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ABSTRACT 

The discrete ordinates (Sn) method, which is also known as the 

second version of the S^ method, was first introduced by B. G. Carlson. 

The two-dimensional discrete ordinates method has until recently been 

successful only for relatively easy problems such as criticality calcu- 

latioi ' for highly enriched uranium cylinders.^ The purpose of this 

study is to extend the capabilities of the two-dimensional discrete 

ordinates method in order to provide accurate calculations for deep- 

penetration radiation transport problems. The basic method is gener¬ 

alized and improved, a complete technique for application is developed, 

and a comprehensive comparison with experiment is performed. 

The generalized discrete ordinates difference equation is derived 

by applying an integral operator to each term of the transport equation 

in a consistent manner. In the convection term the coefficients for 

ray-to-ray streaming in cylindrical geometry are obtained directly 

in contrast with older derivations where they are defined due to flow 

balance conservation only. In the total collision term a transform¬ 

ation is performed such that an assumption of flux separability is not 

required. In the scattering integral the angle dependence of the 

scattering cross section is approximated by a Legendre polynomial 

series, the addition theorem is used to transform from the collision 

coordinate system to the laboratory coordinate system, and the final 

difference form is given by straightforward application of the inte¬ 

gral operator. The instability which is inherent in the diamond- 

difference technique when steep flux gradients occur is removed by 

a combination of the diamond-difference and step-difference techniques. 
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An example of the effect of mesh size on problem stability is shown. 

The inner-iteration procedure is examined from both a physical 

and analytical viewpoint. Power iteration and normalized power iter¬ 

ation are discussed and two convergence acceleration techniques, the 

Chebyshev method and a space-dependent normalized power iteration, 

are developed. The problem of determining a convergence criteria 

is discussed and a zone-of-interest criteria is proposed for two- 

dimensional calculations. Two test problems are studied and it is 

shown that the Chebyshev method can reduce the number of iterations 

by one half and the space-dependent scaling can reduce the number of 

iterations by one seventh. These improvements in the inner-iteration 

procedure make it possible to obtain converged solutions to deep- 

penetration problems within reasonable computational times. 

Three additional improvements in the method are developed. An 

analytic first collision source is developed for use in point source 

problems which may have "ray effects" and for problems with mono- 

directional beam sources in which the collided and uncollided compo¬ 

nents must be separated. The question of preferred quadrature sets 

is examined, and a method for using tailored quadratures is developed. 

The problem of calculating the flux at arbitrary points external to 

the system is considered. Three techniques are developed, two of 

which involve a surface integration of the angular flux, and the 

third, a last flight response based on an adjoint solution. 

In order to provide an un'quivocal test of the methods, a clean- 

geomutry .ucperiment was designed and executed, and the results are 

.-...,-rod with calculations. The experiment comprises of large slab 



shields exposed to a collimated reactor beam source. The emergent 

angle-dependent spectra were measured with the NE-213 liquid organic 

scintillator - FERDOR spectra unfolding system which gives spectra 

in the energy range from 0.8 to 15.0 MeV. Fast neutron dose measure¬ 

ments were also made, including dose profiles at the exit faces of 

the slabs. Lead, polyethylene, laminated lead and polyethylene, and 

depleted uranium slabs were included in the study. A large number of 

calculations were performed and many comparisons are shown. 
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CHAPTER I 

INTRODUCTION 

In the area of nuclear engineering called "shielding,” which 

encompasses all radiation penetration problems, there has tradition¬ 

ally been a lack of calculational methods which are accurate and yet 

readily applicable to many problems. This is largely due to the fact 

that in penetration problems it is usually the unusual particle which 

is of interest. It is equivalent to say that the least populous por¬ 

tions of phase space are usually of most importance. To illustrate 

this, consider a shield system which has an attenuation factor of 

in-10 „ 
. For this case it is approximately true that only one particle 

leaves the shield for every 1010 particles introduced at the source. 

This aspect of penetration problems, that of placing prime 

importance on the unusual particle, makes it very difficult to 

obtain good calculations and experiments. In the measurement of 

total cross sections, it is the minima of the cross section which 

are of greatest importance. In the spectra of neutrons and gamma 

rays from fission, the high energy portions of the curves, which are 

less intense and not well known, are most important. Thus, for cer¬ 

tain penetration problems even the most fundamental data are often 

grossly inaccurate. 

In order to calculate accurately the particle distribution in 

the least populous portions of phase space, a rigorous calculational 

technique is required. Since exact, analytic solutions to general 

transport theory problems do not exist, a rigorous method is here 

defined as one which gives a numerical solution of the Boltzmann 

1 
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transport equation and in which the inherent approximations are adjust¬ 

able such that the approximations do not materially affect the desired 

solution. 

Before I960, the principal calculations! tools for shielding 

problems were the kernel, moments, diffusion, removal diffusion, and 

spherical harmonic methods. The kernel method assumes that all impor¬ 

tant radiation transport is in the line of sight from the sources. 

The total attenuation along the line of sight paths is calculated and 

scattering effects are approximated by infinite media build-up factors 

or modification of the total cross section. The kernel method is not 

rigorous, and, although usually used for three-dimensional geometries, 

effects due to scattering angle changes are completely ignored. The 

moments method can rigorously treat radiation transport in infinite 

homogeneous media. This method has been used extensively for the cal¬ 

culation of infinite media ouild-up factors for use in gamma-ray 

kernel calculations. More recently moments-method calculations are 

being perfomed for the study of the sensitivity of the infinite media 

flux distribution to changes in the cross sections. The geometry lim¬ 

itation, however, precludes its use for most practical problems. The 

diffusion theory method, either single-group or multigroup, is not 

very successful when applied to penetration problems because of the 

assumptions of isotropic scattering and nearly isotropic flux. The 

removal-diffusion method employs a combination of the kernel method 

using removal cross sections and the diffisuion method. This method 

is an improvement over either the kernel or diffusion methods taken 

separately. The technique is not rigorous and suffers from many 
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limiting assumptions. The difficulties due to the line-of-sight kernel 

method and the diffusion restrictions are only partly mitigated. The 

spherical harmonics method is a rigorous technique which has success¬ 

fully been used for one-dimensional problems. The method suffers from 

several difficulties, including a rapidly increasing amount of compu¬ 

tational effort required as the size of the problem and order of anis¬ 

otropy are increased as is often required in shielding problems. The 

method has of yet not been extended to geometries having two space 

dimensions. 

The Monte Carlo method has long been considered the ultimate 

calculational tool for radiation transport. This is especially true 

for complex geometries and complicated multiple particle transport 

for which the Monte Carlo calculation, when viewed as a physical 

analog, can incorporate any describable transport phenomenon. Unfor¬ 

tunately, the difficulty of preparing a Monte Carlo procedure for a 

problem is proportional to the complexity of the problem, and most 

successful problem solutions to date have been greatly simplified. 

Also, the Monte Carlo analogy method has only limited application to 

deep penetration problems since most of the computational time would 

be spent tracking the average particle which does not contribute to 

the answer. Only recently, methods have been developed which provide 

for importance biasing based on calculated value functions. This is 

an important improvement since previously importance biasing was 

based on artful ingenuity or, in rare cases, on analytic value 

functions. Much work is currently in progress to incorporate biasing 

of the scattering angle such that problems in three-dimensional 
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geometry can be solved efficiently. Important development areas 

include the need for improved statistical analysis of the biased 

histories and simplified problem preparation so that the method will 

become more widely used by engineering analysts. 

The purpose of this study is to develop a technique based on the 

multigroup discrete ordinates (Sn) method that can accurately solve 

steady-state radiation penetration problems in two space dimensions. 

Although the discrete ordinates method has been used for many years 

as a tool for the analysis of highly enriched critical systems, 

attempted applications to penetration problems have not been success¬ 

ful. In order to extend the existing method for use in penetration 

problems it was necessary to: 

1. develop a general treatment of anisotropic scattering so 

that the scattering approximation can be arbitrarily 

adjusted for the specific problem; 

2. generalize the use of quadratures and provide flexible 

data-handling techniques so that very large and diverse 

problems could be solved; 

3. remove or circumvent the instability known as "diamond 

difference breakdown," which gives oscillatory flux distri¬ 

butions in problems having severe flux gradients; 

1*. analyze and improve the convergence of the inner-iterations; 

5. develop techniques for some of the special difficulties often 

encountered in shielding applications; and 
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6. develop, execute, and analyze a comprehensive and detailed 

experiment for determining the accuracy and versatility of 

the method. 

This study is limited to neutron transport in cylindrical r-z 

geometry as this is one of the most difficult and useful areas of 

radiation transport. The technique as developed is applicable to 

cylindrical r-6 and slab x-y geometries and several types of radia¬ 

tion transport. In particular, coupled neutron and gamma-ray 

transport problems can be handled and the solutions are quite 

useful. 



CHAPTER II 

DISCRETE ORDINATES DIFFERENCE EQUATIONS 

This chapter on the difference equations is intended to serve 

three purposes. First, a brief history is presented in order to 

assist the reader who is unfamiliar with the technology in determining 

the relevancy of this work. A detailed derivation of the discrete 

ordinates difference equation for steady state radiation transport 

in two-dimensional cylindrical r-z geometry is then developed. This 

derivation establishes a formalism for the development of the differ¬ 

ence equation which helpe in relating the final difference terms with 

the original 'inalytic transport equation, introduces generalized anis¬ 

otropic scattering in two-dimensional geometries, and identifies the 

approximations inherent in the application of the difference equation. 

Finally, the development of step- and diamond-difference equations and 

the application to penetration problems are discussed. 

I. CHRONOLOGY OF DEVELOPMENTS 

The original method of discrete ordinates is attributed to 

Wick (l)* and Chandrasekhar (2). The early work was limited primarily 

to simple problems such as the transport of monoenergetic neutrons in 

one-dimensional slabs with isotropic scattering. The fundamental 

assumption in the method is that the integral term in the Boltzmann 

transport equation may be approximated by a Gauss quadrature formula. 

•Numbers appearing in parentheses, except for those giving identity 
to an equation, refer to the corresponding numbers in the Bibliography. 

6 
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For example, for the simple problem described above, the transport 

equation is 

»**£*>- + z *(XfW) - I Zs J ^(Xiy)dp. 

-1 

If the integral in (2.1) is replaced by a Gauss quadrature 

(2.1) 

formula 

Í 
NOA 

*(x,p)du = [ ♦(x.w., )<•>., 
d'=l d d 

9 (2.2) 

where BOA is the total number of points, and ud and ^ are the 

ordinates and weights for the Gaussian quadrature. If Equation (2.2) 

is introduced into (2.1), the right side depends only on the flux 

values d(x,uä) evaluated at discrete angles, v It is thus suffi¬ 

cient to evaluate the entire transport equation only at the discrete 

angles, 

i NOA 

“ä— § i I *(x,u ,)« 
d'*l d d 

(2.3) 

Equation (2.3) represents a set of BOA coupled equations for the 

discrete angle fluxes, ♦(x.u^), which have been reduced effectively 

to functions of one variable. The coupled equations may be solved 

either numerically or analytically. Although the technique can be 

extended to include anisotropic scattering, it is limited to slab 

geometry. 
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The first method was developed principally by B. G. 

Carlson as an improvement of some of the concepts in the Serber- 

Wilson method (3). In the first method, S0, the angular flux, 

$(x,u), was approximated by two connected line segments on the u 

intervals (-1,0) and (0,+l) of the form 

ij>(x,u) = 4>(x,-l) + (u+1) U(x,0) - <fi(x,-l) ] (2.U) 

¢(X,M) = 4>(x,0) + u[<J>(x,+l) - 4>(x,0) ]. (2.5) 

The equations are given by first evaluating the transport equation, 

(2.1), at u = -1* and then alternatively substituting Equations (2.U) 

and (2.5) into (2.1) and integrating over the p intervals (-1,0) and 

(0,+1), respectively. The result of these operations is a set of 

three coupled equations for the flux at u = -1, 0, and +1. These 

equations may then be solved either numerically or analytically. 

The original method was generalized to by performing the 

previously described operations for n equal intervals in the p 

interval (-1,+1). This method in both monoenergetic and multigroup 

formulations wac used for several years. The primary advantage over 

Wick's method was that the technique was applicable to spherical 

geometry. The technique was regarded to be quite accurate; however, 

flux aberrations were observed particularly near the center of spheres. 

Later a linear transformation of the original Sn equations to equiva¬ 

lent discrete ordinates equations showed that the directions, p , in 
d 

the equivalent set were not symmetrically located about p = 0. The 

flux aberrations were found to be caused by the unsymmetric quadrature 

{h). This difficulty, plus the inability to extend the original S 
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technique to higher dimension geometries, discouraged further 

development. All forms of this method were limited to isotropic 

scattering. 

The second S method, otherwise known as the "discrete S " 
n 

or generalized discrete ordinates" method, was then developed (5). 

This method is both a simplification and generalization of the 

earlier versions. The difference equations were stated as a 

macroscopic flow balance in a manner nearly equivalent to the 

method of deriving the Boltzmann transport equation as a micro¬ 

scopic flow balance. As an example, the flow balance for a one¬ 

dimensional sphere is stated as, 

yD^Ai+l ^i+l.D ' Ai ^i,D) + ^Yd+1 ^1,d+1 ” Yd ^1,d^ 

NOA 

* VI £ h.D ■ VI h.D'V vr SI,D . (2.6) 

where 

A. = Utt^, 

UD = cosine of a direction vector with respect to the radius, 

vi * " <rLi - ^), 

“d = %/2- 

^1 D = avera«e flux in volume, V , and cosine interval, u> , 

♦i,D = average flux on surface, Ai, in cosine interval, 

4>I,d = average flux on "surface," in volume, Vj, 

Yd = un^e^ine(i present, 

and Z, Es, and SI^D are total reaction cross section, scattering 
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cross section, and fixed source, respectively. Hence, for the 

space-angle cell, ui^, the first terra in Equation (2.6) represents 

net convective loss through the surfaces, , the second term repre¬ 

sents a similar convective loss through the surfaces, y.» the third 

term represents removal from by collision, the fourth term 

represents scattering into V^. and the fifth term represents the 

source into Thus, Equation (2.6) is quite simple and has a 

simple physical interpretation. The most important part of this 

development is the treatment of the angle-to-angle void streaming 

in curvilinear geometries. The undefined curvature coefficients, 

Y£» are established by considering the special case of an infinite 

isotropic media for which removals equals scattering plus fixed 

source, and the angular flux is the same everywhere. Equation (2.6) 

then reduces to 

“D(Ai*l-Ai)t(Ydtl-Yd)'°- (2.7) 

Furthermore, at u = +_ 1, the associated y coefficient must be zero 

since the flow is directly along the radius. Therefore, the 

recursion 

Yd+1 = Yd “ PD^Ai+l - V ; Y! = °-0’ 
(2.8) 

defines all the y ,. 
d 

The first and second versions of the method certainly 

involve much more than the contents of the preceding paragraphs 

indicate; however, the comments presented give the aspects of the 

method which are unique and set it apart from other techniques. 
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The work presented in this paper represents, in one form or another. 

an extension, generalization, optimization, and verification of the 

discrete Sn method and succeeding developments. Previous work has 

included extension to multigroup and to two-dimensional geometry (6), 

development of better quadrature (7,8), and extension to generalized 

anisotropic scattering in one-dimensional geometry (9-12). 

II. DERIVATION OF DIFFERENCE EQUATIONS FOR 

CYLINDRICAL R-Z GEOMETRY 

Although a general time-dependent discrete ordinates difference 

equation for one-, two-, or three-dimensional geometry may be derived 

by the following technique, the development here, although including 

general anisotropic scattering, is limited to the time-independent 

equation for two-dimensional r-z geometry. This is done because the 

experimental work, which is described subsequently, was performed in 

r-z geometry and the stationary condition. In the derivation which 

follows, the difference equations are derived in a term-wise consis¬ 

tent manner directly from the analytic form of the transport equation. 

A drawing of the coordinate system for cylindrical geometry is 

shown in Figure 1. The transport equation is 

d<fr (r ,z .6 ,n rE) 

ds 

T 

+ 
(2.9) 

-1 0 0 



'
O

 

12 

DWG. NO. G-69-550 
Z 

Figure 1. The coordinate system for cylindrical geometry. 
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ft 

The first term in Equation (2.9) nay be rewritten as 

M = dr i! dz a* de 3$ dn dlpd[p 

ds ards az ds ae ds + "an ds + Tii ds * (2.10) 

From Figure 1 one can determine that 

dr _ 

ds 
dz 

ds = n * 

ái _ 1 
ds r 

(2.11) 

i and * o. 
ds 

In order to determine the derivative, dtj>/ds, one first 

Figure 1 that 

observes in 

\p + dip s - d6, 

which gives 

d tj; = -dG 

and 

d ip 
de 

- i . 

(2.12) 

(2.13) 

(2.11*) 

Equations (2.11+) and (2.11) are then combined to give 

cU _ dij; dQ £ 

ds d0 ds r (2.15) 

The combination of Equations (2.11), (2.15), and (2.10) with 

transport equation (2.9), gives 

the 

u-3<Ûl1 + „ Jdü. . I Jill I 3£p> 
3r az r 36 “ r 3^ 

+ I (r,z,e,E) ¢(2) = S(P) 

+1 2tT 00 
(2.16) 

ES(r,z,e;E'ñ'->-E,ñ) ^(p') dE'd^'dn' 

■10 0 



where 

<I>(P) = 4>(r,z,e,n,<|),E) 

and 

4>(P' ) = ((•(r.z.G.n', ill' ,E' ) 

(2.17) 

For two-dimensional r-z geometry, the material composition and geometry 

are invariant with respect to 0; therefore, the form of interest for 

the transport equation is 

mM1p) + n mLp.) _ L M£l 
3r 3z r 

+ IT(r,z,E) <ji(F) = S(P) (2.18) 

+1 2v °° 
“ f f s 

+ j J jZ (r,z;E',ñ'-*-E,ñ) 4>(P'JdE'd^'dn'. 

-1 0 0 

The phase space P for Equation (2.18) is defined by the radius, r, 

axial displacement, z, polar direction cosine, n, azimuthal angle, 

t|/, and energy, E. The differential phase space cell, dP, is 

given by 

dP = 2ïïrdrdzdndÿdE (2.19) 

The finite difference phase space cell, AP, is given by integrating 

Equation (2.19) over a five-dimensional finite cell defined in terms 

of the phase space variables. 

Hence, 

n 

n+1 
E 

g 

AP = 2TTrdrdzdndi|idE, (2.20) 
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where the ^ mesh is constructed such that n increases as ÿ decreases, 

and which gives 

(2.21) 

or 

AP = VT .AriAi^AE, (2.22) I ,J K G * 

lhe subscript convention is that lower case subscripts, i, j, 

k. n, g, refer to a quantity evaluated at a surface of the finite 

phase space cell and upper case subscripts, I, J, K, N, G, refer to 

quantities defined for the cell as a whole or having been averaged 

or integrated over the cell. 

The discrete ordinates finite difference transport equation 

is derived by integrating the analytic transport equation (2.18) over 

the finite difference cell, as defined by Equation (2.20). It is 

noted that integration of Equation (2.18) over the finite phase 

space cell would involve integrands which contain products of a 

derivative and a coefficient containing the variable of integration. 

In order to place Equation (2.18) in the most convenient form for 

this integration, one then notes that 

(2.23) 

and 

(2.2l) 



l6 

Hence, 

sin ^ 
3*(P) , , X 3<t>(P) . (sin *)<I>(P) 
^- = (cos *) r + -^ 

9r»(P) 
3r 

or 

1 2li£l = uH(P) + 1 9^(P) _ Ü Mill 
r 3Ç 3r r 3^ r 3^ 

cos ip " (2.25) 

(2.26) 

Substituting Equation (2.26) into (2.18) gives the desired form. 

E MiH . n Mi£l . ¿ K|i£i . IT(r,z,EMP) = S(P) 
r 3r 3z r 3ÿ 

+1 2tt 00 
(2.27) 

I jz^r.zjE'.â'+E.&MP'JdE'dÿ’dn' , 

-10 0 

The integration of Equation (2.27) over the finite phase space 

cell is accomplished by applying the integral operator, 

ri+l ZJ+1 nk+l ^n ^g+1 

0 = 

r. z. n. 

2ïïrdrdzdnd^dE , (2.28) 

'n+1 g 

in a consistent manner to each term. The first term becomes 

V 
4rI 4zJ 4*» “0 

7- raírjZ.n.tIsEjSiTrdrdzdndilKiE, (2.29} 
r dr 

where the symbols under the integral signs are simplifications 

representing the original limits in Equation (2.28). If the 

multigroup flux is defined by 

<J>G(r,z,n,iJ/) 

AE, 

<J>(r,z,n,ÿ,E)dE , (2.30) 
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the first term, after rearrangement, becomes 

T1 = 2ir 

4nK 4*I. 4rl 

di^dndz (2.31) 

Since Equation ( 

to each variable, 

r4>G(r,z,n,i//)dr 

Ar, 

2.31) is integrated 

^ ri+l^G ,i+l^z ,ri ^ 

independently with 

- Vo.iiz.n,*)] . 

respect 

(2.32) 

where, by the subscript convention, 

^Gji(z»ri.4') = ¢(,(^,z,n,ÿ) . (2.33) 

The first term then becomes 

Tl * 2,1 J I I ‘ r1*0>1(*.n.*U|M'äiäz . (2.31.) 

From the mean value theorem (13) it follows that any integral can 

be approximated by 

I2 
xf(x)dx = xf(x)Ax , 

¿1 

for xi < X < X2 , Ax = x2 - xi , 

where x may be adjusted to give the equality; for well behaved func¬ 

tions, the closer x is to the reed meem, the better the approximation. 
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Applying the mean value approximation to the z integral in Equation 

(2.31*) gives 

T1 " 2" 4ZJ J J • ri*G,l,JU>*)ld*an • (2-36) 

4\ ‘»N 

where 

Integrals i ver solid angle, ctydn» are to be represented by a 

single summation over NOA (number of angles) points and weights 

where each is identified by an upper-case subscript, D. The weights 

are normalized so that the sum is unity instead of 1½. Hence, 

4>(n,iJ*)dtj>dn = (jJD 

4nK 4i^H 

(2.37) 

where 

and 

(|>D = i+iT 4>(nDJ^D), 

r 
j j 

4nK 4*H 

dij;dn= • 

Application of the approximation given by Equation (2.37) to 

Equation (2.36) gives the final form for 

T1 = 2’ ' ri*G,i,J.Dl4VD • 
(2.38) 

The integral operator is next applied to the second term of 

Equation (2.27) giving 

n $(r, 2,0,4),E) 2nrdrdzdndi|/dE. (2.39) 
dZ 

4rl iZj SnK i*N 4E0 
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Using the definition of the multigroup flux. Equation (2.39) 

becomes 

T2 = 2t\ I 1 n ^(^»h.iiOdzrdrdndiJi. (2.40) 

ArI AnK A*N Azj 

Integration over Az gives 
J 

T2 = 2tt 

Ari AnK A^N 

n^G,j+l^r,n’'i'^ " i|>Gjj(r,n,ÿ) JrdrdndiJs (2.4l) 

where 

^Gjj(r.n,ii<) = <frG(r,z^,n,*) 

The remaining integrals are evaluated by the mean value approximation 

giving the final form for T2> 

T2 " ^iVW.I.D - »0,j.I,D)4rl“D- (2.42) 

where 

The third term of Equation (2.27) when integrated over the 

finite difference cell gives 

j j j ^r» z*,1*^»E)2l,rdrdzdriäi/'dE. (2.1*3) 

4rI 4 “j 4nK 4*B 4EG 
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The raultigroup flux is defined as before «i giving 

T3 = 2ïï 

n 

ArT bz \p 
I J K vn+l 

The integral over Aip is next evaluated. 

" S 4>G(r,z,ri,i(»)dij;drdzdn. (2.kb) 

3 2 j J J - [ç„*G,n(r,z’,') ' n<.1(r,z,n))rdr(izdn, (2.1(5) 
4rI 4zJ ''"k 

where 

4>G,n^r’z’n^ = 

After evaluating the remaining integrals by the mean value approxi¬ 

mation, the third term becomes 

T3 " 2[Cn+A,n+l,I,j,K ‘ Cn0G,n,I ,J,K]ArlAzjAnK • (2.k6) 

T3 is then rewritten, 

T3 * AZJ(Yn+l^G,n+l,I,j,K " Yn^G,n,I,G,K) (2-h7) 

where the curvature coefficients, are defined by 

Yn = 2 ArlAnK Sn " 2 ArlAnK/^ sin (2.1*8) 

Two adjacent curvature coefficients are related by 

Yn+1 ~ Yn " 2 AriAriK»/i-nK2(sin i^n+1 - sin . (2.1+9) 
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One notes that 

'‘"“d 

and 

(sin *n+1 - sin = - cos . 

Equation (2.Í49) can then be rewritten as 

(2.50) 

(2.51) 

Yn+1 " Yn = ’"27TArlü,D’/l ' \¿ cos (2.52) 

or 

Vl = Yn " 2,lAriVD (2.53) 
where 

yD = 1/1 ‘ nKZ cos *N 

Since the term, which represents curvature flow is zero when 

ÿ = 0.0 or * = ir, it is necessary that Y;l = 0.0 and = 0.0, 

which requires that 

EAST 

Ü)DWD = °‘0, (2.5h) 

where the summation represents an integration over A<J, for a fixed 

AnK- Using Equation (2.57) for the curvature coefficients, the sum 

of the first three terms, ^ [Equation (2.42)], T2 [Equation (2.46), 

and T3 [Equation (2.51)], for an isotropic, flat flux (all fluxes 

equal) is 

T1 + T2 + T3 - 2ff bD(ri+1 - ri) AZjUip + 0 + Az^^ffAr^^), 
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or 

T1 + T2 + T3 = 0.0, 
(2.55) 

thus indicating no flow, which is correct for this case. It follows 

from this observation that an exact particle balance is maintained 

in the application of the finite difference form of the convection 

terms. In previous discussions of the transport equation (ll), 

the flat flux balance condition was used to determine the curvature 

coefficients. 

The inscatter integral of Equation (2.27) upon integration over 

the finite phase space cell becomes 

+1 2tt 
» 

-1 0 

00 

» 

4>(r,z,n' ,<l>' ,E' ) 

0 

(2.56) 

X IS(r,z;E' ,fi'-*-E,iî)dE'd^'dn,dEdij;dridz2ïïrdr. 

Assuming that the cross sections are constant over individual spatial 

cells gives 

ûnK “O -1 ° 

+1 2tt 00 

♦j j(n' ,<J>* ,E' ) 

0 

(2.57) 

X Is ( E ' ,?2 ' -*-E,n ) dE ' dÿ1 dn ' dEdÿdn . 
I ,J 

From Figure 2, which gives the geometry for the scattering process, 

one notes that the scattering cross section may be written as a 

function of the cosine, Wq, of the scattering angle, 6o, and subse¬ 

quently expanded as an ordinary Legendre polynomial series. 
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DWG. NO. G-69-551 

A 
Z 

(jo = cos Go dP = sin0d0d0 
n = cos 0 dp = -dndi// 
0' = cos 0' 

(j( = cos4> = sin 0 cos 0 
(j = C0S4)' = sin 0 cos (// 
Ç( = cos6| = sin 0 sin 0 
f = cos6 = sin 01 sin 

Figure 2. The coordinate system for particle scattering 
in cylindrical geometry. 
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2k 

E^jÍE'.ñ'+E.ñ) = ^ Sjl(E,E')PJl(y0) • (2.58) 

The Engendre series coefficients are then given by 

+1 

S^E.E') = Utt 
24+1 I® _ (E* jñ'-^Ejñ)? (y )du . (2.59) 

I, J 4 o o 

Substitution of the Legendre expansion. Equation (2.58), into the 

scattering integral, Equation (2.56), gives 

2n °° 

f f f f 00 

I ^ jU'.Y'.E'JS^E.E') 

' AE -10 0 (2.60) 
N G 

X P^(uo)dE'd^'dn'dEd\J/dn . 

Evaluation of the integrals in Equation (2.6o) requires that the 

scattering cross section be described in the fixed coordinate system 

variables, n, n', ¢, and ÿ', rather than po, which is in the neutron 

coordinate system. From the addition theorem for Legendre polynomials 

(14), 

pt(wo> = Pt(n)P((V) . 2 ! "<*-+'> • (2.61) 
m=l 

The cosine term may be expanded giving the revised form, 

W - Vri>p*(,'’) + 

X (cos mij) cos mip' + sin mij) sin mij)'). 

(2.62) 
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The scattering integral. Equation (2.6M, may then be rewritten 

VI I 
t6 = 

+1 

I ^^(n' .eMs^E.E' ) 

AnK % AEG -1 0 
£=0 

[P¿(n)P¿(n') + 2 J P^(n)P°(n')(cos m\p cos nup’ (2.63) 
m=l 

sin sin ml|;, ) JdE'dii/'dn'dEdi^dn. 

Due to the symmetry of cylindrical r-z geometry, the flux 

even function of *•; therefore, since sin m*' is an odd function 

of 0', all terms involving sin mij<' vanish under integratj 

P'. Equation (2.63) may then be rewritten as 

is an 

;ion over 

’ f f ” Ä 
I I S (E,E' )A^(n)cos mip di^dn 

, £=0 m=0 Ä AnK A^n AEg 0 

+1 2tt (2.61*) 

,j(»'T »E')A^(n')c°s m^' d^'dn'dE', 
-1 0 

where 

when 

and 

when 

A™(n) cos imp 

m = 0 

A®(n) cos mÿ 

m 0. 

p£(n) 

- irU-m)l]1/2 m. 
" _ (£+m)!j P£(n) cos 

(2.65) 

After replacing the energy integral in Equation (2.64) by a 

sum of group integrals, 
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00 

(2.66) 

the multigroup scattering transfer polynomial coefficient is defined 

as 

I,J,G,G' 

VE’E,)Jí’j(E,)dE'dE 

aeg AEG> 

Jj’j(E')dE' 

where 

(2.67) 

+1 2tt 

jî;>> .^'.E'ÍA^h') cos mi|/' di|;'dn'dE'. (2.68) 

-1 0 

The assimilation of Equations (2.66), (2.67), and (2.68) into the 

scattering integral, Equation (2.610, gives the form 

T. = 
V_ NOG » £ 

• Z I ï Utt 
G'=l «.=0 m=0 0 

qÄ.,m m, X 

SI,J,G,G' Ajrn) 

4"k a*n 

0 TTJ 

X cos mi|/ dliidn jT’T p, , 
X ,«J ,u 

(2.69) 

where is the denominator of Equation (2.67). When the mean 

value approximation is used for the solid angle integration and the 

summations are rearranged. Equation (2.69) becomes 



(2.70) 
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where 

when 

and 

when 

Vvi 

00 £ G 
Tü)„ y y AÄ,m y sÄ’m iA>m 

,JD£=0m=0D G’=l I•J’G*G'JI»J»G, 

. £ )I71 ! . 

m = 0 , 

A¿’m - 
AD " 

m 0. 

£-m) 1 
£+m) ! 

1/2 
P¿(nD) cos mipD 

Also, the angular flux coefficients are given by 

NOA 
i£’m - T a*»“ 

(2.71) 

In practice, the Legendre expansion is truncated to )l = LMAX, 

and the space dependence of S is treated by zone rather than by space 

point. The final form for the scattering integral is then, 

LIÎAX £ „ G 
,£,m NOA 

= vt J y Al’m f y (2. 
6 I,J D£=0 m=0 D G'=l G’G,D’=1AI), * 

The application of the integral operator to the removal term, 

T^, of Equation (2.27) gives 

72) 

“ I 
Ari AZJ A\ a^n ae 

jl (r* z,n,^,E)2ïïrdrdzdnd^dE. (2.73) 

In the construction of the removal term for the difference equations, 

it is desirable to avoid assuming separability of the angular flux in 

space, angle, and energy; however, it is desired that the multigroup 

total cross section be independent of angle. As the first step in 

deriving such a term, the energy integral in Equation (2.73) is 
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written as 

T, = A / 
I (r,z,E)<ii(r,z,n,^,E)dE = 

ZG(r’z)0G(r’Z’n,'i,) " R’ (2*Tl+) 
AE, 

where R is a correction factor yet to be determined, and ET(r,z) is 
G 

a scalar flux weighted total cross section for group G defined by 

I^ir,z ,E)j00(r,z,E)dE 

£G(r,z) = 
AE 

(2.75) 

j00(r,z,E)dE 

AE, 

Rearrangement of Equation (2.7M provides an expression for R; 

R = zG(r»zH(j(r»z.rl>’i') I (r,z,E)(Ji(r,z,ri,^,E)dE, (2.76) 

AE 

where R should be small depending on the relative separability of ¢. 

If <P is then expanded as a spherical harmonic, 

LMAX i 
4>(r,z,n,ÿ,E) = J £ N™j m(r,z,E)P™(n) cos mij/ , 

¿=0 m=0 16 
(2.77) 

where 

if 

or 

m _ 21+1 
I 2 

m = 0, 

N? = 
21+1 

/2 

i-a) ! 
Jl+m) ! 

3/2 

if m # 0, 



Equation (2.76) becomes 
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LMAX I 

B = £<:(r'2) ¿0 ¿0 

T LMAX £ 
Z (r*z»E) ï I <jÂni(r,2)p^(n) 

AE D1=0 
G 

(2.78) 

7(n) cos mij^dE. 

Equation (2.78) can be reduced to 

LMAX £ 
R= I I^[Z^(r,z) 

£=0 m=0 G 
_ \ i.£m 

where 

^-(} (r>z))JG (r,z)p“(n) cos mip , (2.79) 

and 

_ [ £m. 
JG - J J (r,z,E)dE 

vT£m/ . 
£g (r,z) = 

J E (r>z»E)j m(r,z,E)dE 
AE„ 

.£m/ . 
Jq '^ f Z) 

The 
energy integral part of the removal term is then 

(2.80) 

(2.61) 

JS T, . , LMAX £ 
TJi = Vr,zHG(r,z,n^) - J [ ^[^(r.z) 

£=0 m=0 ^ G 

-T£m, 
^r»z^JG (r,z)p“(n) cos mil' . 

(2.82) 

USÍn8 E,Uatl0n (2'82) i” E8““‘l°n (2.73) and evaluating aH 

remaining Integrals by the mean value approximation gives, 
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Tl* = VI,J“D 

m LMAX £ 

K.J.Gh.J.D.G - ¿0 ml0<lh,J, 
(2.83) 

_Tî.in i < > "T 
‘ ZI,J,G]jI,J,GP£(riD)c0S m^D 

The series in Equation (2.83) is very similar in form to the 

inscattering integral term, Equation (2.72), and may be included 

there by replacing with 

am(MOD) 
^G.G' 

„m 
Slm + 
SG,G' .( £-m) ! 

£+m)! 

_ rET 
1/2 [lG 

rTÄmU 
ZG J0GG'» (2.8U) 

where the space dependence is by zone and Ô , = 1 if G' = G and 
Liu 

= 0 if G' # G. The modified removal term then has the desired form, 

^ VI,JUD Vl.J.D.G* (2.85) 

Application of the integral operator to the source term, T^, 

of Equation (2.2?) is straightforward since, with the exception of 

defining multigroup constants, the mean value approximation is used 

to evaluate all integrals. For a simple fixed source. 

T5 = ^^D3! ,J,D,G* 

If multiplication is present (eigenvalue problem), 

(2.86) 

oo 

S(r,z,n,^,E) = — x(E) [ vl (r,z,E') j^ir.z.E')dE' (2. 
eff i 1 

87) 
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where 

V 
xr nog 

4.!., _f .00 (2.88) 

keff * effective multiplication constant of the medium, 

VE') * macroscopic fission cross section at energy E' for the 

material in the zone containing the space point I,J, 

v(E') = number of neutrons produced per fission by a neutron 

at energy E', 

x(e) = fission spectrum, 

and 

XG = I x(E)dE , (2q9) 

aeg 

f vE^E'Jj^jÍEMdE» 
rf aeg, 

VEG' S 7--- • (2.90) J 
ÛEG’ 

The discrete ordinates difference equation for cylindrical r-z 

geometry is obtained by substituting the derived expressions for 

each of the six terms into Equation (2.27) and dividing through by 

Up. The result is 
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2*iZJl'll(ri+l*G,itl,J,D - ri^,i,J,D) * 2’VrlnD 

Az . 

G»I»J+1»D (Dn^Yn+l^G,I,J,n+l,K 

‘ ^n^G,I ,J ,n ,K^ + VI ,JZG^G,I ,J ,D = VI,JSG,I,J,D 

(2.91) 

LMAX Ä j m G 0 m NOA 
,£,111 r £,m + V F y A*»111 Y Y A¿»m* 

I % J ^ ^ T) L r;t L » T T ni^ni • 
£=0 m=0 v G'=l D'=l D G »I>J»D D 

The relationships between the mean angles denoted by subscript, D, 

and the angle end points, n,K, and, n+l,K, will be clarified further 

in the discussion of the space-angle mesh sweep in the next section. 

III. SUPPLEMENTARY DIFFERENCE EQUATIONS 

Equation (2.91), although an accurate representation of the 

macroscopic flow for the phase space cell, is not sufficient to 

determine a solution for the flux. For each mesh cell, assuming the 

incoming fluxes on three of the faces are known from calculations of 

previous cells or boundary conditions, there are four unknowns, the 

outgoing fluxes on the other three faces and the centered flux which 

is averaged over all variables. In order to obtain a solution, it is 

necessary to define additional equations which relate the centered 

flux with each pair of associated cell face fluxes. Many such rela¬ 

tionships have been proposed and implemented. There are two 

essential requirements: First, the equation relating the centered 

flux and two end-point fluxes should provide a good approximation 
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to the true variation of the flux in the neighborhood of the cell. 

Second, these equations, when combined with Equation (2.91), must 

produce a final set of equations which may be easily and quickly 

solved on the computer. Hence, an exponential variation which well 

suits the first requirement is, at present, prohibited by the second 

requirement. 

