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Abstract

The problem of a point electric dipole moving over a dispersive

dielectric half-space is studied. The dipole Is located in the free

space above the dielectric and is assumed to be time harmonic in its

rest frame, oriented perpendicular to the interface and moving parallel

to it. Previous work in this area has been mostly confined to the use

of a plane wave as a source or a non-dispersive dielectric.

Solutions for this problem are obtained using integral transform

techniques. The integration is performed for the free space region by

making an asymptotic expansion for one integration and then usine t'e

saddle point approximation for the remaining integration. The solution

obtained in this manner for the vector potential is then used to generate

Mthe electric and magnetic fields in both the rest frame of the source and

Mthe rest frame of the dielectric. This yields the reflected radiation

fields for the case of an arbitrary, dispersive dielectric and the lateral

wave fields and surface wave fields for the case of a lossless plasma.

The field patterns are distorted by the relative motion of the source

and dielectric. In the rest frame of the source, all three waves exhibit

the frequency of the source and in the rest frame of the dielectric, they

Oall exhibit some form of doppler shift (different from the primary wave).

The criteria for existence of the lateral wave is not modified by the

relative motion of the source and dielectric; but the criteria for

existence of the surface waves is greatly modified by the relative motion.

For velocities greater than some critical velocity, a new type of surface

wave comes into existence.
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1. INTRODUCTION

A moving, temporally dispersive material is unusual in that it is

both temporally and spacially dispersive as observed in any inertial

reference frame other than its rest frame. In order to investigate the

interaction of electromagnetic sources with such a material, the problem

of a point electric dipole moving over a dispersive dielectric half-space

has been studied. The dipole is located in the free space above the

dielectric and is assumed to be time harmonic in its rest frame, oriented

perpendicular to the interface and moving parallel to it.
Frevious work in the area of scattering from a moving half-space has

been mostly confined to the use of &plane wave as a source or a

non-dispersive dielectric. Particular problems involving the reflection

of plane waves from a moving half-space have been investigated in detail

by Tai (1965), Yoh (1965, 1966, 1967) Pyati (1966) and others; and just

recently Shiozawa and Hazama (1968) have solved the general problem of

reflection and transmission of a plane electromagnetic wave at the inter-

face between a stationary dielectric medium and a dielectric medium moving

in an arbitrary direction parallel to the interface. It appears that the

only work that has been done on the scattering of dipole radiation by a

moving half-space was done by Pyati in 1966. He investigated the problem

of a vertical or horizontal dipole positioned over a moving, dielectric

(non-dispersive) half-space and solved for the reflected radiation fields

in the rest frame of the source. No effort was made to investigate the

effect of the motion on the lateral wave or surface waves that might be

present.

In the work that follows, we utilize two inertial reference frames

designated S and S' where it is assumed that reference frame S' is moving

with velocity v in the I direction with respect to reference frae S and

that they :oincide at t z 0. The dielectric half-space is stationary in

reference frame S and occupies the region x < 0. The dipole is stationary

in reference frame S' and is positioned at the point (H, 0, 0) in that

frame. The region x > 0, in which the dipole is located, is assumed to be

tfree space.
VR Solutions for this problem are obtained using integral transform

T:1 techniques. Section 2 develops integral formulations, involving thre

integrations, for the vector potential in reference frame S for both

I
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regions of space and carries out one of the integrations. It appears

that this is an far as the work can be carried out in general. 3eyond

this point some sort of approximation must be made. This is done in

sections 3 through 6 where solutions are found for the fields :,t

observation points far from the image source.

In section 3 the original contour for the integral is converted to

contours around each singularity in the integrand, and a change of variable

is made to gain control over the asymptotic expansion variable that is

subsequently used. These singularities consist of two branch points and

one or more poles. The integrations along the branch cuts are carried out

in sections 4 and 5 and yield the reflected radiation fields for a

generalized dispersive dielectric and the lateral wave fields for a

lossless plasma dielectric. The integration around the poles is carried

out in section 6 and yields surface waves for the case of a lossless

plasma dielectric. In each case, the saddle point approximation is used

for the final integration. The vector potential found in this manner is

then used to generate the electric and magnetic fields (9 and I) in

reference frame S. These fields are then transformed to reference frame

S' to obtain the electric and magnetic fields (21 and 1') In the rest frame

of the dipole.

