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Abstract

The problem of a point electric dipole moving over a dispersive
dielectric half-space is studied. The dipole Is located in the free
space above the dielectric and is assumed to be time harmonic in its
rest frame, oriented perpendicular to the interface and moving parallel
to it. Previous work in this area has been mostly confined to the use
of a plane wave as a source or a non-dispersive dielectric.

Solutions for this problem are obtained using integral transform
techniques. The integration is performed for the free space region by
making an asymptotic expansion for one integratinn and then using tte
saddle point approximation for the remaining integration. The solution
obtained in this manner for the vector potential is then used to generate
the electric and magnetic fields in both the rest frame of the source and
the rest frame of the dielectric. This yields the reflected radiation
fields for the case of an arbitrary, dispersive dielectric and the lateral
wave fields and surface wave fields for the case of a lossless plasma.

The field patterns are distorted by the relative motion of the source
and dielectric. In the rest frame of the source, all three waves exhibit
the frequency of the source and in the rest frame of the dielectric, they
all exhibit some form of doppler shift (different from the primary wave).
The criteria for existence of the lateral wave is not modified by the
relative motion of the source and dielectric; but the criteria for
existence of the surface waves is greatly modified by the relative motion.
For velocities greater than some critical velocity, a new type of surface
wave comes into existence.
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1. INTRODUCTION

. A moving, temporally dispersive material is unusual in that it is
E ¢ both temporally and spacially dispersive as observed in any inertial
S reference frame other than its rest frame. In order to investigate the
: interaction of electromagnetic sources with such a material, the problea
: of a point electric dipole moving over a dispersive dielectric half-space
§ has been studied. The dipole is located in the free space above the
£ dielectric and is assumed to be time harmonic in its rest frame, oriented
: perpendicular to the interface and moving parallel to it.

Frevious work in the area of scattering from a moving half-space has
: beer. mostly confined to the use of aplane wave as a source or a
é % non-dispersive dielectric. Particular problems involving the reflection
- of plane waves from a moving half-space have been investigated in detail
by Tai (1965), Yeh (1965, 1966, 1967) Pyati (1966) and others; and just
recently Shiozawa and Hazama (1968) have solved the general problem of
reflection and transmission of a plane electromagnetic wave at the inter-
face between a stationary dielectric medium and a dielectric medium moving
in an arbitrary direction parallel to the interface. It appears that the
only work that has been done on the scattering of dipole radiation by a
moving half-space was done by Pyati in 1966. He investigated the problem
of a vertical or horizontal dipole positioned over a moving, dielectric
(non-dispersive) half-space and solved for the reflected radiation fields
in the rest frame of the source. No effort was made to investigate the

effect of the motion on the lateral wave or surface waves that might be
present. ’

In the work that follows, we utilize two inertial reference frames U
designated S and S' where it is assumed that reference frame S' is moving '
with velocity v in the Z direction with respect to reference frame S and
that they coincice at t = 0. The dielectric half-space is stationary in
reference frame S and occupies the region x < 0. The dipole is staticnary
in reference frame S' and is positioned at the point (H, 0, 0) in that
frame. The region x > 0, in which the dipole is located, is assumed to be
free space. ‘

T RN e

Solutions for this problem are obtained using integral transform
techniques. Section 2 develops integral formulations, involving three
integrations, for the vector potential in reference frame S for both

AR

o SRR = == SRR = mmssen =

T RO MM
froteboscaser stsstnsn b g otnbes Wb ag e
[t
‘ ]
, z
[ e i ;

vy




AT I

bt et

ptoeblonbin:

gt

NS 44

AR S Y

regions of space and carries out one of the integrations. It appaars :
that this is as far as the work can be carried out in general. Jeyond
this point some sort of approximation must be made. This is done in
sections 3 through 6 whers sclutions are found for the fields -t
observation points far from the image source.

