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FOREWORD

The results of a study conducted under DA Project lPO145OlBl4AO5,

AMCMS Code 5011.ii.85300.04 are presented in thi- report.

The design of a weapon system provides a natural setting for an

optimization problem. The design requirements stipulate that the system

is Lo perform some task at some index of performance. The optimizer then

is to search for the design parameters such that the weapon system not

only performs its task, but also maximizes its performance. The objective

of this study is to apply a relatively new steepel;t-descent nLuzerical pro-

cedure to an artiliery design problem which involves the dyn.ornic behavior

of a 105mm howitzer which is fired while resting on rubber tires. The

tires act like a spring during the firing cycl.- which causes the weapon

to leave the ground so that the likelihood of it being zeroed in for the

next round has been reduced considerably. The purpose, then, will be to

minimize the pitch motion of the weapon by obtaining a set of design para-

mcers which are sbject to equality as well as inequality constraints

prescribed by deaign requirements,

I \°
[ x

I



-ii1-

TABLE OF CONTENTS
Page

FOREWORD . . . . . . . . . . . . . . . . . . ii

TABLE OF CONTENTS ....... .................. . ii

SLJMiARY ............................... . . . iv

SECTION ONE - Introduction .... ............. 1

SECTION TWO - Statement of the Problem ,........... 3

SECTION THREE - Formulation of the Problem ........ 7

SECTION FOUR - Translation and Rotational Eqi.ations of
Motion fox the XM164 Howitzer . . . . . . 11

SECTION FIVE - Steepest-Descent Formulation ....... 16

SECTION SIX - Results and Conclusions . .... . 28

REFERENCES . . . . . . . . . . . . . . . . .. 34

DISTRIBUTION ... .. ....... .. 35



- iv-

SUMMARY

An artillery weapon mounted on tire! or tracks has some undesirable

features at high angle fire. Unlike the hard mount (weapon rests on a

base plate) the flexible mount will have a pitch motion, That is, during

the recoil stroke, the tires load up or compress and act like a spring,

and just before counterrecoil begins, the tires begin to unload sending

the weapon off the ground. Such a phenomenon is known as a secondary

recoil effect. The control rod design becomes much more difficult with

this secondary recoil effect because an additional acceleration term

enters into the Lecz;il equations. Also, it is obvious that when the

weapon comes to xest the likelihood of it being zeroed in for the next

round has been reduced considerably. The ;urpose of this study is to

reduce the pitch motion of the weapon and at the same time determine the

orifice areas for the control rod design.

This study was performed on the XM164, a light weight, 105mm howitzer.

The pxesen. control Lod design for short recoil (75 degrees elevation)

yields approximately six inc.aes of 'hop". Results from this study show

that between 45 and 86 per cent reduction in the pitch motion is rossible

(depending upon which design option is used) by determining the optimal

shape rod force. Once -his rod force has been found, the orifice areas

can be determined.

A steepest-descent numerical procedure will be used to minimize the

pitch motion of the weapon along with satisfying f-ertain design constraints

imposed upon the system. This technique starts with an estimated design,



analyzes it, and then improves on the design. It is an iterative process

and at each iteration an improvement is made until no significant gains

can be achieved.

The results of this study clearly indicate that weapon performance

can be improved by using methods of optimal design.



I. Introduction

Weapon systems of today and of the future are becoming more complex

and, as a result of this complexity, the engineer's intuition and experi-

ence become increasingly more difficult to apply because of the possible

trade-offs in the design parameters. Because the task of the engineer

becomes more difficult in meeting requested design requirements as weapon

systems become more complex, it is important that the design procedure

be represented by mathematical modeling, ie., a translation of the physi-

cal description of the problem into mathematical terms. Although a

mathematical model may be formulated, the solution may still be difficult

to obtain for several reasons The model itself may become very complex

and that which is even more difficult to cope with is the fact that some

of the parameters may only be engineering estimates based on past experi-

ence or perhaps very little is known about the dynamic behavior of a

parameter. Also, the solution must be a physical realization of the

mathematical design. In short, the conversion of mathematical theory

into an engineering accomplishment may not be an easy task.

The design of a weapon system provides a natural setting for an

optimization problem assuming a knowledge of all environmental factors

which influence the design process. The design requirements specify

that the system is to perform some task at some index of performance.