2. INTEGRAL FORMULATION

In this section, an integral formulation for the vector potential in

the rest frame of the dielectric is developed. Since the problem that is

being considered is homogeneous with respect to the extension space

coordinates y, z and t, it lends itself nicely to the use of Fourier

transform techniques for the solution with respect to these coordinates.

This leaves us with a one-dimensional boundary value problem to solve

similar to the filiar Soienrfeld Half-Space problem. However, for the

problem we awe considering the source is moe interesting sine it is

both temporally and spacially dispersive due to the notion of the source.

Before we can solve the boundary value problem in reference frame S,

we Bist first obtain a formulation for the source as it would be observed

in that refeaence frame. In reference fr me S1, the source is described

by
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a' , £ ) I 6(x'.-H)(y)6(z') ),*w (1)

We would like to convert Jf(',t') to frvutne4y space so that we may

conveniently transform it to the rest frame of the dielectric. The

four-dimensional Fourier transform of (W I& given by

, a ..... - .(2)

where the kernel

- 1 ' + :E.
+

has been used in tking the transform. We will now us* the relativistic

spectral transformations (Holmes, 1968) to transform the spectral form

of the current density given by (2) to reference frame S. The transfor-

mations are given by

Jx(,w) U J#('Iw') (3)

y (iw) a JY{'(.,') 1
yy

3 (Kw) -- r+(,. ) ve'(l'.w')3 (5)
z.

The charge density p'(;',WI) can be obtained from 31('w') by using the

continuity equation converted to frequency space. The spectral form for

the current density in frame S then is given by

I, jk H W vk
ARM> e 6(w( + k %)>) + 23 (6)

T' 3

where the transformationr for the components of the wave four-vector

(Jackson, 1962) have been used. Now inverting (6) with respect to k

we obta .
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J(x,k2 ,k3 w Rn-~6? -H)] (7)
3

which Is the desired source term.

The one-dimonsional boundary value problem we must solve is illustrated

in figure 1 where use has been made of (7) and the fact that in free space
the form of the differential equation for the vector potential is inva%-ient.

Since the solution of this type of problem in the manner we are proposing
is well known, the details have not been included1. However, we would

like to make a few specific comments. At first glance it appears that

difficulty night be encountered in finding the particular solution to the
differential equation in region 1. However, due to the delta functions in

the source terms it can be readily generated using the free space Gr*-n's

function for the differential equation. Also, it turns out that the
vector potential obtained from the solution of this boundary value

problem contains the factor

so that the Inversion with respect to w can be performed exactly. The
vector potentials correponding to the scattered and transmitted field

are

Alzs 2if th3

iS

vv

Alss(r9,), 1 r .(t - :) 2rZ K-.33 "'
2() -2)2 K-h 33dk (8)

3,2 ( 3 9)

1. Considerable detail is included in the original work (Holes, 1966).



Ijr (t - zA2T I c K -)f 2
A (2w) 2  

(rK-h" y 2 dk dk (10)

and

-ul z)12 j((-t 2)(k 3 3 +P-A°I • r v c
A2 xT 0;;) )2 Z'- (KC +h)(K+h)

_E -f 2

C eh 33 2dk 
( )

where

2W = 2 2 .112S k- k - k(

c 2 2 33)

h = 1! (w + vk - r2(k3 + -)2 k21/2(
r c 23 3) 2 (13)

c r =c rwr(w + vk 33) (14)

- -r

f1 1 -(Hx) + k33 r(z-vt) + k2y (15)

f2 - rhx + k33 "(z-vt) + k2y (16)

and the change of variable

k3 r(k 3 3  2-1
c
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h as been made to simplify the expressions. It appears that this is as

far as the work can be carried out in general and that some sort of

approximation must be made in order to perform the remaining two

integrations. This is done for region 1 in the following sections.

3. SCATTERED FIELDS

We would like to evaluate the integrals for the scattered fields by

obtaining the first term of an asymptotic ekpansion for the integration

with respect to k33 and then using the saddle point approximation for the

integration with respect to k2 . We tan gain control of the asymptotic

expansion variable by putting-the integral into the form (Van Der Waerden,

1950)

I f P(u)e-Xu du (17)

A convenient choice for X is

W
= r' --i" (18)

- C

where

r' [(H+x)2 + 2(z-vt)2 . y2]1/ 2  (19)

and is the distance in wave lengths from the image source to the field

point in reference frame S'. Then for some suitably large A, the first

term in the asymptotic expansion should in most cases represent the

integral adequately.

