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Lineav and Nonlinear Theory of Grid Excitation
of Low-i'requency Waves in a Plasma
George L. Johnston
Department of Physics, University of California,

Los Angeles, California, 90024

ABSTRACT

The steady-statec cxcitation of longitudinal waves by a pair of
idealized grids immersed in a collisionless plasma and driven at a
frequency small compared with the ion plasma frequency is investigated
theoretically. In lincar theory the Fourier-inversion integral which
determine the spatial behavior of the potential in the plasma is expressed
as a sum of two integrals which embody the interactions of phase-velocity
components of the wave with ions and electrons. An appropriatc choice
of the deformed contour of integration permits evaluation of the response

as the sum of thec residies of the dominant “ion-acoustic" pole and of the two
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branch-cut integrals, . perturbation-series expansion of the potential and

the species distribution functions in the (nonlinear) Vlasov equation yields

£ a hierarchy of equations. In each order the cquations arc linenf in the
perturbation quantities of that order and have driving terms composed of
quadratic combinaticns of lower-order quantitics, For sufficieatly small
amplitude of excitation the principal contributions to thc response cone

from the first-order (linearized Vlasov) equation and the second-order equa-

e

tion. . In second order the steady-state response consists of zero-frequency
and double-frequency components. The second-order equations are Laplace-

Fourier transformed and resulting velocity integrals are expressed in tcrms

15y

£ - of plasma dispersion functicns, By approximating the driving terms by
their dominant-pole component, one can express the steady-state double-
frequency response as a single Fourier-inversion integral., As in the linear
problem, the integral can be evaluated as the sum of a residue and of "ion
like" and "eleciron-like” branch-cut integrals, Numerical results are

presented for the linear and nonlinear cases.

} T TR AR 1 i ST 2 . ~ -




-

-3- .

I. INTRODUCTION

The calculation by Gould1 of the stcady-state response in lincar
theory of a collisionless plasma to grid excitation of longitudinal waves
at frequencies below the ion plasma frequency exhibits good agreement
with the experiment of Wong, D'Angelo, and Motley,2 and supports the inter-
pretation that spatial damping of the wave is duc to Landau damping, The
importance of understanding the nature of the damping and of studying non-
linear processes in plasmas suggest the desirability of extending the
theory into éhe nonlinear regime, As the amplitude of cxcitation is increased,
one expects the steady-state response to include harmo5ics of the applied
frequency., If the amplitude is sufficiently small, only zero-frequency and
doublc-frequency harmonics are significantly excited, and a perturbation
procedure should yield this nonlinear response,

In Section II the response in linear theory is determined by a method
which possesses certain advantages over that of Gould., The response is ex-
pressed as the sum of two branch-cut integrals which contain the velocity
derivatives of the ion and the electron distribution functions and give in-
sight into the roie of the two species in the Landau damping of the wave,
The response may also be expressed as the sum of the residue of the ion-
acoustic pole and of the two iﬁteﬁfdls evaluated along deformed contours
which are well-suited for obtaining high accuracy, Calculations are per-
formed both for the casc of negligible grid spacing (dipole limit) considered
by Gould and for the casc of finite spacing between the grids; the compari-.
son illuininates the role of the model of the grid in dotermining the char-

acter of the response, In Section I1I perturbation.scrics expansions of
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electric field and species distribution functions are introduced into the
Vlasov equation; the cquations for lowest-order nonlinear response are ol:-
tained, Performing the appropriatc Laplace-Fourier transforms, analyt- .
ically continuing (in the manner of Landau3) functirns of two complex vari-

ables defined by velocity integrals which occur in the formulation, and re-

| lating these functions to the plasma dispersion function, a double Fourier-

| inversion integral for the lowest-order nonlincar response in the plasma is

; obtained. This integral contains a quadratic corbination of the electric

] ‘ field in linear theory as a driving term. In Section IV reduction of the

f double integral for the double-freauency component to a single Fourier-inver-
| 3 sioﬁ integral is achievec by approximating the eclectric field in linear theory
by its dominant-pole component. The nonlinear response is expressed as the
sun of a regidue And of ion-liké and electron-like integrals, as in the

linear problem. In Section V the branch-cut integrals and the residue arc

?f
{
|
!

