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SUMMARY

FAR-WING COLLISION BROADENING STUDIES - Chapter I

The work reported in Chapter I is a continuation of our studies of
absorption in the far wings of molecular bands. It is in these spectral
regions that conventional pressure broadening thecories of photo absorption
are known to be inapplicable. A striking example is to be found in the far
wings of certain infrared bands of COZ’ Here it is found that deviations
from conventional (Lorentz-type) line shapes can assume order of magnitude
proportions at spectral distances of the order of 100 to 200 cm'1 from the
band center.

The present work is focused on the markedly sub-Lorentzian absorption
which has been observed in the far wings of the CO2 band centered at 2350 cm'1
(4.3 microns). The basic broadening mechanism is assumed to arise from per-
turbations of the rotational motion via short-range repulsive interaction
between the absorbing molecule and a perturbing system (assumed monatomic for
simplicity). In the 1imit in which the repulsive interaction is taken to
have infinite siope (hard-sphere 1imit), the absorption is found to vary with
frequency as (m-wo)'4. In the more realistic case in which the repulsive
interaction is assumed to be of the form, V = e ®" (with realistic values for |

the "range-constant," a), it is found that, in the far-wing, the absorption

off exponentially with increasing frequency-shift from the line center, in

may be written as the product of a Lorentz line-shape and a factor which falls J
general agreement with Benedict's empirical formula. In fact, an upper- !

1

bound estimate in the frequency range, w-w, = 200-250 c¢cm , is lower than the




SUMMARY (continued)

measured absorption by a factor which varies from 10 to 15. It is strongly
believed that this discrepancy is due principally to the omission of at-
tractive interactions; their inclusion into the mathematical apparatus of
the theory is feasible, and will constitute the subject matter of a future

investigation.

BEAM DYNAMICS - Chapter II

We have obtained a fairly simple closed form expression for the maximum
flux which the thermal self-defocusing effect permits us to transmit through
the atmosphere. This analysis takes into account the effect of target motion,
and is an extension of a previous analysis1 in which only stationary targets
are considered. In the case of a stationary target the limitation was found
to be on the energy per unit area which can be transmitted, whereas for a
moving target the limitation is found to be on the power density. The ex-
pression for the maximum flux depends upon such parameters as the initial
beam intensity, the initial beam diameter, the target distance, the rotational
rate of the beam =»nd the effective absorption coefficient for heating of air

by 1ight at the laser frequency.

Our analysis is in the ray optics approximation, so that diffraction
spreading is ignored. Furthermore, to avoid the complication of accounting
for sonic effects, we have assumed that the time required for the beam to
pass through any air mass is longer than the time required for sound to
propagate in air across the beam; as 2 consequence, our results are meaningful

only for targets moving at subsonic velocities. In addition, rather than




SUMMARY (continued)

treat the rotation of the beam exactly by using time-varying initial con-
ditions on the ray trajectories, we have simulated it by assigning to each
air mass an effective illumination period, which depends on its distance

from the laser.

In general the manner in which the beam self-defocuses depends upon
the specific shape of its initial power profile. We have concerned our-
selves with the special case in which the initial flux distribution is
uniform in the interior of the beam, and falls off exponentially at the edge,
as illustrated in Fig. 1. For this case we find that the interior rays
propagate undeflected up to a certain distance, then deflect outwards; the
closer the ray is to the edge, the shorter the distance is at which it first
deflects (see Fig. 2). Therefore, the behavior of the beam may be described
as follows: The flux in the interior remains undiminished, but the outer
rays gradually peel off, so that the diameter of the undegraded interior

decreases with distance.

Our solution is valid only in certain regions of space; as a result we
cannot describe the behavior of the rays after they begin to deflect, but
we can predict the diameter of the undegraded beam interior as a function of
propagation distance. Therefore, as a criterion for when the beam has lost
its effectiveness, we have assumed somewhat arbitrarily that the beam edge
may be permitted to eat its way into the interior by no more than one fourth

of the initial beam diameter.

Using this criterion we have provided several illustrative numerical

examples; in all of these we have assumed a CO2 laser with a diameter of




SUMMARY (continued)

one meter. For a stationary target in the zenith direction at an altitude
much greater than the atmospheric scale height (8 km) we find a 1imiting
energy/area of 0.95 joules/cmz. For a stationary target on the ground at
a distance of 1 km from the laser we find a 1imit of 240 jou1es/cm2. If
the target is flying directly overhead at an altitude of 10 km and with a
velocity of 500 mph, we obtain a limiting flux of 197 watts/cmz. Finally,
if the target is on the ground and moving normal to the line of sight with

a velocity of 10 m/sec (= 21.6 mph) at a distance of 1 km, we estimate a

maximum flux of 610 watts/cmz,
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FAR-WING COLLISION BROADENING STUDIES




1. INTRODUCTION

In recent years, there has developed an awareness of the fact that
published theories of pressure broadening of spectral lines are quite at
variance with experiment with respect to magnitude and frequency-dependence
of absorption in the extreme wings of the lines. In particular, in the case
of infrared vibration-rotation molecular bands, the theories universally pre-
dict the Lorentz-1ine shape; their principal focus has to do with the cependence
of the two parameters — width and shift — of the individual rotational com-
ponents on such variables as J-values, temperature, and types of assumed inter-
molecular interactions. Experimentally, however, it is found that deviations
from the Lorentz line-shape occur at spectral distances from the center of an

individual line as small as a few cm'l.

