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A PROOF THAT ESSERGY IS THE ONLY CONSISTENT
MEASURE OF POTENTIAL WORK
(FOR CHEMICAL SYSTEMS)
by\

Robert B. Evans

ABSTRACT

An attempt is made to prove that all of the many

seemingly-independent measures of potential work (such

as availability, exergy, available work, Gibbs free energy,
Gibbs chemical potential, Helmholtz free energy, and the
other common available energy expressions -- e.g., ki-
netic energy, potential energy, and electrical energy)

are necessarily all special cases of the cne unique quan-
tity, essergy (the word "essergy" being a contraction of
the term "essence of energy").

The proéf is attempted rigorously for chemical sys-
tems, from whence it is extended to apply more generally.
If correct, the proof will be of consequence to the design
of any engineering system in which potential work is a
significant factor -- since it will show conclusively that
by evaluating the one unique quantity, essergy, the de-
signer may rest assured that all of the many seemingly-
independent considerations of potential work will be auto-

matically satisfied.
- ii -
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Another pos ible consequence of the proof might be
a more general formulation of information -- based upon
Brillouin's principle of the equivalence of thermodynamic
information and potential work. It is thus hoped that
the proof may eventually provide new insight into the

foundations of science and information theory.
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PREFACE

The proof presented in this thesis makes use of only
macroscopic considerations which lie within the realm of
classical thermodynamics. Thus the proof may if desired
be viewed as being based solely upon classical thermodynamics
-- in particular the classical treatment by J.W. Gibbs.

However, it should be mentioned that the proof was
first made by using the information theory approach of

* *k
Tribus -- which is based upon contributions by Cox and

.
~

Rk
Jaynes . The general method used in the proof was inspired
by Cox's derivation of the functional form of probability.
This thesis was written in close association with Dean

Myron Tribus, without whose guidance this work would not

At S et et b A N D e

have been possible. A number of important changes in the

proof were suggested by Prof. Paul T. Shannon and Prof.

, Graham B. Wallis, while several parts cf it were considerably
influenced by the writer's many consultations with Prof.

Yehia M. El-Sayed and Mr. Jacques Pézier.

Tribus, Myron. Rational Descriptions, Decisions, and
Designs. Pergamon Press Inc., New York {In print -- to
be published in French, German, and Spanish as well as
in English -- 1969).

#
Cox, R.T. The Aliebra of Probable Inference. Johns
Hopkins Press, Baltimore, Md. (19561).

ek

*
Jaynes, E.T. Probability Theory in Science and Engineer-
ing. McGraw-HI11 Book Co., New York (In print - 69).
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A PROOF THAT ESSERGY IS THE ONLY CCNSISTENT
MEASURE OF POTENTIAL WORK
(FOR CHEMICAL SYSTEMS)

by

Robert B. Evans

INTRODUCTION

In this paper, an attempt is made to prove that all

i
4

of the many seemingly-independent measures of potential

%

work (such as availability, exergy, available work, Gibbs
free energy, Gibbs chemical potential, Helmholtz free energy
and the other common available energy expressions -- e.g.,
kinetic energy, potential energy, and electrical energy)

are necessarily all special cases of the one unique quan-
tity, essergyl -- which by definition is a thermodynamic
property whose extensive measure € is given for chemical

systems by2

1 The name "essergy" is a contraction of the term "essence

of energy", where the word "energy" is here taken in its

common colloquial meaning as being that which drives

physical processes. Thus in a non-technical sense, the

term "essergy" represents the "essence (i.e., essential {
aspect) of that which drives physical processes."

The symbols E, P, V, T, S, u_, and N, denote energy,
absolute pressure, volume, afsolute temperature, entropy,
Gibbs chemical potential of componert "c", and quantity
of component "c", respectively. Thz subscript "o" de-
notes the system when it is in equilibrium with its
environment.

-1 -
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E=E+PV-TS-gu N (1)

The proof is attempted rigorously for chemical sys-
tems, from whence it is extended to apply more generally.
If correct, the proof will be of consequence to the design
of any engineering system in which potential work is a
significant factor -- since it will show conclusively that
by evaluating the one unique quantity, essergy, the de-
signer may rest assured that all of the many seemingly-
independent considerations of potential work will be auto-
matically satisfied.

In order to review some of the earlier measures of
potential work, a very brief history of essergy will first

be given.
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A BRIEF HISTORY OF ESSERGY

Since the time of Carnot(l)(182u), the concept of
potential work -- in the sense of the maximum work which

can be produced by a system or process =-- has been of

T Ly Sl o, e MR R

concern to engineers dealing with power systems. This con-
cept was inherent in the free energy and available energy
functions of von Helmholtz and Gibbs(Z)(1873). The con-
cept was used by Darrieus(s)(1930) who defined "thermo-
dynamic efficiency" as being the quotient of the actual work
obtained divided by the potential work for materials in
steady flow. These ideas were advanced by Keenan(u)(1932)
who called Darrieus' efficiency the "effectiveness" -- in
order that this efficiency not be confused with other
efficiencies (such as the familiar Carnot efficiency, for
example).

In 1941, Keenan(s)

formulated the following measure A
of the potential work of closed systems -- a measure which

he called "availability":
A=z E+ POV - TOS - (Eo + POVo - TOSO) (2)

The subscript "o" denotes the closed system when it is in
equilibrium with the surrounding medium, so that the
quantities P , T , and (E_+ PV - T S ) are constants

e ‘o o oo o"o

(it being noted that a closed system is by definition a
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system for which no material is aliowed to cross the
boundaries). Since A is thereby a function of the system
properties E, V, and S, the availability A may be regarded
as being a property of the system -- for any given sur-

rounding medium. Keenan(S)

pointed out that the property
A had been described earlier in geometrical terms by
Gibbsgz)(1873) who referred to it as being the available
energy of the system and mediuma. Keenan refers to the
property A as being "the maximum work which can be deli-
vered to things other than the system and medium by the
two unaided by any changes (except cyclic changes) in any
external things".

The availability A is a measure of the potential work
of systems. In regard to the potential work of processes,
(5)

Keenan pointed out that the steady flow availability

(3) (W)

developed earlier by Darrieus and Keenan is given

simply by A + (P - P_)V (where A is given by equation 2
o

3 Some c¢f Gibhs' earlier formulations(z)(1873) were con-

cerned with equilibrium surfaces as defined by the coor-
dinates E, V, and S for a closed system. He called the
surface of stable equilibrium the "surface of dissi-
pated energy." 1In one case, he considered the closed
system to be immersed in a medium of constant tempera-
ture and pressure, and pointed out that the available
energy of the system and medium is equal to the vertical
height of the state point in the E-V-S space above a
plane which is tangent to the "surface of dissipated
energy" at the point P = P, T = T (where P_ and T
represent the pressure and tempera@ure of th® mediuff
respectively).
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with V representing the vclume of material which flows
in some definite increme'.t of time). For more general
situations, Keenan(S)(iasl) wrote a balance equation for
the term E + POV - TOS which appears in equation (2).

He pointed out that the use of the familiar Gibbs free
energy function may be regarded as being a special case
of this availability formulation. Further contributions
to the availability concept were made by Rant(7)(1956)
and Gaggioli(e)(1962). Rant introduced the term "exergy"
-- a term which has been used considerably in Europe in
virtually the same sense as the steady flow availability.
(9,10)

In 1958, Tribus suggested to the writer that the
potential work of processes should be given by a balance
of availability rather than by a balance equation for the
term E + POV - TOS, since E + Pov - TOS is not a general
measure of the potential work of open systems. The writer

(11), and found

attempted to write such a balance equation
that the required generalization could be carried out by
replacing the term (Eo + POVo - TOSO) in availability by
the term gucoNc. The result was the following measure 4
of the potential work of systems -- this measure at first

naving been called "available energy"(lz)(1962):

a =E + PV - TS = EH N, (3)
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The right side of equation (3) is identical to the right
side of equation (1) above. As with the availability A,
the quantities P_, T  and {uco} are constant for any given
environment, so that the function A may likewise be regard-
ed as a property of the system (for any given environment).
Gibbs(13)(1878) wrote a special formulation of the
propertyCZ -- i,e., he formulated it for the special case
of a system immersed in an existing medium with constant

)
(ls’equations 53,

properties T , P_. and {u__} (see Gibbs
56, 68, 82, and 133, for example). Gibbs used his special
formulation mainly as a criterion of stability of the
medium, and he didn't propose either a name or a symbol for
it (although he used such symbols as ¢, W, and o for parti-
cular cases -- Gibbs equations 164, 552, and 659, for
example). The property a as given by equation (3) is con-
siderably more general than Gibbs' special formulation

in that it does not require an existing medium.

In 1963, Tribus suggested to the writer that Rant's
term "exergy" would be a more appropriate name for the
property d than "available energy". The term "exergy"
seemed more appropriate, since the property a need not be
viewed as a kind of energy at all (as such terms as "avail-
able energy" and "availability" would imply) but instead

may be viewed as a measure of the departure of a system

from equilibrium. Consequently the writer adopted the
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symbol "&£ " for this property and called it "exergy"(lu).

However, as it became apparent that the term "exergy"
is used by most workers to represent a quantity consider-
ably more limited in scope than the property d, the writer
in Reference (15) changed the name to "essergy" (i.e.,
essence of energy). In view of these changes, the symbol
"A" was replaced by the symbol "£ " while the term "avail-
able energy" was replaced by the word "essergy" -- it being
noted that equations (1) and (3) thus become identical. A
summary of the above discussion is presented in Table I.

As indicated in Table I, the formulation given in

Reference 12 (1962) is a rather general form of essergy.

This formulation enables one to make potential-work bal-

ances upon systems under rather general circumstances, whereas

balances of the previous forms of potential work (avail- ¢
ability, free-energy, Gibb's special formulation of the

propertyCZ, etc.) could be made only under more limited

circumstances.

It may be of interest to some readers to verify at
this point that essergy is indeed a measure of potential
work. First observe that for the transmission of work W
through a shaft, differentiation of equation (1) for a 1
given environment yields a€ = dE; since 4V, dS, and {ch}

are all zero when the only effect is reversible shaft

= . - 9 A ! T BB R DA o NG




D)

TABLE

i1

CONNECTIONS AMONG ESSERGY, AVAILABILITY, EXERGY, AND FREE ENERGY

NAME FUNCTION

COMMENTS

ESSERGY E + POV - TOS - éucoNc

- , A ’
) . "
—————AN T

This function was formulated
for the special case of an
existing medium in 1878 (by
Gibbs) and in general in 1962
(Ref. 12). 1Its name was
changed from "available en-
ergy" to "exergy" in 1963, and
from "exergy" to "essergy"
(i.e., "essence of energy" in
1968,

AVAILABILITY | E + POV - TOS - (Eo +* P

oVo - Toso) Formulated by

Keenan in 1941, this function
is shown on page 32 to be a
special case of the essergy
function.

A RHITCT AN FOMA IO
)

— EXERGY E+PV-TS- (Eo o

I IR ALY

Vo - Toso) Introduced by

Darrieus (1930) and Keenan
(1932), this function (which
Keenan has called the "avail-
ability in steady flow") was
given the name "exergy" by
Rant in 1956. As shown on
page 39, this function is a
special case of essergy.

T WYN Ty

FREE ENERGY | HELMHOLTZ: E - TS
GIBBS: E + PV - TS

The functions E-TS and E+PV-TS
were introduced by von Helm-
holtz and Gibbs (1873). These
two functions are Legendre
transforms of energy which
were shown by Gibbs to yield
useful alternate criteria of
equilibrium. As measures of
the potential work of systems,
these two functions are shown
on page U4 to represent spe-
cial cases of the essergy
function.

> s e
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worku. And since for this case dE = -dW, it follows that
df = -dW. Thus when the only effect is the reversible
transmission of work through a shaft, the essergy(f will
always decrease by precisely the amount of work done.

For heat transfer Q on the other hand, differentiation
of equation (1) for a given environment ;ields a = dE-—TodS,
since 4V and {ch} are zéro when the only effect is heat
transfer. Noting that dF = dQ while dS = dQ/T for reversi-
ble heat transfer at temperature T, we have

T-T
a€ = —T-S dqQ (4)

T-T
The ratio -Trg-will be recognized as the Carnot efficiency,

which is conventionally looked upon as being the fraction
of the heat dQ which is available as work. Thus the essergy
formulation is seen to contain the Carnot principle within
its framework.

In order to assess the effects of irreversibilities,
one need only differentiate equation (1) for the case when

the system is not interacting with its given environment

* The symbol { } denotes a set; thus {dN_} denotes the set

of differentials of the n components -= that is, {dN_} =
dN,, dN,, === dN_. Since components are by definitiSn
al&ays Zonserved, each N_ is constant in a closed system,
so that dN_ = 0. A disclssion of components (which are
always conferved) vs. species (which usually are not) is
given in Note 1 of Appendix A. It will also be noted
that for a given environment, the quantities P_, T . and
{uco} are all constant. °° ©°

e
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(so that E, V, and {Nc} are constant) to obtain,
€ = -TodSC (5)

where the superscript "c" denotes that dS for this case
represents entropy which is "created" -- it being noted from
the Second Law that ds® is always greater to or equal to
zero for reproducible phenomena. And thus the well known
equivalence between the creation of entropy and the loss

of potential work is seen to be embraced by the essergy
formulation.

A number of applications of essergy have appeared in
the literature in addition to those cited above. Reference
(16) made use of the writer's original outline of essergy
as given in Reference (11). The general sea-water-conver-

(17,18) were done independent-

gion considerations of Silver
ly, and remained unknown to the writer until after Reference
(12) had gone to publication. References (19) and (20)

made use of the formulation of Reference (12). In Reference
(21), the formulation of Reference (1l4) was applied to a
number of proposed sea-water conversion processes (freezing;
electrodialysis; distillation via vapor compression, multi-
stage flash, and multi-effect; etc.). Reference (22)
introduced non-linearities into the design formulation, while

in Reference (23), detailed considerations of the values of

different kinds of potential work (thermal, mechanical,
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chemical, etc.) were presented. References (24), (25), and
(26) made use of the essergy concept in the optimization of
systems where interdependencies between the subsystems
cannot be neglected. Reference (27) introduces uncertainty
considerations into the design procedure. Reference (41)
serves to summarize the status of exergy in Europe as of
1961, and Reference (42) includes economic considerations
while in Reference (43), (u4u4), and (45), efficiencies and
limits of applicability of exergy are considered.

In making this brief history, the writer has attempted
to present a unified treatment of the development of essergy
in which the similarities, rather than the differences,
among the various previous measures of potential work have
been emphasized. If, on the contrary, one examines some
of the differences (as is done below in the discussion of
the results of this paper), then one finds a situation in
which (in the absence of reference *to these results) many
seemingly independent measures of potential work appear to
coexist. This situation has served to keep the fundamental
nature of essergy somewhat obscured. It is hoped that the
procf given in the paper will help to remove this obscur-

ity. Let us now proceed with the proof.




POTENTIAL WORK

The first step of the proof is to list those require-
ments needed to define potential work. As indicated above,
the potential work of a system is the potential of that
system to produce work -- where the work produced by a
system or process is understood to be work which can always
be completely converted (via theoretically reversible mech-
anical contrivances -- e.g., cranks, gears, etc.) into
mechanical shaft work. Thus a system can have no potential
work when it is in stable equilibrium with its environ-
ment. Or in more general terms, the potential work of a
system must admit of a measure which exhibits no finite change
whenever the system varies between any two different states,
neither of which has any finite departure from equili-
brium with the environment.

