therefore, if une chooses an index 

k such that j > k implies the munoer of productions in G. is greater 

than U(St) , the condition of the Icirjna is satisfied. Such a k is 

computable since £   is effectively approximately urdered by the length of 

grammars. 

Theorem 3c2 Let CcR and Jr = {Gj be an effective a-nproxisate 

ordering of C by ^(G,G) . Also let fiTU^GhuCG^G)) be any 

monotonic function of both its atfüffi?nts. Then for any GeC 

St c 1(G) there is a conmutabie index k such that any gransnar G. 

such that 

f(n(S.>ClJ,u(G,,G)) is miniiral 

has an index i < k in ^ . 

Proof By lemma 3cl above, there is a k  such that the G 
1 i 

minimising TJ(.%,G) occur before k, . Let M be the largest 

value of u(G4,G) occurring before k , i.e., 

Now, by lemma 2b5 there is an index k 

p(G,,G) >M . 

such that > k intplies 
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The minimum value of i^fjCS^G, ),u(G ,G)) must occur with 

index less than k - since for each Lhere is an h < k 

such that both TJ(S ,0. ) < q(S.,G.) and u(a ,5) < u(G ,5) . 

The requirement that a goodness measure be an increasing function 

of both intrinsic complexity u(G,G) and derivational complexity ^(S^G) 

seem to be a natural one. The particular choice of a goodness function is 

less clear. Consider a device D which enumerates the class C of 

candidate grammars try generating them in order of length from G . Although 

TJ(S,G) is a normalized complexity measure and is bounded for a fixed 

grammar, the bound increases approximately as the length of grammars. 

Although LI(G,5) also increases with length it does so in a different 

manner. A comparison between the growth rates of LI(G,G) and TJ(S,G) 

would be very helpful in choosing a goodness function. In the absence 

of any knowledge o*" growth rates, we will be content to use a particular 

class of goodness inunctions which seems reasonable. 

Bef Beg .-i goodness measure y{S,G')    is defined as 

r(S,G) = a • ~|(S,G) + b ■ u(G,G) 

where 0 < a,b < 1 . 

It follows from previous results that goodness measure y    is an 

increasing function of i] , a    and is bounded for fixed G . By Theorem 

5c2,  the minimum 7(S,G) for fixed S and Gc C , a complexity class, 

is effectively computable. Thus 7 is an adequate goodness measure by the 

criteria laid down above. We now study the conditions under which best 

grammars, as measured bj 7 , can be learned by an effoctive. device D(S,c) 
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Theorem 3cU  Under the conditicne of Theorem ^b2    (GuC . 1(1(0)) c j) 

If 7(S+,G^) converges as t-»'«a for every G.  such that 

1(0.) a L(G) then there is a device 

in the limit the grammar G. 

7(L,G_.) is minimal ever C . 

. f _ Y _ ^  ^,    »»»»» i»    J-M   u.    ^^v-i-,v,       trio.  , (> I       Wf-XCii   WxXi-    i,fti-T :*- ■ 1'*' 

in the limit the grammar G. such that  L(G.) = L(a) and 
<3 ,j 

Proof      The device    D   will use    G    for the enumeration    ^    uf   C    n- 

before and will at each tirrc    t    form    S     .    Tiiere is a  r-y^i 

:iiere is a K_ (a 

orm b^ . 

which is compatible with S  and by lemma :h. 

suchthat i > ^ implies 7(S,,G,) > /(3.^G^) . The device D 

then chooses the first  -ammar it fG ,... G } «iiich '-^ the 
• i    fc1 

minimal value of 7 as its guess k^  . 

Now there is a first G  such that L(G ) = L(G) and 

7(L(G),G(i) = c  exists. But there is also an index k(q) such 

that i > k(q) jj-iplies b • u(G.,G) > c , i.e., intrinsic 

complexity alone exceeds G  at some ööint 
q 

Thus the device D will never consider more than the grammars 

Gl'"' S. as PossiDle guesses. Any S.  such that L(G.) ^ ICG) 

will eventually be eliminated by thv. complete information sequence 

1(G) . There are then a finite number of G, , all of which generate 

L'.G) ; for each of these,  7(S+,G.) converges to a limit e . 

Let the first occurrence of the minimum (e.) = c  he a G    For 
i,   ^       j ' ' "' 

any G^^ such that c = c^+e there is an index r(i) after which 

7^Sr(i),Gi^ > 7''-Sril),G^   '    L<";t w be the Ingest of the r,.,. , the 

for all t > w the guess At will be precisely Gr. and the theorem 

is proved. 
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Corollary 5c5  If the measure yiS^G)  = u(G,ü) , (only intrinsic 

complexity is considered) the device of Theorem 3sh will always 

identify the best grammar in the limit, the grammar of lowest 

intrinsic complexity producing the correct language. 

Corollary 3e6  The device of Theorem *.ck  will approach the best 

grammar, even if the limit of /(S^G) does not exist. 

The requirement that the limit of 7(S+,G) exist seems to be necessary 

in general. If 7 does not converge, the device can be caused to oscillate 

its guesses between a finite number of different grammars for the target 

language. There is a possibility that for complete information sequences, 

7(St,G) can always be made to converge. It is based on the following 

conjecture: the measure 7(St,G) will always converge on an information 

sequence which presents strings in strict order of length. If the conjacture 

is true then the device of Theorem 3ch  would be able to wait until all 

positive and negative strings of length up to k were seen, then compute 

7(S. ,G) and be assured of convergence, 
"k 

The final set of questions relate to the learning of best grammars 

from positive information sequences.  In the discussion of Theorem 3b5 

we remarked that a goodness measure like 7 could be used to break 

ties among compatible grammars producing the minimum number of strings 

of a fixed length,  q . The device described there will approach the 

correct grammar, but will not make the best guess at each time,  t . 

By making q a slowly increasing function of fc one can produce a 

device which will tend to produce better guesses at each time,  t , at 

the cost of rejecting overbroad grammars later in the sequence. One 
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might conjecture that the complexity meaBurr: 

overbroad grammars. V/e now present an exan. : 

only the complexity measure 7 and a positiv 

fail to approach the correct grammar. 

Example 3c7. 

Let    C    be    L(FS) fl R ,   the finite  state 

Let 

G = ([X},{a,b},XJ{X-* a|^aXJbX]} . 

The universal grammar of Examples 2a5, 2b^ ha 

upper bound on    n(3,G)    is    log^) -■ 2 , 

Wüiild eventually elimina'! 

shew  that a device using 

ormation sequence may 

pra^u-c: i'^* in standard forra. 

^^rS i = 0 and the 

.n tac this simple grananar 

TI(S,G) is e^ctly 2 . Thus for any set S, c L(G) 

7(St,G) = 10 . 

We now show that by removing one string from L(G) we get a Language L' 

such that for any H sucli that L' = J^VK)    and any samnle S   c V 

?(S.,K) > 7(S,,G) . 

That is, any device using 7 as a selection criterion will select the 

universal grammar G over the correct grammar K . To nrove this 

rigorously we would have to account for all possible grammars of L' 

(which the results of this section show to be possible) but we will be 

content with the following argument. 

Consider L' = L(G)-aaaaaaaa . Any grammar of LT  that is in C 

can have only one terminal symbol per production. It must also have 

enough states (non-tenninals) to count to eight. This apparent1- requires 

a grammar with 7 > 10 . 
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In any event, there is a string of a's long enough so that its unique 

non-memhership requires a grammar of intrinsic complexity greater than 10. 

This example also indicates that the difference of two grammars might have 

a lower measure than any single grammar of the class, even when such a 

grammar exists. This question of combinations of grammars deserves 

considerably more attention. 

