
A
B

69
1

S
ã!

Tl

1

The George Washington University

LOGISTICS RESEARCH PROJECT
Contract N00014-67-A-02I4

Task 0001 Project NR 047 001

OFFICE OF NAVAL RESEARCH

THIS DOCUMENT HAS BEEN APPROVED
RELEASE AND SALE; ITS DISTRIBUTION

i;.f A' t r-
»•>

-

C,
FOR PUBLIC
IS UNLIMITED

X

A DYNAMIC MULTI-COMMODITY, MULTI-MODE

NETWORK FLOW MODEL

by

Donald J. Hunt

Erling F. Rosholdt

Serial T-225

30 June 1969

THE GEORGE WASHINGTON UNIVERSITY
Logistics Research Project

Contract N00014-67-A-0214

Task 0001, Project NR 047 001

Office of Naval Research

This document has been approved for public

release and sale; its distribution is unlimited.

THE GEORGE WASHINGTON UNIVERSITY

Logistics Research Project

Abstract
of

Serial T-225

A DYNAMIC MULTI-COMMODITY, MULTI-MODE
NETWORK FLOW MODEL

by

Donald J, Hunt
Erling F. Rosholdt

This paper describes a dynamic multi-commodity, multi-mode network flow
model which permits time phasing of commodity load inputs and derives delivery
schedules to the respective destinations over a time span of interest to the
user. The model makes use of a time-expanded network. Methodology for time ex
panding a basic network is described and an algorithm for determining the com¬
modity flow allocations Is provided Implementation of the model has been made
in PI-1 programming language for use with the IBM 360/50 computer. A number of
innovative programming steps which make possible very efficient processing are
described and computing experience with several different network problems is
reported.

T-225

TABLE OF CONTENTS

Abstract

Introduction -

1. Statement of the Problem _

General Program Description _

Definition and Explanation of Terms _

Algorithm -

Computational Experience______

Problem Areas in Achieving Processing Efficiency _

Future Programming Improvements _,..,_

2. General Program Structure --

REFERENCES -

APPENDIX A — Time Expansion Procedures _

APPENDIX B - Approaches to Problems of Processing Efficiency

APPENDIX C — Proposed Future Program Improvements _

Page

1

1

2

4

6

9

13

17

17

18

27

28

30

36

ii

* !

THF GEORGE WASHINGTON UNIVERSIIY
Logistics Re'-sarch Project

A DYNAMIC MULTI COMMODITY, MULTI-MODE

NETWORK FLOW MCDEI

by

Donald J Hunt

Erliog F. Roshcldt

Introduction

In [1], a computatlocally feasible procedure for solving the multi-

commodity maximum flow problem was described. The procedure described the use

of a shortest path algorithm select the column vector to enter the basis in

the simplex method and thus avoided the storage problem incurred for the usually

very large arc-chain incidence matrix used to formulate the problem as originally

expressed by Ford and Fulkerson in 1938 |21.

The multi-commodity network flow model described in this paper has ex¬

tended the procedure from [1] into a dynanuc multi-commodity multi-mode model by

coupling the procedure with a time-expanded network so as to permit the time¬

phasing of commodity load inputs and the derivation of delivery schedules to the

respective destinations over a time span of interest to the user.

The methodology for expanding a basic network into a time-expanded net¬

work and the algorithm for determining the delivery schedules has been written

in programming language PL-1 for use on an IBM 360/50 computer. A number of

innovative programming steps which make possible very efficient processing are

described and computing experience with several different network problems is

reported.

T-225

1. Statement zi the Problem

Consider the network G - <N,A) , where N is a finite set of points

called nodes and is a set of pairs of points from N called arcs. If each

arc (x,y) in A is an ordered pair, the network G is called a directed

network. If the arcs are unordered pairs then the network is an undirected

network. The networks under specific considération are directed out the method¬

ology will apply alsc to undirected networks Each arc has a capacity

Cx,y - 0 and associated with each arc is a cost, namely, the traversal time

(ax,y) There 18 a set of loj-IÇes S c N which are originating points for

commodities K in the basic network, and a set of sinks T e N which are

terminating points for commodities K in the basic network. A source-sink

pairing is defined for each commodity. Each real source in the network is con¬

nected to a dummy source node and each real sink to a dummy sink node. To each

of the arcs connecting dummy source to real source and dummy sink to real sink

a cost of zero is assigned

The time-expanded network of G over p time periods, G(p) maybe

construed as one which is produced in layers or levels emanating from dummy

source SQ at successive time intervals At each level there will be a replica

of G with all pachs or chains traceable trom dummy source to dummy sink, whose

total traversal time does not exceed the time span of interest. Holdover arcs

of infinite capacity and cost - 1 are added at each of the sources in set S

and holdover arcs of infinite capacity and cost - 0 are added at each of the

sinks in set T -

We are asked to find a delivery schedule for a k-commodity flow in G

which satisfied the capacity constraints on the arcs and the flow requirements

and which minimizes the total cost

Given:

rk
(X,y) = individual flow capacity of arc (x,y) for

commodity K per unit time

Cm * rautual flow capacity of arc (x,y) per unit
t *me

axty * traversal time of arc (x,y>

2

T-225

Fk
x.yr

F(x,x;t)

’^2 * * * *

T1,T2.Tk

then the problem Is:

amount of flow of commodity K leaving x

along (x,y) at time t and arriving at

y at time r + a(x,y)

holdover at x from t to t + 1

sources for commodities 1,2,...,k

sinks for commodities 1,2,...,k

time periods in span of interest

net flow out of source or entering

8lnk Tk durin8 the p periods 0 to 1 ,

1 to 2,..., p-1 to p

subject to the constraints

maximize IV

k

k

P If U k

I I [F (S ,yjT) - FK(y ,s ;r - a(y,s))] - V^p) - 0
T-0 yeN K *

I[Fkfx,yp) - Fk(y,x;r - a(y,x))] - 0

x ?» sk , Tk ; t « 0,1, ,..,p

P k k lr
E E [F (T.yp) - FKiy,T - a(y,T))] + Vk(p) - 0

t-0 yeN K

0 <_ Fk(x,y ; 7) 1 Ck(x,y)

0 ^ IFk(x,y; i) C (x,y) .
k “ m

In addition, the model permits the introduction of variable commodity

loads at the commodity source at specified departure times and will attempt to

satisfy desired delivery quantities at specified times at the commodity sink.

- 3 -

T-225

The term "requirements" in this model refers to a desired delivery quantity or

upper bound rather than the usual meaning of an absolute demand at the sink.

A schematic diagram of the structure of a time-expanded network is given

in Figure 1. Here,

d - shortest path from Sq to TQ

p - time span o£ interest

T “ arrival/departure time at a node

u = p - d .