considerably éimplified by utilizing the square root of the mass ratio as a

e

smallness parameter. Calculations are performed for a range of values of
the electron-to-ion temperature ratio., In Section VI the zero-frequency
component of the nonlinear response is shown to consist of a polarization of

the plasma, with no species current densities,

IT, LINEAR PROBLEM

The stcady-state oscillatory potential produced in a uniform and in-

finite collisionic-s plasma by excitation at a frequency of & pair of

0)0
closely-spaced, idealized grids, which produces an cxternal oscillating

charge density but intercepts no particles, is aiven by é(x,t) = ¢(x)exp(—iuut)

+ complex conjupate, in which
p Jug ’
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liere % is the amplitude of the surface-charge density on either grid
and X, is the.scParntion between the grids; the dipole limit, Xy o,
0y Xp = const, is considered, (The :ffect of finitc spacing betwcen the

grids is examined below,) The "plus'" and "minus" diclectric functions are

given by
2 £
Y4 Wpi 1/0) Ve —t w
Kokl =1 ke lfl\ha; ] hﬁacaz-t' N, @

in which the corrcsponding plasma dispersion functions are defined by

0O

Z(g)_____J exp (-17) dt : -

J % (t-7)

when Im{z} is positive and negative, respectively, and by the analytic
continuation of these integrals elsewhere., The functions Z+(c) have a
branch-cut along the real axis; the situation may be understood by consider-
ing the integral to be the limit of an integral over the finite range -c to

¢, as € =+ o, Branch points occur at g ='tc. The mapping of the branch-

cut and branch points onto the k plane for w = wy * ie is shown in Fig, la,
along with the primitive Fourier inversion contour, The first step in evalu-
ating the integral is to fold the left half of the primitive contour in the
upper half-plane (for x positive) over onto the right half of the primitive
contour, as shown in Fig, 1b . (A residuc contribuvtion at k= iku, where

%

kD £ 2

L
[w;o a;z + w;i ai]" , nay be neglected except for very small values

of x ., 7There is a pole at k=0 which gives a contribution to the potential

e il el
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which is proportional to sign {x} and therefore has no physical signifi-
cance,) This is the contour used by Gould1 for numerical evaluation o€ the

Fourier inversion integral, It has the disadvantages that accuracy is re-

duced as x increases, because of the rapid oscillatory behavior of the factor

exp(ikx), and that it does not provide for separate determination, as a
residue, of the contribution to.the response arising from the ion-acoustic
pole at k1 , which is dominant within a considerable range of x .

The meth.d used here avoids these disadvantages, It provides some
additional physical insight into the damping of the wave and leads to a
method of dealing with the branch—cut'integrals which is useful in the
vastly more complicated nqplinear cage.

The physical understanding of Landau damping of a weakly damped wave
involves an interaction between the wave and particles with velocitics very
near the phase velocity of the wave.4 Presumably the case of strong damn-
ing considered here involves interactions between the wave, which consists
of a superposition of phasc-velocity components, and particles in the cor-
responding band of phase velocities, Therefore a transformation of variable
of integration from k to the dimensionless complex phase velocity
g = ”O/kai’ which is considered a more '"natural' variable, is introduced,
The usual dimensionless variables z = wox/ai , £ = molmpi , ¢ = -c0¢/00x0 )
and ﬁ§= Ti/'l‘c arc introduced, The'mass ratio is y = mc/mi . ‘Making use

of the relation

4

{4 w7 2 LT
Z(&)- 7, (Bi=amsi & exp(-£T), )
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the following separation into an "ion-like" and an “elcctron-like' integral

is achicved:

: 65
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(Since the facfor exp(izc'l) has an essential singularity at =0 , giving
2 a small positive imaginary part assures the existence of the integral.)
The dielectric functions are here and henceforth indicated as functions of
the alternative arguments ¢ and f2 « The form of Eq. (5) displays

clearly the role of ion and electron distribution functions in determining
’ 1

. is modulated in ecach

the character of the response. The usual factor K™
integral by the velocity decrivative of the distfibution'function, which
indicates the range of particle velogitics which interact with each phase-
velocity comp&nent of the wavé. The ion-like integral, which is strongly
affected by the ion-acoustic root of thé dispersion relation at g = wolkai ’
principally determines the response from the prid to the beginning of the inter-
ference region, Sze the dashed curve of Fig. 2. 1In this region electrons
easily follow the low-frequency ion motion and, as is well known, neutralize

the ion charge density quite effectively, .In the region where the ion-like

and clectron-like integrals are of comparable magnitude the interference is
obtained, At large distances the responsc is principally determined by

the clectron-like integral; the phase-mixing factor exp(izc'l) linits the

phase velocities involved to values greater than those of rmost ions so that

only an clectron charge density arises. This part of the response corresponds




R —

R e oo, IR

i

(TN

AT oIS p»--pwtwmw\':wmwul

to clectron shielding of the disturbance produced by the grid.