In the u plane, the integrands under consideration have singularities

in the form of branch points and poles. The original contour can of course

by the Cauchy-Goursat Theorem be replaced by paths around these singu-

larities plus a suitable closure path. The closure path will be chosen as

the right-half plane, to ensure that there will be no contribution to the

integral from the closure. The branch cuts will be taken from the branch

point along a path parallel to the real axis. This forces the integrand to

decrease ,"rst rapidly along the branch Qut paths as you move away from the

branch point and will aid in our evaluation of the branch cut integrations.

Our original integral then becomes
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I - P(u)e " U du+2irj I R. SIGN(z-vt) (20)
ii

Branch cut paths

where R. is the residue at the ith pole and SIGN(z-vt) is ±1 depending on

the sign of the quantity (z-vt).

Let us now consider the procedure that will be followed in evaluating

the branch cut integrations. The first step will be to transform the

branch point to the origin and then to utilize the second branch, P(u-),

fcr the path below the cut and the first branch, P(u+), for the path above

the cut. The integration is completed, by expanding the integrand in a

series and then keeping only the first term. The resultant expression for

each branch cut integration becomes

= -SIGN(z-vt)e-Xd B(k n N e - An d

'BBk 2  ne dn (21)

where N and B(k2 ) depend on the integrand under consideration and d is the

location of the branch point. Evaluating the integral, this becomes

IB  -SIGN(z-vt)e -l B(k2)A'( Ir(NI) (22)

The integration with respect to k2 will be done by a saddle point

approximation. ror the branch cut contributions the integral will be

of the form
: . ) f(k2 )

AB S -SIGN(z-vQJ .I- ; j BB(k 2 )e dk 2  (23)

where

f(k2  = [rw (t - z) - k2Y A d (24)

c

The saddle point approximation gives us 1
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-f(k20)

f(N+l)BB(k 20)e 20

A = -i SIGN(z-vt) V 20 (25)
B

(N+l)'! f(k20

2

where the saddle point k20 is found from

af = 0 (26)
Ak2

The integration with respect to k2 for the pole contributions to the

integral will also be done by the saddle point approximation. The

details are discussed in section 6.

The above work describes in general the technique that will be used

to evaluate the integrals. The actual integrals will be evaluated in

sections 4 through b using the above results. We would now like to

investigate the nature and location of the singularities that we will

have to deal with in those sections.

Before examining the integrands for singularities we must transform

them to the u plane. They will be given by

dk 33

P(u) = W(u) d-u (27)

where W(u) is the integrand in the k33 plane expressed as a function of u.
dk33

We therefore need to find k33, K -, and h as a function of u. Using

(9), (15) and (17) we find that the first three are given by

k33  -r' 2 [jur(z-vt) + (H+x)SIGN(z-vt) u2+(l- ( )]
33 c r12_Y 2 W 2 L)

(28)
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u(Hx)SIQw(-vt) + jl(s-vt) / 2,(- 20--2)(.-_
cbk3 - r •e

33 ~
c(r- ( _2  ( 2

(29)

and

2,, k c 2
K c(,,_- f-ju(H+x) + jr(z-vt)I u + (1- -K-)(1- ) (30)

- 2

The function h(u) cannot be found unless the dielectric has been specified.

For the case of a lossless plasma

C r (31)

and h takes on the particularly simple form

2

h (32)
C2

We are now ready to examine the intep'ands for the pertinent singular

points. Each singular point of P(u) that is eucwleed by the controur will

make a contribution to the integral. In lieu of directly finding Ahich

points are enclosed by the controur, and then evaluating their contribution

to the integral, we have examined the contribution associated with each

singular point and then retained only those comtribations ohich correspond

to waves of the outgoing type. The two approaches of course are equivalent;

however, the latter technique is more tenable when a multiple integral is

involved, since the location of the singular points will generally . a

function of the subsequent integration variable.

A
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From examining (8) and (9) we see that the integrands under consideration

have branch points where

K= 0 (33)

and

h= 0 (34)

and that the integrand in (9) may have one or more poles where

Kr + h 0 (35)

In the u plane, the branch points corresponding to (33) and (34) are

located at

2kc
d=j (l 2 )(1 ) (36)

w2 r

and
/ 2w

d , (H+x) + Ir(z-vti l 2 -2 (37)0" C

The poles associated with equation (35) will be discussed in section 6.

