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A PROOF THAT ESSERGY IS THE ONLY CONSISTENT 

MEASURE OF POTENTIAL WORK 

(FOR CHEMICAL SYSTEMS) 

by\ 

Robert B. Evans 

ABSTRACT 

An attempt is made to prove that all of the many 

seemingly-independent measures of potential work (such 

as availability, exergy, available work, Gibbs free energy, 

Gibbs chemical potential, Helmholtz free energy, and the 

other common available energy expressions — e.g., ki- 

netic energy, potential energy, and electrical energy) 

are necessarily all special cases of the one unique quan- 

tity, essergy (the word "essergy" being a contraction of 

the term "essence of energy"). 
v 

The proof is attempted rigorously for chemical sys- 

tems, from whence it is extended to apply more generally. 

If correct, the proof will be of consequence to the design 

of any engineering system in which potential work is a 

significant factor — since it will show conclusively that 

by evaluating the one unique quantity, essergy, the de- 

signer may rest assured that all of the many seemingly- 

independent considerations of potential work will be auto- 

matically satisfied. 
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Another pos ible consequence of the proof might be 

a more general formulation of information — based upon 

Brillouin's principle of the equivalence of thermodynamic 

information and potential work.  It is thus hoped that 

the proof may eventually provide new insight into the 

foundations of science and information theory. 

O 
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o PREFACE 

U 

The proof presented in this thesis makes use of only 

macroscopic considerations which lie within the realm of 

classical thermodynamics. Thus the proof may if desired 

be viewed as being based solely upon classical thermodynamics 

— in particular the classical treatment by J.W. Gibbs. 

However, it should be mentioned that the proof was 

first made by using the information theory approach of 
* ** 

Tribus — which is based upon contributions by Cox  and 

Jaynes  . The general method used in the proof was inspired 

by Cox's derivation of the functional form of probability. 

This thesis was written in close association with Dean 

Myron Tribus, without whose guidance this work would not 

have been possible. A number of important changes in the 

proof were suggested by Prof. Paul T. Shannon and Prof. 

Graham B. Wallis, while several parts of it were considerably 

influenced by the writer's many consultations with Prof. 

Yehia M. El-Sayed and Mr. Jacques Pe"zier. 

** 
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A PROOF THAT ESSERGY IS THE ONLY CONSISTENT 

MEASURE OF POTENTIAL WORK 

(FOR CHEMICAL SYSTEMS) 

by 

Robert B. Evans 

INTRODUCTION 

In this paper, an attempt is made to prove that all 

of the many seemingly-independent measures of potential 

work (such as availability, exergy, available work, Gibbs 

free energy, Gibbs chemical potential, Helmholtz free energy 

and the other common available energy expressions — e.g., 

kinetic energy, potential energy, and electrical energy) 

are necessarily all special cases of the one unique quan- 

tity, essergy" — which by definition is a thermodynamic 

property whose extensive measure £ is given for chemical 

2 
systems by 

The name "essergy" is a contraction of the term "essence 
of energy", where the word "energy" is here taken in its 
common colloquial meaning as being that which drives 
physical processes. Thus in a non-technical sense, the 
term "essergy" represents the "essence (i.e., essential 
aspect) of that which drives physical processes." 

2 
The symbols E, P, V, T, S, y, and Nc denote energy, 
absolute pressure, volume, aüsolute temperature, entropy, 
Gibbs chemical potential of component "c", and quantity 
of component "c", respectively. Tha subscript "o" de- 
notes the system when it is in equilibrium with its 
environment. 

- 1 - 
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The proof is attempted rigorously for chemical sys- 

tems, from whence it is extended to apply more generally. 

If correct, the proof will be of consequence to the design 

of any engineering system in which potential work is a 

significant factor — since it will show conclusively that 

by evaluating the one unique quantity, essergy, the de- 

signer may rest assured that all of the many seemingly- 

independent considerations of potential work will be auto- 

matically satisfied. 

In order to review some of the earlier measures of 

potential work, a very brief history of essergy will first 

be given. 



.., 

A BRIEF HISTORY OF ESSERGY 

Since the time of Carnot  (1824), the concept of 

potential work — in the sense of the maximum work which 

can be produced by a system or process — has been of 

concern to engineers dealing with power systems. This con- 

cept was inherent in the free energy and available energy 

functions of von Helmholtz and Gibbs  (1873).  The con- 

(3) cept was used by Darrieus  (19 30) who defined "thermo- 

dynamic efficiency" as being the quotient of the actual work 

obtained divided by the potential work for materials in 

(4) steady flow. These ideas were advanced by Keenan  (19 32) 

who called Darrieus' efficiency the "effectiveness" — in 

order that this efficiency not be confused with other 

efficiencies (such as the familiar Carnot efficiency, for 

example). 

In 1941, Keenan   formulated the following measure A 

of the potential work of closed systems — a measure which 

he called "availability": 

A=E+PV-TS-(E +PV  - T S )    (2) o    o    o   o o   o o 

The subscript "o" denotes the closed system when it is in 

equilibrium with the surrounding medium, so that the 

quantities P   . T   ,  and  (E^ + P V    - T S  )  are constants ^ oo o        oo        oo 
(it being noted that a closed system is by definition a 

- 3 - 
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system for which no material is allowed to cross the 

boundaries).  Since A is thereby a function of the system 

properties E, V, and S, the availability A may be regarded 

as being a property of the system — for any given sur- 

(5) rounding medium. Keenan   pointed out that the property 

A had been described earlier in geometrical terms by 

(7) 
Gibbs  (1873) who referred to it as being the available 

3 
energy of the system and medium .  Keenan refers to the 

property A as being "the maximum work which can be deli- 

vered to things other than the system and medium by the 

two unaided by any changes (except cyclic changes) in any 

external things". 

The availability A is a measure of the potential work 

of systems. In regard to the potential work of processes, 

(5) Keenan   pointed out that the steady flow availability 

(3) (4) 
developed earlier by Darrieus   and Keenan   is given 

simply by A + (P - PQ)V (where A is given by equation 2 

3 (2) 
Some of Gibbs' earlier formulations  (1873) were con- 
cerned with equilibrium surfaces as defined by the coor- 
dinates E, V, and S for a closed system.  He called the 
surface of stable equilibrium the "surface of dissi- 
pated energy." In one case, he considered the closed 
system to be immersed in a medium of constant tempera- 
ture and pressure, and pointed out that the available 
energy of the system and medium is equal to the vertical 
height of the state point in the E-V-S space above a 
plane which is tangent to the "surface of dissipated 
energy" at the point P = Pm, T = T (where P and T 
represent the pressure and temperature of the medium 
respectively). 

<*»-***tmmmumiimtaSiim*üii*ifr. 
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with V representing the volume of material which flows 

in some definite increme'it of time). For more general 

(6 ) 
situations, Keenan  (". J51) wrote a balance equation for 

the term E + P V - T S which appears in equation (2). 

He pointed out that the use of the familiar Gibbs free 

energy function may be regarded as being a special case 

of this availability formulation. Further contributions 

(7) to the availability concept were made by Rant  (1956) 

(8) 
and Gaggioli  (1962).  Rant introduced the term "exergy" 

— a term which has been used considerably in Europe in 

virtually the same sense as the steady flow availability. 

(9,10) 

In 1958, Tribus suggested to the writer that the 

potential work of processes should be given by a balance 

of availability rather than by a balance equation for the 

term E + P V - T S,  since E+PV-TSis not a general o o o o 
measure of the potential work of open systems. The writer 

attempted to write such a balance equation   , and found 

that the required generalization could be carried out by 

replacing the term  (E„ + P VA - T S  )  in availability by co ooooo J 

the term Ip N . The result was the following measure 0. 

of the potential work of systems — this measure at first 

h „(12) laving been called "available energy" (1962): 

d  =  E  +  P V  - T  S  -  Eu„N (3) 
o O C   CO   c 



o 
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The right side of equation (3) is identical to the right 

side of equation (1) above. As with the availability A, 

the quantities P , T and {p_} are constant for any given ^ o  o      co J  ° 

environment, so that the function U  may likewise be regard- 

ed as a property of the system (for any given environment). 

(13) Gibbs   (1878) wrote a special formulation of the 

property 66 — i.e. , he formulated it for the special case 

of a system immersed in an existing medium with constant 

(13^ properties T , P . and {u  ) (see Gibbs  'equations 53, 

56, 68, 82, and 133, for example).  Gibbs used his special 

formulation mainly as a criterion of stability of the 

medium, and he didn't propose either a name or a symbol for 

jT\ it (although he used such symbols as *, W, and a  for parti- 

cular cases — Gibbs equations 164, 552, and 659, for 

example). The property 66 as given by equation (3) is con- 

siderably more general than Gibbs' special formulation 

in that it does not require an existing medium. 

In 1963, Tribus suggested to the writer that Rant's 

term "exergy" would be a more appropriate name for the 

property 66 than "available energy". The term "exergy" 

seemed more appropriate, since the property U need not be 

viewed as a kind of energy at all (as such terms as "avail- 

able energy" and "availability" would imply) but instead 

may be viewed as a measure of the departure of a system 

from equilibrium.  Consequently the writer adopted the 

O 

I 
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(14) 
symbol "£ " for this property and called it "exergy" 

However, as it became apparent that the term "exergy" 

is used by most workers to represent a quantity consider- 

ably more limited in scope than the property Ä, the writer 

in Reference (15) changed the name to "essergy" (i.e., 

essence of energy).  In view of these changes, the symbol 

ndn  was replaced by the symbol "£ " while the term "avail- 

able energy" was replaced by the word "essergy" — it being 

noted that equations (1) and (3) thus become identical. A 

summary of the above discussion is presented in Table I. 

As indicated in Table I, the formulation given in 

Reference 12 (1962) is a rather general form of essergy. 

This formulation enables one to make potential-work bal- 

ances upon systems under rather general circumstances, whereas 

balances of the previous forms of potential work (avail- 

ability, free-energy, Gibb's special formulation of the 

property Ä, etc.) could be made only under more limited 

circumstances. 

It may be of interest to some readers to verify at 

this point that essergy is indeed a measure of potential 

work.  First observe that for the transmission of work W 

through a shaft, differentiation of equation (1) for a 

given environment yields d£ = dE; since dV, dS, and {dN } 

are all zero when the only effect is reversible shaft 
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TABLE I 

* CONNECTIONS AMONG ESSERGY, AVAILABILITY, EXERGY, AND FREE ENERGY 

NAME FUNCTION COMMENTS 

ESSERGY E + P V - T S - l\xnJin 0     O    C CO c 
This function was formulated 
for the special case of an 
existing medium in 1878 (by 
Gibbs) and in general in 1962 
(Ref. 12).  Its name was 
changed from "available en- 
ergy" to "exergy" in 1963, and 
from "exergy" to "essergy" 
(i.e. , "essence of energy") in 
1968. 

AVAILABILITY E + PV-TS- (E +P 
O     O       O 

V - T S ) Formulated by o o   o o            J 

Keenan in 1941, this function 
is shown on page 32 to be a 
special case of the essergy 
function. 

EXERGY E + PV - T S - (E + P^ 
O       O     0 

V - T S )  Introduced by 
o   o 0 
Darrieus (19 30) and Keenan 
(1932), this function (which 
Keenan has called the "avail- 
ability in steady flow") was 
given the name "exergy" by 
Rant in 1956. As shown on 
page 39, this function is a 
special case of essergy. 

FREE ENERGY HELMHOLTZ:   E-TS 

GIBBS:  E+PV-TS 

The functions E-TS and E+PV-TS 
were introduced by von Helm- 
holtz and Gibbs (1873).  These 
two functions are Legendre 
transforms of energy which 
were shown by Gibbs to yield 
useful alternate criteria of 
equilibrium. As measures of 
the potential work of systems, 
these two functions are shown 
on page 44 to represent spe- 
cial cases of the essergy 
function. 

c 

I 

U 
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work , And since for this case dE = -dW, it follows that 

d£ = -dW. Thus when the only effect is the reversible 

transmission of work through a shaft, the essergy <f will 

always decrease by precisely the amount of work done. 

For heat transfer Q on the other hand, differentiation 

of equation (1) for a given environment yields d£ = dE-T dS, 

since dV and {dN } are zero when the only effect is heat c 

transfer. Noting that dF = dQ while dS = dQ/T for reversi- 

ble heat transfer at temperature T, we have 

T-T 
d£ = -^-2. dQ (4) 

T-T 
The ratio m ° will be recognized as the Carnot efficiency, 

which is conventionally looked upon as being the fraction 

of the heat dQ which is available as work. Thus the essergy 

formulation is seen to contain the Carnot principle within 

its framework. 

In order to assess the effects of irreversibilities, 

one need only differentiate equation (1) for the case when 

the system is not interacting with its given environment 

The symbol { } denotes a set; thus {dN } denotes the set 
of differentials of the n components —» that is, {dN } = 
dN,, dN„,   dN .  Since components are by definition 
always conserved, each N is constant in a closed system, 
so that dN =0. A discussion of components (which are 
always conserved) vs. species (which usually are not) is 
given in Note 1 of Appendix A.  It will also be noted 
that for a given environment, the quantities P , T . and 
{y  } are all constant, co 
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(so that E, V, and {N } are constant) to obtain, 

d£ = -T dSc (5) 
o 

where the superscript "c" denotes that dS for this case 

represents entropy which is "created" — it being noted from 

the Second Law that dSc is always greater to or equal to 

zero for reproducible phenomena. And thus the well known 

equivalence between the creation of entropy and the loss 

of potential work is seen to be embraced by the essergy 

formulation. 

A number of applications of essergy have appeared in 

the literature in addition to those cited above. Reference 

( (16) made use of the writer's original outline of essergy 

as given in Reference (11). The general sea-water-conver- 

(17 18) sion considerations of Silver  '   were done independent- 

ly, and remained unknown to the writer until after Reference 

(12) had gone to publication. References (19) and (20) 

made use of the formulation of Reference (12).  In Reference 

(21), the formulation of Reference (14) was applied to a 

number of proposed sea-water conversion processes (freezing; 

electrodialysis; distillation via vapor compression, multi- 

stage flash, and multi-effect; etc.). Reference (22) 

introduced non-linearities into the design formulation, while 

in Reference (23), detailed considerations of the values of 

different kinds of potential work (thermal, mechanical, 

O 
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chemical, etc.) were presented. References (24), (25), and 

(26) made use of the essergy concept in the optimization of 

systems where interdependences between the subsystems 

cannot be neglected.  Reference (27) introduces uncertainty 

considerations into the design procedure.  Reference (41) 

serves to summarize the status of exergy in Europe as of 

1961, and Reference (42) includes economic considerations 

while in Reference (43), (44), and (45), efficiencies and 

limits of applicability of exergy are considered. 

In making this brief history, the writer has attempted 

to present a unified treatment of the development of essergy 

in which the similarities, rather than the differences, 

among the various previous measures of potential work have 

been emphasized.  If, on the contrary, one examines some 

of the differences (as is done below in the discussion of 

the results of this paper), then one finds a situation in 

which (in the absence of reference to these results) many 

seemingly independent measures of potential work appear to 

coexist. This situation has served to keep the fundamental 

nature of essergy somewhat obscured.  It is hoped that the 

proof given in the paper will help to remove this obscur- 

ity.  Let us now proceed with the proof. 



o 

o 

POTENTIAL WORK 

The first step of the proof is to list those require- 

ments needed to define potential work. As indicated above, 

the potential work of a system is the potential of that 

system to produce work — where the work produced by a 

system or process is understood to be work which can always 

be completely converted (via theoretically reversible mech- 

anical contrivances — e.g., cranks, gears, etc.) into 

mechanical shaft work. Thus a system can have no potential 

work when it is in stable equilibrium with its environ- 

ment. Or in more general terms, the potential work of a 

system must admit of a measure which exhibits no finite change 

whenever the system varies between any two different states, 

neither of which has any finite departure from equili- 

brium with the environment. 

Also, the potential work of a system must be a thermo- 
t 

dynamic property (of the system and its environment) which 

admits of an extensive measure, since work is a thermo- 

dynamic type of transmission of energy — and energy is 

an extensive quantity . And finally, for any given environ- 

5 Work is an energy transmission which is thermodynamic in 
its nature in that this transmission by definition in- 
volves no transmissions of either entropy or matter (it 
being understood that in relativistic considerations, 
the word "matter"implies material which has rest mass). 

c 
An extensive quantity is one whose value for any group of 

^ systems taken together is equal to the sum of its values 
k for the individual systems. 

