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ABSTRACT: The traditional basis for the theory of

electromagnetic systems (e.g., circuits, microwave

networks, antennas) is a collection of definitions

describing their temporal and spectral properties.

It is shown here that these properties are all

derivabl6 as a consequence of two physical assump-

tions implicit in those definitions, namely, the

Maxwell-Lorertz theory of electromagnetism and the

postulates of causality, linearity, time-invariance,

and passivity. These two assumptions alone thus

constitute an axiomatic physical foundation for

electromagnetic system theory.
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1. INTRODUCTION

The physical mezning of the definitions on which electro-

magnetic system theory is based is not always clear. The spectral

description of a system, for example, is frequently defined

by its response to a time-harmonic signal, and yet true time-

harmonic signals are non-physical because they would have had to
exist forever. The spectral description of a signal as the
Fourier transform of its complete time history, including the

future as well as the past, is another questionable definition
because of the implication that the future can influence the

present. The trouble here will be seen to lie in the fact that

the concept of signal spectrum has no physical meaning when
divorced from some system on which it must act to be observed.

This illustrates clearly that a thorough re-examination of the

physical foundation of system theory could be worthwhile. In-
stead of basing the theory on a collection of abstract definitions

it would be preferable to base it on verifiable physical assump-

tions. Then if any physical inconsistencies are found to exist

they can be traced back directly to some fault in the assump-

tions. That is the program %f the present paper. A general

theory of two-port systems--circuits, microwave networks, anten-

nas, etc.--will be developed here from just two physical

assumptions. One is that the Maxwell-Lorentz .heory of electro-

magnetism, which has been verified in so many different ways

that it is frequently considered to be a law of nature, is valid.
The other is the usual set of postulates on system behavior:

causality, linearity, time-invariance, and passivity. Prom these

two assumptions alone all of the properties usually attributed
to electromagnetic systems will be seen to follow. In the case

of lumped constant circuits these assumptions provide a physical

foundation for circuit theory that is not possibVl to establish

fromi circuit theory itself.
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2. NATURE OF THE PHYSICAL ASSUMPTIONS

a) The Maxwell-Lorentz theory 2f electromagnetism.

It is a fact of experience that all known electromagnetic

phenomena are described by the Maxqell-Lorentz theory. Hence

the assumption of its validity is an almost mandatory starting

point for any dev•1_opment of electromagnetic system theory.

Of Maxwell's four equations his two curl equations

~ (2)

are the only two that are independent (the two divergence equa-

tions are automatically satisfied by them for any physical field,

which must be zero prior to creation of the source at some

finite time in the past). But they provide only two relation-

ships between the five field functions , 6 Y, which
means that three more are needed. The other three are provided
by Lorentz's electron theory for the physical properties of

the electromagnetic medium of which the system is constituted.
These properties, arising in part from the properties of

space and the rest from the internal electronic structure of

the material medium, determine the dependence of and A on

the force field E and of _* on the force field 8 . Once these

constitutive relationships have been determined at every point

in the system the fields F_ and G everywhere can be determined

uniquely from (1) and (2) by imposing boundary conditions.

As a specific illustration consider the electromagnetic

system shown in Fig. 1. Physical input signals are always

real functions of time, taken here to be a voltage iw(±')applied

at time -t' at the reference location (0,0,0) to a coaxial cable

feeding a horn antenna. This antenna, by itself, constitutes

a one-port system. At every point (X,%,*) in that system the

input signal will produce five field functions at time .
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They will be Octermined everywhere by the time history of the

input voltage and 1-y tht distribution of matter in and about

the horn. If a second antenna is present, such as the receiving

dipole and reflector shown at the right, then the fields every-

where will be determined by the distribution of matter in and

about that antenna, too. But usually we are not interested

in the fields everywhere. In most cases the interest centers

eiflher on f(OOo,* at the input port, from which the input

current i(&) to the system can be determined, or on

or at the output port ,ip,) from which the output

voltage -T,(+) or output current L+) , respectively, can

be determined. In this sense the two-port antenna system

illustrated here is no different from a circuit or microwave

network. It is for this reason that the theory to be developed

here is believed to be quite general.

A question arises regarding synchronization of the clocks

by which time t' at the input port and time t at the observa-

tion point (x,uP• are to be measured. Einstein [1] answered

this quest-on when he pointed out that similar clocks at rest

in a common frame of reference can be synchronized by means

of light signals. A common time can then be assigned to an

event taking place anywhere in that reference frame. But no

common time exists for clocks in relative motion. Thus the

results of the system theory to be developed here are limited

to points of observation that are at rest with respect to a

frame fixed in the system.

b) Postulates on system behavior.