5d. Using Frequency Information to Assist Inference 

Previous sections have presented successively weaker definitions of 

learnability: recursive, identifiable in the limit, approachable. All 

of these definitions are "strong", however, in that they require that the 

device (eventually) satisfy the criterion for every information sequence 

in some class. In fact, the non-learnability results of Theorem 5b2, 

Lemma 3bU, and Corollary 3b9 depend upon the construction of particular 

pathological information sequences- 

In practice, however, a device whose performance is superior on "most" 

information sequences need not be rejected because it fails on a  few 

sequences, provided that they are "sufficiently improbable". We are 

generally more interested in the "expected behavior" of a device than in 

-is worst case behavior. To study these properties of devices we must 

define more carefully our notions of "most", "sufficiently improbable", and 

"expected behavior''. In this section we start with a probabilistic notion 

of information sequence, which leads naturally to a Bayesian inference 

device using the frequency of occurrence of strings to assist in inference. 

We also sketch a number of basic results which will be explored further in 
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There are many other sotlvatiöns for using the frequencies or the 

strings in a positive information sequence (t«xt presentation) to assist 

in grammatical inference: 

(a) Since more information from the sequence is used, grammars 

may be discriminated earlier. 

(b) The significance of "missing strings" can be evaluated. 

(c) Inference can be conducted e^en in the presence of noise, 

(d) Grammars for the same Language may be discriminated on 

the basis of their agreement with observed frecniencies. 

(e) Complexity can be related to etTicient encoding, and 

various results from information theory applied. 

We shall assume that the elements of an information sequence are 

independent and identically distributed random variables (iidrv 

condition). 

Lemma gdl  The iidrv condition implies eenvergence with probability 

> 1 - e for any c > 0 . 

Proof  See sequel. 

Let TT = f^,*,..,...} be a denumerable set of probability distributionE 

for strings in ■T+ such that the conditional probability of a string, 

PCyJn.) , and tne a priori probability of a distribution, p(jr.) , are 

both computable. Under the iidrv condition, the partial information 

sequence 
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has the conditional probability 

t ^y^M-nxu o ü ^    -kT 

.on 

fdj-y^t) 

As is well-known,   the probability distribution for informatic 

sequences under the distribution ' ff'    for strings corresponds to the 

multinomial (^yJ.O + PCy^.-)^ ..O1    or,  distinguishing   PCyJ.'), 

to the binomial 

i)    (P^^HC^P;
1
. [rn^i 

where 

P^PCyJn«) ,   Li = EpCyJn') - P. . 
if 

Taking    d/oPi    of both sides: 

^ fi 1 

I*iltipiying by   P.   ; 

in)    P. • t • (P  + vf-1 * Erid)Fn • u:]^1 

Again taking    ö/dPi    and multiplying by   P. 

iv)    P. • t • (P. + z:)^2 • [(p_: + z.) + P. • (t-i)] 

I ^n^1 ■ IV^1   • 
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Since P. + £1 = 1 we can simplify III) and IV): 

III)'  Zlri(M . pf1 . p-jt-fi ^p   t 
fi   fl   x     ■      1 

iv)' 2^(2) • pf1 ' [s-]1"" = p. • t - (i + p • (t-D) . 
j»  X II    1     1        1 1 

The left sides of these equations define expectation values under 

n'  for f. and ff so we nave 
i      i 

V)  En'(f (1,7.^0/1) = PCyJ«') 

VI)  En'([f(l,yi,t)/t - P(yi|3t')]
2) 

= EJ:'([f(l,yi,t)/t]
ii) - '^.(fdjy.^Vt) 

* F(jr4jfl') + P(y. I«')
2 

= PCyJ«') * t * (1 + P(yi}ff') * (t-l))/t2 - PCyJs')* 

Equation VI) defines the expected variance of f./t . Since 

P(y.|it') < 1 we can bound it by 

vi)'  E ([fCi,:/ t.Vt-p(y.h')]2) < sp(y Iff^/t 
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We can use this to bound    £.(5) ,   the probability of an informat 

sequence with     [fd^t)/!  - p(y. jrt')j > 5 

VII)      £.{&)   •  62<En,([f(l,yi,t)/t - PCyJ*')]2) 

<2 PCy.hO/t 

and e(5) ,   the probability that any f./t is off by o or 

VIII)  e(S) < 1^.(5) <2/(t • ö2) . 

ion 

more. 

Given any € > 0 , 5 > G if T = 2/€5
2 then t > T assures that 

the total probability of information sequences of length t in which the 

relative frequency of any string- deviates by 5 or more fron :ts 

probability in *■ is less than e . This completes the proof of Lemma Jdl: 

"The iidrv condition implies convergence with probability > 1 - e for 

any e > 0 ."  It is in fact a slightly stronger result, because we have 

also showed the relative frequency distribution to which '»practically all" 

sequences converge is «' , the distribution of the random variable. 

Returning to the case of a fixed information sequence, we note that 

Bayes Theorem can be used to compute the conditional probability of a 

distribution 

H\{t),*.) = pcyt)^) . P(^) = p^iyt» . p(ik(t)) 

or 
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P(n |Ik(t.)) ^PCt^t)!*,) 
Pin.) 

P(IkU)7 

wnere 

P(lk(t)) - ZI P!>£' * ^k^M 
«i" 

and 

f(L,y4,t) 

p(i.(t)|n.) ^TTPIVJ^) 

: 

To use this fornrulation for grammatical inference we must relate 

the probability distributions n,    and the a priori probabilities P(jt.) 

to grammatical complexity. 

At each step of a derivation a production — one of the finite set 

with the correct left part — is selected. If production pi is selected 

from this set with probability P(pi) , the specification requires 

P(P-) - - lo^(P(p.)) bits of information. The probability of a derivation 

is the product of the probabilities of its individual steps, so if 
k 

d(y.G) «<4>,,».. pJ> then P(d(y,G)) = TT15^--^ and -lo&,(P(d(^G)) = ^(^^^ 

where (as before) ^(d,y,G) = ]L*PfPi) • 

i=l 

L=i 

Def 3d2  Let yeT+ , if y^L(G) we define the conditional probability 

p(y{G) to be aero; if yeL(G) and has the derivatic 

d1(y,G) ... ^{y,G) we define 

p(y|G) =T'p(di(y,a)) 
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Let |i(y,G) = -log2(p(yJG)) . If y in  unambiguaus v^ith respect 

to G then k = 1 and u(y,G) = |i(y,G)  [Dei' Saj]; in the arabiguous case, 

|      |i provides at least as plausible a definition of complexity as does u  • 

'P As we did in Section 2b, we define the intrinsic complexity of a 

grammar in terms of its derivation from a grarnrnjir-grammar. Note, however, 

that for our purposes, grammars which differ only in the order of their 

productions, or in the systematic renaming of their non-terminals (except 

4      the distinguished non-terminall) are completely equivalent. The equivalence 

Y      class of a grammar with k productions and n nor.-terminals contains 

kl(n-l); equi-prcbable grammars. We are always interested in 

I P(n.|G) = k;(n.l): P(G.JGn) • P(G ) 

|      since all of these grammars yield the same distribution, n. . For a 

fixed collection we must specify the probability of G  with n 

I      non-terminals. A reasonable choice is P(G ) = 2'n . 

| P(»5) =k'(n-l)j • P(Gj|Gn) • P(GR) 

- -li(G.,G ) 
= k:(n-l)l -2   0 n # 2-n 

Define 

then 

a(Gt.,ön) = |i(Gj,Gn) + n - log2(tl(n-l):) 

P(n.) =2   J n 

P(yjn.) = 2   ^    3 
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By our foimila for conditional nrobaldlivv 

-^(G„G) 
TTi 

4(y,,G.)   f(l ,y ^t) 
* .IT K ' 

p^ll^t)) = 

Taking logarithms 

:   ; 

■log2(p(rti.|lk(t))) = ^(G^G) + log2(p(lk(t))) 

K" 1 

Except for a term independent of the grammar (log0(P(l, (t)))) , this 

corresponds rather closely to our previous measure of fit [Def 2b5], 

weighted by the frequency of occurrence of strings. Let 

^(lk(t),G.) = gf^y^t) • ^GJ  and Ü *  -lög^P^ ^(t») , 

then 

A(n.,I, (t)) . a(G,,G) + *(L (t),Gj + log_(P(L (t))) . 