- 12 - 
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7 
ment , the potential work of a system must admit of a 

measure which always increases when work is transmitted 

through a shaft into the system while the entropy of the 

system is constant (in the absence of any other interactions 

between system and environment). These requirements may be 

summarized as follows: 

The potential work of a system must be a thermo- 

dynamic property (of the system and its environment) 

which admits of the following three kinds of measures: 

1. A measure which, for any given environment, 

always increases when work is transmitted 

through a shaft into the system while the entropy 

of the system is constant (in the absence of 

any other interactions between system and en- 

vironment ). 

2. An extensive measure. 

3. A measure which exhibits no finite change whenever 

the system varies between any two different 

7 
An environment will be said to be "given" whenever the 
system is considered to have a unique condition of equili- 
brium with the environment — as discussed in Appendix 1. 
It should also be mentioned that a measure is by defini- 
tion a single valued function — as pointed out in the 
proof of Theorem 3 below. One may thereby wish to consider 
that what is being defined here is the expected value 
of the potential work, if fluctuation phenomena are con- 
sidered. 

- ->****mem3ik • 
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states, neither of which has any finite 

departure from equilibrium with the environment. 

O 

O 

These three requirements are listed here in the order that 

they are used in the proof.  That there is at least one 

function which satisfies these requirements is immediately 

apparent from the fact that essergy satisfies them — as 

discussed below. The sufficiency of these three require- 

ments for the purpose of defining potential work (for chemi- 

cal systems) is demonstrated by the proof itself — which 

shows that they are satisfied by only one thermodynamic 

property, viz. essergy.  Their necessity with respect to 

the proof is discussed in Appendix 2. 

Requirements 1, 2, and 3 serve to define the potential 

work of systems.  However, the unqualified term "potential 

work" by definition denotes the potential work of systems 

and/or processes. The potential work of any process must 

by definition admit of a measure which is equal to the net 

decrease in potential work which the process alone necessar- 

ily causes in the systems involved.  In this regard, it 

will be noted that any increase in the potential work of a 

system which results from the receipt of potential work 

delivered by the process is not caused necessarily by the 

process — since this potential work may be delivered to 

any arbitrary system.  Examples of the potential work of 

processes are given on pa^es 36-39. 

h 
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i I POTENTIAL WORK MEASURES OF THE FIRST KIND 

Let the symbol ir denote any potential work measure of 

the first kind — as described in Requirement No. 1 above. 

The following theorem may now be proven: 

p 
THEOREM 1:  For any non-locking system in any given 

environment, all measures /must remain constant if 

the entropy of the system remains constant while the 

system is not interacting with the environment. 

PROOF:  Suppose that while the system is not inter- 

acting with its given environment, a particular measure 

dr  were to undergo a finite change hf , without any 

change occurring in the entropy of the system.  Since 

any isentropic, adiabatic process may be reversed in 
p 

a non-locking system , there is nothing to prevent 

the process under consideration from moving in the 

reverse direction — so that one could always obtain 

a change in the algebraic sign of AJ" under these condi- 

tions (it being noted that for a given environment, it 

is always possible to consider a situation where all 

independent properties of the environment are constant 

g 
A non-locking system is by definition any thermodynamic 
system which has no locking constraints.  In such a system 
by definition, any isentropic, adiabatic process may always 
be moved in the reverse direction — as discussed in 
Appendix 4. 

- 16 - 
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Before proceeding to the derivation of some theorems, 

it should be emphasized that equation (1) is only the defini- 

tion of the extensive measure £  of essergy for a chemical 

system.  However, as pointed out in Appendix E, equation 

(1) also applies to certain generalized chemical systems 

(which may include such effects as electricity, magnetism, 

gravity, surface tension, stress, and nuclear considerations) 

The general definition of essergy is somewhat involved and 

is given in Appendix E. 

It is shown in Appendix 3 that the essergy of chemical 

systems satisfies Requirements 1, 2, and 3.  In other words, 

it is known prior to making the proof that essergy is a con- 

sistent measure of potential work (for chemical systems). 

What is not known (prior to the proof) is whether or not 

there might be other independent thermodynamic properties 

which equally well satisfy these three requirements. 

One may now proceed to derive some theorems. 

C 



U POTENTIAL WORK MEASURES OF THE FIRST KIND 

Let the symbol vT denote any potential work measure of 

the first kind — as described in Requirement No. 1 above. 

The following theorem may now be proven: 

p 
THEOREM 1:  For any non-locking system in any given 

environment, all measures -J must remain constant if 

the entropy of the system remains constant while the 

system is not interacting with the environment. 

PROOF:  Suppose that while the system is not inter- 

acting with its given environment, a particular measure 

3r  were to undergo a finite change hT , without any 

change occurring in the entropy of the system.  Since 

any isentropic, adiabatic process may be reversed in 
g 

a non-locking system , there is nothing to prevent 

the process under consideration from moving in the 

reverse direction — so that one could always obtain 

a change in the algebraic sign of h$   under these condi- 

tions (it being noted that for a given environment, it 

is always possible to consider a situation where all 

independent properties of the environment are constant 

g 
A non-locking system is by definition any thermodynamic 
system which has no locking constraints.  In such a system 
by definition, any isentropic, adiabatic process may always 
be moved in the reverse direction — as discussed in 
Appendix H. 

- 16 - 
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while the system is not interacting with it — so that 

3^ for such a situation would depend upon independent 

properties of the system only). 

After completing this process, let the absence- 

of-interaction restriction be relaxed by permitting a 

finite amount of work to be transmitted through a shaft 

into the system while its entropy is constant (without 

any other interaction occurring between the system and 

its given environment). The measure /must by defini- 

tion increase in this case. Denoting this second change 

by t&i  let this second process be restricted in a 

manner such that |A£| < lA^l, where Austin denotes 

the change in J"due to the first process.  Sinca one 

could always obtain a change in the algebraic sign of 

hjffor  the first process, one could thereby always 

obtain a change in the algebraic sign of Ls  + A^" for 

the combination of these two processes. 

But this is a violation of the definition of ./, 

since the combination of these two processes consti- 

tutes a process where a finite amount of work is trans- 

mitted through a shaft into the system while its entropy 

is constant — without any other interaction occurring 

between the system and its given environment — and for 

such a process, Requirement No. 1 dictates that 

h3 + A,?"must always be positive. The only way to 

■-;/< '^n*m*-x*Ll% ttUa&M . ■ 
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prevent such a violation is to set &<r for the first 

process equal to zero. Hence J must remain constant 

if the entropy of the system remains constant while 

the system is not interacting with the environment. 

Theorem 1 is thereby proven. 

Theorem 1 may be used to derive the following theorem which 

serves to indicate the functional iorm of the measures J-: 

THEOREM 2: For any chemical system in any given en- 

vironment, each measure 3r is completely determined by 

a function of the form J(E, V, S, {N }). 

PROOF:  It is convenient to include in the set of a 
■ 

" ' chemical system's independent properties its energy E, 

volume V, entropy S, and components {N } — it being 

noted that S will be independent of E, V, and {N } 

for such non-equilibrium states as the heterogeneous 

(13) non-equilibrium states considered by Gibbs "  (such 

states being made up of homogeneous parts which are at 

equilibrium within themselves but not at equilibrium 

with each other). With these quantities included as 

independent variables, there cm be no independent 

properties of the system other than E, V, S, and 

{N } which must remain constant in a chemical system 

; 

3 
whose entropy is constant while the system is not 
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interacting with its environmei t (this proposition 

is verified in Appendix A).  But from Theorem 1>V^~ 

must also remain constant for any given environment 

while S is constant during such a period .  Since for 

a given environment all independent variables of the 

system and its environment other than E, V, S, and 

{N } are thus allowed to vary  while 3^is  constant, 

^f cannot for a given environment depend upon any of 

these other variables. Hence for any chemical system 

in any given environment, each measure Jis completely 

determined by a function of the form ,/(E, V, S, {N }). 

Theorem 2 enables us to determine for chemical systems the 

functional form of potential work measures of the second 

kind. 

9 In regards to Theorem 1, o.t may be noted that any chemi- 
cal system is a non-locking system by definition (as 
indicated in Appendix A). 

10 In view of the definition of a given environment, all 
independent properties of the given environment may in 
general be allowed to vary while the system is not inter- 
acting with it (as discussed in Appendix 1). 
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POTENTIAL WORK MEASURES OF THE SECOND KIND 

Let the symbol £1 denote any potential work measure of 

the second kind — i.e., any extensive measure as set forth 

in Requirement No. 2 above. The following theorem may now 

be proven: 

THEOREM 3:  Each extensive measure H is completely 

determined by a function of the form^f(E, V, S, {N }) 

for any chemical system in any given environment. 

PROOF:  Let 2? represent any particular thermodynamic 

property which qualifies as being the potential work of 

systems (i.e., any thermodynamic property which satis- 

fies Requirements 1, 2, and 3). Any measure Jj  of the 

property C must by definition be a one-to-one mapping 

onto Iß. Thus in particular, any measure /of the first 

kind which 2i> admits of (in accordance with Requirement 

1) must be a one-to-one mapping onto O.    This means 

that any measure JJ  of the property 2> must be a one-to- 

one mapping onto«/, since both j and JJ  are one-to-one 

mappings onto o  (in general, y is always a one-to- 

one mapping onto z if both y and z are one-to-one 

(28) W mappings onto x). ~  Thus each extensive measure xZ. 

Following the definition used in Reference (28), a vari- 
able y is said to be a one-to-one mapping onto x if y = 
y(x) and x = x(y) — it being recalled that in modern 
terminology, any function y = y(x) is understood to be 
single-valued unless otherwise specified.   ' 

- 20 - 
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of the property B must be a one-to-one mapping onto 

v/I Combining JQ-  f(^) with Theorem 2, it follows 

that # = .Ö(E, V, S, {Nc}). 

Theorem 3 leads to the following theorem: 

THEOREM 4:  For any chemical system in any given envir- 

onment, each extensive measure &l is completely deter- 

mined by a function of the form M -  K£E + KyV + KgS + 

ZKj. N + C where K£, K„, K_ {KN } , and C are constants, 

C being necessarily zero for any unconstrained chemical 

system. 

PROOF:  From Theorem 3,i7 = #(E, V, S, {N,}).  But M, 

E, V, S, and {N } are all extensive quantities. 

Therefox^e, for any chemical system in any given envir- 

onment ,<# must have the form & -   K£E + KVV + KgS + 

£KN N + C, where K£, K.., Kg, {K„ } and C are constants 

(a detailed demonstration of this proposition is given 

in Appendix B where it is shown that C is necessarily 

zero for any unconstrained chemical system).  Hence 

the theorem. 

The constant K_ may be shown to be a unit conversion con- 

stant, so that the following statement may be proven: 

THEOREM 5:  For any chemical system in any given en- 

vironment , i) is determined by & -  KE + K..V + 1CS + 



■'»mmj.i'jji*«^-».» ü>i'"'jww''w<Bjjiw" "i**m lHuuü m ny» ST!»* 

1 i 

- 22 - 

£KN N + C where K is an arbitrary unit conversion 

constant. 

PROOF:  As shown in Appendix C, the constant K£ must 

have a fixed, non-zero value independent of the given 

environment.  Thus KE may be regarded as an arbitrary 

unit conversion constant, so that M = KE + K.V + KgS + 

IK.. N + C (the subscript "E" being dropped from the 

unit conversion constant KE). 

In order to determine the identity of the constants Kv, 

Kg, and {KN }, reference to potential work measures of the 

third kind will be needed. 

:■■-.   '.,:•„-, 
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POTENTIAL WORK MEASURES OF THE THIRD KIND 

Reference to potential work measures of the third 

kind will serve to identify the constants K„, K«, and {KN } 

of Theorem 5, from whence the following theorem will result: 

THEOREM 6: The only extensive measure & of the po- 

tential work of any chemical system is M -  K(E + P V - 

T S - £u N)+C, where K is an arbitrary unit con- o   c co c 

version constant while P , T and \i      denote the pro- o  o     co r 

perties P, T, and u of the system at the condition 

"o" when the system is in equilibrium with its envi- 

ronment — the constant C being an arbitrary scale 

/ constant which is necessarily zero for any unconstrained 

chemical system. 

0 

PROOF:  Let the symbolMdenote any potential work 

measure of the third kind — as described in Require- 

ment No. 3 above. This requirement dictates that n 

must not change by any finite amount whenever a chemi- 

cal system varies between any two states which have no 

finite    departure from equilibrium with a given 

environment.  In other words, for all such variations, 

A?f must be zero to within all non-finite deviations 

such as non-finite second and higher order infinitesi- 

mals.  This implies that d/f must be zero for all 

a 

- 23 - 
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infinitesimal variations of this kind, since d#7A?^ 

approaches unity as A# approaches zero. And since W 

is a one-to-one mapping onto &  (for the same reason 

that M had to be a one-to-one mapping onto J' in the 

proof of Theorem 3) it follows that d&  is also zero 

for all such variations. Thus in view of the express- 

ion for <y in Theorem 5, we have for all variations of 

this kind (for any given environment), 

d# = KdE + KydV + KgdS + gKN(,dNc = 0 (6) 

Now for all such variations, the Gibbs expression 
(13, 30, 31, 32, 33, 39) d£ _ Tdg _ pdy + _ dN holds 

c c c 
(to within non-finite second order infinitesimals) — 

in view of the definition of a chemical system (Appen- 

dix A), and in compliance with the stipulation that 

for such variations the system has no finite de- 

parture from equilibrium.  Letting the subscript "o" 

denote the condition of the system when it is in equi- 

librium with its environment, the Gibbs expression for 

the system in this condition is, 

dE = T dS - P dV + Ey dN (7) 
O       O      C CO  c 

Equation (6) may be put into the form of equation (7) 

by dividing by the unit conversion constant K and 

transposing terms: 
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C 
dE =  - ±(KcdS + K„dV  +  IKM dN  ) (8) Kb V C   Nc     c 

Since the differentials dS, dV, and {dN } may be 

assigned arbitrarily, a comparison of equations (7) 

and (8) yields, 

KS 
- r - To (9) 

Kv 
K = Po (10) 

"IT* '»CO       cl,2 — n        (11) 

Substitution of Kc = - KT , K„ = KP , and KM = -Ku b        O   V     O        NC 

into the expression (from Theorem 5)^t = KE + K..V + 

KSS + ^KNcNc + C yields, 

c 
J1   =  K(E+PV-TS-Eu N)+C      (12) 
**■ O     O    C CO c 

It is shown in Appendix D that the constant C must 

have a fixed value independent of the given environ- 

ment.  C is therefore an arbitrary scale constant, 

which (as shown in Theorem 4) is necessarily zero for 
i 

any unconstrained chemical system.  Since both K and 

C are independent of the given environment, while 

the values of P , T , and {y „} serve to represent any o   o'      CO 

given environment, equation (12) applies whether or 

not the effect of the environment is held fixed — it 

being noted that P , T ,and y  are constants for any 
° O   O      CO 

!• 
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given environment, while they will be variables if the 

effect of the environment is varied. It follows that 

the only extensive measure >vof the potential work of 

any chemical system is jj/= K(E + P V - T S - Zu N )+C J J ^*» o     o    C CO c 

where K is a unit conversion constant as shown in 

Theorem 5, and C is an arbitrary scale constant which 

is necessarily zero for any unconstrained chemical 

system. Theorem 6 is thereby proven. 

Theorem 6 serves to demonstrate that the environment's in- 

fluence upon the potential work of any chemical system is 

totally reflected by the system's intensive properties T, 

P, and {u.,} at the condition "o" when the system is at equi- 

librium with the environment. We may now proceed to con- 

siderations of the uniqueness of essergy. 

•**-i',Äa s 
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THE UNIQUENESS OF ESSERGY 

Theorem 6 enables us to demonstrate the uniqueness 

of essergy as a measure of potential work for chemical sys- 

tems. We begin with the following theorem: 

THEOREM 7: The only consistent extensive measure of 

the potential work of any chemical system is the essergy 

function C. 

PROOF:  Since the constant K which appears in Theorem 

6 may be regarded as a unit conversion constant, it 

will be recognized that KE represents energy.  Letting 

E' denote energy in different units, we have, E' = KE. 

The terms  PV, TS,  and  i\x N  } must all have units of c c 

energy so that we likewise have P* = KP, S' = KS, and 

{y' = Ku }, since V, T, and{N } are not normally expressed 

in units related to energy (if S were to be dimen- 

sionless, then we would write T' = KT instead of S'=KS). 

Letting it be understood that the symbols E, P, S, 

and {u } used in equation (1) correspond to E', P', 

S', and {y'} (or T in equation (1) corresponds to T' 

in ease S is dimensionless), we may drop the primes — 

from whence Theorem 6 states that E+PV-TS- o    o 

£y N + C is the only extensive measure of the poten- 

tial work of a chemical system. 