The second and final assumption is that the system is

causal, linear, time-invariant, and passive. None of these

properties is indigenous to the Maxwell-Lorentz theory as a

whole, although some are in part. Thus they represent an

independent assumption. An important consequence of this
assumption is that it leads to a description of the medium in
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terms of the complex spectral functions e(K.~,,,) -(.1,t,*D,

andC(xE,W,,& whose properties are known from experience to

represent a wide range of physically important media.

Causality - The familiar one-way flow of events from
ecause to effect is so natural to our senses that it hardly

seems necessary to postulate it. Surely there must be some

law that asserts the necessity of causality in nature. But

the surprising fact of the matter seems to be that none of
the known laws of physics show any distinction between past

and future. On a microscopic scale they are all completely
reversible in time. This includes Maxwell's equations,

which admit of advanced solutions just as readily as retarded

solutions, even though no macroscopic evidence of advanced

solutions haz ever been found. The response of&& to E and

of ý to @ at every point in a vacuum is clearly reversible, too,

their relationship being a simple proportionality. Presumably
the response of each atom in a material med4 .um is also rever-

sible. They why do electromagnetic phenomena on a macroscopic

scale appear to be irreversible? The answer is that they may
actually be reversible, in principle, but that the nrobability

of physical. phenomena reversing their sequence of events in

time is so small as to be practically zero [2]. On this
basis causality on a macroscopic scale should not be regarded

as being an absolute law cf nature but rather as being a chance

event that is so highly probable as to be virtually certain

to occur. As a practical matter, then, the postulate of
causality can be considered to be a necessary feature of any

system theory. It was long ago incorporated into circuit
theory as a necessary requirement for physical realizability.

Linearity - Any system for which a linear combination
of exciting signals produces the same linear combination of
responses is said to be linear. Maxwell's equations are

linear (any linear combination of solutions is also a solution)
and free space is linear ( is proportional to C , and )f to )
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but material media are never exactly linear. Hence the nos-

tulate of linearity is really an assumption on the medium

alone. A wide range of media of practical interest are nearly

linear; L6 and found by experiment in passive systems are

frequently related almost linearly to 9 alone, and A to

alone.

Although the postulate of liirearity is never satisfied

exactly in material media, and may not even be a reasona.'le

approximation in some media, it nevertheless is believed to

be an absolutely indispensible feature of any theory of elec-

tromagnetic systems. Without it the influence of the input

signal on the fields in the system could never be separated
from the influence of the system itself. As a consequence

the field equations would have to be re-solved completely at

every moment in time for ever new input signal. Only for
linear systems can the fields of an arbitrary input signal be

obtained by solving the field equations once and for all for

the fields of some elementary input signal from which the

fields of an arbitrary input signal can be constructed.
The importance of being able to separate the description of
the system from that of its input signal can hardly be over-

stated, as it is this that makes system theory possible.
Time-invariance - Any system whose properties remain

fixed in time is said to be time-invariant. Maxwell's equations

are time-invariant (they are unchanged by a shift in the time

reference) and so is free space. Hence the postulate of time-

invariance, like that of linearity above, is a assumption

solely on the material medium alone. As in the case of line-

arity it is a good approximation for many physical media of
practical interest.

Unlike the postulates of causality and linearity, neither
time-invariance nor the postulate of passivity to follow

apgear to be necessary ingredients of a theory of systems.
They are included here because they are implicit in the system
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properties usually assumed and because they provide a basis

for the derivation of those properties.

Passivity - A system that contains no internal energy

sources is said to be passive. rree space and material media

are both passive properties of a system because they introduce

no new sources of energy. Internal energv sources are rep-

resented solely by an active term in the current density • in

Maxwell's equations. Hence the postulate of passivity is an

assumption on Maxwell's equations alone.

Those properties of the above four postulates that are

implicit in the Maxwell-Lorentz theory of electromagnetism

are summarized in Table 1.

TABLE 1

Field Free Material

Equations Space Media

Causality

Linearity X X

Time-invariance X X

Passivity X X

For the others the postulates represent an additional assump-

tion. In contrast to the universal truth that the Maxwell-

Lorentz theory appears to represent, these additional assump-

tions may be only approximately true.

3. TEMPORAL DESCRIPTTON OF SYSTEMS

Any system that satisfies the Maxwell-Lorentz theory can

be characterized completely by a set of five real field func-

tions produced everywhere in the system by a vanishingly short

pulse of fixed area (an impulse) at its innut port. Two of
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these fields, E and 6 , produce the Lorentz force on electric

charge. They are related to each other directly by Faraday's

law (1) and indirectly, through the constitutive properties

of the medium, by Maxwell's modification (2) of Ampere's law.