To compute P(l (t)) we must enumerate the distributions a  ,n 

p(ik(t)) = 2ZP(« ) • P(I (t)!«) . 

This is not generally practical.    However,   this term drops out when we 

compare the relative probabilities of  gramraars 

PMI (t)) ^(a.,i.it))4c*,,:L(t))3 
v  i'^k. uTT =    2 i'^k^ 

»    2 
-[Mt* ,1 (t)).M(rt ,1  (t))] 

; 

where 
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A , 
l3(rt^Ife(t)) - n(G .ü) + u(l (t),G.) . 

As in Section 2c, the graim,iar with the sir.liest total complexity M is 

preferred. 

We can compute a lower bound for u(l (t),G.) , independent of the 

particular class of grammars involved, by the method of La Grange 

But 

L = \ • EPCyjG) + Z^(y.,G) • fd^y^t) 

= ^ • EPCYJG)  - Slogg[P(yjG)]   •  f(L,y.,t) 

dP(y.|G)  " K -    P(y.|G)      = 0 

PCyjG) = f(ik,y.,t)/\ 

ZTpCyjG) = i 
i        1 

^fC^y.^tVX = 1 
i 

^ = Z!f(iv,y,,t) = t 
K'   1' 

1 

P(yi|G) = f(lk,y.,t)/t 

Substituting, we have 
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|i    .     (i,   (t))   =   -   /TlOS    lf(l       V      ^-Vi-l iUk,^, 4  ^ 

= t  •   logjt)  - JIf(L,y..,t)   •   logJfiL.y^t)) 
k^i' 

^Ik(t),G  )  >t   •   n(L (t)) 

where 

H(lk(t))  = c [fed]. log2 [fed- 

is a local ••entropy" measure. It would seem that ^ is a "natural- 

normalization for complexities. 

We may, in the course of inference, retire an estimte of A (as 

well as the value of M ) without enumerating the t  . 
j 

M(^Ik(t)) =M(K.,IkCt)) + los2[P(lk(t))] 

H\{t))  =Sp(;f ) • P(I (t.)|. ) 
j   J ^    J 

In general, we will kno^' some fnr} which have be .n r-jec^d -- because 

^k(t)lÄr) = 0 - and some [r^]    which are under consideration. 

Let 

pr^  E p(ffj , p = E 
■i ^ rJ z .e[n  } 

J ^ c-1 

P(^) 
n 

^^■-^-Pc' w*))- n.p(..)■ pci^t)^.) 
n^€[rt^}   ';)' 
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5 = 

M 

then 

Pc(lk(t)) < P(lk(t)) < Pjx^t)) + pu • E"
t,H(lk(t3) 

Thus, although our inference measure can never be "sure", it can compute 

a confidence measure for its best grammar. 

Noise 

If the distribution of noise (error) strings is known, i.e.. * 
n 

and Pn are given such that elements of the information sequence are 

drawn with probability Pn from the distribution ,. and probability 

(1 - Pn) from the "true" distribution ^ then we have 

We can substitute this for P^J*.) in all of our fornralas and ^^ 

conduct inference. 

If Pn is small, we will introduce very little error by the 

approximation 

(PCyi|«|) if pCy.^jx) 

p
n ' p(yihn)  otherwise 

i.e., strings not generated by the grammar are given their "noise" 

probabilities, otherwise noise is ignored. 
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k.      Programs for Grammatical Inferenca 

i+a. Introduction and Definition of Pivot Grammars 

The development of programs for grammatical inference provided the 

original motivation for the theoretical work prest »ted above and is of 

continuing interest. The programs completed so far are quit« ürimitive 

and were written to test some basic ideas. There are a number of obvious 

extensions. Given a proper formulation, the grammatical inference problem 

can be characterized as a heuristic search problem and the various j ..own 

techniques [Newell 68] applied. 

An early paper [Feldman 67] described a number of strategies for 

inferring finite state and linear grammars. They can be characterized as 

constructive as opposed to the enumerative strategies stressed in this 

paper. Thus they solve the problem "Build a reatonable grammar for ...'' 

rather than "Find the best grammar for ..,". The first program, G3IK1, 

embodies these strategies in an inference program for finite state grammars. 

Rather than extend these simple techniques to linear grammars we considered 

the problem for a somewhat more general class: the pivot grammars. A pivot 

grammar is an operator grammar in >nich a terminal symbol which separates 

nun-terminals in a production appears in no other way. More formally: 

Def teil  A pivv.1: grammar G = (V,T,X,P) is a grammar in operator 2-form 

(cf. Section 2^ such that the set of terminal symbols, T , is. 

partitioned into two sets T ,T  such that 

l)  aeT  implies a appears only in rules of the form 

Z1 - Z2 a Zj 

63 



2)  aeTo implies a appears only 

h->*-2 

<»  2i "> Z, a 

or  Zj^ -» a 

The linear grammars are exactly the pivct grammars for which T = JÖ . 

The pivot languages are much broader than the linear languages. For 

example, the following pivoc grammar defines a language which is not 

generated by any linear grammar. 

Example ka2     Let G = (V,I,::,P) where 

T= {(,),-,a} 

and P contains the production rules 

X-*Z1-Z1 

z2 -» X) . 

Samt,,  strings from L(G) include 

a-a,(a-a)-a,(a-(a-a)) - (a-a) 

The context-free grammars used to define programming languages are, 

for the most pa„t, expressible in pivot form- The principal problems are 

situations like the use of •-' as both s  unary and infix binary operator. 

Our interest in pivot grammars arises from the relative ease with which 

they are inferred. The second program described below, GRIN2, is an 

inference device for pivot grammars. 

The programs described below are implementations of only our most 

basic ideas on grammatical inference. No use is made of ill-formed 

6if 
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I 
strings or frequency information. The entire program is situation-static 

in three .irportant ways. 

1) Only one set of strings is presented, no View strings are added. 

2) The program does not propose new strings for outside appraisal. 

5)  The algorithms themselves are deterministic, with no backtracking. 

The addition of these and various other features would be straightforward 

but time-consuming. In the absence of a pressing need for grammatical 

inference programs, we will continue to concentrate on the theoretical 

and pr^ jramming questions which seem to be most basic. A formulation of 

grammatical inference as a general heuristic search problem will be 

presented after the current programs are described. 

hb.    Program descriptions 

GRIN1 infers an unambiguous finite state grammar for the set of 

terminal symbol strings. Tha program is an implementation of the 

algorithm proposed in [Feldman &[].    The algorithm is merely sketched 

hi-re; the reader is directed to the original source for a more complet« 

version and further examples. 

The input to the program is a list, of symbol strings. The TUtput 

of the program is a finite state grammar, the language of which is a 

"reasonable" generalisation of these strings. 

All of the productions of the final grammar are of the form: 

Z -> a Z- 

or 

Z, -> a where    ZjjZg    are non-terminals 

a    is a terminal. 
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The program temporarily utilises other productions ("Residues") of the 

form: 

Z, -+a,  J.^ ax  ... a where  a^.a«. ....a are terminals. i,   i. «: p     n 1' d n 

At all times during the inference process a non-teiminal has either all 

residue or all non-residue right sides (e.g. it will not construct 

productions Z3 -> a Z^    and 2, -» a^a, where Z^Z^Z, are non-terminal, 

a^a2^ a, are terminals, Zn = z, ). 

In the explanation of the algorithm, the set of strings 

(eaaab, bbaab, caab, bbab, cab, bbb, cbj will be used as an example. 

X will be the distinguished non-terminal in the grammar to be constructed. 

The main strategy of the algorithm is to first construct a non-recursive 

grammar that generates exactly the given strings, and then to merge 

non-tenninals to get a simpler, recursive grammar that generates an 

infinite set of strings. 

The algorithm has been divided into three parts. Part 1 forms the 

non-recursive gransnar, Part 2 converts this to a recursive graircnar which 

is then simplified by Part 5» 

In Part 1, a non-reuursive graaaaar that generates exactly the given 

sample is constructed. Sample strings are processed in order of decreasing 

length. Rules are constructed and added to the grammar as they are needed 

to generate each sample string. The final rule used to generate the longest 

sample strings is a residue rule with a right side of length 2. 