Also, the potential work of a system must be a thermo-
dynamic property (of the system and its environment) which
admits of an extensive measure, since work is a thermo-
dynamic type of transmission of energy5 -- and energy is

an extensive quantitye. And finally, for any given environ-

Work is an energy transmission which is thermodynamic in
its nature in that this transmission by definition in-
volves no transmissions of either entropy or matter (it
being understood that in relativistic considerations,
the word "matter"implies material which has rest mass).
. An extensive quantity is one whose value for any group of
systems taken together is equal to the sum of its values
for the individual systems.

= 17 =
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ment7, the potential work of a system must admit of a
measure which always increases when work is transmitted
through a shaft into the system while the entropy of the
system is censtant (in the absence of any other interactions
between system and environment). These requirements may be

summarized as follows:

The potential work of a system must be a thermo-
dynamic property (of the system and its environment)

which admits of the following three kinds of measures:

). A measure which, for any given environment,
always increases when work is transmitted
through a shaft into the system while the entropy
of the system is constant (in the absence of
any other interactions between system and =2n-

vironment).
2. An extensive measure.

3. A measure which exhibits no finite change whenever

the system varies between any two different

4 An environment will be said to be "given" whenever the

system is considered to have a unique condition of equili-
brium with the environment -- as discussed in Appendix 1.
It should also be mentioned that a measure is by defini-
tion a single valued function -- as pointed out in the
proof of Theorem 3 below. One may thereby wish to consider
that what is being defined here is the expected value

of the potential work, if fluctuation phenomena are con-
sidered.

S
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states, neither of which has any finite

departure from equilibrium with the environment.

These three requirements are listed here in the order that
they are used in the proof. That there is at least one

function which satisfies these requirements is immediately

apparent from the fact that essergy satisfies them -- as

discussed below. The sufficiency of these three require-

¢
i

ments for the purpose of defining potential work (for chemi-

cal systems) is demonstrated by the proof itself -- which

shows that they are satisfied by only one thermodynamic

property, viz. essergy. Their necessity with respect to

e

the proof is discussed in Appendix 2.

(:) Requirements 1, 2, and 3 serve to define the potential

L Te L

work of systems. However, the unqualified term "potential
work" by definition denotes the potential work of systems

and/or processes. The potential work of any process must

-
rEN et Y

by definition admit of a measure which is equal to the net
decrease in potential work which the process alone necessar-
ily causes in the systems involved. In this regard, it

will be noted that any increase in the potential work of a

system which results from the receipt of potential work

T i L T e i

delivered by the pirocess is not caused necessarily by the

process -- since this potential work may be delivered to

e AN

any arbitrary system. Examples of the potential work of

LG

¥

‘:} processes are given on pages 36-39.
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N POTENTIAL WORK MEASURES OF THE FIRST KIND

Let the symbol F denote any potential work measure of
the first kind -- as described in Requirement No. 1 above.

The following theorem may now be proven:

THEOREM 1: For any non-locking system8 in any given

environment, all measures\}’must remain constant if
the entropy of the system remains constant while the

system is not interacting with the environment.

PROOF: Suppose that while the system is not inter-
acting with its given environment, a particular measure
F were to undergo a finite change A¥ , without any
change occurring in the entropy of the system. Since
any isentropic, adiabatic process may be reversed in

a non-locking systems, there is nothing to prevent

the process under consideration from moving in the
reverse direction -- so that one could always obtain

a change in the algebraic sign of AF under these condi-
' tions (it being noted that for a given environment, it
is always possible to consider a situation where all

independent properties of the environment are constant

{
2 A non-locking system is by definition any thermodynamic

system which has no locking constraints. In such a system
by definition, any isentropi.c, adiabatic process may always
be moved in the reverse direction -- as discussed in
Appendix U4,

-~ - lE -
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Before proceeding to the derivation of some theorems,
it should be emphasized that equation (1) is only the defini-
tion of the extensive measure € of essergy for a chemical
system. However, as pointed out in Appendix E, equation
(1) also applies to certain generalized chemical systems
(which may include such effects as electricity, magnetism,
gravity, surface tension, stress, and nuclear considerations).
The general definition of essergy is somewhat involved and
is given in Appendix E.

It is shown in Appendix 3 that the essergy of chemical
systems satisfies Requirements 1, 2, and 3. In other words,
it is known prior to making the proof that essergy is a con-
sistent measure of potential work (for chemical systems).
What is not known (prior to the proof) is whether or not
there might be other independent thermodynamic properties

which equally well satisfy these three requirements.

One may now proceed to derive some theorems.

e A i s P - e
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</ POTENTIAL WORK MEASURES OF THE FIRST KIND

Let the symbol F denote any potential work measure of

the first kind -- as described in Requirement No. 1 above.

The following theorem may now be proven:

THEOREM 1: TFor any non-locking system8 in any given
environment, all measures\;'must remain constant if
the entropy of the system remains constant while the

system is not interacting with the environment.

PROOF: Suppose that while the system is not inter-
acting with its given environment, a particular measure
F were to undergo a finite change AF , without any
change occurring in the entropy of the system. Since
any isentropic, adiabatic process may be reversed in

a non-locking systema, there is nothing to prevent

the process under consideration from moving in the
reverse direction -- so that one could always obtain

a change in the algebraic sign of A¥ under these condi-
tions (it being noted that for a given environmznt, it

is always possible to consider a situation where all

independent properties of the environment are constant

8

A non-locking system is by definition any thermodynamic
system which has no locking constraints. In such a system
by definition, any isentropic, adiabatic process may always
be moved in the reverse direction -- as discussed in
Appendix 4.

- 16 -
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while the system is not interacting with it -- so that
JF for such a situation would depend upon independent
properties of the system only).

After completing this process, let the absence-
of-interaction restriction be relaxed by permitting a
finite amount of work to be transmitted through a shaft
into the system while its entropy is constant (without
any other interaction occurring between the system and
its given environment). The measure J must by defini-
tion increase in this case. Denoting this second change
by Af; let this second process be restricted in a
manner such that |AF| < |AF|, where oF still denotes
the change in J due to the first process. Sinc2 one
could always obtain a change in the algebraic sign of
AF for the first process, one could thereby always
obtain a change in the algebraic sign of AF + Az'for
the combination of these two processes.

But this is a violation of the definition of 32
since the combination of these two processes consti-
tutes a process where a finite amount of work is trans-
mitted through a shaft into the system while its entropy
is constant -- without any other interaction occurring
between the system and its given environment -- and for
such a process, Requirement No. 1 dictates that

AT + Az'must always be positive. The only way to
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prevent such a violation is to set AF for the first
process equal tc zero. Hence\]‘must remain cornistant
if the entrcpy of the system remains constant while
the svstem is not interacting with the environment.

Theorem 1 is thereby proven.

Theorem 1 may be used to derive the following theorem which

serves to indicate the functional form of the measures Jﬁ

THEOREM 2: Fer any chemical system in any given en- 3
vironment, each measure F is completely determined by

a function of the form JE, V, S, {N_}).

PROOF: It is convenient to include in the set of a {
chemical system's independent properties its energy E,
volume V, entropy S, and components {Nc} -- it being
noted that S will be independent of E, V, and {Nc}

for such non-equilibrium states as the heterogeneous
non-equilibrium states considered by Gibbs(13> (such
states being made up of homogeneous parts which are at
equilibrium within themselves but not at equilibrium
with each other). With these quantities included as
independent variables, there cen be no independent
properties of the system other than E, V, S, and

{Nc} which must remain constant in a chemical system

whose entropy is constant while the system iz not
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interacting with its environmeit (this proposition

is verified in Appendix A). But from Theorem 1, J
must also remain constant for any given environment
while S is constant during such a periodg. Since for
a given environment all independent variables of the
system and its environment other than E, V, S, and
{Nc} are thus allowed to vary10 while F is constant,
F cannot for a given environment devend upon any of
these other variables. Hence for any chemical system
in any given environment, each measure Fis completely

determined by a function of the form J(E, V, S, {Nc}).

Theorem 2 enables us to determine for chemical systems the

functional form of potential work measures of the second

kind. .

10

In regards to Theorem 1, it may be noted that any chemi-
cal system is a non-locking system by definition (as
indicated in Appendix A).

In view of the definition of a given environment, all
independent properties of the given environment may in
general be allowed to vary while the system is not inter-
acting with it (as discussed in Appendix 1).
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POTENTIAL WORK MEASURES OF THE SECOND KIND

Let the symbolﬂ denote any potential work measure of

the second kind -- i.e., any extensive measure as set forth

in Requirement No. 2 above. The following theorem may now

be proven:

THEOREM 3: Each extensive measure &/ is completely
determined by a function of the form IE, Vv, s, {Nc})

for any chemical system in any given environment.

PROOF : LetB represent any particular thermodynamic
property which qualifies as being the potential work of
systems (i.e., any thermodynamic property which satis-
fies Requirements 1, 2, and 3). Any measureagof the
property B must bty definition be a one-to-one mapping11
onto 8. Thus in particular, any measure F of the fipst
kihd which X admits of (in accordance with Requirement
1) must be a one-to-one mapping onto &. This means
that any measur'eaﬁof the propertyﬁ must be a one-to-
one mapping onto f: since both jrandafrare one-to-one
mappings onto B (in general, y is always a one-to-

one mapping onto z if both y and z are one-to-one

).(28)

mappings onto X Thus each extensive measure o)

11

Following the definition used in Reference (28), a vari-
able y is said to be a one-to-one mapping onto x if y =
y(x) and x = x(y) -- it being recalled that in modern

terminology, any function y = y(x) is und?§'§t9@§ to be
single-valued unless otherwise specified. i

- 90 -




e e e e e e

= 29 =

of the propertyB must be a one-to-one mapping onto
F. Combining &= f(F) with Theorem 2, it follows
that &= ek, v, s, (N D).

Theorem 3 leads to the following theorem:

THEOREM 4: For any chemical system in any given envir-
onment, each extensive measure A’Zis completely deter-
mined by a function of the form &/ = KEE + KVV + KSS +

IKy N, *+ C where K, Ky, K¢ {KNC}, and C are constants,
C being necessarily zero for any unconstrained chemical

system.

PROOF: From Theorem 3, =Q/(E, V, S, {Nb). Butd,
E, V, S, and {Nc} are all extensive quantities.
Therefore, for any chemical system in any given envir-
onment, ﬁmust have the form ,31= KEE + KVV + KSS +
ZKy N, *+ C, where Kp, Ky, Kg, {KNC} and C are constants
(a detailed demonstration of this proposition is given
in Appendix B where it is shown that C is necessarily

zero for any unconstrained chemica. system). Hence

the theorem.

The constant KE may be shown to be a unit conversion con-

stant, so that the following statement may be proven:

THEOREM 5: For any chemical system in any given en-

vironment, £ is determined by =1 + KVV ¥ KSS #
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EKNch + C where K is an arbitrary unit conversion

constant.

PROOF: As shown in Appendix C, the constant KE must
have a fixed, non-zero value independent of the given
environment. Thus KE may be regarded as an arbitrary
unit conversion constant, so that & = KE + KV + KS +
EKNch + C (the subscript "E" being dropped from the

unit conversion constant KE).

In order to determine the identity of the constants Kv,
Kgs and {KNCL reference to potential work measures of the

third kind will be needed.
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POTENTIAL WORK MEASURES OF THE THIRD KIND

Reference to potential work measures of the third

kind will serve to identify the constants Ky» Kg» and {KNc}

of Theorem 5, from whence the following theorem will result:

THEOREM 6: The only extensive measure & of the po-
tential work of any chemical system is & = X(E + POV -
TOS - éucoNc) + C, where K is an arbitrary unit con-

version constant while Po, T and Moo denote the pro-

o
perties P, T, and Mo of the system at the condition
"o" when the system is in equilibrium with its envi-
ronment -- the constant C being an arbitrary scale

constant which is necessarily zero for any unconstrained

chemical system.

PROOF: Let the symbol4%*denote any potential work
measure of the third kind -- as described in Require-
ment No. 3 above. This requirement dictates that X
must not change by any finite amount whenever a chemi-
cal system varies between any two states which have no
finite departure from equilibrium with a given
environment. In other words, for all such variations,
AM must be zero to within all non-finite deviations
such as non-finite second and higher order infinitesi-

mals. This implies that dM must be zero for all

=928 -
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infinitesimal variations of this kind, since d%/A¥
approaches unity as A% approaches zero. And since A
is a one-to-one mapping onto & (for the same reason
that & had to be a one-to-one mapping onto J# in the
proof of Theorem 3) it follows that d& is also zero
for all such variations. Thus in view of the express-
ion for & in Theorem 5, we have for all variations of

this kind (for any given environment),

dd/ = KdJE + deV + KSdS + gKchNc = 0 (6)

Now for all such variations, the Gibbs expression
(13, 30, 31, 32, 33, 39) 4p = 1ds - PaV + gu_dN_ holds
(to within non-finite second order infinitesimals) --
in view of the definition of a chemical system (Appen-
dix A), and in compliance with the stipulation that
for such variations the system has no finite de-
parture from equilibrium. Letting the subscript "o"
denote the condition of the system when it is in equi-

librium with its environment, the Gibbs expression for

the system in this condition is,
dE = TodS - PodV + gucoch (7)

Equation (6) may be put into the form of eguation (7)
by dividing by the unit conversion constant K and

transposing terms:
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dE = K(KSdS + KVdV + éKchNc) (8)

Since the differentials dS, dV, and {ch} may be
assigred arbitrarily, a comparison of equations (7)
and (8) yields,

K

= lTS' = To (3)
g
K ~ ‘o (10)
K
- K& =" c=1,2 --- n (11)

Substitution of K, = - KTO, K, = KPO, and K

S v Ne = ~KMoo
into the expression (from Theorem 5)4/ = KE + KyV +

KoS + gK + C yields,

S Nch

& = KE+PV-TS-Zu N)+C (12)

It is shown in Aprpendix D that the constant C must
have a fixed value independent of the given environ-
ment. C is therefore an arbitrary scale constant,
which (as shown in Theorem 4) is necessarily zero for
any unconstrained chemical system. Since both K and

C are independent of the given environment, while

the values of Po’ To’ and {uco} serve to represent any
given environment, equation (12) applies whether or
not the effect of the environment is held fixed -- it

being noted that Po’ To,and Moo are constants for any

sl SR N 1 B i b duomaeit b g v A 4 1 s
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given environment, while they will be variables if the
effect of the environment is varied. It follows that
the only extensive measureliyof the potential work of
any chemical system is 27= K(E + POV - TOS - gucoNc)+C
where K is a unit conversion constant as shown in
Theorem 5, and ¢ is an arbitrary scale constant which
is necessarily zero for any unconstrained chemical

system. Theorem 6 is thereby proven.

Theorem 6 serves to demonstrate that the environment's in-
fluence upcn the potential work of any chemical system is
totally reflected by the system's intensive properties T,

P, and {uc} at the condition "o" when the system is at equi-
librium with the environment. We may now proceed to con-

siderations of the uniqueness of essergy.

4 |
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THE UNIQUENESS OF ESSERGY

Theorem 6 enables us to demonstrate the uniqueness
of essergy as a measure of potential work for chemical sys-

tems. We begin with the following theorem:

THEOREM 7: The only consistent extensive measure of

the potential work of any chemical system is the essergy

function ((: .