They act locally as exciting forces on the electronic structure

oZ the medium to produce A , i , and )± that represent the

other three fields. The objective here is to describe the

macroscopic properties of these five impulse response field

functions. From these impulse response fields all of the

other results of system theory will be derived.
The fact that a vanishingly short pulse is the charac-

teristic input signal by which all input signals are con-

structed physically is implicit from the way in which the

temporal record of signals develop (Fig. 2). From the moment

t'=0 at which the signal record first begins it develops as an

ever lengthening continuum of pulses of infinitesimal area

(height times duration) up to time t'=t, the present moment
"now", beyond which it is zero because the future signal his-

tory has not yet occurred. The characteristic temporal descrip-

tion of a system is thus the field responses to a unit impulse

(a vanishingly short pulse of unit area). The response to

an arbitrary input signal can then be constructed mathematically

by superposition of the responses to each infinitesimal element

of its area. But this raises two questions. One is that a

vanishingly short pulse of unit area must have infinite height

and hence could never exist physically, not to mention the

fact that no physical system could survive such a shock. The

other is the implicit assumption that the response of an impulse

is proportional to its area. A precise answer to these and

other related questions will now be given before proceeding

further.

The second question will be answered first by proving,

perhaps for the first time, that the response to an impulse

is, indeed, proportional to its area. It is a direct consequence
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of the postulates of linearity and time-invariance in the

limit of vanishing pulse duration.

Theorem: The responses of an electromagnetic system to a

vanishingly shor:t pulse are proportional to the area of that

pulse.

Proof: Let a rectangular pulse of given area and non-zero

duration At be impressed upon a system free of initial exci-

tation. After the pulse ceases each response function must

originate solely from energy stored within the (passive)

system. Each response everywhere in the system will be a
definite, unique function of time that characterizes that

particular system. To prove that it beco es proportional to

area as the pulse duration vanishes it is sufficient to show

that it becomes proportional to height and to duration separ-

ately. That it is proportional to height is obvious from.

linearity, regardless of duration; i.e., changing the pulse

height by any constant factor will change the response every-

where by exactly that same factor. Proportionality to duration,

however, is not at all obvious. To establish it imagine the

pulse sliced into n equal time intervals At/n . This is in-

dicated in Fig. 3, along with an example of a hypothetical

current response ;(t) at tkhe input port to illustrate one partic-

ular response function of interest. The response due to each of

the identical slices is the same for all, because of time-invar-

iance, but each is displaced from its immediate neighbors

by the time interval AtL/ . Furthermore the sum of these

identical .':sporises must add up to exactly the response of

the original pulse because of linearity. If it weren't for

the time displacement between responses, then, the response

to each of the n slices would be exactly i/n of that of the

original pulse; i.e., the response of each slice would be

proportional to its duration. But when At vanishes the time

displacement between responses vanishes also. Thus the

response does, in fact, become proportional to pulse duration

as the duration vanishes. It is concluded, therefore, that
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the response to a vanishingly short pulse is proportional

everywhere in space and in time to its height and to its

duration separately, and hence to its area.

Two questions arise regarding the current response right

at the input port. One is the behavior of that response within

the duration of the impulse itself, and the other is the

finiteness of the energy supplied to the system by the impulse.

The two are related and can be answered together. Note first

that the current response to an input voltage pulse of finite

height cannot jump discontinuously, because of inductance

that will always be present in any physical system. It must

change continuously from its initial value of zero. Thus the

unknown response current within the duration of the pulse can

be expressed as a power series that begins with the linear term,

A S(3)

By showing the dependence on pulse height explicitly in (3)

through the proportionality factor A/At , where the pulse area

is denoted by A (1 volt-sec), the expansion coefficients a,

are independent of both time and the puls3 height. As the dura-

tion At vanishes, then, it is evident from (3) that the current

response must become linear unless the leading coefficient a,

is precisely zero. To determine whether it could actually be

zero, look at the expressicn for energy supplied to the system

by the voltage pulse V(+) = A/At ,0 < t e At

At 4-t +-(+... 
(4)

4

If aL, were zero then the energy supplied by a unit impulse

(Atmo) would be zero, which would mean zero response there-

after. It is concluded that 0, cannot be zero. The current
response within the vanishing duration of the pulse must then
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become linear. At each moment within the pulse it becomes

proportional to tne area that exists at that moment, which

:ins that the theorem above applies even within the dura-

tion of the impulse itself. In the limit as At approaches

zero, then, the current response (3) within the duration of

the impulse approaches an abrupt, but linear, change from its

initial value of zero to the finite value Ao., at the end, as

indicated in Fig. 4. And the energy (4) supplied to the

system always remains finite as A-%- 0 , never becoming infinite

as is sometimes suggested by such non-physical systems as a

pure resistance. These are general characteristics that are

true for all physical systems satisfying the assumptions made

earlier. They are not necessarity true for non-physical systems,

however, such as a lUmped constant circuit without inductance

at its input.

Returning to the original question, the fact that a pulse

of infinite height could never be produced in practice can now

be seen to be of no concern. According to the theorem it is

only the area of a pulse of vanishing length that is important.