In the example, the first (longest) string in the example is 'caaab' . 

The following rules would be constructed to generate this string: 

■ 
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zl 
-» aZ2 

z
2 

—» aZ3 

J 
-■> ab 

Z5 is a residue rule. The second string is 'bbaab' . The following rales 

would be added to the grammar to generate this string: 

X -* bZ, 
k 

Z. -* bZ^ 

5   6 

Z^ -* ab 

Z6 is a residue rule. To generate the third string,  'caab' , the 

folio*Lng rule must be added to the grammar: 

Z, —> b  . 

Proceeding to consider eacn string if. turn we see that the final grammar 

that is constructed to generate exactly the sample is: 

X -^ cZ1 | DZ^ 

2-, -> b I aS 

Z.-, -> b I aZ_ 

Z   -* b ( ab 

Z, -* b 7^ 
* 5 

Z -* b j aZ. 
P       o 

Z^ -* b j ab 

The residue rales are    Z      and    Z-   . 
3 6 

In Part 2 a recursive finite state grammar is obtained by merging each 

residue rale with a non-residue rule of the grammar. The algorithm is 
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conservative in deciding which non-residue rule sne^id ha  substituted for 

a residue rule. The general principle is that älter such a sutstitution 

the resulting grammar must generate all that tb; old grammr could plus zs 

few new (short) string? as possible. Wherever the r-sidut non-terminal 

occurs on the right side of a production, the non-residue non-terminal 

is substituted. The resulting grammar is recursive and generates an 

infinite set of strings. 

In the example, Z. would be merged with Z_ and ZL, would be 
5      3 

merged with Zg . The resulting grammar is: 

X -* c2 | bZ; 

^ -> B | aZf 

Z2 -* b { aZ2 

Z, -* nZ_ 4   5 

5 

In Part J the grammar from Part 2 is simplified. Equivalent 

productions sre recursively merged. Productions P  and p  with l^ft 

sides ZE and Zn are equivc-Ient iff the substituxion of Z^ for all 

occurrences of Z^ in Pn and P^ results in P^ being identical to P . 

By merging p^ and p  ve mean eliminating production F  from the 
n 

grammar and substituting Z^ for all remaining occurrences of Z . 
n 

Merging equivalent productions results in no change in the language 

genera led by the grammar. 
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In the example, the productions with left sides Z  and Z  are 

clearly equivalent. After merging Z  and ^ thg new grammar is: 
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X -> cZ1 j tZ. 

Z5 -» b j aZ 

In this grmmx,  the productions for Z1 and Z5 are equivalent; 

No change in the generated language results from merging Z  and Z 

The new graramar is: 

X -^ cZ] | -bZh 

21 -> b j aZ 

no  further merges are possible; this is the final grammar. Note that 

the seven shortest strings of its language (cb, bob, cab, bbab, caab, 

bHab, caaab) are precisely the strings constituting the sample set. 

The program is usually able to infer a gra-ar which is subjectively 

reasonable. Several sample runs are lifted in Appendix C. The program 

for pivot grammars, GR1N2, makes use of many of the same techniques. 

1RIN2 infers a pivot grammar for a set of terminal symbol strings. 

In the explanation of the algorithm, the set of strings {a-a, a-(a-a), 

(a-a)-a, (a-a)-(a.a), a-(a-(a-a)), a-((a-a).a), (a-(a.a))-a, ((a-a).a)-a3 

will be used as an example. X will be taken as the distinguished non- 

termi al in the grammar to be constructed. It will be assumed that the 

minus sign is known to be the only pivot terminal symbol in the strings. 

There are rules for determining which terminal symbols can be a pivot 

terminal, e.g.  (l)  A pivot terminal cannot be the first or last symbol 

of a string.   (2)  Occurrences of pivot terminals must be separated by 

at least one non-pivot terminal in each string. These rules are not used 

here. 
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The algorithm has two inputs; xhe  URL of k\ 

of  the pivots. The output of tu? aLgcr-Uhm 

The main strategy of the algorithni is to fir 

In the strings, A non-terainal is rr" agi^- 

(LOOPNT).  The aelf-einbeddings in the 

appearance of the loop non-terminal In 

Initiallyj the loou non-terminal XE th 

The  oi^r-r-irnm   y,aB   K==„   j^ _-,..,,    .    . 

ii^K-u    «v i 

.1: \ngB and a  iit^ 

nnimiiiar, 

^eif-embedrünn-j 

solf-erabedd: 

'ilal^es  in 

-■-- ■-- * ü 

" 4-     .-I --. ö « 

■-^.i-^.^    i>^ 

»--=.-•    -.-ii-^    KL.1^ «, iiife 

.r    LA^L^-;_ 

sJiSl 

the fcrm LOOPMT -» aZ 

entered  In the t-rainnar' 



TABLE 1 

given strings 

a-a 

a-(a-a) 

(a-a)-a 

(a-a)-(a-a) 

(a-(a-a))-a 

((a-a)-a)-a 

a-(a-(a-a)) 

a-((a-a)-a) 

ongest valid 
substring new strings 

none a-a 

a-a a-(X) 

a-a (X)-a 

a-a (X)-(a-a) 

a-(a-a) (X)-a 

(a-a)-a (x)-a 

a-(a-a) a-(X) 

(a-a)-a a-(X) 

Results of Part 1 of GRIIE 

In Part 2 further substitutions are made for valid substrings and 

a simple pivot grammar is constructed. 

Each of thi  strings in -ehe working set is examined independently. 

If a string contains a pivot terminal, the test and substitution process 

is repeated for the symbols on the side of the pivot not containing the 

loop non-terminal.  In the example, this would result in a substitution 

of 'X'  for the valid substring -a-a'  in the string •(x)-(a-a)'. 

The working set of strings would now be {a-aAa.-(X), (X}-a, (x)-(X)l 

71 



A simple pivot grammar is con struct ed *'cr '.bo. • crki 

The working strings are procäiised in du^cessi',;; v:.,oci-L.-'tiona are created 

as they are needed to generate one cJ the new fitrin,-;^.  üecall that pivot 

symbols can only appear in pivot rules.  :rOF';: is ua^.d as ehe starting 

point in the generation process. 

In the example, the first new string,  'a-n" , v/ould result in 

the productions: 

A    —*    £J ^       —     CJ.- 

1 

Tc generatt:     ' a- ^X)t     the  "productions 

' i V  ■ _o *        f 7:^    v-i».---.H*i.---4  T ritt«* 

r-.l'    irtl ;;"' T     '  r1!"?'- ^      Tt 1 



Z;L -» a I (Z^ 

Z2 -> a | (2^ 

Z^ -*X) 

2^ -^ X) 

To generate '(x)-^)' no further productions need be added. 

These productions are added to any productions constructed in 

Part I. In the example there were no productions constructed in Part 1; 

the grammar outputted from Part 2 is: 

X -* z1 - z2 

Z1 -. a | (Z4 

Z2 -^ a | (Z5 

z3 -. X) 

zu -» X) 

In Part 5 the grammar from Part 2 is simplified in the same way as 

in Part 5 of GRIN1; equivalent productions are recursively merged. The 

language generated by the grammar remains constant. 

In the example, the productions Z, -» X) and Zj -> X) are equivalent. 

Z^ -» X) is eliminated and Z  is substituted for all occurrences of Z 

in the grammar. The resulting grammar is 

X-Zl-"2 

Z1 -» a j (Z3 

Z0 -» a | (Z^ 

z
5 -> X) 



In the new grammar Z1 - aj (z,. and Z2 -^ aj (Z^ have identical right sides. 

z2->al(z3 is eliminated and Z1 is substituted for Sg . The resulting 

grammar is 

X -♦ Z^^ - Z 

^ - a , (Z5 Zj^ -» a 

Zj-^X) 

None of these productions are equivalent; this is the final grammar. 