In section 3 the original contour for the integral is converted to
contours around each singularity in the integrand, and a change of variable
is made to gain control over the asymptotic expansion variable that is
subsequently used. These singularities consist of two branch points and
one or more poles. The integrations along the branch cuts are carried out
in sections ¥ and 5 and yield the reflected radiation fields for a
gensralized dispersive dielectric and the lateral wave fields for a
lossless plasma dielectric. The integration around the poles is carried
out in section 6 and yields surface waves for the case of a logsless
plasma dielectric. In each case, the saddle point approximation is used
for the final integration. The vector potential found in this manner is
then used to generate the electric and magnetic fieids (£ and B) in
reference frame S. These fields are then transformed to reference frame
S' to obtain the electric and magnetic fields (£' and 3') in the rest frame
of the dipole.

2. INTEGRAL FORMULATION

In this section, an integral formulation for the vector potential in
the rest frame of the dielectric is developed. Since the problem that is
being considered is homogeueous with respect to the extension space
coordinates y, z and t, it lends itself nicely to the use of Fourier
transfore techniques for the solution with respect to these coordinates.
This leaves us with a one-dimsnsional boundary value problem to solve
similar to the familiar Sommerfeld Half-Space problem., However, for the
problen we are considering the source {s more interesting sinze it is
both temporally and spacially dispersive due to the motion of the source.

Before we can solve the boundary value problem in reference frame S,
we must first obtain a formulation for the source as it would be observed :
in that reference frame. In reference frame S', the source is described

by




jw t'
Jrr,t') = & 1 8(x'-H)8(y")o(z')e * (1)

We would like to convert J'(r',t') to friguency space so that we may
conveniently transform it to the rest firama of the dielectric.

The
four-dimensional Fourier transform of (i} 1; given by
jkiﬂ
_ RI o ~ flw-w)
J'(k',w-) s L] F X ] (2)

where the kernel

Sttt + gkrers
-z
un®

has been usad in teking the transform. We will now use the relativistic

spectral tranzformations (Holmes, 1968) to transform the spectral form

of the current density given by (2) to reference frame S. The transfor-
mations are given by

Jx(i,w) z J;‘(i' yw')

(3)

X = T @t
Jy(k.hl) J;(k ,ut) (»)
Jz(i,u) = P[J;()‘E' ,w') ¢ vor(k',w')) (5)

The charge density p'(k',w') can be obtained from J'(k‘,w') by using the
continuity equation converted to frequency space.

The spectral form for
the current density in frame S then is given by

I jklﬂ w vk
J(k,w) = E';T .

S(u-(3% + vky))(3 F»-%‘E;Y + 43 (6)

where the transformationsz for the components of the wave four-vector
(Jackson, 1962) have been used. Now inverting (6) with respect to ky
we obtair
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Hmkgakgsw) = —L= 80 (3t # vk IR S0xci) + m?{;rad; $(n-B)) (7)
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which is the desired source teram.

The one-dimensional boundary value problem we must solve is illustrated
3 : in figure 1 where use has been made of (7) and the fact that in free space
the form of the differential equation for the vector potential is invarjent.
‘ Since the solution of this type of problem in the manner we are proposing
is well known, the details have not been included’. However, we would
F like to make a few specific comments. At first glance it appears that
: difficulty might be encountered in finding the particular solution t» the
differential equation in region 1. iowever, due to the delta functions in
the source terms it can bs readily generated using the free space Gizon's
function for the differential equation. Also, it turns out that ths
vector potential obtained from the solution of this boundary value
problem contains the factor

e

(™}
6(u-(1'- + vk,))

so that the inversion with respect to w can be performed exactly. The

vector potentials correponding to the scattersd and transmitted field
are
gorp 1 Tt - =2 W h -jf
A (T,t) » —t b g ¢ Ht Lak, ax, (2)
t 1 % (2')2 th 3372
-;: .
Tw ( ( b’
- — koo + —==)(€ -1)
N A c" 21.2"33 7 5
= . ! ¢

(3)
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1. Considerable detail is included in the original work (Holwmes, 196€8),
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-5u 1 jrw (¢ - —5 z) © 2 k(e -l)(k33 + -3
A - - 0 8. ’ c I[ [F v c
2xT (2“)2 ‘e W (§§r+§)(§§§)
€ -if
r 2
tmanl e digydk
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where
2
W
- '__G_ - Y 2 - 2 1!2
K= (c2 L3 k33)
h= (e 33-(m + vk, 0% - Tk, + =22 - k2312
- r 2 33 33 2 2
c c
€

z €. .
v rlu-= l"(w0 + vk,

fl * K(H+x} 4 k33 M(z-vt) + kzy

£, = Ki - hx + ksq [(z-vt) + K,y

and the change of variable

k, = M(k Ly

[¢]

{10}

(11)

(12)

(i4)

{15)

(18)
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has been made to simplify the expressions. It appears that this is as
far as the work can be carried out in general and that some sort of
approximation must be made in order to perform the remaining two

integrations. This is done for region 1 in the following sections.