PROOF: Since the constant K which appears in Theorem

6 may be regarded as a unit conversion constant, it
will be recognized that KE represerts energy. Letting
E' denote energy in different units, we have, E' = KE.
The terms PV, TS, and {uch} must all have units of
energy so that we likewise have P' = KP, S' = KS, and
{ué C Kuc}, since ¥V, T, and{Nc} are not normally expressed
in units related to energy (if S were to be dimen-
sionless, then we would write T' = KT instead of S'=KS).
Letting it be understood that the symbols E, P, S,

and {uc} used in equation (1) correspond to E', P!,

S', and {ué} (or T in equation (1) corresponds to T'

in case S is dimensionless), we may drop the primes -~
from whence Theorem 6 states that E + POV - TOS -

éu N_+ C is the only extensive measure of the poten-

co ¢
tial work of a chemical system.

- 27 -
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Or in other words, the only extensive measure
4 of the potential work of a chemical system is the
essergy function & as defined in equation (E-1) of

Appendix E -- it being recalled that C is necessarily

zero for any unconstrained chemical system. This means

I EA

that in actuality there are no other consistent exten-
sive measures of the potential work of a chemical system
-- i.e., any apparent "other'" extensive measure must be
a special case of é:, and any appearance of its being

| something other than é.must be due to superfluities or
inconsistencies (or both). One thereby concludes that
the essergy function é‘is the only consistent extensive

measure of the potential work of any chemical system.

As indicated in the first footnote on page 95, one may
have a set of constrained chemical systems which is not it-

self a chemical system as defined in Appendix A. For such

sets of chemical systems, the following theorem applies:

THEOREM 8: The only consistent extensive measure of
b& the potential work of chemical systems is the essergy

function 6 A

PROOF: The extensive measure.é?of the potential work
of any set of chemical systems is by definition given
by J= g‘&r’ where &r denotes the extensive measure

- & for the r'th chemical system. Thus in view of
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Theorem 7,.&715 given by %(Er+Porvr'TorSr-§ucorNcr+cr)’
which is identical to the essergy<£ for such a set as
defined by equation (E-2) of Appendix E. Hence the

theorem.

The following theorem serves to complete the demonstration
of the consistency and uniqueness of essergy as a measure of

the potential work of chemical systems:

THEOREM 9: Essergy is the only consistent measure of

the potential work cf chemical systems.

PROOF: Any consistent reasure dJ of the potential

work of chemical systems must be a one-to-one mapping
onto the essergy function é:, for otherwise £ would
not consistently measure the same thermodynamic pro-
perty which & measures -- and in that case, in view of
Requirement 2 and Theorem 8,ctyW001d not be a consis-
tent measure of the potential work of chemical systems.
After the manner of the quantity temperature (it being
recalled that any one-to-one mapping onto the absol-
ute temperature is itself an example of temperature --
on some particular scale of temperature),(31’32’33’39)
all such one-to-one mappings onto 5‘are specific
examples of the quantity, essergy, by definition
(Appendix E). It follows that any consistent measure

J9'of the potential work of chemical systems must be a
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specific example of the quantity, essergy. Or in

other words, essergy is the only consistent measure of

the potential work of chemical systems.12

In order to complete the proof given in this paper, the

potential work of processes will now be considered:

THEOREM 10: Essergy is the only consistent measure

of potential work (for chemical systems). 3

PROOF: As defined on page 14, the potential work of
any process must admit of a measure which is equal to

the net decrease in potential work which the process 4

-

alone necessarily causes in the systems involved. Thus
any consistent measure of the potential work of any
process must {in view of Theorem 8) be a one-to-one
mapping onto the net decrease -AE in the a2ssergy

which the process alone necessarily causes in the chemi-
cal systems involved. Since any such one-to-one map-
ping onto an essergy change AE (or -AE ) is itself a

specific example of the quantity, essergyla, it follows

12 The meaning of the phrase "essergy is the only consistent

measure" is intended to be synonymous with the phrase
"any consistent measure must be a specific example of
essergy". q

After the manner of the quantity, energy (it being noted
that any energy change AE (or -AE) is itself a specific
example of energy -- e.g., an energy increase AE consti-
tutes energy which is transferred into the system), any
oo essergy change AE (or -AL ) is itself a specific example

S
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that for chemical systems, any consistent measure of
the potential work of any process must be a specific
example of essergy. Or in other words, essergy is

the only consistent measure of potential work for pro-
cesses in chemical systemslz. And since (as indica-

ted on page 1l4) the unqualified term "potential work"

denotes the potentiel work of svstems and/or processes,

s CH L e e e e oo i b

it follows (in view of Theorem 9) that essergy is the
only consistent measure of potantial work (for chemi-

cal systems).

Theorems 2 through 10 may be extended to apvly to general-
ized chemical systems -- thereby including effects of elec-
tricity, magnetism, gravity, surface tension, stress, and
nuclear considerations. BRetore doing this however, it may
be of interest to discuss how for chemical systems essergy
includes previous measures of potential work as special

cases.

of essergy by definition (Appendix E). And after the
manner of the quantity, temperature (it being recalled
that any one-to-one mapping onto an absolute temperature
change AT is itself a specific example of temperature --
on some particular scale of temperature)(31,32,33,39)
any one-to-one mapping onto the essergy AL is itself

a specific evample of essergy by definition (Appendix
E). It should be pointed out here that changes such as
AT and A€ are considered to start from a particular
state, so that any one-to-one mappings onto AT and AE
coincide with the corresponding one-to-one mappings onto
T and £ respectively.
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A DISCUSSION OF SOME SPECIAL CASES OF ESSERGY

Theorem 10 dictates that for chemical systems, all
previous measures of potential work must be special cases
of essergy -- for otherwise they would in view of this
theorem Lave to be inconsistent. Let us first consider the

availability defined by equation (2):
1. AVAILABILITY:

The availability defined by equation (2) applies to
closed systems. Since each Nc is constant for a closed
system, we have Nc = Nco from whence éucoNc = EucoNco =
Eo + POVo - Tcso in view of the Gibbs expression

E=PV-TS ¢+ guch. Substitution of this result into equa-

tien (1) Yields
= V - SIS V - h

A comparison of equations (2) and (13) shows that avail-
ability is a special case of essergy. As for the medium
which is mentioned in the definition of availability, one
may for any given environment always arbitrarily intrcduce

a medium of fixed P, T, and {uc} into essergy considera-
tions -- such mediums being discussed in detail in Reference
12. . That such a medium is actually superfluous is apparent

from the fact that no mention of a medium appears in the

- 32 -
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definition of potential work (page 13). With respect to a
stable medium of positive absolute temperature, the essergy
€ of an unconstrained system will (as shown in detail in
Reference 12) always be the minumum shaft work required to
create the system from the medium -- or alternately, the
maximum work which the system can produce via interaction
with the medium. In this regard, it will be recalled from
page 12 that the work produced by a system or process is
understood to be work which can always be completely con-
verted into mechanical shaft work. The distinction between
work produced by a system vs. work done by a system will be
discussed in the following section.

Let us first, however, make use of the arbitrary scale
constant C which may be added to the essergy of a closed
system (equation E-1 of Appendix E). For a closed system
in a given environment, Zu N 1is constant, so that C may

co ¢C

arbitrarily be set equal to EﬁCONC in equation (E-1) to yield
(5)

Keenan's availability function E + POV - TOS:

£ =E+PV-TS (14)

Thus the availability function E + POV - TOS is seen to be a
special case of the essergy(s of a closed system. As pointed
out by Keenan(s), the availability E + POV - TOS - (Eo +

Povo - TOSO) is equal to the amount by which the availability

function E + PV - T S exceeds its value (E + PV - T S) =
o o o o"’o

S S ek A A, R
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Eo Povo Toso at the condition "o" when the system 1is

at equilibrium with its environment.
2. AVAILABLE WORK

Gibbs at one point states in effect that any supply
of work may be transformed into any other vie mechanical
and thermodynamic devices, supposed theoretically perfectlu.
It will be convenient to refer to the general condition
under which this statement holds as being the "Gibbs condi-
tion". In Figures 1 and 2, a situation is illustrated for
which the Gibbs condition need not apply. The point is
that the work POAV which system A does upon system B cannot
be harnessed through a shaft if the temperature T and
pressure P are everywhere constant at To and Po respect-
ively. Or in other words, for this case we have a supply
of work which cannot be transformed into any other so that
the Gibbs condition need not apply.

This situation is analyzed in greater detail on pages

49 and 70, where it is shown that whenever the Gibbs

1% Gibbs! complete statement (Ref.13, third sentence of

first page) is, "For by mechanical and thermodynamic
contrivances, supposed theoretically perfect, any supply
of work and heat may be transformed into any other which
does not differ from it either in the amount of work & d
heat taken together or in the value of the integral f?g."
If one considers supplies of work only, then this state-
ment says in effect that by mechanical and thermodyna-
mic devices, supposed theoretica.tly perfect, any supply
of work may be transformed into any other.
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FIGURE 1: A SITUATION FOR WHICH THE GIBBS CONDITION NEED
NOT APPLY. Systems A and B are chemical systems which con-
tain liquid and vapor of a given substance oriented in a
manner consistent with the absence of gravity. The tem-
perature T and pressure P of systems A and B and the sur-
roundings are stipulated to be everywhere fixed at T _ and

P . Even though T and P are everywhere fixed, heat ﬁay
flow from B to A and evaporate some of the liquid in A
while an equal mass of vapor condenses in B -- resulting in
the movement of the partition shown in Fig. 2 while T and P
remain everywhere constant.

T IR I L S i T
VAPOR b N vapor
. :a N —— ’
H ',’-'_-“\“ ] -".:":‘ -
T AR ’/ | \{\x TI|]T
(o] o I * | AT - "y o O
5 g : ;j.\.L_'..I.Q_U__IID},,' LA \-,PI_QUIP,'} 5 5
ol o N % T 'jzﬁt;f o )
- B g
A L N B
9 I N\, '
S Y =2l T R o P P

FIGURE 2. THE SYSTEM OF FIG. 1 WITH THE PARTITION MOVED
WHILE T AND P REMAIN EVERYWHERE CONSTANT. The amount of
work done by system A upon system B due to the movement of
this partition through a volume AV is equal to P_AV. With
T and T stipulated to be everywhere constant at f and P
at all times, there will be n> way to harness thi€ work
through a shaft, so that for this case, the Gibbs' condi-
tion need not apply.
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condition is applied, the equilibrium pressure P_ must
be set equal to zero, in which case the work produced by
a system will coincide with the work done by a system.
Applying the Gibbs condition to equation (14), we set

Po = 0 to obtain
£ =E-15S (15)

Hatsopoulous and Keenan have called the function E
E - TOS + C the "available work" (the arbitrary constant

C being added in viaw of the arbitrariness of the scale

constant C in equation (E-1). They have used this function

as the basis for deriving entropy without direct a priori

referc.ice to heat. In view of equation (15) and the arbi-

trariness of the constant C, we see that the available

work E - TOS + C is a specia. case of the essergy<£.
3. EXERGY

The potential work for flows of matter and energy
constitute examples of the potential work of processes.
Fco instance, the Carnot expression (1 - TO/T)dQ is an
example of the potential work of a process -- it being
observed that (1 - TO/T)dQ represents a necessary de-

crease of potential work in the system from which dQ

flows, if we consider the process dQ alone. Hence in view

of Theorem 10, the quantity (1 - TO/T)dQ is a special

g
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example of essergy -- as is illustrated by the derivation

of equation (4). In other words, (1 - TO/T)dQ is the amount
of essergy which flows into a system as a result of a flow
of heat dQ at temperature T. Similarly, as illustrated

on page 9, the mechanical shaft work -dW is tie amount of
essergy which flows irto a system as a result of this in-
crement of shaft work. For the case of material flowing
across a stationary boundary, the essergy which flows may

be found by differentiating equation (1) for a given en-

vironment to obtain
d€ = dE - T dS - Zu AN, (16)

it being noted that dV = 0 when the only effect upon a
system is the flow of material across a stationary boundary.
The term "flow" 1is meant to exclude all diffusion effects,
so that for the homogeneous flow of matter, one has

dE = NdN and dS = ¥dN via the definition of flow -- where

N is the quantity of matter which flows, N = éNc’ while

H is the enthalpy H = E + PV (it being noted that B de-
notes the enthalpy H per unit of material, while 8 denotes

the entropy S per unit of material). Defining the quantity

&5 The notion of a "quan?igX fraction" is in keeping with
]

the notation of Gibbs who expressed his general
relationships in terms of units of matter which could

be arbitrarily interpreted as mass units, mols, mole-
cules, or any other material unit which might be suitable
for the given circumstances.

15
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fraction X, by ch = xch, one may substitute the flow
relationships dE = NdN and dS = ¥dN into equation (16)
to obtain the following expression for the essergy df
which flows with the homogeneous flow of matter across a

stationary boundary:

al = (N - To§ = FM X AN (17)

For the flow of an amount N of material, the essergy

f
Ef S 6’6 d€ is given by,

co ¢

&t - 6N (M- T ¥~ gu x dan' (18)

For steady flow, the values ﬁ, g, and'{xc} are constant so

that equation (18) reduces to

fs _
) = H - ToS - éucoNc (19)

where £fs denotes the value of c‘;f which results for steady

flow. In summary, the essergy £fs represents the amount

of essergy which flows across a stationary boundary as a

result of the steady homogeneous flow of N units of matter.
In view of the identity H = E + PV, a comparison of

equation (1) and (19) yields Keenan's relationship(S) 1

8=+ @ -p v (20)

where V represents the volume of material which crosses

the boundary during the steady homogeneous flow. Keenan
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derived this relationship for the case where Nc = Nco in

equation (19) so that E“coNc z E“coNco = Ho - ToSo in view
of the Gibbs expressior H = TS + E“ch' Substitution of

this result into equation (19) yields

fs _
£ =H-TS-(H -TS) (21)

()

Keenan called this example of the essergy £fs the "avail-

(7)

ability in steady flow", while Rant has called it "exergy"

-~ a term which has gained considerable usage(g’IO).

A
comparison of equations (13) and (21) yields the Keenan
relationship, equation (20), in the manner first given by
Keenan.

In view of the identity H = E + PV, the essergy Efs
in equation (21) is seen to be identical to the function
exergy as given in Table 1 on page 8. Thus exergy is seen
to be a special case of essergy. However, the name "exergy"
has been applied to other special cases of essergy as well.
For example, the essergy (1 - TO/T)dQ derived in equation

(4) has been called by this name‘lO).

In order to describe
more comprehensively the scope of the terms "availability"
and "exergy", it will be convenient to derive an essergy

balance. One may begin by integrating equation (4) to

obtain

T~-T

£l = éQ ° 4q! (21)
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where ¢ = 6€qd£ with respect to equation (4). For the
case of the steady flow of heat Q at constant cemperature
T, equation (21) reduces to
T-T

£l ——20 (22)
When the only effect upon a system is an amount of wor' 4w,
differentiation of equation (1) for a given environment
yields, d€ = dE + P_dV, since S and {N_} are constant when
the only effect is reversible work dW. Noting that d4E =

-dW for this case, we have
d€ = P av - aw (23)

W
Integration of equation (23) yields the essergy Cw = 66 dé

which results from the transmission of an amount of work W:
W
& = POAV - W (24)

And finally, integration of equation (5) for a given

environment yields

£ =1 s€ > 0 (25)

o) -

d c ¢4 s¢
where £° and S~ denote - 6 d€ and 6 dS respectively --
for equation (5).
On the basis of equations (1), (18), (21), (2u),

and (25), one may set up an essergy balance as follows:

i€ = Edfli: + gdfd + ag¥- a&d (26)

T oR
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Here the subscript "b" denotes each particular homogeneous
region b which is located on the boundary of the system.
Thus for example, gdfg denotes the sum of the essergy
flows d€9 for each homogeneous region b of the boundary,
while Ed£§ denotes *he sum of the essergy flows d&f for
each homogeneous stream b. As in any expression for a
total differential such as d€ , the independent differ-
entials in equation (26) such as dfg and dfg may be evalu-
ated by setting all the other independent differentials
arbitrarily equal to zero. In view of equations (4),

(5), (17), and (23), one thereby obtains

aff = (M- 1 ¥ - gu x ) AN, (27)
def = Tb—;;ﬁ dQy (28)
df¥ = P av - aw (29)
af? = 1 _as® das® > o (30)

It is convenient to summarize this result in time
derivative form via introducing the notation é = dY/dt
where Y is an arbitrary property and t denotes time. In-
troducing this notation into equation (26) through (30),
one obtains the following essergy balance which applies to
any open chemical system in any given envircnment in the

absence of non-flow mass transport such as diffusion (a
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more general essergy balance being given on page 70):

Exghy gy + - & (31)
where é{ = (N - T°§ - Eucoxc)ﬁb (31ia)
ég = TL;bT—° Q, (31b}
=PV -w (31lc)
EAEriss S, >0 (314)

and where from equation (1),

8 = FE + Po\./ - TOé - éucoNc (33e)

In words, equation (31) says that the net essergy
(géﬁ + Eég + éw) being transferred into a system is either
stored (é) or else dissipated (éd) -- it being noted that
the net essergy input is by definition the excess of essergy
entering the system over essergy leaving the system.