Our ultimate goal is to find the scattered electric and magnetic fields

in reference frame S (f and g) and reference frame St (W and P'). Due to

the nature of the integration techniques used in the above work and in the

work that follows, these fields can be found from the vector potential in a

simple manner. In x, k2, k3 , w space, the vector potential in reference

frame S has the form

S(k 2,k3,w)eiJK(H~x) = A(x,k2,k3,w) (38)

In order to find the electric fields, we need to find an expression for the

scalar potential. The scalar potential can be found using the Lorentz Gage

condition (which is invarient in free space) transformed to the same

coordinate space as A. The scalar potential then is given by

2
c#(x,k 2,k31w) = CKAx + k 3Az I (39)
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Using the vector potential and (39), the electric and magnetic fields can

be generated. This form for the fields would in general have to be

inverted with respect to k2, k3 and w. However, in the above work and

in the work that follows, the integration process is such that the

amplitude portions of the integrand are evaluated at some particular

w, k2 and k3. It is therefore not necessary to go through this integration

process again. We can use the expressions already obtained for Az and Ax
and replace w, kl, and k2 n the expressions for the fields by the values

used in tke particular integration process. Proceeding in this manner,

the fields in reference frame S are given by

B -jk(A z  (40)

B-JEKA -r(k v -) (41)

h1 k (42)
z  k 2Ax

1 2 2 22 2 -E : _j (A(r(w vk c k )-A (r+(k + v -L)3 (43)x rW +vk) x 33 - z -33 2.33 c

jk C W
Ey (0v 33  KA + A r(k33 

+ v c (44)

and

E~2j 1 (A 2K k 2 22 (5
z r(w +vk3 3  x - 33 2 v-- z w- 3 3)

where k2 and k33 depend on the particular singularity under consideration

and are yet to be determined.

,_
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4. REFLECTED RADIATION FIELDS FOR A LOSSLESS PLASMA DIELECTRIC

The generalized technique formulated in section 3 for evaluating the

branch point contributions to A xs and Als will be applied in this section

to the branch point given by (36). It will be found that the contribution

from this branch point corresponds to the reflected radiation fields.

In order to use (25) which gives a generalized solution for the branch

cut integration we need to find the saddle point and to calculate
2
k- (k 20 1, f(k 20 ), N and BB(k 20 ). Performing thest calculations and using

the results in (25) we find that the contributions to the vector potential

from the branch cut integration corresponding to equation (36) are given by

IK -h 2(ro t "  ) -"G ~z(,t) " V r Hx -4 -1 2
A e (46)

UzS 4W Ac 2 K +h-s-s!r

and

___vt vi u ~~(H~x) 2 2 v ,¢ ,

A [2c -r -
UxS 4f rt2  c -0 (K C +h )(K +h)

(_x o.h. , ,[r(t- v z)-
(Xc -h) JW6 t- (47)
X KKCs+h)0

where
oi- (H+x)

-. c rV 48

W 2A2 r2D2 2 1J/2[E r r , (49)

"' (50)
A
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A 1 a 0r(z-vt) (51)

and
r(z-vt) (52)

Equations (46) and (47) correspond to the reflected radiation fields.

We observe that the fields go down as l/r' where r' is the distance from

the image source to the field point and that although the frequency

distribution is the same as that of the primary source, the distribution

is centered on the image source. This means that whenever the velocity

is non-zero, the frequency of the reflected radiation field as observed

in reference frame S will differ from that of the primary field everywhere

except on the interface and a vertical axis through the dipole. The

frequency distribition is given by

+ r=zvt)j (53)
WA c r0

We also observe that in the rest frame of the source, the reflected radiation

field will not have a doppler shift. It should be noted that (46) and (47)

are valid for an arbitrary dispersive dielectric. When v z 0, (46) and (47)

reduce to the well known result for the zero velocity case (Banfos, 1966,

pg. 35 & 179).