3, SCATTERED FIELDS

We would like to evaluate the integrals for the scattered fields by
obtaining the first term of an asymptotic expansion for the integration
with respect to kaa and then using the saddle point approximation for the
integration with respect to kye We can gain control of the asymptotic

expansion variable by putting.the integral into the form (Van Der Waerden,
13850)

1= pwe™ aqu (17)

A convenient choice for A is

W
Azpr' L (18)
- [+
where
r' = [(H+x)2 + 2(z-vt)2 + yzlll2 (19)

and is the distance in wave lengths from the image source to the field
point in reference frame S'. Then for some suitably large A, the first
term in the asymptotic expansion should in most cases represent the
integral adequately.

In the u plane, the integrands under consideration have singularities
in the form of branch points and poles. The original contour can of course
by the Cauchy-Goursat Theorem be replaced by paths around these singu-
larities plus a suitable closure path. The closure path will be chosen as
the right-half plane, to ensure that there will be no contribution to the
integral from the closure. The branch cuts will be taken from the branch
point alcny a path parallel to the real axis, This forces the integrand to
decrease st rapidly along the branch cut paths as you move away from the
branch peint and will aid in our evaluation of the branch cut integrations.
Our original integral then becomes




1=]-f P(u)e ™ dut2ni ! R| s16N(z-vt) (20)
Branch cut paths t
where R, is the residue at the ith pole and SIGN(z-vt) iz i1 depending on
the sign of the quantity (z-vt).

Let us now consider the procedure that will be followed in evaluating
the branch cut integrations. The first step will be to transform the
brarch point to the origin and then to utilize the second branch, P(u ),
fcr the path below the cut and the first branch, P(u+), for the path above
the cut. The integration is completed, by expanding the integrand in a
series and then keeping only the first term. The resultant expression for
each branch cut integration becomes

N

1, = -SIGN(z-vt)e B(k,) f° ¥ e™A0 an (21)

B

where N and §(k2) depend on the integrand under consideration and d is the
location of the branch point. Evaluating the integral, this becomes

-id

1, = -stan(z-vt)e™ 80k, MM Drene) (22)

B

The integration with respect to k2 will be done by a saddle point
approximation. Fop the branch cut contributions the integral will be

of the form
sty £(k))
- oy Y SNETS L -
AB 2 ~SIGN{z-vi} A?3+it {“ BB(kz)e dk2 (23)
where
v
f(kz) = j[Two(t - ;5-2) - kzyJ - Ad (2u4)

The saddle point approximation gives us
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~f(k20)
T(N+l)BB(k2o)e
Ay = -3 SIGN(z-vt) V27w (25)
/3% (k,,.)
A(N+l)f 20

2

3k2

where the saddle point ko0 is found from

= ¥]
+h

t
<

(26)

=%
&

The integration with respect to k, for the pole contributions to the

2
integral will also be done by the saddle point approximation. The
details are discussed in secticn 6.

The above work describes in general the technique that will be used
to evaluate the integrals. The actual integrals will be evaluated in
sections 4 througn b using the above results. We would now like to
investigate the nature and location of the singularities that we will
have to deal with in those sections.

Before examining the integrands for singularities we must transform

them to the u plane. They will be given by

dk
- 33
P(u) = W(u) -'-a"ﬁ'— (27)

where W(u) is the integrand in the k33 plane expressed as a function of u.
dk 3

We therefore need to find k33, K, wre and h as a function of u. Using

(9), (15) and (17) we find that the first three are given by

22
w 1 2 kzc 2
k33 =z -p! —3--—-————-[juf(z-vt) + (H+x)SIGN(z-vt) u'+(1- ){(1- z---)]
- c 122 2 2
(r'"-y") w r!