For steady state systems, é and & are zero, from whence

equation (31) reduces to
E‘Sﬁ + e+ €Y - £ = 0 (32)

where fi, Eg, and Ed are given by equations (3la), (31b),

and (31d) respectively, while equation (3lc; reduces to

E¥ = W : (32a)
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Equation (32) corresponds to the balances of availability

and exergy given by Keenan(S) and Bosnjakovic(IO) -- it
being noted that they have written csf in the limited
form, equation (21), rather than the more general form,

equation (19). Keenan(S)

also formulated a special case
of equation (26) which corresponds to the svecial condi-
tion Moo = 0 for all ¢ in equations (1) and (27) -- this
special condition having to be introduced since for an
unconstrained system, the measure E + POV - TOS would
otherwise violate Requirement 3 on page 13. Keenan wrote
his balance expressions in the form of inequalities (i.e.,
he never introduced the quantity ad = TOSC).

Since the availability and exergy balances are special
cases of the more general essergy balance, it is seen --
in view of equations(13) and (21) -- that both avail-

ability and exergy are completely embraced as special cases

of essergy.
4, FREE ENERGY

The Helmholtz free energy E - TS is known to be a

mezsure of potential work for isothermal processes(13’3l’

32). For such a process, the only equilibrium value T° of

the temperature which can be reached is the constant
temperature T -- or in other words T = To' Considering a
closed system and stipulating that tre Gibbs condition




S ey O

i

~ - = 0 G T S TR RO I S M % |ErAry

- 4% -

applies (from whence Po = 0) so that the essergy € is given
(to within an arbitrary constant) by equation (15), we

find by substituting T, =T into equation (15),
E=E-TS (33)

The Gibbs free energy E + PV - TS is known to be a

measure of potential work for isothermal, isobaric pro-

cesses(13, 31, 32).

For such a process, To and Po can
have only the values of the constant temperature T and
constant pressure P respectively. Substituting To =T
and Po = P into the closed-system essergy expression, equa-

tion ('4), one obtains

E =E+ PV -TS (34)

In view of equations (33) and (34), the Helmholtz and Gibbs

free energies are neen to be special cases of the essergy

function é:. As Legendre transforms of energy(QO)

, these
two functions of course each have a separate meaning, and
it is only when they are viewed as measures of potential
work that they are special caszs of essergy. Similarly,

the chemical potential Mo is a special case of essergy when

u_. is regarded as being a measure of potential work, since

(o]

in view of the Gibbs expression E = TS - PV + éuch,

equation (34) may be written

& = Zu N, (35)

e

L ORI SIS




CWTRR s

L L AL TR

(.

- 45 -

The Gibbs free energy also may be regarded as being
a special case of the steady flow essergy <ffs for an
isothermal process (To = T) with respect to the special
condition.uco = 0 for all c, in which case equation (19)

reduces to

b R (36)
or in view of the Gibbs expression H = TS + Zu N_,

£ = N (37)

cc

The other more commcn available-energy expressions
-- such as kinetic energy, gravitational energy, electri-
cal energy, etc. -- involve non-chemical effects, so that
they will be considered after generaliziag the proof of
Thecrem 10. It may, however, first be of interest to in-

vestigate the role played by the equilibrium pressure Po'
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SPATIAL ESSERGY

Before discussing spatial essergy, let us after Gibbs(la)
set the constant C in equation (E-1l) eque® to zero. The
Gibbs convention is desirable because C is necessarily
zero for unconstrained systems -- and inconsistencies would
occur if one set C # 0 for a system which was only tempor-
arily constrained, and fcr which the constraint (or con-
straints) were to be removed later. Thus having used non-

zero values of C in the preceding section to illustrate

the generality of which the essergy function € is capable,

we will from this point on always refer to the essergy €

e AR TR

as though it were defined completely by equation (1)
(for chemical systems).

With this convention understood, the essergy € has
some characteristics which may be of interest. First we
note from equation (1) that € must be zero when the system
is at the equilibrium condition "o" in view of the Gibbs
expression E = TS - PV + Euch. Next it should be pointed
out that for stable equilibrium of a system with the en-
vironment, £ is always greater than or equal to zero (for
(13)

e 0). This was first pointed out by Gibbs -ho

e

showed that for unstable equilibrium with the environ-
ment, & may be negative as well as positive. Demon-
strations that € > 0 for stable equilibrium with the

ey environment (for T, > 0) are also given in References (12)

- 4 -
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i
|

v and (14). Another way of illustrating & > 0 is to sub-

+

i
i

stitute the Gibbs expression dE = TdS - PdV + Eﬁchc into

the differential (for a given environment) of equation (1),

d€ = dE + PodV - TodS - éucoch to obtain for any equili-

brium chemical system,
a& = (T-T_)dS - (P-P_)AV + g(u_-u_ )dN_ (38)

Integration of equation (38) yields for any chemical sys-

tem at equilibrium,

i
£

8 (o) . S
E = é (T-T_)dS + é (P-P_)aV + % g (ug-ugg)dN, (39)

where the limits of integration are the state "o" when the

Oy

system is in equilibrium with its environment and the given
equilibrium state "s". For To > 0, each of these integrals

. 3 6 — . A
must when evaluated 1in success:.on1 be positive, in view of

(13,81,22,353) aT
TR

o ST FT T P PR

> 0,

the well known relationships >
V,{Nc}

i 16 The term "evaluated in succession" means that each inte-
gral is evaluated while the contribution to each of

the other integrals is held fixed -- {he integrals not
yet evaluated teing held at the value "zero" by staying

5 on the "o" line (for example if for a closed system

.; one were to_evaluate és(T-To)dS first, then one would
integrate é ’P°(T-TO)dS' while the not-yet-evaluated
0540

integral IO(P-Po)dV remains at zero since P = Po).
8
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(%5) < 0, and (;;E) _. 2 0 (where {N_} indicates

that all{Nc}except the one in the denomini:tor are held
constant). Since each of the terms in eguation (39)

may always be positive for any given equilibrium state s
(for stable equilibrium with the environment and T > 0),
it follows that &£ > 0.

It is interesting to observe that in view of equation
(39), the essergy'f may be evaluated by finding the area
between the curve and the "o" line on such conventional
graphs as T-S and P-V diagrams. It may also be of interest
to observe that the following specific form of equation
(29 may be obtained by substituting the Gibbs expression

E=TS - PV + Euch into equation (1):

€ = (T =TS = (P- PV + Z(u_ = u N, (40)

In order to investigate the phenomenon of spatial
essergy, we first note that the essergy ‘iv of a volume V

of empty space is

Ev =PV (41)

since E, S, and {Nc} are all zero for a vacuum (since for
chemical systems,vacuums can h-ve no energy) -- from whence
equation (1) reduces to & = PV. In this regard, we note
that POV is the work required to push back a medium of

pressure Po to form the empty space V. The essergy é: of

R T

Y
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the medium remains at the value, zero, as it is pushed
it back since a medium of constant temperature T = T, > pres-

sure P = Po’ and potentials u_ = u 5 always has no finite

cC

potential work (as has been shown rigorously in Ref. 14).
i The nature of the spatial essergy é& may be illus-
trated with reference to Fig. 3. Here, as the volume vA
of system A increases by an amount AV, the essergy PovA

i of system A increases by POAV while the essergy POV of

B
: system B decreases by this same amount because the volume

vB of system B decreases by the same volume increment AV.

Neither system A nor system B has any energy (since for

chemical systems, vacuums can have no energy), and neither
( of systems A and B do any work upon each other -- and yet
: it is cleaf that potential work is transferred from B to

A.
The effect of spatial essergy may be studied further

; by analyzing the situation depicted in Figures 1 and 2.
Here, we find that the amount of work W = P AV is pre-
cisely equal to the required increase in the spatial
essergy Ev (i.e., Aé:v = P_AV), from whence the essergy
transferred between systems A and B is zero (as may be
verified by equation 24). It follows from equation (24)
that the work W will be transformable into shaft work if
and only if PO = 0. In other words, the Gibbs condition
applies if and only if the spatial essergy POV is zero.

(;, The general implications of this result are discussed on

page 70.
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FIGURE 3: A VACUUM IMMERSED IN A MEDIUM OF PRESSURE P = Pg,,

THE TWO PARTS A AND B BEING SEPARATED BY A MOVABLE PARTITION.

As the partition moves to the right, system A does no work
upon system B -- and yet this movement causes the essergy
of system A to increase by an amount PoAV at the expense of
an equal essergy decrecase of system B.
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OK GENERALIZING THE PROOF

As a means for generalizing the proof of Theorem 10,
it will be convenient to introduce the following general-

ization of the Gibbs expression dE = TdS - PdV + éuchc

aftar the manner of Tribus(so’sl)

(33,46)

and Hatsopoulos and

Keenan

dE = TdS + EPkka + éuchc (42)

Here the =2nergy E is understood to be the total energy --
including kinetic energy, gravitational energy, electrical
energy, etc. The parameters Xk represent variables by
which the energy may be varied while the entropy S and com-
ponents {Nc} remain fixed. Examples of Xy include the
scalar components of the position of a system in a field
of force (gravitational, electrical, etc.), the scalar
components of the strength of a field of force (electri-
cal, magnetic, etc.), the area of a surface film, the length
of a stressed body, the angular displacement of a body
under shearing stress, etc. The parameters Pk are defined

by SE

By £ 1€ ) - (43)
k X, S,IN_},{X}
where {X;} denotes the constancy of all X, except the one

in the denominator. The total potentials M, are defined

R = (BED) = (44)
e = 5N s, {x, },{N_}
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while the absolute temperature T is defined by

- ¢9E
= cgg){xk}’{Nc} (45)

It is convenient to include the volume V as being
one of the variables {Xk} in equation (42). Let us thereby
separate V out of the set {Xk} by writing'{xk} = V,{Xq1},
where XI represents any independent Xk except the volume
V. Using this notation, a generalized chemical system

will now be defined as follows:

A generalized chemical system is by definition any
thermodynamic system which has the following four

characteristics:

a. When the system is at equilibrium with its
environment, its equilibrium state is uniquely
determined by that state's energy E, volume
V, components {N_} and work variables {X;} --
whence, for constant {XI}, the expression
dE = T4S - P4V + guchc is stipulated to aprly

(at equilibrium with the environment)l7.

b. All properties of the system are differenti-

able functions of any set of independent

17 The generalized pressure P is defined by

P

_(BE)
Vs, IN_}, (%}
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variables whose values uniguely describe the

state of the system.

c. The system has no locking constraints (App-
endix 4) -- it thus being stipulated that while
the system is not interacting with its envir-
onment, any given state can be reached from
any other state which has the same values of

E, V, 5, {N_}, and {X;}.

d. Any two systems with the same values of E, V,

S, {Nc} and{XI} are always free to assume

identical states.

Comparing this definition with the definition of an
ordinary chemical system in Appendix A, one will see (in
view of the footnote on page 77) that with the {XI} held
constant, Characteristics a, b, ¢, and d are identical for
these two definitions. It follows that with the exception
of the considerations of Appendix D (as mentioned in the
footnote on page 77), the proof of Theorzms 1 through 10
remains completely unchanged -- under the stipulation
that the variables {XI} are all held constant. The con-
siderations of Appendix D may be taken into account in a

manner such as the following:

First we note from Appendix B that since the constant

C in equation (B-8) is zero for an unconstrained chemical
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system, it is also zero for any generalized chemical sys-
tem with E, V, S, and'{Nc} unconstrained (but with'{XI}

held constant) -~ so that equation (12) reduces to

&/ = KEE+ PV ~TS - gu, N (46)

As pointed out in the paragraph preceding equation (6),

d.l is zero for all infinitesimal variations of the type
considered in Requirement 3. Differentiation of

equation (46) with {XI} constant and d€l = 0 yields

dE = TodS - PodV + Eucoch + SdTo - VdP° + échuco

| (47)

Equation (47) implies that when a generalized chemical
system is at equilibrium with its environment, the follow-

' ing expression holds (for consxant’{XI}):

dE = TdS - PdV + Eﬁchc + ST - VAP + EN du_ (48)

Equation (48) may be rewritten in the form

dE = d(TS - PV + Euch) (49)
Integration of équation (49) yields
E=TS - PV ¢+ Euch + B (50)

where B is the arbitrary integration constant (i.e., con-

i stant for fixed {XI}). For systems with {XI} fixed but
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with E, V, S, and {Nc} unconstrained, the constant B may
be determined to be zero by noting that the energy E must
be zero for a state of zero volume, entropy and matter
(i.e., for a state where V, S, and {Nc} are all zero).
Hence for any system unconstrained in this manner, equa-

tion (50) reduces to
E=TS - PV + éuch (51)

Since equation (51) would result regardless of the
choice of the fixed values of {XI}, it follows that this
relationship remains valid when the work variables XI are
allowed to vary. Consequently, equation (51) applies to
any generalized chemical system (at equilibrium with its
environnent) for which none of the variables E, V, S, or
{Nc} are constrained. It follows via differentiation of
equation (51) that equation (48) applies to any general-
ized chemical system (at equilibrium with the environ-
ment) with the variables {XI} allowed to vary -- it being
noted that for constrained systems (such as closed systems,
constant volume systems, etc.), certain terms in equation
(48) (such as uchc, P4V, etc.) may be zero. And finally,
it follows chat equation (u7) also applies to any general-
ized chemical system (at equilibrium with its environment)
with {XI} allowed to vary -~ whence dC must be zero in

equation D-2 of Appendix D. Thus the considerations of
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Appendix D are satisfied, so thzt the proof of Theorems 1
through 10 remains valid when the proof is extended to
generalized chemical systems -- with {X;} held constant as
the system comes to equilibrium with its environment (since
as mentioned in the footnote on page 77, the considerations
of Appendix D are the only part of the proof affected by
using the more general version of Characteristic "a" which
appears on page 52).