By deforming the contours so that they proceed from the origin in the
direction of iegative iﬁaginary values, pass below the pole at 51 , and that
s0le only, and approach infinity well within the range -m/4 < arg{t} < w/4 ,
one‘expresses the response as the sum of the residuc of the pole at gy and
of the two integrals.

The ioﬁ-like integral may be evaluated along the path of stecpest
descents for the function exp(izt'1 - 52) » shown in Fig. lc, or along thec
simpler contour shown in Fig. 1d, which is independent of z . The path of
the stecpest descents is the archetype of desirable contours in that it
transforms the dominant exponential behavior of the integrand irto a gaussian;
for the simpler contour considered, the exponential becomes predominantly
damped (as opposed to oscillatory) as T approaches the origin and infinity.
Thus the oscillatory behavior .aich plagues an integration along the real
axis for large x is avoided here.

The ecvaluation of the eleétron-like integral requires a somewhat
different treatment. Since its integrand decreases slowly as |z| increases,
the dimensionless wave number is an appropriate variable and the contour of
Fig. le is a suitable contour. The practical difference between using one
variable and the other is that in the numerical integration one treats the
variable chosen as having a distribution of discrete values which is not
radically different from a uniform distribution. 'The path of stecepest descents
for the function exp(izc'1 - uTﬁz) or a contour which bears the same
relation to it as Fig. 1d bears to Fig. lc is unsatisfactory becausc a large
number of roots of the dispersion relation arc swept past in going to such

a contour from thec positive real axis.
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Computations were perforrmad beth for the dipole grid moéei and for the
model of the double grid with finite spacing. The latter case was considered
in order to gain an appreciation of the importance of the assumed theoretical
model of the grid excitation in determining the character of the responsc.

The factor [sin(kx0/2)/(kx0/2)] introduced into the integrand of Eq. (1)

gives the integral for the casc of spacing between the grids equal to Xy
. i . A 1 ’ 1
The potential for points x > x0/2 is ¢(x) = x, [¢d(x + i-xo) - ¢d(x - i-xo)] 3 :

in vhich 2

d} ( (&J" J ey "; ,{?‘/\H_'J!’J :
= £ Ghdr © :
i | Kyl B K(oo,m k*

(The pole at k=0 gives unimportant contributions to ¢(x) as in the
dipole limit.)

Computations were performed on thc Culler On-Line Computer of TRW
Systems, Inc., Redondo Beach, California. Figure 2 shows the results for
the dipele limit and the finite-spacing case (with zg = woxo/Zai = 4)
vhen T=! and f2 «<1. (In the limit f2 <<'1 one has
K, (5, €53 2K, (0) = -22[z30) + Tep/2 12 0] ). comparison of the
curves suggests that the general character of the response is unaffected
by a choice of rcaﬁonablc models of the grid excitation, but that fine
details such as the precise character of the interference between ion and

electron waves should not be taken vefy seriously. "4




-10-

III., FORMULATION OF THE NONLINEAR PROBLEM

Examination of the (nonlinear) Vlasov equation indicates that thz steady-
state responsc to time-harmonic grid excitation at frequency u, involves .
frequency components w=0, w., 2w0...;. Strong nonlinearity involves sub-
stantial contributions from a large number of hawmonics and a coupled systcem
which is probably difficult, if not impossible, to solve. Accordingly a
solution is sought for the casc of weak nonlinearity by introducing a per-
turbation-series expansion of the potential and species distribution func-
tions, (This is equivalent to the procedure used by Montgomery and Go;aaﬂs
to study the initial-value problen.) Iﬁtroducing for convenicnce the par-
meter 2 , wﬁich is finally to be sct to unity, one obtains the following
expansions to order A2 of the potential in the plasma.and the spacies dis-

tribution functions:

G
St = 2 OGt) + N EGG D - - - @

[ ¢

ROty =€ 040 £ vl BLGwi) e @

~

Substituting these expressions into the Vlasov equation and collecting
like powers of X onc obtains in first order the lincarized Vlasov cquation

and in sccond order the sct

M B LRI BGNY . e
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in which E = -3¢/3x. By proceeding to higher oxders one ebtains a hicrarchy ]

of pafrs of equations for highcr-order quantities. 1ln each order the equation
corresponding to Eq. {9) differs in having a different sum of quadratic I g
combinations of lower-order terms on the right-hand side; the structure of

tiie other equation is the ;ame as that of Eq. (10). For sufficiently small

amplitude of cxcitation only the first-order and second-order cemponents of

the response nced be considered.