Not shown in Figuxe 1 is an internal network structure, indicated in

Figure 2, which exists when for any arc there is both a mutual capacity, C

and an individual commodity capacity, , n

(1)
C

Figure 2

Individual and Mutual Capacity Arc Structure

General rxogram Description

1.1 Function

The program has the following functions:

a. to accept the time-expanded network as input;

b. to accept a list of commodities with their defining sources
and sinks; 6

To accept a list of one or more available loads for each com¬
modity, to be considered available at that commodity's de¬
fining source ac a specified time;

- 4

- 5 -

o>

3
60

•H

T
i
m
e
-
E
x
p
a
n
d
e
d

N
e
t
w
o
r
k

S
t
r
u
c
t
u
r
e

T-225

d. to accept a list of one or more commodity requirements to be

delivered at t>iat commodity's defining sink at a specified
time; and finally,

e. based on the above inputs, to derive a detailed shipping sched¬

ule that shows how and when each commodity's loads were depleted

and delivered to that commodity's destination satisfying a
requirement

Definition and Explanation of Terms

All nodes of the time-expanded network consist of two identifying parts,

a node name n and a time t . Since the set S of sources and set T of

sinks belong to the set of expanded nodes, they also have the identifying part,

t . For a source, r is to be interpreted as a departure time; for a sink, t

is to be interpreted as an arrival time If a load is specified as originating

at a source, to completely identify that source the time of departure, t , muat

be specified; if a requirement is specified for a load terminating at a sink,

to completely identify that sink tie time of arrival, r , must be specified.

A £Ííãi£ commodity K is a finite sequence of arcs in the expanded

network from r to t^/r arranged in order so that

(k)

MJ " ,Sk/T ' VT) * <n]./T * VT) » '" » (nn/T » tk/í)í •

The nl/T in the chain are members of the set of expanded nodes. If there are

m expanded arcs, k commodities, a available loads, and r required loads, a

chain with its source load and sink requirement will be represented as an

(m + a + r) x 1 partitioned column vector, called a chain vector.

p(k)

J

M ik)

(k)

,(k)

6

where

T-225

(1) M
(k)

j

(2) A
(k)

j

■ m

nij .

is 3 column suL.-vector in which

|1 if arc i is ui cnain

4

[0 if ¡ii.c i is not in chain f

a column aub-vcctor in which

if load í is available at the source for

in M,k)
J

^f j-oad i is not available at the source

j for chain

* aij; iS

Í1

-vector in which

is required at the sink for chain Mjk^

i» not required at the sink for chain

Sk//l * tk/ r repretents any source sink pair; a commodity is defined by a

source-sink pair, i e , S^O , t-,/40 defines commodity 1 as departing S at

time zero with required arrival at t = 40 ; a load is a quantity of a commodity

available at that commodity's delining source; a requirement is a quantity of a

commodity to be delivered to that commodity's defining sink; the basis matrix1

B and its inverse B are initially identity matrices of order m + a + r ,

where

m = the number of arcs in the time-expanded network;

a - the number of loads available at the various commodity

sources; 3

£ = the number of requirements for delivery at the various

commodity sinks;

(3) R
(k)

j
t ' is a column sub

j 1 if load j.

r. =/.
ij |0 if load i

! M* k)
1 j

For comparable definitions of the linear program elements for the multi¬

commodity solution of the basic network G , see [IJ, Sections I and II.

- 7 -

T-225

- r ' • 0,1 lraiat vector ami is an (m + a + r) x 1 column
V(.utor composed of the m capacities of the arcs in the

expanded network, the a available loads, and the r
requirements ;

^ = the solution vector and is an (m + a + r) x 1 column

vector initially equal to the constraint vector b ;

CB = the cost vector and is a 1 x (m + a + r) row vector
wnicn is initially all zeros;

CBb = the Linear program "pseudo-cost" vector and is a

lx (m + a + r) row vector of the form.

C - (-.
r m 1 » • * 2 » • • • >0)

r

where the “-’s are associated with ra arcs, the n's

are associated with a available loads, and the a's
aie associated with r requirements;

VC - the cost computed for the current vector to enter the
basis ;

3 any arc or the time-expanded network where x is the
originating node of the arc and y is the terminating

node of the arc, and associated with the arc are the
values :

LCTR

W
x

W

H
x

H
JL
K

= tlie arc length, determined by the pseudo-cost
of C ;

-^x>y) = the capacity of the arc;

±ix-i.vJ. * the residual capacity of the arc;

a-(x>y) = the traversal time of the arc;

a label counter used to indicate whether or not a node y

is labeled for the current shortest chain labeling pass;

= the label count associated with node x ;

* the label count associated with node y ;

= the amount of flow available to leave node x ;

= the greatest amount of flow able to reach node y ;

tne number assigned to a commodity's defining source-sink

8 -

T-225

\

\

\

V
X

V
_z
V
_x
H'

CCL

CCC

= the available load assigned to the dettning source of

conunodlty K ;

= the residual load available to the source of commodity K ;

* the requirement assigned to the sink of commodity K ;

» the residual requirement assigned to the sink of commodity

K ;

= the pseudo-cost associated with available load

termined by the corresponding it. of C ;

= the pseudo-cost associated with availabjle load

termined by the corresponding of C ;

* the least cost for using node x in a chain;

= the current least cost for using node y in a

= the least cost over arc (x,y) for using node

* the greatest amount of tlcw able to reach node

(x,y) ;

= the maximum allowed for labeling or relabeling the

sink node;

= maximum flow that can reach the sink over any path

which gives the minimum V at the sink.

and de-

and de¬

chain;

y ;

y over arc

The term scanned is used in reference to a node to indicate that all arcs

radiating from the node have been examined for the purpose of labeling the ter¬

minal nodes of the arc; £ is the span of time over which the network has been

expanded; a candidate chain is the chain currently to improve most the objective

function of the linear program; P nno
j

is the final candidate chain vector over

all source-sink pairs which enters the basis;

* a slack variable and is an (m + a + r) x 1 column vec-

— tor of all zero elements except that the ith element ■ 1 .

Algorithm
1

Step I: Initial solution.

Let B = 1(m+a+r)x(nH-a+r) and XB = b be a basic feasible solution.

B_1 - I and Cß = (00...0) .

^This subsection is based on [1], Section III.

9

T-225

Step II: Selecting (the column vector to enter the basis matrix B).

1. Compute the linear program pseudo-costs

c - c^-1 .

a. If any element i of C is negative, then the first

such element i determines that a slack variable

will be the vector P? Set VC equal to zero. Go

to Step III.

b. If all elements of C are greater than or equal to

zero, then associate the «’s to arcs, the ïï's to

available loads, and the o's to requirements.

c. Let the first source-sink pair be , t^/i , and

for the first iteration only, initialize CCL to the

cost of the shortest chain in the basic network. Set
CCC - 0 .

2, Consider all nodes scanned and LCTR » LCTR + 1 (initially

LCTR ■ 0). Then, label source as follows:

a. indicate node labeled from itself,

b. set W = LCTR ,

C. set Hx = min,1^) ,

d set vx “ 7 + Q\ + » and

e- indicate source is unscanned.