Next we would like to find the electric and magnetic fields in reference

frame S and reference frame S'. Equations (40) through (45) give these

fields in reference frame S in terms of the values of k33 and k2 used In the33 2
above integration process and given here.

k2 c r-- 5$

and

k r(z-vt)
k33 (55)

Using these in (40) through (45), the electric and magnetic fields in

reference frame S are given by
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i _ _ 2 vr(z;v))2 (H+x)2

. -!c)A rj) sv

(..AH ) r(-vt) 
%R ~~ • ,, )Az

E v H- r- - x + r(.r' vt+ A3(57)

c rrr

E E + !;)W i A 3lR (58)

i +r

B A (59)
5xR -J 7 z

yR r' c A

and (0
- c r (61)

where A21 and ASR are the x and z components of the vector potential for

the reflected radiation field given by (46) and (47). We would nov like

to transform the electric and magnetic fields for the reflected radiation

field to reference fram S. The transformations are well known (Jackson,

1966) and yi*eld
)2

(HLx r IH+ ( zHzx'" Er-( - 3 (62)
,,-;R- ,,Tr "'02: 1z
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Oy t rr(H+X1)  ZI

-xR zR (63)

E'- t' I(~')z+ - (1- -r-.-lz (64)
z R r r l xR r

2

Bj & v(f+x)A +A z (65)
xR [ " C r' xR

B' wR-> (-Ar C E rtA xR + A zR (65)

B2 (HHx,)2YR rc ( cr2 ')xR rl zR] (

zR c r xR

where A = + F -.r

The reflected radiation fields for an arbitrary, dispersive dielectric

are given by (56) through (61) in the rest frame of the dielectric and by

(62) through (67) in the rest frame of the source. Although these

equations are not terribly complex, it is nevertheless difficult to

determine the effect of the motion on the fields by merely inspecting the

equations. Therefore, the quantities2 (E "*)(R ' an
R R wj R I il

20,

were plotted for a lossless plasma with X = 5 in order to observe
2

some of the effects caused by the relative motion of the source and dielectric.

Figure 2 shows the field patterns in the x-z plane for x > 0 in a polar plot.

For 0 0.0, the pattern is a symetrical two lobe pattern. In the rest

frame of the dielectric, as the velocity is Increased, the lobe behind the

source shrinks and the lobe in front on the source "peaks up" and bends

down toward the direction of motion. This is probably what should be expected

2. R*' is an arbitrary fixed distance from the Image source as measured in

reference frame S.
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since the reflected wave is highly dependent on the primary wave, and

the primary wave has this same behavior (Fujioka, 1966). In the rest

frame of the source, as the velocity of the dielectric increases the

lobe in the direction of motion of the dielectric gows larger and bends

down toward the interface and the other lobe shrinks.

5. LATERAL WAVE FIELDS FOR A LOSSLESS PLASMA DIELECTRIC

The generalized technique formulated in section 3 for evaluating the
branch point contributions to A and A will be applied in this section

to the branch point given by (37). It will be found that the contribution

from this branch point corresponds to the lateral wave fields.

Proceeding as in section 4 we find that the contributions to the

vector potential from this branch point are given by

*vr0 a (1-4)1/2 x1/4e (k20 )

lzL 2 27w R,2[a_ (Hx) / 3/2

and
-jp I c(1-X) 1 12e 20  r2 v ((RVt) _X + 1) +
A _ _ )( -re Er.e

xL 1" R' 2  2 (Hx)

(69)

where

fv (H+x) R ! (70)
f20) = o l (  - )" " C

and

x
r 2(l ,vt) /,"Y) 2

The above is for the case when the dielectric is a lossless plaow&. We
should note that, since the location of the branch point that corresponds

to the lateral wave is independent of the velocity, the criteria for

existence of the lateral wave is the same as for the ser velcity case
(Brekhovskikh, 1960). When v 0 0, (68) and (69) reduce to the well known

result for the zero velocity case (Brekhovskikh pg. 275, B5nos pg. 18-).
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The frequency distribution in reference frame S for this lateral wave

is given by
L v rlz-t)i
-11 + R )(72)wd c

where

R'=[2+ r2(z-vt)2]/ (73)

We also observe that in the rest frame of the source, the lateral wave

fields will not havs a Doppler shift. The frequency distributions for

the lateral wave fields (X : 0.5) and the reflected wave fields ure shown

in a polar flot in figure 3. The plots correspond to what would be observed

on a y-z plane intersecting the Image source. It should be noted that in

making the lateral wave plot, the fact that the group velocity eor the

wave is not the speed of light, was properly accounted for in making the

ray angle transformations.