In order to complete the extension of the proof to
generalized chemical systems, we must determine the effect

(upon Po, T {uco} and K) of varying the quantities {XI}

o’
as the system comes to equilibrium with its environment.
First it may be observed (from Characteristic "a" of the
definition of a generalized chemical system) that while
equation (48) has been shown to be true for any generalized
chemical system with {XI} allowed to vary, it is necessar-
ily valid only for the condition when the system is in equi-

librium with its environment. For this condition, equation

(42) may be rewritten in the following form:
dE = TdS - P4V + %FIdXI + éuchc (52)

Combining equations (48) and (52), one obtains the follow-

ing general form of the Gibbs-Duhem equation:

VdP + LF.dX

ZE ey, = S8dT + éNCduc (53)

RS ITETS
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Since equation (53) contains one less independent vari-
able than does eguation (52), it follows that one may vary
the volume V in equation (52) while hziding each of the
variables P, T, {uc}, ard {XI} constant. Since E, S, and
{Nc} will for this process be dependent variables, one may
integrate equation (52) along the resulting path to obtain

equation (51) (in the exact manner that Gibbs(ls)

inte-
grates dE = TdS - P4V + guchc to obtain E = TS - PV + guch).
Since for such a process the system stays at a constant
intensive state, it follows that the work variables {XI}

must all be intensive.

The intensive nature of the work variables X; may be
illustrated by considering the flow of material across a
stationary control boundary such as that shown in Figure 4.
Here, matter flows from system A into system B across the
stationary control boundary C. If it is stipulated that
this flow is the only interaction which either of the sys-
tems has with its own surroundings, then all of the work
variables {Xk} must be held constant in compliance with the
fact that no work is done upon either of these systems.18
Now suppose the systems were to be moving with a constant

transverse velocity, such that the control boundary C

remains stationary relative to the flow as shown in Figure

e In the absence of work, the variables {XE} are required

to be constant in order to comply with the definition of

the total potential p_ (equation 44), which corresponds
to an increase in energy (per unit increase of compcnent
c) with the work variables {X,} all held constant.
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FIGURE 4: FLOW OF MATTER ACROSS A STATIONARY CONTROL
BOUNDARY. Matter flows from A to B across the stationary
control boundary C, it being stipulated that this flow is
the only interaction which either of the systems has with
its own surroundir.zs.
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5 -~ it again being stipulated that this flow is the only
interaction affecting either of these systems. If the ex-
tensive quantity, scalar momentum (i.e., a scalar component
of momentum), were to be chosen as a work variable for
kinetic energy, then the velocities of systems A and B
would have to vary as shown in Figure 6. This follows since
the required constancy18 of the momentum of system A would
force that system to increase in velocity in order to offset
its loss of mass and thus maintain the required constancy
of its momentum. Since this situation violates our stipu-
lation that the flow of matter is the only interaction
affecting either of systems A and B, it is seen that the
extensive quantity, momentum, is not a suitable work vari-
able for open systems. On the other hand, the intensive
quantity, scalar velocity (i.e., a scalar component of velo-
city)is a suitable work variable, since the constancy of the
velocities of A and B reflect the absence of work without
upsetting the flow picture.

Similar difficulties have been found to arise with
respect to open systems when other extensive quantities
have been tried out as tentative work variables X;. How-
ever, a complete study of these would carry us fa.» beyond
the scope of this thesis, and must be left to some future
paper. Here it will only be pointed out that such work

variables as the scalar components of position in a force
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FIGURE 5: THE SYSTEM OF FIGURE 4 MOVING WITH A CONSTANT
TRANSYERSE VELOCITY v. The control boundary C remains
stationary relative to the flow of matter -- it again
being stipulated that this flow is the only interaction
which either of the systems has with its own surroundings.
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FIGURE 6: THE SYSTEM OF FIGURE 5 WITH MOMENTUM AS A WORK
VARIABLE. With the momentums of A and B required to be
fixed, the velocity of A must increase in order to offset
A's loss of mass, while the velocity of B must decrease in
order to offset B's gain in mass.
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field and the scalar components of the field strength are
intensive quantities which cause no difficulty with open
systems. It should also be mentioned with regards to stress
and surface tension that such extensive work variables as
length, width, and area are not independent of the volume

V of the same system (and thus they may appear as independent

Xy if and only if the volume V is eliminated via the de-
pendency) -- so that certain affects of stress and surface
tension might perhaps sometimes be included in the general-
ized pressure P as defined in footnote 17 on page 52.
Having determined via equations {52) and (53) that the
work variables {XI} are all intensive, we may now use these
equations to determine the effect of varying the'{XI}.
Since as shown above, Theorems 1 through 10 are valid for
fixed {XI}, we have from Theorem 6 for any given values of

{XI}:

& = KE + PV =TS - Eug N +C (54)

where K is an arbitrary unit conversion constant while

C is an arbitrary scale constant which must be zero for
anv system where E, V, S, and {Nc} are unconstrained. The
effect of varying the XI may le assessed by considering
two systems A and B, each of which are at equilibrium with
an intermediate system C, as shown in Figure 7. Now let
energy pass from A to B while all variables {Xk} and c~m-

ponents {Nc} remain constant for all three systems, and S
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FIGURE 7: TwO GENERALIZED CHEMICAL SYSTEMS AT EQUILIBRIUM
WITH AN INTERMEDIATE GENERALIZED CHEMICAL SYSTEM. Systems
A and B are both stipulated to be at equilibrium with the
intermediate system C. Energy and matter may pass between
A and B without affecting the state of C, while volume

cannot.
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and E remain constant for system C. Since all three systems
are at equilibrium with each other and they are not inter-
acting with any other systems, the total entropy must be

a maximum, from whence

dSA ¥ dSB =0 (55)

since S is constant for system C. Applying equation (52)

to each of systems A and B for this process, one obtains

‘ dEA = TAdSA (56)
| ]
% dEB = TBdSB (57)
: Substitution of (56) and (57) into (55) yields
¢
‘ dE, dE
A B
+ =0 (58)
“ﬁ; ”Tg
And since dEB = -dEA,
1 1
3 (== - /=)dE, = 0 (59)
To T A

dE, is arbitrary, so that (Ti - f%) is zero, from whence
TA = TB (60)

Since matter may also pass between A and B without
affecting the state of C, one finds in a similar fashion,

for each component c,

Mea © MoB c=1,2,3 ...0cvun (61)
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As has been pointed out by Keenan and Hatsopoulos(QS),

(13)

equation (61) is in agreement with Gibbs equation (234)

-- it being noted that the total potential Mo defined by
equation (44%) is (in non-relativistic considerations(RS))
equal to the sum of the Gibbs chemical potential plus an
energy term -- since (ibbs defined his chemical potentials
with respect to the internal energy rather than the total
energy.

Volume, however, may not be transferred between A and
B without affecting the state of C, (it being stipulated
that A, B, and C are not interacting with the surroundings)
since the position of at least some part of C will change --
whence C will interact with any force field which applies
(such as gravity). Thus one cannot write Py = Pp. In-
stead, substitution of the equilibrium conditions dT = 0
and du, =0 (which result from equations (60) and (61))
into equation (53) yields the following equilibrium condi-
tion:

vdap + %FIdXI =0 (62)
Equation (62) shows that the pressure P must vary with

: ? 9
{XI} -- in agreement with Pascal's lawl®.

s This agrecment with Pascal's law may be manifested by

holding all Xy constant except the height z in a gravi-
tational field, whence equation (62) reduces to VdP =
-mgdz, it being noted from equation (43) that F1 = mg,

where m = mass and g = acceleration of gravity. It may
also be of interest (especially with respect to systems
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In view of equations (60), (61) and (62), it is seen
that at equilibrium the constants To and {uco} do not vary
with respect to position, whereas the pressure Po does vary
in accordance with equation (62) -- it being noted that each
X; may vary with respect to position. If a system moves
upon coming to equilibrium, it may come to a different value
of Po than that which appears in equation (54). The value
of Po which appears in (54) corresponds to the pressure
Pp of the region of space occupied by the system when that
region has come to equilibrium with the environment -- at
which time the system need no longer occupy that region.
Thus to account for variations in the X1> the pressure Po
in equation (54) must be replaced by the pressure PD, so that

equation (54) becomes for the general case,

&l = K(E + PV = T S = ZugoN) * ¢ (63)

The constant C i¢ zero for any unconstrained system (since
as shown by equation (46), C is zero for any given {XI}
when the variables E, V, S, and'{Nc} are not constrained).

» And since the considerations of Appendix D are satisfied

of very large vertical extent) to observe that the gener-
alized pressure P (defined in Footnote 17) is related to
the generalized pressures P, or the parts r of the system
by P = ZP_ V_/V where V = §V . In this regard it will be
noted that %ith T and {u ﬁeld constant, any variation

' of V which is accompanied by a change in P will also be
accompanied by a change in {X1} via equation (62) -- so
that such a variation is not an independent variation of
the volume V.

Sererm——
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with {XI} allowed to vary (as shown above in the paragraph
following equation (51)), the constant C for constrained
systems is independent of {XI} -- so that C is completely
independent of the given environment, whence C is an arbi-
trary scale constant whose value must be zero for uncon-
strained systems. And finally, the constant K is also in-
dependent of {XI} (since one of the systems of Appendix C
-- say system B -- could always have {XI} fixed, and the
selection of differing values of {XI} for the other system
would not alter equations C-4, C-5, C-6, and C-7), so

that K continues to be a unit conversion constant with {XI}
allowed to vary. It follows from these considerations that
with equation (63) veplacing equation (12), Theorem 6 applies
to any generalized chemical system whether or not {XI}may
vary.

A comparison of equation (63) and equation (E-3) of
Appendix E shows that Theorem 7 applies in general to gen-
eralized chemical systems. The prcof of Theorem 8 follows
in view of equation (E-4) of Appendix 4, while the proofs
of Theorems 9 and 10 remain completely unchanged. It is
thereby to be concluded that essergy is "he only consistent
measure of potential work for generalized chemical systems.

Still further generalizations of the proof may be made,
but they are beyond the scope of this thesis. Such general-

izations would include considerations of locking systems
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(page 16) and a covariant relativistic formulation. 1In
this regard, it should be mentioned that certain relativis-
tic considerations are automatically satisfied by a gener-
alized chemical system -- in view of the conclusions of
Hatsopoulos and Keenan(us). It should also be pointed out
that chemical reaction considerations are completely in-
cluded in the essergy of generalized chemical systems as

well as chemical systems -- in view of the treatment given

in Note 2 of Appendix A.
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ON THE GIBBS CONDITION

As discussed above at the beginning of the section on
spatial essergy, we will always assume that C = 0 in
equations (E-1), (E-2), (E-3), and (E-4), unless otherwise

specified. We thereby write

& =E+PV-TS-ZuN (64)

D co ¢

Noting from equation (62) that VdP, =-%FIodXI,differentia-
tion of equation (64) for any given environment yields

(noting that Py is variable)

df. = dE + P_dV - T dS - Zu, AN - IF (65)

D I IOdX

I

If the only effect upon a system is a work effect dW, then
dE = -dW while dS = 0 and'{ch = 0} so that equation (65)
reduces to the following expression for A€V (where d&Y =

d€ for this case):
w
d€"” = PpdV - frxodxr - daw (66)

or per unit of time,

:I[IFIOXI - W (67)

.w- L]

€ = PV -
Thus for generalized chemical systems, equation (3lc) on
page 42 must be generalized to the form given by equation

(67). A general form of the open system essergy balance,

equation (31) must include the non-flow transport of
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matter 69 -- so that a more general essergy balance is,
£ = 2€D ¢ gL+ 5f 4 & - &9 (68)

bP b b D

where éw is given by equation (67), while Eli;, fg, and
éd are given by equations (3la), (31b), and (31d) respect-
ively -- it being noted that the enthalpy N in equation
(3la) includes all the energy, such as kinetic and poten-
tial energy. The non-flow transport terms <§g are found
from equation (65) in the manner of the derivation of equa-
tion (3la).

In view of equation (66), the Gibbs condition (pages
34 and 49) will not be satisfied unless PD z 0, for one
may always hold all X; constant, so that acv - PpdV - dw,
from whence the work dW is not completely transformable
into shaft work if PD # 0. On the other hand, if Py = 0,

0,

then dP, = 0 so that from equation (62), iFIodXI z from

D
whence equation (66) reduces to d£. ¥ = -dW. It follows
that the Gibbs condition applies if and only if the dis-
placement pressure Pp is identically zero.

It is thus seen that applying the Gibbs condition
coincides identically with considering the spatial essergy
PDV to be zero. This corresponds to the cc¢iventional view
of looking upon matter as occupying empty space, from whence

an unconstrained system would always be free to expand and

approach zero pressure.
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ON AVAILABLE ENERGY

For the sake of simplicity, let us neglect the effect
of buoyancy by setting PD = Po in equation (64) so that

equation (64) reduces to

£=E+POV-T°S-§u (69)

cole
The maximum work which may be obtained from a closed system
of constant volume corresponds to the work done in a rever-
sible process, sc that {Nc}, V, and S are all constant for
this case. Thus V = Vo’ S = So’ and {Nc = Nco} so that

equation (69) reduces “o

& =E+PV =TS = Zu N (70)
And in view of equation (51),
6 = E = EO (71)

The energy difference E - Eo includes such available energies
as kinetic energy, gravitational potential energy, electri-
cal energy, magnetic energy, etc. It also of course in-
cludes available chemical energy, and it may include nuclear
energy as well. It thereby follows from equation (71)
that such forms c¢f available energy as kinetic energy,
gravitational energy, electrical energy, nuclear energy,

etc., are all special cases of the essergy function é:.
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RESULTS

By looking at some of the differences between the
various previous measures of potential work, one finds a
situation in which (without reference to the results of
this paper) many seemingly independent measures of poten-
tial work appear to coexist. For example, some of these
measures (such as availability and exergy) require a medium
of fixed To and Po (such as the atmosphere) while others
(such as free energy, kinetic energy, potential energy,
etc.) may be evaluated without making any reference whatso-
ever to such a medium. Again, some measures (such as
available work and Helmholtz free energy) represent the
potential of a system for doing work, while other measures
(such as availability and Gibbs free energy) represent
the potential for doing only that part of the work (which

() has called the "useful" work) which does not

Keenar.
include the work done in pushing back the surrounding
medium.

The main result of the proof given in this paper is
to show that for a large class of thermodynamic systems,
all of these seemingly diverse measures of povential work
are special cases of the one unique quantity, essergy.
While the proof itself is (if correct) sufficient to guar-

antee this result, illustrations have been provided on

pages 32-45 and 71 which show that the following meas-

ures are all special cases of essergy: Availability, exergy,
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available work, Cibbs free energy, Gibbs chemical potential,
Helmholtz free energy, and also such available energies as
kinetic energy, gravitational energy, electrical energy,
nuclear energy, etc. The proof has been done carefully

only for chemical systems, but it has nevertheless been

shown to apply to generalized chemical systems, where such
effects as kinetic energy, gravity, electricity, magnetism,
surface tension, stress, and nuclear considerations are taken
into account.

The proof also indicates that Brillouin's negentropy(sa)
function is not a completely general measure of potential
work. This follows since as is shown in References (12,
and (14), the negentropy Sy = S (where S is a value of the
arbitrary constant in negentropy which is set equal to the
maximum entropy of the system when it is isolated) cor-
responds to the functioncf/To (where & is the essergy
function of equation (1)). That the function (f/To is not

a completely general measure of potential work may be illus-
trated by considering two systems A and B with different
values of To as is done in Appendix C. Substituting

& = (S/To into equations (C-1) through (C-4), equation

(C-5) becomes,

1

1
dd,. = (z - & )dE (72)
AB T T B
Since neither dEBrmn'(% = % ) is necessarily zero, it
‘oB oA
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follows that dz;AB is not necessarily zero for the process
ccnsidered, so that Theorem 1 is violated -- whence Re-
quirement 1 on page 13 is not in general satisfied. It
thus appears that negentropy is not as general a measure of
potential work as essergy is. If Brillouin's principle of
the equivalence of potential work and thermodynamic infor-
mation is nevertheless retained, this result would imply
that essergy is a more general measure of thermodynamic
information than is negentropy.