3- Locate a node x that is unscanned (Initially, the source
is the only such node)

A. For each arc (x,y) radiating from node x make the
following computations:

D Vy “ Vx + Q(x*y) ♦ a(x,y) and

Hy “ minlHx , C(x,y)] ,

2) If Vÿ < CCL or if Vÿ « CCL and > CCC , then

examine node y of arc (x,y) as follows:

(a) If Wy ^ LCTR , then label node y as follows:

(1) indicate node y is labeled from node x ,

10

T-225

(2)

(3)

(4)

(5)

(6)

(7)

set Wy - LCTR ,

set H = H'
y y *

set V = V'
y y ’

--..WN* ,

If node y is the current sink, set
CCL = Vy and CCC > Hy and indicate

sink is labeled, and

process next arc (x.y) by returning

(Vÿ " Vy} and % > Hy) I relabel node j

n^Ín throu8h (a)(7); otherwise, do
‘ el;bel node y but process next arc

U,y) by returning to A,

(c) If arc (x,y) is not admissible
across, process next arc (x v)
ing to A. y

to label
by return-

B. After all arcs (x,y)

examined, indicate node
to 3.

radiating from node x have been
x has been scanned and return

4. When no unscanned node x can h* •« *

i. labeled, go to 5; otherwise, go tö b! Sl"k

5o The candidate chain will be the sequence of arcs frnm i-k.

the'nodes'6 íhis^is^íe^cíai^of3! lnfCated ^ the ^belsT
capacity for t^ clrreoM^^ef.í““ .““ ^e^TÎ

tlon necessary to regenerate this chain should it ïecÔÜÎT'

current ^deuÎeL"1“ °£ ... '

6.

7.

we1

If a candidate chain is found, it becomes the vector

enter the basis. Set VC equal to

'(x,y)eM(k) a(X'y)] and bulld the ch*in vector. Go
P + 1 - [

s
to

to Step III,

- 11 -

T-225

If no candidate has been found yet, set CCL - .„CL + 1 . if CCL now

equals p +] , go to Step V; otherwise, start with the first source-sink pair

again, set CCC * 0 , and return to 2.

Ste£_in: Selecting ?e , the column vector to leave the basis B .

Compute

B'1?

Is

2s

(nn-a+r)s

where Pg was selected in Step II

Compute

I b.

B^b

(nH-a+r)

XB '

Form the quotient for each Plg > 0 , and select

Pis

hr , bi
Z— * _ min —
P P. > 0 P
rs is is

Now Pr the vector to be removed from the basis-

12

T-225

Step IV: Computing ,

Remove vector Pr from B and replace it with Pg , changing B to B*

Change cost vector Cß by assigning VC (cost of vecto/ P) to the rth

ele ment of C .

(B*) 1 = B-1 KW
r

where Wr is the rth row of B*1 and

K,

K -1
r

nrt-a+r

and K _ >

P
rs

is
for i i* r .

rs

Note, KWf is an (mfa+r) x (m+a+r) matrix since K is (m + a + r) x 1 and

Wr is 1 x (m + a + r) .

Let B* = B and (B*)_1 and go to Step II,

Step V:

The basis B is optimal and the solution is b .

Computational Experience

The computational procedures described in the preceding section were im¬

plemented in PL-1 programming language for use in the IBM 360/50 computer.

Table 1 summarizes the characteristics of three network problems thct were

solved for multi-commodity dynamic flows. The network structures are shown in

Figures 3 and 4.

13 -

T-225

Prob¬

lem

No.

Net¬

work

No.

No.

of

Nodes

No.

of

Arcs

Ex¬

pan¬

sion

Time

Pe¬

riods

Nodes

After

Ex¬

pan¬

sion

Arcs

After

Ex¬

pan¬

sion

Com¬

modity

Source-

Sink

Pairs

Load

Avail.

Times

1 Com -

I mod-

ity

Loads

at

Source

i
1 Load at

Sink

Rows

in

-B"1

Ma¬

trix

1
No.

of

It¬

era¬

tions

1 Run

1 Ex¬

ecu¬

tion

Time

(min)

De¬

sired Rcv'd

1 1

(Fig

3)

54 90 40 1432 1970 1SC-

5 ITT
10.
20,

30

! 350,
300,

450

350,

300,

450

350,

300,

288

1988 60 23

55SC-

53TT
10,

20,

30

325,

275,

400

325,

275,

400

300,

275,

108

7AC-

50TT
10,

20,

30

300,

100,

130

300,

100,

130

300,

100,

130

2 2

(Fig
4) J

75 98 40 1631 2210 1SC-

50TT
0 2900 2900 2900 2222 129 70

02SC-

53TT
5, 10 500,

400
500,

400
432,

288

04SC-

54TT
0, 10 900,

300
900,

300
900,

300

3 2 75 98 60 3132 4290 1SC-

50TT
0, 20 2900,

1500
2900,

1500
(1) 1

1
4310 257 240(1)

2SC-

53TT
5, 10,

15
500,

400,

1200

500,

400,

1200

(1)

4SC-

54TT
0, 10,

20,

25

900,

300,

1000,

1200

900,

300,

1000,

1200

(1)

Run stopped after 52 time periods because estimated pre-set run time was reached

Table 1

Characteristics of Dynamic Multi-Commodity

Network Runs on IBM 360/50 Computer

14 -

T-225

A

w

Figure 4

Test Network 112

T-225

Problem Areas ^Q_A£il,.gvjJ}6_!_£ocgsain^_Efficiency

In order to achieve a high jeveJ. oi proce&smg eit^ciency a number of

major problems had to be solved A few of these, along with the solution method

adopted, will be mentioned here to Illustrate the type of problem encountered.

Additional problems and details will be found in Appendix B.

A major problem was that of daca retrieval for processing by the algo¬

rithm, A basic network of, say, only one-hundred arcs when time-expanded becomes

a network of thousands of arts A network with thousands of arcs requires a

direct-access external storage medium The retrieval timr? for a segment of data

from such external storage is many times greater than the retrieval time for

data residing In the computer's high-speed internal memory By writing an

input/output subroutine that used all available computer memory for storing seg¬

ments Oc the network and which maintained the most recently requested segments

in this memory, data retrieval time was reduced substantially

Another major problem was that a network of thousands of arcs when ex¬

pressed as a matrix results in a matrix with thousands of rows and thousands of

columns An effective solution was to condense the rows to only nonzero ele¬

ments This resulted in a quite sparse matrix However, even with the con¬

densed matrix, there were still thousands of rows and the number oi matrix com¬

putations at each iteration could be very time consuming Fortunately, other

shortcuts described in Appendix B reduced considerably the number of matrix

rows processed in three out of four of the matrix computations It is be¬

lieved a future progranming change described subsequently will further reduce

the processing time for these computations

Future Programming Improvements

Three proposed improvements for future programming changes with this

model hold promise of contributing in a major way to additional processing

efficiency. Details are given in Appendix C

1. Expand the basic network arcs and nodes in shortest path sequence in¬

stead of by the current method of expanding it in FROM-node and TO-node sequence

This should improve the maintenance of the arc and node data records in the high¬

speed computer internal storage

17

T-225

2. Partition the matrix so that rows corresponding to arcs can be stored

separately from the rows corresponding to available loads and requirements. The

less densely populated arc rows can then be condensed much more than at present,

with consequent reduction in the time required to retrieve a group of rows from

the external storage device

3 Maintain an array of row indicators that specify whether or not a

given row is an identity row If a row is an identity row, it can be generated

from its definition rather than retrieved from a storage device, again saving

retrieval time

2. General Program Structure

2.1 Inputs and Outputs

The multi-commodity computer model described herein was programmed in the

PL/1 programming language for the IBM 360/50 The program was written as an

overlay program consisting of three major executive routines and a large number

of functional subroutines The program was constructed in this manner to con¬

serve the computer s internal storage and to facilitate modifications to the

procedures as experience was gained with the algorithm's use and limitations

during the developmcrtal process

The first executive routine is the Housekeeping routine (HSK) which con¬

trols three major initialisation functions- This routine reads the processing

option requested, locates and cross-references the input network, and reads the

control cards that define the commodities with their loads and requirements. In

general, this routine calls subroutines to perform the actual processing.