- 27 - 
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Or in other words, the only extensive measure 

of the potential work of a chemical system is the 

essergy function c. as defined in equation (E-l) of 

Appendix E — it being recalled that C is necessarily 

zero for any unconstrained chemical system. This means 

that in actuality there are no other consistent exten- 

sive measures of the potential work of a chemical system 

— i.e., any apparent "other" extensive measure must be 

a special case of c- ,  and any appearance of its being 

something other than o must be due to superfluities or 

inconsistencies (or both).  One thereby concludes that 

the essergy function c is the only consistent extensive 

measure of the potential work of any chemical system. 

As indicated in the first footnote on page 95, one may 

have a set of constrained chemical systems which is not it- 

self a chemical system as defined in Appendix A.  For such 

sets of chemical systems, the following theorem applies: 

THEOREM 8: The only consistent extensive measure of 

the potential work of chemical systems is the essergy 

function C . 

PROOF: The extensive measured of the potential work 

of any set of chemical systems is by definition given 

by & - L$f , where 4?   denotes the extensive measure 

<y for the r'th chemical system. Thus in view of 

'..«l+M.;- 
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Theorem 7, M is given by ECE +P V -T S -Zu  N +C ), r r or r or r c cor er r 

which is identical to the essergy £  for such a set as 

defined by equation (E-2) of Appendix E. Hence the 

theorem. 

The following theorem serves to complete the demonstration 

of the consistency and uniaueness of essergy as a measure of 

the potential work of chemical systems: 

THEOREM 9:  Essergy is the only consistent measure of 

the potential work of chemical systems. 

PROOF: Any consistent i\easureo£/of the potential 
_ 

work of chemical systems must be a one-to-one mapping 
i 

onto the essergy function O , for otherwise Ju would 

not consistently measure the same thermodynamic pro- 

perty which o measures — and in that case, in view of 

Requirement 2 and Theorem 8, Ju would not be a consis- 
I 
* tent measure of the potential work of chemical systems. 
I 

After the manner of the quantity temperature (it being 

recalled that any one-to-one mapping onto the absol- 

ute temperature is itself an example of temperature — 

(31 32 33 39) on some particular scale of temperature),   '  '  ' 

all such one-to-one mappings onto C  are specific 

examples of the quantity, essergy, by definition 

(Appendix E).  It follows that any consistent measure 

Jo of  the potential work of chemical systems must be a 
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specific example of the quantity, essergy. Or in 

other words, essergy is the only consistent measure of 

12 
the potential work of chemical systems. 

In order to complete the proof given in this paper, the 

potential work of processes will now be considered: 

THEOREM 10: Essergy is the only consistent measure 

of potential work (for chemical systems). 

PROOF: As defined on page 14, the potential work of 
j 

any process must admit of a measure which is equal to 

the net decrease in potential work which the process f 

alone necessarily causes in the systems involved. Thus 

any consistent measure of the potential work of any 

process must (in view of Theorem 8) be a one-to-one 

mapping onto the net decrease -A£ in the essergy 

which the process alone necessarily causes in the chemi- 

cal systems involved.  Since any such one-to-one map- 

ping onto an essergy change A£ (or -A£ ) is itself a 

13 specific example of the quantity, essergy  , it follows 

12 The meaning of the phrase "essergy is the onlji consistent 
measure" is intended to be synonymous with the phrase 
"any consistent measure must be a specific example of 
essergy". 

13 After the manner of the quantity, energy (it being noted 
that any energy change AE (or -AE) is itself a specific 
example of energy — e.g. , an energy increase AE consti- 
tutes energy which is transferred into the system), any 
essergy change A£ (or -A£ ) is itself a specific example 
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that for chemical systems, any consistent measure of 

the potential work of any process must be a specific 

example of essergy. Or in other words, essergy is 

the only consistent measure of potential work for pro- 

12 
cesses in chemical systems  . And since (as indica- 

ted on page 14) the unqualified term "potential work" 

denotes the potential work of systems and/or processes, 

it follows (in view of Theorem 9) that essergy is the 

only consistent measure of potential work (for chemi- 

cal systems). 

Theorems 2 through 10 may be extended to apply to general- 

ized chemical systems — thereby including effects of elec- 

tricity, magnetism, gravity, surface tension, stress, and 

nuclear considerations.  Before doing this however, it may 

be of interest to discuss how for chemical systems essergy 

includes previous measures of potential work as special 

cases. 

of essergy by definition (Appendix E). And after the 
manner of the quantity, temperature (it being recalled 
that any one-to-one mapping onto an absolute temperature 
change AT is itself a specific example of temperature — 
on some particular scale of temperature)(31»32,33,39) 
any one-to-one mapping onto the essergy A£ is itself 
a specific example of essergy by definition (Appendix 
E).  It should be pointed out here that changes such as 
AT and A£ are considered to start from a particular 
state, so that any one-to-one mappings onto AT and A£ 
coincide with the corresponding one-to-one mappings onto 
T and £ respectively. 
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A DISCUSSION OF SOME SPECIAL CASES OF ESSERGY 

Theorem 10 dictates that for chemical systems, all 

previous measures of potential work must be special cases 

of essergy — for otherwise they would in view of this 

theorem have to be inconsistent.  Let us first consider the 

availability defined by equation (2): 

1. AVAILABILITY: 

The availability defined by equation (2) applies to 

closed systems.  Since each N is constant for a closed 

system, we have N = N  from whence £u N = Eu N J ' c        co crco c      c co co 

E„ + P V    - T S    in view of the Gibbs expression o        o o        c o r 

E =  PV - TS +  Zu N  .     Substitution of this result into equa- 

tion  (1) yields 

£   =  E + P V  - T S  -   (E^  +  P V    -  TS)        (13: '-* o o ooooo 

A comparison of equations (2) and (13) shows that avail- 

ability is a special case of essergy.  As for the medium 

which is mentioned in the definition of availability, one 

may for any given environment always arbitrarily introduce 

a medium of fixed P, T, and {y } into essergy considera- c 

tions — such mediums being discussed in detail in Reference | 

12. _ That such a medium is actually superfluous is apparent 

from the fact that no mention of a medium appears in the 

- 32 - 
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definition of potential work (page 13). With respect to a 

stable medium of positive absolute temperature, the essergy 

£ of an unconstrained system will (as shown in detail in 

Reference 12) always be the minumum shaft work required to 

create the system from the medium — or alternately, the 

maximum work which the system can produce via interaction 

with the medium.  In this regard, it will be recalled from 
i 

page 12 that the work produced by a system or process is 

understood to be work which can always be completely con- 
< 

verted into mechanical shaft work. The distinction between 

work produced by a system vs. work done by a system will be 

discussed in the following section. 

i~ Let us first, however, make use of the arbitrary scale 

constant C which may be added to the essergy of a closed 

system (equation E-l of Appendix E). For a closed system 

in a given environment, Eu N is constant, so that C may 

arbitrarily be set equal to £u N in equation (E-l) to yield 

Keenan's    availability function E + P V - T S: o o 

£    =E+PV-TS (14) *■" o o 

Thus the availability function E+PV-TSis  seen to be a o    o 

special case of the essergy c of a closed system. As pointed 

out by Keenan(  , the availability E + P V ■ T S - (E + J 0     0       0 

P V - T S ) is equal to the amount by which the availability o o   o o 

function E + P V - T S exceeds its value (E+PV-TS) = o     o o    o o 
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E    +PV-TS    at the condition "o" when the system is o        o o      o o * 
at equilibrium with its environment. 

2.  AVAILABLE WORK 

Gibbs at one point states in effect that any supply 

of work may be transformed into any other via. mechanical 

14 and thermodynamic devices, supposed theoretically perfect 

It will be convenient to refer to the general condition 

under which this statement holds as being the "Gibbs condi- 

tion".  In Figures 1 and 2, a situation is illustrated for 

which the Gibbs condition need not apply. The point is 

that the work P AV which system A does upon system B cannot 

be harnessed through a shaft if the temperature T and 

pressure P are everywhere constant at T and P respect- 

ively. Or in other words, for this case we have a supply 

of work which cannot be transformed into any other so that 

the Gibbs condition need not apply. 

This situation is analyzed in greater detail on pages 

49 and 70, where it is shown that whenever the Gibbs 

14 Gibbs' complete statement (Ref. 13, third sentence of 
first page) is, "For by mechanical and thermodynamic 
contrivances, supposed theoretically perfect, any supply 
of work and heat may be transformed into any other which 
does not differ from it either in the amount of work and 
heat taken together or in the value of the integral /-i»e-." 
If one considers supplies of work only, then this state- 
ment says in effect that by mechanical and thermodyna- 
mic devices, supposed theoretically perfect, any supply 
of work may be transformed into any other. 
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FIGURE 1:  A SITUATION FOR WHICH THE GIBBS CONDITION NEED 
NOT APPLY.  Systems A and B are chemical systems which con- 
tain liquid and vapor of a given substance oriented in a 
manner consistent with the absence of gravity. The tem- 
perature T and pressure P of systems A and B and the sur- 
roundings are stipulated to be everywhere fixed at T and 
P .  Even though T and P are everywhere fixed, heat may 
f?ow from B to A and evaporate some of the liquid in A 
while an equal mass of vapor condenses in B — resulting in 
the movement of the partition shown in Fig. 2 while T and P 
remain everywhere constant. 

VAPOR 

VZZZL -/ 77..  -'■'->/ '. /'''■■'.■■' -' 

FIGURE 2.  THE SYSTEM OF FIG. 1 WITH THE PARTITION MOVED 
WHILE T AND P REMAIN EVERYWHERE CONSTANT.  The amount of 
work done by system A upon system B due to the movement of 
this partition through a volume AV is equal to P AV. With 
T and F stipulated to be everywhere constant at T and P 
at all times, there will be no way to harness this work 
through a shaft, so that for this case, the Gibbb' condi- 
tion need not apply. 
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condition is applied, the equilibrium pressure P must 

be set equal to zero, in which case the work produced by 

a system will coincide with the work done by a system. 

Applying the Gibbs condition to equation (14), we set 

P = 0 to obtain o 

<£ = E - TQS (15) 

Hatsopoulous and Keenan have called the function £ - 

E - T S + C the "available work" (the arbitrary constant 

C being added in view of the arbitrariness of the scale 

constant C in equation (E-l). They have used this function 

as the basis for deriving entropy without direct a priori 
I 

refer« ice to heat.  In view of equation (15) and the arbi- 

trariness of the constant C, we see that the available 

work E - T S + C is a special case of the essergycS. 

3.  EXERGY 

The potential work for flows of matter and energy 

constitute examples of the potential work of processes. 

| Fex1 instance, the Carnot expression (1 - T /T)dQ is an 

example of the potential work of a process — it being 

observed that (1 - T /T)dQ represents a necessary de- 

crease of potential work in the system from which dQ 

flows, if we consider the process dQ alone.  Hence in view 

of Theorem 10, the quantity (1 - T /T)dQ is a special 

i    ; 
I   • ■ 

.;' 
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example of essergy — as is illustrated by the derivation 

of equation (4).  In other words, (1 - T /T)dQ is the amount 

of essergy which flows into a system as a result of a flow 

of heat dQ at temperature T.  Similarly, as illustrated 

on page 9, the mechanical shaft work -dW is xae amount of 

essergy which flows ir.to a system as a result of this in- 

crement of shaft work. For the case of material flowing 

across a stationary boundary, the essergy which flows may 

be found by differentiating equation (1) for a given en- 

vironment to obtain 

d<S = dE - T dS - Eu dN (16) 
o     C CO  c 

it being noted that dV = 0 when the only effect upon a 

system is the flow of material across a stationary boundary. 

The term "flow" is meant to exclude all diffusion effects, 

so that for the homogeneous flow of matter, one has 

dE = HdN and dS = SdN via the definition of flow — where 

N is the quantity of matter which flows, N = EN , while 

H is the enthalpy H = E + PV (it being noted that ft de- 

notes the enthalpy h per unit of material, while S denotes 

the entropy S per unit of material).  Defining the quantity 

The notion of a "quantity fraction" is in keeping with 
the notation of Gibbs'13;^ wh0 expressed his general 
relationships in terms of units of matter which could 
be arbitrarily interpreted as mass units, mols, mole- 
cules j or any other material unit which might be suitable 
for the given circumstances. 
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fraction x by dN = x dN, one may substitute the flow 

relationships dE = HdN and dS = SdN into equation (16) 
I. 

to obtain the following expression for the essergy d£, 

which flows with the homogeneous flow of matter across a 

stationary boundary: 

i 
d£ = (ft - T & - Eu x )dN (17) 

| O    C CO c 
I 

For the flow of an amount N of material, the essergy 

f   £f 
£  = /   d£ is given by, 

0 

• 

I 

£f = ;N  (ft - T I -  Eu x )dN« (18) 
ft        o   C CO c 

For steady flow, the values H, S, and {x } are constant so 

that equation (18) reduces to 

Xfs = H-TS-£y N (19) 
*•" o    CHCO c 

where <£ s denotes the value of <£,    which results for steady 

rfs flow.  In summary, the essergy Q,      represents the amount 

of essergy which flows across a stationary boundary as a 
_ 

result of the steady homogeneous flow of N units of matter. 
i - 

In view of the identity H = E + PV, a comparison of 

(5) 
equation (1) and (19) yields Keenan's relationship 

£fS = £ + (P - P0)V (20) 

where V represents the volume of material which crosses 

the boundary during the steady homogeneous flow.  Keenan 

■  •-.**,.; 
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derived this relationship for the case where N = N  in 
c    CO 

equation (19) so that Ju N = Ju N  = H - T S in view C CO C   C CO CO    o    o o 

of the Gibbs expression H = TS + EuN,.  Substitution of 

this result into equation (19) yields 

<f fs = H - T S - (H - T S ) (21) "-* O      o    o o 

Keenan   called this example of the essergy £  the "avail- 

(7) ability in steady flow", while Rant   has called it "exergy" 

— a term which has gained considerable usage  '  . A 

comparison of equations (13) and (21) yields the Keenan 

relationship, equation (20), in the manner first given by 

Keenan. 

f s In view of the identity H = E + PV, the essergy <£ 

in equation (21) is seen to be identical to the function 

exergy as given in Table 1 on page 8. Thus exergy is seen 

to be a special case of essergy.  However, the name "exergy" 

has been applied to other special cases of essergy as well. 

For example, the essergy (1 - T /T)dQ derived in equation 

(4) has been called by this name   .  In order to describe 

more comprehensively the scope of the terms "availability" 

and "exergy", it will be convenient to derive an essergy 

balance. One may begin by integrating equation (4) to 

obtain 

£* = /Q  L^£ dQ' (21') 

amminii«r rim n — 
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rü =  ^ where £q s  fc d£ with respect to equation (4).  For the 

case of the steady flow of heat Q at constant temperature 

T, equation (2l') reduces to 

T - T 
(f
q = -T—°-Q (22) 

When the only effect upon a system is an amount of wor1" dW, 

differentiation of equation (1) for a given environment 

yields, d£ = dE + P dV, since S and {N } are constant when 
J - o c 

the only effect is reversible work dW. Noting that dE = 

-dW for this case, we have 

d£ = P dV - dW (23) o 

rW 
Integration of equation (23) yields the essergy £ =  f    d£ 

which results from the transmission of an amount of work W: 

£W = PQAV - W (24) 

And finally, integration of equation (5) for a given 

environment yields 

fd =  T Sc        SC > 0 (25) 

d     c £^ Sc where £ and S denote - / d£ and / dS respectively — 

for equation (5). 

On the basis of equations (1), (18), (2l'), (24), 

and (25), one may set up an essergy balance as follows: 

d£   = gdfj + gd£§ + d(Sw- d£d (26) 



- 

*. 

,• 

c 

c 
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Here the subscript "b" denotes each particular homogeneous 

region b which is located on the boundary of the system. 