Note that the language generated by this grammar is identical to the 

language generated by the grammar of Example k&2. 

he.    Extensions to the programs 

The programs described above could be extended in a number of different 

ways. The most interesting of these depend on the use of the various 

complexity measures discussed in Section 2. To the extent that we accept 

these measures, they provide evaluation functions for the grammatical 

inference device. The existing programs choose simplification rules 

simply and deterministically. By using a measure like 7(8,0) for a 

sample set, S , of strings and a grammar G , we cr- Id allow the program 

to evaluate several simplifications. 

A more difficult problem arises in attempting to study large samples 

because the number of substitutions to be considered grows exponentially 

with the number of variables. We suspect that the number of substitutions 

which are compatible with the sample, while much smaller, also grows 

exponentially. 

7^ 
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The difference in 7  caused by a substitution might be a good 

heuristic for deciding whether or not. it should be carried out. This 

leads naturally to a tree search for the best value of 7 over sequences 

of substitutions, and the usual search heuristics can be applied. 

Thus complexity measures can be used in deciding between alternative 

grammars for the same sample and alternative sequences of substitutions of 

variables. There is another possibility which is much more important to 

investigate -- incremental change of grammar. The methods of this section, 

as well as those in [Feldman 67] deal only with a fixed sample set. If 

another string is added to the sample, the current programs jmiot start 

again from scratch. Intuitively, one can think of heuristics for changing 

a grammar to accomodate the extra string. The problem is that the obvious 

heuristics all lead to ever more complex grammars. We might be able to 

use 7(0,0) as an objective function and do hill-climbing techniques to 

search for grammars. 

Another important class of problems involve the interaction between 

the informant and learner. Horning will develop the theory of this further 

in his dissertation. The interesting programming problems include the 

learner asking about the well-formedness of strings and the design of 

optimal teaching sequences. In this, as in its other aspects, the grammatical 

inference problem is the prototype of a very general situation. 
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Appendix A: Representations of Finite-State Grarmnars 

In Appendix B we compute the value of the size measures for the 

finite-state languages. We first need a matrix representation of the 

languages which aids investigations of the measures. Although one matrix 

representation has been used extensively in the litei~ture (e.g. Shannon 

and Weaver 49, Chomsky and Miller 58, Kuich and Walk 65)> the representa- 

tion will be shown to be inadequate for the finite-state languages. The 

inadequacy of the representation has led several authors to false con- 

clusions about the finite-state languages. 

The previous matrix representation for a deterministic finite-state 

gramrar, which we term the "old" representation, is a square matrix of 

the form i" = [G..], i,:,=!,.., ,n.    Each G... is a subset of the alphabet 

T,  and contains those terminal symbols associated with a single-stage 

transition fron state 1 to state j. The grammar has n states, one of which 

is the initial (starting) state (say state l). The condition that the 

grammar is deterministic implies that G. . fl G._, / = 0 for j ^ j'(1=1,.. .,n). 

Let X, Y, Z c T*. Define X + Y = X !J Y and define Xi = 

(a b: a € X and ß £ Y).    Thus X+Y = Y+X, X+0 = 0+X = X, 

(X+Y) + Z = X+(Y+Z), X 0 = 0 X = 0, Xfe] = {e} X = X, 

(XY)Z - X(YZ), (X+Y)Z = XZ+YZ, and X(Y+Z) = XY+YZ 

The algebraic properties of such systems has been partially investigated 

using semigroups^ and an interesting class of abstract algebras, termed 

the semi-rings (which are built from two free semi-groups), has been in- 

vestigated by Reder [68]. The formal properties of such algebras permit 



a meaningful definition of matrices over T* in such a way that the class 

of all n  order matrices over T* is itself a semi-rirg. In particular, 

if 0 = [A. .3 and B =  [B, .] are n  order matrices over T*, fl ß can be 

defined as C -9 = [C. .3, where C. . = £ A.. B. . ("£" denotes repeated 
ij IJ   ^_^  IK  Kj 

application of "+' described above).   If we define i^ = n, i- = [QV:'], 

fk)   k   fk) 
it can be shown that G.. c T ; G. / is precisely the set of strings of 

length k associated with possible paths of k steps leading from state i 
fir) 

to state j. In particular, Gv, is the set of strings of length k leading 
n  (k) frcm the initial state to state j, and Z   G . = L. , where L is the 

j=l lj   k 

language generated by the finite-state grammar associated with £  . 

It is a well-known result that any language L generated by some such 

J» is a finite-state (regular) language over T*. However, contrary to what 

seems to be commonly believed, the converse is false. There are regular 

languages which cannot be generated by some such matrix J> .    Many of the 

theorems which have been proved for the class of regular languages have 

been demonstrated only for those languages capable of being generated by 

such matrices. As we shall see, serious errors have resulted from a failure 

to realize the limitations of this representation. 

Example of a Regular Language for which the Old Representation is Inadquate 

Consider the following finite-state language L over T = {a,b3 : 

L = {a € T* : a contains an even (including zero) number of a's}. A finite- 

state grammar for L is: 

S -»bjSblXa 

X -» a|Xb|Sa 
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If we try to construct a matrix i-which generates L; we might try; 

* 

(oj  fal 

la]  {b} 

Experimentation with the first few powers &   quickly convinces one that 

*   does not generate L, but rather the entire set T . It also becomes 

clear that no such matrix can, in fact, generate precisely L. L is but 

one of an infinite number of regular languages for which the represen- 

tation is inadequate. 

To see why the old representation fails we should inve?tigate what 

features of a matrix permits it to selectively generate certain strings 

but not others. A string a € T  is generated if and unly if there is 

some path of length k leading out of the initial state (into segne other 

state) with which a can be associated. Starting In the initial state, 

O. € L,  sequentially determines k transitions through the states of the 

matrix; these transitions are determined by the sequence of terminal 

symbols which constitute a. If at any time there is no feasible transi- 

tion possible, a is not in the language generated by that matrix. 

Suppose some matrix it generates a language L c T . Consider the 

strings that are not in the language: L = T -L. The preceding paragraph 

illustrates that L consists of those strings for which there is no feasible 

path of transitions within &,    Thus the only factor which can cause a 

string not to be in a language is that it. violates some sequential rule 

(i.e., at sane point in the string, there is no feasible transition to be 

made in A)\  there is no capability for strings to be "rejected" on the 

basis of other types of "violations". Specifically, suppose the 



"grammaticalness" of a string does not depend on whether there is a path 

for the string, but rather on where (i.e., ii which state) the given path 

terminates. Such is the case in the "even a's" grainmar; no srring a £ T^ 

can violate a sequential rule since, for everj string Ot ,  there is another 

string 8: a ß £ L.    Indeed, the "grafflmaticalntss" of a string a depends 

on whether its path terminates in state "S" (i.e.., even number of "a"'s) 

or in state "X" (odd number). 

We thus see that in addition to sequential violations, a string can 

be ungranmatUil (in terms of a finite-state gratmar) if its path through 

the grammar matrix terminates in a "not in the lanKuage" state. Referring 

back to matrix J>,  if we designate state "S" (i.e.. State l) as "in the language" 

and state "X" (i.e. State 2) as "not in the language",matrix J> then generates 

* 
the desired L; all strings a f- T    have paths through jS>, but only those 

ot € L will have paths terminating in "S". 

A New Representation 

The lack of generality of the existing ma .rix representation for 

finite-state grammars prompts us to develop a broader, fully adequate 

representation. Specifically, we wish to develop a matrix representation 

which allows regular languages (and their complements) to be defined with 

respect to both sequential-type rules and rules pertaining to the par- 

ticular state in which a string's path terminates. At first glance, it 

might seem that the capacities needed to implement both sequential and 

terminal rules are incompatible within a single matrix representation; 

a sequential rule is presently implemented by selective paths in the matrix 

ry 



I 
(such that strings not in the language do not have paths in the matrix), 

while a terminal rule requires that all strings have paths in the matrix. 

Fortunately, however, these seemingly inconsistent demands can be satisfied 

simultaneously. 

Let i» = [G, J    be an n ^ order matrix, where each G^. c T. 