After the housekeeping routine has performed all necessary initializa¬

tion, the next executive routine, the Main Processing Loop (MPL), is called in,

with its subroutines, to overlay the housekeeping routine and receive control/

The routine calls various subroutines to perform the iterative functions de¬

scribed in the algorithm Control remains in the main processing loop until the

algorithm has found th€ optimum solution

• 18 -

T-225

After the main processing loop has completed its task, the third execu¬

tive routine, End-of-Job (EOJ) is cailed in, with its subroutines, to overlay

the main processing loop and perform end-of-job functions This routine calls

subroutines to list chains, list status of loads, and list arcs and nodes.

Before describing the subroutines of the program, the inputs and outputs

to the program will be discussed. The first input to be considered is the con¬

trol card file. The control card file may contain (in the order given) param¬

eter cards, cards to modify individual expanded arc parameters, commodity source

sink cards, available load cards requirement cards, and an end card. All cards

are required except the cards to modify arc parameters.

The next input is the input time-expanded network This input is gener¬

ated by another program using the procedures described in Appendix A. Both this

input and the control card file are processed during housekeeping.

All output goes to the printer and consists of a chain flow listing by

commodity, a load-requirement-residue listing by commodity, and a listing of the

time-expanded network with flows in the arcs Output is given only at the end-

of-job processing

Four work files are required by the program, all of which must be on

direct-access devices. The files are the following: (1) B*1 matrix storage

file, (2) expanded arc file, (3) expanded node file, and (4) chain file. Spe¬

cial subroutines were written to handle the storage and retrieval for each file.

2.2 Program Overlay Structure

The diagram in Figure 5 shows the overlay structure of the program with

each routine or subroutine location identified The following is a description

of each routine or subroutine identified in the diagram.

Multi-Commodity Time-Expansion Algorithm (MCTEA)

This is the first routine to receive control in the program. Its func¬

tion is simply to call the three executive routines in sequence and control the

overlay of those routines.

19 -

A
R

C
S

L
'R

T-225

T-225

Arc Input/Output Subroutine (ARCSUB)

This subroutine controls ail I/O functions connected with the arc tempo

rary data set. It has three entry points:

(1) INITARC - the entry point that opens the arc direct-access

work file for formatting, computes size of each I/O buffer

according to user specified blocking factor, allocates

user specified number of arc buffers, and prepares for
overlap between processing and output I/O.

(2) ARCSUB - the main entry to store or retrieve an arc record.

Accounting information about each arc buffer is maintained

so that the most recently used subset of arcs is always in
memory, ’

(3) CLRARC - the entry that clears out all arc buffers prior
to closing the file.

Node Input/Output Subroutine (NODESUB)

This subroutine is the exact equivalent of ARCSUB except that it controls

all I/O functions connected with the node temporary data set.

Housekeeping (HSK)

This is the first executive routine. It controls the initialization and

processing of all input. It first reads the group of control cards that supplies

the required program parameters as well as some of the optional ones, such as

blocking factors, number of buffers, etc. It then calls in the routine XREF to

locate and process the time-expanded network and calls CMDCTL to read and

process the control cards that specify source-sink pairs, etc.

Cross-Reference (XREF)

The routine initializes certain variables and controls the calling and

overlay of the subroutines HOC, BAN, INDX

Initialize and Locate Input (ILOC)

This subroutine basically opens the time-expanded network input file,

reads the first records in which certain previously derived information is

21 -

T-225

passed from the time-expansion program and initialise, certain variables based

on the information that was passed.

Build Arcs and Nodes (BAN)

This subroutine reads the time-expanded arcs from the network input,

makes any capacity changes specified by the control card input, builds tables

for the arcs and for the nodes, and computes pointers for the arcs and nodes to

tie the two tables together.

Index (INDX)

This subroutine builds nodes not previously built by BAN and adus them to

the node table. It also searches the node table for TO-nodes (node y) of all

arcs, computes a pointer for the node, and stores the pointer in the arc for

future high-speed references.

Commodity Control (CMDCTL)

This subroutine reads, processes, and stores In tables the following

tards: commodity source-sink pair cards, available load cards, and requirement

tarda. Thia subroutine Is the last of the housekeeping executive functions.

Control now passes back to the main control routine (MCTEA).

Main Processing Loop (MPL)

This is the second and most important executive routine. It overlays all

of housekeeping and its associated subroutines- It first calls GETINV with a

request to initialize the b'~ matrix data set, then it calls IDENTRW to ini¬

tialize the B matrix to an identity matrix After the matrix is initialized,

Step I of the algorithm is complete. The iterative linear program processing

now begins (Steps II-1V of the algorithm) as follows:

a. MPL calls PSEUDO to compute the linear program "pseudo¬

costs in vector c and to store these element pseudo-

costs in their associated arc, load and requirement rec¬

ords. If a pseudo-cost is found to be negative, its
corresponding slack vector becomes P

s

22 -

T-225

b. If P is now a slack vector, MPL calls VTR(^)NG bypassing
s

FULSCAN and BLDCVTR (which derive the shortest commodity

chain and build a chain vector as P).
s

c. If P is not a slack vector, MPL calls FULSCAN to derive
s

the shortest chain with the greatest capacity over all

source-sink pairs and then calls BLDCVTR to build the chain

vector P for that chain,
s

d. If no P can be found, the optimum solution has been
s

found and control returns to the main control routine

(MCTEA).

e. MPL calls VTRGONG to determine the vector leaving the basis

(P^) as in Step III of the algorithm.

f. Finally MPL calls MODMTRX to compute the new B-1 matrix
and to update the solution vector X .

B

g. An iteration is complete and control passes back to (a) to

begin next iteration.

B-Inverse Input/Output Subroutine (GETINV)

This subroutine controls all I/O functions connected with the B

temporary data set. It has three entry points:

1. INITINV - the ei try point that opens the direct-access work

file for formatting, computes the size of each I/O buffer

according to user specified blocking factor, allocates the

buffers, and prepares for overlap between processing and
I/O.

2. GETINV - the main entry point that controls the storage and

retrieval of individual matrix rows. According to the set¬

ting of control switches, three sets of logic are employed?

a. random retrieval with "look-ahead" - this set of logic

provides "look-ahead" logic for retrieving B”* matrix

rows during the matrix computation, C » C_B-1 . This

"look-ahead" is done by scanning row vector C„ for
B

the next nonzero element that requires its corresponding

B 1 matrix row to be retrieved from the external stor¬

age device on which the B-* matrix resides; therefore,

even though the retrieval is random, processing and 1/0

overlap are accomplished.