A possible set of additional difference equations is given by 

the following: 

*G,I,J,D = a*G,i+l,J,D + (l“a^G,i,J,D ’ u ? 0 

^G,I ,J,D = ^1"a^G,i+l,D + a ^G,i ,J,D * u < 0 

♦g,I,J,D = b ♦o.i.jn.D + *0,1,J,D ■ ^ " 0 

*G,I,J,D ’ (l-b) *G,I,J+1,D + b *G,I,J,D • ^ ' 0 

*G,I,J,D = c *G,I,J,n+l,K * (1-C)*G,I,J,„,K • 

(2.92) 
« 

(2.93) 

(2.91*) 

(2.95) 

(2.9Ó) 

where a, b, and c are constants on the interval (l/2,l) and may be 

adjusted on an interval by interval basis. Although it is concep¬ 

tually possible to estimate the optimum values for the constants by 

an iterative procedure, the additional complication introduced is 

beyond the scope of this study. 

Two special cases of Equations (2.92) through (2.96) are of 

interest. These are for a = b = c = 1/2, called the "diamond- 

difference method," (15), and a = b = c = 1, called the "step-function 

method" (l6). If the diamond-difference equations are combined 



with the transport difference equation (2.91)» and one solves for 

the centered flux, the result is 

G,i+1,J ,D 
or 

J,D J 

"G,I,j+l,D 
or 

AZJ - 

+ wD YN<)>G,I ,J,n,K+ 1^2 VI,JSG,I,J,D^ (2*97) 

— _ Az 

(I"dI4zJ2’?I * I %l2"?I4rI + — % + 1/2 h./G1 ' 

where 

YN = 2 (Yn+l + V’ (2.98) 

^G,I,J,D ^nc-*-u^es fixed source and all scattering sources which 

one assumes to have been computed with previous fluxes, and the 

choice of flux terms in the brackets depends on the direction 

cosines, i.e. , the upper term in the first bracket for i"D < 0 and the 

upper term in the second bracket for < 0 and vice versa. After 

solving Equation (2.97) for the centered flux, the undetermined end 

point fluxes are given by 

4 
vG,i,J,D 

^G,i+l,J,D 
2 ¢, 

G,I,J ,D 

d) 

*G,I,j+l,D, 
2 b 

G,I,J,D 

^G,i+1,J,D 

d) ro.i.j.D 

b 
g,i,j+i,d 

(2.99) 

9 (2.100) 
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and 

(2.101) 

where the same convention is used with respect to the terms in 

brackets . 

¡'he sweep over the I and J indices is initiated by boundary 

conditions at the exterior surfaces of the problem. In a similar 

manner, the sweep over the azimuthal angle index, n, must be initiated 

ior every polar angle index, K, and space point, I,J. This is 

accomplished by solving Equation (2.9l) for the angular fluxes, 

^0,1 ,J,n,K* an azimuthal angle of = tt, (n=0), direction 

cosines, nD = nK and wD * - /1 7^2 , and weight ujd = 0.0. For these 

directions, which are included in the general set having index D, 

the angle derivative term, , approaches zero, and the equation for 

the centered flux using diamond difference is 

X 

*G,I,j+l,D 

*G,I,j,D _ 
2 I,J 0,1,J,D )/(|hD|AZj2*?i (2.102) 

where < 0 for all angles with ^ = tt. The undetermined end point 

fluxes are given by Equation (2.99) using the upper bracket terms only 

and by Equation (2.100) using both terms. 
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For a given source, j D, the complete flux array can be 

determined using Equations (2.97) through (2.102). The order of 

calculation, which is called the mesh sweep, is determined primarily 

by the sequence of direction cosines, üD and ñp. The requirements, 

with regard to the sequence, are the following: 

1. The directions must be grouped into levels within which 

all the angles have the same r\. 

2. Each level must have an initial angle with m = - A-ñ ,2 
D K 

and = 0.0. 

3. Within each level the sequence must begin with the initial 

angle and proceed with increasing uD (decreasing ¢^). 

4. All levels having ñ's of like sign must be grouped together. 

If the negative ñ levels are first, the sweep begins at the top 

boundary condition and proceeds with decreasing J. For each J, the 

angles in the negative ñ levels are sequenced in order of increasing 

D. For each angle, D, the I index is sequenced in order of decreasing 

I for angles having negative and in increasing I for angles having 

positive Up. The left or right boundary conditions are used at the 

beginning of each I sweep. When the bottom of the system, J = 1, 

is completed the sweep for positive ñ levels begins with the bottom 

boundary condition and proceeds with increasing J in the same manner 

as before. 

From Equations (2.99), (2.100), and (2.101), one notes that if 

the flux is decreasing rapidly such that the centered flux is less 

than half the magnitude of the previous end point flux, the extra¬ 

polated end point flux will be negative, a phenomenon called 
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"diamond-difference breakdown." If this situation exists throughout 

the system, then the space-angle mesh is inadequate and must be 

refined. However, in all but the most well behaved problems, there 

will be a few points in the space-angle grid where an over-enthusiastic 

extrapolation will occur. Unfortunately, in penetration problems the 

negative end point flux has been most often observed to cause the 

subsequent fluxes to diverge in positive-negative oscillations until 

the entire problem collapses into a sea of meaningless negative fluxes, 

which are usually of absolute magnitude much greater than the true 

fluxes. It is thus desirable to invoke some alternate procedure in 

the event of a negative flux due to diamond-difference breakdown. 

The most attractice method for "negative flux fix-up" from the 

standpoint of giving a positive, non-zero answer with the best 

accuracy for the least effort is that obtained using the step 

function (a = b = c = 1.0) option in Equations (2.92) through (2.96). 

It is, of course, possible to use the step option for only the single 

constant, a, b, or c, which led to the observed negative flux. This 

may, however, when the final difference equation is reconstructed and 

re-solved, lead to a negative flux in one of the other extrapolations. 

The number of possible checks and re-calculations is sufficiently 

great that the best alternative is to use a=b = c = 1.0, for which 

the final difference equation for the centered flux is 

G,I ,J,D 
2ttAz, 

r 6 
i+l u,i+l,J,D 

r A 
i G,i,J,D 

+ 2irrIArI *G,I,J+1,D 

^0,1,1,0 
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A z. 

ü)D Mg,I,J,n,K + VI,JSG,I,J,D^ ^pl27IÛZJ 

+ |:iDl2’'rI4rI * ^ >„« * 

i+1 

(2.103) 

where the convention with respect to the bracket terms is the same 

as that previously used in Equations (2.97) and (2.102). The new end 

point fluxes are given by 

and 

$ 
u,i ,J ,D 

*G,i+l,J,D 

'4> VG,I,j,D 

*G,I,j+l,D 

^G,I ,J,n+l, 

^G.I.J.D ’ 

^G,I,J,D ’ 

^G,I,J,D * 

The initial flux for the step option is given by 

(2.101O 

(2.105) 

(2.106) 

*G,I,J,D= ^dI^WVg.í+I.J.D + 

G,I,j+l,D 

rc.i.j.D 

(2.107) 

+ vi.Js;,i,J.D)/(i=Di2’ri*i4'J 

+ 2TTr^Ar 
I 

+ V 

where the new end point fluxes are given by Equation (2.104) using 

the upper bracket term only and Equation (2.105) using both terms. 
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In the sweep of the space-angle mesh, the difference equations 

based on "diamond difference," (2.97), (2.99), (2.100), (2.101), and 

(2.102) , are used as standard procedure. If, in the extrapolation 

equations, (2.99), (2.100), (2.101), a negative end point flux is 

generated for any point, all the fluxes for that cell defined by 

I, J, D, are immediately recalculated using the "step" equations, 

(2.103) , (2.104), (2.105), (2.IO6), and (2.107), which always give 

positive fluxes when the incoming fluxes and the source are positive. 

The use of this technique is valid for problems where the space-angle 

mesh is, for the most part, adequate or more than adequate for accur¬ 

ate calculations using "diamond difference." In the circumstance 

that a negative flux occurs, the recalculation with the step func¬ 

tion equations gives a fairly reasonable, physically possible result 

which prevents the cascade of negative fluxes. 

In order to demonstrate the mixed-mode, linear-step, difference 

technique, the simple problem of neutron transport in a water slab 

exposed to an isotropic fission surface source is solved for various 

space mesh intervals. The solution of the problem employs a S .- 
lo 

Gaussian quadrature and a scattering approximation using GAM-II (17) 

cross sections. Figure 3 shows the fast neutron dose as a function of 

penetration depth. The result for a 0.5-cm. interval size is calcu¬ 

lated for the reference curve. Using linear diamond difference, the 

same curve is obtained for up to 2.0-cm. intervals. At 3.0-cm. inter¬ 

val size, some oscillation is observed in the lower energy groups for 

the linear model. At a mesh size of 5.0 cm. the fast dose, as shown 

in Figure 1, is oscillatory in a slightly divergent manner. At a mesh 
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size of 10.0 cm., the linear difference method gives a divergent 

solution with every other mesh interval having a negative dose. 

The mixed-mode calculations using the step function equations 

give exactly the same solutions as the linear method for very fine 

mesh intervals since no negative fluxes are calculated. The mixed¬ 

mode calculation for a 5.0-cm. mesh is stable and agrees fairly well 

with the best calculation. For a 10.0-cm. mesh the mixed-mode calcu¬ 

lation is high by a factor of three at 90.0 cm. penetration, but it 

is stable. The mixed-mode calculation is always as good or better 

than the pure linear method. The primary benefit is obtained for 

mesh sizes where the linear model is still being used for the most 

important angles, and the step model prevents an over-enthusiastic 

linear extrapolation in an unimportant angle from causing an 

oscillation. 

The major ingredients of the anisotropic, two-dimensional 

discrete ordinates transport method have been presented in this 

chapter. Except for the higher order anisotropic scattering which 

is of particular interest in penetration problems, the material in 

this chapter is of interest and has application in all problems 

involving neutron and gamma-ray transport. The remaining chapters 

will be concerned more with the particular ingredients of special 

interest in penetration problems and the experimental verification 

of the overall method. 



CHAPTER III 

THE INNER ITERATION PROCEDURE 

In the derivation of the difference equations for the angular 

flux. Equations (2.97), (2.102), etc., it was assumed that the source, 

S' T n, includes the fixed component and scattering sources computed 
Ci y X I ti } L) 

using previously calculated fluxes. In most neutron and all gamma- 

ray transport problems one may assume that particle- undergoing 

scattering always degrade in energy. Thus, if one begins the flux 

solution with the highest energy group and proceeds downward in energy 

(increasing G), the downscatter source for any particular group. 

LMAX i 

sa(wm> - V“d I I 
£=0 m=0 

, £ ,m 
G-l 

,£ ,m £ ,m 

J; .SI,J,G,G' ^1,J,G' 
G1 =1 

(3.1) 

is completely determined and may be treated as a fixed component in 

the source for group G. The within-group scattering for group G, 

LMAX £ 
Sg(*B0UP) = V u, I I 

’ £=0 m=0 

* £,m £ ,m 
D I,J,G,G 

£,m 

JI,J,G ’ 
(3.2) 

involves fluxes yet to be determined for group G. The most straight¬ 

forward method for determining the within-group scattering source is 

to iterate using the difference equations, (2.102), (2.10M, (2.105), 

etc., and Equation (3.2). The equations for any particular group may 

be represented symbolically in the form 

4*0 = Tg(Sg * Ig*g) . (3.3) 

1+2 
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where <p^ is the complete flux vector, is the fixed source including 

downscatter, is the transport operator which determines the flux 

g 
for a given source, and is the within-group scattering operator. 

The iterative procedure may be more easily discussed using the sym¬ 

bolic form. 

I. POWER ITERATION 

Ordinary Gaussian iteration, or "power iteration," is the most 

simple method for solving iterative problems. The procedure is 

begun by assuming a flux guess, 4>°, which determines an initial 
Ci 

scattering source which then leads to the first iterate flux. 

s tg(Sg + zl*V * (3.1+) 

The first iterate flux then becomes the next guess and the procedure 

is repeated, 

¢2 = T (S + 1¾) 
u u u Ci G 

♦S - VSG * 4c1) • 

(3.5) 

By successive substitutions, the equation for the nth iterate of 

the flux may be rewritten as 

*G = TG(SG + 4¾¾ + ZG(TG(SG + ••• 

* £g(tg<sg * ^ - > 

(3.6) 
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♦S - X ^Vo’1 Vo * 'Vo'“'1 Eo*o • !3-7) 

If the initial flux guess is the null vector (as is usually the case), 

the nth iterate flux is 

♦s ' r\v Vo • <3-8) 
i=0 

The first term in the series in Equation (3.8) is identified as the 

uncollided flux for group G, 

♦S-Vo* <3-9) 

where the source includes downscatters from the higher energy groups. 

The second term is the flux due to particles which have suffered one 

collision, 

,u+l 
VoVo Vo*o (3.10) 

The nth iterate flux may thus be interpreted as the sum of the 

uncollided flux plus the flux due to one collision, plus the flux 

due to two collisions, ..., and finally plus the flux due to n-1 

collisions. The number of iterations required for convergence is 

thus physically related to the number of collisions which contribute 

to the flux. 

Although a direct analysis of the iteration process in the dis¬ 

crete ordinates method has not been done, some insight can be gained 



by considering the behavior of the matrix problem 

♦g * Vg*G + TGSG ’ (3.11) 

where one assumes that the eigenvalues, of the nxn square 

matrix are ordered such that 

|XJ i i U2I « >1 «1, 

and that the corresponding set of eigenvectors span the associated 

vector space. The iterative process is represented by 

4 “ Vk'1 + TGSG * (3-12) 

If the error vector is defined by 

EG H *G ‘ 4 ’ (3.13) 

where ^ is given by Equation (3.11) and ^ by Equation (3.12), it 

then follows that 

eg * t4eg’1 » (3.14) 

and, by successive substitutions, 

4 - e¡ (3.15) 

If Eg is expanded in terms of the eigenvectors of T 
G G 

ES ' I • 
iv 

(3.16) 
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^G * 
(3.17) 

then 

(T 2]3)1- 
v G^G [c: ow,k k^G uk> % 

(3.18) 

where each error component, c£^k» is multiplied by the associated 

eigenvalue raised to the i power. For many iterations, i >> 1, then 

Eq “ Ui)1 C^i = Ui)1 E° = \i eJ"1 , (3.19) 

and the most slowly decaying component of the error is multiplied by 

the modulus, Aj, which is called the dominance ratio (l8). It is 

frequently convenient to speak in terms of the convergence rate, R, 

which is defined by 

R = -in A or A1/R = e“1 . (3.20) 

From Equations (3.20) and (3.19) one may note that 1/R is approximately 

the number of iterations required to reduce the error by a factor of e. 

An expression for A^ is given by multiplying Equation (3.17) 

by the total cross section and integrating over all phase space 

giving 

■ ** 

T k - 

Wp 
(3.21) 
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2¾ rjüiiidp 
G G GG 

ZG*Gd5 

(3.22) 

An estimate of the dominance ratio, , may be obtained by setting 

k=l and approximating ^ by ¢., which gives 

'V/ 
¿I dp 
G G GG 

(3.23) 

ÍV5 

or 

A! s number of collisions in the (j+l)th scattering generate _ 

number of collisions in the ith scattering generation 

The number of collisions in the (i+l)*'*1 scattering generation is equal 

to the number of collisions in the ith generation less the removal 

and leakage. Hence, 

A i n 
!r0*0 - í'ü - Lo)dí í (4*0 - Lo)âî 

í I ív5 

(3.2U) 

If the leakage is small (which is true for most penetration problems) 

and the flux weighting is ignored, an approximation for Aj is 

£o 

(3.25) 



the number of iterations required to reduce the initial error by a 

number of required iterations rises rapidly as \q approaches 1.0. 

For a typical multigroup structure having 20 or more groups, the 

dominance ratio for an average energy group for hydrogenous media 

is usually near 0.5» requiring about 10 iterations for convergence, 

but the dominance ratio for graphite or a metal such as lead in the 

s;:me group structure may be 0.95 or greater, requiring many more 

iterations. Although this analysis is very simplified and the number 

of iterations is influenced by leakage and other characteristics such 

as the depth of penetration, the observed number of iterations can 

usually be explained on this basis. 

II. NORMALIZED POWER ITERATION 

A simple procedure which is used to accelerate the convergence 

of the inner iterations is a space-independent normalization (19). 

In power iteration, as suggested by Equation (3.5), the total number 

of losses per iteration is not constant since 



table i 

THE EFFECT OF THE DOMINANCE RATIO ON THE NUMBER OF 
ITERATIONS REQUIRED FOR AN IDEALIZED PROBLEM 

R * - ín 

Number of 
Iterations 

for 10-3 Error 

Reduction 

.1 2.30 

1.21 

.5 

.8 

0.692 

0.221+ 

.9 0.106 

6 

10 

31 

66 

•95 0.0511+ 

•9T 0.0301+ 

•99 0.0101 

13U 

227 

687 
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where L„ is the leakage operator and Z the removal operator such that 
G vi 

(L + I1*)*1 gives the total loss from group G at iterate i. Another 
' G G G 

symbolic form of the transport equation is 

(LG + 
r3*1-1 
ZG^G 

(3.27) 

where each term represents the application of the operator and inte¬ 

gral over space and angle. A scale factor, f, may be determined such 

that the total loss equals the total source, 

then 

Ilg * "o* *0 

f(sG ♦ i‘0'1 - 441 

(3.28) 

(3.29) 

or 

f 

sG ♦ ^01 - Û 

(3.30) 

If the fluxes are multiplied by the scale factor which is computed 

after each iteration, the number of particles in the system is con¬ 

served and the convergence rate is increased. Integral normalization 

always improves the convergence rate but the amount of improvement 

is dependent on the problem. The number of iterations for a problem 

with uniform sources and a very high dominance ratio may be reduced 

by a factor of 10 or more. 

Honeck (19) asserts that the error vector decays as the i 

i S 
power of the second eigenvalue, (X2) » operator but 
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this is difficult to verify. I„ a penetretion problem, which is 

characterized by a localized source and large system in which the 

flux decreases by orders of magnitude, the normalization process is 

ineffective. This is deduced from Equations(3.8) through (3.10) whict 

show that the flux converges most rapidly near the source where parti- 

des suffering few collisions contribute most of the flux. Also, 

since the flux near the source is orders of magnitude greater than 

that in the usual areas of interest, the integral within group 

scattering rate in Equation (3.30) is dominated by these fluxes 

which converge relatively soon. Thus, after a few iterations the 

normalization factor is unity and has no further driving effect on 

the iteration. A driving effect which is position dependent is thus 

desired. 

Ill. CHEBYSHEV ITERATION 

lhe Chebyshev polynomial method of Iteration (19,20) can b. 

readily adapted to improve the inner-iteration procedure. Further, 

more, the physical interpretation of power iteration as successive 

scatterings can be used to obtain estimates of parameters required 

in the Chebyshev method. The within-group iteration process is 

represented as before by the matrix equation. 

*G = TGrG*G + TGSG ' 

where the eigenvalues. of* 
* nxn square matrix 

ordered such that 

(3.31) 

are 
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'V - |Xn-l' - ••• - |X2' < X1 < 1 • 

To solve Equation (3.3l) one cam use the iterative procedure given 

by Varga (21), 

^+1 = w (t + T S - «J»*“1) +^-1 . 
G i+1 G GG GG G G 

(3.32) 

The sequence, is given by ui = 1, and 

wi+1 = 2^(1/1^/1^.^(1/1^ for i > 1 , (3.33) 

where 0^(1/1^) is the Chebyshev polynomial of degree i in (l/lj). 

Varga (21) has shown that the error vector E?;, Equation (3.13), after 
G 

i Chebyshev iterations is given by 

E0 * Vt04>eS • 

where 

(3.3U) 

P^T^) 5 ci(TG^/ll)/Ci(l/Xl) . (3.35) 

The expansion of E° gives 
U 

4 - pi(T0%> [ï C^1-Î pi(\,csi ■ (3.36) 

where the operator polynomial P^Tq^) operates term by term on the 

error components such that in the final result each error component 

is multiplied by an i**1 order polynomial in the eigenvalue, 1^. 

Thus, after many iterations the most slowly decaying contribution to 

the initial error decays as P^( Xj) and 

eJ - p1(x1)iJ . (3.37) 



In typical applications of the Chebyshev method to matrix itera¬ 

tive problems, the most difficult problem is the estimation of the 

dominance ratio, Xj, and hence the acceleration factor, . For 

example, the method developed by Hageman (l8) involves first the 

application of ordinary power iterations. After several iterations 

one calculates the ratio of the norms of the residual vectors. 

where 

Q(i) .11 "U) II 
I! B(l-l) U (3.38) 

R(l) - Uj*1 - ♦J), 

and for the power iteration method one observes that 

limit Q(i) * . (3.39) 

Hence, when successive residual vector ratios converge within an 

arbitrary criteria, the final value of Q(i) is used as the value of 

Al for the Chebyshev iteration. The full implementation of Hageman's 

method involves re-estimation of ^ and the start of a new Chebyshev 

iteration at each new determination of \l. Unfortunately, many iter¬ 

ations are often required to converge the residual vector ratios. 

For the inner iteration problem the physical interpretation for 

Ai given by Equation (3.21) may be used for the Chebyshev iteration. 

The scheme which is used involves the calculation of A! for each 

iteration of the normalized power iteration method. When successive 

values of \l converge within an arbitrary criteria, the Chebyshev 
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iteration is started. After several iterations the numerator and 

denominator of Equation (3.33) grow quite large and may cause over¬ 

flow in the finite digital computer word. However, the values of uk 

are observed to converge after several Chebyshev iterations such that 

recalculation of Equation (3.33) is discontinued and the converged 

value of a) is used in succeeding iterations. 

As will be shown in the comparisons at the end of this chapter, 

the Chebyshev method of inner iteration is a significant improvement 

over the normalized power iteration. The convergence acceleration, 

however, is spacially dependent only due to the relative flux change 

since the driving factor oo is spacially independent. 

IV. SPACE-DEPENDENT NORMALIZED POWER ITERATION 

A space-dependent driving function can be obtained by generalizing 

the normalized power iteration to include a space-dependent normaliza¬ 

tion factor (22). In a manner similar to that’, used in Equation (3.27), 

a symbolic form of the transport equation for a particular space 

interval is 

LII-1,J + LII+1,J + LII,J-1 + LII,J+1 

+ LoJ + zV + 1%1 = S + iV”1, 
I ,J 

(3.1*0) 

where each term represents an integral over angle to give a scalar 

balance, and the convection terms have been separated into incoming 

leakage, LI, and outgoing leakage, L0, terms. The combinations of 
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indices on the incoming leakage terms indicate that these are computed 

with fluxes belonging to adjoining intervals. If the fluxes are multi¬ 

plied by scale factors that are functions of space interval in order to 

equate losses with sources, the result is 

(3.U) 

which is a five point difference equation in terms of the scale factors 

fI,J similar t0 the two-dimensional diffusion equation. For the one¬ 

dimensional discrete ordinates equation, the J indices would not be 

present and Equation (3.^+1) becomes 

fI-lUL ♦ fI.l,JLIM * V“1 * * V) - S , (3.,,2) 

a tri-diagonal matrix equation which can be solved by Gaussian reduc¬ 

tion. 

Several methods can be used to obtain solutions for Equation 

(3.1+1). One possible technique involves the integration of Equation 

(3.1+1) over the I mesh and J mesh separately to give two one¬ 

dimensional equations having the form of Equation (3.1+2). A better 

method depends on an iterative solution. One first assumes that 

fI= 1,0 for 811 1 and J. The equation for iteration is 

= S - fn-“ Li^ f.n-1 TTi 
fI,J-lLII,J-l ’ fI,J+lLII,j+i » 

(3.1+3) 
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where i designates the i1*1 inner iteration and n designates the n*^ 

iteration on the scale factors. For a giver iteration, n, the right- 

hand side of Equation (3.1*3) is determined since it contains the pre¬ 

vious iteration scale factors, and the equation can be solved by- 

reduction in the same manner as for Equation (3.1*2). The iteration 

on scale factors continues until 

max 

fn - f11”1 
_lili. 
«n 

<_ 0.001, all I,J 

I,J 

(3.1*1*) 

In the implementation of space-dependent normalization in the 

one-dimensional code, MISN, (22), it was determined that the scaling 

should be performed on every third iteration due to instabilities 

which occurred in some problems. 

V. CONVERGENCE CRITERIA 

The companion problem to the acceleration of the rate of conver¬ 

gence which was discussed in the previous sections is the specifica¬ 

tion of a criteria which determines when the inner iterations are 

sufficiently converged. Earlier discrete ordinates codes which were 

used primarily for the analysis of fast critical assemblies considered 

the inner iterations to be converged if 

fs, i i-1^ 
Z 4 - <|> )dv 

_ <_ EPS , (3.1*5) 

zVdv 

where the integration is performed over the volume of the entire system, 

and EPS is usually equal to .001. Although this criteria is usually 
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sufficient for critical assemblies euere the flue does not vary much 

in magnitude, it is not suitable for penetration problems. The inte- 

gral is dominated by the fin* «t. 
y e flux near the source which has the greatest 

magnitude and converges most rapidly. 

The convergence criteria now commonly used in the anisotropic 

one-dimensional codes (11,12) is based on the maximum pointvise 

error, 

I 1 
max --- < EPS all I . 

*1 
(3.1*6) 

This criteria may be over-sensitive depending on the requirements of 

the problem. One-dimensional problems ere usually sufficiently simple 

such that the maximum pointvise error is the best choice. 

Two-dimensional problems are sufficiently complex that there is 

usually some point which will „0t satisfy the pointvise criteria. 

These points are usually in some obscure corner or unimportant loca¬ 

tion. One must, in two-dimensional calculations, consider the errors 

in terms of their importance to the problem. A generalised test might 

be 

all^I,J^T,J,G ♦l.J.ol *I,J,G 3 dAÜSç <. tANS^ , (3.li7) 

where A»SG is the portion of the desired answer in group 0, and 

^.J.G 15 th' contribution to the answer ANS0 due to the flux at point 

I.J. If ‘he desired answer is the dose at point IV, then I is 

equal to the dose factor at point IV’, and is zero elsewhere!’^e 

error test thus reduces to a special case of the pointvise error. 
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If, however, one considers a dose response including an analytic last 

flight then one has 

JTi- t I 
q ""^r rt T ” * 1' 

Vj.g = zS(n'^’G'K})e ’ ’ DFI',J' 
(3.U8) 

which is the probability of scattering into the proper angle, arriving 

uncollided at I'jJ', and contributing to the dose. 

Although the criteria given using Equation (3.^8) would be accur¬ 

ate and not sensitive to the localized fluctuations which affect the 

pointwise criteria, it appears to be too difficult to use. An approx¬ 

imation which is simple to apply yet suitably sensitive is to assume 

that I is constant over some small zone around the point of 
I ,J ,G 

interest and zero elsewhere. With this zone-of-interest approximation, 

the criteria is 

l 
all I,J in ZOI 

_ (j)1"1 I 
G ^I.J.G1 

* 

VT - < EPS 
I ,J 

I.J.G 

I V- ., (3.U9) 

ZOI ’ 

where the summation is only for points within the zone of interest. 

All of the convergence criteria which have been discussed are available 

in DOT, but that given by Equation (3.1+9) is recommended. 

VI. COMPARISON OF METHODS 

A study and demonstration of the effects of the three methods 

of inner iteration which have been discussed can be done with almost 

any applied transport problem. It is more emphatic to pick a problem 

which is difficult to converge, although the effects on the "easy" 

problems are also of interest. In most multigroup problems some 
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energy groups are relatively easy to converge while others may be 

quite difficult. Thus, by looking at two energy groups in the same 

problem both an "easy" and a "difficult" example may be obtained. 

A demonstration of the effects of normalized power iteration, 

Chebyshev iteration, and point-scaled iteration as implemented in the 

one-dimensional code, MISN, was performed using a multigroup adjoint 

calculation of a very large sphere of air with a surface source (22). 

This problem was unusually difficult since the low energy groups which 

are typically the most difficult to converge are computed first in an 

adjoint calculation, and the overall results are much more sensitive 

to a possible lack of convergence of these groups. 

In order to study the effects of the methods of iteration and 

the zone-of-interest method of convergence, as implemented in the 

two-dimensional code, DOT, one of the problems to be considered in the 

experimental comparisons in Chapters V and VI is considered. The 

selected problem is that of a cylinder of lead approximately five 

feet in diameter and eleven inches thick. A monodirectional neutron 

beam source, approximately U.25 inches in diameter, is incident on 

one face. In a multigroup calculation of neutron transport in lead 

the energy groups are much wider than the average energy loss due to 

elastic scattering. Since inelastic scattering is relatively unimpor¬ 

tant, each group acts essentially independent of the others. Two 

groups from the 38-group structure given in Chapter VI are considered. 

Group 10, extending from 2.1*7 MeV. to 2.02 MeV., has a total cross 

section of 0.201,5 cm.'1 and a vithin-group scattering cross section 

of 0.1743 cm. , giving an approximate dominance ratio of O.85. Group 

25, extending from 0.1228 MeV. to O.0865 MeV., has a total cross section 
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of 0.31*33 cm. 1 and a within-group scattering cross section of 

0.333T cm. \ giving an approximate dominance ratio of 0.97. Calcula¬ 

tions were performed for each group using each of the three iteration 

methods and two zones of interest for convergence, giving 12 calcula¬ 

tions. The first zone of interest is a small cylindrical portion ol 

the slab directly opposite the source. The second zone of interest is 

an annular band around the slab and near the exit surface. 

Figure 1* shows the zone-of-interest convergence indicator as 

defined by Equation (3.1*9) as a function of iteration number for the 

three iteration methods and the first zone of interest. The regular 

normalized power iteration method reaches the prescribed criteria of 

_3 
EPS = 10 in 50 iterations. The Chebyshev iteration, which began at 

the sixth iteration with a converged of 0.9 satisfies the conver¬ 

gence criteria at iteration 26. The point-scaled method satisfies 

the convergence criteria at iteration l6. The errors for each third 

iteration include the effect of scaling and are not included in the 

data. It is also interesting to consider the flux behavior corres¬ 

ponding to the convergence indications. Figure 5 shows the flux 

behavior for a point, I = 6, J = 2, in the convergence zone. The 

regular method converges very smoothly with only a slight "overshoot." 

Once the Chebyshev iteration starts, the flux rises very rapidly, 

overshoots the answer fairly strongly, and then converges. The flux 

for the point-scaled iteration varies more erratically but converges 

more quickly. The Chebyshev method takes about one-half the itera¬ 

tions required of the regular method, and the point-scaled method 

takes about one-third. 
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DWG. NO. G-69-553 

Figure U. A comparison of three iteration methods for group 25 of 
the lead slab problem with the first zone of interest. 
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Figure 5. A comparison of the flux behavior at the space 
point, I»6, J*2, for group 25. 
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Figure 6 shows a similar comparison of convergence indicators 

for group 25 with the second zone of interest. This criteria is J 

more difficult since the important particles must be transported 

over 25 mean free paths in a direction at right angles to the source. j 1 

The regular method does not converge by 50 iterations, and it is 

estimated that H*0 iterations would be required. The Chebyshev j 

method does much better, indicating convergence at 1*8 iterations, I 

and the point-scaled method appears best by indicating convergence 

at 23 iterations. The flux behavior for this problem is shown in 

Figure 7. At the point ! = 1*1*, J = 6, the flux with the regular 

method is still rising and is about a factor of three low at 50 ¡ 

iterations. The Chebyshev method gives a smooth behavior with no 

overshoot in this case. The flux with the point-scaled iteration 

overshoots, but then is essentially converged at 15 iterations. 

Figure 8 shows the behavior of the convergence indicator for 

the three methods of iteration for energy group 10 with the second 

zone of interest. This problem is somewhat easier to converge than 

those for group 25. The regular method requires 37 iterations for ' j 

convergence, the Chebyshev method requires 26 iterations, and the 

point-scaled method requires 16 iterations. The behavior for the 

flux at I = 1*1*, j = 6, is shown in Figure 9. Figure 10 shows the 

convergence indicator as a function of iteration for group 10 with 

the second zone of interest. This is the easiest problem of the 

group, and the advantage of the point-scaled method over the regu¬ 

lar method is reduced. The Chebyshev method surprisingly takes 

two more iterations than the regular method. Since this problem 

I 
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Figure 7. A 
point, js6, 

comparison of the flux behavior 
for group 25. at the space 
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Figure 8. A comparison of three iteration methods for group 10 of 

the lead slab problem with the second zone of interest. 
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Figure 9. A 
point, 1=1*1*, j=6. 

comparison of the 
for group 10. 

flux behavior at the space 
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Figure 10. A comparison of three iteration methods for group 10 of 

the lead slab problem with the first zone of interest. 
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is the same as the latter, except for the zone of interest, this 

merely indicates that, while the Chebyshev method is considerably 

beneficial to the hard part of the problem, it is slightly detri¬ 

mental to the easy part. The flux behavior shown in Figure 11 

further illustrates this problem. 

The results of this study on iterations are most important 

for the application of the two-dimensional discrete ordinates method 

to large penetration problems. The factor of ten advantage of the 

point-scaled method in difficult problems makes many problems which 

were previously intractable now feasible. The zone-of-interest 

convergence criteria makes it possible to have a good indication of 

the convergence in the important part of the geometry. These two 

methods together provide the transport code with the efficiency 

necessary in the calculation of large shielding problems. 
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DWG. NO. G-69-560 

Pigxire 11 A comparison of the flux behavior at the space 
point, 1=6, J=2, for group 10. 



CHAPTER IV 

ADDITIONAL IMPROVEMENTS 

In the previous chapters a general method has been developed 

which is inherently capable of solving most two-dimensional neutron 

and gamma-ray transport problems, including deep penetration. The 

approximations are not limiting since, at least in principle, the 

number of energy groups, solid angle segments and space intervals, 

and the order of expansion of the differential scattering cross 

sections may be increased as necessary to obtain the desired solution. 

However, the problems which can be solved in practice are limited by 

the finite computer speed and memory size. In order to extend the 

capabilities, a combination of efficient programming and analytical 

"tricks" are used. The programming techniques involve methods for 

efficient and flexible allocation of the main computer memory, 

handling of large blocks of data on external storage devices, and 

the concentration of the innermost loops into a single, small sub¬ 

routine which is programmed in machine language. These change as 

existing machines are modified or as new machines become available. 

The analytical techniques principally involve methods which take 

advantage of simplifications to certain problems. Three techniques, 

the analytic first collision source, biased quadrature sets, and the 

determination of the flux in an external void, are discussed in this 

chapter. 

71 
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I. ANALYTIC FIRST COLLISION SOURCE 

In two-dimensional r-z cylindrical geometry, the finite number 

of angles may result in an anomaly called the "ray effect." The 

problems in which ray effects are noticed are characterized by 

sources and detectors which are small compared to the total geometry, 

and a scattering mean free path which is long compared to the space 

mesh. Hence, if a problem such as a point source and point detector 

in a highly absorbing medium is approximated by the equations given 

in Chapter II, the fluxes along a spherical surface centered about 

the source are observed to rise and fall in a wave-like pattern 

instead of being constant. Furthermore, the peaks in the distribu¬ 

tion are observed to fall along rays following the polar angles of 

the quadrature centered at the source. 

In the discrete ordinates solution of the two-dimensional 

cylindrical transport equation, the angles in the quadrature are 

arranged in levels which comprise of directions having the same 

polar direction cosine, n. Within these levels particles change 

angles due to the curvature derivative [term 3, Equation (2.51) ], 

as well as scattering [term 6, Equation (2.76)]. However, trans¬ 

fers from a direction in one n level to one in another level occur 

only through scattering. Particles that start out in an o level 

tend to stay in the same level until scattered. Since there are 

only a finite number of n levels, particles tend to appear only at 

space intervals which are oriented with the source along a discrete 

n level. If the source region is distributed or if scattering is 
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dominant, no ray effects appear; however, if the source is localized 

and spacial convection is dominant, ray effects may be significant. 

An obvious way to mitigate ray effects would be to increase the 

number of n levels. However, this approach is uneconomical and 

usually only slightly effective. Another technique is to employ an 

analytic first collision source. This method essentially removes 

ray effects since the source is now distributed continuously in angle. 

For points within a mean free path or so of the source the analytic 

uncollided flux dominates. For intermediate points a few mean free 

paths from the source the flux is dominated by the source from first 

collisions which, although emitted into the discrete mesh, is dis¬ 

tributed smoothly in space due to the analytic uncollided flux. 

For points many mean free paths from the source the flux is due to 

particles which have suffered many collisions, a situation in which 

ray effects would not normally appear. 

Unfortunately, the technical problems involved in implementing 

the analytic first collision source in the general problem are pro¬ 

hibitive. For an arbitrary source distribution the contribution 

to each space point from each source interval must be calculated. 

Furthermore, the cylindrical symmetry in r-z geometry must be accounted 

for by an azimuthal integration for each source interval. For 

example, a problem with 3000 space point.'! and only 10 azimuthal 

intervals would require up to 9 x 10T calculations to determine the 

uncollided flux. The point source on the cylindrical axis problem 

which produces the worst ray effects involves only 3000 calculations 

for the same problem. Problems which have a co-axial parallel beam 
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source may also be treated. Although these problems do not normally 

show severe ray effects, the source is usually input in the direc¬ 

tions nearest the axis, which are usually 13° or more from the axis. 

This causes a slightly incorrect uncollided flux and also makes it 

difficult to determine the collided flux in the near axis angles. 

An analytic first collision source technique has been developed 

for the two-dimensional code, DOT, for the simple sources described 

above. The procedure is described in the following: 

1. The geometry is described with the same space mesh and 

material zones as for the DOT problem. 

2. The uncollided flux (magnitude and angle) is calculated 

for each space point and energy group. 