To determine the optimum solution, the concept of index of performance

is introduced and will be defined as the functional relatio-,ship amongL the system characteristics. The optimizer then is to search for the
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admissible parameters such that tne weapon system aot only performs its

task, but also maximizes its performance. As design specifications tend

to tighten, it becomes increasingly important to design optimum systems

relative to some perfcrmance criterion, and, in fact, specify that per-

formance be optimized.

It is only natural then that the methods used in the design of

optimum systems be of interest for these are the analytical tools which

will determine the results for the optimal design problem. Because of

the computer, many different disciplines have provided revolutionary aids

with respect to analytical tozis for the solution to problems that were

seemingly hopeless only several years ago. The objective of this study

is to apply the relatively new technology to an artillery design pioblem

and to develop a method which will aid the engineer in obtaining design

parameters subject to certain constraints and require that the perform-

ance of the weapon be optimal in some sense.
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II. Statement of the Problem

An artillery weapon mounted on tires or tracks has some undesirable

features. Unlike the hard mount (weapon rests on a base plate), the

flexible mount will have a pitch motion, During the recoil stroke, when

the weapon is fired at 75 degrees elevation, the tires load up or com-

press; and when counterrecoil begins, the tires act like a spring and

unload sending the tirt.s off the ground. It is quite obvious that, when

the weapon comes to rest, the likelihood of it being zeroed in for the

next round has been reduced considerably, especially for high rate of

fire weapons, This phenomenon is known as a secondary recoil effect

because an additional acceleration term enters into the recoil equations.

Because of this secondary recoil effect, the control rod design becomes

much more difficult. For short recoil, the oxifice areas in the control

rod are designed at maximum elevation (75 degrees); therefore, when ele-

vation is mentioned throughout the remainder of this report, it refers

to maximum elevation. The weapon positioned for high-angle fire is

shown in Figure 1.

The purpose of this study will be to develop a systematic control

rod design procedure characterized by mathematical modeling for the high-

speed digital computer. Conceptually, it will be one phase of a study

that will give the optimal weapon which meets the given design require-

ments. To do this, a steepest-descent numerical procedure will be used

to minimize the hop or pitch motion of the weapon and, at the same time,

to determine the necessary control rod design which will minimize hop.
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A second phase will be to incorporate geometrical effects into the optimal

design problem in order to establish optimal geometries for certain con-

figurations.

The recoil equation is of the form of Equation (1)

x + f(x)j 2 , g(x) = h(t) (i)

for a rigid rr)unt, In the second term of this equation, the expression

for the effect of the control rod orifice area is defined; however, with-

out any loss of generality, the control rod orifice areas can also be

obtained from a predetermined rod-pull force R(t). For the flexible

mount, the above equation is coupled with the equation describing the

pitch motion of the weapon and thus yielding two second-order nonlinear

ordinary differential equations with prescribed initial conditions. The

orifice areas are a function of the state of the system. To eliminate

state variable inequality constraints,.R(t) will be taken as the control

variable which is to be determined to minimize hop (the pitch motion of

the weapon) subject to other design constraints.

This study was performed on an existing weapon, namely, the XM164.

The XM164 is a lightweight, split-trailed towed 105mm howitzer with the

XM44 hydropneumatic recoil mechanism. Unlike a rigid mount, the XM164

is a flexible mount and is fired while restLng on rubber tires. Fcr a

rigid mount weapon, the resisting force R(t) on the recoiling parts is

designed with a trapezoidal shape as shown in Figure 2. With the proper

design of the control rod orifice area, the flow of oil in the recoil

mechanism is controlled and such a force, as shown in Figure 2, can bp
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Figure 2. Rod For,-e Duzing Recoil for a Rigid Mount

obtained, However, when a io:e shapea as in Figuze 2) is designed for

the flexible mount, the question is asKed, "Can this torce be applied

with some other 'best.' shape such that ;.t will reduce the pitch ot the

weapon?" This is the basic question with which this study is concerned.

In this report, tha puimum zod icr. e is defined as chat curve

which, according zo zme i easua kcha ncp iioton), sacisiies all of the

requirements impoed upon :he 6ystem
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III. Formulation of the Problem

During the recoil, counterrecoil cycle there are four different

times which are of concern. These are shown in Figure 3. At these

four times

Figure 3

t - initial conditions

t - end of the recoil stroke

t - time at which maximum hop occurs

tf - end of counterrecoil

certain conditions must be satisfied from the design requirements. At

time t0 the initial conditions for the state of the system are given.