- 23 -

matrix

T-225

h. sequential retrieval wirb overlap - this -set of logic
provides anticipatory buffering for the sequential re¬
trieval operation required by the matrix computation,

c. random storage and retrieval - this set of logic pro¬
vides for overlap between the outputting of the pre¬

viously modified B 1 matrix row and the modifica¬

tions to the current ß-i matrix row.

3. CLRINV - this entry point clears all buffers for the B_1
matrix and reinitializes control switches.

Write Identity Rows (IDENTRW)

This subroutine initializes B 1 to an identity matrix and initializes

the solution elements to the values of the corresponding constraints.

Compute "Pseudo-Costs" (PSEUDO)

This subroutine computes the linear programming "pseudo-costs" by execut¬

ing die matrix computation, C * CßB 1 . The subroutine then stores the elements

of C in their associated records and, if any element is negative, then its

corresponding slack vector is generated and stored in P , the vector to enter

the basis. Control returns to MPL.

Fullscan Shortest Chain Algorithm (FULSCAN)

This subroutine generates the column that most improves the objective

function by executing the procedures described in Step II of the algorithm. The

chain of least cost and greatest capacity is generated over all source-sink

pairs. If no chain of cost less than p + 1 (time span + 1) is found, a

switch is set to indicate a solution has been reached; control returns to MPL

which will signal end-of-job.

Build Chain Vector (BLDCVTR)

This subroutine builds the chain vector P^ . The chain vector is

built from the information generated by FULSCAN. Control returns to MPL.

24 -

T-225

Put Chain (PUfCHN)

This subroutine is called by VTRGONG to store the chain P m the basis

column Pf as computed using the procedures given in the algorithm. Informa¬

tion about the chain is also stored for the future purpose of editing for print.

Control returns to VTRGONG,

Compute Vector Leaving Basis (VTRCUNG)

This subroutine computes the vector Pr to leave the basis according to

the procedures described in the algorithm, Step III. Once Pr is computed,

PUTCHN is called to replace Pf by Pg , the rth element of Cß is updated;

and the number r along with is stored for use while modifying .

Control returns to MPL.

Modify B"1 Matrix (MODMTRX)

This subroutine first computes column vector K ueir.g vector P

pivot element Prg , and pivot number r . Next the rth row of B-1 is

brought into computer memory for use in modifying b"1 - Each nonzero element

i of vector K is multiplied times each nonzero element j of the rth row

of B » wr ; each resulting product is added to corresponding element j of

the ith row of B 1 . After the entire ith row of B*1 is modified, it is

used to recompute the ith solution element, which is attached to B-^ row i ;

following which the newly modified B ^ row i is written back on the external

device housing the B matrix. After all necessary modifications to B~* and

the solution elements have been made, control returns to MPL to begin the next

iteration of processing.

End-of-Job (EOJ)

This is the last executive routine, and it controls all end-of-job pro¬

cessing. If the job is to be terminated because of an unrecoverable error con¬

dition, ERRMSG is called to print the diagnostics, then the output subroutines

are called to list any output that may have been derived before the error

occurred. If the job is terminating normally, the output subroutines are

called:

- 25 -

T-225

1. List Chains (CHAINS) - to list all derived chain schedules
by commodity;

2. List Commodity Information (CMDINFO) - to list all commod¬
ity loads and requirements with the amount of each that was
delivered; and

3. Optionally, List Arcs and Nodes (LAN) - to print all arcs
and nodes in readable format. The flows in the arcs are
shown in the listing.

After all outputs are printed, control returns to the main control routine

(MCTEA) to signal the termination of the job.

Error Message (ERRMSG)

This subroutine prints the diagnostic message set up by the subroutine

that discovered the error condition and signalled the error. Control retoma to
EOJ.

Get Chain (GETCHN)

This subtoutine is called by CHAINS to retrieve a chain from the chain

work file for a specified commodity. Control returns to CHAINS.

List Chains (CHAINS)

This subroutine is called by EOJ to list all chain schedules derived by

the solution. The chains are listed by commodity with the amount of flow, cost

of chain, and accumulated flow. Control returns to EOJ.

List Comnodity Information (CMDINFO)

Thl. subroutine 1. called by EOJ to list, by comnodity. the available

load, with their residue and the required loads with load delivered. In addi¬

tion the source departure and sink arrival time, are given for each comodlty

load. Control returns to EOJ.

List Arcs and Nodes (LAN)

This Is an optional output subroutine that lists all arcs with their flow,

and all nodes. Control returns to EOJ which then returns to the main control

routine (MCTEA) to terminate computer run.

26 -

T-225

REFERENCES

[1] BOYER, DONALD D. and HUNT, DONALD J. (1968). A modified simplex algorithm

for solving the multi-commodity maximum flow problem. Technical Paper

Serial T-211. Logistics Research Project, The George Washington

University.

[2] ford, L. and FULKERSON, D. R. (1958). A suggasled computation £or maximal

multi-commodity network flows. Management Sei. £ 97--101.

[3] FORD, L. and FULKERSON, D. R. (1962). Flops In Network., Frlnceton Uni-

versity Press, New Jersey.

- 27 -

T-225

appendix a

Time-Expansion Procedures

Consider the basic network c . (n,a> , „here N ls a finite set of

points called nodes and A is a set of parrs of points fro. N celled arcs,

each of which have two vaines associated with them - a capacity and a traver¬

sal time. A set of sources S t N and a set of sinks I , N are given. Let

us construct a dummy source node S0 and a dummy sink node I. , con.truct

arcs from S0 to each Sj of set S ¡ construct arcs from each t of set T

to T0 , and assign a traversal time of zero to each such constructed arc. The

resulting basic network will look like the following.

Next, time-expand over p time periods from node SQ to node TQ .

Before the time-expansion procedures are given, the following clarifying

definitions of symbols are presented.

a. In the basic network G , an arc is represented by (x,y) •

in the time-expanded network G(p) , the replicated arcs of

(x,y) are represented by [xfrO , yi^ + a(x,y)] with

capacity c(x,y) and traversal time a(x,y) .

b. Here ^ , the node price, is the time unit at which node

X will be reached from Sq .

28 -

»

T-225

The mechanics of expanding the basic network Ci to the time-expanded net¬

work G(p) may be outlined as follows.

1. Establish p , the time span of interest.

2. For each node x of the node set N , determine the length

(time), , of the shortest path [3] from the source, Sq .

If the shortest path from SQ to T0 , ïï0t , is greater

than p , the network will expand to the empty set of arcs.

3. For each node x of the node set N , determine the length

(time), irxt , of the shortest path to the sink, TQ .

4. For the real sources, of the set. S , generate source

holdover arcs [S^O) , S^l)] , [S^l) , 8^2)].

[Si(n-1) , Si(n)J such that n ^ p - ^ . Set c(x,y) - *

and a(x,y) ■ 1 for these holdovers.

5. For all arcs (x,y) of G , generate new arcs

[*(*) » y(ir)] , where rr and it take on values such
A y x y

that irx + a(x,y) - ; tt^ ,1 "x p - tt^ ; and

ïï0y — 1 P " "yt • Capacity and traversa] time for these

replicated arcs are c(x,y) and a(x,y) respectively.