Another result which may be of interest is that in
view of Theorem 2, potential work necessarily depends upon
conserved quantities only, since only conserved quantities
(or functions of such quantities) need remain constant
while a chemical system is not interacting with its environ-
ment. Also, the result that the work variables {XI} in
equation (52) are necessarily intensive for a generalized

chemical system may be of some importance.
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CONCLUSIONS

The proof given in this paper demonstrates that for a
large class of thermodynamic systems, the many seemingly
independent measures of potential work (such as availability,
exergy, available work, Gibbs free energy, Gibbs chemical
potential, Helmholtz free energy, and such available energies
as kinetic energy, gravitational energy, electrical energy,
nuclear energy, etc.) are necessarily all special cases of
the one unique quantity, essergy. While the proof has been
carried out carefully only for chemical systems, it never-
theless has been shown to apply to generalized chemical
systems (where such effects as kinetic energy, gravitational
energy, electricity, magnetism, surface tension, stress,
and nuclear considerations are taken into account).

Thus by evaluating the one unique quantity, essergy,

a designer may be assured that all of the many seemingly in-
dependent considerations of potential work will automati-
cally be satisfied. The proof is therefore of consequence

to the design of any system in which potential work is a
significant factor. The results of this paper should thereby
be of importance to the continued development of that

branch of engineering design known as thermoeconomics(lZ’

20,23,26)

The proof also indicates that negentropy is not as

general a measure of potential work as essergy is. If
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Brillouin's principle of the equivalence of potential work
and thermodynanic information is nevertheless retained,
this result would imply that essergy is a more general mea-
sure of thermodynamic information than is negentrcpy =--

an implication which might lead to a broader formulation of
information in general. It is thus hoped that the proof
may eventually provide new insight into the foundations of

science and information theory.

]
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APPENDIX A
CONCERNING CHEMICAL SYSTEMS

A chemical system is by definition any thermcdynamic

system which has the following four characteristics:

al

The equilibrium state of the system is uniquely
determined by that state's energy E, volume V, aid
components {Nc} -- from whence the Gibbs express-
ions dE = TdS - P4V + guchc and VdP = Sdt + échuc
are stipulated to apply*.

All properties of the system are differentiable
functions of any set of independent variables
whose values uniquely describe the state of the
system.

The system has no locking constraints (Appendix

4) -- it thus being stipulated that while the
system is not interacting with its environment,
any given state can be reached from any other

which has the same values of E, V, S, and {Nc}.

Except for the considerations of Appendix D, the proof
of Theorems 2 through 10 may be carried ocut via the fol-
lowing more general version of Characteristic "a".

a.

When the system is at equilibrium with its environ-
ment, its equilibrium state is uniquely determined
by that state's energy E, volume V, and components
{No} -~ from whence the expression dE = TdS - PdV +

ucdN, is stipulated to apply (at equilibrium with
he environment).

= 27 =
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o«

hid d. Any two systems with the same values of E, V, S,

and {Nc} are always free to assume identical

states.

Characteristic "a" serves to exclude most non-chemical
effects from states of equilibrium. For example, the addi-
tion of another state variable (in addition to the energy,
volume, and components -- say for example one includes as a
variable the position of the system in a gravitational
field) would introduce a non-chemical effect (e.g., gravity)
which Characteristic "a" serves to rile out for equilibrium
states. Characteristic "b" rules out any discontinuities
which might be associated with certain non-chemical effects,
+hile Characteristic "c" rules out any locking effects

which might be considered to be of a non-chemical nature.

Charactzaristic "d" rules out any non-chemical effects

which might be associated with constraints which prevent

certain states from being attainable.
In view of Characteristics "a" and "c¢" it follows
' that when E, V, S, and {Nc} are chosen as independent
variables, there can be no additional independent properties
: which must remain constant in a chemical system whose
l entropy is constant while the system is not interacting

with its environment (it beinj; noted that E, V, and {Nc}
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must be constant during such a period)*. For if an addi-
tional independent property were to be held constant, then
there would be states having different values for this
property which could not be reached while S is constant

and the system is not interacting with its environment --

in violation of Characteristic "c%. Examples of such
properties which must in this case be allowed to vary when-
ever they are independent (as they ‘are in heterogeneous
chemical systems) include the energy, volume, ahd components
of the various parts of the system¥*,

It will also be noted that the Gibbs expression

* The amount of each component N, is constant during the
absence of any interactions between system and environ-
ment, since as indicated in Note 1 of this appendix,
components by definition are always conserved.

kk

It may be of interest to observe the con*rast between the
non-interaction of a system with its environment and
Gibbsian isolation. Gibbs(1l3’/ employed a kind of quasi-
isolation which he called "isolation from external
influences" in which the system's only allowable external
communication is to deliver (but not to receive) the
equivalent of shaft work. Thus in any physical pro-
cess during Gibbsian isolation in which the energy is
not at its minimum value, the energy E is allowed to
decrease (but never to increase -- Gibbs,(13) top of
page 59) while the volume V and components {N.} must
remain constant. These allowed physical variations dur-
ing Gibbsian isolation must not be confused with Gibbs'
"possible variations" in which decreases, in_the entropy
of an isolated system are_allowed (Gibbs (13 equation 1)
via heat transfer (Gibbs(13) page 56). The meaning of
Gibbs'! possible variations has been explained by
Hatsopoulos and Keenan(33),
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dE = TdS - P4V + éuchc (A-1)

has been written in terms of components "c" rather than
the more familiar species "i" -~ as discusced in Note 1
of this appendix.

Finally, a brief discussion of the meaning of shaft
work for chemical systems is in order, since chemical sys-
tems by definition need not have the directional stress
which is inherent in the functioning of any kind of shaft.
The shaft system must thereby in general be an accessory
system which is understood to undergo no change in state
(other than changes in neutral properties -- such as trans-
lation or rotation of the shaft). Consider for example a
chemical system consisting of two homogeneous parts which
are at different pressure, due to being separated by a
rigid, impermeable wall. By allowing and harnessing trans-
lation of the wall via mechanical contrivances such as
shafts and cranks, one may obtain shaft work without a
change in the volume of the system -- the volume decrease
of the low pressure part offsetting the volume increase of
the high pressure part. It is in this type of context
that the notion of shaft work for chemical systems may in

general be understood.
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NOTE 1, APPENDIX A

ON COMPONENTS VERSUS SPECIES

The Gibbs equation is usually expressed in terms of
chemical species rather than components®*, the more usual

form of equation (A-1) being,(ls’ao’31’32’33’39)

dE = TdS - PdV + Iy.dN, (A-2)
1 1 1

where My is the Gibbs chemical potential of species i and
Ni is the amount of species i. In general, the amounts Ni
of the species i are not all indevendent variables; instead
some of the Ni are determined via chemical reactions
(and other stoichiometric relationships -- such as restric-
tions which require the number of positive and negative
ions to comply with electrical neutrality). For example,
in an equilibrium mixture of hydrogen, oxygen, and water at
a particular elevated temperature and pressure, the amount
of water is dependent upon the amounts of hydrogen and
oxygen via the dissociation reaction 2H20 z 2 H2 + 02.

Thus the use of equation (A~2) requires the formula-
tion of chemical reactions. With equation (A-1) on the

other hand, the amounts Nc of the components ¢ are independent;

*
Gibbs referred to components as "ultimate" components

(Gibbs,(13) page 79) while he used the unqualified word
"component" in the sense that some components may be
formed from combinations of other components (Gibbs(13)
pages 68-69). In the language of chemical engineers,
Gibbs' "component" is called a "species".

- 81 -
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hence one may use equétion (A-1) without having to formulate
chemical reactions. At equilibrium, equations (A-1) and
(A-2) are necessarily connected by the following funda-
mental relatiorship which is demonstrated in Note 2 of

this appendix:
E“idNi = guchc (A-3)

In the example of the preceding paragraph, there need be
only two components -- e.g. atomic hydrogen and oxygen --
which must appear in equation (A-1), whereas with equation
(A-2) a representative accounting of {Ni} must include not
only H,, 0,, and H,0, but ions such as H+, OH , and 0 and
also the complicated crystalline hydrols which appear in
the liquid phase. In using equation (A-1), one accounts
for the components in exactly the same manner as atoms are
conventionally accounted for when making elementary balances
of H and 0 in reactions such as 2H, + 0, z 2H,0 and
H+ + OH 2 HZO‘ The reader who wishes to have a clearer
picture of the logic underlying equation (A-1) will find
it useful to study the derivation given in Note 2 of this
appendix.

It should be pointed out that an essential feature of
a component is that it is always conserved. A species, on

the other hand, is conserved only when it does not take

part in any significant chemical or nuclear reactions. If
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there are no recognized chemical or nuclear reactions of

significance in a system, then the species are components

by definition. For example, in an idealized two-species

mixture of conserved O2 and conserved N2, the substances 0?

and N2 are components.

Note 2 of this appendix also gives a derivation of the

following two relationships, the first of which holds at

equilibrium, while the second is true in general:

Iu.N. I N

i i & G e
EuioNi ) gucoNc

Equation (A-4) enables one to write,

E=TS - PV + éuch

(A-4)

(A-5)

(A-6)

which is a useful expression if one wishes to avoid considera-

tion of the cumbersome chemical reactions which must be

treated when working with the more conventional integrated

from of equation (A-2),

E=TS - PV + E“iNi

(A-7)

Equation (A-5) enables one to write the essergy function

e,in the following alternate form:

& =E+PV-TS-
o o i

THioNi

(A-8)
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Equation (A-8) is useful when one wishes to calculate the
ecsergy of chemical reactions, whereas equation (1), page

2, is to be preferred when one is not particularly con-

cerned with reaction essergy.




NOTE 2, APPENDIX A

DEMONSTRATION OF THE RELATIONSHIPS fu.dN. = Iy dN_,
I'ii T gre e

EuiNi S E“ch’ and EuioNi - gucoNc

The set {i} of species i may be divided into two sets,
viz. the set {cl} of components c plus the set {e} of those
species e which may be regarded as being formed from the

components c:
{i} = {c} + {e} (A-9)

The set {e} includes each species of ion as well as each
species of molecule other than those molecules or atoms
which are accounted for by the set {c}. In view of equa-

tion (A-9), the term );u{dNi may be separated as follows:
l...
g f
iijuidNi = guchc + guedNe (A-10)

The superscript "f" denotes that Ng includes only that
portion of Nc which appears as free components -- it being
noted that the remainder Nc - Ng of the components ¢ is
tied up in other molecules and ions.

Each species e is formed from the compcnents c in

accordance with the chemical reaction,
e 2 évec (A-11)
c
where vz represents the stoichiometric coefficient v of

= gE -

Ay N O S
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component ¢ with respect to species e. From equation (A-11l),

the chemical potential u, at equilibrium is given via the

familiar relationship of reaction equilibria (see, for

(13) (31)

example, Gibbs equation 33 or Tribus equation

14.65, or any other comprehensive text):(32’33’39)
Mg = EVGH (A-12)
e = BV c

Substitution of (A-12) into (A-10) yields,

- £ e

The stoichiometric coefficients vﬁ are by definition

given by,
Ne

P- = =5 (A-14)
LS

where the superscript "e" denotes that Nz includes only
that portion of Nc which is tied up in species e. Differ-
entiation of (A-14) gives,
e _ e -
ch z vche (A-15)
Substitution of (A-15) into (A-13) yields,

- £ e
EuidNi = éuchc + ééuchc (A-16)

Interchanging the order of summation and collecting terms,

we have

- £ e
EpidNi = é“c(ch + éch) (A-17)

O T ST T ALY | (/e i NP o)
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But NZ + gNZ is simply the total amount Nc of component c:

f e

Nc = Nc + éNc (A-18)

Or in differential form,
dN_ = anf + pane (A-19)
C (o é (o
Substitution of (A-19) into (A-17) yields the final result:

The identity of the term );uiNi may be found in a simi-
8
lar manner -- it being observed from equation (A-9) that

we may write,

. f
EuiNi - Euch e éueNe (A-21)

Substitution of (A-12) and (A-14) into (A-21) gives,

_ f e
E”iNi = Euc(Nc g éNc) (A-22)

while substitution of equation (A-18) into (A-22) yields

the expected result:

The identity of the term Tu; N is found in virtually
is

the same manner: From equation (A-9) we may write,

. f

co C
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Since Mg, and Moo represent the potentials ug and M at
a particular equilibrium condition, equation (A-12)

always applies:
- pu€ _oc)
Heo = Evcuco (A-25)

Substitution of equations (A-14), (A-18), and (A-25) into

zquation (A-24) yields the final result,

iuioNi : EucoNc (A-28)




APPENDIX B
CONCERNING THE EXTENSIVE MEASURE &

In Theorem 4 it is stated that for any chemical system

in any given environment, {/ must have the form

&l = KE + KV * KgS + ZKy N+ C

where KE’ Kv, KS,{KNC}, and C are constants, C being neces-
sarily zero for any unconstrained chemical system. This pro-
position will be demonstrated here in detail.

In view of Theorem 3, each extensive measure AZ for

any chemical system in any given environment is given by,
& = Y&, v, s, (N D) (B-1)

Let the subscripts A and B denote systems A and B respect-
ively while AB denotes systems A and B taken together. Since
the quantities &, E, V, S, and {Nc} are all extensive,

we may write¥,

Iap = &y 4 (B-2)

EAB = EA ud EB (B-Za)

It will be observed that systems A and B are assumed to
be independent of each other. For small systems, it may
be required that system B be separated in space from
system A, since because of intermolecular forces, acja-
cent small systems may exhibit significant interdepen-
dence. In regard to the resulting system AB, it will

be observed that we define a thermodynamic system to be
a well-defined region of space which may consist of non-
connected (but nevertheless well-defined) parts.

- 89 -
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L =

iy Vig s Uy + Vg (B-2b)
Je e TRttt (B-2¢)
Noag™ Nepa * Neg €7 1,2,3 ....oen (B-24)

b where &g = &yp(EppVaps Sppr Wepphs &y = 44 (Eps Vps Sy

In view of the definition of a chemical system (Appen-
dix A), &(E, V, S, {N_}) is a differentiable function.

Differentiation of equation (B-2) with respect to Ey with

Eg> Va» Vgs Sp» Sps {NCA} and {NCB} all held constant
yields*,
' Bpp _ 2 (B-3a)
3E,.  OF -oa
AB A
Similarly, differentiation w.r.t. EB yields,
p . ¥p (B-3b)
°Epp  9Fp
The right sides of equations (B-3a) and (B-3b) are equal,
. . e ¥y _ 3
since the left sides are identical: T C 3T (B-4)
A B

*
It follows from the chain rule for the functions

Hap ° EQ(XAB, YAB) and X,p = X, + X, that

S
————

| Ypp g . Wap  Wpap¥¥ap | Wapdlap
- , -
X, - 5%, - 9%, 9%, ' 37, 3%,
2X 2Y
AB _ AB _
X, -t adax, C O

A

A
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The left side of equation (B-4) is a property of system

A only, while the right side is a property of system B
only. These two properties will be independently variable
in violation of the equality unless they are both constant.
Equating the right side of equation (B-4) to a constant Kp,

the left side must equal this same constant:

BdA i

K (B-5)
FEX E

or omitting the subscript "A" for convenience:
o _
= = Kp (B-6)

In exactly the same manner, the derivatives 34/3V,

ak/3S, and.B&/BNc are found to be equal to arbitrary con-

stants K;, Kg, and K respectively:
3= K (B-6a)
3 = K (B-6b)
%% = Ky @ = 1,2,3 .o i (B-6¢)
e

In view of equations (B-6), (B-6a), (B-6b), and (B-6¢c), the
total differential of equation (B-1), d& = g-% dE + %%_Z av +

%% ds + g %%‘ ch, is given by
c

|7 B =}
dé = KgdE + K dv + KqdS + % KchNc (B-7)

V4

Integration of equation (B-7) yields,
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- d _\
gj-KEE+va+KSs+gKNCNC+c (B-83

where C is the arbitrary constant of integration.