The sccond-order equations are Laplace-Fourier transformed; the trans-

form operator is

e
o
— -&Qxyﬁwi%éﬂ exp&ikx? (11) -
W) .:)t.\:\ /
The transform-inversion operator is denoted by T'l. (Primed and. double- '

prined transform variables, w' , o' , k' , and k" , are used below; the cor-
- -1 . .

responding operators arc denoted by T', T' l, ™ , and T" °.) The dis-

tribution functions Gfa(w,k,v) arc eliminated from Eqs.(9) and (10) and the

resulting equation is solved for 84(w,k). The electric ficld and species’
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distribution functions in linear theoxy are expressed as inversions of the

transforms E(w',k") and

'F“(LO )b/ -_,Lé\i. of._/ov E( RY ‘;;1:) o

N
M (Kv-w') )

in which E(w',k') is the transform of the external field of the grid divided
by the dielectric function., Here ' initially has a positive imaginary
part. The velocity integrals which arise (sece Eq. (10)) are analytically
continued into the enéire w/k and w'/k' planes, The deformation of

the contour of integration in the velocity plane around the pole at v =w/k
is the séme-as that in K(w,k); the deformation around the pole at v =w'/k!
is the same as that in K(w',k'). The Laplace-Fourier inversion of 8¢ (w,k)

is performed,. The result of these operations is

- (TEr" (e T A
8¢(>’;» T {E—-}/\Q P - (\/_Q)‘ ,;) /J

in which E and fu arc lLaplacc-Fourier transforms of the field and dis-

tribution.function perturbations in lincar thcory, and A denotes the contour

in the velocity planc deformed as described above, Making use of the no-
tation U = q m /m_a N and
« pa’ o A

v (14)

VL 2) =0 ( Loy B[ eelor,

R A R Ty TSR T Ty M R N T T N il L T U W—




in wvhich c“ = w/l:uu and ca' = m'/];'au one may express the response as

o ..

s = K(iw ”XUJF{" e, T Eesk) K= Ve, 240 as)

For a plasma composcd of electrons and of one species of singly-charged

ions, Ue/Ui = 52 « Performing an integration by parts and making a par-

tial fraction expansion in Eq. (14), one obtains

175-7 I{V" 1
Ve 2= [2'5)-Z'(5] | Z(é: .

-z " (z=¢

IV, DOMINANT-POLE APPROYIMATION

The practical impossibility of evaluating 6¢(x,t) without introducing
a further simplification is now apparent, Application of the convolution
theorem to T{ } in Eq. (15) results in a single integration with respect to
k' which contains a quadratic combination of a function of k' and a func-
tion of (k-k')., The inversion k»x lcads to an integration with respect
to k. In addition to the reqnifcncnt of evaluating a double Fourier inte-
gral is,thc further complication that the functions of k' and (K-k')
within the doublc integral have branch<point pairs in the k and k' plancs
vhen k'=0 and (kek')=0, just as thcre is a branch-point pair at k=0 in

the lincar preblene An escape from this impasse is provided by the doninaice

i
]
2
]
%
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of the cxponentially damped contribution of the residue of the ion-acoustic
pole over a wide range of x in the linear problem, The deviation from
this response near the grid is so strongly damped that its contribution to
the nonlinear response is probably highly locelized; the deviation due to the
electron wave at }arge distances is at such a low level that it may be
neglected,

The dominant-pnle approxination is obtained by representing the steady-

state electric field in linear theory by the residuc contribution
+ '-—.Fe {':yt[':(! ‘\, f‘-t n oA
E(x)-)" AV“P =R A‘”"v‘c )] 4- C.¢ a7

in which

lwetrteg
A = e T (18)
MO C:I W I/+(“l

and kl = wolclai 0

To obtain the double-frequency response, it is sufficicnt to consider
the partial linear response given by the first term of Eq. (17). 7The cor-
responding nonlincar responsc plus its complex conjugate is the real double-
frequency responsc, The Laplace-Fourier transform of the partial cxcitation

is

. B B 4 ,
["- ,\( '.\: * ,": > T ) /\ il ,—! —"' i '"-'. =8 o .T.."-f”.' ...-.... (] 9)
|