It is assumed we are dealing with a deterministic grammar, so that 

G.. n G.., = 0, for J £ i',  i=l, ..., n. By a complete finite-state 

grammar matrix, we mean that  U G. . -2, i=l, ..-, a. Thus if a matrix 

1 is complete, each of its rows is a partition of the alphabet T into the 

n cells of the row. Functionally, completeness of a grammar matrix implies 

that all strings Q € T have paths (derivations) in the matrix; from each 

state (row) of A,  each terminal symbol of T is associated with a feasible 

transition to another state. 

With the n states of A we wish to associate a state classification. 

A state classification is a single-valued mapping of the n states into the 

integers {!,...,«}. If C, is a state classification of J, then 

C^: fl,...,n} -^l,...,k}  n,k > 1 , 

is called a k-class state classification of A. 

The interpretation of C^(i) = .j is that all strings a ^ T whose paths 

in A terminate in state i art classified into the j"  terminal class. 

For complete A we have the following: 

(i) -*: T*-.{i,...jn} 

(ü) C^: {l,...,n3 -*{l,...,k} 



(i) means that it classifies all stringtä ever T ii t-o one of n stetes 

(according to the state of Jf in which the string's g ith tersiinates}. 

(ii) says that the state classification Is k-way, bhat tach of the states 

of i* is associated with a unique terminal clasp. Taken together. A and 

C, define a composite function (J'.C,), which n.aos each strin- of T 

into a unique terminal class: 

{&££%  T"-> [1,...,R} 

defined by (^Cj  (a) = C.(J<a)).    The pair (^,C.)  is defined as a 
Jf Je rf. 

k-class finite-state grajamar    over T      (k- depends on C„).   - -     j,' 

A k-class finite-state grammar nartitioas the set of a^i strings T 

into k disjoint, exhaustive sublets. Each of these k subsets is called 

a terminal class of strings generated by the granx:ar. It can be shown 

that each such terminal class of strings is a regular set (finite-state 

language). These classes will be denoted as Li.1' (1=1 ,k) or simülv 

by T.v-L'' wiien the subscript *  is understood; L^1'' will danole those strings 

th 
of length k in the 1"'"* terminal class. 

When k-2, we have a grammar generating strings Into two terminal 

classes, which are usually thought of as thd language (L) and its can- 

plesent (L - T -L). When k=l, all strings are generated into a single 

terminal class. The languages generated by a single class complete grananar 

are thus either empty cr are the entire set of strings T . 

In tiia "old" representation, a sequence of symbols from T failed to 

be grammatical when it called for a transition to be made which was not 

feasible; if some number of symbols brought the string's path into state i, 

and there was no transition out of state i associated with the next symbol 
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of the string, the string was uugrammatical. In our representation, all 

sequences of symbols must have paths through the matrix; the completeness 

of the matrix requires that there be transitions associated with each symbol 

of T, regardless of the state out of which the transition leads. We need 

to implement "taboc" transitions into our new matrix representations which 

correspond to the infPctsible transitions of an "old" matrix. 

Let & =[G..] be an n  order grammar matrix of the "old" representation. 
^ n 

Define subsets T. of T (i=l,...,n) as T.= T - U G..; T. is thus the set 
i i        i,r  i 

of symbols for which there is no transition out of state 1. Let 

Ai c T (i=l,...,n); A. is the set of all strings whose paths through A 

end in state i. Then we may describe the complement L of the language 

L generated by J as: L = U A.T.T . 
1=1 i i 

Let V = [H,.j be an n  order complete matrix which has the following 

properties (the existence of an V with these properties is self-evident): 

VQ€Ai, V(Q!t) = I  if and only if tfl^ (1=1,...,n); Hf.= 0 for j ^ f and 

H,,= T. Let Q. be a two-class state classification of i' such that 

^(j) = (s i-f" i '- i ' Then the te-T1iriinal classes lA ^ and L5. ' are pre- 

cisely the sets L and L, respectively; our representation has the capacity 

for sequential rules. State i of ^ corresponds to an "absorbing" state, 

such that paths entering state f can never leave it, regardless of the 

ensuing symbol sequence. All strings whose paths enter state t  are thus 

lumped together into the same terminal class. Thus if the terminal class 

C^(i) corresponds to L, and transitions into state i occur only when the 

sequential rules implicit in the grammar are violated, we indeed implement 

the sequential rules into our representation of the grammar. 

l/ by V(3) we mean that state of V in which the path of the string s 
terminates. 
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Example of the Implenientalion of g risgu^ 

Suppose we have a finite-state  Ian; 

T =  {a,b,c}    whicft coa^ists precisely o: 

are no adjacent occurrences of the ramh 

and "bacaba^bc"  are  In L while "abb",   ! 

This Language oaa be generated by 3 mat 

One "old" graamar malrlx for L is: 

1        2 ? ä 

& - 

;; Lpnaoet; 

R which tnere 

a DC 

jnr-qV- hf.»  r- 

0 is] [b] ^] 
ri 
f frl '. C ? 

0 la) 0 f ._. "i 

0 Uj fb] 0 

Tais could be transformed into a complete mati 

Ja 5 4 5 

1 

S   = 

0     (a]     rbj     rc}    ^ 

0        0 fb]       {cj     fa] 

0 
, <       la?        i b| r (h \cA 

The two-cla^s gramniar  $,0,), 

cd) =(j ;! ^5 

nas 

Q i-iows: 

ö5 



I 

I 

I       Functional Partitions and Standard Forms of Complete Matrices 

Let J» ■ [G^] be a complete matrix over T . State J is said to 

be accessible from state i , denoted i -» J , if and only if there is 

|       some sequence of symbols in T*-(eJ whose path, when starting in state i , 

leads to state j . states i and j are said to communicate, denoted 

|       i ♦-* Ö , if and only if both i -♦ j and J -» i . 

The relation 'W can be seen at once to be both transitive and 

symmetric on the states of   * t    i «_» j and j ^ k -> i ^ k , and 

|       i^J^j^i. Since^ however, i -> i need not hold tor all states i 

of l , we cannot claim "♦-»M to be reflexive. Thus 'W is not an 

I       equivalence relation on all of the states of arbitrary S . 

Define E and F as the (unique) complementary subsets of the 

states of i« : 

(a) VicF and VjeE , j £i . 

(b) VicF , 3j€E :' i -» j . 

|          (c) VieE , i *-* i . 

We have the following well-known results from the theory of finite Markov 

■ chains: 

■ (i) ♦-♦ is an equivalence relation on the states in E . 

(ii) E may be partitioned by «-» into some number f of equivalence 

I       clÄsses (of states) E1,...,Ef such that (a) U E. = E , (b) EHE - ^ 

for Ml, and (c) for all states i , jeE , i — j <^ ak : i,^  . 

Thus the ^ are equivalence classes of communicating states. We see 

-       that if the path of some string enters an Ej^ it can never leave that class 

of states. These classes are called ergodic sets of states. 

j An ergodic set of states E^ may consist of only one state, in which 

case that state once entered, can never be left; such a state is called an 

|      absorbing state (state 5 of the matrix V of the preceding section is an 

■ example of an absorbing state). 

■ 31+ 
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An ergoc'ic set E, is termed cyclical 

p > 1 which is the greatest common d 

c If there is some integer 

,1.) of  the lengths of alJ 

closed paths in E. (a closed patn is a sequence of transitions from a given 

state back into itself). The set EK is then sail bo have period p. 

(If p = 1. then E. is said to be aperiodic.) It can be shewn that if p is 
'     k —i  

the g.c.d. of the lengths of the closed paths of any one state in E^.,. 

then p is the g.c.d. for all closed paths in E;:. 

New consider the set F of states which are net in E. This set has 

the property that once a path leaves the set, it can never return to 

the set. The states in F are called transient states and P is called ?. 

transient set of states. Once a path leaves the transient set, it enters 

seme ergodic set and remains there. (State 1 of the V matrix of the 

preceding section is transient.) 

It is assumed that the initial state is always State 1 of the matrix. 