At time tI the displacement of the recoiling parts is required to be

equal to some specified value and the velocity of the recoiling parts

must be equal to zero. At time t. the velocity of the pitch motion must

be zero and the displacement of the pitch motion is ti be a minimum.

Note that it will be possible for t2 to vary between t and tf' Therefore,

the hop or pitch motion will be minimized for the entice counterrecoil

stroke. At the final time tf, which is the end of cot.nterrecoil, the

recoiling parts must come back to its original position and the velocity

of the recoiling parts will be some specified value Vf* This is to insure

that the recoiling parts come back to the latch position. It will also be

demanded that the total cycle time be equal to cT seconds.



Formulating the above paragraph into mathematical notation yields

Minimize J - x (t) (1)

subject to the equality constraints

1P = x(t)- q + n 0
2 1 0 mr ax

2 W x2 (tf) r 0

(2)
1e3 - x1(tl) - Vf0 2

II x 1(t1) 0

Q2 x (t ) - 0

32

F
- tf - C r 0

with the full set of initial conditions

x (0) - x3 (0) - x (0) - 0, x2 (0) n(3)

where %i i - 1,2.3 are intermediate and terminal constraint functions to

be satisfied; Qi Q2, and Q f define the times at which the intermediate

and tert.inal constraint functions occur; x I and x3 are the velocities of

the recoiling parts and pitch motion, respectively; x2 and x are the dis-

placements of the recoiling parts and pitch motion respectively; 0 - 0

is the constraint on the displacement of the recoiling parts such that at

the end of the recoil stroke the displacement will be exactly equal to

nmax inches. 2 " 0 is the constraint demanding that the recoiling parts

return to the latch position at the end of counterrecoil.. '3 = 0 is the

constraint which requires that the velocity of the recoiling parts come

into the latch position at a veiocity Vf in./sec. ;1' 0 defines the time
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at which the end of the recoil occurs; 2 0 defines the times at which

the pitch velocity is zero and the one with the largest displacement is

selected, thus defining the time at which maximmn hop occurs; f u 0

defines the total cycle time to be exactly equal to cT seconds.

It was previously mentioned that in order to eliminate state variable

constraints the rod force was taken as the design (control) variable in-

stead of the orifice areas. Using the rod force as the design variable

simplifies the problem and it also gives the engineer more insight in the

design process since he has an intuitive feel for the force levels the

weapon system he -s designing can tolerate. Thus, immediately the engineer

can specify an admissible upper limit for the rod force say Rmax, for

his design, and this value may be varied by the engineer for any redesign.

The following inequality constraint must hold fo. all time t.

- R(t) - Rmax - 0 0< t_- tf (4)

Since the mathematical model must represent a physical. re.lization,

to specify one value for Rma x is not enough. This result was made avail-

able from the first set of computer runs and can be seen in Figure 4.

Because it was not known how the optimal shape rod force would behave,

the design variable R(t) was allowed to take on any shape just as long as

it did not exceed R max . It can be seen from Figure 4 that the rod force

attained its maximum value at time to. The mathematical model says that

the best way to reduce the "hop" is to let the recoiling parts move for-

ward first as in the firing-out-of-battery concept. This, of course, is

aua physical impossibility for the weapon under study sinne the recoiling

)

_____________________________
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parts cannot tiavel forward beyond the latch position. Additional con-

straints were subsequently put on the design variable during the first

few milliseconds of the recoil stroke.

Figure 4. Rod Force With No Ris,, Constraint

For First Few Milliseconds

The optimization problem has now been formulated. The objective

function (see Equation III-1) has been defined for the process (see

Equations IV-l,2) t*.at is to be optimized subject to the constraints

(see Equations 111-2,4) that are to be satisfied.

All that must be done now is to put the problem into the steepest-

descent formulation. The next section simplifies the equations of motion

for the XM164 howitzer.

-I
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IV. Translation and Rotational Equations of Motion for the XM164 Howitzer

(Ref. 1]
The differential equati.ons to be solved are given below

Equations (1) and (2) are the translational and rotational equations of

motion for the XM164 howitzer. Equations (3) and (4) determine the guide

friction.