Examining Eqs. (1) and (5) onc notes that the first term of this expression
comes from K+(w0,k) and that the second tcrm comes from K;(wo,k). Because.
of the replacement of the dielectric function in the transform of the responsec
in linear theory by its dominant-pole component it is necessary to indicate
whether the plasma dispersion functions in V(cu,ca) (sce Egs. (lé) and (16))
are plus or minus functions. This is accomplished by the notation
V5 5,(§a,c&) , in which s and s' are plus or minus; the first subscript
is associated with the first argument and the sccond subscript with the
sccond argument,

As the first step in determining the explicit form of Eq. (15) in the
dominant-pole approximation with the partial excitation described above,

onc obtains the inversion .

T —ll_E- ((O ) }L \/\"‘/) i]: (' /\.1 ,('.,)(J'—i "(:‘.f‘. E‘fxr‘[j(;-?i

s RVAY
AI“Cth /
(20)

)

Here ©0(x') is thc unit step function; ¢

1/2 4172
%

dispcrsion functions of arpument ¢ may be plus or minus functions, The
p , H . )

la cquals cl for oa=i

and u for a=c ., The subscripted parcntheses indicate that plasma
A
further steps indicated in Eq. (15) arc performed; onc obtains 6¢ (x,t)

= cxp(-2iw t)5¢ (x) ’ in “hxch

‘r "?' J/\ (! -0 é"i ):Uc\
24

[ - -
* 01 Vi PO e N ' (21)
X [ el i: Lx) /f)-‘-(> st ot o) Vo) ( - £ ! b
R TP i Y £ e AU A e
f l f‘ '/\(" AN _‘.!A‘ (f\. Ny \[ SoETm) Beops O

Here o his been set cquad to ?uo s0 thot Ca =2m0/kno « The definition
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of cla. is unchanged.
The folding of the primitive contour in the k plane and the transforma-

tion of the variable of integration from k -to T , which is now defined to
~be equal to Zwb/kai , are performed. The contour‘in the L plane is now:
deformed so that it proceeds from the origin in the direction of negative
imaginary - lues, passes below the pole at g » and approaches infinity
‘well within théufiﬁéé>-ﬁf&:ﬁf£{£}<n/4 . Sd&h‘£>éaﬁfoufgig‘dehoted'by é .

As in the linear problem there is a simple pole at k=0 , which has no physi-

cal significance, AFor:the case f2<<1 (f = wO/wpi’ as before), to which con-

sideration is now limited, ‘f2K+(2wo,k) +4% fzKi(c) . For purpose of com-

parison with integrals in the linearized problem it is convenient to consider

[66*(x)/£% (-21iC,)], in which C; = C and

a|a=i

2

., » B
C«::é?ﬁ“ (95%9) {Zi ['Fg[’(a-(%)] <Zlu> Us. =

One obtains

-5
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in which I(i) ...__[ d& axp (g :
: (.on 1)[ E[{EK-P(Q]EF K(gﬂ

[PV €8) —F2 K, B V-e €2 (24)
X -
(€-Z) _

_FPROVEL) - R BV (z- )]‘l
z 1-51)
I(e) -'il-E dZ ews (Rizd 4
2T ARG B =l
SR Vol ) S @VaEe)] @
L (g".;i)
_ PRRLOVA- B -FRK 0 VO (6-E) 1
@) Ji

and R is the residue contribution, which will be discussed and evaluated

1/2:1-:1/2; and 51 1/2 1/21

below. For compactness thc notation & = u

has been introduced. The definition of z remains unchanged, z = mox/ai c

Expression of I(i) and I(c) as sums of ion-like and electron-like
integrals, that is integrals whose integrands have the exponential behavior
cxp(izt;"1 - 52) and exp(izc'1 - u?cz) , respectively, is achieved by
manipulations which arc here described briefly. By expressing 2"(r) in

texms of Z'(g) in Eq. (16), one obtains

=D - -2
V(g o= {(c-en* 72N+ e[z (0]
PR T 2N e

et s g dp bk
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In I(l) and I(e) only the Lo depcndence of the V's remains. To

indicate the structure of the manipulations one may denote the V's by

M) = V,, (Gt ), W(3) = V_,(5,,#0) ) , in which

z;{). e

The P's and Q's depend on the species o and on the suppressed # index
associated with the arguments # e But they do not contain Z'+(c&)

and hence arec independent of the * index associated with Ty Appropriate

' )
elements of the integrands of I(i' and I(e) are expressed as

[P WL(L) ~ £RRE WS

i

VG PR @~ PR+ G-z ) @

The desired expression of I(i) and. I(c) as sums of ion-like and
electron-like integrals is achieved by making use of Eq. (4).