6. For the real sinks, t^ of set T , generate sink holdover

arcs It1(n) , ^(nfl)] , (t^n+l) , ^(n+2)] , ... ,

[t^(p-l) , t^(p)] such that n - where tt^^ is the

length (time) of the shortest path from SQ to the real sink

. Set c(x,y) * » and a(x,y) - 0 for these holdovers.

The resulting time-expanded network G(p) will be as in the schematic diagram

of Figure 1.

29 -

T-225

APPENDIX B

Approaches to Problems of Processing Efficiency

The PL-L program as written allows a maximum of 32,000 arcs in the time-

expanded network. An expanded network of even a fraction of the maximum size

allowed presents many problems related to storage sizes and processing times.

For such a large network, the number of records accesses to the arc and node

data sets is extremely high. The arc data sec and, especially, the node data

set are very volatile random access files Because of this volatility, it was

necessary to program input/output subroutines that woulu take advantage of all

the internal storage space available in an effort to maintain as large a per¬

centage as possible of the arcs and nodes in the computer’s high-speed storage

area. In addition to avoid having stagnant data in this high-speed "memory," an

accounting field was set up for each segment of data in "memory." These ac¬

counting fields gave the input/output subroutine che ability to execute the fol¬

lowing decision: "In order to find room for a new needed segment of data, lo¬

cate and replace the segment of data in ’memory’ that has been used the least

recently time-wise, but, if that segment was modified, write it back onto the

external storage device to update the data set." Although no overlap is pos¬

sible between ln£ut and processing, all write operations are done with pro¬

cessing overlap for the arc and node data files.

The problem of the very large B-1 matrix will now be discussed. A B-1

natrix of the allowed maximum (32,000+) number of rows, or even a fraction of

that number, could produce prohibitive computer run times. There are several

severe problems associated with a matrix of that size:

1. The number of columns to a row is equal to the number of rows
(m + a + r , or a maximum 32,000+);

2. The four linear program steps that involve the b'1 matrix
at each iteration:

3. C * CgB-1 ,

30 -

c. * B b = t and

d. (B*) = B + KW whare KW is a square matrix of

the same dimensions as b” ;

3. The vectors 1 , b , , C^ , 1’^ , and the temporary work

vectors ail have m + a + r elements.

For (1) it was found that the matrix B_1 is a ve^ sparse matrix. So

sparse, in fact, that no problem run to date has had more than 80 nonzero col¬

umns to a row The sparsity of the rows made it possible to "shrink" the rows

to only the nonzero elements with column numbers for each element., thereby

making it possible to £rou£ the rows on the tracks of the direct access exter¬

nal storage device used by the program. This compact representation of the rows

greatly decreases the time required to retrieve the matrix from the external

storage device and allows much more overlap between the processing and retrieval

of the rows.

The fact tnat the B matrix is manipulated so many times per linear

program iteration as shown in problem statement (2) poses still another problem.

In^particulai ..a, oaows tue computation C - Cgß'1 which normally requires

B to be processed column by column. To process B-1 by columns would be im¬

practical since all other computations shown under (2) require B-1 to be pro¬

cessed row by row. Fortunately, it is unnecessary to perform computation

C = CbB with columns. Since Cß is a row vector that is initially all zeros

and is modified at the rate of one element per iteration, a much faster method of

computing is available. Consider the following examples.

Cß = (00301)

,-1

1 0

0 1

-1 0

0 0

0 1

0 0

0 0

1 0

0 1

■1 0

0 I
0

0

0

1

If "C « CgB 1m is computed using the usual column method, the resulting row

vector will be

- 31 -

X

T-225

C = (-3 1201)

Let us perform the same operation in the following

a. Initialize ro-* vector C to zeros

manner:

c = (0 0 0 0 0) ;

h. Locate the first nonzero element i in Cß and multiply

that element by each nonzero dement j in the ith row

oi Ü adding each resulting matrix subproduct to each
element j of <_ . Using the third element "3" of C

in our example and multiplying it by each element of row

J ^ » l'"-' resulting "intermediate" is

= (-3 0 3 0 0) ;

c. And continuing as m (b) until all nonzero elements of
arL’ applied to the method, the final vector C will

he

C = (-3 D ,

which is exactly the result obtained with the usual
column method.

Ihis method is particularly attractive when we realize that there will never be

more nonzero elements in C.. than the number of iterations to the solution.

Let us look now at the computation shown in problem statement 2.b.,

namely = B 1'^" . I’here is no shortcut available here as there was for

vector C in 2. a. since ever^r row of B_J must be muitiplied by P . The

program as written does nothing more than provide overlap between the row times

Ps matrix multiplication and the retrieval of the rows from the external stor¬

age device. In spite of the overlap of processxng and retrieval, matrix

operation B Pg continues to be the most time-consuming in the program.

32 -

T-225

stateJtT" if matrlX COmPUtatÍOn iS ',XB“B'lb^i in b“1 probleni

discu d re ÍS 3 Sh0rtCUt aVallable aS WÍli POinted °Ut here and
more m the next paragraph. Consider the initial contents of the

so ut on vector ^ which is equal to the constraint vector b as stated in

Step I of the algorithm. For example, initially,

b"1 = I

1

0

0

0

0

U

1

0

0

0

Ü

0

1

0

0

Ü

Ü

Ü

]

0

0

0

0

0

1

I 1

! 3
I

b - ! 1

5 ;

XB = b

1

I 3

1

2

5

rr1"8 °Ur eXa"Ple' Ut US aSS,J"e that r°“ 4 -aified during
the first iteration of the linear program. ,ow let us compute X„ . usi
«■K. 0--1 compute V * ß'^b usin

the new B and see what changes have occurred in * as a result of the
change of row 4 of B-i . U

,-1

10 0 0

0 10 0

0 0 10

-10 0 1

0 0 0 0

0

0

0

0

1

! 1

J

J.

2

5

B 1b

1

3

1

1

5

The fourth solution eie.e„t of ^ changed, and onlj, that elenent. as a resuit

the change in the fourth row of B’1 . Keeping this in „i„d. let us consider

the computations necessary to modify the B-1 matrix.

The final computation involving B

„-I

-1
is stated in 2 d,

,-1
,.. . ~ -** - ** • This is the com—

potation that codifies the old b'1 to for» the new b'1 to be used in the

neat iteration of the linear program. The statement of the computation.

(B*) -1 B'1 + KW

assumes that the value of r and the column vector K

computea. Let us assume that r = 1 and W
have been previously

the old B

follows.

-1 , which is the first row of

Let us further assume that the vector K has been computed as

- 33 -

T-225

-1

1

O

O

O

o

o
1

o
o
o

o
o
1

o
o

o
o
o
1

o

O I

o !
o ;
o I
1

K =

I O
¡ 0 I u I

j o !