Ma [a n - (-Yt siny + Zt cos') - (n t Yt cosy + Zt siny)$ 2]

(1)

- R(t) - B(t) - Ma g sin(y+q) - P(IS I + iS2 1) sgn()

{M a(n + Yt cosy t Z sinf) 2 + M[(nb cosy + Yt- 
4b siny) 2

+ (n sin + Z + 4b cosy) 2] + Md(Y2 + Z2) + Ia + Ib + Id

+ 2M a (n - Y cos + Zt sin,) - M a 2(n + Y cosy + Zt siny).a t t t t

U - Yt sinj + Zt cos) - B(t) ( - ) (2)

[R(t) - P(IS I + iS2 1) sgn(n)] (€ - Yt siny + Zt tosy)

- g M a[n + Yt cosI + Zt siny] cos(1+q) + Md(Ye cos$ -. Zd sinq)

+ Mb[Yt cos-Zt s b cos(b+) - 4b sir( + )]} - k(¢+st) -

M a[2A + (n + Yt cosy + Zt siny) ( + Zt cosy - Yt siny);2]

(3)
-S I + S2 - N a g cos(Y-t4)

Ia S (q 1 - n) + S2 (q2 - n) - B(t) • (4 - 4 )

(4)+ R(t) • - ;2 - L[1S11(4 - a) + IS21(4 - 8)] sgn(n)
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For small * the following zppzoximations are made.
sinip -

cos I -
2

The cos(y+0) and the sin(7+) then become

cos(y+0) = cosy - 92 COS- siny

sin(y+0) = siny - 01 siny/2 *r 0 cosj.

From the above approximations and the following definitions, equations

(1) and (2) can be simplified.

CON1 = Ma

CON2 - Ma( - 1 sany + Z cos-y)
a t t

CON3 - (jS + Is2 sgn()

CON4 Y cosy + Z siny
t t

CON5 M[((b cosl + Y - b siny) (n b siny + Z 4 b cos )2 ]

Md(Y2  Z2 ) + I -! + I
dd d d b d

CON6 = - Y siny + Z cosy
.t

CON74. -

CON8 - SINy

CON9 - COSY

CON10 - - M a.gCON8
CON11 = M- M g-CON8a

CONi1 M.g.CON812

CONI2 - M .CON4
a

CON13 - - 2M
a

CONI& = - 2M .fONA
a
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CON15 - k s

CON16 - M 'CON6a

CON17 - M *CON6*CON4a

CON18 - - g-M a.CON9

CON19 -g-M a.CN9/2

CON21 - g- M -CN4CN9a

C0N22 =- g-M d*yd

C0N23 - Md'yd/

C0N24 - g-M d'Zd

C0N25 - - MbY

C0N26 - 9.Mb*Yt /2

C0N27 - 9 gMDZt

CON28 - - 9.MbnbCON9

C0N29 = g.Mb-nb CON9/2

CON30 - 8'Mb* *.CON8

CON31 - - Mbb CN/

C0N32 - g*M a *CON8

C0N33 - g-M a C0N4CON8

CON'34 w MbD gn b* CON8
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C0N35 - bg; CN

C0N36 = C0N20 + C0N22 + C0N25 +C0N28 + CON30

C0N37 = CON21 + C0N23 + C0N26 + C0N29 + CON31

C0N38 -C0N24 + C0N27 + C0N33 +C0N34 + C0N35 -k

C0N39 - CON15 + C0N36

CON40 - - M a.g*CON9

With the above definitions Equations (1) and (2) may now be written

as

CON1-n + CON2*- R(t) - B(t) + CON3 -t- CON10 +~ CON11-02

(5)
+Ma + CON12* 2 + 4*CON4O.

:1 ~~~(M (n + CON4)2 + CONS) O1.p~ t O1.~

+ CON38-0 + C0N32*n4 + C0N39 - t +t CON16-qP2r.
(6)

- CON174;2 + B(t)-C0N7 , tR(t) + CON3]*CON6 + CON18-n

iCON19*n*~ -t- CON37.4
2

Equations (5) and k~6) can be put :.nto the folilowing form

v 1 n+ v iV

(7)
V2 2 23

where

v 11-CONi

1 V.,2 =CON2

r
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v3 R(t) - B(t) + CON3 + CONl0 + CON11.
2 + Ma 42

+ CON12.4 2 + CON40.0

v -0
21

V22- Ma(n + CON4) 2 + CON5

V23 - CONl3"n;n + CONl4.n; + CON380 + CON32no

+ CON39 - c; + CONl6. 2n + CON17.$ 2 + B(t).CON7

+ [R(t) + CON3.CON6 + CONl8n + CONl9.n'
2 + CON37.0 2

Equations (7y can be written as

[v13 v22 2 23 liv1* 22

(8)
- v231v2 2

By making the following definitions Equations (8) can be put into

first order form. The definitions (9) must also be made in the vjj.