Defining, for n = 2,3, the functions

D (2= [(Ee G = (Gut &

(29)
and muking use of the relation 2' (-%) = Z's(c). one obtains finally
for a=1i,e
e e (Y V' ?‘v — :"i?{) ...,-(:'.;._-_;“} e fat o ,,’\
[(')2‘-*- J_( +.L'( e T ek (30)

L e = S P

| R r e .
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in wvhich

I(ylgh) EI ( exp(Ri ?(hi)G (dan)dl | (31)
T 7”J R PR ETFKE)] |

~(afn)

The func 'a~ms G are

Gz e (AT [ZUQ+TZUEID(D) - e
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¥
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4 A
19
3

1

4

4

(4
E
o
3

i 4

GE = expl?) [g-ﬁg(i 2¢F) Z;(S)] D:(¢) (35

e ek, B &

oLy ew’*)z’%@ 2w

'.',J} ,:jJ r\)-.?:’« - Hel \ — ~
0 B Ple e (b2 K e h

el -1 PPN ey | . —_ ,-,. \ '
R R N o I P +E5- “+'(¢,-):I Cs(2) (36)
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(37)

o 3
(ees) _ -

G =T el [TZ+(E)+Z+(.JD’€‘ &)

G(eea)_ "% 25 A2
=~ exp(—-g g LET-— = Eg‘ +\‘:/]D () 39)

3/2 ~3/2

In Eqs. (36) and (38) the relatlon 03(5) D (C) has been

1:‘

used; in Eqs. (37) and (39) the relation D,(£) = u ln 2(0) has been

used.
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V. SIMPLIFICATION AND NUMERICAL RESULTS

The pumerical evaluation of the branch-cut integrals may be simplified

considerably by the introduction of approximations and an ordering of terms

1/2 (i)

based on the smallness of u . In lowest order I may be neglected.

In next order cre elemsnt of I(l) , hanely 1(112? , makes a contribution
to the result which, although small, is enhanced by the character of its
integrand above that indicated by the ordering.

The relation [Z',(%,) + fi'¢(gl)1 = 0 impiied by the dispersion

relation facilitates the comparison 'of the relatrive magnitudes of the

(i) and I(e) which contain 63 . Using

this relation one obtains [G(ZIS)IG(EIS)] =y and [G(leS)/G(eGS)] = ﬁ?-l

i) and I(e)

. . { . :
The corresponding elements of 1I° which contain D

102 ong 1lee2)

re
za

now compared. Consider first . In the small-argument

region of the contour C , |t| £ 4 , the factor [2 + (1—2;2]2'*(c)] ,
which appears in 6(%?) | and the factor [2¥ - (1-26H)2',(2)] , which
appears in C(eeZ) , are both of order urity. Thus the ratio of the

absolute valuc of the small;argument parf of I(ieZ) to that of I(eeZ)

is approximatcly u . In the asymptotic region |g| 2 4 the two factors

2

have the behavior [2 + (1-2C2)Z'+(C)] I= tZ'+(”)] v 20 ° and

[2? - (i—2£252'+(§)] ~ 2T . Thus the ratio of the absolute value of the

I(ie2) i(cc2)

asymptotic part of to that of is less than p .

The last comparison to be sade is that of 1(112) and I(e12) . In
the range || $ 4 over which nurerical evaluation of ion-like integrals

is performed, the corresponding factors [2 - ?[1-2c2)2'+(€)] , which

appears in 6(112) , and CZ"+(€) , which sppears in G(CIZ) , arc both of

e

i
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order unity. Therefore the ratio of the absolute value of 1(112) to

that of 1(°1?) is 0(u1/2) . It will be seen that, due to the absence

of inverse powers of (c-cl) in the lowest order of an exRansion of the
integrand of the sum [I(eiSJ + I(eiZ)] . I(iiz) contributes more
importantly to the total response ihan the ordering indicates. Thercfore

it is retained. .