(28)

L
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2.2
k oS
u(Hex)SIGA(z-vt) + jr(z-vt)/u +(1- —T)(l- l—i)
pt
SHET -
boeey® / ) kz::r 2
u o+ Q- | 1- )
PRl
A - (29)
and

L ’ !
o ]
K= m[ -ju(Hex) + )P(Z-Vt)l/u + (1- --——)(l- L-EH (30)

The function h(u) cannot be found unless the dielectric has been specified.
For the case of a lossless plasma

ar:]_--g- (31)

2 Y%
h= / k°- ..g (32)
¢

We are now ready to examine the integrands for the pertinent singular
points. Each singular point of P(u) that is emclosed by the controur will
make a contribution to the integral. Im iisu of directly finding shich
points are enclosed by the controur, and then evaluating their contribution
to the integral, we have examined the contribution associated with each
singular point and then retained only those coutributions sthich correspond
to waves of the outgoing type. The two approaches of course are squivalent;
however, the latter technique is more tenable when a multiple integral is
involved, since the location of the singular points will generally . a
function of the subsequent integration variasble.
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From examining (8) and (9) we see that the integrands under consideration
have branch points where

K=0 (33)
and
h=0 (34)
and that the integrand in (9) may have one or more poles where
Kg, +h=0 (35)

In the u plane, the branch points corresponding to (33) and (34) are

located at
k§c2 2
d=3/ Q-5a-Ly (36)
rf

W
0

> .
w /wi-w
d = ai-%,— [-cE- (Hex) + |T(z-vt)| —:—2—2 - ki] (37)

The poles associated with equation (35) will be discussed in section 6.

Our ultimate goal is to find the scattered electric and magnetic fields
in reference frame S (E and B) and reference frame S' (E' and B'). Due to
the nature of the integration techniques used in the above work and in the
work that follows, these fields can be found from the vector potential in a

simple manner. In x, kz, ks, w space, the vector potential in reference
frame S has the form

and

- - 4K -
A= Q(hz,ka,m)e K(Hex) A(x,kz,ks,w) (38)

In order to find the electric fields, we need to find an expression for the
scalar potential. The scalar potential can be found using the Lorentz Gage
condition (which is invarient in free space) transformed to the same
coordinate space as A. The scalar potential then is given by

2
.
¢(x,k2,k3,u) il [KAx + kakzl (39)




T oo T

il

Using the vector potential and (39), the slectric and magnetic fields can
be generated. This ‘form for the ficlds would in general have to be
inverted with respect to k2, k3 and w. However, in the above work and

in the work that follows, the integration process is such that the
amplitude portions of the integrand are evaluated at some particular

w, k2 and ka. It is therefore not necessary to go through this integration
process again. We can use the expressions already obtained for Az and Ax
and replace w, kl' and k2 in the expressions for tha fields by the values
used in the perticular integration process. Proceeding in this manner,
the fields in reference frame S are given by

B, = “jk2Az (u0)
%
By = j[gAz-P(k33 + v QEJAX] (1)
by = jkoA (42)
E = -3 L (A (Fz(m +vk )2 - czkz)-A 2KP(k +v 210] (43)
x Pzw‘§vk33$ x ¢ 33 - z° = ‘Xa3 c2
jk2c2 w,
Ey z W {EAX + "z r(ksa +v :f)] (44)
and
E =3 L fackK Tk, + v =2 - A (uP-c2k2)] (45)
z Piw°+vk335 X - 33 c2 2 ¢ 33

where k2 and ka3 depend on the particular singularity under consideration
and are yet to be determined,
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4, REFLECTED RADIATION FIELDS FOR A LOSSLESS PLASMA DIELECTRIC

The generalizsd technique formulated in section 3 for evaluating the
branch peint contributions to Alxs and Am will be applied in this section
to the branch point given by (36)., It will be found that the contribution
from this branch point corresponds to the reflected radiation flelds.