We would now like to find the e.ectric and magnetic fields in reference

frame S IE and 9) and reference frame S' (d' and 9'1) corresponding to the

lateral wave. A good starting point is (*0) through (45) which give these

fields in terms of the values of k33 and k2 used in the above integration

process and given here.

3 r(z'vt) - (7/1)
77

and

k2 -_ (75)

Using (74) and (75) in (40) through (45) we obtain

Bx /1- ~-#uiAl (76)

y L .V "lz r A lxL (77)

i +i
B. A ft.... (78)

W7 1X
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WExL "~ J 4', [lxL EI'2E2 - XJ - FA~F A lLJ (79)=2 2

[A £A x rVT'A + FA (80)XL i R AxL AlzL

and

W 2 2
E - ( (zv) (-X))A (81)zL FE AlxL R'2  lzL

where

E 1 +, v r(z-v)r) _ (2
r(z-vt)

-- t) ,_ + - (83)

and AlzL and AlxL are given by (68) and (69). We would now like to

transform the electric and magnetic fields for the lateral wave to

reference frame S'. The transformations yield

B' : c-..T [AzL -r r A (84)

EyL zE lzL R(Y' + c(E X )AlxL]  (85)

zL cR lxL

L= r[(E-X)A 1xL - z AlL (87)XL lxF R' zL

EYl Jo -yr 1- cr''AL w 4i + -- A L 3"
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and l xLZ(92)
ET =  0 [r r VT A x- (l -' (1-X))Al ]  (89)

The lateral wave fields for a lossless plasma are given by (76)

through (81) in the rest frame of the dielectric and by (94) through

(89) in the rest frame of the source. In analogy with the discussion

on the reflected radiation fields, we would like to plot quantities

2 2

like "L "-*)(2 R*) and (i L rR -) . These are shown in figure
00 o 0

4, where again due account has made in the reference frame S plots for

the fact that the group velocity for the lateral wave is not the speed
3of light . The above quantities are plotted in a polar pl" 'W X 0.5,

the y-z plane and (H+x) 0. For 8 0.0, the patterns c. tropic.

In the rest frame of the source, as the velocity is increaseA, the pattern

becomes elongated in the direction the dielectric is moving. It almost

looks as if the energy being radiated by the source is being dragged along

by the dielectric. In the rest frame of the dielectric, as the velocity

increases the pattern is elongated in the direction of motion of the source.

6. SURFACE WAVE FIELDS FOR A LOSSLESS PLASMA DIELECTRIC

We will now examine the contribution to the integral for A for a
lxs

lossless plasma dielectric due to the pole associated with the function

S r + h. In order to find the location of the pole, we must solve the

equation

2~ -22~
(1-k k2) - ) + (1-k3 - 2 X 0 (90)

S 2 r2 216k)-2(l+ )
0 3  0

where
c

k3 = k33  (91)
0

and

C_2• k2  (92)

3. See Holmes (1968) for a more complete discussion of this aspect of the

problem.

i..
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for the value of k which satisfies it. Since this is virtually impossible

to do analytically, we will assume that (90) has been solved and continue

with the evaluation of the integral. Then later, after the solution has

been formulated, (90) can be solved numerically.

The integration with respect to k33 is then just 2 JwRp SIGN(s-vt)

where Rp is the residue at the pole. The contribution by the pole to the

integral for A then is given by

1irw (t - 4 z) r _L2
s fGN(z-vt)e Rp e 2 dk2  (93)

A.LL SGN -vte - -

where

-2tr 20lkap+B) - cph

R c (C2[2ON0 - -)+2Kh - h 3 (94)

-3 - -- , F2 (l+Blce) 3

f2Zk ~ (-t 2i (95)

.p 11- 2 ./

= -3p -2 l2 (9)
w2

2
k B( P ) (96)

kp equals the value of K(3 which satisfi~es (90) and the remaining variable

- 3 -e

of integration has been changed to k2 Using the sddle point technique

to perform the integr;ation with respect to k2 , Alass beoe

-p -3.-Y
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1.7

S + jrw (t - + - c 2k3p'-20)

jIo R e C

A *0 p
lxss ;f2 1l/2•a f[2

-2

where

R R (100)
o 'k k

-2 -20

and k is obtained from the solution of-20

(Htx) _p r(z-vt) :k y o (101)

r dk . dk
- -2 - 2 -

dk dK A
Equation (101) contains the functions and 2. These can be

-2 -
obtained from (96) and (90). Equation (101), from which the saddle point

k is found, then becomes
-20

2 or(z-vt) -3k (Htx)j
-2 -rp[ r -K -- 2Hx)

2 ~rhr+ - -r-- 0  (102)
2 + p- 23 p(1-c p + " --r (1+$k

-3p 4

S-1/2The solution for A given by (99) "goes down as (r') /  whichlxs
implies that Aixsp corresponds to a surface wave. In order to find out if

a surface wave is possible, the phase function for A must be examined.