To determine impulse response experimentally it is sufficient

that the measured response to a pulse of fixed height and de-

creasing duration reach its limiting functional form before

sinking into the background noise. This limiting response

function will then be proportional to the response to a unit

impulse. The proportionality factor needed to normalize it to

that of a unit impulse is just the area of the pulse.

With the above clarification of the physical meaning

of impulse response it is now clear why the characteristic

temporal description of electromagnetic systems is their field

responses to an impulse. But the physical nature of these

field responses is quite different for 4 and 8 than for_, ,

and + . The ! and 6 fields produce the Lorentz force,

hence are the only exciting force fields (causes) in the medium.

They act locally to produce _ , , and 4 (effects) a.: each
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point. In the case of material media this causal relationship
is quite clear experimentally for the induced current density
of free electrons and for the polarization part of A• and of •4

I For the vacuum part, however, there appears to be no unique

causal relationship because the vacuum part of A is just

proportional to E and that of A to Q . with no indication of
which is the cause and which the effect. in the absence of
further knowledge the causal relationship for the vacuum part

will be considered here to be the same as that of the polar-
ization part. Thus , , k , and ) will be considered to be

totally subservient to f and 6 , being only local responses
of the medium that are produced by the global exciting forces E
and b of the system. The term "global" is used here to in-
dicate dependence of a response upon the system as a whole at

a point some distance away from its excitation, in contrast

to the term "local" used to indicate dependence upon the medium
alone in the immediate neighborhocd of its point of excitation.

In view of this essential physical difference between the

global forces E_ and e_ and their local responses _ 1, 1 , and i_ I
the five impulse response functions characterizing the system
will be taken here to be the E and 6 responses of the system

to a unit impulse of voltage at the input port and the
and )4 responses of the medium to a unit impulse of g and 6at
that same point in the medium. The theorem above on response

of a system applies equally well to these three local responses

of the material part of the medium because they, too, originate
from stored energy. In this case it is just the energy stored
locally in the electronic structure of the material medium-

The two global impulse response functions will be denoted

here by ,1, t-V') and u ,,.-f)representing the ; and6andd

field responses at the point , at time t to a unit impulse

of voltage at the input terminals (,o ,o) at time *' . The fact

that their time dependence involves only the difference +-&' is

a consequence of the postulate of time-invariance. The three
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local impulsc response functions will be denoted by •(z,,•,-.t),

(x,•,t-t') ,and ,the first two representing

the b and fielc responses, respectively, at the point CX,,*

at time + to a unit impulse of 9 at that same point at time t'

with the third representing the t field response to a unit

impulse of I . These local functions describe the instan..aneous

constitutive properties of the medium alone, representing

instantaneous dielectric susceptibility, conductivity, and in-

verse magnetic permeability, respectively. They will be seen

later from (26) to be responsible for the dispersive properties

of the medium. They cannot be measured directly but only deduced

from their effect on the global response functions.

The global response functions E and _ will always be

zero prior to the earliest moment at which the field of

an impulse could arrive at the point (K.it from the iniout port:
A

- ; - 0

, 5)

This combined statement of causality and propagation delay

includes the moment -ý='÷-4 of arrival of the leading edge of

the impulse because the area of the retarded pulse at that

moment is still zero. The local response functions , -

ands" experience no propagation delay, so

S~=

,0 (6)

The E and _ fields produced by an arbitrary input

voltage irCt') can now be obtained by summing their responses

produced by all of the elements of are.a , as illus-

trated in Fig. 5,

- 12 -



_ •)6Cx•,L,-•)' •(7)

The summation extends from time *'=O, at which the signal

begins, to the time t'=i-4 , beyond which the impulse respon-

ses are zero by (5). The _ and fields produced locally by
, and the )4 field produced locally by _ , are obtained in

the same way by summing the local responses of the medium,

= ~ (8)
SAl.

The summation here extends from the time + • at which the

exciting forces 9 and 6 first appear to the time * beyond

which the response functions of the medium are zero by (6).
These constitutive relationships (8) between the temporal field

functions are quite different from the simple proportionalities

that will be seen later to connect the corresponding spectral

functions. The integrals (7) and (8) are exact representations

for the fields everywhere in terms of the five temporal func-

tions andI -1 t!_at characterize the system

completely.
The exciting forces E and 6 are produced by the input

voltage itt'jby (7) and they, in turn, prodiceA ,$ , and)+

as in (8). Hence they can be eliminated from (8). Putting _
and • from (7) (after extending the upper limit from +--

to infinity as required I'y (5) for a complete description of FE
and • ) into (8) and interchanging the order of integration a

-13-



simple calculation shows that (8) becomes

_ (9)

1d-4
where the new functions A. , , and 9 represent the following

integrals,

From (6) it is evident that these new functions (10) must

(K,-- I Q-

+A

which correspond to the condition3 (5) on e and 6 . Physically

they represent the local response of the medium to the global

exciting forces _ and 6 Since they have a global dependence

through • and A they represent a global alternative to the

purely local functions and characterizing the medium

alone,
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In summary, a complete temporal description of the system
is provided byt(a) the global impulse response functions _^EA

and ,and (b) either the global impulse response functions

4,• • and 4 characterizing the system as a whole or the
local impulse rt 3ponse functions gt , , and "' characteri-

zing the medium alone.