X2

x 2  n
(9)

x 3

x 4~£4

When this is accomplished, Equations (10) yield the proper formulation

which will be used in the steepest-descent scheme.

L [V13 V2 2  12 .v23]/v 1 22

x2 x1 2 (10)

3 23'"22
x = x -=f

x

4 (4



-16-

V. Steepest-Descent Formulation

The optimal design problemn can be stated as follows: Determine the

design (control) variable R(t) in the interval 0 < t < tf so as to

minimize J -x (E2)  (I)

subject to the constralilts
'p (t) -n n

1i 2 I n max

2 x(f) - n= 0

P3 - x,(t) - Vf = 0

(2)
=x,(: ) - 0

12 -x . 0

f E

R(t) - R m 0 (3)
max -

and satisfying

x = t (Eq-ations IV-l0) (4)

witn initial conditions

x.(O) - x (0) - x (0) - O, x (0)=r,.

A. Detetmination of the Adjoint Equations

The minimization problem stated here starts with an estimated design

for R(t), analyzes it, and then improves on the design. This steepest-

descent method is an iterative process and at each iteration an improve-

ment is made uwil no significant gains can be achieved. For a complete
deveipment of what is to follow, see [Ref.Only the results

of those derivations will be used here.
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The adjoint equations are

riTX 
TV

L-- - L3X 0- f

where the vectors f and x are defined in Equations IV-10 and

X = [ Aj A2, A3 , X41 T where T denotes transpose. It can be seen from

Equations (3) that 0.ax

afV 22 V av 23 av1 2
__f_ 22l3 ax 13 2

ax1 3 22 3x 22 3 x 12 ax 23 3xi

IV v22 + I ,
- 1[ V 22 - V 12V23 ][Vl -- + ax1 2  ax ] I /v 21 V 22  1 1,2,3,4

af
ax_ V 1 x (CON13.x + CON14]/v v

a - 12 3 2 11v 22
1

af
_ I VV (2Mav (x + CON4) + Mav x2  - v (CON!3"x x

ax2 11 22 a 13 2 a 22 3 12 1 3

+ CON32"x + CON16'x2 - CON18 - CON19"x2 )]
4 3 4

- [v v22 -v2v23] [2Mav (x + CON4)]}/v 2 v 2

3 2 1 3 a 11 2 11 22

af
ax {v2 (2Ma x2xj + 2.CON12x3) 3 v ( ' , .3.x x2 + CON14"x2x 2 a233 1

3

- C + 2.CON16x x + 2.CON17.x )}/v 1 v.2 11 22

1_ {V (2"CON11x + CON40) - v (CON38 + CON32"x
ax 2; 4 ,Z 2

+ 2.CON19.x x + 2.CON37.x )}/v ilv2 4+ 22
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f af f 2  af
_12 0 1 2 O, ---2 0
ax 1 2 ax ax

af 3  a 23 i 2 = 1,2,3,4,

ax V22 ax1  V23 ax /V22,

af
(C0N13.x + CONI4)/v 2

ax. x(O3"2 2

af
3 tv22 (CON13.x x3 + CON32.x + CON16.x 2

ax 22 3 3

+ CON18 + CON19"x 2) - 2M v (x + CON4)}/v 2

4 a 23 2 22

: af

3 = (CONI3.x x2 + CONI4.x - C + 2.CON16.x x + 2.CON17.x 3/v
ax3  2 3 2 22

af
3 (CON38 + CON32"x.-t 2'CON19"x x + 2.CON37.x 1/Vax 2' 4 224

af Df af 3f
4 0, 4ax =0, 0 0.

The adjoint equations now become

af af

ax 1 ax 0

3f afax x
T- 0 ax 0

2 2 A(5)
a f af

0 -1
ax ax3

3
af af

1 0 ax 0
ax ax

where the partial derivatives are defined above.

B. Determination of the Boundary Conditions for the Adjoint Equations

Because of the intermediate constraint functions, we must evaluate X

at t 2- and t to allow for any discontinuities which may occu- across t
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and ti . Since the initial cotditions for the adjoint equations are given

at tf, these equations are integrated backward&. ntegration is carried

out by integrating from t f to t 2+ Using new initial conditions at t2_

integration is then performed from t2 - to tl+. And.finally, using new

initial conditions at t_ integration is then performed to to.