In order to use (25) which gives a generalized solution for the branch

cut integration we need to find the saddle point and to calculate
2

' 4
;l? (kzo). f(kzo), N and BB(kzo). Performing thess calculations and using

the results in (25) we find that the contributions to the vector potential
from the branch cut integration corresponding to equation {35) are given by

r'

jw [P(t - S 2) -~ =]
-4 1 K <h s 2 ¢
- . 8 8 nV (Htx) -9 = e
Aras(Pot) = 4T 2 5 lkwm e (46)
r -s -0
and
[ K ] X v -
Ay (Fot) = 4t v 20 X wemIws)
r <e=Ps =3  -¢ -9
]
(e -n)  JoINC -T2 -3
2eére 2y c
*RKe, )
=9 =¢-rs -
where
Dy (Hex)
K -+ & (e
h = -b-)l te. 122 . r2p? 1.2_.]1/ 2 (
-p C =g - r,? “9)
T € (50)

.
T r————




Bl{z-ve) (s1)

and

n:iifT;l’ll+a (52)

Equations (46) and (47) correspond to the reflected radiation fields.

We observe that the fields go down as 1/r' where r' is the distance from
the image source to the field point and that although the frequency
distribution is the same as that of the primary source, the distribution
is centered on the image source. This means that whenever the velocity
is nop-zero, the frequency of the reflected radiation field as observed
in reference frame S will differ from that of the primary field everywhere

except on the interface and a vertical axis through the dipole. The
frequency distribition is given by

E

_ v I'(z-vt)
ol {1 + ry -'—;T—J (53)

<

We also observe that in the rest frame of the source, the reflected radiation
field will not have a doppler shift. It should be noted that (46) and (47)
are valid for an arbitrary dispersive dielectric. When v = 0, (46) and (47)
reduce to the well known result for the zerc velocity case (Banos, 1966,
pg. 35 & 179).

Next we would like to find the electric and magnetic fields ir reference
frame S and reference frame 5'. Equations (40) through (45) give these

fields in reference frame S in terms of the values of k33 and k2 used in the
above integration process and given here.

[/}
k, = 24 (54)
and
@ I(z-vt)
k3z * ‘f‘“"‘?‘" (55)

Using these in (40) through (45), the electric and magnetic fields in
reference frame S are given by

i — o=

5

M,

ol s e

ARTTE RN
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ju 2
. 2 v P'(z-vt).2 (Hex)

sxnl- 'r(z"tT [P(l*-é---—;—-’ ) --‘-T—' ]AXR
: Q1+ E—r) - g
- {w) pllzove) L 4y, 3 (s6)
Juy (Hex) P(z-vt) . v
E -—-—-LN_—T[—-.—A ¢ 2222 3 Hp ] (57)
Hopraez ISR TN T e
jw P(Hex) I 2(3-vt)?
2 [ ] z-Vt) v r (:"t)
Eg* v T(EvE) L = ( =T ¢ E-)AxR-(l - _T)Azk] (s8)
- I'(l + E- —;r—-) - - g
1;2 B "
] B * -3 -cl'x*AzR (59)
s p(Hex) F(z-vt) v
ByR = 3 < [-—?— AZR - I'[-—-x?-— + E]AxR] (69)
: Bp * 3 = as (61)
| where AxR and Agp ave the x and z components of the vector potential for

the reflected radiation field given by (46) and (47). We would now like
to transform the electric and magnetic fields for the reflected radiation
fisld to reference frame S'. The transformations are well known (Jackson,

1968) and yield
W 2
* (Hex') (Hex')
B:'dt z -3 VY (LA - _T_w ”‘xR - __T—r' z'A:RJ {62)
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Y F(Hex') z'
3 o B g+ ) e
w 2
v ooz 0 ci(Hex') 2" v - Lzl
EZR I vy [M{" (E-r + c)AxR (1 r'z)AzR] (64)
~jw y* '
v = I . 1 (H«rx )
BxR rcAg' L c r' AxR ' th} (65)
yR TE? r,2 xR o7 zR
and
w '
e 3 B an

. v z!
W A =1 ¢~ .
here o

The reflected radiation fields for an arbitrary, dispersive dielectric

are given by (5t) through (51) in the rest frame of the dielectric and by

(62) through {(67) in the rest frame of the source. Although these

equations are not terribly complex, it is nevertheless difficult to

determine the effect of the motion on the fields by merely inspecting the

&W!"
equations. Therefore, the ouantltxes (E °°*)(

EGIE) and (BpeEym)gor- T )’
2 g 09 R

w
were plotted for a lossless plasma with X = -§-= 5 in order to observe

“o
some of the effects caused by the relative motion cf the source and dielectric.