Thus for example, £d£S denotes the sum of the essergy 

flows dc* for each homogeneous region b of the boundary, 

while £d£, denotes the sum of the essergy flows d£ for 

each homogeneous stream b. As in any expression for a 

total differential «uch as dC , the independent differ- 

entials in equation (26) such as d£, and d£? may be evalu- 

ated by setting all the other independent differentials 

arbitrarily equal to zero.  In view of equations (4), 

(5), (17), and (23), one thereby obtains 

T^ - T 

5 
dt§ ■ -V-* dQ> 

bdNb (27) 

(28) 

(29) 

dSc  >  0 (30) 

d£w = P dV - dW o 

d£d = T dSC o - 

It is convenient to summarize this result in time 

derivative form via introducing the notation Y = dY/dt 

where Y is an arbitrary property and t denotes time.  In- 

troducing this notation into equation (26) through (30), 

one obtains the following essergy balance which applies to 

any open chemical system in any given environment in the 

absence of non-flow mass transport such as diffusion (a 

|—immmmi 
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more general essergy balance being given on page 70): 

rw  cd 

where   £?  * (Ö - T& - Jv x )N. b       o   c co c x 

T.   - T     . cq  _     b         o Q 
cb             Tb       ^b 

£w = POV - w 

o S     >  0 c - 

(31) 

(31a) 

(31b) 

(31c) 

(31d) 

and where from equation (1), 

•      * 
£ = E ♦ P0V - ToS - $ucoNc (31e) 

In words, equation (31) says that the net essergy 

(l£, + l£? + c ) being transferred into a system is either 

stored (£) or else dissipated (£ ) — it being noted that 

the net essergy input is by definition the excess of essergy 

entering the system over essergy leaving the system. 

For steady state systems, £ and V are zero, from whence 

equation (31) reduces to 

rd & ♦ fi-Sg ♦ £» - £a . o (32) 

where £., £8, and £ are given by equations (31a), (31b), 

and (31d) respectively, while equation (31c) reduces to 

£w - -w (32a) 
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Equation (32) corresponds to the balances of availability 

and exergy given by Keenan   and Bosnjakovic    — it 

being noted that they have written £.    in the limited 

form, equation (21), rather than the more general form, 

(6) 
equation (19). Keenan   also formulated a special case 

of equation (26) which corresponds to the special condi- 

tion u  = 0 for all c in equations (1) and (27) — this 
CO 

special condition having to be introduced since for an 

unconstrained system, the measure E + P V - T S would o    o 

otherwise violate Requirement 3 on page 13. Keenan wrote 

his balance expressions in the form of inequalities (i.e., 

d     c he never introduced the quantity <£ a T S ). 

Since the availability and exergy balances are special 

cases of the more general essergy balance, it is seen — 

in view of equations(13) and (21) — that both avail- 

ability and exergy are completely embraced as special cases 

of essergy. 

C 

4.  FREE ENERGY 

The Helmholtz free energy E - TS is known to be a 

(13 31 measure of potential work for isothermal processes  '  * 

32) For such a process, the only equilibrium value T of 

the temperature which can be reached is the constant 

temperature T — or in other words T = T .  Considering a 

closed system and stipulating that the Gibbs condition 
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applies (from whence P = 0) so that the essergy 6 is given 

(to within an arbitrary constant) by equation (15), we 

find by substituting T = T into equation (15), 

<f = E - TS (33) 

The Gibbs free energy E + PV - TS is known to be a 

measure of potential work for isothermal, isobaric pro- 

ds, 31, 32)        . ., „ 
cesses  '  '   . For such a process, T and P can o     o 

have only the values of the constant temperature T and 

constant pressure P respectively.  Substituting T = T 

and P s p into the closed-system essergy expression, equa- 

tion ('A), one obtains 

£ = E + PV - TS (34) 

In view of equations (33) and (34), the Helmholtz and Gibbs 

free energies are r.een to be special cases of the essergy 

f (40) function c,. As Legendre transforms of energy   , these 

two functions of course each have a separate meaning, and 

it is only when they are viewed as measures of potential 

work that they are special cases of essergy.  Similarly, 

the chemical potential y is a special case of essergy when 

u is regarded as being a measure of potential work, since 

in view of the Gibbs expression E = TS - PV + Zu N , 
WWW 

equation (34) may be written 

£ = £UCNC (35) 
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The Gibbs free energy also may be regarded as being 

a special case of the steady flow essergy c J f°r an 

isothermal process (T = T) with respect to the special 

condition u 

reduces to 
CO 

0 for all c, in which case equation (19) 

>fs = H - TS (36) 

or in view of the Gibbs expression H = TS + Eu N , * c c c 

<SfS - Polo (37) 

i 

C 

The other more common available-energy expressions 

— such as kinetic energy, gravitational energy, electri- 

cal energy, etc. — involve non-chemical effects, so that 

they will be considered after generalizing the proof of 

Theorem 10.  It may, however, first be of interest to in- 

vestigate the role played by the equilibrium pressure P . 

* "***"■"■■■" -'"" 'nf f 'riHiiniawiWWiftii.üiiL-i 
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SPATIAL ESSERGY 

-■   ! 

Before discussing spatial essergy, let us after Gibbs*13* 

set the constant C in equation (E-l) eque" to zero. The 

Gibbs convention is desirable because C in  necessarily 

zero for unconstrained systems — and inconsistencies would 

occur if one set C i  0 for a system which was only tempor- 

arily constrained, and fcr which the constraint (or con- 

straints) were to be removed later. Thus having used non- 

zero values of C in the preceding section to illustrate 

the generality of which the essergy function £ is capable, 

we will from this point on always refer to the essergy £ 

as though it were defined completely by equation (1) 

(for chemical systems). 

With this convention understood, the essergy £ has 

some characteristics which may be of interest.  First we 

note from equation (1) that £ must be zero when the system 

is at the equilibrium condition "o" in view of the Gibbs 

expression E = TS - PV + £ycNc. Next it should be pointed 

out that for stable equilibrium of a system with the en- 

vironment, £ is always greater than or equal to zero (for 

TQ > 0). This was first pointed out by Gibbs(13) \.ho 

•showed that for unstable equilibrium with the environ- 

ment, £ may be negative as well as positive. Demon- 

strations that £ > 0 for stable equilibrium with the 

environment (for TQ > 0) are also given in References (12) 

- i*6 - 
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and (11). Another way of illustrating £ > 0 is to sub- 

stitute the Gibbs expression dE = TdS - PdV + ZycdNc into 

the differential (for a given environment) of equation (1), 

d£ = dE + P dV - T dS - Ey„ dN to obtain for any equili- 
O       O     C CO  c J       * 

brium chemical system, 

d£ = (T-T )dS - (P-P )dV + L(y -u„„)dN      (38) 
O O      C  C  CO   c 

Integration of equation (38) yields for any chemical sys- 

tem at equilibrium, 

£ = / (T-To)ds + /°(p-Po)dV + g /(yc-yco)dNc (39) 
OS o 

where the limits of integration are the state "o" when the 

/"""        system is in equilibrium with its environment and the given 

equilibrium state "s".  For T > 0, each of these integrals 

must when evaluated in succession  be positive, in view of 

the well known relationships(13'3l>32,33)(fl)      > 0, 
3S V,{Nc} " 

16 The term "evaluated in succession" means that each inte- 
gral is evaluated while the contribution to each of 
the other integrals is held fixed — the integrals not 
yet evaluated being held at the value "zero" by staying 
on the "o" line (for example if for a closed system 
one were to evaluate /8(T-T )dS first, then one would 

S,P0 -   o    o 
integrate /   (T-T )dS' while the not-yet-evaluated 

S0,Po 
integral /°(P-P )dV remains at zero since P = P ). 

5 

:l o 

iiram n Dun ..«...',  . 
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0 3P 3y
c (rn-)      < 0, and (-rrr^) >  0 (where {N } indicates 

WS,{NC} "       ^c S,V,{N"} " c 

that all{N }except the one in the denominator are held 

constant).  Since each of the terms in equation (39) 

may always be positive for any given equilibrium state s 

(for stable equilibrium with the environment and T > 0), 

it follows that £ > 0. 

It is interesting to observe that in view of equation 

(39), the essergy c may be evaluated by finding the area 

between the curve and the "o" line on such conventional 

graphs as T-S and P-V diagrams.  It may also be of interest 

to observe that the following specific form of equation 

(29^may be obtained by substituting the Gibbs expression 

E = TS - PV + gycNc into equation (1): 

£   --   (T - To)S - (P- Po)V + §(vc - uco)Nc     (40) 

In order to investigate the phenomenon of spatial 

essergy, we first note that the essergy <£ of a volume V 

of empty space is 

£v = P0V (41) 

since E, S, and {N } are all zero for a vacuum (since for c 

chemical systems,vacuums can h-:ve no energy) — from whence 

equation (1) reduces to <£ = P V.  In this regard, we nott 

that P V is the work required to push back a medium of 

pressure P to form the empty space V. The essergy £ of 

HU. »vfc.hK**»,^.»»^*,-. 
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G 
the medium remains at the value, zero, as it is pushed 

back since a medium of constant temperature T = T , pres- 

sure P = P , and potentials y„ = u  always has no finite 

potential work (as has been shown rigorously in Ref. 14). 

The nature of the spatial essergy <£ may be illus- 

trated with reference to Fig. 3. Here, as the volume V. 

of system A increases by an amount AV, the essergy P V. 

of system A increases by P AV while the essergy P-VB of 

system 3 decreases by this same amount because the volume 

VB of system B decreases by the same volume increment AV. 

Neither system A nor system B has any energy (since for 

chemical systems, vacuums can have no energy), and neither 

r~ of systems A and B do any work upon each other — and yet 

it is clear that potential work is transferred from B to 

A. 

The effect of spatial essergy may be studied further 

by analyzing the situation depicted in Figures 1 and 2. 

Here, we find that the amount of work W = P AV is pre- o 

cisely equal to the required increase in the spatial 

essergy £    (i.e., A£  = P AV), from whence the essergy 

transferred between systems A and B is zero (as may be 

verified by equation 24).  It follows from equation (24) 

that the work W will be transformable into shaft work if 

and only if P = 0.  In other words, the Gibbs condition 

applies if and only if the spatial essergy P V is zero. 

(j The general implications of this result are discussed on 

page 70. 
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FIGURE 3:  A VACUUM IMMERSED IN A MEDIUM OF PRESSURE P = P0, 
THE TWO PARTS A AND B BEING SEPARATED BY A MOVABLE PARTITION. 
As the partition moves to the right, system A does no work 
upon system B — and yet this movement causes the essergy 
of system A to increase by an amount PQAV at the expense of 
an equal essergy decrease of system B. 

..... 
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OK GENERALIZING THE PROOF 

As a means for generalizing the proof of Theorem 10, 

it will be convenient to introduce the following general- 

ization of the Gibbs expression dE = TdS - PdV + Eu dN 

(30 31) 
aftsr the manner of Tribus  *   and Hatsopoulos and 

Keenan(33^6): 

dE - TdS + ZFkdXk + gucdNc (H2) 

Here the anergy E is understood to be the total energy — 

including kinetic energy, gravitational energy, electrical 

energy, etc. The parameters X, represent variables by 

which the energy may be varied while the entropy S and com- 

ponents {N } remaii fixed.  Examples of X, include the 

scalar components of the position of a system in a field 

of force (gravitational, electrical, etc.), the scalar 

components of the strength of a field of force (electri- 

cal, magnetic, etc.), the area of a surface film, the length 

of a stressed body, the angular displacement of a body 

under shearing stress, etc. The parameters F, are defined 

by 3E 
Fk ~=   ^S.CN^.CX"} U3) 

where {XT} denotes the constancy of all X, except the one 

in the denominator.  The total potentials u are defined 

~r 
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while the absolute temperature T is defined by 

It is convenient to include the volume V as being 

one of the variables {X,} in equation (42). Let us thereby 

separate V out of the set {X. } by writing {X,} = V,{Xj}, 

where Xj  represents any independent X. except the volume 

V. Using this notation, a generalized chemical system 

will now be defined as follows: 

A generalized chemical system is by definition any 

thermodynamic system which has the following four 

characteristics: 

a. When the system is at equilibrium with its 

environment, its equilibrium state is uniquely 

determined by that state's energy E, volume 

V, components {N } and work variables {Xj}  — 

whence, for constant {X,}, the expression 

dE = TdS - PdV + Su dN is stipulated to apply 

17 (at equilibrium with the environment) 

b. All properties of the system are differenti- 

able functions of any set of independent 

17 The generalized pressure P is defined by 

P =  r9E) P - _(W)S,{Nc},{XI} 
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variables whose values uniquely describe the 

state of the system. 

c. The system has no locking constraints (App- 

endix 4) — it thus being stipulated that while 

the system is not interacting with its envir- 

onment, any given state can be reached from 

any other state which has the same values of 

E, V, S, {Nc>, and iXj). 

d. Any two systems with the same values of E, V, 

S, (N } andfe-} are always free to assume 

identical states. 

Comparing this definition with the definition of an 

ordinary chemical system in Appendix A, one will see (in 

view of the footnote on page 77) that with the {X,} held 

constant, Characteristics a, b, c, and d are identical for 

these two definitions. It follows that with the exception 

of the considerations of Appendix D (as mentioned in the 

footnote on page 77), the proof of Theorsms 1 through 10 

remains completely unchanged — under the stipulation 

that the variables {XT} are all held constant. The con- 

siderations of Appendix D may be taken into account in a 

manner such as the following: 

First we note from Appendix B that since the constant 

C in equation (B-8) is zero for an unconstrained chemical 
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system, it is also zero for any generalized chemical sys- 

tem with E, V, S, and {N } unconstrained (but with {Xj} 

held constant) — so that equation (12) reduces to 

«# = K(E + P V - T S - Ju N ) (46) 
»«■ o     O    C CO c 

As pointed out in the paragraph preceding equation (6), 

dJL  is zero for all infinitesimal variations of the type 

considered in Requirement 3.     Differentiation of 

equation (46) with {X,} constant and d& = 0 yields 

dE = T dS - P dV + Eu„ <IN + SdT - VdP^ + £N dy„rt O       O     C CO  C       O       O   C C  CO 

(47) 

Equation (47) implies that when a generalized chemical 

system is at equilibrium with its environment, the follow- 

ing expression holds (for constant {X,}): 

dE = TdS - PdV + §ycdNc + SdT - VdP + gNcdyc  (48) 

Equation (48) may be rewritten in the form 

dE = d(TS - PV + §VCNC) 

Integration of equation (49) yields 

E = TS - PV + gycNc + B (50) 

where B is the arbitrary integration constant (i.e., con- 

stant for fixed {Xj}). For systems with {X,} fixed but 

(49) 
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with E, V, S, and {N } unconstrained, the constant B may 
w 

be determined to be zero by noting that the energy E must 

be zero for a state of zero volume, entropy and matter 

(i.e., for a state where V, S, and {N„} are all zero). 

Hence for any system unconstrained in this manner, equa- 

tion (50) reduces to 

E = TS - PV + Zu N (51) 
www 

Since equation (51) would result regardless of the 

choice of the fixed values of {X.,}, it follows that this 

relationship remains valid when the work variables XT ara 

allowed to vary.  Consequently, equation (51) applies to 

/~        any generalized chemical system (at equilibrium with its 

environment) for which none of the variables E, V, S, or 

{N } are constrained.  It follows via differentiation of c 

equation (51) that equation (48) applies to any general- 

ized chemical system (at equilibrium with the environ- 

ment) with the variables {X,} allowed to vary — it being 

noted that for constrained systems (such as closed systems, 

constant volume systems, etc.), certain terms in equation 

(48) (such as y_dN , PdV, etc.) may be zero. And finally, 
w   w 

it follows chat equation (47) also applies to any general- 

ized chemical system (at equilibrium with its environment) 

with {Xj} allowed to vary — whence dC must be zero in 

equation D-2 of Appendix D. Thus the considerations of 

i 
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Appendix D are satisfied, so th-vt the proof of Theorems 1 

through 10 remains valid when the proof is extended to 

generalized chemical systems — with {X-} held constant as 

the system comes to equilibrium with its environment (since 

as mentioned in the footnote on page 77, the considerations 

of Appendix D are the only part of the proof affected by 

using the more general version of Characteristic "a" which 

appears on page 52). 

In order to complete the extension of the proof to 

generalized chemical systems, we must determine the effect 

(upon P , T , {u } and K) of varying the quantities {X.} 

as the system comes to equilibrium with its environment. 

First it may be observed (from Characteristic "a" of the 

definition of a generalized chemical system) that while 

equation (48) has been shown to be true for any generalized 

chemical system with {X-j-} allowed to vary, it is necessar- 

ily valid only for the condition when the system is in equi- 

librium with its environment. For this condition, equation 

(42) may be rewritten in the following form: 

dE = TdS - PdV + EFTdXT + £y dN (52) j I  I  c c c 

Combining equations (48) and (52), one obtains the follow- 

ing general form of the Gibbs-Duhem equation: 

VdP + ZF,dX, = SdT + EN dp (53) I I  I        c c  c 
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Since equation (53) contains one less independent vari- 

able than does equation (52), it follows that one may vary 

the volume V in equation (52) while holding each of the 

variables P, T, {y }, and {XT} constant.  Since E, S, and 

{N } will for this process be dependent variables, one may 

integrate equation (52) along the resulting path to obtain 

(13) equation (51) (in the exact manner that Gibbs    inte- 

grates dE = TdS - PdV + |WcdNc to obtain E = TS - PV + £uc
N
c> 

Since for such a process the system stays at a constant 

intensive state, it follows that the work variables {X,} 

must all be intensive. 