3. The first collision source, S, a function of radial inter¬ 

val, I, axial interval, J, angular moment, L, and group, G, 

is calculated with the expression, 

S(I,J,L,G) = 

G' = L 

(4.1) 

X 

where I (G'+G) is the Legendre coefficient of the 

scattering cross section from group G' to G, ¢1 is the mag- 
u 

nitude of the uncollided flux, p is the direction cosine of 

the flux, with the radius vector, cos (#) is -1 for 

downward angles and +1 for upward angles, and L corresponds 

to a particular pair of indices I and m. 
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The source array, S, and the scalar uncollided flux are 

written on magnetic tape. 

5. DOT has been modified to use, as option, the anisotropic 

source array, S, as the fixed source. The result of such 

a calculation is the collided flux ^(l,J,G,D) where the 

arguments are as before except that D, for angle, is added. 

At the end of the calculation the scalar uncollided flux is 

added to the scalar collided flux such that the total flux 

is printed in the DOT output. 

II. NEW QUADRATURE SETS 

T’he effect of a given type and/or order of quadrature on the 

solutions obtained from the discrete ordinates method for practical 

problems is not well known. Several types of quadrature have been 

used and the changes or improvements have sometimes been made for 

obscure reasons. Much of the difficulty in understanding is due to 

the dual role which is played by the quadrature set. First of all, 

it acts like a classical quadrature in the calculation of the integral 

terms in Equation (2.96) and must be able to integrate Legendre poly¬ 

nomials; however, in the convection terms of Equation (2.96) the 

discrete directions define the mean values for the direction cosines 

such as and ri^, and the associated weights define the solid angle 

segments. 

One method used to study the effect of quadrature is to pick a 

problem and vary the type and order of quadrature in such a manner 

as to increase accuracy and note the conditions at which selected 
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answers cease to vary rapidly. In other cases, particularly for 

comparisons with experiments measuring angular flux, the limiting 

factor is the angular resolution necessary for a meaningful compar¬ 

ison, or perhaps a high resolution is desired in order to determine 

the flux at points in the space beyond the calculated system. For 

these problems it is desirable to have a technique which will pro¬ 

duce a tailored direction set which is also capable of integrating 

low order Legendre polynomials exactly and hence conserve balance. 

The first quadrature method for two-dimensional discrete ordi¬ 

nates which was used with the TDC code (5) was based on equal solid 

angles. The direction set is symmetric by octant such that the 

description of the quadrature for a single octant determines the 

entire quadrature. For a specified n order of quadrature, the octant 

is first divided by n/2 latitude bands. Starting with the latitude 

nearest the z axis, the latitude bands are divided into 1, 2, 3, ..., 

n/2 longitudinal sections. The requirement of equal solid angles 

completely determines the latitudes and longitudes. The discrete 

angles associated with the solid angles are adjustable within the 

requirement that they lie within their respective solid angles. The 

determination of angles to match various moment conditions has been 

considered (23). 

It was later observed that the quadratures formed by intersections 

of longitudes and latitudes were not rotationally symmetric (7). That 

is, the new quadrature which is formed by a rotational change of axes 

is different from the original. It was also observed that a problem 

in x-y geometry did not give the same answer when the axes were 
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interchanged. C. E. Lee developed a rather complex method based on 

areas formed by Intersections of great circles which produced rota- 

tionally symmetric quadrature (7). His method has the advantage of 

always giving positive weights, but it lacks much, if not all, of the 

flexibility which is desired. 

Carlson and Lathrop (8,21.), in a study of the equivalence of 

certain moments equations and discrete ordinates equations, suggest 

that quadratures be developed on this basis. The requirement is 

simply that the quadrature be able to Integrate polyntmials in the 

direction cosines. For a two-dimensional quadrature this is 

0 0 

Í m 
u n dpdi|) (1..2) 

The Integral on the right of Equation (4.2) is integrated analytically 

to give 

K 
l 

k=l 

K . 
r £ m 1 

= 2 (M) 

The author has developed a computer program which solves Equation (U.3 

Given input values of ^ and V a sufficient number of moments, t and 

m, are picked such that a solution for u> is possible. 
Jv 

It appears at first that this approach should provide all the 

flexibility desired. However, for arbitrary angles the solution of 

Equation (^.3) will as often as not give some negative weights. Whe% 

completely symmetric angles are used positive weights are obtained 

up through S12 (81+ angles with non-zero weight). When n and n are 
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picked from the set of zeroes of a Legendre polynomial the resultant 

quadrature is half symmetric inasmuch as the third direction cosine, 

cannot be from the same set of numbers. For these quadratures 

positive weights are obtained up through S^. This quadrature is 

interesting since the level weights for y and n levels are found to 

be the Gaussian quadrature weights. Table II gives, for illustration, 

a comparison of collision probabilities calculated for infinite cylin¬ 

ders with several quadratures and by the analytic chord method (25). 

Comparisons of quadratures made on the basis of simple analytic 

problems are only partially informative. The reason, of course, is 

that the applications of interest are for real problems which have, 

as yet, no analytic solutions. In fact, comparisons with analytic 

solutions can often lead to erroneous conclusions since these problems 

represent extreme cases. For real problems one is left with Judgments 

made on qualitative comparisons of results of various quadratures. 

As mentioned previously, there is a class of problems which 

requires a higher order of quadrature than is actually necessary for 

the transport. This is observed when the order of quadrature is 

increased and the spatial distributions of the angular moments of 

the flux do not change, yet the quadrature is not adequate for the 

angular resolution desired. In these problems additional directions 

may be added, so long as the basic integration abilities of the quad¬ 

rature are not reduced. One technique which is employed in the exper¬ 

iment comparisons in Chapter VI in order to increase the resolution in 

the polar direction cosine, n, is to add segments of a higher order 

Gaussian quadrature to the basic quadrature. In this case, the basic 
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TABLE II 

COLLISION PROBABILITIES FOR PURELY ABSORBING CYLINDERS 

la • R Quadrature 
Calculated Analytic % 

Answer Answer Error 

0.02 Lee's - sf 

0.02 Level Moment - 89 

0.02 Full Moment - 89 

0.02 Full Moment - Sjq 

0.02 Half Symmetric - Sg 

0.02 Half Symmetric - sfg 

0.02 Level Moment - 

O.5 Lee's - 3g 

0.5 Level Moment - Sg 

0.5 Full Moment - Sg 

O.5 Full Moment - Siq 

O.5 Half Symmetric - Sg 

0.5 Half Symmetric - Sjq 

0.5 Level Moment - Sjg 

1.0 Lee's - Sg 

1.0 Level Moment - Sg 

1.0 Full Moment - Sg 

1.0 Full Moment - Si g 

1.0 Half Symmetric - Sg 

1.0 Half Symmetric - Si0 

1.0 Level Moment - Sig 

.02435 

.02468 

.02472 

.02484 

.02520 

.02539 

.02515 

.4019 

.4038 

.4038 

.4039 

.4050 

.405? 

.4042 

.5909 

.5922 

.5922 

.5924 

.5928 

.5933 

.5928 

.02561 

.02561 

.02561 

.02561 

.02561 

.02561 

.02561 

.4o4l 

.4o4l 

.4o4i 

.4o4l 

.4o4i 

.4o4i 

.4o4l 

• 5929 

• 5929 

.5929 

.5929 

.5929 

.5929 

.5929 

4.92 

3.64 

3.48 

3.00 

I.60 

0.86 

1.78 

0.54 

0.07 

0.07 

0.05 

0.22 

0.27 

0.04 

0.33 

0.11 

0.11 

O.08 

0.01 

0.07 

0.01 

See reference 

b 
See reference 

c 
From Equation 

^From Equation 

polynomial. 

7. 

8. 

(4.3) with symmetric directions from reference 7. 

(4.3) with u and n determined by zeroes of a Legendre 
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quadrature is an S10 Gaussian with a forward angle resolution of 

about 21°. The angular resolution desired is on the order of Io 

which is characteristic of It was observed that the total 

solid angle represented by the first eleven levels of the quad¬ 

rature was nearly equal to that of the first level of the S . The 
10 

eleven weights and directions were then substituted for the first 

S10 and direction and the weights were renormalized to correct 

for the slight discrepancy introduced. The DOT code is constructed 

such that the quadrature need not be symmetric in n such that the 

additional directions may be added in the negative n directions and 

the regular set used for positive n directions. This quadrature will 

be discussed further in the description of the calculations in 

Chapter VI. 

III. DETERMINATION OF THE FLUX IN AN EXTERNAL VOID 

In many shielding situations the final answer desired is the 

spectrum or dose at some point or collection of points in the space 

outside the shield. For example, a space reactor power system is 

usually located at some distance from the point of the design dose. 

The shield analyst, after calculating the flux distribution within 

the reactor and shield, is then faced with the problem of calculating 

the dose at the design points at distances of 100 feet or more from 

the reactor. 

A similar situation exists in the calculation of experimentally 

measured spectra transmitted through shielding materials. Even if 

the scintillation crystal is placed directly adjacent to the test 
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shield the void containing the detector must be included in the 

transport calculations because of the difference in areas viewed at 

forward or oblique angles. The detector is often located in heavily 

shielded housings and views the shield surface through a collimator 

at a reasonable distance from the shield because of the desire for 

low background and a well defined response surface with even inten¬ 

sity. 

The problems described in the preceding paragraphs present some 

difficulty to users of the discrete ordinates methods. The large 

space up to and including the detector system cannot be reasonably 

included in the discrete ordinates solution since ray effects are 

most severe in particle transport through a void. If the point of 

interest is sufficiently far from the calculated system such that 

the distance from the surface is not significantly different from 

the distance from which the average particle scattered last, the 

following method is reasonable. 

The angular flux at the surface is known as a result of the 

discrete ordinates solution. The number of particles emitted per 

unit steradian about the direction 0, per unit time, from an element 

of surface area, oAs, is given by the product, 

*(ra,E,ÏÏ)fi * ñ dAs , (U.1») 

where $(rg,E,Õ) is the angular flux at the position on the surface 

given by rs, ß is the unit direction vector, and ñ is the normal to 

the surface. If each element of surface area is represented as an 

anisotropic point source emitting 4>(rg ,E,ñ)ñ • ñ dAg particles per 
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steradian about the direction Í2, per unit time, then the flux at an 

arbitrary point in space, ?d, is given by 

¢(r^.E) 

SURFACE 

♦ (r ,E,fi)fl • n 
_s 

U.5) 

For a two-dimensional r-z cylinder one has the flux at the flat 

end surface, $(r,E,fi), and the curved cylindrical surface, 

<|>(Rg ,z,E,?S). Of course, only one end surface can be viewed at a 

time so both are not represented. In order to perform a surface inte¬ 

gration for a two-dimensional cylinder an azimuthal angle, a, must be 

introduced. The angle a is measured about the Z axis and from the plane 

containing the detector point, rd> and the Z axis. The flux at the 

detector is then given by 

4»(rd,E) = 

H 2ir 
* 

0 0 

R 2 it » 

« 

0 0 

$(R ,z,E,fl)n-R 
S 

4>(r,z ,E,ñ)a*Z 
_ s 

R dadz 
s 

rdrda , 

(14.6) 

where p represents the distance from the surface points to the detector 

and the curved surface integration is restricted to ft • R > 0. 

In the DOT calculation the flux is given in terms of a finite 

space grid and finite solid angle segments with representative mean 

directions. The azimuthal integration is performed by summing over 

a grid of finite intervals. Figure 12 shows a pictorial representa¬ 

tion of the grid and detector geometry. The numerical form of 

Equation (1*.6) is 
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DWG. NO. G-69-561 

Figure 12. The surface mesh and detector geometry for SPACETRAN 
surface integration. 
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where jy^l and jn^l are the direction cosines with respect to the R 

axis and Z axis, respectively, and are determined geometrically for 

each surface integration point. The mean direction index, D', is 

chosen for each surface point by searching the quadrature direction 

for the one having the maximum dot product with the vector from the 

surface point to the detector. 

For detector points which are very far from the calculated 

system, the polar angle, n, and distance, p, remain effectively 

constant during the a integration. In this case the a integration 

may be handled separately giving for the top 

^T(r,Zs,E,n) = 2 <fr(5)da , U.8) 

and, for the side. 

ctmax 

♦s(Rs>2,E,n) - 2 $(fi)da . (M) 

The flux at a point in space exposed to both the top and side is 
i 

Hf ♦„(R«»ztb.n) 
-R dz 

s 

(1+.10) 

¢(£) 
s s 

’ <J>T(r,Zs,E,n) 
Tdr , 

0 
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where n is the polar direction cosine from some representative surface 

point to the detector and is assumed constant during the integration. 

This simplification reduces the computational effort since most of 

the time required to integrate Equation (U.7) is spent determining 

the proper angle, Õj, for each surface interval and detector point. 

Instead of assuming that the flux for a given direction cosine, n, 

is equal to that for the nearest discrete n., one may easily use an 

interpolation based on a Legendre series expansion, 

4>(n) ï ^r^p£(h) [ P£(n. Mn. )An. 
¢.=0 * i=i 1 11 

(l*.ll) 

where L is arbitrary and I is the number of discrete cosines. 

Although the preceding methods work well when the detectors are 

relatively far from the systems, both fail for points close to the 

system. The points may be included in the discrete ordinates calcu¬ 

lation by extending the space mesh into the void, or, if this is 

impractical, by a complex method employing a last flight importance 

function. 

In order to establish a general understanding of the importance 

function as referred to here, the transport equation is written for 

the flux at a phase space point, (r,E,fi), due to a unit source at 

Q-V$(?,E,ñ;? ,E ,fi ) + o (r,E)<fr(r,E,Õ;? ,E ,5 ) = 6(? - ? ) 
V V i OOO o 

dE'dfi' $(r,E' ,0' ;r ,E ,fi )vo J?,E') 
OOO I 

X ó(íí«fio)ó(E - Eq) + x(E) 

Utt 

0 0 
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00 4iT 

dE'dñ' í(?,Etíl';ro,Eo,ñ¿)o(EUE,ñ'^j), 

0 0 
(^.12) 

and the equation for the adjoint flux at (?,E,fl) due to a unit source 

at (ri.Ej.ñj), 

-ñ*V^ (r.E.S^rj.Ej.ñ!) + oT(r,E) <!•(? .E.ñ;?! .Ej »fjj ) 

00 1+Tf 

= 6(r - rj) 62(fi • Õi) 6(E - Ej) + vaf(E) j J dE'da' 
0 0 

00 1+Tt 

X ¢) (r.E1 ,fi';?! .Ej ,0] )x(E') + | j dE'dfi' <j>+(r,E',ñ'; 

0 0 

ri.Ei.Õ^otE-^E',«-^'). 

(^.13) 

Equation (U.12) is multiplied by (f>+ and Equation (^.13) by ¢. The 

resulting equations are subtracted and integrated over the system 

volume. It is noted that 

Ju+ñ< V<fr + )dv fi*V$$+dv = j ñ*ñ^^+ds = 0 (h.lh) 

since «|>(r ,E,ñ) = 0 for fi • ñ < 0 
S 

and <p (r ,E,ñ) = 0 for Õ • ñ > 0. 
S 

The resulting equation is 

00 1*ïï 

dvdfidE 4, (r.E.ñ;?! .Ej)ó(r - r )6,(0-0 )ó(E - E ) 

0 0 V 

® ta 

J j J dvdñdE *(;,E,iî;;o>Eo,5o)â(î - î, )i(E - E, ) 
0 0 V 
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œ 00 1+1T 

dñ'dE'dñ<iEdv[/(?,E,ñ;?1,E1,ñ1)x(E) 
J J J J j 
V 0 0 0 0 

X *(?,E\ñ';?o,Eo,í3o)vof(E’) - 0(?,E,f5;?o,Eo,Õo)vof(E) 

00 1*TT « llif 

X ^+(r,E',0'ñiJxÍE')] ’ j J ¿Lfl'dE'dÔdEdv 

V 0 0 0 0 

X [^(r.E.ÖjrLEi.Ö^oiE'^E.n'-^Joir.E',ñ';r E ,fi ) 

(^.15) 

0 0' O 

- 0(?,E,0;?o,Eo,ño)o(E-E',fi^')^+(?,E*,ñ';?1,E1,ÍJ1)] . 

The last two integrals in Equation ( - .15) are zero and the result is 

^?l.Ei,ñi;?oEo,ño) = ♦+(?o,Eo,ño;?1,E1,ñ1) . (U.16) 

The terms in Equation (U.l6) may be interpreted physically in the 

following manner: 

flux at r¡ ,£},0} due to a 

<l>(?l»Ei,fii;r ,E ,fi )dPi * unit source at r ,E ,0 = ooo o o o 

probability that a neutron emitted 

at ro,Eo,fio will contribute to the 

flux at r^E^Ôi s 

hence, 

probability that a neutron emitted 

^ ^0*E0»^0»^1*E1)dPl * at ro,Eo,fio will contribute to the (U.17) 

flux at rj.E!,^! . 

Using the general reciprocity equation, (U.l6), a transport prob¬ 

lem may be solved using either the forward or adjoint formulations of 

the transport equation. For example, the dose at a given point may 
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be determined by calculating the flux due to the specified source and 

then integrating the product of the flux and dose response at the 

point. The same answer is determined by calculating the adjoint 

flux due to a "source" which is the dose response function at the 

point in question, and then integrating the product of the adjoint 

flux and the true particle source over all space. 

A special case of the adjoint formulation is used for the prob¬ 

lem of determining the flux at a specific point in the space outside 

a system which has been calculated with discrete ordinates. The 

uncollided adjoint flux, is the probability 

that a particle emitted at r ,E ,ñ will contribute to the flux at 
r 0 0 0 

r^En«! without suffering a further collision. The spectrum at a 

point rj in space is then obtained by calculating the uncollided 

adjoint flux in each group due to a unit isotropic source at rj and 

then integrating the product of the total source distribution 

(including scattering) and the adjoint uncollided flux over the 

entire system, 

4>(ri ,E) «/(r.E.íUr^SÍr.E.^dv (U.18) 

The uncollided adjoint flux may be calculated analytically for simple 

problems by the same program which calculates the analytic first 

collision source. For more complex problems the uncollided adjoint 

flux can be calculated with the discrete ordinates code, starting 

with the adjoint flux on the surface as boundary condition. Although 

this is the most accurate method for calculating the spectrum at 
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points beyond the c&lculated system, the methods described previously 

are usually sufficient. 



I 

CHAPTER V 

THE SLAB EXPERIMENT 

The development of a major transport code such as DOT is an 

interesting and perhaps enjoyable task. However, when a working 

version of the code is finished one is faced with the problems of 

determining if the code is accurate, both in method and in pro¬ 

gramming, and evaluating the sensitivity of the solution to the 

choices made in the various free parameters. For a code based on 

a simple method with few options this procedure may be relatively 

easy. However, for a complex transport code, the process of 

exploring its accuracy and usefulness may require considerably 

more effort than the original development. In this study the 

problem is further complicated since the anisotropic two-dimensional 

discrete ordinates method in principle can be applied to any neutron 

and gamma-ray transport problem in two dimensions and is perhaps 

more powerful than any other two-dimensional method for deep pene¬ 

tration problems. 

After the DOT code was first made operable the usual test 

problems traditional to discrete ordinates codes were calculated 

to check basic operations. These test problems comprise critical¬ 

ity calculations for highly enriched systems and, at best, only 

test those features found in the older codes. As a first test of 

the extended capabilities of DOT, calculations of fast neutron 

transport in water in the ORNL Lid Tank geometry were performed. 

This system consisted of a semi-infinite body of water adjacent to 

90 
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a 71.2-cm.-diameter circular fission source plate and, through geo¬ 

metric transformations, can be calculated in one-dimensional plane 

and spherical geometry (26), as well as two-dimensional cylindrical 

geometry. The one-dimensional fast neutron dose in the Lid Tank was 

calculated with the ANISN code using spherical geometry with a point 

fission source and plane geometry with a plane, isotropic, fission 

source (26). The dose distributions in these calculations were then 

transformed to the actual geometry. This approach assumes that the 

fission rate is constant over the source and that no neutrons enter 

the tank after scattering behind the source plate. The final results 

of the one-dimensional comparisons are shown in Figure 13. A compar¬ 

ison with moments method and Monte Carlo calculations had been reported 

by Trubey (27). 

In the two-dimensional DOT calculation the Lid Tank was repre¬ 

sented by a cylinder of water 171.12 cm. in diameter and 150 cm. long 

and the source plate by a boundary condition on the inward-directed 

surface angular fluxes. For convenience the source was assumed con¬ 

stant over the plate, a fission spectrum was used, and the neutrons 

entering the system due to scattering behind the source plate were 

omitted. The cross sections were from GAM-II (l7) using 27 energy 

groups and a P2 expansion of the angle dependence of the scattering 

cross sections. The fast neutron dose distribution was calculated 

from the fluxes using Henderson single collision dose factors (28). 

Although off-centerline dose measurements were made at the Lid 

Tank Facility (29), these data were never published and are considered 

more questionable than the centerline data. In order to have a basis 
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DWG. NO. G-69-562 

Figure 13. Comparison of calculations and measurements of 
fast neutron dose in the ORNL Lid Tank. 
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of comparison for the two-dimensional calculation, the off-centerline 

dose is calculated by the kernel equation, 

2ir R 

D(R,Z) = S G(p)rdrda 

0 0 
(5.1) 

where p = distance from (r,a) to (R,Z), 

and G(p) is the dose at a distance p from a point fission source. 

The dose kernel G(p) is taken from the ANISN calculation of the point 

fission source in water. The comparison should be exact except for 

error in the numerical integration of Equation (5.1) and errors in 

the two-dimensional calculation. Comparison with experiment is 

inferred by the previous comparison of the ANISN kernel with the 

centerline dose as shown in Figure 13. 

The comparison of the results of the DOT calculation and the 

kernel integration is shown in Figure 14. The agreement for the 

most part is very good with discrepancies of less than 5% except 

for some points with Z's of 5 and 11 cm., and R's greater than 50 cm. 

These points view the source far to the side at very wide angles, 

giving rise to very steep flux gradients such that it is not sur¬ 

prising that the calculation would have difficulty with them. 

The agreement in this comparison indicates that the code con¬ 

tains no basic errors, and that the treatment of the general aniso¬ 

tropic inscatter integral is probably correct. The calculation is, 

after all, a relatively difficult penetration problem involving an 

overall dose attenuation of 10-8. Such a comparison, however, is 

not entirely satisfying. First, the comparison with experiment is 
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indirect and not thorough by any means. Dose comparisons also do not 

reveal errors in the spectrum or the angular distribution of the flux. 

Furthermore, as will be discussed in greater detail later, the instru¬ 

ment dose response is not known well enough to permit accurate com¬ 

parisons of dose in a soft spectrum. 

I. THE DESIGN OF THE TSF SLAB EXPERIMENT 

In order to gain insight into the effects of cross-section repre¬ 

sentation, quadrature, space mesh, source representation, and an over¬ 

all check on the capability of the method, an experiment providing 

accurate measurements of the angle-dependent fast neutron spectra 

emerging from optically thick shield materials is desired. Such an 

experiment was constructed using equipment and instrumentation which 

were available at the Oak Ridge National Laboratory Tower Shielding 

Facility. The foremost objective of the experiment was to signifi¬ 

cantly extend the available data which forms the basis for evaluation 

of radiation transport calculation methods. The best of these methods, 

such as Monte Carlo and discrete ordinates, may be intercompared in 

considerable detail. However, such comparisons suffer from a lack 

of reality and, of course, give no indication of the applicability 

of the cross-section data. On the other hand, a good experiment will 

give an indication of the true answer and will provide a basis of 

comparison for other calculations. 

The shielding experiments performed in the past are generally 

not usable for such comparisons. In most cases the experiments were 

designed to provide data for engineering designs and as such the 
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geometries were too complex for clean comparisons. In virtually 

all cases quantities such as tissue equivalent dose were measured. 

These integral quantities do not provide sufficient detail for 

evaluation of the calculations, and the dose response functions 

are not well known. Also, in most experiments the exact source 

intensity, space, and angle-dependent spectra were not measured. 

For a rigorous comparison of experiment and calculations, the source 

must be well known. 

A drawing of the TSF slab experiment configuration is shown 

in Figure 15. The TSR-II reactor (30) is a spherical assembly 

containing spherical highly-enriched plate-type fuel elements and 

is cooled and moderated by water. The reactor is surrounded by a 

two-zone, spherical, permanent shield. The first zone is approxi¬ 

mately 25 inches thick and is composed of 50% by volume lead shot 

and 50% water. The second zone is 23 inches thick and is composed 

of water. The reactor and shield assembly were placed in a concrete 

blockhouse which is 32 inches thick at the forward wall and 16 inches 

thick on the sides. 

The source beam was extracted with a collimator extending from 

the reactor primary containment vessel through the shields and block¬ 

house forward wall. The collimator design is the result of Monte 

Carlo calculations by E. A. Straker (31) and features convergent 

entrance and divergent exit sections which serve to reduce collima¬ 

tor scattering effects. The collimator was formed by four water- 

filled aluminum tanks and has a cylindrical throat with an inside 

diameter of 4.25 inches. 

i 
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The shield slab materials consisted of lead, polyethylene, and 

depleted uranium. The individual slabs were usually about one inch 

thick and were square nominally five feet wide. These slabs were 

placed on a steel support frame, perpendicular to the beam, and flush 

with the exit of the collimator. An eight-inch-thick lead collar was 

positioned between the slabs and the blockhouse wall so that media 

behind the slab could be included in the calculation. A six- 

inch-thick lead insert covered the entrance of the collimator to 

reduce the gamma-ray intensity. Lithium-impregnated paraffin blocks 

were stacked between the reactor housing and the inner blockhouse 

wall and behind and around the shield slabs to prevent neutron 

streaming around the slabs. 

The spectrometer housing consisted of an aluminum tank filled 

with borated water. A NE-213 liquid organic scintillator (32) was 

located on the centerline of the housing. The collimator in the 

spectrometer housing was tapered such that the entire surface of the 

scintillator was uniformly illuminated by the entire surface of the 

shield slabs. The spectrometer housing was supported by wheels and 

was attached by a tongue to a pivot point directly in front of the 

slabs. The spectrometer could rotate about the pivot point and 

remain oriented such that the collimator was directed at the center 

of the slab. 

II. INSTRUMENTATION 

The instrumentation used in the slab experiment was chosen from 

that available at the Tower Shielding Facility. The techniques used 
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for measurement of neutron dose and spectra are actually composed of 

both hardware, software (such as computer programs), and methodogy 

based on experience. These same measurement techniques have been 

used in other experiments and the experience gained has resulted in 

a completely dependable system of instrumentation. 

The principal measurement technique required in the slab experi¬ 

ment was fast neutron spectrometry using the spectrometer system 

developed by W. R. Burrus, V. V. Verbinski, R. M. Freestone, and 

the staff at the Tower Shielding Facility (33). A schematic diagram 

of this system is shown in Figure 16. The 1+.60-cm.-diameter by 1+.65- 

cm.-long cylindrical NE-213 liquid organic proton recoil scintillator 

was used as a compromise between sensitivity and resolution and 

because of its relatively isotropic response. A lU-dynode photomul¬ 

tiplier tube is coupled to the scintillator by means of a 0.63-cm.- 

thick lucite light pipe. The signal is removed at the eleventh 

dynode, amplified by linear preamplifier and amplifier and routed to 

a 1+00-channel multichannel analyzer. A modified Forte pulse-shape 

discriminator circuit takes the signals from the fourteenth dynode 

and anode and produces a small positive or large negative pulse if 

the signal is due to a gamma ray and a large positive pulse if the 

signal is due to a neutron pulse. These pulses determine trigger 

and routing signals which are sent to the multichannel analyzer and 

result in the linear signal from the eleventh dynode being stored and 

identified as a gamma-ray pulse or neutron pulse. 

The neutron pulse-height distribution is input into the computer 

code, FERDOR, which unfolds the neutron spectrum giving, as a function 
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r WG. NO. 0-69-565 

Figure 16. A schematic diagram of the neutron spectrometer system. 
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of energy, the upper and lower probable count rate which would be 

given by an ideal Gaussiem response spectrometer. The probable error 

which is indicated represents counting statistics, errors in the 

numerical unfolding procedure, and errors in the response functions 

used in the unfolding. The complete spectrometer system has been 

extensively verified and used in several experiments such as the 

measurement of uncollided spectra transmitted by extremely thick 

samples (31*). 

Two fast neutron dosimeters were used for certain special 

measurements during the experiment. A diagram of the dosimeter 

instrumentation and logic is shown in Figure 17. The Hurst dosi¬ 

meter (35) is a proton recoil device having a polyethylene-lined 

chamber filled with a hydrocarbon gas and is operated as a propor¬ 

tional counter. The Hornyak button (36) is a scintillator formed 

by zinc sulfide crystals dispersed in lucite plastic. The emitted 

light is detected by a photomultiplier tube, and the signals from 

the two detectors are similarly amplified. The output pulses from 

the amplifier are processed by an electronic integrating circuit, 

a pulse height selector circuit, PHS, and a multichannel analyzer. 

The electronic integrating circuit converts the pulse height 

to a relative time constant. An electronic gate is opened such that 

a four-megacycle oscillator is operated for a time equivalent to the 

relative time constant. The total number of oscillations per second 

for a given counting period is assumed proportional to the neutron 

dose rate. 
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DWG. NO. G-69-566 

Figure 17. A schematic diagram of the fast neutron dosimeter system. 
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In the pulse height selector circuit the total number of pulses 

above a particular height are counted, and this is assumed to be pro¬ 

portional to the dose. For calibration and instrument checking the 

PHS reading is taken for several voltage settings and the curve formed 

by the collection of points is integrated numerically to give an 

approximation to the total energy being detected. The nominal PHS 

readings give a good approximation of the dose only «hen the neutron 

spectrum is the same as that used for the calibration. 

The multichannel analyzer stores the count for an individual 

pulse into a channel corresponding to the energy of the pulse. The 

data in the analyzer is summed in either of two equivalent ways to 

get the total energy. The first method is to sum the product of the 

counts per channel and the channel, 

256 

E ’ n«l nC(n) ’ (5.1) 

»here it is assumed that the channel number is proportional to the 

energy. The second method is to sum for each channel the counts in 

and above that channel, 

2§6 
K(m) = J c(n) , {5.2) 

n=m 

and then numerically integrate the curve given by K(m). Although 

Simpson's rule integration is normally used, one may note that 

trapezoidal integration of K(m) is equivalent to Equation (5.1); 



(5.3) 

lOU 

256 256 256 

I ¿ c(n) = I lc{SL) . 
m-1 n=m )1=1 

The function K(m) is similar to a PHS curve with many thresholds. 

The dose rate for a given run is given by the total energy divided 

by the counting time, 

Da|- (5.M 

The dosimeter system is calibrated with a known Po-Be source 

which gives a specified dose at a fixed distance. All three tech¬ 

niques given above will thus give the same dose readings for neutron 

spectra similar to that of the Po-Be source. For spectra with a 

significant low energy component all three dosimeter analysis methods 

give erroneous readings due to the bias necessary to reject gamma- 

ray pulses which are similar to low energy neutron pulses. In the 

multichannel analyzer technique the low-energy pulse height distri¬ 

bution is given by extrapolating back from higher energies where 

the gamma rays do not contribute. The neutron dosimeter does not 

provide information concerning the energy dependence of the flux and 

gives questionable results when the flux spectra differs from that of 

the calibration. It should be used for measurements only when the 

spectrometer cannot be used. 

Another instrument which was used to estimate the source spectrum 

below 1 MeV was the low energy spectrometer developed and operated 

by T. V. Blosser (37). This device consists of a BF^ chamber in a 

B^C housing with a cylindrical collimator. The count rate is 

measured with the collimator uncovered and then covered with several 
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thicknesses of B^C. A foil measurement is made in order to normalise 

the BFj data. Given the count rate as a function of foil thickness, 

one assumes a spectra such as a Maxwellian and a 1/E shape connected 

“ transiti°" ««ion and folds the spectra with the response of 

the detector to determine the several count rates. These are comparât 

with the measured count rates and adjustments are made in the assumed 

shape until the comparison is satisfactory. This is more of an art 

than a science and success depends upon considerable prior knowledge 

of the spectrum. 

III. DISCUSSION OF MEASUREMENTS 

During the course of the experiment, extensive data were taken 

using the instrumentation previously discussed. Some of this data 

will be presented later in this chapter and in the selected compar. - 

sons with calculations discussed in Chapter VI. A list of the 

NE-213 spectra measurements is given in Table III and the dose 

measurements in Table IV. Appendix I contains most of the unfolded 

spectra from the »E-213 measurements in tabular form. Appendix II 

contains selected portions of the dose data. Some of the dose 

measurements were for internal checks and adjustments such as 

locating the exact beam position and need not be reported. 

The slabs used in the measurements do not represent real 

shielding configurations for specific engineering applications. 

For the purpose of establishing the accuracy of a calculational 

method it is sufficient to study arbitrary materials as long as 

the basic transport mechanisms are present. This study includes 
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TABLE III 

FAST NEUTRON SPECTRA MEASUREMENTS 

Material Angle TSF Run Number 

Bare Beam 0° 
Bare Beam 4.16° 
Bare Beam 8.6° 
Bare Beam 0° 
Bare Beam l*.l6° 
Bare Beam 8.6° 
Bare Beam 0° 

6 in. CH2 0° 
6 in. CH2 13° 
6 in. CH2 30° 
6 in. CH2 30° 
11 in. Pb 0° 
11 in. Pb 13° 
11 in. Pb kj° 
11 in. Pb 6h° 
11 in. Pb 0° 
11 in. Pb 13° 
11 in. Pb 30° 
11 in. Pb 1+7° 
11 in. Pb 6h° 
Lam. Pb-CH2 0° 
Lam. Pb-CH 2 13° 
Lam. Pb-CH2 30° 
Lam. Pb-CH2 30° 
Lam. Pb-CH 2 1+7° 
Lam. Pb-CH2 6I40 
5.5 in. U 0° 
5.5 in. U 130 
5.5 in. U 300 
5.5 in. U 1*7° 
5.5 in. U 6h° 

22C - 22D 
2I4A - 2hB 
23A - 23B 
33A - 30C 
33B - 29F 
33C - 29E 
50B - 5OC 
37A - 37B 
7ÛA - 7IA 
38b - 38C 
5IA - 5IB 
19F - 19G 
19H - 191 
20B - 20C 
20D - 20E 
39C - 39D 
I46B - kjA 
39E - i*0B 
1*0C - 1+0D 
1*5A - 1+5C 
73A - 73B 
7lD - 7^E 
75E - 75F 
82A - 82A8 
76e - 76e8 
76g - 76g8 

163c - 163C8 
l61*A - 160B 
163B - 159c 
157B - I6IB 
158a - I6IC 
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TABLE IV 

DOSE MEASUREMENTS 

Horizontal traverse 1 in. from Pb collar 
Hornyak Button 

Linear traverse along beam centerline 

Vertical traverse U ft. from Pb collar 

Horizontal traverse 30 ft. from Pb collar 

Horizontal traverse 30 ft. from Pb collar 

Vertical traverse h ft. from Pb collar 

Horizontal traverse k ft. from Pb collar 

Horizontal traverse 3-7/8 in. from Pb collar 

Vertical traverse 30 ft. from Pb collar 

18 ft-10 

Bare beam at radius of 2'J.h ft 
0. ^.16, and 8.6° 

Pb slabs at radius of 21.h ft. 
0» 13» 30, kj t and 61*0 

. and angles of 

and angles of 

CH2 slabs at radius of 27.¼ ft. 
of 0, 13, 30, 1*7, and 6¼0 

and angles 

Hornyak Button 

Hornyak Button 

Hornyak Button 

Hurst Dosimeter 

Hurst Dosimeter 

Hurst Dosimeter 

Hurst Dosimeter 

Hurst Dosimeter 

Hurst Dosimeter 

Hurst Dosimeter 

Hurst Dosimeter 

Hurst Dosimeter 

Lam. slabs at radius of 2J.h ft. 
0, 13, 30, 1*7, and 6¼0 

and angles 

Horizontal traverse 1-3/1* in. from Pb slab 

Horizontal traverse 2 in. from CH2 slab 

Horizontal traverse 1-3/1* in. from Lar., slab 

Horizontal traverse 1 in. from U slab 

Hurst Dosimeter 

Hornyak Button 

Hornyak Button 

Hornyak Button 

Hornyak Button 
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the two extremes, a light, hydrogenous m-iterial, CHM, and heavy 

metals, Pb, and depleted uranium. A lamination of lead and poly¬ 

ethylene, 1-1/2 in. Pb - 1 in. CH^ - 1-1/2 in. Pb - 1 in. CH2 - 

1-1/2 in. Pb - 1 in. CH^ - 1-1/2 in. Pb, was also included. The 

thicknesses of the slabs, 6 in. CH2, 11 in. Pb, 5.5 in. U, were 

determined by the availability of materials and the minimum inten¬ 

sity for reasonable measurements times. The intensity at a reactor 

power of 100 kilowatts is such that much larger slab thicknesses 

could be used at an angle of 0° but not at the larger angles and 

still get good counting statistics. Wide angle measurements for 

polyethylene were also prohibited by the high gamma to neutron 

ratio. For the heavy metals the reactor gammas were removed and 

large angle measurements could be made. 

One objective of the experiment was to provide data which is 

sufficiently differential to demonstrate various transport effects 

and yet could be readily measured such that counting statistics 

were reasonable and comparisons with calculations straightforward. 

The most differential form for the leakage flux in a transport cal¬ 

culation is the surface angular flux, <i>(r ,E,fi), a function of 
s 

position, r , energy, E, and angle, H. The angle-dependent spectra 
s 

measurements effectively measure the surface integral of the angle- 

dependent current, and the dose traverse measurements made directly 

on the shield surface measure the radial dependence of a weighted 

integral of the flux. Although in the real case the flux is not 

separable, the geometry is such that the radial dependence of the 

flux is similar for each energy and angle. Thus, if the transport 
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calculations agree with the two different measurements, these taken 

together infer that the calculation of the angular flux is essen¬ 

tially correct. Of course, the comparisons taken separately allow 

precise comparisons and give good indications of the accuracy of 

the transport calculation. 