We can make the following accessibility assumptions in complete generality: 

(i) all states of J are accessible from the initial state, 

(ii) if ^ has a transient set of states, the initial state 

must be in the transient set: otherwise, the initial state would 

be in some ergodic set and ".he transient states would be redundant, 

(iii) if the initial state is in an ergodic set, then there is 

only one ergodic set of states in £',  otherwise, the additional ergodic 

sets (and any transient states) would be inaccessible and hence re- 

dundant, (it should be clear that any complete Jf can have at most 

one transient set of states ^nd ruct have at Least cao ergodic set.)- 
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The states of any complete matrix & can be rearranged (i.e., re- 

labelled) in such a way that A is partitioned into one of the following 

standard forms: 

(i) 

1 V Si'gle ergodic set of states 

with transition matrix J« = £ 

or 

(ii) 

1 = 

~~T~r  

0 

•    i 0 
T,- 

f J 

where the ffl's denote regions of null transitions (empty sets), J»  is 

the quadratic submatrix of transitions within the set F of transient 

states, J»  is the transition matrix from F into the er?odic states, 

and each &. is a quadratic submatrix corresponding to the i  ergodic 

set of states E,. Furthermore, it can be shown that each ergodic sub- 

matrix 6. can have its states arranged in such a way that each sub- 

matrix t.  (with period p.) ha.3 the following form: 
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ei = 

0 

0 

cii 0 

02 

... 0 

0... 0 

IP,- 0 

where the 0's are null submatrices (quadratic on the main diagonal) 

and the 6. are submatrices for transitions between the p. cyclic 

subclasses of 6.. If £. is aperiodic (i.e., p. - l), then, of course, 

the form is degenerate. We also can make the following assucr-tions 

about a gramma: (J'jCj with no loss of generality: 

(i) if an ergodic set E. contains more than one state, then 

not ill of the states in E. are of the same terminal class; otherwise, 

an identical language would be obtained by lumping all the states of E. 

into a single absorb:..g state. 

(ii) there need not be more than one absorbing state for each of 

the terminal classes of the grammar; otherwise an identical language 

would be obtained by lumping together all  absorbing states cori'esponding 

to a given terminal class. 

The partitions of the states of Jf into various sets (ergodic and 

transient) is a standard form borrowed from the literature of finite 

Markov chains and their associated transition matrices. We vlU later 

find such partitioning useful for several reasons. We will assume that 

all complete grammar matrices are placed in one of these standard forms. 

&7 
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Appendix B: Size Measures of Regular languages 

Note: Developments in this appendix make extensive use of the matrix 

representation introduced in Appendix A. 

Connection Matrices 

Let J> = [G. .]    be a complete n  Oi'\er matrix over T. Define the n 

order matrix N by N = [n..] -   [n(G..)]. n.. is the number of one-step 

transitions from state i to state ,1 of J> ;  n. . is also the number of strings 

of 3.ength 1 associated with this transition. Consider positivr integral 

powers H of N: N = [ö.. ] has the following well-knf '  "operties: 

n /, \   . 
(i) Tn).    = rK , i = 1,. .,n and k = 1,2,5,...  . 

J=l iJ 

(ii) n. Z = n(G. . ) : thus n.. is the nvunber of paths of length k 

from state i to state J, also the number of strings of length k associated 

with a transition from state i to state J. In particular, if state 1 is 

the initial state, n,. is the nomber of strings of length k whose paths 
■i-J 

terminate in state j. 

N is called the connection matrix of Jf and N is called the k-step 

connection matrix of Jy. 

Let (J'fCj  be an m-class complete finite-state grammar over T. 

Then L^ = U . G^    for all k> 1. (C'^i) = (j : C U)  = i}) . 

Let d. be the density of the i  terminal class L  , i = l,...,m. 

Provided these denrities exist, 

no 



m 

it is clear that     *-# d.  = 1. 

E M 
Consider ,.>. ^».      Ij 

^ = clim     —jp     = dim        Z~r- 
k -♦ »     r k -^ » r 

=   4f    c:iim     -¥- 
J€C"I (i)    k ^ oe r 

Thus the existence ci" the d.'s for arbitrary finite-state grarcniars can be 

established by the existence of      dim    e  Ij      -i       or all .1    (in o-ur genera- 
k -* » l rk   

, 

lized sense of limit). 

Define the matrix P , associated with Jf ,  by P = — N ; tue elements o. . 

of P are then related to the elements   n.. of N by p., = — n.. . 

Letting Pk = [p!k'3 we have Pk = -r" if' , so that p!K^ -i n.^ for all 1J r
K lJ      r

K iJ 

i,jj = l,...,n and for all k> 1. Hence questions about the limiting 
00 n 

behavior of   ij  as k -* <= can be answered in terms of the stationarity 
k 

r 
(k) 

of p.. as k -»». The stationarity rf increasing powers of P is easily 

investigated, since P is a stochastic transition matrix and may be associated 

with a finite Markov chpin. 

We may assume t^at ^ is in a standard form (see Appendix A) so that its 

ergodic sets are readily identifiable as submatrices of Jr.    The relation 

between P and Jf is such that we can assume without loss of generality that 

P has the ^orm of either 

39 
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(i) a singlf- ergodic sei of n states; 

or (ii) a transient set uf n^ states, and f ergodi- sets of states. 

consisting of n^...,^, stales, respectively:  n = ^ n. The well-known 
1=0 

theory of finite Markov chains supplies the following results; 

case (i); 

,00 - There is a unique matrix P* = [p*.]  such that dim p^ s p* 

for ifj  = 1, ,..,n .  if p is cyclical (Appendix A) with period q , then 

each of the q subsequences p'<q+  (as k -»» ) converges to a unique 

limiting matrix P*(i) == [?t4,n]  in the sense that lim p!"^^ = p* ^ > 0 

(i,j s 1, ...,n  ;  i = 0,.. .,q-l) . Thus 

PLi = a T.   piir£)  vi*j = 1,...,n) , Thus for aperiodic ? ,  lim Pk = P* . 

It is well-known that p*^ = pfM = p, > 0 for i,i',j = 1, ,n . 

Thus the p^. represent the limiting proportion of strings whose paths 

begin in state i and terminate in state j , and is the same for 

i = l,...,n . These p  are determined by the system of linear equations 
•J 

n 
I P.P., -P.    Ü = l,...,n) 
1=1 x ^ 

L Pi = 1 
i=l 1 

Since these stationary p^ = clim p^v always exist, and are strictly 
J  k-^ » 1,J 

positive, the densities d.. of the terminal classes of the grammar (i^C .) 

will therefore always be positive: 

d, = 

j^d) 
i = 1, ...,m . 
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ic Lxrai&in The independence of p*. ■ p. of 1 i-npileo .na' 

proportion of strings Oß whose path.; terminate in et.= te J is always p. , 

independent of a . The significance of thic result «ill  be seen shortly. 

case (ii): 

et E. . The 

We first need to compute the constants :.,...,.., , 

proportion of strings whose paths enter the i ergodi 

matrix ^ is assumed to be in the standard forxa (ii) Uc- Appendix A;. 