The intensive nature of the work variables X~  may be 

illustrated by considering the flow of material across a 

stationary control boundary such as that shown in Figure 4. 

Here, matter flows from system A into system B across the 

stationary control boundary C.  If it is stipulated that 

this flow is the only interaction which either of the sys- 

tems has with its own surroundings, then all of the work 

variables {X, } must be held constant in compliance with the 

18 fact that no work is done upon either of these systems. 

Now suppose the systems were to be moving with a constant 

transverse velocity, such that the control boundary C 

remains stationary relative to the flow as shown in Figure 

18 
In the absence of work, the variables {X, } are required 
to be constant in order to comply with tne definition of 
the total potential y  (equation 44), which corresponds 
to an increase in energy (per unit increase of component 
c) with the work variables {X, } all held constant. 
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FIGURE 4:  FLOW OF MATTER ACROSS A STATIONARY CONTROL 
BOUNDARY. Matter flows from A to B across the stationary 
control boundary C, it being stipulated that this flow is 
the only interaction which either of the systems has with 
its own surroundir.gs. 



wwtßp&f" .,«.,._. » 

i ; 

c 
- 59 - 

5 — it again being stipulated that this flow is the only 

interaction affecting either of these systems. If the ex- 

tensive quantity, scalar momentum (i.e., a scalar component 

of momentum), were to be chosen as a work variable for 

kinetic energy, then the velocities of systems A and B 

would have to vary as shown in Figure 6. This follows since 

18 
the required constancy  of the momentum of system A would 

force that system to increase in velocity in order to offset 

its loss of mass and thus maintain the required constancy 

of its momentum. Since this situation violates our stipu- 

lation that the flow of matter is the only interaction 

affecting either of systems A and B, it is seen that the 

extensive quantity, momentum, is not a suitable work vari- 

able for open systems. On the other hand, the intensive 

quantity, scalar velocity (i.e., a scalar component of velo- 

city) is a suitable work variable, since the constancy of the 

velocities of A and B reflect the absence of work without 

upsetting the flow picture. 

Similar difficulties have been found to arise with 
! 

respect to open systems when other extensive quantities 
| 

have been tried out as tentative work variables XT.  How- 

ever, a complete study of these would carry us far beyond 

i the scope of this thesis, and must be left to some future 

paper. Here it will only be pointed out that such work 

, variables as the scalar components of position in a force 

C 



»*»fsnf»fag«« 4P 

- 60 - 

■« p 

v 

h 

i 

FIGURE 5:  THE SYSTEM OF FIGURE 4 MOVING WITH A CONSTANT 
TRANSVERSE VELOCITY v.  The control boundary C remains 
stationary relative to the flow of matter — it again 
being stipulated that this flow is the only interaction 
which either of the systems has with its own surroundings 

•■■■■■■ v 
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c 

B 

c 1_ B 

FIGURE 6:  THE SYSTEM OF FIGURE 5 WITH MOMENTUM AS A WORK 
VARIABLE. With the momentums of A and B required to be 
fixed, the velocity of A must increase in order to offset 
A's loss of mass, while the velocity of B must decrease in 
order to offset B's gain in mass. 

C 
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field and the scalar components of the field strength are 

intensive quantities which cause no difficulty with open 

systems. It should also be mentioned with regards to stress 

and surface tension that such extensive work variables as 

length, width, and area are not independent of the volume 

V of the same system (and thus they may appear as independent 

Xfc if and only if the volume V is eliminated via the de- 

pendency) — so that certain affects of stress and surface 

tension might perhaps sometimes be included in the general- 

ized pressure P as defined in footnote 17 on page 52. 

Having determined via equations (52) and (53) that the 

work variables {X,} are all intensive, we may now use these 

equations to determine the effect of varying the {Xy}. 

Since as shown above, Theorems 1 through 10 are valid for 

fixed {X,}, we have from Theorem 6 for any given values of 

{Xj}: 

& = K(E + P V - T S - Eu  N ) + C (54) 
O     O    C CO c 

where K is an arbitrary unit conversion constant while 

C is an arbitrary scale constant which must be zero for 

anv system where E, V, S, and {N } are unconstrained. The 

effect of varying the X, may he assessed by considering 

two systems A and B, each of which are at equilibrium with 

an intermediate system C, as shown in Figure 7.  Now let 

energy pass from A to B while all variables {X,} and com- 

ponents {N } remain constant for all three systems, and S 
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( 

FIGURE 7:  TWO GENERALIZED CHEMICAL SYSTEMS AT EQUILIBRIUM 
WITH AN INTERMEDIATE GENERALIZED CHEMICAL SYSTEM.  Systems 
A and B are both stipulated to be at equilibrium with the 
intermediate system C.  Energy and matter may pass between 
A and B without affecting the state of C, while volume 
cannot. 
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and E remain constant for system C. Since all three systems 

are at equilibrium with each other and thsy are not inter- 

acting with any other systems, the total entropy must be 

a maximum, from whence 

dSA + dSß = Ü (55) 

since S is constant for system C. Applying equation (52) 

to each of systems A and B for this process, one obtains 

dEA = TAdSA (56) 

dEB = TBdSB (57) 

Substitution of (56) and (57) into (55) yields 

dEA  dEn 
A  + -JL  = 0 (58) 

lA   *B 

And since dEß = -dE-., 

(ji - ^)dEA =0 (59) 
A   B 

dEA is arbitrary, so that (m  m—) is zero, from whence 
A   B 

TA = TB (60) 

Since matter may also pass between A and B without 

affecting the state of C, one finds in a similar fashion, 

for each component c, 

ycA = ycB      c = 1'2'3  n     (61) 
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As has been pointed out by Keenan and Hatsopouios '  , 

(13) equation (61) is in agreement with Gibbs    equation (234) 

— it being noted that the total potential u defined by 

equation (44) is (in non-relativistic considerations   ) 

equal to the sum of the Gibbs chemical potential plus an 

energy term — since Gibbs defined his chemical potentials 

with respect to the internal energy rather than the total 

energy. 

Volume, however, may not be transferred between A and 

B without affecting the state of C, (it being stipulated 

that A, B, and C are not interacting with the surroundings) 

since the position of at least some part of C will change — 

( whence C will interact with any force field which applies 

(such as gravity). Thus one cannot write P. = Pß. In- 

stead, substitution of the equilibrium conditions dT = 0 

and du = 0 (which result from equations (60) and (61)) 

into equation (53) yields the following equilibrium condi- 

tion: 

VdP + ZFTdXT =0 (62) 
I I I 

Equation (62) shows that the pressure P must vary with 

.19 {Xj}  — in agreement with Pascal's law 

19 This agreement with Pascal's law may be manifested by 
holding all Xj constant except the height z in a gravi- 
tational field, whence equation (62) reduces to VdP 
-mgdz, it being noted from equation (43) that Fj = mg, 
where m 5 mass and g = acceleration of gravity.  It may 

-^ also be of interest (especially with respect to systems 
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In view of equations (60), (61) and (62), it is seen 

that at equilibrium the constants T and {y } do not vary 
^ O        CO 

with respect to position, whereas the pressure P does vary 

in accordance with equation (62) — it being noted that each 

XT may vary with respect to position.  If a system moves 

upon coming to equilibrium, it may come to a different value 

of P than that which appears in equation (54). The value 

of P which appears in (54) corresponds to the pressure 

P-. of the region of space occupied by the system when that 

region has come to equilibrium with the environment — at 

which time the system need no longer occupy that region. 

Thus to account for variations in the X,, the pressure P 

in equation (54) must be replaced by the pressure P-, so that 

equation (54) becomes for the general case, 

& -  K(E + PnV - T S - lu N ) + C        (63) 
**»"■ D     O    C CO c 

The constant C is zero for any unconstrained system (since 

as shown by equation (46), C is zero for any given {X,} 

when the variables E, V, S, and {N } are not constrained). 

And since the considerations of Appendix D are satisfied 

of very large vertical extent) to observe that the gener- 
alized pressure P (defined in Footnote 17) is related to 
the generalized pressures Pr or the parts r of the system 
by p = r

PrVr/V where v = r
vr* In this re8ard it wil1 be 

noted that with T and {y ? held constant, any variation 
of V which is accompanieS by a change in P will also be 
accompanied by a change in {Xj} via equation (62) — so 
that such a variation is not an independent variation of 
the volume V. 
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c 
with {Xj} allowed to vary (as shown above in the paragraph 

following equation (51)), the constant C for constrained 

systems is independent of {X,.} — so that C is completely 

independent of the given environment, whence C is an arbi- 

trary scale constant whose value must be zero for uncon- 

strained systems. And finally, the constant K is also in- 

dependent of {Xj}   (since one of the systems of Appendix C 

— say system B — could always have {X.} fixed, and the 

selection of differing values of {X,.} for the other system 

would not alter equations C-4, C-5, C-6, and C-7), so 

■ 

i 
i 

4 

# 
: 

c 

c 

that K continues to be a unit conversion constant with {X,} 

allowed to vary.  It follows from these considerations that 

with equation (63) replacing equation (12), Theorem 6 applies 

to any generalized chemical system whether or not {X_}may 

vary. 

A comparison of equation (63) and equation (E-3) of 

Appendix E shows that Theorem 7 applies in general to gen- 

eralized chemical systems. The proof of Theorem 8 follows 

in view of equation (E-4) of Appendix U, while the proofs 

of Theorems 9 and 10 remain completely unchanged.  It is 

thereby to be concluded that essergy is the only consistent 

measure of potential work for generalized chemical systems. 

Still further generalizations of the proof may be made, 

but they are beyond the scope of this thesis. Such general- 

izations would include considerations of locking systems 

I    IBMM» 
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(page 16) and a covariant relativistic formulation. In 

this regard, it should be mentioned that certain relativis- 

tic considerations are automatically satisfied by a gener- 

alized chemical system — in view of the conclusions of 

Hatsopoulos and Keenan   .  It should also be pointed out 

that chemical reaction considerations are completely in- 

cluded in the essergy of generalized chemical systems as 

well as chemical systems — in view of the treatment given 

in Note 2 of Appendix A. 
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ON THE GIBBS CONDITION 

As discussed above at the beginning of the section on 

spatial essergy, we will always assume that C = 0 in 

equations (E-l), (E-2), (E-3), and (E-4), unless otherwise 

specified. We thereby write 

£ ■ E ♦ PnV - T S - Zu N (64) 
*■* DOC CO c 

Noting from equation (62) that VdPD =-EFIodXI, differentia- 

tion of equation (64) for any given environment yields 

(noting that PD is variable) 

d£,   = dE + PndV - T dS -  £u    dN    -  IF, dX, (65) 
D O CCOCjlOl 

If the only effect upon a system is a work effect dW, then 

dE = -dW while dS = 0 and (dN^ = 0} so that equation (65) 

reduces to the following expression for d£w (where d£"w = 

d£ for this case): 

d£W = PDdV - SFjo^Xj - dW (66) 

or per unit of time, 

£w = PDV - EF^Xj - W (67) 

Thus for generalized chemical systems, equation (31c) on 

page 42 must be generalized to the form given by equation 

(67). A general form of the open system essergy balance, 

equation (31) must include the non-flow transport of 
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m 

matter <£.n — so that a more general essergy balance is, 

£  = sft + & + tfS + £w - £d (68) 
^   b b  b o      b b 

• * £       * 

where £w is given by equation (67), while £., <£?, and 

£ are given by equations (31a), (31b), and (31d) respect- 

ively — it being noted that the enthalpy H in equation 

(31a) includes all the energy, such as kinetic and poten- 

tial energy. The non-flow transport terms £? are found 

from equation (65) in the manner of the derivation of equa- 

tion (31a). 

In view of equation (66), the Gibbs condition (pages 

34 and 49) will not be satisfied unless PD = 0, for one 

may always hold all X, constant, so that d<Sw = PDdV - dW, 

from whence the work dW is not completely transformable 

into shaft work if P~ t  0. On the other hand, if PD = 0, 

then dPD = 0 so that from equation (62), SPJ^XJ = 0, from 

whence equation (66) reduces to d£.  = -dW.  It follows 

that the Gibbs condition applies if and only if the dis- 

placement pressure P~ is identically zero. 

It is thus seen that applying the Gibbs condition 

coincides identically with considering the spatial essergy 

PßV to be zero. This corresponds to the conventional view 

of looking upon matter as occupying empty space, from whence 

an unconstrained system would always be free to expand and 

approach zero pressure. 
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r. 
ON AVAILABLE ENERGY 

For the sake of simplicity, let us neglect the effect 

of buoyancy by setting PD = P in equation (61) so that 

equation (64) reduces to 

£   = E + P V - T S - £u N (69) 
O     O    C CO c 

The maximum work which may be obtained from a closed system 

of constant volume corresponds to the work done in a rever- 

sible process, so that {N }, V, and S are all constant for 

this case. Thus V = V , S = S , and {N = N } so that o'     o'      c   CO 

equation (69) reduces to 

> = E + P V - T S - Ly N c-       o o   o o  Ceo CO 

i 
And in view of equation (51), 

£ = E - E^ (71) o 

The energy difference E - E includes such available energies 

as kinetic energy, gravitational potential energy, electri- 

c 

(70) 

cal energy, magnetic energy, etc.  It also of course in- 

cludes available chemical energy, and it may include nuclear 

energy as well.  It thereby follows from equation (71) 

that such forms of available energy as kinetic energy, 

gravitational energy, electrical energy, nuclear energy, 

etc., are all special cases of the essergy function 6 . 

•• 
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RESULTS 

By looking at some of the differences between the 

various previous measures of potential work, one finds a 

situation in which (without reference to the results of 

this paper) many seemingly independent measures of poten- 

tial work appear to coexist.  For example, some of these 

measures (such as availability and exergy) require a medium 

of fixed T and P (such as the atmosphere) while others o     o 

(such as free energy, kinetic energy, potential energy, 

etc.) may be evaluated without making any reference whatso- 

ever to such a medium. Again, some measures (such as 

available work and Helmholtz free energy) represent the 

potential of a system for doing work,"while other measures 

(such as availability and Gibbs free energy) represent 

the potential for doing only that part of the work (which 

Keenar.   has called the "useful" work) which does not 

include the work done in pushing back the surrounding 

medium. 

The main result of the proof given in this paper is 

to show that for a large class of thermodynamic systems, 

all of these seemingly diverse measures of potential work 

are special cases of the one unique quantity, essergy. 

While the proof itself is (if correct) sufficient to guar- 

antee this result, illustrations have been provided on 

pages 32-»+5 and 71  which show that the following meas- 

ures are all special cases of essergy: Availability, exergy, 
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available work, Gibbs free energy, Gibbs chemical potential, 

Helmholtz free energy, and also such available energies as 

kinetic energy, gravitational energy, electrical energy, 

nuclear energy, etc. The proof has been done carefully 

only for chemical systems, but it has nevertheless been 

shown to apply to generalized chemical systems, where such 

effects as kinetic energy, gravity, electricity, magnetism, 

surface tension, stress, and nuclear considerations are taken 

into account. 

(38) 
The proof also indicates that Brillouin's negentropy 

function is not a completely general measure of potential 

work. This follows since as is shown in References (12) 

and (14), the negentropy S - S (where S is a value of the 

arbitrary constant in negentropy which is set equal to the 

maximum entropy of the system when it is isolated) cor- 

responds to the function (f/T  (where <£. is the essergy 

function of equation (1)). That the function £/T is not 

a completely general measure of potential work may be illus- 

trated by considering two systems A and B with different 

values of T as is done in Appendix C.  Substituting 

$ -   £/T into equations (C-l) through (C-4), equation 

(C-5) becomes, 

**« ■ <r   - r A
)dEB (72) 

oB   oA 

Since neither dEn nor (m-  - sr ) is necessarily zero, it 
B    xoB  ToA 



- 74 - 

follows that dAAR is not necessarily zero for the process 

considered, so that Theorem 1 is violated — whence Re- 

quirement 1 on page 13 is not in general satisfied.  It 

thus appears that negentropy is not as general a measure of 

potential work as essergy is.  If Brillouin's principle of 

the equivalence of potential work and thermodynamic infor- 

mation is nevertheless retained, this result would imply 

that essergy is a more general measure of thermodynamic 

information than is negentropy. 