Since the purpose of the experiment was to provide data for 

detailed comparisons with transport calculations, it was of utmost 

importance that the source term for the calculation be accurately 

determined. For this reason a large portion of the experimental 

effort was devoted to measurements relating to the determination 

of the source. It is assumed that the source is separable in space, 

energy, and angle. This is generally a good assumption for a well 

collimated source which may thus be described by a radial dependence, 

energy dependence, and angle dependence at the slab entrance, 

S(r,E,ñ) = f(r)g(E)h(ñ) . (5.5) 

The radial distribution, f(r), is determined from a Hornyak 

button traverse at a distance of one inch from the outer surface of 

the lead collar. A t>lot of this data is shown in Figure l8. The 

dose was essentially constant from the centerline of the collimator 

to a radius of slightly over two inches, which corresponds to the 

radius of the long cylindrical section of the collimator. The dose 

then drops rapidly with increasing radius. Although the shape was 

incorporated into the calculations, it is an excellent approximation 

to assume a flat distribution up to a radius of 2-1/8 inches and a 

value of zero elsewhere. The Hornyak button used for this traverse 

was 1/2 inch in diameter and I/16 inch thick, which gave a reasonably 
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Figure 1Ö. Horizontal traverse with Hornyak button 
one inch from the collimator exit. 
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good resolution of the shape. The Hurst dosimeter, which is two 

inches in diameter, is too large to resolve the shape, and the 

NL-213 scintillator is too sensitive to reactor gammas as well as 

being too large. 

The angular distribution, h(ñ), is determined from three 

NE-213 measurements made at a radius of 27.1* feet and angles of 

0, i*.i6, and 8.6°. The unfolded spectra from these measurements 

are shown in Figure 19. The intensity falls very rapidly with 

increasing angle with an angle at half maximum of less than 1+° 

and falling by two decades at an angle of 8.6°. The assumption 

that the source is separable in energy and angle is substantiated 

by these data since the spectrum is quite similar for the three 

angles. Although the angular distribution of the source could be 

incorporated into the calculations with considerable difficulty, 

the collimation is such that one can assume that the source is mono- 

directional at 0°. In a discrete ordinates calculation the source 

is input in the angle nearest 0°. 

The energy distribution, g(E), of the source is determined 

from the unfolded NE-213 data at 0° such as that shown in Figure 19. 

As mentioned previously, the source below l MeV. was estimated from 

the B^C filtered BF^ spectrometer. The source spectrum in lethargy 

units is shown in Figure 20. The source below a lethargy of 2.6 

is from the unfolded NE-213 data and the remaining data is from the 

BF3 data. The two portions of the curve are given in their absolute 

intensities as measured and thus show excellent agreement in the 
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region of overlap. The low energy source data is used only for the 

calculations of relative dose shape and for the depleted uranium 

where fissions must be included. 

The intensity of the source is based primarily on the unfolded 

NE-213 data at 27.1* feet radius and 0°. This gives the flux inten¬ 

sity in the flat portion of the horizontal traverse at a distance 

of 21.k feet from the collar. This intensity was scaled to that 

for the location at the collimator exit by two Hornyak button measure¬ 

ments, one at the NE-213 location and one at the collimator exit. This 

gave the intensity in the flat portion of the horizontal traverse at 

the collar interface. The 0° energy distribution scaled to the inten¬ 

sity at the collimator exit is shown in Figure 21. In the calculation 

the source energy, space, and angle distribution was adjusted such 

that the flux spectrum in the center of the flat portion was that 

given in Figure 21. This adjustment was based on only one group 

such as the first energy group since the energy distribution was 

already incorporated. These calibrations indicate that at a reactor 

power of 100 kilowatts, 7.05 x 1010 neutrons per minute entered the 

slabs with energies greater than 0.8 MeV. 

The reproducibility of the experiment, which is the ability 

to obtain the same data on different runs, depended on the calibra¬ 

tions of the reactor power and the detection instrumentation. The 

reactor power was monitored independently by several BF^ chambers, 

and, although the actual power used for a given run depended on the 

intensity at the detector, all data was reported as scaled to a 

reactor power of 100 kilowa,tts. The Hurst dosimeter and the NE-213 
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scintillator were calibrated with a known Po-Be source, and t, known 

Co^° source was also used for the NE-213. The NE-213 pulse heght 

distributions for the Po-Be source were taken at the beginning and 

end of each run and compared to detect possible changes. Periodi¬ 

cally these pulse height distributions were unfolded to see if there 

were changes which could be detected in the unfolding. 

As a test of the experimental reproducibility several of the 

NE-213 measurements were repeated over periods separated by several 

weeks. Figure 22 shows two bare beam measurements at 0°, runs 

33A + 30C and 50B + 50C, and Figure 23 shows two measurements for 

the polyethylene slabs at 30°, runs 38B + 3ÖC and 1+1A + 51B. In 

each case the two runs are plotted a factor of ten apart so that the 

two sets of data can be distinguished. As is demonstrated in these 

comparisons the reproducibility is excellent. 
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CHAPTER VI 

COMPARISONS OF RESULTS OF DISCRETE ORDINATES 

CALCULATIONS WITH THE SLAB EXPERIMENT 

The procedure followed during the development of the techniques 

described in Chapters II, IH, and IV was to perform calculations of 

the experiments described in Chapter V for each improvement. Each 

calculation, at the time it was performed, represented the best 

calculation which could be done for the given experiment. The exper- 

iments provide a basis for determining the sensitivity of the calcu¬ 

lations to the space-angle mesh, number of groups, anisotropic cross- 

section expansion, and cross-section weighting procedure. The main 

purpose in this chapter is to demonstrate the accuracy and versatil¬ 

ity of the method. 

In calculations for the determination of dose rate, heating, 

damage, or multiplication factor a broad group structure may usually 

be found which, through good cross-section weighting, gives an accur¬ 

ate answer economically. However, for spectra comparison the finest 

group structure that can be used is preferred since the objective is 

shape comparison. The group structure which was used for the spectra 

comparison calculations contains the first 30 fine groups of the 

99-group GAM-II structure. The broader group structure which was 

used for dose calculations and for the depleted uranium, where 

fission iterations were done, is a 38-group structure extending 

from 15 MeV to thermal. The energy bounds for these two group 

structures are given in Table V along with the single collision 

dose factors for the 38-group structure. The dose response numbers 
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TABLE V 

ENERGY GROUP STRUCTURES AND DOSE FACTORS 

Upper Energy- 
Bounds of 30 

Group Group Structure 

a 
Upper Energy Dose Factors 
Bounds of 38 for 38 Group 

Group Structure Structure 

1 
2 
■3 

k 
5 
6 
7 
8 
9 

10 
11 
12 
13 
Ih 
15 
16 
17 
18 
19 
20 
21 
22 
23 
2h 
25 
26 
27 
28 
29 
30 
31 
32 
33 
31* 

35 
36 
37 
38 

1.1*92 X 107 eV. 
1.350 X 107 
1.221 X 107 
1.105 X 107 
1.000 X 107 
9.01*8 X 106 
8.I87 X 106 
7.1*08 X 106 
6.703 X 106 
6.065 X 106 
5.1*88 X 106 
U.966 X 106 
1*.1*93 X 106 
1+.066 X 106 
3.679 X 106 
3.329 X 106 
3.012 X 106 
2.725 X 106 
2.1*66 X 106 
2.231 X 106 
2.019 X 106 
1.827 X 106 
1.653 X 106 
1.1*96 X 106 
1.353 X 106 
1.225 X 106 
I.IO8 X 106 
1.003 X 106 
9.O72 X 105 
8.209 X 105 
7.1*27 X 105 

1.1*92 X 107 eV. 
1.221 X 107 
1.000 X 107 
8.I87 X 106 
6.703 X 106 
5.1*88 X 106 
1+.1+93 X 106 
3.679 X 106 
3.012 X 106 
2.1*66 X 106 
2.019 X 106 
I.653 X 106 
1.353 X 106 
I.IO8 X 106 
9.072 X 105 
7.1*27 X 105 
6.O8I X 105 
1+.979 X 105 
1+.076 X 105 
3.337 X 105 
2.732 X 105 
2.237 X 105 
1.832 X 105 
I.5OO X 105 
I.228 X 105 
8.652 X 104 
3.183 X 104 
1.171 X 104 
1+.307 X 103 
I.585 X 103 
5.830 X 102 
2.1I+5 X 102 
7.889 X 101 
2.902 X 101 
I.O68 X 101 
3.928 X 10° 
1.1+1+5 X 10° 
thermal^3 

I.969 X 10"5 
I.869 X 10'5 
1.7l*0 X 10'5 
I.691 X 10-5 
1.621 X 10“5 
I.561 X 10"5 
1.553 X 10“5 
1.1*21 X 10"5 
I.226 X 10"5 
1.131 X Kf5 
I.062 X 10"5 
9.680 X 10”6 
9.O25 X 10-6 
8.1+1+1+ * 10'6 
7.21*1 X 10-6 
6.532 X 10"6 
6.025 X 10"6 
5.527 X 10-6 
1+.859 X 10’6 
1+.069 X 10“6 
3.792 X 10‘6 
3.592 X 10”6 
3.158 X 10’6 
2.71*8 X 10'6 
2.287 X 10"6 
I.289 X 10-6 
5.516 X 10"7 
7.26O X 10~8 
2.67O X 10"8 
9.830 X 10”9 
3.620 X 10“9 
l.Ol+O X 10"9 
1+.890 X 10-10 
I.8OO X 10‘10 
6.600 X IO"11 
2.1*30 X IO“11 
7.900 X IO-12 
3.100 X IO"13 

^ose response units are rads/hr./neutron/cm.2/sec. 

b . . 
Thermal group extends up to 0.411+ eV. 



for groups ! through 26 sre th, single collision dose .actors reported 

by Henderson (28) and are used for comparison with the Hurst dosimeter 

measurements. For comparison with the Hornyak button measurements, 

the dose response numbers are „tended to thermal assuming that they 

are proportional to energy. 

Two source representations were used. The first method used a 

space-angle-energy-dependent boundary condition which was incorporated 

into HOT. The energy and radial distributions were based on th. 

source data provided in Chapter V. The neutrons were assumed to be 

normally incident on the slab and were input into the discrete direc¬ 

tions nearest the „is. I» calculations performed prior to the devel¬ 

opment of '•tailored „uadrature," the input of the source into the 

near 13° directions of the S10 quadrature which was then in use made 

it difficult to determine the collided flux at 13«. With the develop- 

-snt of highly refined quadratures it was possible to use this source 

input for calculations for comparison with the 0 and 13« measurements. 

The second source representation also used the assumption of a mono- 

directional source, but the analytic first collision source technique 

discussed in Chapter IV was used. These DOT calculations, which 

included only the collided component of the flux, were most important 

for the 0 and 13« comparisons. The comparisons at larger angles and 

the 38-group dose calculations were fairly insensitive to the cnoice 

of source representation. 

The space mesh (radial and „ial intervals) was nearly the same 

for all problems which were calculated. All of the slabs were five feet 

square and were represented as cylinders 86.0 cm. in radius. The 
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radial mesh contained four equally spaced intervals from 0.0 to 

5.398 cm. and 4l equally spaced intervals from 5.398 cm. to 86.0 cm. 

The lead, polyethylene, and uranium calculations contained 15 equally 

spaced axial intervals from 0.0 to 27.9^, 15.21*, and 13.97 cm., 

respectively. These calculations thus contained 675 space points. 

The laminated lead-polyethylene slab contained three equally spiced 

axial intervals in each of the four 3.8l-cm.-thick lead slabs and 

two equally spaced intervals in each of the three 2.5l+-cm.-thick 

polyethylene slabs. Calculations performed for comparison of dose 

profiles near the back of the slabs contained three additional axial 

intervals in order to calculate the transport effects due to the 

small separation distance between the slab surface and the detector. 

The following sections are concerned with the cross-section data 

and specific quadrature used for the specific slabs. The lead slabs 

have an atomic density of 3.3 x 1022 atoms/cm.3 The polyethylene 

has a composition of 7.729 x 1022 atoms/cm.3 of hydrogen and 

22 3 
3.865 x 10 atoms/cm. of carbon. The uranium slab composition is 

20 3 
1.202 X 10 atoms/cm. of uranium-235 and U.72I x 1022 atoms/cm.3 

of uranium-238. These data, along with the source description, 

energy group structure, and space mesh, completely describe the trans¬ 

port calculations which were performed with DOT. The neutron spectra 

at the spectrometer location were calculated both with the SPACETRAN 

method described in Chapter IV and the simplified method given in 

Equation (U.IO). These methods give essentially the same answer 

since the detector is sufficiently far away that the distance from 

any point on the slab surface to the detector is essentially constant. 



The transport caieulatlons In these slabs are rather severe 

two-dimensional problems. The radial gradients, which are due to 

the source, are steep and change rapidly with penetration into the 

slab. The axial gradients, which are due to penetration, are signif 

icant and of course vary rapidly with radius. The comparisons pro¬ 

vide a good test of the transport code since both penetration and 

lateral spreading of the flux distribution due to scattering are 

important effects. 

Since the spectrometer views the entire surface of the sitó at 

such a distance that the angle to any point on the slab is essen¬ 

tially constant, calculations of the spectra may be performed to a 

good approximation with a one-dimensional code. In order to do this, 

the source is input on the surface of the on.-dimensional sitó as « 

infinite parallel beam. If the source is normalized to the total 

intensity of the source, the angular current at the exit face, 

divided by the square of the distance to the detector, gives the 

absolute intensity at the detector. Several one-dimensional AHISN 

calculations were performed for the experiment, and they agreed well 

with the DOT results. 

I. THE LEAD SLAB 

A large proportion of the effort was devoted to the leal slab 

measurements. This was due to the fact that during the early calcu¬ 

lation. the disagreements were more severe in the conparlsons with 

lead tnan in those for polyethylene and the laminated slab. This 

»... primarily attributed to the very high degree of anisotropy for 
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elastic scattering of high energy neutrons in lead. Early calcula¬ 

tions were performed with 30-group GAM-II (17) cross sections with 

the maximum available P3 expansion of the scattering cross section. 

Since the disagreements were probably due to the scattering aniso¬ 

tropy, it was deemed necessary to obtain cross sections of a higher 

cross-section expansion. Elastic scattering data from the Aldermaston 

data file (38) were processed for the 30-group structure using the 

CSP code (39), which was based on the elastic scattering routine, 

TRANSFER ()+0). The multigroup inelastic scattering data from GAM-II 

were merged with the multigroup elastic data from CSP to form the 

complete set of transfer tables necessary for the discrete ordinates 

calculations. 

Figure 21+ shows comparisons of calculations and experiment for 

the 0° measurement for lead. These calculations required the use of 

the analytic first collision source routine, AFCS, in order to separ¬ 

ate the collided and uncollided components. The uncollided flux, using 

the AWRE data, was obtained by taking the multigroup values for the 

bare beam spectra at the detector location and multiplying by expo¬ 

nential attenuation factors using the multigroup total cross sections. 

Two collided flux calculations are shown, both using the AWRE data with 

a Pg scattering expansion. In one calculation an S10 quadrature 

resulting from a solution of Equation (1+.2) with P10 Legendre zeroes 

for Mk and ^ was used for the iterations. This was followed by a one- 

iteration calculation with a quadrature denoted by the symbol S130, 

which was composed of the original S10 quadrature with the first level 

replaced by 11 levels having level weights and polar cosines given by 
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an order-96 Gaussian quadrature with azimuthal angles from the origi- 

nal si(j quadrature. This quadrature thus has 11 levels with three 

angles each, followed by the regular quadrature progression, 

omitting the first level. This modification gives a resolution of 

about Io in the polar angle nearest the axis. The method is based 

on the assumption that the transport within the slab is adequately 

calculated with the quadrature, and the high resolution quadra¬ 

ture is necessary only to define the angular flux as seen by the 

detector. At the end of the calculation, all of the spherical 

harmonic coefficients describing the scattering source were saved 

and then input into the calculation. In the calculation 

the convection terms of the discrete ordinates difference equation 

used the new quadrature, while the scattering source was defined by 

the S10 This is similar in concept to using a last flight 

estimator to obtain the results at the detector. A check was per¬ 

formed by using the S^q quadrature throughout the iterations. The 

results for this calculation are shown for the first three groups 

below which the collided calculations give exactly the same answers. 

The sum of the uncollided and collided components is shown as 

a histogram. The other points actuall’ represent the midpoints of 

histogram levels. The sum curve agrees very well with the experimen¬ 

tal values. In an attempt to determine the effect of total cross- 

section uncertainty on the results, a few points were calculated 

using point data from BNL-325 (^1). Since point data were used, the 

results for a group are given as two numters. The upper number was 

obtained using the minimum cross section in the group energy range, 
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and the lower value was obtained using the maximum cross section. 

The average value for the group must thus fall between these two 

points. At 11.6, 9.5, and 5.8 MeV., the uncollided flux obtained 

with the AWRE data lies outside the range given by the BNL data. 

In these cases the indicated uncertainty is comparable to or greater 

than the disagreement between the calculation and the experiment. 

Although the BNL data appears to give much better results, partic¬ 

ularly at 9.5 MeV., a transport calculation cannot be performed with 

these data since only the total cross sections are given. 

Figures 25 through 28 show comparisons for the lead slab at 

13, 30, 1+7, and 61+°. For the 13° comparison only calculations 

using the analytic first collision source can be used since this 

is the angle into which the boundary source was introduced. The 

calculation using GAM-II data gave a spectrum which is consistently 

low. This effect is largely due to the scattering approximation 

as is demonstrated by the results of the calculation with the AWRE 

data using the P3 approximation. At this angle, the S^-Pg, 

S10-130"P8’ S13o"P8 calculations all agree with each other. 

In the 30° comparison the effect of source description, as well 

as cross-section type, and Pn expansion are shown. The S^-Pg calcu¬ 

lation with the analytic first collision source gave negative fluxes 

for the first three groups at this angle and gave a much lower spec¬ 

trum than the S^-Pg calculation with boundary source for the next 

few groups. These two calculations agree better as the energy 

decreases and have identical answers below 6.5 MeV. The effect of 

Pn is demonstrated by the S1Q-P3 and S^-Pg calculations using AWRE 
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data and boundary sources. At 11.6 MeV . the P3 result is almost a 

factor of two higher than the Pg result, at 9.5 MeV. the Pg result 

is about 25 percent higher, and below 5.78 MeV. the results are vir¬ 

tually identical. The results of the S^-Pg calculation using GAM-II 

cross sections are higher than the other calculations and appear to 

agree with experiment better at energies below 6 MeV. 

The calculations denoted by the symbol S^-PgiP^) used cross 

sections with a forward scattering delta function approximation for 

within-group scattering. In this approximation the P^ within-group 

scattering angular distribution, which is given by a five-term 

Legendre series, 

f(u) = ! ¿ (2Î.+1)f P (y) , (6.1) 

H=0 

is replaced by a four-term Legendre series, plus a delta function, 

f'(p)“| I (2m)f'Ps(y) + C 6(u-l). (6.2) 
£*0 

The coefficients, f and C, are determined by equating the expressions 

in Equations (6.1) and (6.2), multiplying through by a Legendre poly¬ 

nomial, Pn(u)» when n varies from zero to four, and then integrating 

over y. Since it is true that 

1* 

l 
1=0 

+1 
* 

(2£+l)fîPi(y)Pn(y)dy 

-1 

= 2f_ for n < 1 

= 0 
9 

for n > 1 
(6.3) 
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and 

+1 

C 6(p-l)P (p)dy = C , 
n (6.U) 

-1 

then the results of the above operations are 

= f£ - c for £ _< 1* 

and 
(6.5) 

Since the actual multigroup transfer coefficients contain the (2£+l) 

factors, the coefficients are modified by 

(6.6) 

The modified four-term Legendre series coefficients are used in the 

scattering integral and the delta function is accounted for by sub¬ 

tracting f^ from the total cross section. This has the effect of 

replacing a straight-ahead scattering by no scattering at all. The 

results of calculations with this modification were contradictory 

in that agreement with experiment is better than that with the P3 

approximation at some energies and angles and worse at others. 

The lead comparisons at 1*7 and 61*° show the same tendencies as 

the 30 comparison. The ability of the method to accurately calcu¬ 

late the changes of the spectrum with angle appears to be good. 

Figure 29 shows the comparison of the calculated and measured 

dcse profile for the lead slab. The detector was a Hornyak button 

1/2 inch in diameter and 1/16 inch thick. The center of the detector 
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was located 1-3/1* inches from the face of the slab during the traverse. 

This was accounted for by the three additional axial intervals in the 

void beyond the slab. The dose profile was calculated in the third 

interval which was l/l6 inch thick and centered 1-3/1* inches from the 

slab. The comparison of the dose shape with experiment is very good 

out to a radius of ll* inches. The disagreement beyond this point may 

be due to background, to the lack of knowledge of the low energy 

response of the Hornyak button, or to a lack of convergence. 

II. THE POLYETHYLENE SLAB 

Figure 30 shows the comparison of experiment and uncollided flux 

calculation for the polyethylene slab at 0°. This calculation was 

performed by hand using the multigroup total cross sections in the 

same manner as for lead at 0°. The collided flux for this case is 

not significant in comparison with the uncollided flux and is there¬ 

fore not included. The agreement of the uncollided flux with experi¬ 

ment is excellent except for the groups at 7.8 MeV., 2.87 MeV., and 

below 1.0 MeV. The cross sections are from the ENDF-B (1*2) data file 

and were reduced to multigroup-multitable form by the CSP code (39). 

The results of an uncollided calculation using GAM-II data is also 

shown. 

Figure 31 shows the comparison of calculated and experimental 

results for the polyethylene slab at 13°. The S10-P3 calculation 

using GAM-II cross sections agrees well with experiment from 1.5 to 

1*.0 MeV., but is as much as a factor of two or three low at higher 

energies. The S10-P3 calculation using ENDF data shows similar 
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results. The calculation using ENDF data agrees much better 

but is as much as 50$ low at high energies. It is interesting to 

note that the collided flux at Io from the calculation is 
130 o 

still 25$ low at high energies. This indicates that either the 

basic scattering angular distributions are wrong or that Pg is not 

a sufficient approximation for an exact comparison. 

Figure 32 shows the comparisons for the polyethylene slab at 

30°. The agreement of the calculation with the experiment 

is excellent. The effect of using a P^ approximation is less than 

20$ at the highest energies and is insignificant below 7 MeV. The 

use of an quadrature instead of also is a small effect. 

The rapid dropoff of the experiment below 1.25 MeV. in both this 

and the 13° measurement is not understood and may be due to errors 

in the unfolding. 

The comparison of the radial dose profile for the polyethylene 

slab is shown in Figure 33. For this measurement the detector center- 

line was located two inches from the surface of the slab due to the 

uneven or wavy surface. During the traverse the location of the detector 

was measured from the surface of the lead collimator collar so that 

at a given location the distance from the polyethylene surface may 

be more or less than two inches. Nevertheless, the calculated and measured 

profiles agree quite well. 

III. THE LAMINATED SLAB 

The laminated slab experiment was performed to answer the obvious 

question as to whether the transport method could calculate laminated 
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Figure 33. Comparison of calculated and measured 

dose profiles for the polyethylene slab. 
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systems. The slab was composed of four 1-1/2-inch lead slabs and 

three one-inch polyethylene slabs. From an analytical point of view 

there is no reason to suspect that the discrete ordinates transport 

method would be limited to homogeneous systems. Thus, the ability to 

calculate good results for lead and polyethylene separately implies 

the ability to calculate the laminated slab. For this reason, and 

due also to the considerable effort involved, the laminated slab 

was not studied as completely as were the individual lead and 

polyethylene cases. 

Figure 31* shows a comparison of the results of calculations 

and the experiment for the laminated slab at 30°. The spectrum 

shows some similarity with both the lead and polyethylene spectra. 

The agreement of the calculation with the experiment is also simi¬ 

lar to that for lead. The results of the calculation with 

GAM-II data agrees well up to 6.5 MeV. and then is quite high at the 

upper energies. The S^q^q-Fq calculation using AWRE and ENDF-B 

data shows better agreement. The comparison of calculated and 

measured dose profiles is shown in Figure 35. The shape of the 

dose traverse also shows the effects of both media in that it is 

steeper than that for lead but not as steep as that for polyethylene. 

The disagreement at large radii is similar to that observed for lead 

and is not considered a significant difficulty because of the low 

intensity along with the possibility of background effects. 
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Figure 35. Comparison of calculated and measured 
dose profiles for the laminated slab. 



IV. THE URANIUM SLAB 

The depleted uranium slab received even less attention in the 

analysis effort than the laminated slab. Originally the uranium 

slab was included in the study because of the disagreements shown by 

lead slab calculations (with GAM-II cross sections) and experiment 

at high energies. It was thus desirable to obtain experimental data 

for another heavy metal which has highly anisotropic elastic 

scattering. The depleted uranium was available and the cross 

sections were considered well known. When the AWRE data were made 

available for the lead calculations and the cross-section effects 

were identified, the necessity for studying anoti.er heavy metal 

became less urgent. 

Figure 36 shows the comparison of calculated and measured spectra 

for the uranium slab at 30°. The first calculations performed for 

uranium were similar to those for the other slabs. The GAM-II 

cross sections with 30 fast groups were used along with the boundary 

source description. For the uranium comparison the high energy 

groups agreed fairly well but for the lower energies the calculation 

was low by a factor of two or more. It was then found that the 

fissioning of the uranium in the slab was important. A calculation 

using GAM-II cross sections in the 38-group structure was then per¬ 

formed such that both the fixed boundary source and the fissioning 

of the slab were included. Of course, this required power or outer 

iterations in order to compute the distribution of fissions within 

the slab. It was found that for every neutron incident on the slab 
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from the beam, 0.338 neutrons were produced from fission. For this 

calculation the spectrum above 0.8 MeV given by the first 15 groups 

of the 38-group structure is shown in Figure 36. The agreement of 

this calculation with experiment is much better. An extensive study 

of the uranium data using different cross-section sets and higher 

order cross-section expansions would require the ability in the code 

of simultaneously including a fixed boundary source and a fixed space- 

dependent volumetric source due to fission. Otherwise, each calcula¬ 

tion would have to include the energy range down to thermal and com¬ 

pute the power distribution iteratively 

The complete set of experimental data for the depleted uranium 

slab, including the dose profile, is given in the Appendices. Thus, 

the data is available for possible further study in the future. 

The comparisons of calculations and experimental data presented 

in this chapter demonstrate the accuracy of the two-dimensional 

discrete ordinates method in calculating the absolute intensity of 

angle-dependent spectra and the shape of radial dose profiles. The 

effects of quadrature, cross-section data, and order of expansion of 

the scattering angular distribution were also s.hovn. Since both 

heavy metal slabs with highly anisotropic elastic scattering, hydro¬ 

genous slabs with high moderating power, and laminated slabs were 

considered, the study provides a comprehensive verification of the 

calculational method. 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

In this study the two-dimensional discrete ordinates transport 

method has been improved and extended such that deep-penetration 

transport problems can be accurately and efficiently calculated. 

The accuracy and versatility of the method were demonstrated by 

comparisors of calculations with the results of a clean-geometry 

experiment. 

In Chapter II the discrete ordinates difference equation was 

derived from the analytic transport equation. A general treatment 

of anisotropic scattering was included and the method used to gen¬ 

erate the difference terms was consistent throughout. The major 

approximations which were identified during the derivation are due 

to: 

1. the finite size of the space and angle mesh, 

2. the finite number of terms in the Legendre expansion of 

the angular distribution of the scattering transfer cross 

sections, and 

3. the approximation introduced in the multigroup constants 

due to assumed weighting functions. 

The error introduced by these approximations can be estimated by 

systematically increasing the number of space points, order of 

Legendre expansion, and number of groups. Thus, in principle, the 

accuracy of the calculation may be arbitrarily improved within the 

available capacity. 

Ifc7 



The phenomenon of "diamond-difference breakdown" was solved 

by implementing a mixed-mode calculation. In this method the linear 

model is used whenever possible. A negative flux due to over extra¬ 

polation is recalculated with a step model which always gives positive 

fluxes for positive sources. It was shown that with this mixed-mode 

model a mesh size of 5 cm. gave good results for neutron transport 

in water, and even a mesh size of 10 cm. gave a stable result. The 

effect of this is that the more complex calculations are now quite 

insensitive to mesh choices, and any reasonable guess for the mesh 

size will usually be sufficient. 

In Chapter III the inner-iteration procedure was discussed from 

both an analytic and physical basis. It was first shown that, for 

power iteration, the number of iterations required is related to the 

number of within-group collisions which can contribute to the answer 

and is thus a function of the depth of penetration as well as the 

scattering properties of the media. Integral normalized power iter¬ 

ation was discussed and was shown to be relatively inefficient in 

deep penetration problems. 

Two advanced iteration schemes were incorporated in the method. 

The semi-iterative method based on Chebyshev polynomials was imple¬ 

mented using an extension of the work of Hageman and Varga. For 

difficult problems this technique gave convergence in less than one 

half the number of iterations required by the normalized power iter¬ 

ation method. An extension of the normalized iteration was made 

such that a separate normalization factor is calculated for each 

space point. This space-dependent scaling method was shown to give 
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convergence in as little as one-seventh the number of iterations 

required by the regular method. This improvement obviously makes 

the method much more efficient. It is perhaps more important that 

the point-scaled iteration makes the calculation much less sensitive 

to the depth of penetration. Thus, one need not be greatly concerned 

with this effect when preparing a calculation. The zone-of-interest 

convergence criteria was shown to give a good indication of conver¬ 

gence and was capable of meeting the varied requirements of differ¬ 

ent problems. 

In Chapter IV three improvements which are problem dependent 

were considered. First, the "ray effect" was described. An analytic 

first collision source procedure was developed which considerably 

mitigates this effect. The analytic source procedure is also useful 

for separating the uncollided flux from the forward collided flux 

for geometries having mcnodirectional beam sources. 

The problem of the effects of quadrature sets was discussed 

briefly. The need for flexible quadratures and special tailored 

quadratures was discussed. A tailored quadrature suitable for high 

resolution angle-dependent spectra measurements was developed. The 

procedures for efficiently using the tailored quadratures were also 

developed. 

The problem of calculating the flux at points in space beyond 

the calculated system was considered. Two approximate methods based 

on surface integration were developed. An exact method based on an 

adjoint last flight response function was developed but not fully 

implemented. A general reciprocity relationship was developed in 
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order to describe this method. 

In Chapter V the need for comparisons with experiment was dis¬ 

cussed. Comparisons of calculated and measured fast neutron dose 

profiles in the ORNL Lid Tank Facility were presented, and the need 

for detailed angular spectra comparisons was discussed. An experi¬ 

ment to meet these requirements was constructed using the available 

material and equipment at the ORNL Tower Shielding Facility. Angle- 

dependent fast neutron spectra and fast neutron dose profiles were 

obtained for slabs of lead, polyethylene, depleted uranium, and a 

laminated slab of lead and polyethylene. The instrumentation, 

experimental technique, and the reliability of the measurements 

were presented. It was shown that the measurements of the same 

spectra performed on two different occasions agreed within the 

indicated experimental uncertainty. The description of the experi¬ 

ment includes considerable detail concerning the source so that 

other investigators can perform good comparison calculations using 

other methods. 

In Chapter VI calculations using the two-dimensional discrete 

ordinates method are compared with experiment. For the lead slab 

the absolute comparisons of angle-dependent spectra give good agree¬ 

ment which is shown to be within the uncertainty due to different 

cross-section sets. For polyethylene the agreement between calcula¬ 

tion and experiment is excellent. For the laminated and depleted 

uranium slabs the agreement is comparable to that for lead. The 

comparisons of calculated and measured fast neutron dose profiles 

show generally good agreement. 
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In summary, the two-dimensional discrete ordinates method has 

been developed into a useful and accurate tool for the calculation 

oí radiation transport problems. The previous major difficulties 

which were instability in the difference solution and the lack of 

general anisotropic scattering were removed. The development of 

space-dependent normalized inner iterations and zone-of-interest 

convergence criteria make it possible to obtain good results for 

very deep penetration problems. The development of the analytic 

•irst collision source technique, flexible quadrature techniques, 

and special techniques for obtaining the flux in the space beyond 

the system, are useful and necessary in many problems. Finally, 

the accurate calculations shown in comparison with the detailed, 

clean-geometry experiment establishes the accuracy and utility of 

the method. 

Future work should include the obvious extension to transport 

of other particles and other energy ranges. Work is already in pro¬ 

gress for neutron transport from 1+00 MeV. to 0.001 eV. , for gamma 

rays, x-rays, light, and electrons. Such extensions require thor¬ 

ough investigation, including detailed comparison with experiment 

in order to establish accuracy and utility. 

Extensions of the discrete ordinates methods to include time 

dependence and other geometries are under consideration. The 

current work is very preliminary and many investigations will be 

required in order to determine the most efficient procedures. 

Extensions to two-dimensional spherical r-0 geometry, the orthogonal 

three-dimensional geometries, and non-orthogonal geometries should 
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be investigated to determine practicality. 

The present method could be made much more efficient if the 

space-angle-energy mesh and the Legendre expansion for scattering 

were variable during problem execution and were adjusted automati¬ 

cally to meet the minimum requirements of the various portions of 

the problem. For example, a reactor or shield calculation may 

require a broad space grid, fine angle grid, and high order of 

scattering expansion at high neutron energies, and a fine space 

grid, broad angle grid, and low order of scattering expansion at 

low neutron energies. The methods which could be developed to pre¬ 

dict this dependence must be accurate and highly efficient in order 

to obtain the possible gain. 
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APPENDIX A 

FAST NEUTRON SPECTRA 

Tables VI through XXXVI contain the bulk of the spectra taken 

during the experiment. The title of each table indicates the run 

number, the sample, and the angle. The data in the tables are the 

outputs of the FERDCR unfolding code. For each energy point the upper 

and lower limits define the one standard deviation error bounds for 

the spectra. All spectra are normalized to a reactor power of 100 

kilowatts and have units of neutrons/cn.2/min./MeV. 
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TABLE VI 

RUN 22C+22D BARE BEAM AT 0 DEG. 

UPPER LOWER UPPER LOWER 
ENERGY LIMIT LIMIT ENERGY LIMIT LIMIT 

8.00E 05 
9.00E 05 
l.OOE 06 
1.10E 06 
1.20E 06 
1 30E 06 
1.40E 06 
1.50E 06 
1.60E 06 
1.70E 06 
1.80E 06 
1.90E 06 
2.00E 06 
2.10E 06 
2.20E 06 
2.30E 06 
2.40E 06 
2.50E 06 
2.60E 06 
2.70E 06 
2.80E 06 
2.90E 06 
3.00E 06 
3.20E 06 
3.40E 06 
3.60E 06 
3.80E 06 
4.00E 06 
4.20E 06 
4.40E 06 
4.60E 06 
¿.80E 06 
5.00E 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.80E 06 
6.00E 06 
6.20E 06 
6.40E 06 
6.60E 06 
6.80E 06 

3.971E 06 
3.529E 06 
3.173E 06 
3.074E 06 
3.137E 06 
3.200E 06 
3.147E 06 
2.990E 06 
2.82 4E 06 
2.702E 06 
2.606E 06 
2.503E 06 
2.397E 06 
2.283E 06 
2.177E 06 
2.067E 06 
1.936E 06 
1.779E 06 
1.614E 06 
1.461E 06 
1.32 5E 06 
1.199E 06 
1.073E 06 
8.233E 05 
6.422E 05 
5.612E 05 
5.394E 05 
5.332E 05 
5.121E 05 
4.723E 05 
4.225E 05 
3.743E 05 
3.329E 05 
2.997E 05 
2.778E 05 
2.628E 05 
2.475E 05 
2.306E 05 
2.155E 05 
2.017E 05 
1.845E 05 
1.618E 05 

3.708E 06 
3.237E 06 
2.938E 06 
2.888E 06 
2.975E 06 
3.050E 06 
2.993E 06 
2.839E 06 
2.686E 06 
2.577E 06 
2.490E 06 
2.406E 06 
2.308E 06 
2.204E 06 
2.107E 06 
2.007E 06 
1.882E 06 
1.732E 06 
1.574E 06 
1.424E 06 
1.290E 06 
1.166E 06 
1.043E 06 
7.991E 05 
6.203E 05 
5.39°E 05 
5.197E 05 
5.155E 05 
4.970E 05 
4.588E 05 
4.105E 05 
3.637E 05 
3.229E 05 
2.900E 05 
2.684E 05 
2.538E 05 
2.388E 05 
2.225E 05 
2.C79E 05 
1.945E 05 
1.776E 05 
1.554E 05 

7.00E 06 
7.20E 06 
7.40E 06 
7.60E 06 
7.80E 06 
8.0ÛE 06 
8.20E 06 
8.40E 06 
8.60E 06 
8.8CE 06 
9.00E 06 
9.20E 06 
9.40E 06 
9.60E 06 
9.80E 06 
l.OOE 07 
1.02E 07 
1.04E 07 
1.06E 07 
1.08E 07 
1.10E 07 
1.12E 07 
1.14E 07 
1.16E 07 
1.18E 07 
1.20E 07 
1.22E 07 
1.24E 07 
1.26E 07 
1.28E 07 
1.30E 07 
1.32E 07 
1.34E 07 
1.36E 07 
1.38E 07 
1.40E 07 
1.42E 07 
1.44E 07 
1.46E 07 
1.48E 07 
1.50E 07 

1.379E 05 
1.175E 05 
1.021E 05 
8.9°3E 04 
7.944E 04 
6.995E 04 
6.108E 04 
5.290E 04 
4.572E 04 
4.000E 04 
3.619E 04 
3.394E 04 
3.178E 04 
2.842E 04 
2.388 E 04 
1.901E 04 
1.460E 04 
1.124E 04 
9.286E 03 
8.423E 03 
7.871E 03 
7.153E 03 
6.455E 03 
6.1756 03 
6.361E 03 
Ó.593E 03 
6.477E 03 
5.891E 03 
5.055E 03 
4.380E 03 
4.139E 03 
4.225E 03 
4.332E 03 
4. 291E 03 
4.113E 03 
3.896E 03 
3.728E 03 
3.628E 03 
3.556E 03 
3.451E 03 
3.290E 03 

1.319E 05 
1.119E 05 
9.694E 04 
8.506E 04 
7.485E 04 
6.566E 04 
5.708E 04 
4.904E 
4.205E 04 
3.656E 04 
3.296E 04 
3.088E 04 
2.883E 04 
2.558E 04 
2.12IE 04 
1.652E 04 
1.222E 04 
8.947E 03 
6.979E 03 
5.949E 03 
5.248E 03 
4.610E 03 
4.152E 03 
4.047E 03 
4.272E 03 
4.458E 03 
4.286E 03 
3.734E 03 
3.086E 03 
2.656E 03 
2.537E 03 
2.637E 03 
2.798E 03 
2.866E 03 
2.803E 03 
2.687E 03 
2.610E 03 
2.595E 03 
2.581E 03 
2.510E 03 
2.383E 03 
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TABLE VII 

RUN 24A+24B BARE BEAM AT 4.16 DEG. 