Figure 2 shows the field patterns in the x-z plane for x > 0 in a polar plot.

For 8 = 0.0, the pattern is a symmetrical two lobe pattern. In the rest
frame of the dielectric, as the velocity is increased, the lobe behind the

source shrinks and the lobe in front on the source "peaks up" and bends

down toward the direction of motion. This is probably what should be expected

2. R¥% is an arbitrary fixed distance from the image source as measured in
reference frame S,
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since the reflected wave is highly dependent on the primary wave, and
the primary wave has this same behavior (Fujioka, 1966). In the rest
frame of the source, as the velocity of the dielectric increases the
lobe in the direction of motion of the dielectric grows larger and bends
down toward the interface and the other lobe shrinks.

S. LATERAL WAVE FUELDS FOR A LOSSLESS PLASMA DIELECTRIC

The generalized technique formulated in section 3 for evaluating the
branch point contributions to Alxs and Al zs will be applied in this section
to the branch point given by {37). It will be found that the contribution
from this branch point corresponds to the lateral wave fields.

Proceeding as in section 4 we find that the contributions to the

vector potential from this branch point are given by

£k, )
CATu L xylf2 gl S0

A z - (68)
1zL 2!&9 R'ZIJY - (H;x) /T:X33/2
and
1/2 f“"zo) 2 v T(z-vt) v,, 2
=i I c(3-X)" e [“ = (==t 1X e NS - 1) 2 g
A = 3 @ c R C" "~rg -r's
1xL 2“‘. xJ.Iu R,z 53‘ (/X - _{g_:}_)_ ;—l-x]3/2
{69)
where
. v (Hex) R’
£k,0) = Ju [T(t - = %) - /i'——c-- - = /1Y ] (70)
and
X
€ ] - (71)
-re 1’2(1 R g_l'(:-vt) m)2

The above is for the case when the dielectric is a lossless plasma. Ve
should note that, since the location of the branch point that corresponds
to the lateral wave is independent of the velocity, the criteria for
existence of the lateral wave is the same as for the zero velccity case
(Brekhovskikh, 1960). When v = 0, (68) and (6%) reduce to the well known
result for the zero velocity case {Brekhovskikh pg. 275, Banos pg. i8k).
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The frequency distribution in reference frame S for this lateral wave
is given by

w
L v T{z-vt)
a—* (l+-c-fl*i )

% (72)

where

R' = [y2 + Pz(z-vt)zlll2 (73)
We also observe that in the rest frame of the source, the lateral wave

fields will not have a Doppler shift., The frequency distributions for

the lateral wave fields (X = 0.5) and the reflected wave fields ure shown

in a polar flot in figure 3. The plots correspond to what would Le observed

on a y-z plane intersecting the Smage source. It should be noted that in
making the lateral wave plot, the faci that the group velocity cor the
wave is not the speed of light, was properly accounted for in making the
ray angle transformations.

We would now like to find the electric and magnetic fields in reference
frame S (E and H) and reference frame S' (E' and /') corresponding to the

lateral wave. A good starting point is (40} through (#5) which give these
fields in terms of the values of Kyy and k

2 used in the above integration
process and given here,

[/
- _ e MHzmvt) g
k33 = R YK

P (74%)
and
wG I
k2 H —é—' Ri. il"z (75}
Using (74) and (75) in (40) through (45) we obtain
“o AY
R -t S (z6)
&
By * § L2 /X A - T FAL,T 7

1xL (78)

T R

nbn

AR

Lo N

A

Wity

R Aty

PR AP RN RS

vt

L8 ,y‘“ym\!‘ux

!