Another result which may be of interest is that in 

view of Theorem 2, potential work necessarily depends upon 

conserved quantities only, since only conserved quantities 

(or functions of such quantities) need remain constant 

while a chemical system is not interacting with its environ- 

ment. Also, the result that the work variables {X^} in 

equation (52) are necessarily intensive for a generalized 

chemical system may be of some importance. 

-'- -;'«t,lCJ . 
* ^■y» 
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CONCLUSIONS 

The proof given in this paper demonstrates that for a 

large class of thermodynamic systems, the many seemingly 

independent measures of potential work (such as availability, 

exergy, available work, Gibbs free energy, Gibbs chemical 

potential, Helmholtz free energy, and such available energies 

as kinetic energy, gravitational energy, electrical energy, 

nuclear energy, etc.) are necessarily all special cases of 

the one unique quantity, essergy. While the proof has been 

carried out carefully only for chemical systems, it never- 

theless has been shown to apply to generalized chemical 

systems (where such effects as kinetic energy, gravitational 

energy, electricity, magnetism, surface tension, stress, 

and nuclear considerations are taken into account). 

Thus by evaluating the one unique quantity, essergy, 

a designer may be assured that all of the many seemingly in- 

dependent considerations of potential work will automati- 

cally be satisfied. The proof is therefore of consequence 

to the design of any system in which potential work is a 

significant factor. The results of this paper should thereby 

be of importance to the continued development of that 

(12 
branch of engineering design known as thermoeconomics  ' 

20,23,26) 

The proof also indicates that negentropy is not as 

general a measure of potential work as essergy is.  If 

C 
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Brillouin's principle of the equivalence of potential work 

and thermodynamic information is nevertheless retained, 

this result would imply that essergy is a more general mea- 

sure of thermodynamic information than is negentropy — 

an implication which might lead to a broader formulation of 

information in general.  It is thus hoped that the proof 

may eventually provide new insight into the foundations of 

science and information theory. 
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APPENDIX A 

CONCERNING CHEMICAL SYSTEMS 

A chemical system is by definition any thermcdynamic 

system which has the following four characteristics: 

a. The equilibrium state of the system is uniquely 

determined by that state's energy E, volume V, aid 

components IN } — from whence the Gibbs express- 

ions dE = TdS - PdV + lV  dN and VdP = Sdt + EN du 
C C  C C C  ( 

are stipulated to apply*. 

b. All properties of the system are differentiable 

functions of any set of independent variables 

whose values uniquely describe the state of the 

system. 

c. The system has no locking constraints (Appendix 

4) — it thus being stipulated that while the 

system is not interacting with its environment, 

any given state can be reached from any other 

which has the same values of E, V, S, and (N }. 

* 
Except for the considerations of Appendix D, the proof 
of Theorems 2 through 10 may be carried out via the fol- 
lowing more general version of Characteristic "a". 

a. When the system is at equilibrium with its environ- 
ment, its equilibrium state is uniquely determined 
by that state's energy E, volume V, and components 
{Nc} — from whence the expression dE = TdS - PdV + 
EucdNc is stipulated to apply (at equilibrium with 
the environment). 

C - 77 - 
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d. Any two systems with the same values of E, V, S, 

and {N } are always free to assume identical 

states. 

Characteristic "a" serves to exclude most non-chemical 

effects from states of equilibrium.  For example, the addi- 

tion of another state variable (in addition to the energy, 

volume, and components — say for example one includes as a 

variable the position of the system in a gravitational 

field) would introduce a non-chemical effect (e.g., gravity) 
■ 

which Characteristic "a" serves to rule out for equilibrium 

states. Characteristic "b" rules out any discontinuities 

which might be associated with certain non-chemical effects, 

-./hile Characteristic "c" rules out any locking effects 

which might be considered to be of a non-chemical nature. 

Charactsristic "d" rules out any non-chemical effects 

which might be associated with constraints which prevent 

certain states from being attainable. 

In view of Characteristics "a" and "c" it follows 

that when E, V, S, and {N } are chosen as independent 

variables, there can be no additional independent properties 

which must remain constant in a chemical system whose 

entropy is constant while the system is not interacting 

with its environment (it beinj; noted that E, V, and {N } 
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must be constant during such a period)*.  For if an addi- 

tional independent property were to be held constant, then 

there would be states having different values for this 

property which could not be reached while S is constant 

and the system is not interacting with its environment — 

in violation of Characteristic "c". Examples of such 

properties which must in this case be allowed to vary when- 

ever they are independent (as they are in heterogeneous 

chemical systems) include the energy, volume, ahd components 

of the various parts of the system**. 

It will also be noted that the Gibbs expression 

The amount of each component Nc is constant during the 
( \ absence of any interactions between system and environ- 

ment, since as indicated in Note 1 of this appendix, 
components by definition are always conserved. 

** 
It may be of interest to observe the contrast between the 
non-interaction of a system w^.th its environment and 
Gibbsian isolation. Gibbs'13,- employed a kind of quasi- 
isolation which he called "isolation from external 
influences" in which the system's only allowable external 
communication is to deliver (but not to receive) the 
equivalent of shaft work. Thus in any physical pro- 
cess during Gibbsian isolation in which the energy is 
not at its minimum value, the energy E is allowed to 
decrease (but never to increase — Gibbs,(13) top of 
page 59) while the volume V and components {Nc} must 
remain constant.  These allowed physical variations dur- 
ing Gibbsian isolation must not be confused with Gibbs' 
"possible variations" in which decreases in the entropy 
of an isolated system are allowed (Gibbs^13^ equation 1) 
via heat transfer (Gibbs'13) page 56). The meaning of 
Gibbs' possible variations has been explained by 
Hatsopoulos and Keenan^33). 
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dE = TdS - PdV + £y dN (A-l) c c c 

has been written in terms of components "c" rather than 

the more familiar species "i" — as discussed in Note 1 

of this appendix. 

Finally, a brief discussion of the meaning of shaft 

work for chemical systems is in order, since chemical sys- 

tems by definition need not have the directional stress 

which is inherent in the functioning of any kind of shaft. 

The shaft system must thereby in general be an accessory 

system which is understood to undergo no change in state 

(other than changes in neutral properties — such as trans- 

lation or rotation of the shaft).  Consider for example a 

chemical system consisting of two homogeneous parts which 

are at different pressure, due to being separated by a 

rigid, impermeable wall.  By allowing and harnessing trans- 

lation of the wall via mechanical contrivances such as 

shafts and cranks, one may obtain shaft work without a 

change in the volume of the system — the volume decrease 

of the low pressure part offsetting the volume increase of 

the high pressure part.  It is in this type of context 

that the notion of shaft work for chemical systems may in 

general be understood. 
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NOTE 1, APPENDIX A 

ON COMPONENTS VERSUS SPECIES 

The Gibbs equation is usually expressed in terms of 

chemical species rather than components*, the more usual 

.    *    *•   /A ,N v •   (13,30,31,32,33,39) form of equation (A-l) being,  '  '  '  '  ' 

dE = TdS - PdV + £u.dN. (A-2) 
l x i 

where y. is the Gibbs chemical potential of species i and 

N. is the amount of species i.  In general, the amounts N. 

of the species i are not all independent variables; instead 

some of the N. are determined via chemical reactions 

(and other stoichiometric relationships — such as restric- 

tions which require the number of positive and negative 

ions to comply with electrical neutrality).  For example, 

in an equilibrium mixture of hydrogen, oxygen, and water at 

a particular elevated temperature and pressure, the amount 

of water is dependent upon the amounts of hydrogen and 

oxygen via the dissociation reaction 2H«0 ^ 2 L + 0.. 

Thus the use of equation (A-2) requires the formula- 

tion of chemical reactions. With equation (A-l) on the 

other hand, the amounts N of the components c are independent; 

ft 
Gibbs referred to components as "ultimate" components 
(Gibbs, (13) page 79) while he used the unqualified word 
"component" in the sense that some components may be 
formed from combinations of other components (Gibbs(13), 
pages 68-69).  In the language of chemical engineers, 

-v Gibbs' "component" is called a "species".(34) 
I 
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hence one may use equation (A-l) without having to formulate 

chemical reactions. At equilibrium, equations (A-l) and 

(A-2) are necessarily connected by the following funda- 

mental relationship which is demonstrated in Note 2 of 

this appendix: 

2y.dN. = Zu dN (A-3) 
i*i l  c

Hc c 

In the example of the preceding paragraph, there need be 

only two components — e.g. atomic hydrogen and oxygen — 

which must appear in equation (A-l), whereas with equation 

(A-2) a representative accounting of {N.} must include not 

only H«s 0«, and HjO, but ions such as H , 0H~, and 0" and 

also the complicated crystalline hydrols which appear in 

the liquid phase.  In using equation (A-l), one accounts 

for the components in exactly the same manner as atoms are 

conventionally accounted for when making elementary balances 

of H and 0 in reactions such as 2H- + 02 t  2H20 and 

H + 0H~ * H^O.  The reader who wishes to have a clearer 

picture of the logic underlying equation (A-l) will find 

it useful to study the derivation given in Note 2 of this 

appendix. 

It should be pointed out that an essential feature of 

a component is that it is always conserved. A species, on 

the other hand, is conserved only when it does not take 

part in any significant chemical or nuclear reactions.  If 



c 

( 

c 

- 83 - 

there are no recognized chemical or nuclear reactions of 

significance in a system, then the species are components 

by definition. For example, in an idealized two-species 

mixture of conserved 0« and conserved N«, the substances 0« 

and N2 are components. 

Note 2 of this appendix also gives a derivation of the 

following two relationships, the first of which holds at 

equilibrium, while the second is true in general: 

?y.N. = EpcNc (A-*) 

^ioNi = ^coNc (A"5) 

Equation (A-4) enables one to write, 

E = TS - PV + £u N (A-6) c c c 

which is a useful expression if one wishes to avoid considera- 

tion of the cumbersome chemical reactions which must be 

treated when working with the more conventional integrated 

from of equation (A-2), 

TS - PV + Eu.N. (A-7) 
l x  1 

Equation (A-5) enables one to write the essergy function 

C in the following alternate form: 

€ - B 
+ V " V " ?"ioNi (A-8) 
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Equation (A-8) is useful when one wishes to calculate the 

e?sergy of chemical reactions, whereas equation (1), page 

2, is to be preferred when one is not particularly con- 

cerned with reaction essergy. 

= 

.»ti. 
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NOTE 2, APPENDIX A 

DEMONSTRATION OF THE RELATIONSHIPS Ey.dN. = ly dN , 
£ 1  1   c C  C 

Zy.N. = EycNc, and fy^N. = Ey^ 

The set {il of species i may be divided into two sets, 

viz. the set {c} of components c plus the set {e} of those 

species e which may be regarded as being formed from the 

components c: 

{i} = {c} + {e} (A-9) 

The set {e} includes each species of ion as well as each 

species of molecule other than those molecules or atoms 

which are accounted for by the set {c}.  In view of equa- 

tion (A-9), the term Ey.dN. may be separated as follows: 
l - 1 

Zy.dN. = Ey dNf + Zy dNQ (A-10) i i i  c c c  e e e 

The superscript "f" denotes that N includes only that 

portion of N which appears as free components — it being 

noted that the remainder N - N of the components c is c   c 

tied up in other molecules and ions. 

Each species e is formed from the components c in 

accordance with the chemical reaction, 

e t  £v®c (A-ll) 

where v represents the stoichiometric coefficient v of 
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component c with respect to species e.  From equation (A-ll), 

the chemical potential u at equilibrium is given via the 

familiar relationship of reaction equilibria (see, for 

(13) (31) example, Gibbs    equation 33 or Tribus    equation 

(32 33 39) 11.65, or any other comprehensive text):   '  ' 

We = gv«yc CA-12) 

Substitution of (A-12) into (A-10) yields, 

?yidN. = EycdNf + Jgy^JdN, (A-13) 

The stoichiometric coefficients v are by definition r 

given by, 

v* - ^ (A-W) 
e 

where the superscript "e" denotes that N includes only 

that portion of N which is tied up in species e. Differ- 

entiation of (A-14) gives, 

dNe = vedN (A-15) c   c e 

Substitution of (A-15) into (A-13) yields, 

Ep.dN. = £u dNf + JEu dNe (A-16) J l l  c c c  ec c c 

Interchanging the order of summation and collecting terms, 

we have 

Zy.dN. = Ey (dNf + IdNe) (A-17) J x i  cc  c  ec 
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c 

I 
1 1 

i 

c 

f    e But N + EN is simply the total amount N of component c: 

N = Nf + ENe (A-18) c   c  e c 

Or in differential form, 

dN = dN^ + EdN® (A-19) c    c  e c 

Substitution of (A-19) into (A-17) yields the final result: 

Ey.dN. = Ey dN, (A-20) £ 1  1   c c  c 

The identity of the term Ey.N. may be found in a simi- 
l 1 1 

lar manner — it being observed from equation (A-9) that 

we may write, 

?y.N. = E^N* + |yeNe (A-21) 

Substitution of (A-12) and (A-14) into (A-21) gives, 

Ey.N. = Eu (N*; + EN®) (A-22) ^ii   ccc  ec 

while substitution of equation (A-18) into (A-22) yields 

the expected result: 

?y.N. = §ycNc (A-23) 

The identity of the term Ey. N. is found in virtually 

the same manner:  From equation (A-9) we may write, 

Ey. N. = Ey Nf + Ey N (A-24) i io l  cpco c  e eo e 
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Since y and \x  „ represent the potentials u and p„ at eo     co r e     c 

a particular equilibrium condition, equation (A-12) 

always applies: 

uon = £v*u (A-25) 
eo  c c co 

Substitution of equations (A-14), (A-18), and (A-25) into 

equation (A-24) yields the final result, 

J 10 1   C CO c 
(A-26) 



APPENDIX B 

CONCERNING THE EXTENSIVE MEASURE & 

In Theorem 4 it is stated that for any chemical system 

in any given environment, £l must have the form 

&  = KEE ♦ KVV * KSS ♦ £KNcNc ♦ C 

where KE, Kv, Kg, {KN }, and C are constants, C being neces- 

sarily zero for any unconstrained chemical system. This pro- 

position will be demonstrated here in detail. 

In view of Theorem 3, each extensive measure /L  for 

any chemical system in any given environment is given by, 

ä   --     2f(E, V, S, {Nc}) (B-l) 

Let the subscripts A and B denote systems A and B respect- 

ively while AB denotes systems A and B taken together.  Since 

the quantities & , E, V, S, and {N } are all extensive, 

we may write*, 

*AB"A+4> (B-2' 
EAB = EA ♦ EB CB-2a> 

* 
It will be observed that systems A and B are assumed to 
be independent of each other.  For small systems, it may 
be required that system B be separated in space from 
system A, since because of intermolecular forces, adja- 
cent small systems may exhibit significant interdepen- 
dence.  In regard to the resulting system AB, it will 
be observed that we define a thermodynamic system to be 
a well-defined region of space which may consist of non- 
connected (but nevertheless well-defined) parts. 

- 89 - 
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VAB =     VA ♦  VB CB-2b) 

SAB =  SA + SB (B"2c) 

NcAB= NcA + NcB  c = 1,2,3  n      (B-2d) 

where £^ = £ABUAB,\B,  SAB,   CM^»,  #A E^,  VA,  SA, 

{NcA}),  and^B =<%(EB,  VB,  SB,   {N^}). 

In view of the definition of a chemical system (Appen- 

dix A), &.CE,  V, S, {N }) is a differentiable function. 

Differentiation of equation (B-2) with respect to EA with 

EB' VA' VB' SA' SB' ''NcA* and *NcB* a11 held constant 

yields*, 

3#AB _ 3#A 
3EAB  3EA 

(B-3a) 

Similarly, differentiation w.r.t. Eß yields, 

^AB = ^B 
3EAB * ^B 

(B-3b) 

The right sides of equations (B-3a) and (B-3b) are equal, 
9#A  3#B since the left sides are identical: ™— = ™—     (B-4) 

* 
It follows from the chain rule for the functions 

#AB = ^(XAB' YAB) and XAB = XA + XB that 

3#AB  3#AB    .    ^AB  3^AB3XAB , 3#AB3YAB  . .. 

3XAB _ .   . 3YAB .. n _ . i and ^— - 0. 
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The left side of equation (B-4) is a property of system 

A only, while the right side is a property of system B 

only. These two properties will be independently variable 

in violation of the equality unless they are both constant. 