The integrands which have been retained a¥e now simplified. Consider
first the sum of ior-liike integrals, tl(eiS) + I(eiZ) + I(iiz)] . Expanding
the factor [Z'+(£1) - Z'+(£)] which appears in _G(eisj. in powers of
{§-£,) and appreximating 2" (§) in c(ei2) by 2z (E,) , one obtains

in lowest order

3

exot6[RGZEN -0 T W

Whw

_.%.(\5

[Ci(eis)'i"G(Eig?] _-_—_P_ 2T

The reason for retaining 1(112) should nov be apparent. Although G(iiz)

is formally smaller than [G(e13) + G(Eiz)] by the factor ullz

, the
presence of a factor (l;-cl)-2 in the former and the absence of negative
powers of (c-cl) in the latter result in a contribution of I(iizl
substantially larger than that indicated by the ordering. (The next order
of the expansion of [G(eis) + G(eiZ)] makes a negligible o .-tributiorn to
the result, despite the fact that one of two terms contains z factor

‘ .
1/2 are retained (with the

(C-Cl)-l.) Since only lovest order terms in
exception of the anomalously large ?ontribution i(iiz) ) the approximations
Z"’(El) ='-2ﬂ1/2i and 2" _(E) ~ -2 may bc.made in Eqs. (33) and (40),
rc5pectiveiy.

Consider now the sum of electron-like integrals, [I(ceS) + I(ce2)] .




& small-arguirent cormponent

I They are evaluated as the sum of two parts:

evaluated along the same contour as the ion-like integrals and a large-

argument corponent evaluated along a contour in the complex phase velocity

QR

Plane of the same general character as that of Fig. le but with an upper
limit which is the reciprocal of the upper limit of integration in the

{ plane. In the small-argument region an expansion in ullz gives

= 23 -—,; r~oes ‘ . - 9—3
GO+ @ )= P T el 67 0322, ) (2227

{[41-(( )- ]@"—t-i’é‘“‘)-l—fﬁg e [Z;’(J‘;’ilgg%f(z_l_“}

The term of order uI/Z makes an ancmalously large contril-:tion to the

integral because

1/2

[Z'+(c) - 2?] vanishes at a point with a distance of

order u from ¢, and is therefore retained. In the lar e-argument
1 g

region Z'+(;) is represented by a suitable number of terms of its

asyrptotic expansion.

The residue ceniributios to E3. (23) is

X
) A /i =y
[ wRe o) S Vy ___\‘_ff_m ) Ve L EE T Ve

716 (5) M—(g‘gs) (C4”) |f

l.
o
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Onc expands the factors of Eq. {42) in powers of (c—cl) to obtain an
explicit expression for the residue.. To develop an approximate expression
which is convenient for computational purposes one expands the residue in

povwers of ul/Z . The final result is

Qe

W

TS A "‘1 y S
R=p T B‘BK.J(QE (:‘xp(giz:%""')rso + Si(ti,:’f.)_ (43)

inwhich s, = - (#/%21 + 00t? ana s, = w2 T2 2 (1))

+ 231/2 $2 i] . The term proportional to 2z js retained even though it

is formally of order vl/z because it can make a substantial contribution

to the result at large values of 2z which are within the probable range
of validity of the domiﬁant-pole approximatior for 1-7gc values of the
ratio T /T, -

Tae rcsults of numerical calculations are shown in Figs., 3 and 4 for the
cases T =3, .5, and .25 . It is difficult to estimate the
range ef 2z' over which the dominant-pole approximation is valid. 1I1f the
dominant-pole component of the linear response, Eq. (17), is cecnridered
to be mixed with itself in the absence of further dJispeirsion or danping,
thé Jouble- frequency harmonic is attenuated as exp[—Zlm(;l;xJ . The change
in x dependence x = 2x is adopted as the basis for choosing a maximun
valuc of z. For the equal temperature case the deviaticn of the linear
responsc from the dominant-pole approximation is small (except very near
the grid) until 2z = 22, Thus, z = 11 is chosgn s thc ﬁéximum value
for the calculation of the double-frequency response. Fer the case Te/‘l'i = 2,
the corresponding maximum value for the linear response is 2z = 38. (Sce

the results of Gould, Fig. 6 of Ref. 1.) Accordingly, =z = 19 is sclccted

as the maximum value for the calculation of the double-frequency response,
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For this and higher values of the termperature ratio the doﬁblc-frequency
response has a characteristic repetitive pattcrn{ accordingly, in the
interest of conserving computer time the corresponding increases in the
maximu: values of 2z are not made-beyond 'l‘eni =2, .