gt i

S bbb A B

LHIE R 1 TH 2 BB At b et

i 0 b

St R Vbl

e

JUTRN N

BN

¥

M Tt




18

w

s 2.2
By ® - 3 pg A, [PE° - X1 - 'YX F Aol (79)
w, /1%
EYL x j “—TER" €23 Ale +TF AlzLJ (80)
and
w 2 2
N 0 _ I (z-vt) _
E. =3 (Arr A - 7 (1-X))A, . ] (81)
wnere
- v I'(z-vt) /=
E-lfz—T— 1-X (82)
P = P(_;;Zt_). X 4L (83)

and AlzL and Ale are given by (68) and (69). We would now like to
transform the electric and magnetic fields for the lateral wave to
reference frame S'. The transformations yield

wy' X
¢ 1- - _Y_
B =V w15 [Ap - T /X a,) (84)

]

w
T - EE A+ Y
B -]m[ﬂ'ﬁlzl‘ (LET' 1X+cX)A

yL le} (85)
woy'
] - 2 /

B = I "X A, (86)

e 3, X /X /IX 2.
Eep = 17 [T(E-XOA) ) - VK AA-K o a0 ) (87)
- Y1-X z! v LR
Byt du, g e (K AL, + 5 /T, (.3
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and

jw 12
=r§££rr/XAlx -(1-—'-5(1)())4\ ] (89)
R

The lateral wave fields for a lossless plasma are given by (76)
through (81) in the rest frame of the dielectric and by (S4) through
(89) in the rest frame of the source. In analogy with the discussion
on the reflected radiation fields, we would like to plot quantities

2 21rR22

2nR ) . These are shown in figure

like (“'°E*)( and (E"E'*)(

4, where again due account has made in the reference frame S plots for
the fact that the group velocity for the lateral wave is not the speed
of lights.
the y-z plane and (H¢x) = 0.

The above quantities are plotted in a polar pl-

For B = 0.0, the patterns ¢ . *ropic.

a X = 0.5,

In the rest frame of the source, as the velocity is increased, the pattern

becomes elongated in the direction the dielectric is moving. It almost

looks as if the energy being radiated by the source is being dragged along

by the dielectric. In the rest frame of the dielectric, as the velocity

increases the pattern is elongated in the direction of motion of the source.

6. SURFACE WAVE FIELDS FOR A LOSSLESS PLASMA DIELECTRIC

We will now examine the contribution to the integral for Alxs for a
lossless plasma dielectric due to the pole associated with the function
K €p * h. 1In order to find the location of the pole, we must solve the
equation

2 2
w w
(k2 - kY20 - gy 4 k2 - k2 - B2 2 0 (a0)
r w (l+8k ) w
where
= <
ky = o ¥a3 (91)
and
c
k, ® ;'o' k, (92)

3. See Holmes (1968) for a more complete discussion of this aspect of the

problem.
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for ths value of ks which satisfies it. Since this is virtually impossible
to do analytically, we will assume that (90) has been solved and continue
with the avaluation of the integral. Then later, after the solution has
been formulated, (90) can be solved numerically.

The integration with respect to k., is then just 2 ijp SIGN(z-vt)
whete Rp is the residue at the pole. The contribution by the pole to the
integral for Alxs then is given by

v W
I jrw‘(t - ?z) - o 'c!"f2
Mgs * oL SIGN(z-vt)e LR . dk,  (93)
where
2
-2{r“g(k, +8) - €_Jh
R = =3p Ly M (34)
P 2 w? B
k, (€° 1) + 2K _h S - S
~3p " ~rp “p-p ﬁ; rzms,:e)s
(Hex) I'(z-vt)
2 2.1/2
K, = (1- K3p ky) (96)
2 o /
2 1/2
ho® (1 -k - k) - ;g-) (97)
[ ]
&2

Cop * - TT_—L—T) (98)

u.!' 1+ 8’53p)

53p equals the valus of K, which satisfies (90) and the remaining variable
of integration has been changed to 52. Using the saddle point technique
to perform the integration with respect to l_tz, Alxu becomes
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W

] Ll" JTw (e - _V'I 2) + 30t flkapok20)
ulI R e €
A = _0 0 _po
lxss
_ 32f2 172
/a— wm '/:T' -5 (’-(39’1-‘20) (99)
0 332
where
R = ) (100)
po  pl, .
ky = kg
and 520 is obtained from the solution of
_ (Hex) dgp . I(z-vt) dtag - =0 (101)
r' dk, r' dk, '
dk, ax
Equation (101) contains the functions EE'E' and 3?2" These can be
- -2

obtained from (96) and (90). Equation (101), from which the saddle point
§2° is found, then becomes

k
2 . T(z-vt) <=3p (Hx)
-;52(1 - Srp)["_"_” - E'P'—F"""]

r ¥
— R '%’;—2‘(—3’&)"" (102)
ko (1-62 ) + BB} N
P I(1+8k, )