Equating the right side of equation (B-4) to a constant KE, 

the left side must equal this same constant: 

3^A 
3E7 = KE (B"5) 

or omitting the subscript "A" for convenience: 

3T=KE (B"6) 

In exactly the same manner, the derivatives 3#/3V, 

3,8/3S, and 3#/3N are found to be equal to arbitrary con- 

stants Ky, K„, and KN respectively: 

Jy  = KV (B-6a) 

|f = Ks (B-6b) 

Üf = he c = 1>2'3  n        (B"6C) c 

In view of equations (B-6), (B-6a), (B-6b), and (B-6c), the 

total differential of equation (B-l), d&   L ^  dE + |^ dV + 

Hds * S l# dNc is siven b* c 

d£L   = K£dE + KvdV + KgdS + g ^c^c (B"7> 

Integration of equation (B-7) yields, 
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&  s K£E + KyV + KgS + I KNcNc + C       (B-8) 

where C is the arbitrary constant of integration. 

For constrained chemical systems (such as closed systems, 

constant volume systems, etc.), certain terms in equation 

(B-7) (such as KN dN , KydV, etc.) may be zero — whence 

the corresponding terms in equation (B-8) will be constant 

and may be absorbed into the constant of integration if 

desired. 

In order to find C = 0 for unconstrained chemical 

systems, we must first show that the functional operators 

<£/»( ), /£/Q( ), and ^Aß( ) in equation (B-2) are identical 

to each other for such systems.  To see that this is true, 

we first note that with the absence of any constraints 

upon the variables E, V, S, and {N }for each of systems 

A, B, and AB (other than reasonable upper bounds upon the 

possible values of E, V, S, and {N }), these systems will 

all be chemical systems with the same range of accessible 

values for E, V, S, and {N }, and hence the same range of 

accessible thermodynamic states*.  Therefore, with such an 

absence of constraints,<S must be determined by the same 

functional operator for each of these systems. Thus the 

operators &* ( ), ^/ß( ), and ^/AR( ) are identical for 

* 
Any two chemical systems with the same values for E, V, 
S, and {N } are always free by definition (Appendix A) 
to assumecidentical states. 
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unconstrained systems — whence substitution of equation 

(B-8) into equation (B-2) for this case yields C = 2C so 

that C = 0. Thus for any unconstrained chemical system, 

equation (B-8) reduces to 

&  = KgE + KVV + KSS + §KNcNc (B-9) 

For constrained systems, the constant C remains arbi- 

trary — it being noted that C., C„, and CAB will not be 

equal.  Substitution of equation (B-8) into equation (B-2) 

for this case yields C.B = C. + C„ as the required rela- 

tionship among these constants. 

C 
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APPENDIX C 

CONCERNING THE CONSTANT K£ 

On page 22» it was stated that the constant 1C. must 

have a fixed, non-zero value independent cf the given en- 

vironment.  In order to verify this proposition, consider 

any two chemical systems A and B, each of which have diff- 

erent given environments A' and B' respectively.  Consider- 

ing any particular extensive measure <5/, it follows from 

the expression M=  K£E + KyV + KgS + §KNcNc + C of Theorem 

H that Mis given for each of systems A and B by 

A "  KEAEA + KVAVA + KSASA + SWcA* CA       (CXL) 

^B = KEBEB + KVBVB + KSBSB + PNCBNCB+ CB       (C"2) 

Since by definition A' and B' are different given environ- 

ments , it follows that the constants K„. and KVR may not 

be equal in general.  Similarly, KgA may not equal KgB and 

KN A may not equ^l K„ „. However, the constants KEA and 

Kp„ may be shown to be always equal, as will now be demon- 

strated: 

Considering systems A and B together as a single system*, 

th extensive measure >S? for the total system AB is by 

* 
As mentioned in the footnote on page 89, a thermodynamic 
system may consist of parts which are not directly con- 
nected together. 
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definition given by <&_ = $.  + ,&, so that froir. equations 

(C-l) and (C-2), 

#AB = (KEAEA+KVAVA+KSASA+cKNcANcA+CA)+(KEBEB+KVBVB+KSBSB+ 

c^NcB^'V (C"3) 

We observe in passing that equation (C-3) does not corre- 

spond directly to the expression & - KEE+KvV+KgS+JKNcNc+C 

of Theorem 4, because system AB is not a chemical system.* 

Let us now consider the case where shaft work is trans- 

mitted from system A to system B with no other interactions 

occurring•between systems A and B and their surroundings 

— it being further stipulated that both S. and Sß are 

constant)**. Differentiation of equation (C-3) for this 

* 
System AB is not a chemical system (even though both sys- 
tems A and B are chemical systems) because the fact that 
A and B have different given environments means that A 
cannot come to equilibrium with B in the same sense that 
the parts of a chemical system can come to equilibrium 
with each other.  In other words, equilibrium states of 
AB are not determined simply by their energy E^B» volume 
VAB» 

ana" composition (N^ß) (as would have to be the case 
if AB were a chemical system as defined in Appendix A), 
but instead the individual values, E., Eß, V., Vß, {

N
CAK 

and {N „} must be specified. 
Aft 

Shaft work is the only interaction which can be allowed 
between chemical systems A and B, since any other inter- 
actions would require locking constraints of the second 
kind (Appendix 4) which chemical systems by defini- 
tion (Appendix A) cannot have. 

.;,■■ 
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case yields* 

d^AB = KEAdEA + KEBdEB (C"U) 

And since dE. = -dE„ for this case, 

d^AB = (KEB " KEA)dEB (C"5) 

It will now be observed that this case complies with 

the conditions of Theorem 1, since for this case the entropy 

of system AB remains constant while system AB is not inter- 

acting with its given environment**. From theorem 1, all 

measures J^n must be constant for this case***, from whence 

-HAU  must be constant — since -6/ must be a one-to-one 

mapping onto Jr , as pointed out in the proof of Theorem 3. 

Hence d^A„ = 0 for this case so that equation (C-5) re- 

duces to, 

(KEB - KEA)dEB = ° (C"6) 

It should be emphasized that the constancy of K^A, ^EB> 
KVA> KVB> KSA» KSB> {KNcA> and {KN?B} depends upon sys- 
tems A and B each having given environments.  In some 
cases this condition could require shaft work to be 
returned later from B to A. 

ft* 
System AB has a given environment, since systems A and B 
each have given environments (it being recalled from page 
13 that a system is said to have a given environment if 
the system is considered to have a unique condition of 
equilibrium with its environment). 

Aft* 
In regards to Theorem 1, it is noted that system AB is 
a non-locking system since both A and B are chemical 
systems (which are non-locking by definition — as indi- 
cated in Appendix A). 



c 

I 

- 97 - 

Since dEß is arbitrary, equation (C-6) requires (KEB - K^^O 

so that, 

KEB = KEA (C"7) 

Thus the constants KEA and K™ which appear in equations 

(C-l) and (C-2) are equal, as was stated above. And since 

systems A and B represent any two chemical systems in any 

two given environments A' and B', it follows that K_, must 

have a fixed value independent of the given environment. 

The constant KE cannot be zero, because a zero value 

of KE would allow Ml to remain constant during the process 

described in Requirement 1 (since for such a process, V, 

S, and {N } are constant so that equation (B-7) of Appendix 

B reduces to d<j/ = ]<L,dE).  But ,<y cannot be allowed to 

remain constant during such a process, since &  must be a 

one-to-one mapping onto J-   (as pointed out in the proof of 

Theorem 3) and ^must by definition increase.  Thus KE 

cannot be zero, so that from the conclusion of the preceding 

paragraph, KE must have a fixed, non-zero value indepen- 

dent of the given environment -- as was to be shown. 



APPENDIX D 

CONCERNING THE INTEGRATION CONSTANT C 

It was stated after equation (12) that the integration 

constant C must have a fixed value independent of the given 

environment.  In order to verify this, one may first differ- 

entiate equation (12) for the general case (where the 

effect of the environment may vary so that P , T , and 

{y )  are not constant) to obtain* 
CO 

d#= K(dE+P dV-T dS-Ey dN +VdP -SdT -EN dy  )+dC (D-l) w O     O   C CO  C     O     O C C  CO 

As pointed out in the paragraph preceding equation (6), 

d$ is zero for all infinitesimal variations of the type 

considered in Requirement 3, so that for all such varia- 

tions equation (D-l) reduces to 

dC = -K(dE+P dV-T dS-Ey dN +VdP -SdT -IN dy  )   (D-2) o   o  cHco c   o   o c c Hco 

Also, for all such variations, the Gibbs equation 

dE = TdS - PdV + Ey dN and the Gibbs-Duhem equation 

VdP = SdT + EN dy  apply, so that the right side of equa- 

tion (D-2) is zero (since the equations dE = T dS-P dV+£y dl o   o  c co 

and VdP = SdT +EN dy  are satisfied to within non-finite o     o c c co 

ft 
For a closed system, each dN is zero throughout the 
equations of this appendix.  For constrained systems more 
generally, every dNc need not be zero.  For example, 
one may consider a constrained system of constant volume 
in which all of the N are allowed to vary. 
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C 
second order infinitesimals for variations between states 

which have no finite departure from equilibrium with the 

environment).  Hence dC is zero, from whence C must have a 

fixed value independent of the given environment — as 

was to be shown. 
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APPENDIX E 

ON THE GENERAL DEFINITION OF ESSERGY 

Essergy is by definition a quantity which is believed 

to have a broader interpretation than is encompassed by 

thermodynamics — in the same manner that entropy has the 

broader interpretaxion from information theory given by C. 

(37) Shannon   . Thus all of the writer's formulations of 

(12 14) essergy  '   were actually derived from information 

(30,31)      .  ,    , . .  D .,.  . , (38) theory  '   — as implemented by Brillouin's    prin- 

ciple of the equivalence of thermodynamic information and 

potential work.  For the purpose of the proof given in 

this paper, however, essergy will be defined with respect 

to only macroscopic thermodynamics. 

Equation (1) on page 2 is the definition of the ex- 

tensive measure C of essergy for any chemical system.  How- 

ever, for constrained systems, an arbitrary scale constant 

C may be added to this equation — this constant having to 

be set equal to zero for any unconstrained system — so 

that a more general expression for the extensive measure 

<S of the essergy of any chemical system is 

£=E+PV-TS-£u N +C (E-l) ^       o    o   c*co c 

where C = 0 for any unconstrained system. The compliance 

of the right side of equation (E-l) with Requirements 1, 

(13) 2, and 3 is discussed in Appendix 3.  We will, after Gibbs   , 
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nearly always set the arbitrary constant C equal to zero 

(as was done in equations 1 and 3 and in Table 1 on page 8) 

since a non-zero value of C tends to obscure the fact that 

a system has no potential work when it is in stable equi- 

librium with its environment. 

As indicated in the first footnote on page  95, one 

may have a set of constrained chemical systems which is 

not itself a chemical system as defined in Appendix A. 

For such a set, the extensive measure c. of essergy is by 

definition found by summing equation (E-l) over all such 

chemical systems — where each chemical system r has the 

intensive properties P  , T  , and {u  } when the set of r    r or  or      cor 

chemical systems is at equilibrium with its environment: 

£ = Z(E +P V -T  S -Ly  N +C )       /T,  „v *■*  r r or r or r c^cor cr r       (E-2) 

It should be pointed out that the quantity essergy is 

defined such that any essergy change A£. (or -A£. ) is 

itself a specific example of essergy (after the manner of 

the quantity, energy — it being noted that any energy 

change AE (or -AE) is itself a specific example of energy -• 

e.g., an energy increase AE constitutes energy which is 

transferred into the system). And after the manner of the 

quantity, temperature (recalling that any one-to-one map- 

ping onto the absolute temperature T or AT is itself a 

C 
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specific example of temperature* — on some particular 

(31 32 33 39) scale of temperature),   '  '  '   the quantity essergy 

is defined such that any one-to-one mapping onto the 

ossergy £ or A& is itself a specific example of essergy. 

For generalized chemical systems (which by definition 

include such effects as electricity, magnetism, gravity, 

surface tension, stress, and nuclear considerations) equa- 

tion (E-l) still suffices to define the essergy £. , except 

that P is replaced by PD (where P~ denotes the pressure 

of the region of space occupied by the system when that 

region has come to equilibrium with the environment — at 

which time the system need no longer occupy that region): 

£ = E + PT,V-TS-£u N +C (E-3) ^       Do   cHco c 

where C = 0 for any unconstrained system.  PD is not neces- 

sarily constant with respect to location; for example, the 

pressure of the water in Figures 1-1, 1-2, 1-3 will in- 

crease with depth as a result of the effect of gravity. 

If this pressure variation is negligible over the range of 

locations considered, then P_ may be taken to equal P . 

Also, P~ = P whenever the system continues to occupy the 

same region as it comes to equilibrium with its environ- 

ment.  It is thus seen that equations (1), (E-l), and 

It should be pointed out here that changes such as AT and 
A£ are considered to start from a particular state, so 
that any one-to-one mappings onto AT and Ac- coincide with 
the corresponding one-to-one mappings onto T and £ respect- 
ively. 
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r 
(E-2) apply to certain generalized chemical systems (viz. 

those systems for which Pß = P ) — it being noted that 

for a set of constrained generalized chemical systems, the 

defining equation (E-2) becomes, 

(5 = I(E +Pn V -T  S -£y  N +C )       (E-4) r r Dr r or r cKcor er r 



APPENDIX 1» 

ON THE CONCEPT OF DEPARTURE FROM EQUILIBRIUM 

The potential work of a system may intuitively be 

regarded as being a result of the system's departure from 

equilibrium — i.e., its departure from the condition when 

it is in equilibrium with its environment. The concept of 

departure from equilibrium may be illustrated in the manner 

of Figures 1-1, 1-2, and 1-3.  Figures 1-1 and 1-2 repre- 

sent the beginning and end respectively of the process 

which results when the ice melts sufficiently to fall from 

the wire. During this process, the ice gives up that por- 

tion of its potential work which is due to its gravitational 

pocential energy.  Figures 1-2 and 1-3 represent the begin- 

ning and end respectively of the process in which the ice 

melts and the resulting water warms up to room temperature. 

Both of these processes have one thing in common:  In 

each process the ice proceeds towards a condition of 

stable equilibrium with its environment — the final 

equilibrium condition being shown in Figure 1-3.  Either 

of these processes may in principle be harnessed to yield 

mechanical power; the first process by means of strictly 

mechanical contrivances (pulleys, levers, gears,.etc.) 

for transmitting the potential work of the falling ice, 

» 

* . 
This appendix is not necessary for the proof given in 
this paper, and is only included here as supplementary 
material. 
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C 

-  WIRE 

IC :E 

WATER AT ROOM TEMPERATURE 

FIGURE 1-1:  A BLOCK OF ICE SUSPENDED FROM A WIRE TO WHICH 
IT HAS BEEN FROZEN ABOVE A BOrY OF WATER.  When the ice 
melts sufficiently to drop fr'om the wire, it will release 
that portion of its potential work which is due to its 
gravitational potential energy. 

C 
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-WIRE 

WATER AT ROOM TEMPERATURE 

FIGURE 1-2:  THE BLOCK OF ICE OF FIGURE NO. 1-1 AFTER IT 
HAS MELTED SUFFICIENTLY TO DROP FROM THE WIRE.  The ice 
still departs from its final equilibrium condition, which 
is shown in Figure 1-3 below. 
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WIRE 

77 '  : "7 / / ■  .■   /  / , 7 7-7-77-7-7-77 

WATER AT ROOM TEMPERATURE 

1   J 

FIGURE 1-3:  THE STABLE EQUILIBRIUM STATE OF THE SYSTEM 
SHOWN IN FIGURES 1-1 and 1-2 ABOVE.  The dashed lines 
indicate an amount of water equal to that resulting from 
the melting of the ice. 
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the second process by means of heat engines.  However, once 

the ice system has come to equilibrium with its environ- 

ment (as shown in Fig. 1-3), then there is no further 

opportunity to harness mechanical power. 

It should be pointed out there is a difference between 

the notion of a "condition" of equilibrium and a "state" 

of equilibrium.  Consider for example the melted ice 

depicted by the dashed lines in Figure 1-3. Here the result- 

ing water is quite free to move about — it could even 

vaporize — while the complete system of Figure 1-3 re- 

mains at stable equilibrium. Thus the ice system has no 

unique state of equilibrium. Nevertheless, it has a unique 

condition of equilibrium in that the entire region in which 

it may be located (that is, the entire system of Figure 1-3) 

has a unique state of eq ilibrium.  In this manner, a 

system may in general be said to have a unique condition 

of equilibrium with its environment whenever the entire 

region in which it might be located has a unique state of 

equilibrium. 

It may be of interest to note that the state of the 

environment need not be constant in order for a system to 

have a unique condition of equilibrium with its environ- 

ment.  For example, suppose that we consider a system which 

consists of only part of the suspended ice of Figure 1-1. 