L í
1 o

(1 o 0)

Fortunately, it is not necessary to fully compute
.. -^OSury .o ruiiy compute KUr and store the resulting

matrix, which is of the same dimensions as the ß"1 bof * 8
trix addition B*”^ + Ku “ before perfonnlng the nä— trix addition B_1 + KW Further

r lurtiier, if any element
ments in the ith row of

ith row of E~^

row of B-1

of K is zero, all ele-

K,'r Wlli be zero» and matrix addition of the
and the ith row of KW

Therefore, the only rows of B
will produce no change to the ith

computation to produce the new b'1 (b.,-T “ pa"lcl»“e ‘»e
neo B , (B*) , are the row. that have a nonzero

corresponding element In vector K m the ah , *

nonzero element v .,.. the fir“ -ly
nonzero element In K Is the fourth element r-P, . end the only - row

.. 6 S t0 6 retritved» modified, and put back is the fourth row. Following

he discussion the previous paragraph, the modified fourth b'1 row la

immediately multiplied with the constraint vector o to r ,- u

solution element in X . P * neW f°Urth

(B*)
-1

1

0

0

-1

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

1

3

1

2

5

1

3

1

1

b

If Che B'1 matrix is modified in this manner and the solution vector is und . d

an the same time, the operation B^b is essentially eliminated an^ n"

barí nr retCleVal °Peratl0nS fr0" a" -- — — - hept to a

reouiremr 0> °f 8t0r1"8 vector, that are

c n r „ t B-"ar rrhas bea''suggested in the pr^to“s
earning the B matrix. That solution is to "shrinh" all vectors down to

- 34 -

T-225

their nonzero elements. This solution can effectively be applied to all vectors

and work spaces with the exception of the constraint vector b and the solution

vector Xjj . These tv,, vectors are almost 100 percent nonzero. The least

costly way to maintain these two vectors was determined to be the following.

1. To store the constraints in the arc and load records,
i.e., store arc capacity i in arc i , etc.

2. To store the elements of the solution vector in the

same record as the corresponding row of , i.e,,

store solution element i with b”1 row i .

- 35 -

T-225

APPENDIX C

Proposed Future Program Improvements

1. Although the input/output subroutine for the arc and node deta sets

is tailored" to network flow problems, the current sequence [FROM-node (x)

TO node (y)] of the expanded arcs and nodes as generated by the procedure in

Appendix A is believed to be a major cause of the high computer run times for

the program. A suggested future improvement to this sequence would enable the

arc and node input/output subroutines to maintain a much better set of arcs and

nodes in the computer's high-speed internal storage area. Compare the currently

used sequence of the following arcs taken from the network in Figure 6, as they

^te time-expanded and the proposed sequence.

Figure 6 arcs: , a(x,y)

(a) (0,1) , a(0,1)

(b) (0,2) , a(0,2)

(c) (0,3) , a(0,3)

(d) (1,2) , a(l,2)

(e) (1,4) , a(l,4)

(O (2,3) , a(2,3)

lililí

3 , c(0,1) - 50 ;

6 , c(0,2) - 30 ;

8 , c(0,3) - 15 ;

2 , c(l,2) - 50 ;

2 , c(l,4) >= 25 ; and

2 , c(2,3) - 15 .

Time-Expansion of Figure 6 to Time 17

Expansion 1 (Current)

Arcs :

(x/T,y/i)

(0/0,1/3)

(0/0,2/6)
(0/0,3/3)

(0/1,1/4)

(0/1,2/7)

(0/1,3/9)

(0/2,1/5)

Expansion 2 (Proposed)

Arcs :

U/ ,y/T)

(0/0,1/3)

(0/0,2/6)
(0/0,3/8)

(1/3,2/5)

(1/3,4/5)

(2/5,3/7)

(0/1,1/4)

- 36 -

Jl! J 'S!' f

T-225

- 37 -

F
i
g
u
r
e

T-225

Expansion 1

Arcs: (Cont'd)

(1/3,2/5)

(1/3,4/5)

(1/4,2/6)

(1/4,4/6)

(1/5,2/7)

(2/5,3/7)

(2/6,3/8)

(2/7,3/9)

Expansion 2

Arcs: (Cont'd)

(0/1,2/7)

(0/1,3/9)

(1/4,2/6)

(1/4,4/6)

(2/6,3/8)

(0/2,1/5)

(1/5,2/7)

(2/7,3/9)

Nodes :

ü4l
0/0
0/1
0/2
1/3

1/4

1/5

2/5

2/6
2/7

3/7

3/8

3/9

4/5

4/6

Nodes :

n/i

0/0
1/3

2/5

3/7

4/5

0/1
1/4

2/6
3/8

4/6

0/2
1/5

2/7

3/9

Let ue assume that because of the space available the expanded arcs can be

brought Into computer "memory" only In groups of six and the expanden node, can

be brought Into "memory" In groups of three. For the first group of three nodes

In Expansion 1, an examination of the labeling method explained In Step 11(2)

under algorithm will show that only one node of that group will be usable before

another group of three will be required In its place. For the first group of

three nodes In Expansion 2. n¡o nodes of the group will be usable before another

group will be needed. For the first group of six arcs In Expansion 1, only

three arcs will be usable before the next group of arcs will be required in its

place. For the first group of six arcs In Expansion 2, five arcs will be usable

before the next group will be needed. For a more practical sized expansion, the

number of usable arcs and nodes In the groups will get less in Expansion 1. but

could get greater in Expansion 2. To achieve the sequence in Expansion 2. ex¬

pand all arcs In the basic network for the first time they will exist, expand

all arcs In the basic network for the second time they exist, ... third, etc.

- 38 -

T-225

2. The first m rows of the B_1 matrix correspond to the m arcs of

the expanded network and require fewer spaces for nonzero elements, perhaps as

few as ten. The last a + r rows that correspond to the a + r available

loads and requirements have been found to require at least 80 spaces for the

nonzero elements. If the B 1 matrix were partitioned so that the first m

rows could te stored separately from the last a + r rows, the first m rows

could be "shrunk" more than the last a + r rows; and therefore, grouped on

the tracks of a direct access device in greater numbers, thereby reducing

matrix retrieval time greatly.

3. There are two facts about the B-1 matrix that should be noted;

a* B initially an identity matrix, and

b. Any row i of an identity matrix has only one non¬
zero element, that element has the value 'TIT ,
and that element is in the ith column of the row.

These two^facts make it possible to avoid the costly task of retrieving a given

row of B if that row .still has the contents it had initially. In the algo¬

rithm, Step IV, the operation of computing a new b’1 matrix is described. In

this operation a small finite number of rows in the B_1 are modified to form

the new B- for the next iteration. In each iteration, B-1 is modified more

and more. If in the beginning, an array of switches were set up equal in number

to^the number of rows in B-1 and initialized to all ones (meaning all rows of

B are members of the initial identity matrix), each switch i could be set

to zero as its corresponding b"1 row i is modified by Step IV so that the

row is no longer a member of the initial identity matrix. For example, we have

the initial B and array of switches shown,

Switches

and suppose Step IV modified B rows 3 and 5 as follows.

- 39 -

T-225

,-1

1

O

-1

O

O

O

1

O

O

1

O

O

1

O

-1

O

O

O

1

O

O

O

O

Switches ■

1

1

O

1

O

matrix may examine this array of
Any subsequent operations involving the b‘

switches end determine that it is necessary to retrieve from the external .tor-

age device only B rows 3 and 5 and that B-1 row. 1, 2, and 4 can be "gen¬

erated" using their definition. Even though a few thousand position, of the

valuable high-speed internal computer storage would have to be reserved for the

array of switches, it is believed there would be a 50 to 75 percent reduction

in the overall computer time now necessary for the computation "B-1? •• .