The solution for Al ss given by (93) "goes down as" (g‘)-l/2 which

implies that Alxsp corresponds to a surface wave., In order to find out if
a surface wave is possible, the phase function for A s must be examined.

ix
When v = 0, (99) reduces to the well known result for the zerc velocity

case (Banos pg. 124).

A parameter associated with the surface wave which is of interest
is the normalized frequency given by
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W a!':2
E; = [1-8 Re(mﬂ (103)
whers use has been made of
¥o- 'r'Y' T (104)

5 We note that in the rest frame of the source, the surface wave does not
! exhibit a Doppler shift.
We would now like to find the electric and magnetic fields in
reference frame S (F and H) and reference frame S' (E' and H') corresponding
to the surface wave(s). Proceeding as before and using (91) and (92) yields

2 2
m[l’(1+ kyp) l_<P]

B 2 - j (105)
xs 1xss
(1 + E- &ap)
w k
20 X
E_s3 —A (106)
ys v 1xss
raa + 3 kap?
£ =gt Epap * & (107)
zs a+Ye) ixss
c -3p
B, * 0 (108)
“ By’ z -3 (kap + E)Alxss (109)
28 ~ 3 T %20 Mves (120)
E;’ 3 2—;—:—:’:—):-—-)- [K -1+ < ry 39”‘1)(83 (111)




.
i

(112)

AR ks et Y (113)

w
B! =j-a9»-‘c1-—”—2-°-—£—-A (11%)

B' = - L] [k, (1 + %2k, )+ %-gg]ﬁ (115)

) -3p c =3p lxss

and

€

1 = 0z 8
Big =ik {116)

=20 Alxss
The surface wave fields for a loss.ess plasma are given by (105)
through (110) for the rest frame of the dielectric and by (11ll) through
(116) in the rest frame of the source. These equations are not explicit
functions of the coordinates, but are expressed as functions of the
coordinates, but are expressed as functions of two parameters which are
obtained from the simultaneous solution of (30) and (102). The detailed
computer calculations necessary to obtain a plot of the surface wave
fields are in progress. However a preliminary study of (90) and (102)
has been performed in an effort to find how the surface wave modes behave
as the velocity increases. It was found that the criteria for existence
of the ordinary surface wave is mcdified by the relative motion of the
source and dielectric. As the relative velocity is increased, the ordinary
surface wave ceases to be excited in all directions along the surface.
The wave becomes restricted to a wedge shaped region (0 $ wedge angle < 2n)
behind the source. This is illustrated in figure 5 by the top three curves
which show the wedge angle versus velocity.
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In addition, for velocities greater than some critical velocity, a
nevw type wave comes into existence. This wave is a surface type wave
and radiates into a wedge shaped region behind the source. As the
velocity increases, the wedge angle increases from zero degrees at the
critical velocity to a larger value. This is illustrated for X = 1.5
by the lower curve in figure 5. From the work that has been done, it
appears that this wave exists for all values of X. This is contrasted
by the ordinary surface wave which exists only for X greater than two.
It is anticipated that a further study of the surface wave modes will
be made.

7. SUMMARY

The problem of a point electric dipole moving over a dispersive
dielectric half-space has been studied. Expressions for the fields in
both reference frames have been formulated for the reflected radiation
fields for the case of an arbitrary, dispersive dielectric and for the
lateral wave and surface wave fields for the case of a lossless plasma
dielectric. In the rest frame of the source, it is found that all three
waves exhibit the frecuency of the source and that in the rest frame of
the dielectric, they all exhibit some form of Doppler shift. It is
found that the criteria for existence of the lateral “ave is not modified
by the relative motion of the source and dielectric, but that the
criteria for existence of the surface wave i greatly modified by the
relative motion. In addition, for velocities greater than some critical
velocity, a new type of surface wave romes into existence.
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