UPPER LOWER UPPER LOWER 
LIMIT LIMIT ENERGY LIMIT LIMIT 

1.149E 06 
1.014E 06 
9.160E 05 
9.037E 05 
9.346E 05 
9.384E 05 
9.102E 05 
8.708E 05 
8.325E 05 
8.068E 05 
7.883E 05 
7.625E 05 
7.289E 05 
6.918E 05 
6.535E 05 
6.146c 05 
5.742E 05 
5.294E 05 
4.816E 05 
4.350E 05 
3.922E 05 
3. 533E 05 
3.170E 05 
2.519E 05 
2.058E 05 
1.822E 05 
1.726E 05 
1.677E 05 
1.588E 05 
1.458E 05 
1 • 33IE 05 
1.223E 05 
1.124E 05 
1.023E 05 
9.139E 04 
8.227E 04 
7.675E 04 
7.320E 04 
6.899E 04 
6.388E 04 
5.873E 04 
5.299E 04 

1.072E 06 
9.272E 05 
8.463E 05 
8.480E 05 
8.863E 05 
8.931E 05 
8.638E 05 
3.252E 05 
7.908E 05 
7.688E 05 
7.530E 05 
7.315E 05 
7.018E 05 
6.677E 05 
6.32IE 05 
5.962E 05 
5.578E 05 
5.151E 05 
4.692E 05 
4.234E 05 
3.811E 05 
3.430E 05 
3.074E 05 
2.443E 05 
1.987E 05 
1.753E 05 
1.661E 05 
1.617E 05 
1.535E 05 
1.408E 05 
1.284E 05 
1.1 POE 05 
1.083E 05 
9.825E 04 
8.75IE 04 
7.857E 04 
7.316E 04 
6.984E 04 
6.581E 04 
6.088E 04 
5.585E 04 
5.033E 04 

7.00E 06 
7.2GE 06 
7.40E 06 
7.60E 06 
7.80E 06 
P.OOE 06 
8.20E 06 
8.40E 06 
8.60E 06 
8.80E Oo 
9.00E 06 
9.20E 06 
9.40E 06 
9.60E 06 
9.80E 06 
l.OOE 07 
1.02E 07 
1.04E 07 
1.06E 07 
1.08E 07 
1.10E 07 
1.12E 07 
1.14E 07 
1.16E 07 
1.18E 07 
1.20E 07 
1.22E 07 
1.24E 07 
1.26E 07 
1.28E 07 
1.30E 07 
1.32E 07 
1.34E 07 
1.36E 07 
1.38E 07 
1.40E 07 
1.42E 07 
1.44E 07 
1.46E 07 
1.48E 07 
1.50E 07 

4.625E 04 
3.936E 04 
3.377E 04 
2.965E 04 
2.617E 04 
2.283E 04 
1.972E 04 
1.700E C4 
1.468E 04 
1.292E 04 
1.176E 04 
1.093E 04 
1.006E 04 
9.015E 03 
7. 829E 03 
6.602E 03 
5.432E 03 
4.340E 03 
3.339E 03 
2.514E 03 
1.950E 03 
1.605E 03 
1.351E 03 
1.154E C3 
1.137E 03 
1.404E 03 
1.858E 03 
2.222E 03 
2.272E 03 
2.069E 03 
1.876E 03 
1.855E 03 
1.973E 03 
2.110E 03 
2.176E 03 
2.154E 03 
2.C62E 03 
1.924E 03 
1.768E 03 
1.638E 03 
1.575E 03 

4.376E 04 
3.700E 04 
3.160E 04 
2.763E 04 
2.426E 04 
2.104E 04 
1.807E 04 
1.539E 04 
1.313E 04 
1.148E 04 
1.041E 04 
9.608E 03 
8.790E 03 
7.809E 03 
6.679E 03 
5.514E 03 
4.400E 03 
3.333E 03 
2.294E 03 
1.383E 03 
7.579E 02 
4.426E 02 
2.708E 02 
1.199E 02 
9.418E 01 
3.274E 02 
7.627E 02 
1.148E 03 
1.264E 03 
1.140E 03 
9.970= 02 
1.011E 03 
1.169E 03 
1.352E 03 
1.475E 03 
1.507E 03 
1.453E 03 
1.341E 03 
1.210E 03 
1.106E 03 
1.074E 03 
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TABLE VIII 

RUN 23A+23B BARE BEAM AT 3.6 DE3. 

UPPER LOWER 
ENERGY LIMIT LIMIT 

8.00E 05 9.733E 03 9.047E 03 
9.00E 05 9.27IE 03 8.517E 03 
l.GOE 06 8.276E 03 7.679E 03 
l.IOE 06 7.602E 03 7.125E 03 
1.20E 06 7.783E 03 7.369E 03 
I.30E 06 8.092E 03 7.708E 03 
1.40E 06 7.995E 03 7.601E 03 
1.50E 06 7.479E 03 7.097E 03 
I.60E 06 6.793E 03 6.443E 03 
1.70E 06 6.225E 03 5.899E 03 
I.80E 06 5.917E 03 5.606E 03 
1.90E 06 5.763E 03 5.487E 03 
2.00E 06 5.6IIE 03 5.367E 03 
2.10E 06 5.399E 03 5.183E 03 
2.20E 06 5.150E 03 4.952E 03 
2.30E 06 4.903E 03 4.723E 03 
2.40E 06 4.680E 03 4.515E 03 
2.50E 06 4.449E 03 4.3C7E 03 
2.60E 06 4.167E 03 4.045E 03 
2.70E 06 3.845E 03 3.723E 03 
2.80E 06 3.502E 03 3.377E 03 
2.90E 06 3.177E 03 3.057E 03 
3.00E 06 2.878E 03 2.767E 03 
3.20E 06 2.328E 03 2.237E 03 
3.40E 06 I.905E 03 L.818E 03 
3.60E 06 1.709E 03 1.62IE 03 
3.80E 06 1.657E 03 1.568E 03 
4.00E 06 I.65IE 03 1.566E 03 
4.20E 06 1.636E 03 1.559E 03 
4.40E 06 1.572E 03 1.497E 03 
4.60E 06 1.432E 03 1.36LE 03 
4.80E 06 1.262E 03 1.198E C3 
5.00E 06 1.I30E 03 1.070E 03 
5.20E 06 1.028E 03 9.674E 02 
5.40E 06 9.246E 02 8.656E 02 
5.60t 06 8.275E 02 7.707E 02 
5.80E 06 7.567E 02 7.0I5E 02 
6.00E 06 7.235E 02 6.730E 02 
6.20E 06 7.026E 02 6.551E 02 
6.40E 06 6.654E 02 6.I99E 02 
6.60E 06 6.162E 02 5.721E 02 
6.80E 06 5.661E 02 5.252E 02 

UPPER LOWER 
ENERGY LIMIT LIMIT 

7.OOF 06 5. 1C3E 02 4.716F 02 
7.20E Ob 4.437E 02 4.0b5E 02 
7.40E Ob 3.742E 02 3.392E 02 
7.60E 06 3•lObE 02 2.774E 02 
7.80E Ob 2.541E 02 2.226E 02 
8.00E 06 2.04C/E 02 1.738E 02 
8.20E 06 1.625E 02 1.334E 02 
8.40E 06 1.327E 02 1.034E 02 
8.60E Ob I.138E 02 8.454E 01 
8.80E 06 1.070E 02 7.814E 01 
9.00E 06 1.153E 02 8.694E 01 
9.20E 06 1.324E 02 1.041E 02 
9.40E 06 1.399F 02 1.103E 02 
9.60E 06 1.229E 02 9.067E 01 
9.80E 06 8.096E 01 4.679E 01 
l.OOE 07 2.205E 01-1.304E 01 
1.02E 07-5.125E 01-8.701E 01 
1.04E 07-1.408E 02-1.797E 02 
1.06E 07-2.432E 02-2.898E 02 
1.08E 07-3.428E 02-4.004E 02 
l.IOE 07-4.175E 02-4.832E 02 
1.12E 07-4.497E 02-5.161E 02 
1.14E 07-4.333E 02-4.969E 02 
1.16E 07-3.709E 02-4.344E 02 
1.18E 07-2.683E 02-3.349E 02 
1.20E 07-1.441E 02-2.149E 02 
1.22E 07-1.919E 01-9.331E 01 
1.24E 07 9.634E 01 2.261E 01 
1.26E 07 2.103F 02 1.424E 02 
1.28E 07 3.363E 02 2.758E 02 
1.30E 07 4.751E 02 4.180E 02 
1.32E 07 6.091E 02 5.533E 02 
1.34E 07 7.146E 02 6.625E 02 
1.36E 07 7.745E 02 7.278E 02 
1.38E 07 7.812E 02 7.401E 02 
1.40E 07 7.373E 02 7.012E 02 
1.42E 07 6.545E 02 6.224E 02 
1.44E 07 5.498E 02 5.214E 02 
1.46E 07 4.404E 02 4.157E 02 
1.48E 07 3.399E 02 3.188E 02 
1.50E 07 2.555E 02 2.377E 02 
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TABLE IX 

RUN 33A+30C BARE BEA^ AT 0 DES. 

UPPER LOUER UPPER LOUER 
ENERGY LIMIT LIMIT ENERGY LIMIT LIMIT 

8.00E 05 
9.00E 05 
l.OOE 06 
l.IOE 06 
1.20E 06 
1.30E 06 
I.40E 06 
1.50E 06 
1.60E 06 
1.70E 06 
1.80E 06 
1.90E 06 
2.Ü0E 06 
2.I0E 06 
2.20E 06 
2.30E 06 
2.40E 06 
2.50E 06 
2.60E 06 
2.70E 06 
2.80E 06 
2.90E 06 
3.00E 06 
3.20E 06 
3.40E 06 
3.60E 06 
3.80E 06 
4.00E 06 
4.20E 06 
4.40E 06 
4.60E 06 
4.80E 06 
5.00E 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.80E 06 
6.00E 06 
6.20E C6 
6.40E 06 
6.60E 06 
6.80E 06 

3.96IE 06 
3.524E 06 
3.150E 06 
3.072E 06 
3.200E 06 
3.269E 36 
3.I90E 06 
3.032E 06 
2.875E 06 
2.753E 06 
2.646E 06 
2.533E 36 
2.414E 06 
2.292E 06 
2.I70E 06 
2.044E 06 
I.908E 06 
1.759E 06 
I.604E 06 
I.450E 06 
1.302E 06 
I.160E 06 
1.026E 06 
7.969E 35 
6.398E 05 
5.622E 05 
5.365E 05 
5.232E 05 
4.986E 05 
4.632E 05 
4.I79E 05 
3.675E 05 
3.230E 05 
2.917E 05 
2.711E 05 
2.538E 05 
2.373E 05 
2.210E 05 
2.064E 05 
1.929E 05 
I.768E 05 
I.567E 05 

3.693E 06 
3.227E 06 
2.9I2E 06 
2.884E 06 
3.037E 06 
3.I18E 06 
3.037E 06 
2.881E 06 
2.738E 06 
2.629E 06 
2.53IE 06 
2.433E 06 
2.327E 06 
2.214E Û6 
2.10IE 06 
1.985E 06 
1.856E C6 
1.714E 06 
1.565E 06 
I.4I4E 06 
I.267E 06 
1.I28E 06 
9.964E 05 
7.732E 05 
6.183E 05 
5.414E 05 
5.I74E 05 
5.058E 05 
4.840E 05 
4.504E 05 
4.068E 05 
3.580E 05 
3.I46E 05 
2.836E 05 
2.637E 05 
2.470E 05 
2.304E 05 
2.145E 05 
2.006E 05 
1.876E 05 
1.718E 05 
I.521E 05 

7.00E 06 
7.23E 06 
7.40E 06 
7.60E 06 
7.80E 06 
8.00E 06 
8.20E 06 
8.40E 06 
8.60E 06 
8.80E 06 
9.00E 06 
9.2CE 06 
9.40E 06 
9.60E 06 
9.80E C6 
l.OOE 07 
1.02E 07 
1.04E 07 
1.06E 07 
1.08E 07 
l.IOE 07 
1.12E 37 
1.14E 07 
1.16E 07 
1.18E 07 
1.2CE 07 
1.22E 07 
1.24E 07 
1.26E 07 
1.28E 07 
1.30E 37 
1.32E 37 
1.34E 37 
1.36E 07 
1.38E 37 
1.40E 07 
1.42E 07 
1.44E 07 
1.46E 07 
1.48E 07 
1.50E 07 

1.357E 05 
1.165E 05 
1.005E 05 
8.712E 04 
7.518E 04 
6.454E 04 
5.599E 04 
4.965E 04 
4.494E 04 
4.101E 04 
3.710E 04 
3.284E 04 
2.853E 04 
2.462E 04 
2.142E 04 
1 • 88IE 04 
1.653E 04 
1.443E 04 
1.253E 04 
1.072E 04 
9.112E 03 
7.672E 03 
6.446E 03 
5.449E 03 
4.683E 03 
4.143E 03 
3.842E 03 
3.716E 03 
3.587E 03 
3.300E 03 
2.844E 03 
2.336E 03 
1.949E 03 
1.752E 03 
1.675E 03 
1.602E 03 
1.465E 03 
1.263E 03 
1.036E 03 
8.268F 02 
6.621E 02 

1.314E 05 
1.124E 05 
9.676E 04 
8.364E 04 
7.189E 04 
6.147E 04 
5.313E 04 
4.693E 04 
4.234E 04 
3.861E 04 
3.482E 04 
3.3o6E 04 
2.646E 04 
2.270E 04 
1.962E 04 
1.713E C4 
1.498E 04 
1.297E 04 
1.108E 04 
9.328E 03 
7.737E 03 
6.373E 03 
5.260E 03 
4.356E 03 
3.647E 03 
3.139E 03 
2.870E 03 
2.820E 03 
2.814E 03 
2.607E 03 
2.160E 03 
1.688E 03 
1.386E 03 
1.274E 03 
1.253E 03 
1.213E 03 
1.101E 03 
9.277E 02 
7.376E 02 
5.675E 02 
4.323E 02 
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TABLE X 

^UN 33B + 29F BARE BEA'i AT 4.16 D£G. 

UPPER 
ENERGY LIMIT 

LOWER 
LIMIT ENERGY 

UPPER LOWER 
LIMIT LIMIT 

8.00E 05 1.094E 06 1.012E 06 
9.00E 05 9.768E 05 8.925E 05 
l.OOE 06 8.777E 05 8.108E 05 
1.10E 06 8.696E 05 8.170E 05 
1.20E 06 9.222E 05 8.769E 05 
1.30E 06 9.449E 05 9.029E 05 
1.40E 06 9.114E 05 8.688E 05 
1.50E 06 8.482E 05 8.066E 05 
1.60E 06 7.858E 05 7.479E 05 
1.70E 06 7.463E 05 7.120E 05 
1.80E 06 7.250E 05 6.932E 05 
1.90E 06 7.046E 05 6.769E 05 
2.00E 06 6.772E 05 6.530E 05 
2.10E 06 6.423E 05 6.208E 05 
2.20E 06 6.02 IE 05 5.832E 05 
2.30E 06 5.59IE 05 5.428E 05 
2.40E 06 5.165E 05 5.021E 05 
2.50E 06 4.758E 05 4.632E 05 
2.60E 06 4.363E 05 4.254E 05 
2.70E 06 3.966E 05 3.864E 05 
2.80E 06 3.55 IE 05 3.455E 05 
2.90E 06 3.136E 05 3.046E 05 
3.00E 06 2.750E 05 2.666E 05 
3.20E 06 2.144E 05 2.C77E 05 
3.40E 06 1.756E 05 1.695E 05 
3.60E 06 1.558E 05 1.499E 05 
3.80E 06 1.495E 05 1.441E 05 
4.00E 06 1.459E 05 1.410E 05 
4.20E 06 1.375E 05 1.333E 05 
4.40E 06 1.269E 05 1.232E 05 
4.60E 06 1.173E 05 1.141E 05 
4.80E 06 1.080E 05 1.052E 05 
5.00E 06 9.836E 04 9.583E 04 
5.20E 06 8.877E 04 8.635E 04 
5.40E 06 7.955E 04 7.731E 04 
5.60E 06 7.160E 04 6.946E 04 
5.80E 06 6.574E 04 6.361E 04 
6.00E 06 6.216E 04 6.019E 04 
6.20E 06 5.957E 04 5.774E 04 
6.40E 06 5.633E 04 5.462E 04 
6.60E 06 5.150E 04 4.985E 04 
6.80E 06 4.553E 04 4.401E 04 

7.00E 06 3.950E 04 3.808E 04 
7.20E 06 3.387E 04 3.252E 04 
7.40E 06 2.894E 04 2.770E C4 
7.60E 06 2.509E 04 2.393E 04 
7.80E 06 2.22IE 04 2.112E 04 
8.00E 06 1.979E 04 1.876E 04 
8.20E 06 1.748E 04 1.653E 04 
8.40E 06 1.534E 04 1.443E 04 
9.60E 06 1.343E 04 1.257E 04 
8.80E 06 1.175E 04 1.095E 04 
9.00E 06 1.033E 04 9.575E 03 
9.20E 06 9.210E 03 8.485E 03 
9.40E Og 8.294E 03 7.610E 03 
9.6GE 06 7.435E 03 6.787E 03 
9.80E 06 6.554E 03 5.938E 03 
l.OOE 07 5.690E 03 5.115E 03 
1.02E 07 4.913E 03 4.384E 03 
1.04E 07 4.230E 03 3.731E 03 
1.06E 07 3.621E 03 3.128E 03 
1.08E 07 3.114E 03 2.624E 03 
1.10E 07 2.7b5E 03 2.292E 03 
1.12E 07 2.555E 03 2.110E 03 
1.14E 07 2.374E 03 1.962E 03 
1.16E 07 2.137E 03 1.753E 03 
1.18E 07 1.857E 03 1.499E 03 
1.20E 07 1.617E 03 1.280E 03 
1.22E 07 1.454E 03 1.135E 03 
1.24E 07 1.340E 03 1.044E 03 
1.26E 07 1.222E 03 9.589E 02 
1.28E 07 1.072E 03 8.413E 02 
1.30E 07 8.961E 02 6.863E 02 
1.32E 07 7.117E 02 5.143E 02 
1.34^ 07 5.347E 02 3.516E 02 
1.36E 07 3.85 IE 02 2.194E 02 
1.38E 07 2.817E 02 1.342E 02 
1.40E 07 2.336E 02 1.020E 02 
1.42C 07 2.344E 02 1.143E 02 
1.44E 07 2.639E 02 1.521E 02 
1.46E 07 2.971E 02 1.919E 02 
1.48E 07 3.146E 02 2.147E 02 
1.50E 07 3.079E 02 2.124E 02 
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TABLE XI 

«UN 33C+29E BARE BEAM AT 8.6 DEG. 

UPPER LOWER UPPER LOWER 
ENERGY LIMIT LIMIT ENERGY L HIT LIMIT 

8.00E 05 
9.00E 05 
l.OOE 06 
I.10E 06 
1.20E 06 
1.30E 06 
I.40E 06 
1.50E 06 
I.60E 06 
1.70E 06 
I.80E 06 
I.90E 06 
2.00E 06 
2.10E 06 
2.20E 06 
2.30E 06 
2.40E 06 
2.50E 06 
2.60E 06 
2.70E 06 
2.80E 06 
2.90E 06 
3.00 E 06 
3.20E 06 
3.40 E 06 
3.60E 06 
3.80E 06 
4.00E 06 
4.20E 06 
4.40E 06 
4.60E 06 
4.80E 06 
5.00E 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.80E 06 
6.00E 06 
6 *20E 06 
6.4UE 06 
6.bOE 06 
6.80E 06 

8.461E 03 
7.853E 03 
7.071E 03 
6.985E 03 
7.593E 03 
7.95 IE 03 
7.679E 03 
7.054E 03 
6.470E 03 
6.019E 03 
5.655E 03 
5.415E 03 
5.305E 03 
5.234E 03 
5.088E 03 
4.8I5E 03 
4.47 7E 03 
4.13 IE 03 
3.835E 03 
3.592E 03 
3.373E 03 
3.I31E 03 
2.852E 03 
2.233E 03 
1.803E 03 
1.64IE 03 
1.601E 03 
1.602E 03 
1.583E 03 
I.489E 03 
1.3I7E 03 
1.14 3E 03 
1.01IE 03 
9.140e: 02 
8.365E 02 
7.806E 02 
7.465E 02 
7.I41E 02 
6.732E 02 
6.292E 02 
5.895E 02 
5.458E 02 

7.849E 03 
7.170E 03 
6.516E 03 
6.537E 03 
7.205E 03 
7. 589E 03 
7.307E 03 
6.693E 03 
6.141E 03 
5.713E 03 
5.364E 03 
5.160E 03 
5.080E 0? 
5.032E 03 
4.905E 03 
4.652E 03 
4.327E 03 
4.OCDE 03 
3.721E 03 
3.48IE 03 
3.259E 03 
3.02IE 03 
2.748E 03 
2.146E 03 
1.718E 03 
1.555E 03 
I.5I6E 03 
I.519E 03 
1.509E 03 
1.418E 03 
I.252E 03 
I.082E 03 
9.525E 02 
8.566E 02 
7.8IOE 02 
7.275E 02 
6.946E 02 
6.653E 02 
6.269E 02 
5.854E 0¿ 
5.47IE 02 
5.067E 02 

7.00E 06 
7.20E 06 
7.40E 06 
7.60E 06 
7.80E 06 
8.00E 06 
8.20E 06 
8.40E 06 
8.60E 06 
8.80E 06 
9.00E 06 
9.20E 06 
9.40E 06 
9.60E 06 
°.90E 06 
l.OOE 07 
1.02E 07 
1.C4E 07 
1.06E 07 
1.08E 07 
1.10E 07 
1.12E 07 
1.14E 07 
1.16E 07 
1.18E 07 
1.20E 07 
1.22E 07 
1.24E 07 
1.26E 07 
1.28E n? 
1.30E 07 
1.32E 07 
1.34E 07 
1.36E 07 
1.38E 07 
1.40E 07 
1.42E 07 
1.44E 07 
1.46E 07 
1.48E 07 
1.5CE 07 

4.844E 02 
4.027E 02 
3.240E 02 
2.760E 02 
2.561E 02 
2.431E 02 
2.240E 02 
2.015E 02 
1.777E 02 
1.508E 02 
1.217E 02 
9.62IE 01 
8.243E 01 
8.459E 01 
9.730E 01 
1.070E 02 
1.024E 02 
8.333E 01 
5.905E 01 
4.015E 01 
3.229E 01 
3.440E 01 
4.097E 01 
4.625E 01 
4.617E 01 
4.060E 01 
3.191E 01 
2.319E Cl 
1.686E 01 
1.414E 01 
1.462E 01 
1.633E 01 
1.74IE 01 
1.696E 01 
1.513E 01 
1.255E 01 
9.853E 00 
7.447E 00 
5.564E 00 
4.28CE 00 
3.5385 00 

4.477E 02 
3.674E 02 
2.913E 02 
2.456E 02 
2.272E 02 
2.154E 02 
1.980E 02 
1.765E 02 
1.540E 02 
1.284E 02 
9.997E 01 
7.489E 01 
6.177E 01 
6.519E 01 
7.920E 01 
8.963E 01 
8.562E 01 
6.713E 01 
4.324E 01 
2.475E 01 
1.744E 01 
2.017E 01 
2.765E 01 
3.381E 01 
3.417E 01 
2.894E 01 
2.065E 01 
1.264E 01 
7.488E 00 
5.917E 00 
6.91IE 00 
8.933E 00 
1.045E 01 
1.068E 01 
9.600E 00 
7.631E 00 
5.375E 00 
3.374= 00 
1.869E GO 
8.297E-01 
1.584E-01 
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TABLE XII 

ÄUN 50B+50C BARE BEAM AT 0 DEG. 

ENERGY 
UPPER 
LIMIT 

LOWER 
LIMIT ENERGY 

U°PER 
LIMIT 

LOWER 
LIMIT 

8.00E 05 
9.COE 05 
l.OOE 06 
1.10E 06 
1.20E 06 
1.30E 06 
1.40E 06 
1.50E 06 
1.60E 06 
1. TOE 06 
1.80E 06 
1.90E 06 
2.00E 06 
2.10E 06 
2.20E 06 
2.30E 06 
2.40E 06 
2.50E 06 
2.60E 06 
2. TOE 06 
2.80E 06 
2.90E 06 
3.00E 06 
3.20E 06 
3.40E 06 
3.60E 06 
3.80E 06 
4.00E 06 
4.20E 06 
4.40E 06 
4.60E 06 
4.80E 06 
5.00E 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.80E 06 
6.00E 06 
6.20E 06 
6.40E 06 
6.60E 06 
6.80E 06 

4.138E 06 
3.69TE 06 
3.294E 06 
3.19TE 06 
3.238E 06 
3.358E 06 
3.322E 06 
3.1T3E 06 
2.9T5E 06 
2.825E 06 
2. T30E 06 
2.64 IE 06 
2.536E 06 
2.4198 06 
2.296E 06 
2.160E 06 
2.010E 06 
1.84TE 06 
1.6T9E 06 
1.515E 06 
1.35TE 06 
1.206E 06 
1.064E 06 
8.203E 05 
6.599E 05 
5.92TE 05 
5.T95E 05 
5.6T2E 05 
5.353E 05 
4.908E 05 
4.341E 05 
3. TT2E 05 
3•36IE 05 
3.103E 05 
2.89TE 05 
2.685E 05 
2.490E 05 
2.324E 05 
2.160E 05 
1.9T3E 05 
1.T70E 05 
1.569E 05 

3.859E 06 
3.389E 06 
3.04TE 06 
3.001E 06 
3.118E 06 
3.200E 06 
3.161E 06 
3.C15E 06 
2.832E 06 
2.695E 06 
2.610E 06 
2.535E 06 
2.443E 06 
2.338E 06 
2.224E 06 
2.098E 06 
1.955E 06 
1.T99E 06 
1.638E 06 
1.4TTE 06 
1.321E 06 
1.173E 06 
1.033E 06 
T.953E 05 
6.371E 05 
5.T08E 05 
5.594E 05 
5.491E 05 
5.201E 05 
4.7T5E 05 
4.227E 05 
3.6T5E 05 
3.2T5E 05 
3.019E 05 
2.82IE 05 
2.615E 05 
2.421E 05 
2.259E 05 
2.101E 05 
1.920E 05 
1.721E 05 
1.524E 05 

7.00E 06 
T.20E 06 
T.40E 06 
7.60E 06 
7.80E 06 
8.00E Oo 
8.20E 06 
8.40E 06 
8.60F 06 
8.8DE 06 
9.0CE 06 
9.20E 06 
9.40E 06 
9.60E 06 
9.80E 06 
l.OOE 07 
1.02E 07 
1.04E 07 
1.06E 07 
1.08E 07 
1.10E 07 
1.12E 07 
1.14E 07 
1.16E 07 
1.18E 07 
1.20E 07 
1.22E 07 
1.24E 07 
1.26E 07 
1.28E 07 
1.30E 07 
1.32E 07 
1.34E 07 
1.36E 07 
1.38E 07 
1.40E 07 
1.42E 07 
1.44E 07 
1.46E 07 
1.48E 07 
1.50E 07 

1.368E 05 
1.168E 05 
9.903E 04 
8.533E 04 
7.462E 04 
6.517E 04 
5.ERIE 04 
5.030E 04 
4.489E 04 
3.9°8E 04 
3.5Û5E 04 
3.078E 04 
2.738E 04 
2.458E 04 
2.18IE 04 
1.890E 04 
1.608E 04 
1.35oE 04 
1.149E 04 
°.895E 03 
6.707E 03 
7.777E 03 
6.9Q1E 03 
6.291E 03 
5.559E 03 
4.75?t 03 
3.90ÛE 03 
3.161E 03 
2.675E 03 
2.463E 03 
2.410E 03 
2.337E 03 
2.153E 03 
1.900E 03 
1.648E 03 
1.432E 03 
1.252E 03 
1.102E 03 
9.781E 02 
8.817E 02 
8.098E 02 

1.326E 05 
1.128E 05 
9.538E 04 
8.194E 04 
7.142E 04 
6.217E 04 
5.413E 04 
4.764E 04 
4.238E 04 
3.755E 04 
3.283E 04 
2.867E 04 
2.542E 04 
2.272E 04 
2.004E 04 
1.727E 04 
1.458E 04 
1.215E 04 
1.010E 04 
8.511E 03 
7.345E 03 
6.492E 03 
5.825E 03 
5.219E 03 
4.553E 03 
3.772E 03 
2.945E 03 
2.255E 03 
1.880E 03 
1.793E 03 
1.791E 03 
1.722E 03 
1.569E 03 
1.375E 03 
1.188E 03 
1.025E 03 
8.792E 02 
7.499E 02 
6.538E 02 
5.972E 02 
5.596E 02 
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TABLE XIII 

RUN 37A«-B7B CH2 SLAB AT 0 DEG. 

UPPER 
ENERGY LIMIT 

LOWER UPPER 
LIMIT ENERGY LIMIT 

LOWER 
LIMIT 

8.00E 05 5.863E 03 3.678E 03 
9.00E 05 6.476E 03 3.996E 03 
l.OOE 06 6.607E 03 4.299E 03 
1.10E 06 8.092E 03 5.880E 03 
1.20E 06 1.093E 04 8.903E 03 
1.30E 06 1.390E 04 1.173E 04 
I.40E 06 1.537E 04 1.273E 04 
1.50E 06 1.53IE 04 1.268E 04 
1.60E 06 1.564E 04 1.312E 04 
1.70E 06 1.770E 04 1.509E 04 
1.80E 06 2.08 IE 04 1.814E 04 
1.90E 06 2.384E 04 2.143E 04 
2.00E 06 2.665E 04 2.443E 04 
2.10E 06 2.938E 04 2.725E 04 
2.20E 06 3.184E 04 2.982E 04 
2.30E 06 3.352E 04 3.167E 04 
2.40E 06 3.418E 04 3.243E 04 
2.50E 06 3.353E 04 3.195E 04 
2.60E 06 3.204E 04 3.061E 04 
2.70E 06 3.037E 04 2.894E 04 
2.80E 06 2.874E 04 2.729E 04 
2.90E 06 2.706E 04 2.562E 04 
3.00E 06 2.5I0E 04 2.367E 04 
3.20E 06 1.966E 04 1.836E 04 
3.40E 06 1.46 IE 34 1.331E 04 
3.60E 06 1.31 IE 04 1.178E 04 
3.80E 06 1.523E 04 1.391E 04 
4.00E 06 1.849E 04 1.720E 04 
4.20E 06 2.074E 04 1.958E 04 
4.40E 06 2.199E 04 2.090^ 04 
4.60E 06 2.302E 04 2.203E 04 
4.80E 06 2.369E 04 2.279E 04 
5.00E 06 2.348E 04 2.262E 04 
5.20E 06 2.313E 04 2.226E 04 
5.40E 06 2.309E 04 2.226E 04 
5.60E 06 2.295E 04 2.217E 04 
5.60E 06 2.255E 04 2.17bE 04 
6.00E 06 2.205E 04 2.132E 04 
6.20E 06 2.173E 04 2.105E 04 
6.40E 06 2.14IE 04 2.080E 04 
6•60E 06 2.073E 04 2.016E 04 
6.80E 06 1.938E 04 1.886E 04 

7.00E 06 1.737E 04 1.689E 04 
7.20E 06 1.479E 04 1.434E 04 
7.40E 06 1.203E 04 1.161E 04 
7.60E 06 9.689E 03 9.295E 03 
7.80E 06 3.147E 03 7.773E 03 
8.COE 06 7.352E 03 6.997E 03 
8.20E 06 7.014E 03 6.677E 03 
8.40E 06 6.735E 03 6.405E 03 
8•60E 06 6.349E 03 6.034E 03 
8.80E 06 5.866E 03 5.571E 03 
9.00E 06 5.336E 03 5.054E 03 
9.20E 06 4.792E 03 4.520E 03 
9.40E 06 4.264E 03 4.D06E 03 
9.60E 06 3.804E 03 3.558E 03 
9.80E 06 3.463E 03 3.229E 03 
l.OOE 07 3.239E 03 3.022E 03 
1.02E 07 3.049E 03 2.849E 03 
1.04E 07 2.774E 03 2.584E 03 
1.06E 07 2.359E 03 2.169E 03 
1.08E 07 1.878E 03 1.687E 03 
1.10E 07 1.465E 03 1.280E 03 
1.12E 07 1.192E 03 1.019F 03 
1.14E 07 1.033E 03 8.738E 02 
1.16E 07 9.315E 02 7.839E 02 
1.18E 07 8.648E 02 7.235E 02 
1.20E 07 8.233E 02 6.849E 02 
1.22E 07 7.887E 02 6.538E 02 
1.24E 07 7.385E 02 6.104E 02 
1.26E 07 6.666E 02 5.524E 02 
1.28E 07 5.861E 02 4.889E 02 
1.30E 07 5.128E 02 4.227E 02 
1.32E 07 4.484E 02 3.585*= 02 
1.34E 07 3.919E 02 3.069E 02 
1.36E 07 3.47ÍC 02 2.739c 02 
1.38E 07 3.148E 02 2.53**= 02 
1.40E 07 2.868E 02 2.318E 02 
1.42E 07 2.546E 02 2.020E 02 
1.44E 07 2.172E 02 1.675E 02 
1.46E 07 1.81.6E 02 1.369E 02 
1.48E 07 1.543E 02 1.154E 02 
1.50E 07 1.371E 02 1.017E 02 
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TA3LE XIV 

*UN 70A+71A CH2 SLAB AT 13 DEG. 

UPPER 
ENERGY LIYIT 

LOdER UPPER 
LIMIT ENERGY LIMIT 

LDrfER 
LIMIT 

Ö.OOE 05 
9.00E 05 
l.OOE 06 
1.10E 06 
1.20E 06 
1.30E 06 
1.40E 06 
1.50E 06 
1.60E 06 
1.70E 06 
1.80E 06 
1.90E 06 
2.00E 06 
2.10E 06 
2.20E 06 
2.30E 06 
2.40E 06 
2.50E 06 
2.60E 06 
2.70E 06 
2.80E 06 
2.90E 06 
3.00 E 06 
3.20E 06 
3.40E 06 

•60E 06 
•80E 06 

4.00E 06 
4.20E 06 
4.40E 06 
4.60E 06 
4.80E 06 
5.00E 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.60E 06 
6.00E 06 
6.20E 06 
6.40E 06 
6.60E 06 
6.80E 06 

5.747E 02 
5.686E 02 
5.495E 02 
6.052E 02 
7.372E 02 
8.717E 02 
9.456E 02 
9.528E 02 
9.209E 02 
8.Ó36E 02 
8.005E 02 
7.562E 02 
7.403E 02 
7.395E 02 
7.369E 02 
7.228E 02 
6.998E 02 
6.674E 02 
6.275E 02 
5.540E 02 
5.377E 02 
4.912E 02 
4.459E 02 
3.663E 02 
3.256E 02 
3.27 IE 02 
3.457E 02 
3.639E 02 
3.692E 02 
3.600E 02 
3.425E 02 
3.244E 02 
3.038E 02 
2.835E 02 
2.695E 02 
2.577E 02 
2.439E 02 
2.290E 02 
2.136E 02 
1.963E 02 
1.790E 02 
1.637E 02 

5.030E 02 
4.917E 02 
4.791E 02 
5.420E 02 
6.8C6E 02 
8.166E 02 
8.862t 02 
8.942E 02 
8.669E 02 
8.118F 02 
7.503E 02 
7.118F 02 
7.005F 02 
7.029E 02 
7.030E 02 
6.925E 02 
6.716E 02 
6.42IE 02 
6.05IE 02 
5.617E 02 
5.153E 02 
4.693E 02 
4.246E 02 
3.479E 02 
3.C79E 02 
3.093E 02 
3.286E 02 
3.482E 02 
3.555E 02 
3.476E 02 
3.313E 02 
3.143E 02 
2.944E 02 
2.743E 02 
2.607E 02 
2.492E 02 
2.355E 02 
2.212E 02 
2.063E 02 
1.892E 02 
1.722E 02 
1.574E 02 

7.00E 06 1.475E 
7.20E 06 1.285E 
7.40E 06 1.102E 
7.60E 06 9.685F 
7.80E 06 9.841E 
8.00E 06 8.219F 
8.20E 06 7.581F 
8.40E 06 6.867F 
8.60E 06 6.124E 
8.80E 06 5.3P2E 
9.00E Oo 4.662E 
9.20E 06 4.016F 
9.40E 06 3.509E 
9.60E 06 3.151F 
9.80E 06 2.886E 
l.OOE 07 2.646E 
1.02E 07 2.387E 
1.04E 07 2.114E 
1.06E 07 1.888E 
1.08E 07 1.765F 
1.10F 07 1.730E 
1.12E 07 1.705E 
1.14E 07 1.618E 
1.16F 07 1.454E 
1.18E 07 1.246F 
1.20E 07 1.049E 
1.22E 07 8.946F 
1.24E 07 7.874E 
1.26E 07 7.109F 
1.28E 07 6.546E 
1.30E 07 6.204F 
1.32E 07 6.029E 
1.34E 07 5.902E 
1.36E 07 5.716E 
1.38E 07 5.379E 
1.40E 07 4.847E 
1.42E 07 4.147E 
1.44E 07 3.382E 
1.46F 07 2.684F 
1.48E 07 2.147E 
1.50E 07 1.794E 

02 1.415E 02 
02 1.227E 02 
02 1.048E 02 
01 9.180E 01 
01 8.362F 01 
01 7.766E 01 
01 7.152E 01 
01 6.451F 01 
01 5.730F 01 
01 5.013E 01 
01 4.305F 01 
01 3.670E 01 
01 3.178E 01 
01 2.831E 01 
01 2.578E 01 
01 2.354E 01 
01 2.109E 01 
01 1.843E 01 
01 1.618E 01 
01 1.489E 01 
01 1.451E 01 
01 1.438E 01 
01 1.375E 01 
01 1.231E Cl 
01 1.034E 01 
Gl 8.390E 00 
00 6.878E 00 
00 5.916E 00 
00 5.372E 00 
00 5.034E 00 
00 4.779E 00 
00 4.639E ()0 
00 4.611E 00 
00 4.572E 00 
00 4.374E 00 
00 3.942E 00 
00 3.318E 00 
00 2.626E 00 
00 1.994E OJ 
00 1.505F 00 
00 1.189E 00 
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TABLE XV 

RUN 38B+38C CH2 SLAB AT 30 DEG. 