The principal features of the nurerical results are three: a
repetitive modulation of the spatially damped behavior of the logarithm
of the absolute value of the potential perturbation; a reduction i; spatial
damping as the electron-to-ion temperature ratio increases; and a transition
in the overall spatial rate of change of phase with temperature ratio
increase, from a small rate_characteristic of a non-wave-like disturbance
similar to the "electron wave" at large distances in the linecar problem,
to a largellinear.rate characteristic of the mixing of the domiﬁant-pole
component with itself and similar to the behavior of the phase of the ion-
acoustic wave in the linear problem. The modulation of the amplitude of
the response and the non-wave-like character of the responsc for values of
the electron-to-ion temperature ratio close to unity are consequences of
the fact that the electron-like integral in the double-frequency response

is not diminished relative to the ion-like integral by the presence of a

factor ullz , as is the case in the lincar response,
VI. ZERO-FREQUENCY RESPONSE
The nonlinear response at zero frequency is now showr - be a
polarization of the plasma with no associated current den: 5, This
result is established in the context of the assumptions ¢ ‘'1-amplitude

excitation, uniform and stationary distribution function ° shsence
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of excitation, and onc-dimensionality. There are a number of conditions

in the experiments which are inconsistent with these assumptions; the

inclusion of these complcations would make the analysis vastly more difficulr.

The zero-frequency component of potential in the plasma must be an even
function of x because there is no preferred direction.in space when an
average over one cycle of the excitation is considered. The only possiblc
source of a zero-frequency component of potential in this theory is the
inequality of the charge-to-mass ratio for the two species, which would
give a potential which is an even function of «x .

The Vlasov equation implies specics continuity equations

) 9_,
é’{hoc + DX [_'o(—_—:O (4

in which Ia is the particle current density of species « . For the
zero-frequepcy component this equation states that the species particle
current densities are divergenceless. The spatial symmetry of the zero-
frequency component of the potential implies that species particle current
densities are zero at x = 0 ; hence they must be zero everyvhere.

The zero-frequency component of the lowest order nonlinear contribution
to the potential was determined in Ref. 6. Since the zero-frequency
component is proﬂably difficult to detect in an expcriment, that development

is not included here. ‘ .
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VII. CONCLUSIONS

ki T

The double-frequency response produced by the nonlinear interaction of
a grid-excited ion-acoustic wave with itself exhibits complicated behavior
for values of the electron-to-ion temperature ratio near unity. The electvron-
wave componen: of the responsc is not diminished by the presence of a factor

1/2 . . s s s .
u / , as occurs in the linear case. This indicates the operation of an

electron shielding mechanism'in the double frequency response. As the

temperature ratio approaches a value of four, the response comes closer to

displaying exponentiully damped behavior.

The complications involved in determining nonlinear response to grid
excitation are reduced considerably by expressing the Fourier inversion 1 L
integrals which result as sums of "ion-like" and "electron-like" integrals.
Physical interprctation of the results of a nonlinear grid excitation problem,

is rendered somewhat less difficult by such a representation.
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Fig. 1.

Fig. 2,

Fig. 3.

Fig. 4.
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Figure Captions

Integration contours for Fourier inversion integrals,

(a) Primitive Fourier inversion contcur in k plane and mapping
of branch-cut and branch points of Zi(C) for v = w, + i€ .,

(b) Folding of left half of primitive contvur onto right half of
primitive contour in k plane. First few members of infinite sct
of roots of dispersion relation K= 0 are indicated.

(c) ﬁath of stecpest descents for function exp(izc-1 - cz) and
mapping of roots of dispersion relation shown in (b) in 7 plane.
(d) Simple contour for evaluation of ion-like integrals.

(e) Contour'in k plane for evaluation of electron-like integrals

which rcduces oscillatory behavior of integrand.
Numerical results in linear theory (cesium plasma).

Numerical results in nonlinear thecory (cesium plasma): natural

logarithm of absolute value of [I(l} + I(e) + R] as a function of

z for tempcraturc ratios T = 1, .5, .25 .
Numerical results in nonlinear theory (cesium plasma): arguicnt

of [1(1) + I(e) + R] as a function of z for temperaturc ratios

'l. = 1’ .5‘ .25 .
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