I iI', _ 711

Figure 5

It is the object of this section to determine the initial conditions

at tf) t2 _, and t for the four different integrations pertoirmed on the1-

adjoint equations, that is, for tp , ip2 ' 1P and J.

To get the boundary conditions on the adjoint equations at tf, we

choose

AT ailf

(ct) f k.x *f ax

where f super and subscripts refer to the time at which the partial

derivatives are evaluated.

For an arbitrary function Q, we compute

f f f

and

f \~ f

.1 ____ _____ ____________ ________________________ _______________________ ______ _________ _______________
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6fI+ as\f
f \ax at

or Q aQ\
AQT a axf __ a

(If ax f f 1
atf

f f
From Equations (2) of this section it can be seen that Sf does not

depend upon the state explicitly and therefore, - 0. Thus

QT aQ

(tf) a xf

and it follows from Equations (1) and (2) that

T

A(tf) [0 0 0 ]

T
1P
L1  -[0 0 0 0]

(tf)
(6)

T
p2

A 2 (0 1 0 0](t f

T

( t^(tt) (10 0O]

BOUNDARY CONDITIONS AT t2_

We choose
(az2 -2at2)

At 2_- x 62 a
2-

where the superscript 2 refers to the time t 2 .

+ XT. Z(4 f
\O/2 X 2 L- ~ d 2
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~~2' ) t (AX)2+ W ,f

22 6f azt2a2f

2- ax x at 2

f( a2 pf\(af-lf

-l I' f-i

+ da
Da ) f-i dt

where a refers to a vector of control parameters and f for this problem

is equal to 3, i.e., we have t , t , t , and t In this problem there0

are no control parameters, however, the additional term is written for

completeness of the expression for s2 . The derivatives appearing in
2-

the summation are zero since i2 does not depend upon the times t or t I0

The rest of the terms which are zero can be seen immediately by eval-

uating the derivatives in Equations (2). We how have that

TQ U +A _T Lax_ + A 2+] 2- (A x) 2+ an2
A t ax2  2+ 2 2 x

a'X-2 ;2-

.T

Boundary Conditions for J x (t) at t ( 2+ 0)

,T [0 00 l 2_
x - [0 0 0 1]- 2 [0 01 0]
(t2-) [C 0 2_

t,(t. )
M -o o o11 -( (t to o o

T t (t )
2 [0 0 - 4t_) ' ] (7)

(t 2- f 3 %t Z
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T
Boundary Conditions for x 2 (t I)-n 0+ q max 0 at t 2-(, 2- 0

T
X (t = 0 0 o (8)

Boundary Conditions for 2 x2 (tf) - o 0 at t2-

T T
T T IP2 2

A x -(Ax)
2+ 2- 2+ (0 0 10]

t2  ) 2+ [0 0 1 01 x2 -

T T
T T 2 P2
2 2 A2+ x2- (

A 2+ 0 0 1 09)
(t 2 ) - (t 2 +) - (f(0010

Boundary Conditions fo 3 w x (t) -V, 0 at t2-

T T
T T K"

A3 T A2+ x2- (A 2+ [0 0 1 0]
A(t2 -) A 2  - [0 0 01 x2 _

T T
T p T A + x- A

( A_2+(t2+) ( [0010] (10)

BOUNDARY CONDITIONS AT t

We choose

AT- - -I
I-

% " I)" .- ' "( ' 2-

ax' I at,_
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In general

J J + g-j + -2--+ + __ da
6- E- J-

For j 1 we have

x at (ax X

f~+T Ij c (AT)

TaT x 1 1+j 1+ az1
(t ) ax1  1+ /as"' ax

ax

Boundary Conditions for J -x (t 2) at t _

T XiT (kiT
jT jT XJ x - (AJx)

A -_+ [3 0 0 0]

X J T 'A -
_  [1000)x(t 1+ [1 0 0 

] 
I-

(t _) 1+ (f ) (t I )

Bounlary Conditions for pi x (t )-n + n -0 at t (A -0)
1 2 1 0 max 1- 1+

[0 1 0 O]x

l- [1 0 00];,(t ) - [0100o ] ""[oo o]-

1.-

0 010 01 ( (0 001~(f) d(t)