ENERGY 
UPPER LOWER 
limit limit 

UPPER LOWER 
ENERGY LIMIT LIMIT 

8.00E 05 5.821E 02 5.215E 02 
9.00E 05 6.293E 02 5.635E 02 
l.OOE 06 6.592E 02 6.056E 02 
1.10E 06 6.787E 02 6.35IE 02 
I.20E 06 7.060E 02 6.681E 02 
1.30E 06 7.199E 02 6.844E 02 
1.40E 06 6.938E 02 6.567E 02 
1.50E 06 6.4I6E 02 6.054E 02 
1.60E 06 5.963E 02 5.631E 02 
1.70E 06 5.697E 02 5.383E 02 
1.80E 06 5.514E 02 5.213E 02 
I.90E 06 5.3I0E 02 5.045E 02 
2.00E 06 5.068E 02 4.833E 02 
2.I0E 06 4.808E 02 4.593E 02 
2.20E 06 4.536E 02 4.338E 02 
2.30E 06 4.247E 02 4.069E 02 
2.40E 06 3.954E 02 3.789E 02 
2.50E 06 3.668E 02 3.5I9E 02 
2.60E 06 3.419E 02 3.287E 02 
2.70E 06 3.225E 02 3.094E 02 
2.80E 06 3.083E 02 2.95IE 02 
2.90E 06 2.9&5E 02 2.837E 02 
3.00E 06 2.849E 02 2.725E 02 
3.20E 06 2.583E 02 2.479E 02 
3.40E 06 2.380E 02 2.282E 02 
3.60E 06 2.361E 02 2.264E 02 
3.80E 06 2.453E 02 2.359E 02 
4.00E 06 2.466E 02 2.378E 02 
4.20E 06 2.339E 02 2.26IE 02 
4.40E 06 2.175E 02 2.I02E 02 
4.60E 06 2.005E 02 1.937E 02 
4.80E 06 1.82 IE 02 1.758E 02 
5.00E 06 1.637E 02 1.578E 02 
5.20E 06 1.462E 02 1.405E 02 
5.40E 06 1.283E 02 1.229E 02 
5.60E 06 1.10 IE 02 1.050E 02 
5.80E 06 9.461E 01 8.960E 01 
6.00E 06 8.420E 01 7.954E 01 
6.20E 06 7.694E 01 7.252E 01 
6.40E 06 7.051E 01 6.630E 01 
6.60E 06 6.495E 01 6.089E 01 
6.80E 06 6.040E 01 5.664E 01 

7.00E 06 5.586E 01 5.235E 01 
7.20E 06 5.042E 01 4.711E 01 
7.40E 06 4.424E 01 4.117E 01 
7.60E 06 3.P51E 01 3.567E 01 
7.80E 06 3.355E 01 3.092E 01 
8.00E 06 2.885E 01 2.638E 01 
8.20E 06 2.421E 01 2.190E 01 
8.40E 06 1.999E 01 1.777E 01 
8.60E 06 1.65IE 01 1.442E 01 
8.80F 06 1.398E 01 1.202E 01 
9.00E 06 1.241E 01 1.052E 01 
9.20E 06 1.153E 01 9.709E 00 
9.40E 06 1.095E 01 9.236E 00 
9.60E 06 1.034E 01 8.707E 00 
9.80E 06 9.478E 00 7.913E 00 
l.OOE 07 8.362E 00 6.896E 00 
1.02E 07 7.083E 00 5.729E 00 
1.04E 07 5.742E 00 4.438E 00 
1.06E 07 4.529E 00 3.238E 00 
1.C8E 07 3.726E 00 2.472S 00 
1.10E 07 3.460E 00 2.235E 00 
1.12E 07 3.547E 00 2.342^ 00 
1.14E 07 3.722E 00 2.583E 00 
1.16E 07 3.836E 00 2.803E 00 
1.18E 07 3.771E 00 2.804E 00 
1.20E 07 3.466E 00 2.522E 00 
1.22E 07 2.972E 00 2.096E 00 
1.24E 07 2.4 31E 00 1.664E 00 
1.26E 07 1.924E 00 1.239E 00 
1.28E 07 1.448E 00 7.976E-01 
i»30E 07 1.025E 00 3.899E-01 
1.32E 07 7.248E-D1 1.202E-01 
1.34E 07 5.975E-01 4.742E-02 
1.36E 07 6.240E-01 1.255E-01 
1.38E 07 7.236E-01 2.605E-01 
1.40E 07 8.144E-01 3.74<»E-01 
1.42E 07 8.516E-01 4.299E-01 
1.44E 07 8.257E-G1 4.178E-01 
1.46E 07 7•469Ë-01 3.552E-01 
1.48E 07 6.390E-01 2.751E-01 
1.50E 07 5.346F-01 2.117F-01 
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TABLE XVI 

RUN 51A + 51B CH2 SLAB AT 30 DEG. 

UPPER 
ENERGY LIMIT 

LOWER UPPER LOWER 
LIMIT ENERGY LIMIT LIMIT 

8.00E 05 
9.00E 05 
l.OOE 06 
1.10E 06 
I.20E 06 
I.30E 06 
1.40E 06 
1.50E 06 
1.60E 06 
1.70E 06 
1.80E 06 
1.90E 06 
2.00E 06 
2.I0E 06 
2.20E 06 
2.30E 06 
2.40E 06 
2.50E 06 
2.60E 06 
2.70E 06 
2.80E 06 
2.90E 06 
3.00E 06 
3.20E 06 
3.40E 06 
3.60E 06 
3.80E 06 
4.00E 06 
4.20E 06 
4.40E 06 
4.60E 06 
4.80E 06 
5.00E 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.80E 06 
6.00E 06 
6.20E 06 
6.40E 06 
6.60E 06 
6.80E 06 

5.409E 02 
5.78 IE 02 
6.257E 02 
6.809E 02 
7.304E 02 
7.518E 02 
7.273E 02 
6.630E 02 
5.96 IE 02 
5.569E 02 
5.344E 02 
5.123E 02 
4.884E 02 
4.65 IE 02 
4.438E 02 
4.235E 02 
4.033E 02 
3.815E 02 
3.583E 02 
3.364E 02 
3.176E 02 
3.025E 02 
2.898E 02 
2.626E 02 
2•35 IE 02 
2.27 IE 02 
2.382E 02 
2.475E 02 
2.394E 02 
2.176E 02 
1.933E 02 
1.746E 02 
1.614E 02 
I.486E 02 
1.3I9E 02 
1.147E 02 
1.007E 02 
8.916E 01 
7.934E 01 
7.093E 01 
6.326E 01 
5.766E 01 

4.837E 02 
5.134E C2 
5.723E 02 
6.372E 02 
6.925E 02 
7.162E 02 
6.904E 02 
6.271E 02 
5.630E 02 
5.257E 02 
5.044E 02 
4.859E 02 
4.648E 02 
4.435E 02 
4.238E 02 
4.056E 02 
3.868E 02 
3.666E 02 
3.45 IE 02 
3.233E 02 
3.045E 02 
2.898E 02 
2.776E 02 
2.523E 02 
2.253E 02 
2.175E 02 
2.289E 02 
2.389E 02 
2.317E 02 
2.103E 02 
1.866E 02 
1.684E 02 
1.555E 02 
1.430E 02 
1.265E 02 
1.096E 02 
9.578E 01 
8.453E 01 
7.498E 01 
6.682E 01 
5.922E 01 
5.396E 01 

7.00E 06 5.422E 01 5.079E 01 
7.2CE 06 4.995E 01 4.666E 01 
7.40E 06 4.303E 01 3.998E 01 
7.60E 06 3.534E 01 3.301E 01 
7.80E 06 3.040E 01 2.775E 01 
8.00E 06 2.652E 01 2.403= 01 
8.20E 06 2.35SE 01 2.123E 01 
8.40E 06 2.132E 01 1.909E 01 
8.60E 06 1.945E 01 1.734E 01 
8.80E 06 1.739E 01 1.543E 01 
9.00E 06 1.509E 01 1.323E 01 
9.20E 06 1.297E 01 1.120E 01 
9.40E 06 1.142E 01 9.768E 00 
9.60E 06 1.040E 01 8.842E 00 
9.80E 06 9.494E 00 8.D14E 00 
l.OOE 07 8.303E 00 6.907E 00 
1.02E 07 6.773E 00 5.447E 00 
1.04E 07 5.224E 00 3.974E 00 
1.06E 07 4.099E 00 2.911E 00 
1.08E 07 2.523E 00 2.351E 00 
1.10E 07 3.26‘tE 00 2.066E 00 
1.12E 07 3.049E 00 1.868E 00 
1.14E 07 2.884E 00 1.784E 00 
1.16E 07 2.893E 00 1.885E 00 
1.18E 07 3.051E 00 2.097E 00 
1.20E 07 3.12CE 00 2.210E 00 
'1.22E 07 2.915E 00 2.059E 00 
I.24E 07 2.448E 00 1.640E 00 
1.26E 07 1.921E 00 1.172E 00 
1.28E 07 1.567E 00 9.164E-01 
1.30E 07 1.478E 00 9.238E-01 
1.32E 07 1.529E 00 1.030E 00 
1.34E 07 1.514E 00 1.03 rE 00 
1.36E 07 1.318E 00 8.613E-01 
1.38E 07 9.862E-01 5.754E-01 
1.40E 07 6.478E-01 2.912E-01 
1.42E 07 4.096E-01 9.590E-02 
1.44E 07 2.985E-01 1.455E-02 
1.46E 07 2.784E-01 J..337E-02 
1.48E 07 2.898E-01 3.573E-02 
1.50E 07 2.884E-01 3.861E-02 
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TABLE XVII 

RUM 19F+19G PB SLAB AT 0 DEG. 

UPPER LOWER UPPER LOWER 
ENERGY LIMIT LIMIT ENERGY LIMIT LIMIT 

8.00E 05 
9.00E 05 
l.OOE 06 
i.IOE 06 
1.20E 06 
1.30E 06 
1.40E 06 
1.50E 06 
1.60E 06 
1.70E 06 
1.80E 06 
1.90t 06 
2.00E 06 
2.10E 06 
2.20E 06 
2.30E 06 
2.405 06 
2.50E 06 
2.60E 06 
2.70E 06 
2.80E 06 
2.90E 06 
3.00E 06 
3.20E 06 
3.40E 06 
3.60E 06 
3.80E 06 
4.00E 06 
4.20E 06 
4.40E 06 
4.60E 06 
4.80E 06 
5.00E 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.80E 06 
6.00E 06 
6.20E 06 
6.40E 06 
6.60E 06 
6.80E 06 

4.714E 04 
4.517E 04 
4.524E 04 
4.537E 04 
4.396E 04 
4.131E 04 
3.853E 04 
3.582E 04 
3.258E 04 
2.877E 04 
2.481E 04 
2.074E 04 
1.674E 04 
1.316E 04 
1.029E 04 
8.184E 03 
6.55 IE 03 
5.262E 03 
4.200E 03 
3.320E 03 
2.643E 03 
2.134E 03 
1.737E 03 
1.190E 03 
9.029E 02 
8.039E 02 
7.53PL 02 
7.113E 02 
6.693E 02 
6.31 IE 02 
5.949E 02 
5.538E 02 
5.246E 02 
5.257E 02 
5.623E 02 
6.246E 02 
6.935E 02 
7.348E 02 
7.446E 02 
7.417E 02 
7.345E 02 
7.164E 02 

4.382E 04 
4.190E 04 
4.2 77E 04 
4.360E 04 
4.2 54E 04 
4.01IE 04 
3.748E 04 
3.486E 04 
3.176E 04 
2.814E 04 
2.431E 04 
2.034E 04 
1.642E 04 
1.291E 04 
1.010E 04 
8.034E 03 
6.429E 03 
5.163E 03 
4.118E 03 
3.246E 03 
2.574E 03 
2.069E 03 
1.677E 03 
1.139E 03 
8.536E 02 
7.533E 02 
7.022E 02 
6.605E 02 
6.216E 02 
5.841E 02 
5.493E 02 
5.094E 02 
4.803E 02 
4.807E 02 
5.175E 02 
5.804E 02 
6.492E 02 
6.919E 02 
7.028E 02 
7.011E 02 
6.938E 02 
6.780E 02 

7.00E 06 
7.20E 06 
7.40E 06 
7.605 06 
7.30E 06 
8.00E 06 
8.20E 06 
8.40E 06 
8.60E 06 
8.80E 06 
9.00E 06 
9.20E 06 
9.40E 06 
9.60E 06 
9.80E 06 
l.OOE 07 
1.02E 07 
1.04E 07 
1.06E 07 
1.08E 07 
I.IOE 07 
1.12E 07 
1.14E 07 
1.165 07 
1.185 07 
1.20E 07 
1.22E 07 
1.24E 07 
1.26E 07 
1.28E 07 
1.30E 07 
1.32E 07 
1.34E 07 
1.36E 07 
1.38E 07 
1.40E 07 
1.42E 07 
1.44E 07 
1.46E 07 
1.48E 07 
1.50E 07 

6.945E 02 
6.712E 02 
6.359E 02 
5.837E 02 
5.288E 02 
4. 872E 02 
4.6045 02 
4.357E 02 
4.0495 02 
3.677E 02 
3.285E 02 
2.907E 02 
2.558E 02 
2.2445 02 
1.974E 02 
1.754E 02 
1.5855 02 
1.453E 02 
1.333E 02 
1.2005 02 
1.045E 02 
8.7835 01 
7.2265 01 
5.993E 01 
5.171E 01 
4.6445 01 
4.286E 01 
3.971E 01 
3.6185 01 
3.203E 01 
2.761E 01 
2.3315 Cl 
1.974E 01 
1.769E 01 
1.7275 01 
1.757E 01 
1.7425 01 
1.6195 01 
1.399E 01 
1.139E 01 
9.058E 00 

6.578E 02 
6.357E 02 
6.0255 02 
5.5195 02 
4.9845 02 
4.586E 02 
4.3335 02 
4.093E 02 
3.798E 02 
3.443E 02 
3.061E 02 
2.692E 02 
2.354E 02 
2.051E 02 
1.790E 02 
1.581E 02 
1.4255 02 
1.302E 02 
1.1835 02 
1.0475 02 
8.9325 01 
7.3555 01 
5.938E 01 
4.816E 01 
4.0335 01 
3.508E 01 
3.1545 01 
2.8765 01 
2.610E 01 
2.309E 01 
1.921E 01 
1.490E 01 
1.1585 01 
1.020E 01 
1.0495 01 
1.1315 01 
1.1485 01 
1.0445 01 
8.4595 00 
6.1525 00 
4.1375 00 
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TABLE XVIII 

RUN 19H+19I PB SLAB AT 13 DEG. 

ENERGY 
LPPER 
LIMIT 

LOWER 
LIMIT ENERGY 

Upr>ER 
LIMIT 

LOWER 
LIMIT 

3.00E 05 
9.005 05 
l.OOE 06 
1.10E 06 
1.20E 06 
1.30E 06 
1.40E Oö 
1.50E 06 
1.60E 06 
1.70E 06 
1.80E 06 
1.90E 06 
2.00E 06 
2.10E 06 
2.20E 06 
2.30E 06 
2.40E 06 
2.50E 06 
2.60E 06 
2.70E 06 
2.80E 06 
2.90E 06 
3.00E 06 
3.20E 06 
3.40E Oö 

3.60E 06 
3.80E 06 
4.OOE 06 
4.20E 06 
4.40E 06 
4.60E 06 
4.80E 06 
5.OOE 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.80E 06 
6.OOE 06 
6.20E 06 
6.40E 06 
6.60E 06 
6.80E 06 

8.116E 03 
6.796E 03 
5.833E 03 
5.230E 03 
4.883E 03 
4.584E 03 
4.228E 03 
3.873E 03 
3.519E 03 
3.150E 03 
2.802E 03 
2.477E 03 
2.149E 03 
1.827E 03 
1.544E 03 
1.319E 03 
1.134E 03 
9.757E 02 
8.329E 02 
7.073E 02 
6.044E 02 
5.208E 02 
4.488E 02 
3.276E 02 
2.458E 02 
2.160E 02 
2.157E 02 
2.099E 02 
1.868E 02 
1.630E 02 
1.471E 02 
I. 360E 02 
1.263E 02 
1.195E 02 
1 • 18 IE 02 
1.197E 02 
1.211E 02 
1.195E 02 
1.151E 02 
1.098E 02 
1.043E 02 
9.690E 01 

7.739E 03 
6.389E 03 
5.535E 03 
5.020E 03 
4.719E 03 
4.439E 03 
4.096E 03 
3.749E 03 
3.413F 03 
3.062E 03 
2.7275 03 
2.4145 03 
2.097E 03 
1.783E 03 
1.506E 03 
1.238E 03 
1.107E 03 
9.530F 02 
8.136E 02 
6.884E 02 
5.852E 02 
5.025E 02 
4.316E 02 
3.133E 02 
2.319E 02 
2.018E 02 
2.016E 02 
1.962E 02 
1.742E 02 
1.509E 02 
1.357E 02 
1.252E 02 
1.157E 02 
1.089E 02 
1.078E 02 
1.097E- 02 
1.113E 02 
1.102E 02 
1.062E 02 
1.013E 02 
9.599E 01 
8.914E 01 

7.OOE 06 8.7885 
7.20E 06 7.8875 
7.405 06 7.082E 
7.60E 06 6.275E 
7.80E 06 5. 343E 
8.OOE 06 4.403E 
9.2GE 06 3.765E 
9.40E 06 3.557E 
8.60E 06 3.5345 
8.80E 06 3.375E 
°.OOE 06 2.992E 
9.20E 06 2.5035 
P.40E 06 2.152E 
9.60E 06 2.011= 
9.80E 06 2.0025 
l.OOE 07 2.034E 
1.02E 07 2.090E 
1.04E 07 2.173E 
1.065 07 2.230E 
1.08E 07 2.177= 
1.10E 07 1.9655 
1.12E 07 1.614E 
1.14E 07 1.199E 
1.16E 07 8.157E 
1.18E 07 5.4845 
1.20E 07 4.298E 
1.22E 07 4.247E 
1.24E 07 4.339E 
1.26E 07 3.557E 
1.28E 07 1.5565 
1.30= 07-1.340= 
1.32E 07-4.559E 
1.34E 07-7.578E 
1.36E 07-9.8245 
1.38E 07-1.070E 
1.40E 07-9.892E 
1.42E 07-7.7375 
1.44E 07-5.023E 
1.46E 07-2.4865 
1.48E 07-4.398E- 
1.50E 07 1.140E 

01 9.056E 01 
01 7.1925 01 
01 6.^395 01 
01 5.6715 01 
01 4.7635 01 
01 3.855E 01 
01 3.253E 01 
Cl 3.061E 01 
01 3.058= 01 
01 2.926E 01 
01 2.547= 01 
01 2.092F 01 
01 1.7515 01 
01 1.622F 01 
01 1.616E 01 
01 1.643E 01 
01 1.7035 01 
01 1.782E 01 
01 1.830E 01 
01 1.754= 01 
01 1.512E 01 
01 1.139E 01 
01 7.1475 00 
00 3.242= 00 
00 5.0925-01 
00-8.019E-01 
00-9.346E-01 
00-7.6345-01 
00-1.343E 00 
00-3.1565 00 
00-5.894E CO 
C0-8.947E 00 
00-1.1765 01 
00-1.3775 01 
01-1.439E 01 
00-1.3355 01 
00-1.099E 01 
00-8.079E 00 
00-5.362E 00 
01-3.159E 00 
00-1.440E 00 
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TABLE XIX 

RUN 20B+20C PB SLAB AT 47 DEG. 

UPPER LOWER UPPER LOWER 
ENERGY LIMIT LIMIT ENERGY LIMIT LIMIT 

8.00E 05 
9.00E 05 
l.OOE 06 
1.10E 06 
1.20E 06 
1.30E 06 
1.40E 06 
1.50E 06 
1.60E 06 
1.70E 06 
1.80E 06 
1.90E 06 
2.00E 06 
2.10E 06 
2.20E 06 
2.30E 06 
2•40E 06 
2.50E 06 
2.60E 06 
2.70E 06 
2.80E 06 
2.90E 06 
3.00E 06 
3.20E 06 
3.40E 06 

60E 06 
80E 06 

4.00E 06 
4.20E 06 
4.40E 06 
4.60E 06 
4.80E 06 
5.0CE 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.80E 06 
b.OOE 06 
6.20E 06 
6.40E 06 
6.60E 06 
6.80E 06 

4.657E 03 
3.826E 03 
3.30IE 03 
2.937E 03 
2.657E 03 
2.4I4E 03 
2.169E 03 
1.924E 03 
1 • 69IE 03 
1.488E 03 
1.307E 03 
1.1288 03 
9.575E 02 
8.095E 02 
6.87 IE 02 
5.830E 02 
4.893E 02 
4.07IE 02 
3.386E 02 
2.827E 02 
2.387E 02 
2.027E 02 
1.7185 02 
1.232E 02 
9.022E 01 
7.030E 01 
6.007E 01 
5.360E 01 
4.657E 01 
3.779E 01 
3.044E 01 
2.768E 01 
2.779E 01 
2.626E 01 
2.153E 01 
1.792E 01 
1.71 IE 01 
1.695E 01 
1.574E 01 
1.388E 01 
1.202E 01 
9.Ö77E 00 

4.413E 03 
3. 608E 03 
3.145E 03 
2.832E 03 
2.576E 03 
2.345E 03 
2.108E C3 
1.869E 03 
1.644E 03 
1.449E 03 
1.274E 03 
1.101E 03 
9.345E 02 
7.697E 02 
6.694E 02 
5.674E 02 
4.750E 02 
3.946E 02 
3.279E 02 
2.723E 02 
2.284E 02 
1.931E 02 
1.633E 02 
l.löSE 02 
8.398E 01 
6.458E 01 
5.407E '"'I 
4.797E 01 
4.155E 01 
3.305E 01 
2.609E 01 
2.367E 01 
2.405E 01 
2.257E 01 
1.798E 01 
1.462E 01 
1.393E 01 
1.399E 01 
1.294E 01 
1.132E 01 
9.641E 00 
7.400E 00 

7.00E 06 
7.20E 06 
7.40E 06 
7.60E 06 
7.ROE 06 
8.ODE 06 
8.20E 06 
8.40E 06 
8.60E 06 
8.80E 06 
9.00E 06 
9.2CE 06 
9.4CE 06 
9.60E 06 
9.80E 06 
l.OOE 07 
1.02E 07 
1.04E 07 
1.06E 07 
1.08E 07 
1.10E 07 
1.12E 07 
1.14E 07 
1.16E 07 
1.18E 07 
1.20E 07 
1.22E 07 
1.24E 07 
1.26E 07 
1.2 8E 07 
1.30E 
1.32E 
1.34E 
1.36E 
1.38E 
1.40E 
1.42E 
1.44E 
1.46E 
1.48E 
1.50E 

7.21SE 00 
5.846E 00 
6.030E 00 
6.608E 00 
6.358E 00 
5.063E 00 
3.468E 00 
2.562E 00 
2.394E 00 
2.457E OC 
2.514E 00 
2.654E 00 
2.772E 00 
2.616E 00 
2.134E 00 

5.033E 00 
3.809E 00 
4.145E 00 
4.869E 00 
4.679E 00 
3.431E 00 
1.968E 00 
1.189E 00 
1.053E 00 
1.097E 00 
1.181E 00 
1.362E CO 
1.528E 00 
1.371E 00 
7.837E-01 

1.53IE 00 5.941E-02 
1.038E 00-4.751E-01 
7.052E-01-8.318E-01 
4.807E-01-1.177E 00 
4.194E-01-1.429E 00 
6.927E-01-1.349E 00 
1.301E 00-9.473E-01 
1.910E 00-5.^93E-01 
2.191E 00-4.356E-C1 
2.236E OC-4.6Q0E-Q1 
2.574E 00-2•487E-01 
3.3°5E 00 3.503E-01 
4.366E 00 1.147E 00 
4.963E OC 1.693E 00 
4.808E 00 1.538E 00 

07 3.796E 00 5.456E-01 
07 2.149E 00-1.050E CO 
07 3.784E-01-¿.778E 00 
07-9.456E-Cl-4.107E 00 
07-1.466E 00-4.603E 00 
07-1.106E 00-4.I36E 00 
07-3.510E-02-2.927E 00 
07 1.370E C0-1.406E 00 
07 2.640E 00-4.700E-02 
07 3.374E 00 7.793E-01 
07 3.397E 00 9.005E-01 
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T ABLE XX 

RUN 20D+20E PB SLAB AT 64 DFS. 

UPPER LOWER 
ENERG/ LMIT LIMIT 

UPPER LOWE0 
ENERGY LIMIT LIMIT 

8.00E 05 
9.00E 05 
l.OOE 06 
1.10E 06 
1.20E 06 
1.30E 06 
1.40E 06 
1.50E 06 
1.60E 06 
1.70E 06 
1.80E 06 
1.90E 06 
2.00E 06 
2.10E 06 
2.20E 06 
2.30E 06 
2.40E 06 
2.50E 06 
2.60E 06 
2.70E 06 
2.80E 06 
2.90E 06 
3.00E 06 
3.20E 06 
3.40E 06 
3.60E 06 
3.80E 06 
4.00E 06 
4.20E 06 
4.40E 06 
4.60E 06 
4.80E 06 
5.00E 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.80E 06 
6.00E 06 
6.20E 06 
6.40E 06 
6.60E 06 
6.80E 06 

5.718E 04 
4.374E 04 
3.623E 04 
3.024E 04 
2.508E 04 
2.045E 04 
1.608E 04 
1.205E 04 
8.694E 03 
6.234E 03 
4.415E 03 
3.006E 03 
I.937E 03 
1.206E 03 
7.690E 02 
5.533E 02 
4.49IE 02 
4.032E 02 
3.596E 02 
2.993E 02 
2.204E 02 
1.432E 02 
8.275E 01 
2.982E 01 
2.095E 01 
1•92 IE 01 
1.639E 01 
1.472E 01 
1.289E 01 
1.093E 01 
8.859E 00 
7.104E 00 
5.833E 00 
4.950E 00 
4.336E 00 
3.759E 00 
3.226E 00 
2.990E 00 
3.036E 00 
3.169E 00 
3.196E 00 
2•84IE 00 

5.527E 04 
4.176E 04 
3.494E 04 
2.952E 04 
2.459E 04 
2.009E 04 
1.580E 04 
1.182E 04 
8.514E 03 
6.099E 03 
4.306E 03 
2.914E 03 
1.860E 03 
1.141E 03 
7.129E 02 
5.052E 02 
4.067E 02 
3.680E 02 
3.304E 02 
2.715E 02 
1.954E 02 
1.242E 02 
7.044E 01 
2.568E 01 
1.875E 01 
1.735E 01 
1.514E 01 
1.308E 01 
1.146E 01 
9.615E 00 
7.661E 00 
6.016E 00 
4.SUE 00 
3.954E 00 
3.391E 00 
2•85IE 00 
2.334E 00 
2.166E 00 
2.258E 00 
2.433E 00 
2.479E 00 
2.186E 00 

7.00E 
7.20E 
7.40E 
7.60E 
7.80E 
8.00E 
3.20E 
8.40c 
3.60E 
8.80E 
9.00E 
9.20E 
9 40E 
9.60E 
9.80E 
l.OOE 
1.02E 
1.04E 
1.06E 
1.08E 
1.10E 
1.12E 
1.14E 
1.16E 
1.18E 
1.20E 
1.22E 
1.24E 
1.26E 
1.28E 
1.30E 
1.32E 
1.34E 
1.36E 
1.38E 
1.40E 
1.42E 
1.44E 
1.46E 
1.48E 
1.50E 

06 2.121E 00 1.527E 00 
06 1.406E 00 7.956E-01 
06 1.04CE 00 4.518E-01 
06 Ç.740E-01 4.341E-01 
06 °.926E-01 4.851E-01 
06 1.021E 00 5.2C2E-01 
06 1.039E 00 5.504E-01 
06 1.022E 00 5.^51E-01 
06 9.654E-01 5.089E-01 
06 8.816E-01 ¿.5E6E-01 
06 7.732E-01 3.555E-01 
06 6.415E-01 2.013E-01 
06 5.1iOE-Ol 4.043E-02 
06 4.267E-01-8.260E-0? 
06 4.079E-01-1.456E-01 
07 4.273E-01-1.563E-01 
07 4.598E-01-1.633E-01 
07 5.105E-01-2.224E-01 
07 5.748E-01-2.698E-01 
07 O.614E-01-2.772E-01 
07 7.796E-01-2.702E-01 
07 9.123E-01-2.524E-01 
07 1.061E 00-2.129E-01 
07 1.230F 00-1.7C8E-01 
07 1.339E 00-1.565E-01 
07 1.326E 00-2.167E-01 
07 1.219E 00-3.643E-01 
07 1.101E 00-5•754E-01 
07 9.907E-01-7.582E-01 
07 8.849E-01-8.602E-01 
07 7.975E-01-9.339E-01 
07 6.967E-01-1.051E 00 
07 5.378E-01-1.200E 00 
07 4.04 15-01-1.294E 00 
07 4.613E-01-1•216E 00 
07 7.6455-01-9.169E-01 
07 1.171E 00-5•067E-01 
07 1.449E 00-1.953E-01 
07 1.457E 00-1.297E-01 
07 1.2245 00-2.907E-01 
07 8.924E-01-5.535E-01 
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TABLE XXI 

RUN 39039D PB SLAB AT 0 DEG. 

ENERGY 

8.00E 05 
9.00E 05 
l.OOE 06 
1.10E 06 
1.20E 06 
1.30E 06 
1.40E 06 
1.50E 06 
1•60 E 06 
1. TOE 06 
1.80E 06 
1.90E 06 
2.00E 06 
2.I0E 06 
2.20E 06 
2.30E 06 
2.40E 06 
2.50E 06 
2.60E 06 
2. TOE 06 
2.80E 06 
2.90 E 06 
3. COE 06 
3.20E 06 
3.40E 06 
3.60E 06 
3.80E 06 
4.00E 06 
4.20E 06 
4.40E 06 
4.60E 06 
4.80E 06 
5.00 E 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.80E 06 
6.00E 06 
6.20E 06 
6.40E 06 
6•bOE 06 
6.80E 06 

UPPER 
LIMIT 

4.T63E 04 
4.585E 04 
4.548E 04 
4.562E 04 
4.45TE 04 
4.192E 04 
3.894E 04 
3.622E 04 
3.3I8E 04 
2.952E 04 
2.56 IE 04 
2.I54E 04 
1.T4TE 04 
1.3TTE 04 
1.0T5E 04 
8.49 26 03 
6.TT2E 03 
5,46 TE 03 
4.4I7E 03 
3.530E 03 
2.804E 03 
2.223E 03 
1.T66E 03 
1•20IE 03 
9.33TE 02 
8.08TE 02 
T.3T0E 02 
6.95IE 02 
6.T29E 02 
6.430E 02 
5.89IE 02 
5.334E 02 
5.100E 02 
5.220E 02 
5.526E 02 
5.956E 02 
6.502E 02 
T.008E 02 
T.353E 02 
T.514E 02 
T.504E 02 
T.244E 02 

LOWER 
LIMIT 

4.46IE 04 
4.254E 04 
4.299E 04 
4.382E 04 
4.311E 04 
4.OTOE 04 
3. T86E 04 
3.523E 04 
3.234E 04 
2.8 8TE 04 
2.509E 04 
2.113E 04 
1. TI4E 04 
1.35IE 04 
1.054E 04 
8.33TE 03 
6.64TE 03 
5. 366E 03 
4.335E 03 
3.457E 03 
2. T3TE 03 
2.162E 03 
I.T09E 03 
I.154E 03 
8.893E 02 
T.638E 02 
6.933E 02 
6.53TE 02 
6.356E 02 
6.0TTE 02 
5.562E 02 
5.024E 02 
4. T90E 02 
4.889E 02 
5.199E 02 
5.636E 02 
6.169E 02 
6.689E 02 
T.052E 02 
T.232E 02 
T.233E 02 
6.995E 02 

ENERGY 

T.OOE 06 
T.20E 06 
T.40E 06 
7.60E 06 
T.80E 06 
8.00E 06 
8.20E 06 
8.40E 06 
8.60E 06 
8.80E 06 
9.00E 06 
9.20E 06 
9.40E 06 
9.60E 06 
9.80E 06 
l.OOE OT 
1.02E 07 
I.04E 07 
1.06E 07 
1.08E 07 
I.10E 07 
1.12E 07 
I.14E 07 
1.I6E 07 
1.I8E 07 
1.20E 07 
1.22E 07 
I.24E 07 
1.26E 07 
I.28E 07 
1.30E 07 
1.32E 07 
1.34E 07 
1.36E 07 
1.3°E 07 
1.40E 07 
I.42= 07 
1.44= 07 
1.^6E 07 
1.48E 07 
1.50E 07 

UPPER 
LIMIT 

6.764E 02 
6.199E 02 
5.689E 02 
5.328E 02 
5.044E 02 
4.764E 02 
4.456E 02 
4.118E 02 
3.752E 02 
3.3915 02 
3.074P 02 
2.801E 02 
2.543E 02 
2.286E 02 
2.035E 02 
1.799E 02 
1.570E 02 
1.344E 02 
1.132E 02 
9.570E 01 
8.280E 01 
7.35 IE 01 
6.658E 01 
6.138E 01 
5.692E 01 
5.169c 01 
4.517E 01 
3.806E 01 
3.1445 01 
2.612E 01 
2.234= 01 
1.976E 01 
1.797E 01 
1.6405 01 
1.510E 01 
1.374E 01 
1.220E 01 
1.056E 01 
8.994E 00 
7.626E 00 
6.4795 00 

LOWER 
LIMIT 

6.529E 02 
5.962E 02 
5.476E 02 
5.126E 02 
4.851E 02 
4.579E 02 
4.283E 02 
3.950E 02 
3.592E 02 
3.242E 02 
2.933E 02 
2.665E 02 
2.414E 02 
2.163E 02 
1.920E 02 
1.692E 02 
1.4715 02 
1.250E 02 
1.039E 02 
8.638E 01 
7.356E 01 
6.479E 01 
5.874E 01 
5.433E 01 
5.031E 01 
4.524E 01 
3.885E 01 
3.21IE 01 
2.6245 01 
2.174E 01 
1.833E 01 
1.582E 01 
1.419E 01 
1.3175 01 
1.2305 01 
1.123E 01 
9.913E 00 
8.4925 00 
7.140E 00 
5.953E 00 
4.954E 00 
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TABLE XXII 

RJN 469+47A PB SLAB AT 13 DES. 