For constrained chemical systems (such as closed systems,
constant volume systems, etc.), certain terms in equation
(B-7) (such as KchNc, KVdV, etc.) may be zero -- whence
the corresponding terms in equation (B-8) will be constant
and may be absorbed into the constant of integration if
desired.

In order to find C = 0 for unconstrained chemical
systems, we must first show that the functional operators
JZA( ), ,ég( ), and Z?AB( ) in equation (B-2) are identical
to each other for such systems. To see that this is true,
we first note that with the absence of any constraints
upon the variables E, V, S, and {Nc}for each of systems
A, B, and AB (other than reasonable upper bounds upon the
possible values of E, V, S, and {Nc}), these systems will
all be chemical systems with the same range of accessible
values for E, V, S, and {Nc}, and hence the same range of
accessible thermodynamic states*. Therefore, with such an
absence of constraints,z& must be determined by the same
functional operator for each of these systems. Thus the

operators éZA( D) AVB( ), and éZAB( ) are identical for

Any two chemical systems with the same values for E, V,
S, and {N_} are always free by definition (Appendix A)
to assume identical states.
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unconstrained systems -- whence substitution of equation
(B-8) into equation (B-2) for this case yields C = 2C so
that C = 0. Thus for any unconstrained chemical system,

equation (B-8) reduces to
A = KE + KV + K S + ZKy N (B-9)

For constrained systems, the constant C remains arbi-

trary -- it being noted that C CB’ and C,, will not be

A’ AB
equal. Substitution of equation (B-8) into equation (B-2)

for this case yields CAB = CA + CB as the required rela-

tionship among these constants.




|

CONCERNING THE CONSTANT KE

On page 22, it was stated that the constant KE must
have a fixed, non-zero value independent cf the given en-
vironment. In order to verify this proposition, consider
any two chemical systems A and B, each of which have diff-
erent given environments A' and B' respectively. Consider-
ing any particular extensive measure 47, it follows from

the expression 4l = KEE + K,V + KSS + EKNch + C of Theorem

\
4 that g{is given for each of systems A and B by

e

KpaEp * KyaVpa * KgpSp + EKyoaNoa* Cp (c-1)

C (c-2)

+
Ko.rE KypVy + K B

}L
&g = KgpEp * KypVp + KgpSp + Ky pNogt
Since by definition A' and B' are different given environ-

ments, it follows that the constants KVA and KVB may not

be equal in general. Similarly, KSA may not equal KSB and

KNcA may not equal KNcB' However, the constants KEA and
KEB may be shown to be always equal, as will now be demon-
strated:

Considering systems A and B together as a single system¥,

th extensive measure & for the total system AB is by

As mentioned in the footnote on page 89, a thermodynamic
system may consist of parts which are not directly con-
nected together.

= gl =
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definition given by 'ng =.§&‘+‘£%, so that from ~quations
(C-1) and (C-2),

&

Ap = (Ko E +K,,V,+K +£K N ,+C I+ (K B +K, V. +K. St

EAEATKyAYAtKoaSAt EK AN At Ca )t (K gER Ky gVt KgpSy

EKNCBNCB+CB) (C-3)

We observe in passing that equation (C-3) does not corre-

spond directly to the expression 4= KRE+K V+K S+EKy N +C

of Theorem 4, because system AB is not a chemical system.¥
Let us now consider the case where shaft work is trans-

mitted from system A to system B with no other interactions

occurring-between systems A and B and their surroundings

and S

-- it being further stipulated that both S are

A B
constant)**, Differentiation of equation (C-3) for this

*
System AB is not a chemical system (even though both sys-

tems A and B are chemical systems) because the fact that
A and B have different given environments means that A
cannot come to equilibrium with B in the same sense that
the parts of a chemical system can come to equilibrium
with each cther. In other words, equilibrium states of
AB are not determined simply by their energy Epp, volume
Vap, and composition {Noppl (as would have to be the case
if AB were a chemical system as defined in Appendix A),
but instead the individual values, E,» Ep, VA, VB’ {NCA},
and {NCB} must be specified.

**Shaft work is the only interaction which can be allowed
between chemical systems A and B, since any other inter-
actions would require locking constraints of the second
kind (Appendix 4) which chemical systems by defini-
tion (Appendix A) cannot have.
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case yields*

dyAB = KppdE, + KpodEg (C-4)
And since dEA = -dEB fcr this case,
dé‘/AB = (Kgp = K, )dEg (C-5)

It will now be observed that this case complies with
the conditions of Theorem 1, since for this case the entropy
of system AB remains constant while system AB is not inter-
acting with its given environment**. From theorem 1, all
medsures ‘;AB must be constant for this case®***, from whence

QZAB must be constant -- since.éimust be a one-to-one
mapping onto g?} as pointed out in the proof of Theorem 3.
Hence dZQAB = 0 for this case so that equation (C-5) re-

duces to,

(Ko - KEA)dE =0 (C-6)

EB B

It should he emphasized that the constancy of Kga, Kgp,
Kyas Kyps Kga, Kgps {Kycal and {Kyo.p} depends upon sys-
tems A and B each having given environments. In some
cases this condition could require shaft work to be
returned later from B to A.

%

E System AB has a given environment, since systems A and B
each have given environments (it being recalled from page
13that a system is said to have a given environment if
the system is considered to have a unique condition of
equilibrium with its environment).

dede de
In regards to Theorem 1, it is noted that system AB is

a non-locking system since both A and B are chemical
systems (which are non-locking by definition -- as indi-
cated in Appendix A).
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Since dEg is arbitrary, equation (C-6) requires (Kpp - Kpp)=0

so that,

Kpg = Kpa (C-7)

Thus the constants KEA and KEB which appear in equations
(C-1) and (C-2) are equal, as was stated above. And since
systems A and B represent any two chemical systems in any

two given environments A' and B', it follows that K. must

E
have a fixed value independent of the given environment.

The constant KE cannot be zero, because a zero value
of KE would allow &/ to remain constant during the process
described in Requirement 1 (since for such a process, V,

S, and {Nc} are constant so that equation (B-7) of Appendix
B reduces to dd&/ = KEdE). But & cannot be allowed to
remain constant during such a process, since & must be a
one-to-one mapping onto F (as pointed out in the proof of
Theorem 3) and F must by definition increase. Thus KE
cannot be zero, so that from the conclusion of the preceding

paragraph, KE must have a fixed, non-zero value indepen-

dent of the given environment -- as was to be shown.




APPENDIX D

CONCEPNING THE INTEGRATION CONSTANT C

It was stated after equation (12) that the integration
constant C must have a fixed value independent cf the given
environment. In order to verify this, one may first differ-
entiate equation (12) for the general case (where the
effect of the environment may vary so that Po, To, and

{uco} are not constant) to obtain#*
1 = + - - = = -
a4l = K(dE+P_dV-T_dS-Zu_ dN_+VdP_-SAT_-IN du__)+dC (D-1)

As pointed out in the paragraph preceding equation (6),
d&f is zero for all infinitesimal variations of the type
considered in Requirement 3, so that for all such varia-

tions equation (D-1) reduces to
dc = _K(dE+Podv-TodS-éucoch+Vdpo-SdTo-échuco) (D-2)

Also, for all such variations, the Gibbs equation

dE = Td4S - P4V + éuchc and the Gibbs-Duhem equation

V4P = SdT + échuc apply, so that the right side of equa-

tion (D-2) is zero (since the equations dE = TodS-PodV+Eucoch

and VdPo z SdTo+échuco are satisfied to within non-finite

f
, For a closed system, each dN_ is zero throughout the

equations of this appendix. ®For constrained systems more
generally, every dN., need not be zero. For example,

one may consider a constrained system of constant volume
in which all of the Nc are allowed to vary.

= §8 =
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second order infinitesimals for variations between states
which have no finite departure frecin equilibrium with the
environment). Hence dC is zero, from whence C must have a

fixed value independent of the given environment -- as

was to be shown.
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APPENDIX E
ON THE GENERAL DEFINITION OF ESSERGY

Essergy is by definition a quantity which is believed
to have a broader interpretation than is encompassed by
thermodynamics -- in the same manner that entropy has the

broader interpretation from informavion theory given by C.

Shannon(37). Thus all of the writer's formulations of
essergy(lz’lu) were actually derived from information
(30,31) _ (38)

theory - as implemented by Brillouin's prin-
ciple of the equivalence of thermodynamic information and
potential work. For the purpose of the proof given in
this paper, however, essergy will be defined with respect
to only macroscopic thermodynamics.

Equation (1) on page 2 is the definition of the ex-
tensive mezsure 6 of essergy for any chemical system. How-
ever, for constrained systems, an arbitrary scale constant
C may be added to this equation -- this constant having to
be set equal to zero for any unconstrained system -- so

that a more general expression for the extensive measure

& of the essergy of any chemical system is

£ =E+ PV =TS - Zu N, +C (E-1)

where C = 0 for any unconstrained system. The compliance
of the right side of equation (E-1) with Requirements 1,

2, and 3 is discussed in Appendix 3. We will, after Gibbs(la),

- 100 -
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nearly always set the arbpitrary constant C equal to zero
(as was done in equations 1 and 3 and in Table 1 on page 8)
since a non-zero value of C tends to obscure the fact that
a system has no potential work when it is in stable equi-
librium with its environment.

As indicated in the first footnote on page 95, one
may have a set of constrained chemical systems which is
not itself a chemical system as defined in Appendix A.

For such a set, the extensive measure E of essergy 1s by
definition found by summing equation (E-1) over all such
chemical systems -- where each chemical system r has the

intensive properties P_ ., T, and {ucor} when the set of

or

chemical systems is at equilibrium with its environment:

s %(Er+Porvr—TorSr—§ucorNcr+Cr) (E-2)

It should be pointed out that the quantity essergy is
defined such that any essergy change AL (or -AE ) is
itself a specific example »f essergy (after the manner of
the quantity, energy -- it being noted that any energy
change AE (or -AE) is itself a specific example of energy --
e.g., an energy increase AE constitutes energy which is
transferred into the system). And after the manner of the
quantity, temperature (recalling that any one-to-one map-

ping onto the absolute temperature T or AT is itself a
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specific example of temperature* -- on some particular

eeature),(31’32’33’3g) the quantity essergy

scale of temp
is defined such that any one-to-one mapping onto the
essergy € or AE is itself a specific example of essergy.

For generalized chemical systems (which by definition
include such effects as electricity, magnetism, gravity,
surface tension, stress, and nuclear considerations) equa-
tion (E-1) still suffices to define the essergy 5,, except
that PO is replaced by PD (where PD denotes the pressure
of the region of space occupied by the system when that

region has come to equilibrium with the environment -- at

which time the system need no longer occupy that region):

£ =E+ PV - TS - Zu N, + € (E-3)

where C = 0 for any unconstrained system. PD is not neces-
sarily constant with respect to location; for example, the
pressure of the water in Figures 1-1, 1-2, 1-3 will in-
crease with depth as a result of the effect of gravity.
If this pressure variation is negligible over the range of
locations considered, then Py may be taken to equal Po'

Also, P, = PO whenever the system continues to occupy the

D

same region as it comes to equilibrium with its environ-

ment. It is thus seen that equations (1), (E-1), and

It should be pointed out here that changes such as AT and
AE are considered to start from a particular state, so
that any one-to-one mappings onto AT and AL coincide with
the corresponding one-to-one mappings onto T and £ respect-
ively.
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(E-2) apply to certain generalized chemical systems (viz.
those systems for which Pp = PO) -- it being noted that
for a set of constrained generalized chemical systems, the

defining equation (E-2) becomes,

= E(Er+PDrvr-TorSr'£ucorNcr+Cr) (E-4)




APPENDIX 1%
ON THE CONCEPT OF DEPARTURE FROM FEQUILIBRIUM

The potential work of a system may intuitively be
regarded as being a result of the system's departure from
equilibrium -- i.e., its departure from the condition when
it is in equilibrium with its environment. The concept of
departure from equilibrium may be illustrated in the manner
of Figures 1-1, 1-2, and 1-3. Figures 1l-1 and 1-2 repre-
sent the beginning and end respectively of the process
which results when the ice melts sufficiently to fall from
the wire. During this process, the ice gives up that por-
tion of its potential work which is due to its gravitational
pocential energy. Figures 1-2 and 1-3 represent the begin-
ning and end respectively of the process in which the ice
melts and the resulting water warms up to room temperature.

Both of these processes have one thing in common: In
each process the ice proceeds towards a condition of
stable equilibrium with its environment -- the final
equilibrium condition being shown in Figure 1-3. Either
of these processes may in principle be harnessed to yield
mechanical power; the first process by means of strictly
mechanical contrivances (pulleys, levers, gears, etc.)

for transmitting the potential work of the falling ice,

This appendix is not necessary for the proof given in
this paper, and is only included here as supplementary
material.
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j<——— - WIRE

ICE

WATER AT ROOM TEMPERATURE

FIGURE 1-1: A BLOCK OF ICE CSUSPENDED FROM A WIRE TO WHICH
IT HAS BEEN FROZEN ABOVE A BOIY OF WATER. When the ice
melts sufficiently to drop from the wire, it will release
that portion of its potential work which is due to its
gravitational potential energy.




——

<——WIRE

ICE

WATER AT ROOM TEMPERATURE

FIGURE 1-2: THE BLOCK OF ICE OF FIGURE NO. 1-1 AFTER IT
HAS MELTED SUFFICIENTLY TO DROP FROM THE WIRE. The ice
still departs from its final equilibrium condition, which
is shown in Figure 1-3 below.
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tt—————— WIRE

N AV S LS eSS VAN A 7

[ |
| ]
WATER AT ROOM TEMPERATURE

FIGURE 1-3: THE STABLE EQUILIBRIUM STATE OF THE SYSTEM
SHOWN IN FIGURES 1-1 and 1-2 ABOVE. The dashed lines
indicate an amount of water equal to that resulting from
the melting of the ice.
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the second process by means of heat engines. However, once
the ice system has come to equilibrium with its environ-
ment (as shown in Fig. 1-3), then there is no further
opportunity to harness mechanical power.

It should be pointed out there is a difference between
the notion of a "condition" of equilibrium and a "state"
of equilibrium. Consider for example the melted ice
depicted by the dashed lines in Figure 1-3. Here the result-
ing water is quite free to move about -- it could even
vaporize -- while the complete system of Figure 1-3 re-
mains at stable equilibrium. Thus the ice system has no
unique state of equilibrium. Nevertheless, it has a unique
condition of equilibrium in that the entire region in which
it may be located (that is, the entire system of Figure 1-3)
has a unique state of eq ‘ilibrium. In this manner, a
system may in general be said to have a unique condition
of equilibrium with its environment whenever the entire
region in which it might be located has a unique state of
equilibrium.

It may be of interest to note that the state of the
environment need not be constant in order for a system to
have a unique condition of equilibrium with its environ-
ment. For example, suppose that we consider a system which
consists of only part of the suspended ice of Figure 1-1.