The admittance functions of circuit theory come directly

from these impulse response fields. The input admittance,

for example, comes from the current response produced at the
input port by a unit impulse of voltage. For a perfectly

conducting coaxial in.put the current response to any arbitrary
driving voltage is obtained from the line integral of the

tangential component of the X• field (9) around the center

conductor at the input port,

- .1~ret)[~ae~o.+-t).~Aj&'(12)

From this it is evident that the current response V(t-t'at

the input at time * due to a unit impulse of voltage at time t'
is produced by

All of the preceding properties are exact and quite general.

But another property -- a bound on the temporal behavior of

the impulse response field functions -- will ,e needed for

which the result to be established may be only approximate,

- namely, that the impulse response fields must remain within an
exponentially decaying envelope. This follows from the finite-

ness of the input energy (4), which becomes stored in the

1 -15 -



fields of the passive system and becomes the only source of

energy available after the input impulse ceases. This stored

energy decreases with time because of dissipation present in

all physical systems. Over any gien interval of time it will

decrease to some fixed fraction, on the average, of the value

that it had at the beginning of that 4nterval. Thus the total

energy in the system must remain within an exponentially de-

caying envelope. By making the reasonable but approximate

assumptions that the energy densities at every point will also

have this same behavior and that the energy densities are pro-

portional to _. _ and . (exactly true for non-dispersive

media only) it follows that the impulse response fields them-

selves must remain within an exponential envelope. For ,
for example,

<Ae ,L' (14)

where A(xj.a. and axj,a_, are real functions independent of v:.

4. SPECTRAL DESCRIPTION OF SYSTEMS

The well known fact that the spectral functions

,,,etc. in time-harmonic system theory are the

Fourier integral of their corresponding impulse response func-

tions will be shown here to be a necessary consequence of solving

Maxwell's equations by separation of variables. The complex

spectral variableto will enter as the separation parameter,

and the spectLal functions as the spatial factor, in the separ-

ated solution. This derivation of the Fourier relationship

between the temporal and spectral description of systems estab-

lishes clearly the fact that these spectral functions are

strictly a mathematical description of the system alone, with

their physical origin residing solely in the impulse response

functions from which they arose. Recognition of this essential

fact should strip away much of the prevailing confusion on the

- 16 -



physical meaning of the spectral functions that has arisen
from mistaking the ccnsequence that they have a physical inter-

pretation as steady-state complex amplitudes for real positive
values of W as being, instead, thei.r physical origin. It also

gives a deeper meaning to the impedance and transfer functions

of circuit theory tha- is possible from circuit theory itself.

The five impulso, response field functions describe physical

fields, even though they have dimensions of field per volt-

second. Hence they must satisfy Maxwell's equations everywhere

i.n the system,

V'K(

v• - * •(15)

The corresponding spectral functions now come from separation

of the time variable from the spatial variables in (15). The
usual procedure of first reducing (15) to a wave equation is

invalid for material media because of the effects of dispersion.
The general solution can be obtainled only by separating var-

iables in the two field equations (15) directly. Surprisingl'j,

this seems not to have been done before.

An elementary solution for will be sought in

the form of the product E(KL,*ýT(r) , that for 9(ytr in

the form of the product .(x,+*,* O-) , etc., with a single

time function common to all five fields. Then from (15),

S- A-r
(V 116t; T

<wH~h, T + :C:?A'

where l denotes each of the three rectangular coordinates
and 7T denotes the derivative with respect to te . Dividing the
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first through by BAT and the second by x>AT-

'J. T

The left side of each is a function of the space coordin&t.es

only while the right side is a function of tibe only, hence

each must be independent of both bpace and time. Denoting
the value of the first by an arbitrary complex number* -u) ,

the value of the second must be +Zu. . Por each value of u3
it is concluded from (17) that the spa.ial functions must

satisfy

and that the cime function must satisfy

- =. W *T(v W 
(19)

Solving (19) for -

Fe (23)

* This choice of notation is solely a matter of convenience
in order that the end results conform with the conventional
spectral notation. If the convention eG' 1i preferred

instead of e in the result (22), a choice sometimes
seen in the physics literature, it is simply a matter of
choosing a3L for the complex number nere rather than -c'u.