ENERGV 
UPPER 
LI^IT 

LOWER 
LIMIT ENERGY 

UDDER 

LIMIT 

8.0QE 05 8.b71E 03 8.266E 03 
9.00E 05 7.083E 03 6.6bOE 03 
l.OOE 06 6.073E 03 5.766E 03 
1.10E 06 5.510E 03 5.296E 03 
1.20E 06 5.152E 03 4.981E 03 
1.30E 06 4.801E 03 4.654E 03 
1.40E 06 4.334E 03 4.250E 03 
1.50Ê 06 3.927E 03 3.802E 03 
1.60E 06 3.486E 03 3.379E 03 
1.70E 06 3.110E 03 3.022E 03 
1.80E 06 2.789E 03 2.714E 03 
1.90E 06 2.482E 03 2.420E 03 
2.00E 06 2.171E 03 2.119E 03 
2.10E 06 1.868E 03 1.825F 03 
2.20E 06 1.594E 03 1.558E 03 
2.30E 06 1.361E 03 1.331E 03 
2.40E 06 1.159E 03 1.134E 03 
2.50E 06 9.863c 02 9.655E 02 
2.60E 06 6.393E 02 8.225E 02 
2.70E 06 7.151E 02 6.994E 02 
2.80E 06 6.100E 02 5.953E 02 
2.90E 06 5.184E 02 5.C50E 02 
3.00E 06 4.376E 02 4.252E 02 
3.20E 06 3.183E 02 3.085E 02 
3.40E 06 2.496E 02 2.405E 02 
3.60E 06 2.195E 02 2.105E 02 
3.80E 06 2.044E 02 1.957E 02 
4.00E 06 1.882E 02 1.799E 02 
4.20E 06 1.731E 02 1.655E 02 
4.40E 06 1.622E 02 1.549E 02 
4.60E 06 1.499E 02 1.430E 02 
4.80E 06 1.356E 02 1.290E 02 
5.00E 06 1.258E 02 1.195E 02 
5.20E 06 1.200E 02 1.137E 02 
5.40E 06 1.148E 02 1.08ÒE 02 
5.60E 06 1.119E 02 1.059E 02 
5.80E 06 1.115E 02 1.057E 02 
6.00E 06 1.104E 02 1.048E 02 
6.20E 06 1.073E 02 1.020E 02 
6.40E 06 1.030E 02 9.789E 01 
6.60E 06 9.809E 01 9.311E 01 
6.80E 06 9.154E 01 8.691E 01 

LOWER 
LIMIT 

7.00E 06 8.30GE 01 7.662E 'U 
7.2CE 06 7.354e 01 6.936E 01 
7.40E 06 6.4725 01 6.O80E Cl 
7.60E 06 5.681E 01 5.318E 01 
7.80E 06 4.975E 01 4.629e 01 
8.00E 06 4.392E 01 4.067E 01 
8.20E 06 3.968E 01 3.666E 01 
8.40E 06 3.636E 01 3.343E 01 
8.60E 06 3.^025 Dl 3.022E 01 
8.80E 06 2.955E 01 2.694E 01 
°.OOE 06 2.643E 01 2.397E 01 
9.20E 06 2.376= 01 2.140E 01 
9.40E 06 2.12DE 01 1.902E 01 
9.60e 06 1.911E 01 1.697E 01 
9.80E 06 1.753= 01 1.555F 01 
l.OOE 07 1.636E 01 1.452E 01 
1.02E 07 1.475E 01 1.303e 01 
1.04E 07 1.219E 01 1.052E 01 
1.06E 07 9.137c 00 7.469E 00 
1.08E 07 6.557E 00 4.°71E 00 
1.10E 07 5.199E 00 3.636E 00 
1.12E 07 4.794E 00 3.257E 00 
1.14E 07 4.670E 00 3.245E 00 
1.16E 07 4.472E 00 3.131E 00 
1.18E 07 4.179F 00 2.869E 00 
1.20E 07 4.044E 00 2.778E 00 
1.22E 07 4.203e 00 3.020e 00 
1.24E 07 4.468E 00 3.385e 00 
1.26E 07 4.475E 00 3.4D0E 00 
1.28E 07 4.052E 00 3.157E 00 
1.305 07 3.337E 00 2.511E 00 
1.32E 07 2.570E 00 1.817E 00 
1.34E 07 1.933E 00 1.253e 00 
1.36E 07 1.495e 00 8.886E-01 
1.38E 07 1.251E 00 7.261E-01 
1.40E 07 1.161E 00 7.064E-01 
1.42E 07 1.1585 00 7.413E-01 
1.44E 07 1.158E 00 7.620E-01 
1.46E 07 1.103E 00 7.314E-01 
1.48E 07 9.902E-01 6.415E-01 
1.50E 07 8•464E-01 5.199E-01 
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TABLE XXIII 

RUN 39E+40B PB SLAB AT 30 DEG. 

UPPER 
ENERGY LIMIT 

LOWER UPPER LOWER 
LIMIT ENERGY LIMIT LIMIT 

8.00E 05 6.850E 03 6.533E 03 
9.00E 05 5.649E 03 5.320E 03 
ItOOE 06 4.837E 03 4.60IE 03 
1.10E 06 4.322E 03 4.I61E 03 
1.20E 06 3.978E 03 3.850E 03 
1.30E 06 3.670E 03 3.562E 03 
1.40E 06 3.32 IF 03 3.224E 03 
I.50E 06 2•9oIE 03 2.871E C3 
1.60E 06 2.634E 03 2.557E 03 
1.70E 06 2.344E 03 2.28IE 03 
1.80E 06 2.080E 03 2.028E 03 
1.90E 06 I.833E 03 I.789E 03 
2.00E 06 1.589E 03 1.553E 03 
2.10E 06 1.35IE 03 1.322E 03 
2.20E 06 1.136E 03 1.112E 03 
2.30E 06 9.585E 02 9.392E 02 
2.40E 06 8.1I5E 02 7.953E 02 
2.50E 06 6.891E 02 6.758E 02 
2.0OE 06 5.830E 02 5.721E 02 
2.70E 06 4.895E 02 4.796E 02 
2.80E Ob 4.102E 02 4.008E 02 
2.90E 06 3.439E 02 3.352E 02 
3.00E 06 2.884E 02 2.805E 02 
3.20E 06 2.096E 02 2.034E 02 
3.40E 06 1.637E 02 1.578E 0’ 
3• 60E 06 1.39IE 02 1.332E 02 
3•80E 06 1.216E 02 1.158E 02 
4.00E 06 I.067E 02 1.011E 02 
4.20E 06 9.770E 01 9.268E 01 
4.40E 06 9.088E 01 8.610E 01 
4.60E 06 8.204E 01 7.759E 01 
4.8ÛE 06 7.158E 01 6.745E 01 
5.00E 06 6.190E 01 5.796E 01 
5.20E 06 5.571E 01 5.185E 01 
5.40E 06 5.309E 01 4.939E 01 
5.0OE 06 5.072E 01 4.718E 01 
5.80E 06 4.735E 01 4.391E 01 
6.00E 06 4.40IE 01 4.081E 01 
Ó.20E 06 4.137E 01 3.836E 01 
6.40E 06 3.88 IE 01 3.599E 01 
6.60E 06 3.588E 01 3.318E 01 
6.80E 06 3.241E 01 2.996E 01 

7.00E 06 2.835E 01 2.608E 01 
7.20E 06 2.394E 01 2.182E 01 
7.40E 06 i.998E 01 1.809E 01 
7.60E 06 1.687E 01 1.511E 01 
7.80E 06 1.430E 01 1.266E 01 
8.00E 06 1.202E 01 1.052E 01 
B.20E 06 9.979E 00 8.597E 00 
B.40E 06 8.304E 00 6.989E 00 
8.60E 06 7.052E 00 5.841E 00 
8.8CE 06 6.048E 00 4.927E 00 
9.00E 06 5.035E 00 3.943E CO 
9.20E 06 4.051E 00 2.997E 00 
9.40E 06 3.437E 00 2.454E 00 
9.60E 06 3.388E 00 2.473E 00 
q.80E 06 3.674E 00 2.811E 00 
l.OOE C7 3.840E 00 3.016E 00 
1.02E 07 3.576E 00 2.794E 00 
1.04E 07 2.916E 00 2.193E 00 
1.06E 07 2.140E 00 1.446E 00 
1.08E 07 1.503E 00 8.395E-01 
1.10E 07 1.077E 00 4.253E-01 
1.12E 07 7.911E-01 1.381E-01 
1.14E 07 5.990E-01-3.356E-02 
1.16E 07 5.508E-01-4.657E-02 
1.18E 07 6.602E-01 8.433E-02 
1.20E 07 7.964E-C1 2.235E-01 
1.22E 07 8.603E-01 2.884E-01 
1*248 07 8.560E-01 3.047E-01 
1.26E 07 8.375E-01 3.459E-01 
1.28E 07 8.431E-01 4.175E-01 
1.30E 07 8.569E-01 4.609E-01 
1.32E 07 8.155E-01 4.42RE-01 
1.34E 07 7.044E-0! 3.565E-01 
1.36E 07 5.513E-01 2.270E-01 
1.38E 07 4.0075=-01 1.039E-01 
1.40E 07 2•907E-01 2.841E-02 
1.42E 07 2.396E-01 9.Q75E-03 
1.44E 07 2.376E-01 2.585E-02 
1.46E 07 2.517E-01 4.241E-02 
1.48E 07 2.472E-01 3.827E-02 
1.50E 07 2.122E-01 1.072E-02 



178 

TABLE XXIV 

RUM 40O4ÛD PB SLAB AT 47 OES. 

UPPER LOWER UPPER LOWER 
EiMERGY LIMIT LIMIT EMERGY LIMIT LIMIT 

8.00E 05 
9.00E 05 
l.OOE 06 
1.10E 06 
1.20E 06 
1.30E 06 
1.40E 06 
1.50E 06 
1.60E 06 
1.70E 06 
1.80E 06 
1.90E 06 
2.00E Oo 
2.10E 06 
2.20E 06 
2.30E 06 
2.40E 06 
2.50E 06 
2.60E 06 
2.70E 06 
2.80E 06 
2.90E 06 
3.00E 06 
3.20E 06 
3.40E 06 
3.60E 06 
3.80E 06 
4.00E 06 
4.20E 06 
4.40 E 06 
4.60E 06 
4.80E 06 
5.00E 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.80E 06 
6.00E 06 
6.20E 06 
6.40E 06 
6.60E 06 
6.80E 06 

4.743E 03 
3.874E 33 
3.319E 33 
2.958E 03 
2.689E 03 
2.438E 33 
2.185E 03 
1.946E 03 
1.717E 03 
1.497E 03 
1.304E 33 
1.134E 33 
9.709E 02 
8.180E 32 
6.830E 02 
5.695E 02 
4.728E 32 
3.926E 02 
3.272E 02 
2.738E 32 
2.315E 32 
1.96IE 02 
1.653E 02 
1.178E 02 
8.706E 01 
6.782E 01 
5.79 IE 31 
5.237E 01 
4.669E 01 
4.052E 01 
3.405E 01 
2.793E 01 
2.335E 31 
2.100E 01 
1.97 IE 01 
1.786E 01 
1.609E 01 
1.488E 01 
1.404E 01 
1.336E 01 
1.233E 01 
1.069E 01 

4.552E 03 
3.667c 03 
3.167E 03 
2.853E 03 
2.607E 03 
2.370E 03 
2.124E 03 
1.891E 03 
1.670E 03 
1.459E 03 
1.273E 03 
1.108E 03 
9.50IE 02 
8.010E 02 
6.690E 02 
5.582E 02 
4.632E 02 
3.846E 02 
3.205E 02 
2.674E 02 
2.252E 02 
1.903E 02 
1.600E 02 
1.137E 02 
8.320E 01 
6.399E 01 
5.422E 01 
4.886E 01 
4.358E 01 
3.762E 01 
3.139E 01 
2.547E 01 
2.101E 01 
1.875E 01 
1.755E 01 
1.578E 01 
1.410E 01 
1.301E 01 
1.227E 01 
1.172E 01 
1.076E 01 
9.231E 00 

7.00E 06 
7.20E 06 
7.40E 06 
7.60E 06 
7.80E 06 
8.00E 06 
8.20E 06 
8.40E 06 
3.60E 06 
8.80E 06 
9.ÛCE 06 
9.23E 06 
9.40E 06 
9.60E 06 
9.80E 06 
l.OOE 07 
1.02E 07 
1.04E 07 
1.06E 07 
1.08E 07 
1.10E 07 
1.12E 07 
1.14E 37 
1.16E 37 
1.18E 37 
1.20E 07 
1.22E 07 
1.24E 07 
1.26E 07 
1.28E 07 
1.30E 07 
1.32E 07 
1.34E 07 
1.36E 07 
1.38E 07 
1.40E 07 
1.42E 07 
1.44E 07 
1.46E 07 
1.48E 07 
1.50E 07 

9.137E 30 
8.112E OC 
7.1R9E 00 
5.909E 00 
4.537E 30 
3.560E 00 
? .1c 5E 00 
2.994E 30 
2•779E 00 
2.509E 00 
2.273E 00 
2.399E 30 
1.923E 00 
1.741E 00 
1.592E 00 
1.473E 00 
1.326E CO 
1.136E 30 
9.679E-01 
9.007E-01 
9.194E-01 
9.067E-01 
7.547E-01 
4.742E-01 

7.804E 00 
6.877E 00 
6.043E 00 
4.841E 00 
3.533E 00 
2.632E 00 
2.286E 00 
2.141E 00 
1.968E 00 
1.741E 00 
1.544E 00 
1.397= 00 
1.245E 00 
1.392E 00 
9.925E-01 
8.996E-01 
7.736E-01 
5.896E-01 
4.371E-01 
4.070E-OI 
4.627E-01 
4.509E-01 
2.779E-01 
1.432 E-02 

1.972E-01-2.2G'IE-01 
3.807E-02-3.791E-01 
9.643E-03-4.145E-01 
1.034E-01-2.923E-01 
2.963E-01-5.753E-02 
5.107E-01 1.801E-01 
6.416E-01 3.226E-01 
6.421E-01 3.332E-01 
5.422E-01 2.497E-01 
4.0375-01 1.494E-01 
2.846E-01 8.249E-02 
2.150E-01 4.997E-02 
1.879E-01 3.177E-02 
1.740E-01 1•649E-02 
1.530E-01-1.777E-04 
1.233E-01-2.064E-02 
9.179E-02-4.359E-02 



179 

TABLE XXV 

RUN 45A+44C PB SLAB AT 64 DES. 

UPPER LOWER UPPER LOWER 
ENERGY LIMIT LIMIT ENERGY LIMIT LIMIT 

8.00E 05 
9.00E 05 
1.00 E 06 
1.10E 06 
1.20E 06 
1.30E 06 
1.40E 06 
1.50E 06 
1.60E 06 
1.70E 06 
I.POE 06 
1.90E 06 
2.00E 06 
2.10E 06 
2.20E 06 
2.30E 06 
2.40E 06 
2.50E 06 
2.60E 06 
2.70E 06 
2.80E 06 
2.90E 06 
3.00E 06 
3.20E 06 
3.40E 06 
3.60E 06 
3.80E 06 
4.00E 06 
4.20E 06 
4,40 E 06 
4.60E 06 
4.80E 06 
5.0CE 06 
5.20E 06 
5.40E 06 
5.60c 06 
5.80E 06 
6.00E 06 
&.20E 06 
6 ■ 40E 06 
6.60E 06 
6.80E 06 

1.590E 03 
1.858E 03 
I.884E 03 
1.605E 03 
1.4I8E 03 
1.276E 03 
1.I61E 03 
1.048E 03 
9.2I1E 02 
7.824E 02 
6.601E 02 
5.622E 02 
4.785E 02 
4.026E 02 
3.358E 02 
2.792E 02 
2.309E 02 
I.914E 02 
1.591E 02 
1.320E 02 
1.094E 02 
9.055E 01 
7.489E 01 
5.24 IE 01 
3.795E 01 
3.016E 01 
2.489E 01 
2.027E 01 
1.654E 01 
1.349E 01 
1.120E 01 
9.785E 00 
8.829E 00 
7.55 IE 00 
6.061E 00 
5.236E 00 
5.016E 00 
4.827E 00 
4.317E 00 
3.683E 00 
3.390E 00 
3.297E 00 

1.502E 03 
1.762E 03 
1.809E 03 
1.551E 03 
1.375E 03 
1.241E 03 
1.130E 03 
1.020E 03 
3.977E 02 
7.636E 02 
6.445E 02 
5.496E 02 
4.679E 02 
3.937E 02 
3.281E 02 
2.724E 02 
2.248E 02 
1.861E 02 
1.546E 02 
1.276E 02 
1.051E 02 
8.668E 01 
7.146E 01 
4.984E 01 
3.564E 01 
2.793E 01 
2.276E 01 
1.830E 01 
1.480E 01 
1.187E 01 
9.731E CO 
8.436E 00 
7.573E 00 
6.315F 00 
4.894E 00 
H.139E 00 
3.945E 00 
3.821E 00 
3.351E 00 
2.788E 00 
2.554E 00 
2.514E 00 

7.00E 06 
7.20E 06 
7.40E 06 
7,60E 06 
7.80E 06 
3.COE 06 
8.20E Ob 
3.40E 06 
8.60E 06 
8.80E 06 
9.00E 06 
9.20E 06 
9.40E 06 
9.60E 06 
9.80E 06 
l.OOE 07 
1.02E 07 
1.04E 07 
1.06E 07 
1.08E 07 
1.10E 07 
1.12E 07 
1.14E 07 
1.16E 07 
1.18E 07 
1.20E 07 
1.22E 07 
1.24E 07 
1.26E 07 
1.28E 07 
1.30E 07 
1.32E 07 
1.34E 07 
1.36E 07 
1.38E 07 
1.40E 07 
1.42E 07 
1.44E 07 
1.46E 07 
1.48E 07 
1.50E 07 

3.019E 00 
2.564E 00 
2.202E OC 
1.963E 00 
1.701E 00 
1.422E 00 
1.217E 00 
1.071E 00 
9.355E-01 
8.311E-01 
7.900E-01 
7.834E-01 
7.467E-01 
6.434E-01 
4.957E-01 
3.439E-01 

2.271E 00 
1.859E 00 
1.575E 00 
1.387E 00 
1.155E 00 
9.135E-01 
7.376E-01 
6.135E-01 
5.0Q5E-01 
4.2536-C1 
3.854E-01 
3.933E-01 
3.955E-01 
3.233E-01 
1.700E-01 
1.631E-02 

2.303E-01-6.986E-02 
1.876E-01-9.D92E-02 
2.104E-01-7.136E-02 
2.547E-01-2.641E-02 
2. Q03E-01 1.025E-02 
2.763E-01 2.809E-03 
2.¿85E-01-2.899E-02 
2.223E-01-3.628E-02 
2.259E-01-4.936E-03 
2.646E-01 2.341E-02 
2.447E-01 ? » 67SE-02 
2.150E-01 1.654E-02 
1.699E-01-1.713E-02 
1.367E-01-5.191^-02 
1.228E-G1-7.449E-02 
1.122E-01-7.203E-02 
9.880E-02-5.444E-02 
5.596E-02-4.785E-0? 
1.056E-01-5.722E-02 
1.104E-01-6.177E-02 
1.062E-01-5.410E-02 
1.C16E-C1-4.207E-02 
1.C36E-01-3.519E-02 
1.030E-01-3.398E-02 
1.053E-01-3.506E-02 
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TABLE XXVI 

RUM 73A+73Ö LAM. SLAB AT 0 DEG. 

UPPER LOWER UPPER LOWER 
ENERGY LIMIT LIMIT ENERGY LIMIT LIMIT 

9.COE 05 
9.00E 05 
1.00c 06 
1.10E 06 
1.20E 06 
1.30E 06 
1.40E 06 
1.50E 06 
1.60E 06 
1.70E 06 
1. SUE 06 
1.90E 06 
2.00E 06 
2.10E 06 
2.20E 06 
2.30E 06 
2.40E 06 
2.50E 06 
2.60E 06 
2.70E 06 
2.80E 06 
2.90E 06 
3.00E 06 
3.20E 06 
3.40E 06 
3.60E 06 
3.80E 06 
4.00E 06 
4.20E 06 
4.40E 06 
4.60E 06 
4.80E 06 
5.00E 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.80E 06 
6.00E 06 
6.20E 06 
6.40E 06 
6.60E 06 
6.80E 06 

1.012E 04 
1.109E 04 
1.195E 04 
1.332E 04 
1.508E 04 
1.674E 04 
1.814E 04 
1.998E 04 
1.898E 04 
1.817E 04 
1.699E 04 
1.572E 04 
1.452E 04 
1.339E 04 
1.235E 04 
1.132E 04 
1.025E 04 
9.075E 03 
7.875E 03 
6.752E 03 
5.773E 03 
4.929E 03 
4.173E 03 
2.938E 03 
2.276E 03 
2.177E 03 
2.358E 03 
2.544E 03 
2.615E 03 
2.623E 03 
2.56 IE 03 
2.46 6E 0 3 
2.421E 03 
2.46 8E 0 3 
2.553E 03 
2*6236 0 3 
2.715r 03 
2.834E 03 
2.930f 03 
2.950c 03 
2.874E 03 
2.704E 03 

8.849E 03 
9.682E 03 
1.060E 04 
1.225E C4 
1.413F C4 
1.585E 04 
1.724E 04 
1.809E 04 
1.817E 04 
1.745E 04 
1.634E 04 
1.516E 04 
1.403E 04 
1.297E 04 
1.197E 04 
1.099E 04 
9.Q56E 03 
8.821E 03 
7.654E 03 
6.541E 03 
5.566E 03 
4.730E 03 
3.080E 03 
2.f69E 03 
2.108E 03 
2.004E 03 
2.188«= 03 
2.381E 03 
2.468E 03 
2.484E 03 
2.433E 03 
2.347E 03 
2.3U5E 03 
2.346E 03 
2.434E 03 
2.508E 03 
2.597E 03 
2.722E 03 
2.826E 03 
2.857E 03 
2.789E 03 
2.629E 03 

7.00E 06 
7.2OF 06 
7.40E Oo 
7.60E 06 
7.80E 06 
8.00E 06 
8.20E 06 
8.40E 06 
8.60E 06 
9.80E 06 
9.OOF 06 
9.20E 06 
9.40E 06 
°.60E 06 
9.80E 06 
l.OOE 07 
1.02E 07 
1.04E 07 
1.06E 07 
1.08E 07 
1.10E 07 
1.12E 07 
1.14E 07 
1.16E 07 
1.18E 07 
1.20E 07 
1.22E 07 
1.24E 07 
1.26E 07 
1.28E 07 
1.30E 07 
1.32E 07 
1.34E 07 
1.36E 07 
1.38E 07 
1.40E 07 
1.42E 07 
1.44E 07 
1.46E 07 
1.48E 07 
1.50E 07 

2.475E 03 
2.210E 03 
1.932E 03 
1.688E 03 
1.512E 03 
1.4C2E 03 
1.324<= 03 
1.267= 03 
1.15°E 03 
1.058E 03 
9.487= 02 
8.424E 02 
7.517= 02 
6.762E 02 
6.070E 02 
5.400E 02 
4.784E 02 
4.256E 02 
3.803= 02 
3.393E 02 
3.007E 02 
2.638E 0? 
2.296= 02 
2.000= 02 
i . 7 = 3E 0? 
1.538= 02 
1.352E 02 
1.199E 02 
1.076E 02 
9.68IE 01 
8.662E 01 
7.650E 01 
6.659E 01 
5.760E 01 
4.998= 01 
4.358E 01 
3.796E 01 
3.272E 01 
2.777= 01 
2.33IE 01 
1.964E 01 

2.409E 03 
2.151E 03 
1.891E 03 
1.642F 03 
1.472E 03 
1.’65F 03 
1.291= 03 
1.216E 03 
1.131E 03 
1.032E 03 
9.234E 02 
9.182E 02 
7.298E 02 
6.544E 02 
5.86 IE 02 
5.203E 02 
4.602E 02 
4.084E 02 
3.633E 02 
3.220E 02 
2.833E 02 
2.474E 02 
2.151E 02 
1.870E 02 
1.630E 02 
1.417= 02 
1.232E 02 
1.087E 02 
9.777E 01 
8.851E 01 
7.900E 01 
6.908= 01 
5.969E 01 
5.151E 01 
4.468E 01 
3.893E 01 
3.378E 01 
2•88QE 01 
2.423E 01 
2.008E 01 
1.669E 01 



l8l 

TABLE XXVII 

RUN 74D4-74E LAM. SLAB AT IB DEG. 

UPPER LOWER UPPER LOWE» 
ENERGY LIMIT LIMIT ENERGY LIMIT LIMIT 

8.00E 05 
9.00E 05 
l.OOE 06 
1.10E 06 
1.20E 06 
1.30E 06 
1.40E 06 
I.50E 06 
1.60E 06 
1.70E 06 
I.80E 06 
1.90E 06 
2.00E 06 
2.10E 06 
2.20E 06 
2.30E 06 
2.40E 06 
2.50E 06 
2.60E 06 
2.70E 06 
2.80E 06 
2.90E 06 
3.00E 06 
3.20E 06 
3.40E 06 
3.60E 06 
3.80E 06 
4.00E 06 
4.20É 06 
4.40E 06 
4.60 E 06 
4.80E 06 
5.00E 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.80E 06 
6.00E 06 
6.20E 06 
6.40E 06 
6.60E 06 
6.80E 06 

1.206E 03 
1.1I4E 03 
1.050E 03 
1.046E 03 
1.076E 03 
1.1I0E 03 
1.118E 03 
1.084E 03 
1.024E 03 
9.565E 02 
8.873E 02 
8.205E 02 
7.745E 02 
7.506E 02 
7.298E 02 
6.96 4E 02 
6.538E 02 
6.050E 02 
5.545E 02 
5.059E 02 
4.608E 02 
4.175E 02 
3.736E 02 
2.864E 02 
2.344E 02 
2.323E 02 
2.509E 02 
2.640E 02 
2.657E 02 
2.590E 02 
2.44 3E 02 
2.295E 02 
2.I60E 02 
2.032E 02 
I.963E 02 
I.953E 02 
1.936E 02 
I.866E 02 
1.767E 02 
1.67 IE 02 
1.588E 02 
1.480E 02 

I.116E 03 
Î.0I4E 03 
9.675E 02 
9.785E 02 
1.017E 03 
1.055E 03 
I.C61E 03 
I.029E 03 
9.734E 02 
9.I01E 02 
8.434E 02 
7.8I7E 02 
7.402E 02 
7.I98E 02 
7.019E 02 
6.7I7E 02 
6.312E 02 
5.850E 02 
5.369E 02 
4.888E 02 
4.438E 02 
4.011E 02 
3.578E 02 
2.727E 02 
2.211E 02 
2.189E 02 
2•38IE 02 
2.520E 02 
2.550E 02 
2.49IE 02 
2.35IE 02 
2.209E 02 
2.077E 02 
1.949E 02 
1.882F 02 
1.875E 02 
1.859E 02 
1.794E 02 
1.698E 02 
1.606E 02 
1.525E 02 
1.421E 02 

7.00E 06 
7.20E 06 
7.40E 06 
7.60E 06 
7.9CE «6 
8.0JE 06 
9.:.05 06 
8.40E 06 
8.60E 06 
8.8ÛE 06 
9,COE 06 
9.20E 06 
9.40E 06 
9.60E 06 
9.80E 06 
l.OOE 07 
1.02E 07 
1.04E 07 
1.06E 07 
1.08E 07 
I.IOE 07 
1.12E 07 
1.14E 07 
1.16E 07 
1.18E 07 
1.20E 07 
1.22E 07 
1.24E 07 
1.26E 07 
1.28E 07 
1.30E 07 
1.32E 07 
1.34E 07 
1.36E 07 
1.38E 07 
1.40E 07 
1.42F 07 
l.^E 07 
1.46E 07 
1.48E 07 
1.50E 07 

1.320E 02 
1.127E 02 
9.526E 01 
8.205E 01 
7.240E 01 
6.«22E 01 
5.991E 01 
5.525E 01 
4.994E 01 
4.378E 01 
3.774E 01 
3.296E 01 
2.969= 01 
2.722E 01 
2.4625 01 
2.159= 01 
1.86 IE 01 
1.621E 01 
1.443E 01 
1.290E 01 
1.141E 01 
1.012E 01 
9.277E 00 
8.745E 00 
8.166E CO 
7.532E 00 
7.034= 00 
6.632E 00 
6.100E 00 
5.353E 00 
4.539E 00 
3.6025 00 
3.207E 00 
2.767= 00 
2.457= OC 
2.232E 00 
2.067= 00 
1.858E 00 
1.657E 00 
1.4665 00 
1.316= 00 

1.265E 02 
1.075E 02 
9.0365 01 
7.745= 01 
6.8C4E 01 
6.111= 01 
5.606= 01 
5.151E 01 
4.638= 01 
4.043E 01 
3.455E 01 
2.9Q0E 01 
2.678E 01 
2.443E 01 
2.193E 01 
1.905E 01 
1.624E 01 
1.397E 01 
1.220E 01 
1.061E 01 
9.072E 00 
7.901E 00 
7.299E 00 
6.908E 00 
6.370= 00 
5.792E 00 
5.377E 00 
5.071E 00 
4.695E 00 
4.136E 00 
3.421E 00 
2,7loE 00 
2.179E 00 
1.842E 00 
1.6495 00 
1.509= 00 
1.359= 00 
1.194= 00 
1.033E 00 
8.9985-01 
7.779E-01 



182 

TABLE XXVIII 

RUN 75E+75F LAM. SLAB AT 30 DEG. 

UPPER LOrfER UPPCR LOWER 
ENERGY LIMIT LIMIT ENERGY LIMIT LIMIT 

8.00E 05 
9.00E 05 
l.OOE 06 
1.10E 06 
1.20E 06 
1.30E 06 
1.40E 06 
1.50E 06 
1.60E 06 
1.70E 06 
1.80E 06 
1.90E 06 
2.00E 06 
2.10E 06 
2.20E 06 
2.30E 06 
2.40E 06 
2.50E 06 
2.60E 06 
2.70E 06 
2.80E 06 
2.90E 06 
3.00E 06 
3.20E 06 
3.40E 06 
3.60E 06 
3.80E 06 
4.00E 06 
4.20E 06 
4.40E 06 
4.60E 06 
4.80E 06 
5.00E 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.80E 06 
6.00E 06 
6.20E 06 
6.40E 06 
6.60E 06 
6.80E 06 

9.483E 02 
9.005E 32 
8.41OE 02 
8.025E 32 
8.023E 02 
6•15 IE 02 
8.19 IE 32 
7.962E 32 
7.433E 02 
6.753E 02 
6.070E 02 
5.467E 32 
5.050E 02 
4.817E 32 
4.665E 32 
4.48IE 02 
4.212E 02 
3.83 IE 02 
3.395E 02 
2.987E 02 
2.66IE 32 
2.416E 02 
2.210E 32 
1.836E 02 
1.536E 02 
1.396E 32 
1.400E 02 
1.416E 02 
1.360E 02 
1.299E 02 
1.196E 02 
1.057E 02 
9.294E 31 
8.553E 01 
8.170E 01 
7.70 IE 01 
7.104E 01 
6.604E 01 
6.285E 01 
5.931E 01 
5.319E 31 
4.540E 31 

8.838E 02 
8.289E 02 
7.835E 02 
7.570E 02 
7.633E 02 
7.792E 02 
7.832E 02 
7.615E 32 
7.119E 02 
6.472E 02 
5.810E 02 
5.240E 02 
4.852E 02 
4.640E 02 
4.506E 02 
4.341E 02 
4. 085E 02 
3.719E 02 
3.299E 02 
2.894E 02 
2.568E 02 
2.326E 02 
2.126E 02 
1.764E 02 
1.466E 02 
1.325E 02 
1.330E 02 
1.348E 02 
1.298E 02 
1.230E 02 
1.142E 02 
1.006E 02 
8.811E 01 
8.08 IE 01 
7.717E 01 
7.271E 01 
6.688E 01 
6.218E 01 
5.926E 01 
5.597E 01 
4.999E 01 
4.250E 01 

7.OOE 06 
7.20E 06 
7.¿0E 06 
7.60E 06 
7.80E 06 
8.00E 06 
8.20E 06 
8.40E 06 
8.60E 06 
8.80E 06 
9.00E 06 
9.20E 06 
9.40E 06 
9.60E 06 
9.80E 06 
l.OOE 07 
1.02E 07 
1.04E 07 
1.06E 07 
1.08E 07 
1.10E 07 
1.12E 07 
1.14E C 7 
1.16E 07 
1.18E 07 
1.20E 07 
1.22E 07 
1.24E 07 
1.26E 07 
1.28E 07 
1.30E 07 
1.32E 37 
1.34E 37 
1.36E 07 
1.38E 07 
1.40E 07 
1.42E 07 
1.44E 07 
1.46E 07 
1.48E 07 
1.50E 07 

3.837E 31 
3.245E 01 
2.672E 01 
2.127E 01 
1.670E 01 
1.341E 01 
1.175E 01 
1.1226 01 
1.074E 01 
9.76 OE 00 
8.499E 00 
7.283E 00 
6.253E 00 
5.424E 00 
4.711E 00 
3.946E 00 
3.054E 00 
2.204E 00 
1.682E 00 
1.6166 00 
1.391= 00 
2.232E 00 
2.364E 00 
2.181E 00 
1.805E 00 
1.464E 00 
1.255= 00 
1.174E 00 
1.157E 00 
1.125E 00 
1.C11E OC 
7.95 OE-Ol 
5.548E-01 
4.031E-01 
3.891E-31 
4.688E-01 
5.601E-01 
6.044E-01 
5.858E-01 
5.134E-01 
4.072E-01 

3.574E 01 
2.999E 01 
2.4¿7E 01 
1.923E 01 
1.477E 01 
1.159E 01 
1.008E 01 
9.629E 00 
9.204E 00 
8.319E 00 
7.159E 00 
6.310E 30 
5.047E 00 
4.236E 00 
3.643E 00 
2.9166 00 
2.095E 00 
1.291E 00 
7.773E-01 
7.165E-31 
1.325E 00 
1.394E 00 
1.527E 00 
1.366E 00 
1.053E 00 
7.692E-01 
5.8 36E-01 
5.362E-01 
5.838E-01 
6.180E-01 
5.226E-01 
3.145E-01 
1.389E-01 
5.625E-03 
2.366E-02 
1.188E-01 
2.267E-31 
2.932E-01 
2.899E-01 
2•218E-01 
1.208E-01 
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TABLE XXIX 

RUN 82A+82A8 LAM. SLAB AT 33 DEG 

UPPER LOWER 
ENERGY LIMIT LIMIT 

8.00E 05 9.675E 02 9.017E 02 
9.00E 05 9.28 IE 02 8.551E 02 
l.OOE 06 8.678E 32 8.084E 02 
1.10E 06 8.383E 02 7.913E 02 
I.20E 06 8.469E 02 8.067E 02 
1.30E 06 8.640E 32 8.274E 02 
1.40E 06 8.559E 02 8.193E 02 
1.50E 06 8.I27E 02 7.773E 02 
1.60E 06 7.499E 02 7.180E 02 
1.70E 06 6.836E 32 6.548E 02 
1.80E 06 6.I96E 02 5.928E 02 
1.90E 06 5.633E 02 5.399E 02 
2.00E 06 5.221E 02 5.017E 02 
2.10E 06 4.939E 02 4.757E 02 
2.20E 06 4.704E 32 4.541E 02 
2.30E 06 4.458E 02 4.316E 02 
2.40E 06 4,202E 02 4.074E 02 
2.50E 06 3.926E 32 3.814E 02 
2.60E 06 3.Ó14E 02 3.517E 02 
2.70E 06 3.274E 02 3.182E 02 
2.80E 06 2.925E 32 2.835E 02 
2.90E 06 2.602E 32 2.517E 02 
3.00E 06 2.316E 02 2.234E 02 
3.20E 06 1.840E 02 1.770E 02 
3.40E 06 1.527E 32 I.459F 02 
3•60E 06 1.448E 02 1.377E 02 
3.80E 06 1.479E 02 1.408E 02 
4.00E 06 Í.445E 02 1.376E 02 
4.20E Ob 1.355E 02 Í.293E 02 
4.40E 06 1.279E 02 1.2216 02 
4.60E 06 1.20IE 02 1.146E G2 
4.80E 06 1.0916 02 1.040E 02 
5.00E 06 9.643E 01 9.159E 01 
5.20E 06 8.553E 01 8.079E 01 
5.40E 06 7.977E 01 7.524E 01 
5.60E 06 7.8506 01 7.424E 01 
5.80E 06 7.684E 01 7.272E 01 
6.006 06 7.024E 01 6.640E 01 
6.206 Ob 6.060E 01 5.7026 01 
6.406 06 5.199E 01 4.865E 01 
b.60E 06 4.643E 01 4.324E 01 
6.806 06 4.245E 01 3.955E 01 

UPPER LOWER 
ENERGY LIMIT LIMIT 

7.006 06 3.807E 01 3.538E 01 
7*206 06 3.2P6E 01 3.0336 01 
7.40E 06 2.776E 01 2.545E 01 
7.606 06 2.349E 01 2.139E 01 
7.806 06 1.991E 01 1.796E 01 
8.00E 06 1.682E 01 1.501E 01 
8.20E 06 1.434E 01 1.268E 01 
8.406 06 1.246E 01 1.089E 01 
8.60E 06 1.076E 01 9.291E 00 
8.80E 06 8.910E 00 7.538E 00 
9.00E 06 7.0956 00 5.808E 00 
9.20E 06 5.713E 00 4.517E 00 
9.40E 06 4.808E 00 3.667E 00 
9.60E 06 4.051E 00 2.9316 00 
9.80E 06 3.257E OC 2.187E 00 
l.OOE 07 2.645= 00 1.641E 00 
1.02E 07 2.500E 00 1.556E OC 
1.04E 07 2.820E 00 1.921E 00 
1.06E 07 3.278E 00 2.399E 00 
1.08E 07 3.444E 00 2.574E 00 
1.108 37 3.111E 00 2.237E 00 
1.12E 07 2.430E 00 1.581E 00 
1.14E 07 1.774E 00 1.027E 00 
1*166 07 1.412E 00 7.639E-01 
1.18E 07 1.282E 00 6.348E-01 
1.20E 07 1.149= 00 4.795E-01 
1.226 07 1.002E 00 3.5556-01 
1.24E 07 9.2656-31 3.514E-01 
1.266 07 9.257E-01 4.337E-31 
1.286 07 9.363E-Cl 4.724E-C1 
1.3CE 07 8.939E-31 4.157E-01 
1.32E 07 7.8396-01 3.3616-01 
1.34E 07 6.6586-01 2.9466-01 
1.366 07 5.°*>E-01 2.841E-01 
1.38E 07 5.598E-01 2.652E-01 
1.40E 07 5.145E-01 2.171E-01 
1.426 07 4.2556-01 1.376E-01 
1.44E 07 3.023E-ni 2.681E-02 
1>6E 07 1.797E-O1-6.4O4F-02 
1.486 07 9.397E-3?-1.398l-01 
1.506 07 6.1^15-02-1.6926-01 
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TABLE: XXX 

tlUN 76E?*76E6 LAM. SLAB AT 47 DEG. 