T (f,) t_

A (t 1 0 (12)(t_) [ () 100]

1(r
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Boundary Conditions fox i2 x (t f) - no M 0 at t

T T Tx
2 T A+x _ _ X I+
(t_) 1+ [1 0 0 0]x _

T T

T T X 2 -(X x)2 (t). t- C +

X - A (+ (t l 0 0 0] (13)

Boundary Conditions for I (tf) - Vf 0 at t _

T T
T  T P 3 T 3T

,A 3 IP 3 + xI-(X_ + [l 0 0 0]
(t_ (tL+ ) [- [0 0 0lx

T TA -AAX)

T ( - T ( [i 0 0 0] (14)
~t -) " t -) -(t _)

C. Determination of the Variation of the Design Variable

The variation or change in the design variable R(t) which makes the

greatest reduction in J, the hop, is given by the following expression

(see[Ref. 2 and 3]) where the desired change in the constraint function

is given by d'. The tp constraints of Equations (2) will in general not

be satisfied with the nominal choice of R(t). Since the idea is to

- [ dp2 __dyT-d I ^/2

6R(t) - W-I(t)[A(t)I I - AJ(t)] d ' - /u I ITjI
Ui 'pJ 'pi 'j J(15)

drive the ' constraints to be identically equal to zero along with mini-

mizing J, in the selection of perturbations the choice of the desiced dp

will be - awp. That is

i1
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dip-ap 0 < a ,

If a reasonably good estimate is made for R(t), the value of a may

be set equal to 1. Wu is a matrix of weighting functions whose elemeuts

are functions of time which permits 6R(t) to be suppressed in sensitive

regions or amplified in less sensitive regions. In this problem R(t)

wa.; given equal weight throughout the entire recoil and counterrecoil

cycle and W was set equal to the identity matrix. A few terms andu

definitions will now be given in order to evaluate the expression of 6R(t).

T I t ~T
W X B yJ + I A W A dt (16)

J0 u

T _ (tf T

I m, P X WBl -t
-  Alp W- Adt (17)0u

j T -J -r A T WuA dt (18)

kj tf A ̂  V li dt + t -b

A,(t T + (+ (T]

1,b 0 3b b 3 b
!rt) T aR T T. (19)

( 1T
(t) A+ 3a (19

aR R ) 20

T T 0 (22)
3aR aR
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W is another weighting matrix and will be set equal to the identity

matrix. b is a vector of design parameters and since this problem does

not contain any, tJ ' . = 0. Taking variations of the last equation

yields the linearized version

T 2_ 6x + OY '6R + -T ' 6b - 0.

n Do 0 we obtain the Iollowing

11 6R - 0

which says that wherever 6R j 0, o - 0 since -- 1. From (21) it is• aR

seen that for ' < 0, w(t) - 0. However, if € is zero over an interval

an additional test must be satisfied.

It must be verified that violating a constraint boundary in such

an interval would allow an improvement in J. Since ' and R(t) are each

scalars from (22) we have that

T 3f
RIi - e(23)

dR

and it can be argued that when p = 0, J will be minimum if U is a non-

negative function. Thus, Equations (21) and (22) provide the equations

which determine R(t) and P(t). One more vector, T, must be evaluated

now before 6R(t) is determined.

afl av22 av dv dv
- {V r 13 23 12

dV2 dV..Rv - vL2V23 ][v1 VR 22 ;R ]- v2 v2

13 V 2 2 23 i 3R ' 22 R i 22
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"[v- v " CON6)/v v
aR 22 12 ii 22
af 2 af

DR O R

af3  v 2av 2av2 ]/V2
= [v22 3R v23

af
3- CON6/v 22

and A where 1 1,2,3 may now be evaluated by replacing Q with

J, '1 2 and p3.

v~ V22 V 22 3

Q v CON6 6 CON6Q

(t) = _ -AQ  4-0, 1, 0 (24)11 22 1 v22

0 -, < 0

I j, I. 9and Ij now become

tf A TAJ
lIj = 0 A A dt

I =I tfA A T dt (25)
i0

I iW f AJTA'dt

"0

where I j is a (3xl) column vector, I is a (3x3) matrix and I is of

order (lxl).
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VI. Results and Conclusions

Figure (5) represents the optimal rod force to minimize hop at 75

degrees quadranL elevation with the following constraints

R(t) -, 22000 lbs.
(1,

recoil length = 28 In.