- 18-



In view of the linearity of Maxwell's equations the most
general solution to (15) obtainable by this process of sep-

arating variables is a linear superposition of these elementary

solutions,

ST -

2.rr
where the spatii.4 functions E B -L T must satisfy
(18) but are otherwise undetermined (the factor ZVOI(W)

has been albsorbed into each) and where the integration contours
• in the complex z-plane are also undetermined.
The only remaining problem is to determine the spatial

functions and integration contours such that each of the inte-
grals (21) will be an exact representation for the corresponding
impulse response function. It is a problem that always occurs
whenever partial differential equations are solved by the
method of separation of variables because the method itself
does not guarcntee completeness of the solution. The answer
lies in Plancherel's proof [3] of the Fourier integral theorem,
which states that if the integration contours are restricted
to the real axis in the complex wt-)plane the integral repre-

sentations

-19-
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K-
(X, IL ,E& e ' ,

0

-0• (22)
e- L * •"'J

for all square integrable functions on -o < r <*0 will each

be complete in the sense of zero mean-square error provided

only that the spectral functions are chosen to be

(_ j(23)
r e L

The lower limit is shown as r/c because of causality. The

sole condition here on the impulse response functions is that
they be square integrable. It is a condition that is believed

to be satisfied for all physical systems because of the approx-

imate result (14) that impulse responses must remain within

an exponentially decaying envelope. Thus the five spectral

functions describing the system must be of the form (23) and

must satisfy the partial differential equations (18) usually

referred to as time-harmonic field equations.
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The Fourier integral relationship (23) between the impulse

response functions and their corresponding spectral functions

arises as a consequence of separating the temporal from the

spatial dependence in the solution of Maxwell's equations.

It is of interest to note that this is the only point at which

Fourier theory enters into the present development of elec-

tromagnetic system theory.

To achieve the inpcrtant property of completeness in the

integral representation (22) the integration contours were

restricted to the real axis of the complex W -plane. But the

contours can be deformed at will within any region of analyticity

of the integrand without changing the value of the integrals.

The complex spectral functions defined by the integral repre-

sentation (23) each have real and imaginary parts that satisfy

the Cauchy-Riemann conditions, as can be seen by direct

calculation, which means that the region of analyticity in

the complex L-plane is at least tnat over which the integrals
converge. They will always converge wherever the imaginary

part of W is less than some real positive number o- that describes

the rate of decay (14) of the exponential bound on the impulse

response functions. Hence each of the spectral functions in

(22) is assured of being analytic in at least the lower half
plane ) j a . Except at its singular points each must also

be analytic everywhere in the upper half plane, too, even in

regions where the integral representation (23) is no longer

valid. The analytic character of a function of a complex

variable is determined not by the region of validity of a

particular representation but solely by the nature of its singu-

larities. The integrand of each of the integrals (22) will

then be analytic everywhere in at least the lower half plane

W,. < aý , since the factor ezc is an entire function of w ,

which means that the integration contours can each be deformed

to lie anywhere within that region without in any way changing

the value of the integral. Thus there is a great deal of
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freedom in the choice of the contours Ck in the original

solution (21).

The spectral description of the medium alone can now be
A.

obtained in terms of the local impulse response functions E ,

C, P" by expressing E and 6 in (10) by (22) and interchanging

the order of integration,

- , V_ if)-e

.• ., (24

-oe -04

The lower limit on t' was extended from • to --a as required

for the full description of _C and 6 . After a change of

variable t'= '--z' these reduce to

4*X-1-W ý (K.'4*.SaA e'~~t.
a-'-"' t) 6j g (K &'o 21

where the spectral functions e•••• ,f••••,•-(,,,

describing the medium alone represent the integrals

S-a22''
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The latter are the familiar functions usually associated with

the properties of dielectric susceptability, conductivity,
and the reciprocal of magnetic permeability. They describe

the dispersive properties of the medium. It is now clear
why ^ , , k' represent the temporal description of those

same properties.

Comparing (25) with (22) it is evident from the complete-

ness of the Fourier integral that

which is the usual connection of M and _T to E , and of Hf to

@ . Here one can see directly that is the reciprocal

of the usual expression for magnetic permeability. It was in
anticipation of this result that the notation/i-(,c,,i& was

used and that it was referred to earlier as representing

instantaneous inverse magnetic permeability.

The input admittance Y(w) corresponding to the impulse
A

response of current Ve) in (13) can now be obtained from

the line integral of the connection (23) between •_ and its
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spectral equivalent ,

The line integral in brackets is t) , from (13), whereas
the line integral on the left hand side represents the

corresponding spectral function '(W). Hence

yCW+) -- e ee rC' Je'" +t. . €9
(29)

This familiar formula from circuit theory is usually stated

as a definition for Y(w) . It has been derived here as a

consequence of the two physical assumptions on which the present

theory of systems is based.