UPPER LOWER UPPER LOWER 
ENERGY LIMIT LIMIT ENERGY LIMIT LIMIT 

8.ÜOE 05 6.067E 
9.00E 05 5.746E 
l.OOE 06 5.258E 
1.10E 06 4.744E 
1.20E 06 4.630E 
1.30E 06 4.737E 
1.40E 06 4.669E 
1.50E 06 4.38 IE 

+ 1.60E 06 4.00IE 
1.70b 06 3.f;3E 
1.80E 06 
1.90E 06 
2.00E 06 
2.10E 06 
2.20E 06 
2.30E 06 
2.40E 06 
2.50E 06 
2.60E 06 
2.70E 06 
2.80E 06 
2.90E 06 
3.00E 06 
3.20E 06 
3.40E 06 
3.60E 06 
3.80 E 06 
4.00E 06 
4.20E 06 
4.40E 06 
4.60E 06 
¿.80E 06 
5.00E 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.80E 06 
6.00E 06 
6.20E 06 
6.40E 06 
6.60E 06 
6.80E 06 

3.208E 
2.894E 
2.670E 
2.520E 
2.408E 
2.294E 
2.155E 
1.978E 
1.775E 
1.573E 
1.39 3E 
1.244E 
1.114E 
8.873E 
7.206E 
6.565E 
6.524E 
6.112E 
5.263E 
4.560E 
4.005E 
3.479E 
3.027E 
2.697E 
2.520E 
2.397E 
2.216E 
1.992E 
1.780E 
1.539E 
1.272E 
1.072E 

02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
02 
01 
Cl 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 

5.700E 02 
5. 340E 02 
4.938E 02 
4.498E 02 
4.424E 02 
4.551E 02 
4.485E 02 
4.204E 02 
3.843E 02 
3.452E 02 
3.079E 02 
2.782E 02 
2.573E 02 
2.435E 02 
2.333E 02 
2.228E 02 
2.095E 02 
1.926E 02 
1.729E 02 
1.528E 02 
1.347E 02 
1.198E 02 
1.069E 02 
8.468E 01 
6.805E 01 
6.153E 01 
6.120E 01 
5.725E 01 
4.918E 01 
4.239E 01 
3.707E 01 
3.205E 01 
2.769E 01 
2.445E 01 
2.280E 01 
2.171E 01 
1.996E 01 
1.789E 01 
1.592E 01 
1.362E 01 
1.102E 01 
9.171E 00 

7.00E 
7.20E 
7.40E 
7. bOE 
7.60E 
8.00E 
8.20E 
8.40E 
8.60E 
8.80E 
9.00E 
9.20E 
9.40E 
9.60E 
9.805 
l.OOE 
1.02E 
1.04E 
1.06E 
1.08E 
1.10E 
1.12E 
1.14E 
1.16E 
1.18c 
1.20E 
1.22E 
1.24E 
1.26E 
1.2 HE 
1.30E 
1.32E 
1.34E 
1.36E 
1.38E 
1.40E 
1.42E 
1.44E 
1.46E 
1.48E 
1.50E 

06 
06 
06 
06 
06 
06 
06 
06 
06 
06 
06 
06 
06 
06 
Ob 
07 
07 
07 
07 
07 
07 
07 
07 
07 
07 
07 
07 
07 
07 
07 
07 
07 
07 
07 
07 
07 
07 
07 
07 
07 
07 

9.658E 00 
8.850E 00 
7.796E 00 
6.676E 00 
5.612E 00 
4.642r 00 
3.952E CO 
3.657E 00 
3.570E OC 
3.449E OC 
3.213E 00 
2.8q4E 00 
2.526E 00 
2.146E 00 
1.770E 00 
1.365E 00 
9.064E-01 
5.046E-01 

8.209E CO 
7.463F 00 
6.507E 00 
5.487E 00 
4.496E 00 
3.5 i7E 00 
2.946E 00 
2.683E 00 
2.632E 00 
2.568E 00 
2.380E 00 
2.Ü84E 00 
1.748E OC 
1.417- 00 
1.091E OC 
7.085E-01 
2.506E-01 
1.336E-01 

3.618E-01-2.416E-01 
5.423E-01-¿.153E-02 
8.796E-Ü1 2.841E-01 
1.141E 00 5.307E-01 
1.229E 00 6.402E-01 
1.206E 00 6.632E-01 
1.150E 00 6.635E-01 
1.082E 00 6.454E-01 
9.854E-01 5.821E-01 
8.398E-01 4.610E-01 
6.512E-01 2.956E-01 
4.499E-01 1.221E-01 
2.789E-01-1.728E-02 
1.757E-01-9.226E-02 
1.5285-01-°.307E-02 
1.932E-01-3.808E-02 
2.604E-ÛI 3.544E-02 
3.167E-01 9.481E-02 
3.434E-01 1.228E-01 
3.403E-C1 1.187E-01 
3.113E-01 9.396E-02 
2•605E-01 5.922E-02 
1.989E-01 1.573E-02 
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TABLE XXXI 

RUN 76G*-7ôG8 LAM, SLAB AT 64 DEG. 

UPPER LOWER 
ENERGY LIMIT LIMIT 

8.00E 05 3.136E 02 2.960E 02 
9.00E 05 2.832E 02 2.638E 02 
l.OOE 06 2.542E 02 2.390E 02 
1.10E 06 2.389E 02 2.273E 02 
1.20E 06 2.314E 02 2.2I7E 02 
1.30E 06 2.278E 02 2.I92E 02 
1.40t 06 2.23 IE 02 2.147E 02 
1.50E 06 2.117E 02 2.037E 02 
1.60E 06 1.9J9E 02 1.849E 02 
1.70E 06 1.695E 02 1.631E 02 
1.80E 06 1.50IE 02 1.441E 02 
1.90E 06 1.348E 02 1.297E 02 
2.00E 06 1.247E 02 1.202E 02 
2.10E 06 1.184E 02 1.143E 02 
2.2GE 06 1.127E 02 1.087E 02 
2.30E 06 1.052E 02 1.015E 02 
2.40E 06 9.633E 01 9.291E 01 
2.50E 06 8.671E 01 8.361E 01 
2.60E 06 7.742E 01 7.464E 01 
2.TOE 06 6.913E 01 6.635E 01 
2.80E 06 6.178E 01 5.893E 01 
2.90E 06 5.467E 01 5.186E 01 
3.00E 06 4.758E 01 4.481E 01 
3.20E 06 3.535E 01 3.290E 0! 
3.40E 06 2.902E 01 2.663E 01 
3 • 60E 06 2 .60 IE 01 2.355E 01 
3.80E 06 2.322E 01 2.081E 01 
4.00E 06 2.073E 01 1.845E 01 
4.20E 06 1.816E 01 1.612E 01 
4.40E 06 1.617E 01 1.427E 01 
4.60c 06 1.499E 01 1.326E 01 
4.80E 06 1.332E 01 1.174E 01 
5,00E 06 1.073E 01 9.239E 00 
5.20 E 06 8.54 IE 00 7.106E 00 
5.40E 06 7.883E 00 6.562E 00 
5.60E 06 7.748E 00 6.473E 00 
5.80E 06 7.135E 00 5.904E 00 
6.00E 06 6.232E 00 5.105E 00 
6.20E 06 5.404E 00 4.338E 00 
6.40E 06 4.588E 00 3.569E 00 
6.60E 06 3.969E 00 2.999E 00 
6.80E 06 3.736E 00 2.854E 00 

UPPER LOWER 
ENERGY LIMIT LIMIT 

7.00E 06 3.599E 00 2.753E 00 
7.20E 06 3.166E 00 2.361E 00 
7.40E 06 2.487E 00 1.758E 00 
7.60E 06 1.974E 00 1.283E 00 
7.80E 06 1.745E 00 1.111E 00 
9.ODE 06 1.661E 00 1.069E 00 
8.20E 06 1.568E 00 1.005E 00 
8.40E 06 1.476E 00 9.346E-01 
8.60E 06 1.424E 00 9.195E-01 
8.80E 06 1.357F 00 9.016E-01 
9.00E 06 1.182E 00 7.316E-01 
9.20E 06 8.640E-01 4.023E-01 
9.40E 06 5.237E-01 8.054E-02 
9.60E 06 3.276E-01-8.277E-02 
9.80E 06 2.962E-01-9.384E-02 
l.OOE 07 3.213E-01-7.342E-02 
1.02E 07 3.230E-01-8.587E-02 
1.04E 07 3.218E-01-7.835E-02 
1.06E 07 3.744E-01-3.979E-03 
1.08E 07 4.716E-01 1.085E-01 
1.10E 07 5.475E-01 2.079E-01 
1.12E 07 5.633E-01 2.588E-01 
1.14E 07 5.396E-01 2.358E-01 
1.16E 07 4.656E-01 1.539E-01 
1.18E 07 3.827E-01 8.023E-02 
1.20E 07 3.205E-01 4.654E-02 
1.22E 07 2.890E-01 3.425E-02 
1.24E 07 2.591E-01 3.083E-02 
1.26E 07 2.315E-01 2.591E-02 
1.28E 07 2.221E-01 5.360E-03 
1.30E 07 2.C82E-01-1.901E-02 
1.32E 07 1.641E-01-3.945E-02 
1.34E OT 1.022E-01-6.662E-02 
1.36E 07 5.291E-02-1.055E-01 
1.38E 07 2.524E-02-1.367E-01 
1.40E 07 1.426E-02-1.437E-01 
1.42E 07 1.667E-02-1.309E-01 
1.44E 07 2.871E-02-1.101E-01 
1.46E 07 4.476E-02-9.048E-02 
1.48E 07 5.954E-02~7.572E-02 
1.50E 07 7.066E-02-6.524E-02 
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TABLE XXXII 

RUM 1650165C8 U SLAB AT 0 DEG. 

UPPER 
ENERGY LIMIT 

LQdER 
LIMIT ENERGY 

UPPER LGrtER 
LIMIT LIMIT 

8.00E 05 
9.00E 05 
1.00E 06 
1.10E 06 
I.20E 06 
I.30E 06 
I.40E 06 
1.50E 06 
I.60E 06 
I.70E 06 
1.80E 06 
1.90E 06 
2.00 E 06 
2.I0E 06 
2.20E 06 
2.30E 06 
2.40E 06 
2.50 E 06 
2.60E 06 
2 . TOE 06 
2.80E 06 
2.‘50E 06 
3•00 E 06 
3.20E 06 
3.40E C6 
3.60E 06 
3.80E 06 
4.00E 06 
4.20E 06 
4.40E 06 
4.60E 06 
4.80E 06 
5.00E 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.80E 06 
6.00E 06 
6.20E 06 
6.40E 06 
6.60E 06 
6.80E 06 

1 • 62 IE 05 
1.55 IE 05 
1.48IE 05 
1.506E 05 
1.565E 05 
1.596E 05 
1.582E 05 
1.522E 05 
1.432E 05 
1.337E 05 
1.244E 05 
1.149E 05 
1.055E 05 
9,68 IE 04 
8.897E 04 
8.177E 04 
7.478E 04 
6.768E 04 
6.052E 04 
5.357E 04 
4.700E 04 
4.095E 04 
3.544E 04 
2.66IE 04 
2.169E 04 
2.028E 04 
2.029E 04 
2.002E 04 
1.909E 04 
1.794E 04 
1.657E 04 
1.510E 04 
1.389E 04 
1.310E 04 
1.268E 04 
1.248E 04 
1.228E 04 
I.185E 04 
1.128E 04 
1.053E 04 
9.532E 03 
8.466E 03 

1.500E 05 
1.417E 05 
1.372E 05 
1.420E 05 
1.491E 05 
1.528E 05 
1.515E 05 
1.457E 05 
1.374E 05 
1.286E 05 
1.198E 05 
1.109E 05 
1.020E 05 
9.374E 04 
8.627E 04 
7.949E 04 
7.278E 04 
6.594E 04 
5.902E 04 
5.215E 04 
4.564E 04 
3.968E 04 
3.425E 04 
2.563E 04 
2.078E 04 
1.938E 04 
1.943E 04 
1.924E 04 
1.841E 04 
1.732E 04 
1.602E 04 
1.460E 04 
1.343E 04 
1.264E 04 
1.224E 04 
1.206E 04 
1.185E 04 
1.145E 04 
1.091E 04 
1.018E 04 
9.188E 03 
8.146E 03 

7.00E 06 
7.20E 06 
7.40E 06 
7.60E 06 
7.80E 06 
fl.OOE 06 
8.20E 06 
8.40E 06 
8.60E 06 
8.80E 06 
9.OOE 06 
9.20E 06 
9.40E 06 
9.60E 06 
9.80E 06 
I.OOE 07 
1.02E 07 
1.04E 07 
1.06E 07 
1.08E 07 
1.10E 07 
1.12E 07 
1.14E 0 7 
1.16E 07 
1.18E 07 
1.20E 07 
1.22E 07 
1.24E 07 
1.26E 07 
I.28E 07 
1.30E 07 
1.3?E 07 
1.34E 07 
1.36E 07 
1.38E 07 
1.40E 07 
1.42E 07 
1.44E 07 
1.46E 07 
1.48E 07 
1.50E 07 

7.6^E 03 
6.962r 03 
6.170L 03 
5.326E 03 
4.674E 03 
4.257E 03 
3.991E 03 
3.669E 03 
3.243E 03 
2.789E 03 
2.408E 03 
2.121E 03 
1.898E 03 
1.699E 03 
1.505E 03 
1.320E 03 
1.157E 03 
1.011E 03 
8.771E 02 
7.606E 02 
6.749E 02 
6.185E 02 
5.704E 02 
5.131E 02 
4,501E 02 
3.949E 02 
3.468E 02 
2.957E 02 
2.404E 02 
1.950E 02 
1.733E 02 
1.711E 02 
1.741E 02 
1.708E 02 
1.583E 02 
1.395E 02 
1.182E 02 
9.71 IE 01 
7.773E 01 
6.122E 01 
4.873E 01 

7.336E 07 
6.677E 03 
5.903E 03 
5.075E 03 
r. 4 37E 03 
4.045E 03 
3.784E 07 
3.468E 03 
3.050E 03 
2.613E 03 
2.242E 03 
1.961E 03 
1.746F 03 
1.555E 03 
1.367E 03 
1.192E 03 
1.038E 03 
8.979E 02 
7,65IE 02 
6.463E 02 
5.6 5^E 02 
5.160E 02 
4.766E 02 
4.264E 02 
3.6R2E 02 
3.163E 02 
2-705E 02 
2.231E 02 
1.752E 02 
1.382E 02 
1.207E 02 
1 •21IE 02 
1.277E 02 
1.292E 02 
1.218E 02 
1.077E 02 
9.0518 01 
7.221E 01 
5.4AÖE 01 
3.945E 01 
2.903E 01 
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TABLE XXXIII 

RUN 164A+160B U SLAB AT 13 DEG. 

UPPER LOWER 
ENERGY LIMIT LIMIT 

8.00E 05 7.212E 03 6.917E 03 
9.00E 05 5.350E 03 5.C56E 03 
l.OOE 06 4.129E 03 3.917E 03 
1.10E 06 3.38 IE 03 3.234E 03 
1.20E 06 2.920E 03 2.800E 03 
I.30E 06 2.634E 33 2.525E 03 
I.40E 06 2.417E 03 2.308E 03 
1.50E 06 2.216E 03 2.111E 03 
1.60E 06 2.02 IE 03 1.925E 03 
1.70E 06 1.838E 03 1.751E 03 
1.80E 06 1.684E 03 1.602E 03 
1.90E 06 1.566E 03 1.494E 03 
2•00E 06 1.480E 03 1.416E 03 
2.10E 06 1.41 IE 03 1.353E 03 
2.20E 06 1.339E 03 1.296E 03 
2.30E 06 1.257E 03 1.210E 03 
2.40E 06 1.172E 03 1.130E 03 
2.50E 06 1.089E 03 1.052E 03 
2.60E 06 1.014E 03 9.813E 02 
2.70E 06 9.523E 02 9.204E 02 
2.80E 06 9.033E 02 8.718E 02 
2.90E 06 8.565E 02 8.263E 02 
3.00E 06 6.030E 02 7.743E 02 
3.20E 06 6.756E 02 6.516E 02 
3.4UE 06 5.78 IE 02 5.553E 02 
3.60E 06 5.288E 02 5.056E 02 
3.80E 06 5.155E 02 4.931E 02 
4.00E 06 5.133E 02 4.918E 02 
4.20E 06 4.898E 02 4.703E 02 
4.40E 06 4.522E 02 4.335E 02 
4.60E 06 4.217E 02 * . 042E 02 
4.806 06 3.929E 02 3.766E 02 
5.00E 06 3.539E 02 3.381E 02 
5.20E 06 3.186E 02 3.031E 02 
5.40E 06 3.033E 02 2.884E 02 
5.60E 06 2.996E 02 2.854E 02 
5.80E 06 2.919E 02 2.780E 02 
6.00E 06 2.734E 02 2.604E 02 
6.20c 06 2.486E 02 2.362E 02 
6.40E 06 2.230E 02 2.114E 02 
6.60E 06 2.002E 02 1.889E 02 
6.80E 06 1.782E 02 1.677E 02 

UPPER LOWER 
ENERGY LIMIT LIMIT 

7.00E 06 1.564E 02 1.4665 02 
7.20E 06 1.358E 02 1.265E 02 
7 • 40E 06 1.185E 02 1.098E 02 
7.60E 06 1.058E 02 9.765E 01 
7.80E 06 9,655E 01 8.995E 01 
8.00E 06 8.799E 01 8.073E 01 
8.20E 06 7.881E 01 7.203E 01 
8.40E 06 7.015E 01 6.366E 01 
8.60E 06 6.250E 01 5.641E 01 
8.8CE 06 5.526E 01 4.954E 01 
9.00E 06 4.840E 01 4.295E 01 
9.20(: 06 4.246E 01 3.734E 01 
9.40E Oö 3.730E 01 3.247c 01 
9.606 06 3.212E 01 2.750E 01 
9.80E 06 2.687C 01 2.244E 01 
l.OOE 07 2.245E 01 1.829E 01 
1.02E 07 1.977E 01 1.592E 01 
1.04E 07 1.882E 01 1.52DE 01 
1.06E 07 1.874E 01 1.514E 01 
l.OPE 07 1.838E 01 1.478E 01 
1.10E 07 1.708E 01 1.358E 01 
1.12E 07 1.472E 01 1.141E 01 
1.14E 07 1.159E 01 8.500p 00 
1.16E 07 8.322E 00 5.419E 00 
1.18E 07 5.8176 00 3.063E 00 
1.20E 07 4.571E 00 1.935E 00 
1.22E 07 4.470E 00 1.909E 00 
1.24E 07 5.007E 00 2.549E 00 
1.26E 07 5.647E 00 3.425E 00 
1.28E 07 6.079E 00 4.131E 00 
1.30E 07 6.184P 00 4.391E 00 
1.32E 07 5.896F OC 4.214E 00 
1.34E 07 5.227E 00 3.719E 00 
1.36E 07 4.302E 00 2.962E 00 
1.38E 07 3.267F 00 2.0386 00 
1.4CE 07 2.277E 00 1.141E 00 
1.42E 07 1.503E 00 4.762E-01 
1.44E 07 1.066E ''O 1.500E-01 
1.46E 07 9.679E-01 1.449E-01 
1.48E 07 1.108E 00 3.478E-01 
1.50E 07 1.342E 00 6.1436-01 
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TABLE XXXIV 

RUN 163B+159C U SLAB AT 30 DEG. 

UPPER LOWER UPPER LOWER 
ENERGY LIMIT LIMIT ENERGY LIMIT LIMIT 

8.00E 05 
9.00 E 05 
l.OOE 06 
1.10E 06 
1.20E 06 
1.30E 06 
1.40E 06 
1.50E 06 
1.60E 06 
1.70E 06 
1.80E 06 
1.90E 06 
2.00E 06 
2.10E 06 
2.20E 06 
2.30E 06 
2.40E 06 
2.50E 06 
2.60E 06 
2.70E 06 
2.80E 06 
2.90E 06 
3.00E 06 
3.20E 06 
3.40E 06 
3.60E 06 
3.80E 06 
4.00E 06 
4.20E 06 
4.40E 06 
4.60E 06 
4.80E 06 
5.00E 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.80E 06 
6.00E 06 
6.20E 06 
6.40E 06 
6.60E 06 
6.80E 06 

6.04 IE 0 3 
4.457E 03 
3.348E 03 
2.666E 03 
2.246E 03 
1.972E 03 
1.755E 03 
1.56 IE 03 
1..39 2E 0 3 
1.256E 03 
1.146E 03 
1•05 IE 03 
9.67 2E 02 
8.S68E 02 
8.424E 02 
8.00 IE 02 
7.572E 02 
7.038E 02 
6.462E 02 
5.974E 02 
5.633E 02 
5.362E 02 
5.060E 02 
4.265E 02 
3.590E 02 
3.257E 02 
3.170E 02 
3.070E 02 
2•84 IE 02 
2.556E 02 
2.260E 02 
1.978E 02 
1.75 IE 02 
1.586E 02 
I.440E 02 
1.318E 02 
1.234E 02 
1.I53E 02 
1.048E 02 
9.235E 01 
8.036E 01 
7.034E 01 

5.819E 03 
4.237E 03 
3.194E 03 
2.565E 03 
2.165E 03 
1.501E 03 
1.685E 03 
1.494E 03 
1.332E 03 
1.202E 03 
1.095E 03 
1.007E 03 
9.283E 02 
8.619E 02 
8.109E 02 
7.726E 02 
7.323E 02 
6.817E 02 
6.269E 02 
5.790E C2 
5.455E 02 
5.194E 02 
4.903E 02 
4.138E 02 
3.473E 02 
3.143E 02 
3.063E 02 
2.971E 02 
2.754E 02 
2.476E 02 
2.185E 02 
1.909E 02 
1.687E 02 
1.523E 02 
1.379E 02 
1.261E 02 
1.179E 02 
1.102E 02 
1.001E 02 
8.790E 01 
7.613E 01 
6.649E 01 

7.00E 06 
7.20E 06 
7.40E 06 
7.60E 06 
7.80E 06 
8.COE 06 
8.20E 06 
8.40E 06 
8.60E 06 
8.80E 06 
9.00E 06 
9.20E 06 
9.40E 06 
9.6CE 06 
9.80E 06 
l.OOE 07 
1.02E 07 
1.04E 07 
1.06E 07 
1.08E 07 
1.10E 07 
1.12E 07 
1.14E 07 
1.16E 07 
1.18E 07 
1.20E 07 
1.22E 07 
1.34E 07 
1.26E 07 
1.28E 07 
1.30E 07 
1.32E 07 
1.34E 07 
1.36E 07 
1.38E 07 
1.40E 07 
1.42E 07 
1.44E 07 
1.46E 07 
1.48E 07 
1.50E 07 

6.1C4E 01 
5.409E 01 
4.610E 01 
3.835E 01 
3.150E 01 
2.612E 01 
2.237E 01 
1.957É 01 
1.712E 01 
1.488E 01 
1.295E 01 
1.128E 01 
9.777E 00 
8.415E 00 
7.204E 00 
6.160E 00 
5.296E 00 
4.618E 00 
4.C98E 00 
3.715E 00 
3.488E 00 
3.324E 00 
2.990E 00 
2.350(= 00 
1.601E CO 
1.123E 00 
1.063E 00 
1.294E 00 
1.554E 00 
1.638E 00 
1.515E 00 
1.252E 00 
9.522E-01 
7.003E-01 
5.354E-01 
4.514E-01 
4.221É-01 
4.232E-01 
4.370E-01 
4.509E-01 
4.542E-01 

5.840E 01 
5.076E 01 
4.3G7E 01 
3.557E 01 
2.392E 01 
2. 372E 01 
2.015E 01 
1.745 E 01 
1.513E 01 
1.306E 01 
1.122E 01 
9.621E 00 
8.213E 00 
6.959E 00 
5.336E 00 
4.870E 00 
4.103E 00 
3.494E 00 
2.981E 00 
2.613E 00 
2.441E 00 
2.338E 00 
2.039F 00 
1.427E 00 
7.169E-01 
2.902E-01 
2.951E-01 
5.855E-01 
8.993E-01 
1.044E 00 
9.615E-01 
7.307E-01 
4.737E-01 
2.720E-01 
1.499E-01 
9.839E-02 
9.637E-02 
1.195E-01 
1.478E-01 
1.704E-01 
1.876E-01 
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TABLE XXXV 

RUN 157B+161B U SLAB AT 47 DEG. 

UPPER LOWER UPPER LOWER 
LIMIT LIMIT ENERGY LIMIT LIMIT ENERGY 

8.00E 05 
9.00E 05 
I.OOE 06 
I.10E 06 
1.20E 06 
1.30E 06 
1.40E 06 
I.50E 06 
1.60E 06 
1.70E 06 
I.80E 06 
1.90E 06 
2.00E 06 
2.10E 06 
2.20E 06 
2.30E 06 
2.40E 06 
2.50E 06 
2.60E 06 
2.70E 06 
2.80E 06 
2.90E 06 
3.00E 06 
3.20E 06 
3.40E 06 
3.60E 06 
3.80E 06 
4.00E 06 
4.20E 06 
4.40E 06 
4.60E 06 
4.80 E 06 
5.00E 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.80E 06 
6.00E 06 
6.20E 06 
6.40E 06 
6.60E 06 
6.80E 06 

4.I17E 03 
3.022E 03 
2.255E 03 
1 • 75 IE 03 
I.408E 03 
1.176E 03 
1.010E 03 
8.688E 02 
7.486E 02 
6.658E 02 
6.071E 02 
5.59IE 02 
5.196E 02 
4.845E 02 
4.504E 02 
4.188E 02 
3.91 IE 02 
3.640E 02 
3•35 IE 02 
3.073E 02 
2.847E 02 
2.680E 02 
2.538E 02 
2.219E 02 
1.927E 02 
1.755E 02 
1.604E 02 
1.42 3E 02 
1.259E 02 
1.130E 02 
1.052E 02 
9.866E 01 
8.704E 01 
7.434E 01 
6.652E 01 
6.208E 01 
5.698E 01 
5.038E 01 
4.387E 01 
3.796E 01 
3.247E 01 
2.727E 01 

3.960E 03 
2.882E 03 
2.160E 03 
1.693E 03 
1.363E 03 
1.137E 03 
9.737E 02 
8.337E 02 
7.170E 02 
6.377F 02 
5.810E 02 
5.365E 02 
4.998E 02 
4.667E 02 
4.342E 02 
4.0455 02 
3.780E 02 
3.524E 02 
3.248E 02 
2.972E 02 
2.744E 02 
2.577E 02 
2.434E 02 
2.126E 02 
1.834E 02 
1.659E 02 
1.510E 02 
1.333E 02 
1.179E 02 
1.054E 02 
9.82IE 01 
9.225E 01 
8.100E 01 
6.853E 01 
6.106E 01 
5.694E 01 
5.201E 01 
4.582E 01 
3.963E 01 
3.399E 01 
2.869E 01 
2.379E 01 

7.00E 06 
7.20E 06 
7.40E 06 
7.6DE 06 
7.80E 06 
8.00E 06 
8.20E 06 
8.40E 06 
8.60E 06 
8.80E 06 
9.00E 06 
9.20E 06 
9.40E 06 
9.60E 06 
9.80E 06 
I.OOE 07 
1.02E 07 
1.04E 07 
1.06E 07 
1.08E 07 
1.10E 07 
1.12E 07 
1.14E 07 
1.16E 07 
1.18E 07 
1.20E 07 
1.22E 07 
1.24E 07 
1.26E 07 
1.28E 07 
1.30E 07 
1.32E 07 
1.34E 07 
1.36E 07 
1.38E 07 
1.40E 07 
1.42E 07 
1.44E 07 
1.46E 07 
1.48E 07 
1.50E 07 

2.292E 01 
1.983E 01 
1.769E 01 
1.5945 01 
1.4115 01 
1.195E 01 
9.782E 00 
8.406E 00 
7.883E 00 
7.5°6E 00 
7.1235 00 
6.420E 00 
5.537Ç 00 
4.540E 00 
3.528E 00 
2.6805 00 
2.130E 00 
1.8715 00 
1.799E 00 
1.8775 00 
2.161E 00 
2.523E 00 
2.616E 00 
2.305E 00 
1.8345 00 
1.493E 00 
1.304E 00 
1.1575 00 
9.765E-01 
7.653E-01 
5.622E-01 
3.9355-01 

1•9665 01 
1.679E 01 
1.489E 01 
1.328E 01 
1.1635 01 
9.616E 00 
7.600E 00 
6.371E 00 
5.971E 00 
5.801E 00 
5.422E 00 
4.809E 00 
4.0^75 00 
3.127E 00 
2.151E 00 
1.376E 00 
9.542E-01 
7.345E-01 
6.039E-Q1 
7.335E-01 
1.164E 00 
1.560E 00 
1.602E 00 
1.323E 00 
1.0C4E 00 
8.1195-01 
6.932E-01 
5.6945-01 
4.335E-01 
3.0405-01 
1.7965-01 
5.0935-02 

2.579É-01-6.243E-02 
1.544E-01-1.417E-01 

6565-02-1.929E-01 
8.1775-02-2.144E-01 
9.359E-02-1.926E-C1 
1.301E-01-1.380E-01 
1.933E-01-8.293E-02 
2.537E-01-4.1405-02 
2.7705-01-1.5635-02 
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TABLE XXXVI 

RUM 158A+161C U SLAB AT 64 DEG. 

UPPER LOWER UPPER LOWER 
ENERGY LIMIT LIMIT ENERGY LIMIT LIMIT 

8.00E 05 
9.00E 05 
l.COE 06 
1.10E 06 
1.20E 06 
1.30E 06 
1..40E 06 
1.50E 06 
Í.60E 06 
1.70E 06 
I.69E 06 
1.901: 06 
2.00E 06 
2.10E 06 
2.20E 06 
2.30E 06 
2.40E 06 
2.50E 06 
2.60E 06 
2.70E 06 
2.80E 06 
2.90E 06 
3.00E 06 
3.20E 06 
3.40E 06 
3.60E 06 
3.80E 06 
4.00E 06 
4.20E 06 
4.40E 06 
4.60E 06 
4.80E 06 
5.00E 06 
5.20E 06 
5.40E 06 
5.60E 06 
5.80E 06 
6.00E 06 
6.20E 06 
6.40E 06 
6.60E 06 
6.80E 06 

2.317E 03 
1.657E 03 
1.210E 03 
9.277E 02 
7.223E 02 
5.703E 02 
4.662E 02 
3.957E 02 
3.432E 02 
3.029E 02 
2.724E ?2 
2.489E 02 
2.310E 02 
2.178E 02 
2.068E 02 
1.945E 02 
1.813E 02 
1.687E 02 
1.576E 02 
1.480E 02 
1.394E 02 
1.307E 02 
1.215E 02 
1.023E 02 
8.691E 01 
7.775E 01 
7.286E 01 
6.789E 01 
6.198E 01 
5.603E 01 
4.893E 01 
4.109E 01 
3.445E 01 
2.991E 01 
2.664E 01 
2.378E 01 
2.205E 01 
2.125E 01 
1.963E 01 
1.665E 01 
1.384E 01 
1.208E 01 

2.243E 03 
1.585E 03 
1.162E 03 
8.996E 02 
7.012E 02 
5.524E 02 
4.493E 02 
3.796E 02 
3.288E 02 
2.899E 02 
2.604E 02 
2.385E 02 
2.218E 02 
2.096E 02 
1.994E 02 
1.879E 02 
1.752E 02 
1.632E 02 
1.528E 02 
1.432E 02 
1.344E 02 
1.257E 02 
1.166E 02 
9.791E 01 
9.260E 01 
7.331E 01 
6.851E 01 
6.375E 01 
5.830E 01 
5.260E 01 
'4.579E 01 
3.819E 01 
3.174E 01 
2.729E 01 
2.413E 01 
2.139E 01 
1.977E 01 
1.913E 01 
1.763E 01 
1.478E 01 
1.206E 01 
1.045E 01 

7.00E 06 
7.20E 06 
7.40E 06 
7.60E 06 
7.80E 06 
8.00E 06 
8.20E 06 
8.40E 06 
8.60E 06 
8.80E 06 
9.00E 06 
9.20E 06 
9.40E 06 
9.60E 06 
9.80E 06 
l.OOE 07 
1.02E 07 
1.04E 07 
1.06E 07 
1.08E 07 
1.10E 07 
1.12E 07 
1.14E 07 
1.16E 07 
1.18E 07 
1.20E 07 
1.22E 07 
1.24E 07 
1.26E 07 
1.28E 07 
1.3CE 07 
1.32E 07 
1.34E 07 
1.36E 07 
1.38E 07 
1.40E 07 
1.42E 07 
1.44E 07 
1.46E 07 
1.48E 07 
1.50E 07 

1.091E 01 
9.771E 00 
8.506E 00 
7.246E 00 
6.194E 00 
5.484E 00 
4.973E 00 
4.406E 00 
3.747E 00 
3.177E 00 
2.835E 00 
2.570E 00 
2.089E OC 
1.399E 00 
8.398E-01 
6.953E-01 
9.437E-01 
1.315E 00 
1.487F 00 
1.326E 00 

9.377E 00 
8.337E CO 
7.205E 00 
6.021E 00 
5.055E 00 
4.432E 00 
4.009E 00 
3.476E 00 
2.847E 00 
2.374E 00 
2.132E 00 
1.875E 00 
1.392E 00 
7.471E-01 
2.236E-01 
!•088E-01 
4.064E-01 
7.911E-01 
9.471E-01 
8.341E-01 
4.568E-01 9.563E-01 

5.727E-01 6.915E-02 
3.248E-01-1.892E-01 
2.766E-01-2.060E-01 
3.833E-01-2.162E-02 
5,187E-01 1.269E-01 
5.708E-01 1.359E-01 
5.040E-01 7.092E-02 
3.973E-01 4.889E-05 
3.243E-01-4.949E-02 
2.913E-01-6.403E-02 
2.823E-01-4.139E-02 
2.975E-01 3.934E-03 
3.320E-01 5.139E-02 
3.623E-01 8.550E-02 
3.632E-01 9.556E-02 
3.272E-01 7.710E-02 
2.644E-01 3.553E-02 
1.938E-31-1.929E-02 
1.329E-01-7.177E-02 
9.096E-02-1.113E-01 



APPENDIX B 

FAST NEUTRON DOSE DATA 

Table ^11 cc,ntains “a“ to the bare beam taken with the 

Hurst dosimeter in the spectrometer housing at angles of 0, b.16, and 

8.6». Three values are given for eacn measurement. These correspond 

to the three means of obtaining the dose from the pulse height distri¬ 

bution as described in Chapter V. The dose units are ergs./gm./hr./ 

»att. Table XXCTIII contains similar data for the lead slab. Tables 

mix and XL contain data for the polyethylene and laminated slabs, 

on these runs the PHS readings „ere not recorded. Table XLI contains 

the dose profile data for the depleted uranium slab. These data „ere 

taken „ith the 1/2-in. diameter by 1/16-in. thick Hornyak button located 

on a traversing mechanism such that it „as one inch from the exit face 

of the uranium slab. These data are intended for shape comparison only. 
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TABLE XXXVII 

ANGLE DEPENDENCE OF FAST NEUTRON DOSE 

FOR THE BARE BEAM 

Angle Integrator PHS Analyzer 

0° 

l*.l6° 

8.6° 

1.01+ X 10"3 

2.96 X 10"4 

2.78 X 10-6 

1.12 X 10-3 

3.16 X 10-4 

2.92 X 10-6 

1.08 X 10'3 

3.18 X 10-4 

2.92 X 10-6 
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TABLE XXXVIII 

ANGLE DEPENDENCE OF FAST NEUTRON DOSE 

FOR THE LEAD SLAB 

0° 

13° 

30° 

1*7° 

614° 

7.58 X 10-6 

1.07 X 10-6 

7.87 X 10-7 

5.20 X 10"7 

2.69 X 10-7 

9.11 X 10‘6 

l.Ol* X 10-6 

8.51 X 10~7 

6.33 X 10~7 

3.1*3 X 10"7 

Analyzer 

1.11 X 10-6 

1.1*3 X 10~6 

1.08 X 10"6 

7.21* X 10-7 

3.78 X 10"7 
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TABLE XXXIX 

MGLE DEPENDENCE OF FAST NEUTRON DOSE 

FOR THE POLYETHYLENE SLAB 

Angle Integrator 

0° 

13° 

30° 

Lt° 

6h° 

2.7k X 10“5 

1+.61 X io~7 

2.73 X 10"7 

1.23 X 10"7 

1+.11+ X 10~8 

Analyzer 

2.88 X 10’5 

1+.80 X 10’7 

2.81+ X 10-7 

1.31 X 10-7 

1+.3I+ X 10-8 
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Angle 

0o 

13° 

30° 

1+7° 

61+° 

TABLE XL 

ANGLE DEPENDENCE OF FAST NEUTRON DOSE 

FOR THE LAMINATED SLAB 

Integrator 

6.1+3 X 10"6 

5.15 X 10-7 

3.01+ X 10"7 

1.78 X 10-7 

1.38 X 10-7 

Analyser 

7.05' X 10"6 

1+.72 X 10-7 

2.7I+ X 10-7 

1.1+9 X 10-7 

7.1+1 X 10"8 
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TABLE XLI 

FAST NEUTRON DOSE PROFILE BEHIND THE 
DEPLETED URANIUM SLAB 

0 

1 

2 

3 

k 

5 

6 

7 

8 

9 

10 

2.92 X 10"2 

2.85 X 10’3 

2.66 X 10-3 

2.28 X 10-3 

1.78 X 10~3 

1.31 X 10”3 

9.01 X lO"4 

6.72 X IO-4 

^.88 X 10~4 

3.63 X 10-4 

2.64 X 10_4 

11 

12 

13 

14 

15 

17 

19 

21 

23 

27 

30 

I.90 X 10-4 

1.42 X 10"^ 

1.12 X 10"4 

8.69 X 10"5 

6.40 X 10-5 

4.21 X 10“5 

2.55 X 10'5 

1.86 X 10_5 

1.16 X 10-5 

5.74 X 10-6 

3.77 X 10"6 