The resulting hop for the above case is 1.53 inches, i.e., the cires

leave the ground 1,53 inches, for a 115 per cent maximum rated pressure

breech force. Computez results itdicate that the present rod design for

short recoil yields 6.26 inches of hop which agrees with firing data. To

obtain the 1.53 inches of hop would require a redesign of the orifice areas

for short recoil and for ounterrecoil. One might question whether the

resuiting curve in Figure (5) is obtainable with the XM44 recoil mechanism;

if it is not, a very simple solution is to alter the curve so that a nearly

optimal solution results. If the constraints were such that

R(t) -, 23500 lbs.
(2)

recoil length - 29 in.

the resulting hop is 0.88 inches.

If one uses the present counterrecoil groove design and requires the

constraints in (1) tc hold so that it is necessary to redesign the orifice

areas for short recoil only, the resultiig hop is 3.42 inches or a 45 per

cent reduction. For zonstrainc set (1) a 75 per cent reduction is achieved

and for constraint set (2) an 86 per cent reduction results.

The acceleration of the recoiling parts during the first portion of

counterrecoil is an important factor in reducing the hop, That is, the

I ____ ____________________________,_______________________
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faster the recoiling parts a:celerate during this period, the greater the

reduction in hop. As one would expect, an increase in recoil length also

reduccs hop significanti.y. An increase in the maximum rod force will also

reduce hop, for example, if the rod force is allowed to obtain the value

24160 lbs. in constraint set (1), the hop can be reduced an additional

0.32 inches. Figure (6) shows a possible control rod design for short

recoil. The orifice areas were obtained from the rod force in Figure (5).

The resulting force levels from the new groove design is indicated by the

dotted lines from .110 sec to .13 sec. The rod force is the same as the

optimal shaped force curve from 0 to .110 sec. The increase in hop is

approximately 0.1 inches. The recoil length changed a very small amount.

An interesting side point is that of the speed of convergence. The

nominal design variable, R(t), used for the first iteration was such that

at the end of counterrecoil the recoiling arts were 250 inches away from

the latch position and the required final velocity of 6 inches/sec. was

96 inches/sec. In approxm~aLeiy 14 iterations, convergence vas obtained

which seems to be very fast if one considers the complexity of the

equations involved.

A computational algorithm is given below.

Step 1. Make an engineering estimate for R(t) and call it R0 t).

Step 2. Integrate the state Equations (IV-10) with initial conditions

(111-3) and determine t and t.

Step 3. Integrate the adjoint Equations (V-5) from tf to t 2+ with

initial conditions (V-6).
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Step 4. Evaluate initial conditions (V-7, 8, 9, 10) for adjoint

equations at t2- and integrate (V-5) from t to t

Step 5. Evaluate initial conditicns (V-i, 12, 13, 14) for ad3jint

equations at t and integrate (V-5) from t to t

Step 6. Evaluate A from (V-24) for p , p, i and J.

Step 7. Perform the definite integration of (V-25) for Io, I ,

and Ijj.

Step 8. Choose di and dP in (V-15) where di is the desired change

in tp (V-2).

Step 9. Compute (aP) 2 - dipT I dq. If this quantity is negative,Stepp

compute 4 =(dP),d I TIPdj and repiace dip by rdlp.

Step 10. Evaluate 6R(t) from (V-15).

Step 11. Compute new estimate R'(t) - R-(t) t OR(t).

Step 12. Evaluate gradient squared (I - IT 1 .1 ) for convergence.

Ii near zero, stop; if not, go to Step 2.

Results from iizing tests shcw a significant reduztion (50% or more)

in hop can be achieved simply by increaaing the tire pzessure. Because

tire performance information is not presently available, it was a4sumed

throughout thLs analysis that che spring rate or :he tires was constant.

Therefore it is not known what results would be obtained under a dynamic

tire response model. Tire manufactu.es are looking at how they can opti-

mize tire characteristics for the finai configuraticn in the tire itself.

In oider to obtain optimum weapon performance for fiexible mount systems

such infozmation as tire pertormance could be incorporated into the
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mathematical model and perhaps tire characteristics could also be opti-

mized in the environment for which they are being used.

The technique used in this report has the capability to optimize

many design parameters simultaneously. It there exist other sensitive

parameters, consideration should be given to optimize them along with

the design variable R(t).

This study clearly indicates that weapon performance can be improved

by using methods of optimal design.

.1 ________
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