5. SPECTRAL DESCRIPTION OF SIGNALS

It seems strange that the spectral description of elec-

tromagnetic systems should be widely recognized as possessing

a physical origin and yet the spectral description of the

signals associated with them be treated as though it had none.
The meaning of signal spectrum has always been considered to

be an arbitrary matter of definition rather than a necessaiy

physical consequence of field theory. It is nearly always

introduced into system theory by defining it to be the Fourier

integral of the signal history over all time, including the

future as well as the past,

VSW V(+') e"- JJ . (30)

Yet the particular course that the signal might take in the

future can have no conceivable influence on anything that is

happening now. Surely, then, any physically meaningful concept

of signal spectrum must depend upon only the past history,

changing from moment to moment as the record of the past
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lengthens but always independent of what might happen in the

future. Such considerations have led Page to suggest that it

might be more appropriate to define an instantaneous spectrum

(he called it a "running transform" [4(4)]) involving only
the past. Again, however, he treated it as being purely a

matter of definition. This presumed arbitrariness in the

-meaning of signal spectrum appears to have become so deeply

ingrained as to lead A. A. Kharkevich, in an extensive treatment

of the subject, to conclude the following [5]: "As we can see,

the instantaneous spectrum can be defined in different ways.

One thing should not be confused: all definitions are arbitrary.

It is only necessary to choose the definition which is con-

venient for a given instance and formulate 4t clearly from the

very beginning, in order to guarantee consistancy throughout
the discussion." It will be shown here that this is not

entirely true. Quite the contrary, there is no arbitrariness

at all. The instantaneous spectrum of any signal will be seen
to be a definite, unique function that is completely determined
physically at the point of observation by the instantaneous
response of the system through which it is observed.

The instantaneous spectrum of an input signal comes

directly from (7) or (9) after expressing the impulse response

fields in terms of the corresponding spectral functions as in
(22) an-' interchanging the order of integration. For the F_

field, for example,

-e0

[f

eII
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where

S..

S(32)
6

The function is the full spectral description of

the only piece of the input signal that produced the observable

output E "now" at time + . That it depends on the input signal

history up to time *---: only, even though the signal history

up to time t has already occurred, results from the fact that

an observer at a distance 2. away from the source has absolutely

no way of detecting any effect of the signal tha: occurred

after *! because of the finite velocity c required for such

effects to be communicated to him. It is evident, then, that

the instantaneous spectrum \/(Cwj-A\ represents the full

instantaneous effect of the input signal upon the responses

within a physical system as seen at a distance ft. away from the

input.

The reason why tbe time-invariant function \Atp) in (30)

is physically wrong is not that it doesn't represent the

effect at x,•,&,t) of the input signal, which it does, but

because it contains as extra baggage the future signal as well:

\1( 143', e") J' r'•e"'eLt F33)
I.

The second term in (33) involves only the future signal, which

does not yet exist. To see why the signal spectrum can be

disguised as being time-invariant by carrying along this extra

term, look at the integral that represents the instantaneous

output:
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after separating ql) into its past and future parts as in

(31) and inter-hanging the order, of integration. The bracketed
ine integral represents the i~mpulse response (,,-' .

inne

Hence the first term alone is the full representation for the

I field, the second term always being zero because of causality.

The disguise was possible because the output is totally in-

sensitive to the spectrum of the -future input signal.

One might question whether the instantaneous spectrum

(32) of an input signal must represent the instantaneous

spectrum of any signal. Suppose one wanted the spectrum of

the output rather than the input) what then? But the fact of

the matter is that any signal mus__t be the input to some

physical system when it is being observed. Even if the sole

interest were to observe its spectrum it still must be applied

to the input of a spectrum analyzer. Hence it is concluded

-• that: the concept of signal spectru has physical meaning only!

insofar as it represents the effect of an input signal on the

instantaneous output of some physical system. Any purely

abstract definition is devoid of physical reality.

It is of interest that the instantaneous spectrum (32)

is essentially the same as Page's running transform but with

the distinction that it appears here as a necessary consequence

of the physical assumptions made earlier rather than as an

intuitively appealing definition.
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An important feature that distinguishes the instantaneoi3

spectrum (32) from the time-invariant spectrum (30) is that

the integral always converges. As a consequence there is no

need for the convergence factor usually introduced for non-
decaying signal functions such as the unit step function.

This completely destroys one of the principal arguments favoring

the Laplace over the Fourier transform in linear system theory.