- 40 -

à'"'urlty (. I:iiK-Otioil
•» I« .f •»*»_ .

DOCü;.il:SÍT COIll'KOL. t»/.TÃ • U&P
-.U, o/ lilla, c./ flb s f rt f in’'1 \ i, i<; hrinf>tnti,y;t tunttl l><> criitrtti i./icn (;»a overall report jb c Intuithcl)

2/1 Ml PONT SI CUIIIT^ C La"sS?f“Üa~oT
1- ORIGIN Af IM G ACTIVITY (Ce rpjíñtc cjttior)

THE GEORGE WASHINGTON UNIVERSITY
Logistics Research Project

_NONE
2b CROUP

Î REPORT UTLE .. ~

A DYNAMIC MULTI-COMMODITY, MULTI-MODE NETWORK FLOW MODEL

4 DESCRIPTIVE NOTES (Type ot report t.nd Inclueive dater,)

Scientific
S AUTNORCSJ (I nal nume. Ural nimia, Inlltel)

Hunt, Donald J. and Rosholdt, Erling F.

6 RE RO HT DATE

30 June 1960_
8« CONTRACT OR GRANT NO.

N00014-67-A-0214
6. PROJUC T NO.

. NR 047 001

7« TOTAL NO. OK PAGES

43
9» ORICINATOR'S REPORT NUMUKMfS;

T-225

7fc. NO OP REPS

3

* b S7»M»fpor»JPORT N0^r') llt«l tney be t,adc¡ted

10 AVAILADIl.ITY/LIMITATION NOTICES

This document has been .approved for public
release and sale; its distribution is unlimited.

11 SUPPLEMENTARY NOTES

13 ABSTRACT

12 SPONSORING MILITARY ACTIVITY

Office of Naval Research

This paper describes a dynamic multi-commodity, multi-mode network flow
model which permits time phasing of commodity load inputs and derives delivery
schedules to the respective destinations over a time span of interest to the
user. The model makes use of a time-expanded network. Methodology for time
expanding a basic network is described and an algorithm for determining the
commodity flow allocations is provided. Implementation of the model has been
made in PL-1 programming language for use with the IBM 360/50 computer. A
number of innovative programming steps which make possible very efficient
processing are described and computing experience with several different
network problems is reported.

DD FORM
1 JAN C 4 1473

NONE

Security Classification

—ko:,’D—__
Security Clnssifit ation

W Ji » .1«—».

14
KEY WOKOS

Dynamic Multi-Commodity

Multi-Mode

Network Flow Model

Time-Expanded Network

PL-1 Programming Language

UNK A

HOl.t Vi' T

INSTRUCTIONS
1. ORIGINATING ACTIVITY: Em*r tl.e numt* „«d a.M.ess
of the contracloi. Kiib.-ontrnctor, crt> 'tee. Department of De¬
fense Bcti' ily or other ortnnization (corporate euthnr) ismiine
the repon. 11

2«. REPORT SECURITY Cj .ASSIFICATtON: Enter the ovet*
j< 1 security clessificntion of the report. Indicate whither

Restricted Dato is included Marking is to be in areord-
anco with appropriate security regulations.

21,. GROUP: Automatic downgrading is specified in Dol) Di-
rcctive 5200.10 and Arrr.fd Forcer. Iridut-Uial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-

LlrtK p

FiOLC 1 WT
LINK C

I.OLL WT

3. REPOR 1 TITEE: Enter the complete report title in all
capital litters. Title > in all cases should he unclassified.

I If n meaningful title cannot be selected without classifica¬
tion, show title classification in all capitals in paienlhcsis
immediately following the title.

4. DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final.
Give the inclusive dates when a specific reportine period is
covered. r

5. AUTIIOR(S): Enter the name(s) of authors) es shown on
or in the report. Entci last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal ..uthor is an absolute minimum requirement

0. REPORT DAT Enter the date of the report as day,
month, year; or month, year. If more than one dote appears
on the report, use date of publication.

7«. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination piocedurcs, Lt., enter the
number of pages containing information.

7/,. NUMUER OF REFERENCES Enter the total number of
referen, es cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
tm* Hpi'licahle number of the contract or grant under which
the repott was written.

86. 8c, 6r,8rf. PROJECT NUMBER: Enter the appropriate
militât y dcpmtmeiit identification, &uch ns project number,
subproject number, system numbers, task number, etc.

9o. ORIGINATOR'S REPORT NUMBER(S): Enter the offi¬
cial report mimbci by which the document will be identified
mid controlled by the originating activity. This number must
be unique to this rcpoit.

96. OTHER REPORT NUMBER(S): If the rrpoit has been
assigned any other report numbers (cither l>y the on^in.i/or
or by the aponaorj, also enter this numbei(s).

10. AVAIEAÜILITY/EIMITATION NOTICES: Enter any lim¬
itations on further dissemination of the report, other than those

luch'as: by KCCUrÍ,y c,niiSificalio". using standard statements

(1)

(2)

(3)

"Qualified requesters may obtain copies of this
report from DDC."

"Foreign announcement and dissemination of this
repoit by DDC is not authorized."

“U. S. G< eminent agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request through

(4) "U. S. military agencies may obtain.copies of this
report directly fiom DDC Other qualified users
shall request through

(5) "A” ¿istriEution of this report is controlled. Qual¬
ified DDC users shall request through

Use for additional cxplana-

If the report has been furnished to the Office of Technical

eaTo tifio’ ,Dci,lirtT0nt °f ^ommerce, Í"» sole to the public, indi¬ cate this fuel and enter the price, if known

11. SUPPLEMENTARY NOTES:
tory notes.

12. SPONSORING MILITARY ACTIVITY: Enter the name of
na ?e‘,.,’frItmf'nt“1 Pf9Jtc‘ office or laboratory sponsoiing (pay

me for) the research and development. Include address.

13- ABSTRACT: Enter an abstract giving a brief snd factual
summary of the document indicative of the report, even though
it n;ny also appear elsewhere in the body of the technical to-

be attached l,l< nal ‘S r''quircd* a continuation sheet shall

he hjfh,Jf desirable that the obstiact of clearified reporte
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classifuatio of the in-
lonnation in the paragraph, represented as rs>. fc.> or (V).

There is no limitation on the length of the abstract. How¬
ever. the suggested length is from 150 to 225 words.

14. KEY UORDS: Key words ere technically meaningful totms
bidenIt'**1 *"fS ‘'' V Çl'emcleriz.e a report and may beG use,! as
. lf .ü, ^uÍOr c‘"alon‘o.’ tlie report. Key words must be
silccled so that no secuiity classifie,ition is require d. Identi-
^ ' ^aa equipment model designation, trade name, militan
project code name, geoguphlc location, may la used ns key

mü Wl 1 bl K,,lo','’•,, f’V no indication of technical con¬
text. The assignment of links, roles, and weights is optional.

DD FORM
1 JAN 04 1473 (BACK)

NON

Security Clasr.if;' .;on