This system will have a unique condition of equilibrium in 
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accordance with the discussion of the preceding paragraph. 

However, since the remainder of the suspended ice will now 

belong to the system's environment, it is clear that the 

state of the environment must change considerably (it 

could even change quite rapidly) in order to reach the equi- 

librium condition of Figure 1-3. 

It should also be pointed out that the notion of a 

given environment (that is an environment with which the 

system under consideration has a unique condition of equili- 

brium) is a device for considering the dependence of po- 

tential work upon the system alone.  In other words, with 

a given environment, the net effect of the environment is 

constant so that the potential work is a property of the 

system alone under this condition.  In general, potential 

work is of course a property uf both the system and its 

environment. The net effect of the environment will in 

general vary — either from external influences (such as 

for example an influx of solar energy which may increase 

the ambient temperature — thus increasing the final equili- 

brium temperature of the system) or from internal influ- 

ences (for example, the final equilibrium temperature may 

also increase as a result of a less efficient process 

within a system whose only exte ..al communication is the 

transmission of shaft work to its environment — the lower 

efficiency resulting in less shaft work delivered so that 
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more energy is retained to yield the higher final equili- 

brium temperature). 

In regard to this latter example, it should be noted 

that any condition of equilibrium is always subject to 

the given constraints.  For example, two systems separated 

by a rigid, impermeable wall may come to a state of stable 

equilibrium with each other (subject to this constraint) 

in which their pressures may differ.  Throughout this thesis 

the terms, "stable equilibrium," "unstable equilibrium," 

and "constraint," are used in accordance with the defini- 

(13) tions given by Gibbs 

Finally, it is of interest to note that while a system 

is not interacting with its environment, every indepen- 

dent property of its given environment may be allowed to 

vary (as mentioned in Footnote 10, page 19).  Suppose for 

example that the ice cube in Figure 1-1 were not to inter- 

act with its environment for a period.  During this period 

the independent properties of the ice cube's environment 

could be perturbed by external influences (i.e., influ- 

ences external to the water-vapor system shown as the ice 

cube's environment in Fig. 1-1) in any manner whatsoever, 

and so long as the final equilibrium condition of the ice 

cube is stipulated to remain unchanged, the given environ- 

ment by definition remains unchanged. 
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APPENDIX 2* 

ON THE NECESSITY OF REQUIREMENTS 1, 2, AND 3 
WITH RESPECT TO THE PROOF 

Requirements 1, 2, and 3 on page 13 reflect necessary 

characteristics which must be exhibited by any measure of 

the potential work of systems.  However, it is not immedi- 

ately obvious that one of these requirements might not be 

superfluous with respect tc the proof given in this paper. 

For example, one may ask if Requirements 1 and 2 alone 

might be sufficient for the proof.  To see that this is 

not the case, we note that Requirements 1 and 2 are both 

satisified by the energy E (since E is extensive — satis- 

fying Requirement 2 — and E always increases whenever 

the only effect is an input of work — in satisfaction of Require- 

ment 1).  But as a proposed measure of the potential work 

of systems, the energy E is inconsistent**, since E does 

not in general satisfy Requirement 3. Thus Requirements 1 

and 2 by themselves fail to rule out the inconsistent pro- 

posed measure E, so that Requirement 3 must not be omitted. 

Similarly, Requirements 1 and 3 alone are not suffi- 

cient for the proof, since these two requirements by 

This appendix is not essential to the proof given in this 
paper, and is only included here as supplementary material. 

*ft 
In this appendix, any proposed measure (of the potential 
work of systems) will be referred to as being "incon- 
sistent" if it is not in general a consistent measure of 
potential work. 

- Ill - 
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themselves fail to rule out the inconsistent** proposed 

measure v£  (where V = volume and £ = the essergy func- 

tion).* Thus Requirement 2 must not be omitted. 

And finally, Requirements 2 and 3 alone are not suf- 

ficient for the proof, since these two requirements by 

themselves fail to rule out the inconsistent proposed 

measured .X.K.c. (where £.   denotes the essergy <L  of the 
1=1 ill °J 

i'th part of the system — the system being considered 

to consist of n parts where n > 2 — while each K. denotes 

a positive constant associated with the i'th part — it 

being stipulated that each K. has a different value)**. 

Hence Requirement 1 must not be omitted. 

The proposed measure v£ satisfies Requirement 1, since £ 
satisfies this requirement in view of Appendix 3, while 
the volume V is constant when the only effect is work done 
through a shaft.  v£ satisfies Requirement 3, because 
for any open system, d(V"£ ) is zero for the variations 
considered in equation (6) — since for any unconstrained 
system, both £ and d£ are zero for these variations (as 
indicated in Appendix  3 and Pg. 46).  However, V<S is 
inconsistent because it does not in general satisfy 
Requirement 2 (since v£ is not always extensive — it 
being noted that both V and £ are always extensive). 

** n  f The proposed measure .E.K.c. satisfies Requirement 2, 

since .§,K.6. is extensive by definition.  And .£,K.C. 

satisfies Requirement 3, since each £. satisfies Require- 

ment 3 (as demonstrated in Appendix 3) while each K. is a 

positive constant.  The proposed measure .?,K.£. is in- 

consistent, since . £,K.£. fails to comply in general with 

Theorem 1, from whence .S.K.C. fails in general to satisfy 
' i=l li        ° J 

Requirement 1 (it being noted that . £,K.£. need not al- 

ways be constant under the conditions cf Theorem 1, while 

the essergy £ = • £-,£• is always constant under these 

conditions.) 
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It has been shown that one may not allow either of 

Requirements 1, 2, or 3 to be omitted. However, the possi- 

bility remains that Requirements 1, 2, or 3 might be 

weakened in a consistent manner, and yet remain strong 

enough to support the proof. 

Requirement 1 might tentatively be weakened via re- 

placing it by Theorem 1 (with the restriction to non-lock- 

ing systems omitted). However, this weaker requirement 

would fail to rule out the value zero for the unit conver- 

sion constant K (as is done at the end of Appendix C). 

In other words, the inconsistent proposed measure C (where 

C is the scale constant in equation 12) would satisfy 

this weaker requirement as well as satisfying Requirements 

2 and 3.  One might at first suppose that the stipulation 

that potential work must be a thermodynamic property might 

be sufficient to rule out the constant C. However, there 

is nothing in Theorem 1 plus Requirements 2 and 3 which 

rules out a potential-work property which might happen to 

be constant with respect to the properties of the special 

systems under consideration. Thus Theorem 1 is not a 

sufficient form of Requirement 1, so that this requirement 

may not be weakened in this manner. 

However, Requirement 1 may be reworded in several 

alternate forms which v/ould leave its content completely 

unchanged.  For example, the content of Requirement 1 

*E«»wift*.JBMSi;jfniwaWi m, ■ir*mm&GOa 
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would remain exactly the same if the phrase "always in- 

creases" were to be replaced by the phrase "always decreases" 

— since if potential work admits of measure 3-  which 

always increases under certain conditions, then it must 

of course admit of a measure -J^ which always decreases 

under the same conditions. Another such alternate form 

of Requirement 1 results from replacing the phrase "al- 

ways increases when work is transmitted through a shaft 

into the system" by the phrase "always decreases when work 

is ransmitted through a shaft from the system." In 

this alternate form, it might be supposed that the phrase 

"while the entropy of the system is constant" could be 

excluded — in view of the Second Law. However, without 

this phrase, this form of Requirement 1 would not be satis- 

fied for environments of negative absolute temperature 

(33 35 36 i 
'  *   — so that this phrase would have to be retained, 

if one desires complete generality. 

There would seem to be no way of weakening Requirement 

2 without omitting it altogether — and the omission of 

this requirement has already been ruled out above.  Require- 

ment 3 could be weakened to a differential form which 

would required only that d# be zero for the variations 

considered in equation (6). However, any definition in- 

volving differencials such as d?/ is unsatisfactory, since 

thsre is nothing in the mathematical definition of a 
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* (39) differential which actually requires it to be small 

Requirement 3 might also tentatively be weakened by 

replacing it with two separate tentative requirements 3' 

and 3" — where Tentative Requirement 3* is the admission 

of a positive measure, while Tentative Requirement 3" is 

the admission of a measure which is zero at the equili- 

brium condition "o",. However, the tentative set of Re- 

quirement 1, 2, 3', and 3" fails to rule out the incon- 

sistent proposed measure E', where £' is a relative energy 

defined by, 

E* =  E - EE N 
C CO c 

(2-1) 

C 

c 

Here E„ denotes the partial energy per unit of component 

"c" (discussions of partial quantities are given in Refer- 

ences 31, 32, and 33) and E  represents the partial 

energy E of the system at the equilibrium condition "o" — 

so that each E  is a constant for any chemical system 
CO 

which has no more than one phase at the equilibrium condi- 

tion "o". The relative energy Ef satisfies Requirement 1, 

since the energy E satisfies this requirement (as pointed 

out in the first paragraph of this appendix) while IE N 

is constant for the process described in this requirement. 

E' satisfies Requirement 2 since E'is extensive — it being 

observed that E - EE N corresponds to the extensive 

measure KE + KyV + KgS + §KNcNc of Theorem 5 when K = 1, 

;: 
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Kv = 0, K„ = 0, and Kj, = -E  for each component "c". 

The relative energy E' satisfies Tentative Requirement 3', 
r i £ t 

since E' admits of the positive measure e" (that is e 

is a one-to-one mapping onto E'). And finally, E1 satisfies 

Tentative Requirement 3" since at the equilibrium condi- 

tion "o", the expression E - £E N reduces to an express- 

ion E - JE N  which is identically zero (due to the o  c co co     _ J 

familiar identity Y = £Y N relating any extensive thermo- w c c 

dynamic property Y to its corresponding partial values 

"     (31 32 33) 
{Y }  '  '  . The inconsistency of the proposed measure 

E1 is demonstrated in Note 1 of this appendix.  Since the 

replacing of Requirement 3 with Tentative Requirements 

3' and 3" permits the inconsistent proposed measure E1, 

we see that Requirement 3 must not be weakened in this 

manner. 

Tentative Requirements 3' and 3" may be combined into 

a single requirement under which potential work would 

admit of a measure which is always an extremum at the equili- 

brium condition "o". However, such a measure would be 

inconsistent since it would not in general be a one-to- 

one mapping onto the essergy <£. -— in view of the fact 

that c need not admit of a measure which is an extremum 

with respect to an unstable equilibrium condition "o" 

(as indicated on page 46). 

■ ■ 
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It would thereby seem that the only additional possi- 

bilities for allowing either the weakening or omission of 

cne of Requirements 1, 2, or 3 would be to introduce simul- 

taneous changes in at least two of these requirements. 

However» any such changes (other than a mere rewording 

of the requirements) would appear to introduce conditions 

which are either superfluous or else inconsistent with 

the definition of potential work as set forth in these 

requirements.  It would thus seem that neither the omission 

nor weakening of Requirements 1, 2, or 3 may be allowed — 

so that these requirements appear to be necessary with 

respect to the proof given ir this paper. 

i  ! 
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NOTE 1, APPENDIX 2 

ON THE INCONSISTENCY OF E» 

It may not be immediately obvious that E' is incon- 

sistent. Suppose for example that one substitutes the 

identity Ec * TSQ - PVc + yQ into equation (2-1) to obtain, 

E' = Z + P 2V N - T IS N - £y N     (2-2) oc co c   oc co c  cr co c 

A comparison of equation (2-2) with equation (1) on page 2 

shows that E* would be identical too if V were to equal 

IV N and S were to equal £S N . 5 CO c c CO c 

However V is not in general equal to IV N, siiice 

N and V  refer to the system in two different states 
c     co 

(i.e., N is the amount of component c for the given state 

of the system while V  is the partial volume of the chemi- 

cal system at the equilibrium condition "o".  Similarly, 

S is not in general equal to gS N . These non-eq'alities 

may be brought into sharper focus via differentiating 

equations (1) and (2-2) for a closed system (N = constant) 

to obtain, 

d£ = dE + P dV - T dS (2-3) 
o    o 

dE' = dE (2-4) 

For variations at condition "o", equation (2-3) yields 

d£ = 0 in compliance with Requirement 3 (since dE = TdS-PdV 

- 118 - 
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for a closed system) whereas equation (2-lO gives dE'/O 

in violation of Requirement 3. Hence E' is inconsistent 

(since E1 does not in general satisfy Requirement 3). 
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APPENDIX  3» 

ON THE CONSISTENCY OF ESSER3Y AS A MEASURE 
CF THE POTENTIAL WORK OF CHEMICAL SYSTEMS 

It was mentioned on page 15 that it is known prior to 

making the proof that essergy is a consistent measure of 

the potential work of chemical systems (or in other words, 

essergy for chemical systems satisfies Requirements 1, 2, 

and 3 on page 13). This proposition will be verified here: 

In order to show that the essergy £ of a chemical 

system is consistent with Requirement (1), one may first 

differentiate equation (E-l) for a given environment (for 

which PÄ, T , and {y } are constant) to obtain 
O   O CO 

d£ = dE -s P dV - T dS - Jy^dN (3-1) 
O      O     C CO  c 

For the process of Requirement 1, the quantities V, S, 

and {N } are all constant (since any change in V or {N } 

would represent an interaction in addition to the trans- 

mission or work through a shaft) so that equation (3-1) 

reduces to 

d£ = dE ! (3-2) 

Since the energy E of a system always increases when the 

only effect Is  an input of work, it follows from equation 

ft 
This appendix is not essential to the proof given in 
this paper, and is only included here as supplementary 
material. 
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(3-2) that <£ always increases for the process of Require- 

ment 1 — so that this requirement is satisfied. 

Requirement 2 is satisfied, since the right side of 

equation (E-l) is extensive — in view of the fact that it 

is a linear combination of the extensive quantities E, V, 

S, {Nc>, and C (it being noted that PQ, TQ and {yCQ} 

are all intensive). 

In order to see that Requirement 0 is satisfied, we 

observe from equation (E-l) that an essergy change A6 is 

in general given by 

i 

A£ = AE + A(P V) - A(T S) - EA(y N )    (3-3) 
O O      C   CO c 

C — it being noted tnat the environment is being allowed to 

vary so that P , T and {y  } are not necessarily constant. J O   O        CO J 

In view of the familiar integrated form E = TS - PV + gy N 

of the Gibbs expression dE = TdS - PdV + Ey dN , a change 

AE in the energy of ary equilibrium chemical system (as 

defined in Appendix A) is given by, 

AE = A(TS) - A(PV) + gA(ucNc) (3-C 

O 

For any chemical system at equilibrium with its environ- 

ment, one has T = T , P = ? . and y 
o      o      c 

p  (where the co 

subscript "o" by definition denotes the condition of the 

system when it is at equilibrium with its environment) 

so that one may write 
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AE =  A(T S)  -  A(P V)  +  EA(u    N) (3-5) 
O O C        CO   c 

Substitution of equation (3-5) into equation (3-3) yields, 

for any change between two states, both of which are at 

equilibrium with the environment, 

AC -- 0 (3-6) 

If the state of a system has no finite departure from 

equilibrium with the environment, thsn equation (3->+) is 

satisfied to within all non-finite deviations such as 

non-finite second and higher order infinitesimals. Thus 

for any change between such states, the essergy change 

A<£ is equal to zero to within all non-finite deviations — 

so that Requirement 3 is thereby seen to be satisfied. 
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APPENDIX H* 

ON LOCKING CONSTRAINTS 

It is convenient to define the following two kinds of 

locking constraints: 

1. Constraints which prevent an isentropic, adiabatic 

process from moving in the reverse direction. 

2. Environmental constraints which allow some matter, 

energy, or volume to be transferred from a system, 

and then limit the amount transferred by means of 

some valve, locking device, or other type of 

barrier.** 

The absence of the first kind of locking constraint allows 

any isentropic, adiabatic process to always be moved in 

the reverse direction. The chemical systems (and general- 

ized chemical systems) considered in this paper are defined 

to be capable of undergoing isentropic, adiabatic processes 

as well as the other so-called quasistatic processes of 

thermodynamics, which by definition pass through states 

of equilibrium only. 

It was first thought by the vriter that this appendix was 
not actually necessary for the proof given in this paper, 
However, the absence in chemical systems of locking con- 
straints of the second kind plays an important role in 
Appendix C. 

ftft 
An environmental constraint is by definition a constraint 

—^ which influences the system's state of equilibrium with 
t_ its environment. 
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Th« absence of the second kind of locking constraint 

serves to guarantee that all parts of a chemical system will 

have the same intensive state of equilibrium with the en- 

vironment . 
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