Define a.. as the limiting proportion of paths ieading out of 

state i which lead into the ergodic state J after Leaving the 

transient set of states (i.e., state J is the first, ergodic state of the 

path); a., is defined for 

system 

a. . = p.. + 

i _ i 

^ pikak: 

' o 
md j = i . ^,..., . . -hen the 

k=l 
(i = 1,...,no ; J = no+l,...,n) 

T      a..=l 
^    1J 

(i = 1, .....nj 

''rc-fer to Appendix A for notation) 

-vill always yield a unique solution for the a.. , . From the a. ^ the u 

can he computed as u. =  E  a^;    (i = ij«"Jf) 5   Y^    Uj 
JeE, 

The accessibility assumptions of Appendix A imply that u. > 0 

(i & 1,...,f) . Any string a whose path enters an ergodic set E. must 

remain there. Earlier we saw that the limiting proportion p_. of strings 

aß whose paths enter E. and terminate in state j of E. is independent 

of a  ; the p. :an be computed from the ergodic submatrix £.  of E 

(see case (i)). Thus the overall proportion of strings whose paths terminate 
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üince u.    and    p. in state    i    of    E.     is    p.  - u.p.    for    jeS. 
i        r -j 5  1 
* »j     — u 

are positive, it follows that p' > 0 for jcE (and p.. = 0    for JeF ), 

For the i   terminal class of strings Lv ' , the density d. is 

is computed as 

«I'U p. = 
i=i J keE?nc;

J(i) i: kerned)   k 

The density d. will thus be zero if and only if all states of Jt   in  the 

,th 
terminal class are transient. We thus have 

Theorem B: For an arbitrary m-class complete finite-state grammar 

(i^CjJ over a finite alphabet, the densities d, ,...,d  always exist; 
Jr 1    m 

each d. is positive unless all states in C« (i) are transient, in 
1 J? 

which case d. is zero. 
x 

.(1) When m = 2 (i.e., Lv ' is the language generated by the grammar 

(2) 
and L   is its complementi we see that the density of tne language 

always exists and is zero  if and only if C« (l) ^ F , 

Randomly Generated Strings 

Chomsky and Miller f58] considered randomly generated strings of length k ; 

such a string is one drawn from the "urn" T*  such that ail strings of 

length k have equal (i.e., r" ) probability of being drawn. Chomsky 

and Miller claimed that, as k -♦ a> , the limiting probability of a randomly 

generated string being in any given regular language is always sero or 

unity. This claim is equivalent to claiming that the dens ;y of any regular 

language is either zero or unity, which has been shown to be false. Two 

simple counter examples (each with density l/2 ) of non-zero, non-unity 



density regular languages are 

(i) 

(ii) 

S - b [ Sb | Xa 

X - a | Xb ( Sa 

S - a I Sa I Sb 

) 

j 

■:\ en 

which begin wi 

strings over {a,b} 

For a discussion of second-order (logarithmic d^ntu 

of a regular language, the reader is referred to Shannon 

They compute the value of channel (coding) capacity C , 

to be proportional to our second-order size measure (Sec 

y; size measure 

and Weaver ftQl. 

which wo showed 

bion 2a.0). 
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Appendix C: Sample Computer Runs 

The following examples were run on the Stanford PDP-10 using LISP. 

The program deals with two sets of strings, the sample set and the set 

of pivots (cf. Section 4a). The functions GRIH1A. ,, GRIN2A (of i-ero 

arguments) apply the algorithms described in Section k to  the current sets, 

The functions GHIK1 , GRINS accept the sample set to be used as an 

argument. The function GRIKA simply calls both GRIN1A. and GRIN2A 

in succession; GPIN calls GRIN1 and GRIK2 in succession. The 

auxiliary function PIVOTS specifies the current set of pivot symbols 

and ADDS causes new strings to be added to the sample set. The symbols 

G^^9 , G^l/i , etc. are internally created (by GMSYM) names within 

LISP: these correspond to the non-terminal symbols Z,,Z2 used in ti 

text. 

(GRIN (A) (A A) (A A A)) 

(THE FINITE STATE GRAMMAR GENERATED BY GRIN1 IS) 

(G$Ö09 IS THE DISTINGUISHED NONTERMINAL) 

(G$))Ö9 --A Gppp9 I    A) 

(THE PIVOT GRAMMAR GENERATED BY GRIN2 IS) 

(G$6l2 IS THE DISTINGUISHED NONTERMINAL) 

(0/5012 *-A G$Ö12 / A) 

NIL 

the 

9^ 



^GRIN  (A) (A B)(A A)(A A B)(A B h)(A A A),) 

(THE FINITE STATE GRAMMAR GKNERATEr BY GRIN]   Iß) 

(C$Jl4 IS THE DISTINGUISHED NONTERiMIMr;) 

{Qpplh «- A /    A G$ÖI5) 

(G^ßl5<-A/     B/    A A/    BB/    A3) 

(THE PIVCrr GRAMMAR GENERATED BY GRIK2 IS) 

(Gpßn  IS THE DISTINGUISHED NONTERMIKAJ.) 

(Gj60r7 *-A 0^17 / 0^17 E/A) 

NIL 

(GRIN (B B)(B A B)(B A A B)(B A A A B)) 

(THE FINITE STATE GRAMMAR GENERATED BY GRIN1 IG) 

(Göl6l9 IS THE DISTINGUISHED NONTERMINAL) 

(($019 <- B Ipßip) 

(ß6t)2f) <- A GpßZp /    B) 

(THE PIVOT GRAMMAR GENERATED BY GRIN2 IS) 

{GjbpZh IS THE DISTIKGUIGKED NONTERMINAL) 

iappzh <-B GiÖite5) 

(G^JÖE5 f-A G|^25 /     B) 

NIL 

(GRIN   (C  B)(B ß B)fC A B)(B r A B)(C A A 3)(B B A A   B)(C A A A B)) 

(THE FINITE STATE GRAMMAR GEHEBATED BY GRINI IS) 

[OppcT?  IS THE DISTINGUISHED NONTERMINAL) 

(Gppkrj <- C G#?5 /    3 Gpp2S) 

{Gpp23 ,- B Opfc9) 

(OppZS «-A Gpp2j /    B) 

(THE PIVOT GRAMMAR GENERATED BY GRI?:2 IB) 

(G^5  IS TLB  DISTINGUISHED NOJiTERMUlAL) 

(Cp&O '- ztti-;. B) 

(0^56 «-G#36 A /     B C^57 /    c) 

(C#37 - B) 

NIL 
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(GRIN  (A A B B)(A B)(A A A B B B)) 

(THE FINITE STATE GRAMMA.H GENERATED BY GRIK1 IS) 

(GßßpS IS THE DISTINGUISHED NOKTERMIimL) 

{QpppS «-A Qjbjblß) 

(Gpplß *-B /    A Gppll) 

{Gppll *- B Gpplk I    A G^12) 

I (Gj6j6l2 *- B G^ll) 
{Gppl\ f- B) 

I 
I 
I 
I (ADDS   (C)(A C B)(A A C B B) (A A A C B B E)) 

((A A A C B B B)   (A A A B B B)   (A A C B B)   (A A B B)   (A C B)   (A B) 

| (0)) 

I 
I 
I 
I 

I 

I 
I 

(THE PIVOT GRAMME GENERATED BY GRIN2 IS) 

(G0j6l6 IS THE DISTINGUISHED NONTERMINAD) 

(GjÖjÖlö «- A Gjbjbl? ) 

{GppV *- G|Öj6l6 B /    B) 

NIL 

(GHIN2A) 

(G$/6l9 IS THE DISTINGUISHED NONTERMTML) 

((#19 *-A Gpp2.p I    C) 

{Gpffcp *- ^19 B /    B) 

NIL 

(PIVOTS M P) 

(M P) 

I (GRIN2  (A M A) (A) (A M A M A) (A M A M A M A)) 

{Gpp22 IS THE DISTINGUISHED NONTERMINAL) 

{Gpp22 ir-A I    Gpp2.2 M G)Ö/i22) 

NIL 
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(ADDS   (A P A)(A P A P A)(A M A P A)(A P A 

((A M A M A M A)   (A P A P A)   (A M A P A)   i 

P A)   (A MA)   (A)) 
H i'autt ;   11 

(GRIN2A) 

{Gpß2k IS HIE DISTINGUISHED NONTERKIiA: 

iG6p2k <r-A /    Gpp2h P GiÖÖSU /     G^ÖSn  M 

3RIK2   (B)   (A M    B)(A v A M 3) (A 

(G;£)Ö2ü IS TIEF JISIIED 

(G$626 ^ B / Gpp2a) 

(GjÖÖDT <- A) 

?MTNÄ - \ 
B}) 

(PCTOLJ M ?! 

(■iTlii^   (A M ä)(L A M A R M ä)(A M L A M ^  T\)(T. &   v ß  ^ \r 

L*! n y^ ij   jj ^t  1-:  r\   i\  M ü  n  H A j i A  I-L 

A \t       T ..   ,    __   . .. M A R M A  R)) 
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