When v 0, (99) reduces to the well known result for the zero velocity

case (Ba'os pg. 124).

A parameter associated with the surface wave which is of interest

is the normalized frequency given by
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af
1eB 11 (103)

where use has been made of

a rv a
F r r 7-C -4r (104)

We note that in the rest frame of the source, the surface wave does not

exhibit a Doppler shift.

We would now like to find the electric and magnetic fields in

reference frame S (I and R) and reference frame S' (E' and 9') corresponding

to the surface wave(s). Proceeding as before and using (91) and (92) yields

w 2( * 3)2 -2Jw r 2(1 + k K
"ve a + klxss (105)

C - 3p

wk K
20 -p

-x - + A xss (106)

11 vp(_3p)
E :j A - (107)

(1+- v lxss

B s 0 (108)

Xi

B x J-..#L(k + )A (109)ys - -3p c loss

Sx -ok A (o)
z' c -20 (zss (110)

Et [K+ (1 + k )]A-p x
(1 + k3p

!.,C -3p
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wk 20K
E' X , -P0 A (112)ys (1, + klss

e-3p

w K(k +!J1)°P -23p C A (113)
2' = v ^lxss
zs (1 + v k3p)

(k K
-3p'

~ iAs (114)

B0 ( - ) v K2)Ax

c(s1-= -- k v° -r3p( + -..p)+- -plxs(115) .

c((1 + l.kp)k
cC -3p

and
w
Ck( k + K] (115)y' : 3p c --20 ^lxs ss)

zs c -20 Aix55

The surface wave fields for a loss..ess plasma are given by (105)

through (110) for the rest frame of the dielectric and by (111) through

(116) in the rest frame of the source. These equations are not explicit

functions of the coordinates, but are expressed as functions of the

coordinates, but are expressed as functions of two parameters which are

obtained from the simultaneous solution of (90) and (102). The detailed

computer calculations necessary to obtain a plot of the surface wave

fields are in progress. However a preliminary study of (90) and (102)

has been performed in an effort to find how the surface wave modes behave

as the velocity increases. It was found that the criteria for existence

of the ordinary surface wave is modified by the relative motion of the

source and dielectric. As the relative velocity is increased, the ordinary

surface wave ceases to be excited in all directions along the surface.

The wave becomes restricted to a wedge shaped region (0 1 wedge angle < 2W)

behind the source. This is illustrated in figure 5 by the top three curves

which show the wedge angle versus velocity.
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In addition, for velocities greater than some critical velocity, a

new type wave comes into existence. This wave is a surface type wave

and radiates into a wedge shaped region behind the source. As the

velority increases, the wedge angle increases from zero degrees at the

critical velocity to a larger value. This is illustrated for X x 1.5

by the lower curve in figure 5. From the work that has been done, it

appears that this wave exists for all values of X. This is contrasted

by the ordinary surface wave which exists only for X greater than two.

It is anticipated that a further study of the surface wave modes will

be made.

7. SUMMARY

The problem of a point electric dipole moving over a dispersive

dielectric half-space has been studied. Expressions for the fields in

both reference frames have been formulated for the reflected radiation

fields for the case of an arbitrary, dispersive dielectric and for the

lateral wave and surface wave fields for the case of a lossless plasma

dielectric. In the rest frame of the source, it is found that all three

waves exhibit the freouency of the source and that in the rest frame of

the dielectric, they all exhibit some form of Doppler shift. It is

found that the criteria for existence of the lateral #.ave is not modified

by the relative motion of the source and dielectriAc, but that the

criteria for existence of the surface wave Jt greatly modified by the

relative motion. In addition, for veloctries greater than some critical

velocity, a new type of surface wave tomes into existence.
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