6. EXACT RESPONSE TO A SINUSOIDAL INPUT SIGNAL

Now that the structure of the present theory of system;

is complete the physical meaning of time-harmonic response

on which much of system theory has been based in the past
will be derived. Since no physical signal could have existed

forever let the start of an inn-t sinusoidal signal be the

reference time 0' ,

(35/%
0 , <

where 'h and w, are real positive numbers representing ampli-

tude and angular frequency and 4 is the starting phase angle.
The responses at any time + can be obtained directly from (7)

or (9) in terms of the impulse response fields in a form like

that obtained for c.rcuits by Carson [6] many years ago. For

the E field, for example,

I V. e*a4.'+) k

E ,,v) -e 41 (36)

QL g (8- e P -
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This i s an exact exprassion for the • field respcnse every-

where in the system. At all times t• • prior to arrival

of the signal the second term exactly cancel3 the first, giving
zero field as required by causality. This was illustrated in

Fig. 5. The usual interpretation of the first term as steady-

state response comes from the fact that the second term vanishes
asymptotically with increasing - as a consequence of the

exponentially decaying bound (14) on the impulse response,

leaving only

S(.,"+,) . Vo C (37)

This asymptotic steady-state behavior is the sole physical

meaning that can be attributed to time-harmonic fields. It

is limited to frequencies w. that are purely real and positive,

having no physical meaning at all for complex frequencies.
Some particularly interesting features of system theory

appear when the response (36) is obtained from the spectral

rather than the temporal descriptions of the system and the

signal. The instantaneous spectrum of the input signal at

the retarded time i-• , from (35) in (32), is

~W - Vo ).,+
C+ -eO+ ÷ 3 (3+)

It is a well behaved function, completely free of the singu-

Iarities that occur at aj = t ua in the artificially time-

invariant spectrum \1Q). With (38) in (31) the instantaneous

response of the system is found to be

16 rL so EJ u ,,-w~ 39
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after recognizing from (23) that

(40)

and hence that

_____ ___ -(41)1

f . -d

The result (39) is exactly equivalent to (36). It re-.uces
to (36) when the twc integrals are each expressed in terms of

the impulse response, by using (23) and interchanging order
of integration,

9(X~~jL~~w- j C. (future)r I

0q 0  -

V= ueto,~ t- - C 2w r e Ef (K, a,r) e-46' ' (42)1

The bracketed integral on ws is the Hulbert. transform of a

complex exponential function,

wpr-catt (43,

-Ve (Preset)

> (fut~ure)
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It is this abrupt change in the discontinuous integral (43)

at the present time "now" that forced the T -integration in

(42) to break into past and future parts. Thus the Hilbert

transform (43) is a key point in system theory. It is the

fundamental link between the cau.,al properties of the temporal

and the spectral description of any physical system. As

such it is the origin of the dispersion relations that appear

throughout electromagnetic theory, resultinq in the connection

between the dispersive and absorptive properties of the medium

ascribed to - - EO, #I-/14 , and a- and between the real and

imaginary parts of EC , B_ ,X , Z, .d for the system as a whole.

For example, from (42),

"E Z (.r, ,*e, w. t< (44)

which is the dispersion relation between the real and imaginary
parts of E~xpL,).

There seems to be a widespread misconception in the

literature regarding the physical nature of the spectral func-

tions E_ , B , :&? , -1, and H . They are frequently said to

represent complex amplitudes of sinusoidally varying fields

in space but with no reference to the system in which those

fields must exist. The implication that they can represent

arbitrary sinusoidally varying fields in space is contrary to

the fact that they describe the fields of a specific system

excited by a specific input signal ( a unit impulse ). It is

important to recognize that their purpose is to describe systems,

not fields. They are quite different from the temporal field

functions 3 , • ,-, . ,and I of Maxwell, which have no

boundary conditions imposed upon them and for which even the

medium itself need not have been specified.
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7. CONCLUSION

Few, if any, of the results developed in this paper

are really new. The importance of the development here
is believed to lie not in the results themselves but in

the demonstration that they are all derivable from exper-
imentally verifiable assumptions. With these assumptions
as a physical foundation the theory of electromagnetic

systems can take its rightful place alongside other

experimentally based physical theories.
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Fig. 1 - A two-port electromagnetic system consisting
of two antennas. A voltage v(t') at the
input port (0,0,0) produces a voltage v 1 (t)
at the output port (xl,y,,zl).
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Fig. 2 - Physical development of a signal record as it
exists at time t. Each infinitesimal element
of time adds another pulse to the record.
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Fig. 3 - Input current response i(t) to a rectangular
voltage pulse v(t') of duration At, and the
individual responses to each of its n (=3)

I identical slices of duration At/n.
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Fig. 4 - Initial input current response i(t) to a
rectangular voltage pulse of area A and
vanishing duration At.
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Fig. 5 - Relationship of the g -field in a system to
the input voltage and a hypothetical E -field
response to a unit impulse of voltage, a)
Sinusoidal voltage v(t') at the inDut port
(0,0,0,) at time t'; b) I-field response at
(x,y,z) at time t to a unit impulse of voltctge
at the input port at time t'; c) resulting

_ -field produced at (x,y,z) at time t by
the input voltage v(t') as calculated by (7).
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