This system will have a unique condition of equilibrium in

et ROV

[V gl
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accordance with the discussion of the preceding paragraph.
However, since the remainder of the suspended ice will now
belong to the system's environment, it is clear that the
state of the environment must change considerably (it

could even change quite rapidly) in order to reach the equi-
librium condition of Figure 1-3.

It should also be pointed out that the notion of a
given environment (that is an environment with which the
system under consideration has a unique condition of equili-
brium) is a device for considering the dependence of po-
tential work upon the system alone. In other words, with
a given environment, the net effect of the environment is
constant so that the potential work is a property of the
system alone under this condition. In general, potential
work is of course a property uf both the system and its
environment. The net effect of the environment will in
general vary -- either from external influences (such as
for example an influx of solar energy which may increase
the ambient temperature -- thus increasing the final equili-
brium temperature of the system) or from internal influ-
ences (for example, the final equilibrium temperature may
also increase as a result of a less efficient process
within a system whose cnly exte ..al communication is the
transmission of shaft work to its environment -- the lower

efficiency resulting in less shaft work delivered so that
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more energy is retained to yield the higher final equili-
brium temperature).

In regard to this latter example, it should be noted
that any condition of equilibrium is always subject to
the given constraints. For example, two systems separated
by a rigid, impermeable wall may come to a state of stable

equilibrium with each other (subject to this constraint)

in which their pressures may differ. Throughout this thesis

the terms, "stable equilibrium,” "unstable equilibrium,"

and "constraint," are used in accordance with the defini-

tions given by Gibbs(l3).

Finally, it is of interest to note that while a system

is not interacting with its environment, every indepen-
dent property of its given environment may be allowed to
vary (as mentioned in Footnote 10, page 19). Suppose for
example that the ice cube in Figure 1-1 were not to inter-
act with its eqvironment for a period. During this period
the independent properties of the ice cube's environment
could be perturbed by external influences (i.e., influ-
ences external to the water-vapor system shown as the ice
cube's environment in Fig. 1-1) in any manner whatsoever,
and so long as the final equilibrium condition of the ice
cube is stipulated to remain unchanged, the given environ-

ment by definition remains unchanged.
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APPENDIX 2%
ON THE NECESSITY OF REQUIREMENTS 1, 2, AND 3
WITH RESPECT TO THE PROOF

Requirements 1, 2, and 3 on page 13 reflect necessary
characteristics which must be exhibited by any measure of
the potential work of systems. However, it is not immedi-
ately obvious that one of these requirements might not be
superfluous with respect tc the proof given in this paper.
For example, one may ask if Requirements 1 and 2 alone
might be sufficient for the proof. To see that this is
not the case, we note that Requirements 1 and 2 are both
satisified by the energy E (since E is extensive -- satis-
fying Requirement 2 -- and E always increases whenever
the only effect is an input of work -- in satisfaction of Require-
ment 1). But as a proposed measure of the potential work
of systems, the energy E is inconsistent®*?®, since E does
not in general sa*isfy Requirement 3. Thus Requirements 1
and 2 by themselves fail to rule out the inconsistent pro-
posed measure E, so that Requirement 3 must not be omitted.

Similarly, Requirements 1 and 3 alone are not suffi-

cient for the proof, since these two requirements by

This appendix is not essential to the proof given in this
paper, and is only included here as supplementary material.

**In this appendix, any proposed measure (of the potential
work of systems) will be referred to as being "incon-
sistent" if it is not in general 2 consistent measure of
potential work.
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themselves fail to rule out the 1inconsistent®* proposed

measure V¢  (where V = volume and & = the essergy func-

tion).* Thus Requirement 2 must not be omitted.

And finally, Requirements 2 and 2 alone are not suf-

ficient for the proof, since these two requirements by

themselves fail to rule out the inconsistent proposed

measured igleEi (where €i denotes the essergy & of the

il

th part of the system -- the system being considered

to consist of n parts where n > 2 -- while each Ki denotes

a

positive constant associated with the i'th part -- it

being stipulated that each K. has a different value)®®,

Hence Requirement 1 must not be omitted.

%

The proposed measure V€ satisfies Requirement 1, since €
satisfies this requirement in view of Appendix 3, while
the volume V is constant when the only effect is work done
through a shaft. VE satisfies Requirement 3, because
for any open system, d(VE ) is zero for the variations
considered in equation (6) -- since for any unconstrained
system, both € and d€ are zero for these variations (as
indicated in Appendix 3 and Pg. 46). However, V& is
inconsistent because it does not in general satisfy

Requ rement 2 (since VE is not always extensive -- it
being noted that both V and £ are always extensive).

The proposed measure iglxiéi satisfies Requirement 2,
since iglKigi is extensive by definition. And iglKiéi
satisfies Requirement 3, since each £i satisfies Require-
ment 3 (as demonstrated in Appendix 3) while each K, is a
positive constant. The proposed measure igleEi is in-
consistent, since iglKiEi fails to comply in general with
Theorem 1, from whence ig K.€. fails in general to satisfy
Requirement 1 (it being notad that iglKiéi need not al-
ways he constant under the conditions cf Theorem 1, while
the essergy €= igfgi is always constant under these

conditions.)
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It has been shown that one may not allow either of
Requirements 1, 2, or 3 to be omitted. However, the possi-
bility remains that Requirements 1, 2, or 3 might be
weakened in a consistent manner, and yet remain strong
enough to support the proof.

Requirement 1 might tentatively be weakened via re-
placing it by Theorem 1 (with the restriction to non-lock-
ing systems omitted). However, this weaker requirement
would fail to rule out the value zero for the unit conver-
sion constant K (as is dore at the end of Appendix C).

In other worcs, the incontistent proposed measure C (where
C is the scale constant in equation 12) would satisfy

this weaker requirement as well as satisfying Requirements
2 and 3. One might at first suppose that the stipulation
that potential work must be a thermodynamic propertv might
be sufficient “o rule out the constant C. However, there
is nothing in Theorem 1 plus Requirements 2 and 3 which
rules out a potential-work ﬁroperty which might happen to
be constant with respect to the properties of the special
systems under consideration. Thus Theorem 1 is not a
sufficient form of Requirement 1, so that this requirement
may not be weakened in this manner.

However, Requirement 1 may be reworded in several
alternate forms which would leave its content completely

unchanged. For example, the content of Requireﬁent 1

AW ——-— - I T




- 114 -

would remain exactly the same if the phrase "always in-
creases" were to be replaced by the phrase "always decreases"
-- since if potential work admits of measure F which
always increases under certain conditions, then it must
of course admit of a measure -F which alwavs decreases
under the same conditions. Another such alternate form
of Requirement 1 results from replacing the phrase "al-
ways increases when wcrk is transmitted through a shaft
into the system" by the phrase "always decreases when work
is .ransmitted through a shaft from the system." 1In
this alternate form, it might be supposed that the phrase
"while the entropy of the system is constant" could be
excluded -- in view of the Second Law. However, without
this phrase, this form of Requirement 1 would not be satis-
fied for environments of negative absolute temperature
(33,35,36) __ so that this phrase would have to be retained,
if one desires complete generality.

There would seem to be no way of weakening Fequirement
2 witrout omitting it altogether -~ and the omission of
this requirement has already been ruled out above. Require-
ment 3 could be weakened to a ditferential form which
would required only that d& be zero for the variations
considered in equation (6). However, any definition in-

volving differeniials such as d& is unsatisiactory, since

th2re is nothing in the mathematical definition of a
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differential which actually requires it to be small(sg).

Requirement 3 might also tentatively be weakened by
replacing it with two separate tentative requirements 3'
and 3" -~ where Tentative Requirement 3' is the admission
of a positive measure, while Tentative Requirement 3" is
the admission of a measure which is zero at the equili-
brium condition "o". However, the tentative set of Re-~
quirement 1, 2, 3', and 3" fails to rule out the incon-

sistent proposed measure E', where E' is a relative energy

defined by,

El

E - EEGONC (2-1)

Here Ec denotes the partizl energy per unit of component
"e" (discussions of partial quantities are given in Refer-
ences 31, 32, and 33) and Eco represents the partial
energy Ec of the system at fhe equilib»ium condition "o --
so that each Eco is a constant for any chemical system
which has no more than one phase at the equilibrium condi-
tion "o". The relative energy E' satisfies Requirement 1,
since the energy E satisfies this requirement (as pointed
out in the first paragraph of this appendix) while éEcoNc
is constant for the process described in this requirement.
E' satisfies Requirement 2 since E'ls extensive -- it being

obgserved that E -~ éEcoNc coocasponds to the extensive

measure KE + KVV + KSS + EKNch ot Theorem 5 wheis K = 1,
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- 4 - = | = ) nat
Kv =0, KS = 0, and KNc = Eco for each component "e".

The relative energy E' satisfies Tentative Requirement 3',
since E' admits of the Dositive measure eE' (that is eE

is a cne-to-one mapping onto E'). And finally, E' satisfies
Tentative Requirement 3" since at the :juilibrium condi-

tion "o", the expression E - EEcoNc reduces to an express-

ion Eo - EEcoNco which is identically zero (due to the

e

familiar identity Y = éYch relating any extensive thermo-
dvnamic property Y to its corresponding partial values

{Yc}(31,32,33).

The inconsistency of the proposed measure
E' is demonstrated in Note 1 of this appendix. Since the

replacing of Requirement 3 with Tentative Requirements

3' arnd 3" permits the inconsistent proposed measure E',
1 we see that Requirement 3 must not he weakened in this
manner.

Tentative Requirements 3' and 3" may be combined into
a single requirement under which potential work would
admit of a measure which is always an extremum at the eguili-
brium condition "o". However, such a measure would be

inconsistent since it would not in general be a one-to-

* one mapping onto the essergy £ =-- in view of the fact
that ¢ need not admit of a measure which is an extremum

with respect to an unstable equilibrium condition '"o"

L —

(as indicated on page 46).
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It would thereby seem that the only additional possi-
bilities for allowing either the weakening or omission of
cne of Requirements 1, 2, or 3 would be to introduce simul-
taneous changes in at least two of these requirements.
However, any such changes (other than a mere rewording
of the requirements) would appear to introduce conditions
which are either superfluous or else inconsistent with
the definition of potential work as set forth in these
requirements. It would thus seem that neither the omission
nor weakening of Requirements 1, 2, or 3 may be allowed --
so that these requirements appear to be necessary with

respect to the prcof given ir this paper.
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NOTE 1, APPENDiX 2

ON TFE INCONSISTENCY OF E!

It may not be immediately obvious that E' is incon-
sistent. Suppose for example that one substitutes the
identity E_ = TS, - PV + ug into equation (2-1) to obtain,

t = 7 = =
E' =2+ P co c Esco c Euco c (2-2)

A comparison of equation (2-2) with equation (1) on page 2

shows that E' would be identical to & if V were to equal

gvc N and S were to equal EscoNc

However V is not in general equal to EVCO o siace

i e

Nc and Vco refer to the system in two different states

(i.e., Nc is the amount of component ¢ for the given state

v i

of the system while Vco is the partial volume of the ch.mi-

cal system at the equilibrium condition "o". Similarly,

S is not in general equal to ES These non-eqralities

COC

may be brcught into sharper focus via differentiating

equations (1) and (2-2) for a closed system (N, = constant)

to obtain,

af

dE + PodV - TodS (2-3)

de!

dE (2-4)

For variations at condition "o", equation (2-3) yields

a€

0 in compliance with Requirement 3 (since dE = TdS-PdV

= - 118 -
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for a closed system) whereas equation (2-4) gives dE'#0
in violation of Requirement 3. Hence E' is inconsistent

(since E' does not in general satisfy Requirement 3).

e O
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APPENDIX 3%

ON THE CONSISTENCY OF ESSERSY AS A MEASURE
CF THE POTFNTIAL WORX OF CHEMICAL SYSTEMS

It was mentioned on page 15 that it is known prior to
making the proof that essergy is a consistent measure of
the potential work of chemical systems (or in other words,
essergy for chemical systems satisfies Requirements 1, 2,
and 3 on page 13). This proposition will be verified here:

In order to show that the essergy é: of a chemical
system is consistent with Requirement (1), one may first
differentiate equation (E-1) for a given environment (for 1

which P, To’ and {uco} are constant) to obtain

a€ = dE + PGQV - T dS - Zu, dN_ (3-1)

ST AR A AR

For the process of Requirement 1, the quantities V, S,
and {Nc} are all constant (since any change in V or'{Nc}
would represent an interaction in addition to the trans-
mission 2r work through a shaft) so that equaticn (3-1)

reduces tc¢
af = 4E (2-2)

Since the energy E of a system always increases when the

only effect igs an input of work, it follows from equation

This appendix is not essential to the proof given in
this paper, and is only included here as supplementary
material.

- 120 -
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(3-2) that € always increases for the process of Require-
ment 1 -- so that this requireiment is satisfied.
Requirement 2 is satisfied, since the right side of
equation (E-)) is extensive -- in view of the fact that it
is a linear combination of the extensive quantities E, V,

S, {Nc}, and C (it being noted that P_, T  and {u,.}
are all intensive).

In order to see that Requirement © is satisfied, we
obse:ve from equation (E-1) that an essergy change AL is

in general given by
A€ = AE + A(P_V) - A(T_S) - ZaCu  N) (3-3)

-- it being noted tnat the environment is being allowed to
vary so that P_, T, and {ﬁco} are not necessarily constant.
In view of the familiar integrated form E = TS - PV + E“ch
of the Gibbs expression dE = TdS - P4V + E“chc’ a change
AE in the energy of any equilibrium chemical system (as

defined in Appendix A) is given by,
AE = A(TS) - A(PV) + FA(u N} (3-L,

For any chemical system at equilibrium with its environ-

= =02 S|
ment, one has T = T _, P L and Lo S s (where the

o’
subscript "o" by definition denotes the condition of the

system when it is at equilibrium with its environment)

so that one may write
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AE = A(TOS) - A(POV) + éA(ucoNc) (3-5)

Substitution of equation (3-5) into equation (3-3) yields,
for any change between two states, both of which are at

equilibrium with the environment,
AL = 0 (3-6)

if the state of a system has no finite departure from
equilibrium with the environment, then equation (3-4) is
satisfied tc within all non-finite deviations such as
non-finite second and higher order infinitesimals. Thus

for any change between such states, the essergy change %
AL is equal to zero to within all non-finite deviations --

so that Requirement 3 is thiereby seen to be satisfied.
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APPENDIX Uu#
ON LOCKING CONSTRAINTS

It is convenient to define the following two kinds of

locking constraints:

l. Constraints which prevent an isentropic, adiabatic
process from moving in the reverse direction.

2. Environmental constraints which allow some matter,
energy, or volume to be transferred from a system,
and then limit the amount transferred by mecans of
some valve, locking device, or other type of

barrier.®#*

O)

The absence of the first kind of locking constraint allows

e e

any isentropic, adiabatic process to always be moved in

the reverse direction. The chemical systems (and general-

TS

ized chemical systems) considered in this paper are defined

to be capable of undergoing isentropic, adiabatic prccesses

! as well as the other so-called quasistatic processes of

thermodynamics, which by definition pass through states

.

of equilibrium only.

*
It was first thought by the writer that this appendix was

not actually necessary for the proof given in this paper.
However, the absence in chemical systems of locking con-
straints of the second kind plays an important role in

I Appendix C.

| 2 it

g

An environmental constraint is by definition a constraint
5 - which influences the system's state of equilibrium with
(w its environment.
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O
it The absence of the second kind of locking constraint
gerves to guarantee that all parts of a chemical system will
have the same intensive state of equilibrium with the en-
vironment.
i
R
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