1

In the extreme wings — at distances
+ 100 -200 cm ~ from the band center of vibration-rotation lines — the
discrepancies may assume order-of-magnitude proportions. In fact, recent

1 and Burch and Gryvnakz have

experiments by Winters, Silverman, and Benedict
shown that the absorption in the extreme high-frequency wings of a number of
CO2 bands is sub-Lorentzian by several orders of magnitude (310‘2). Benedict

et all have 1n particular found that, in order to fit their experimental data,
it was necessary to muitipl; the Lorentz shape by an empirical factor which
decreases exponentially with increasing distance from the band-center. Similar
results have been obtained by Burch and Gryvnakz, with, however, one noteworthy
exception. Namely, in the far-wing (high-frequency) wiag of the 3v,-band of

CO2 in the vicinity of 7000 cm"l

, the absorption of the self-braodened band,
while sub-Lorentzian, is much higher than that found by Benedict et all for
the comparable situation of the self-broadened wing of the fundamental '3 band

(in *1e vicinity of 2400 cm’l).

[4,]




During the past year, work has been focused primarily on developing
a basic understanding of the above described sub-Lorentzian behavior 1n the
far wings of vibration-rotation bands. This work constitutes the subject

matter of the present report.

Two basic mechanisms have been considered: {1) collisional portur-
bation of the rotational motion of the absorbing molecule, and (2) collisional
perturbation of its vibrational motion. In our work, the main effort has
been concentrated on the first of these, namely rotational perturbat1ons.3
The basic treatment 1s given in Section 2. Comparison with experiment (and
discussion thereot) 1s presented in Section 3; in Section 4 future possible

developments of the theory are outlined and overall prospects assessed

With respect to the mechanism of vibrational perturbations, brief
preliminary estimates, based on a symplification of the treatment given 1in
one of our previous ONR reports4 indicate that its contribution to the far-
wing absorption 1s substantially smaller than that due to rotational pertur-
batvons A systematic investigat-on of this mechan'sm is therefore reserved

for the future.




2. ABSORPTION DUE TO ROTATIONAL PERTURBATIONS — BASIC THEORY

In this section, the far-wing absorption due to collisional perturbations
of the rotational motion of a radiating molecule will be studied. In line
with the remarks of the introduction, the radiating molecule will be taken to
be a linear (Coz-like) system; for simplicity the perturber will be assumed

monatomic (noble-gas atom).

The starting point of the calculation is a vector generalization of
[
equations (1) and (2) of a previous paper” for the spectral intensity, I(w);

it takes the form

1) = Qawld), (2.1
1 +1/2 -'i_(w-wo)t
Ao) = —= e n(t)dt . (2.2)
\ZHT) ‘T/Z

As in Ref. 5 the symbol <f">Av denotes an average over all types of
collisions, and T is an arbitrarily large time interval. The new ingredient
is the replacement of the scalar phase-shift factor, ei¢(t), by the unit
vector, n(t), giving the direction of the transition dipole-moment, u(t), of
the radiating molecule via the expression,

ju t

u(t) = wonitle ° (2.3)

= uo

where Mo is the absolute magnitude of the transition dipo]e-moment6 and where

W is the frequency at the band origin, i.e., the frequency associated with

purely vibrational motion. The time-variation of n(t) is thus associated

solely with the rotatory motion of the axis of symmetry of the linear molecule;




in 1ine with the experiments discussed in the introduction, the treatment will
be confined to transitions involving the so-called v3-mode (i.e., asymmetric
vibrations parallel to the axis of the linear molecule), so that n(t) is

parallel to the axis of symmetry.

It may be remarked that, with [n(t)| = 1, the factor 1/(21:T)!i in (2.2)

guarantees that I{w) is properly normalized, i.e.,

[ I{w)dw = 1 . (2.4)
0

in the present treatment, the rotational motion will be treated clas-

sical]y;7 one then has

ﬂg_gtl = gp(t)xg_ , (2.5)

where wp(t) is the instantaneous rotational frequency.

Performing two successive integrations-by-parts, and introducing (2.5)

one has
+T/2
L w_xn(t) -1(w-wo)t
Alw) = (2nT) 2 :?———)— e dt
— 1 -
g o

14

(2nT)" o X 2t x L%(t)xﬂ(t)-}e-i(w-%)t at

1172

where the integrated terms at T/2 and -T/2 have been discarded.8
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The basic motivation in going from (2.2) to (2.6) is contained in the
classical picture of rotational perturbations, a picture originally developed
by Debye, and which we feel particulariy appropriate for the description of
perturbations arising from short-range (repulsive) interaction potentia]s9
between the radiating molecule and a (monatomic) perturber. According to
this picture, the effect of such collisions is simply to change the vector
angular velocity of rotation, ey (generally, both in direction and magnitude).
Following Debye, we shall assume (at least for the time being) that such
changes occur instantaneousiy (impact-type collisions); subsequently, a

generalization taking into account the finite time-duration of collisions

will be introduced.

Accordingly, let it be assumed that the molecule undergoes a series of
collisions at times ti(-T/Z <ttty <ty <.l <t < T/2), at

which 35 changes suddenly. In particular, the angular velocities before and

after the i'th collision are respectively denoted as Opi " AEH/Z and
Uni *+ Lw;/2; thus, aw, is the change at the i'th collision and B is the

arithmetic mean of the anguiar velocities before and after the i'th collision.
It is then immediately apparent that, for the factor dfp/dt, occurring in the

first term of the curiy bracket of (2.6), one may write

N
= 7 awgslt-ty) o, (2.7)

N 1 (e . -1(w-w )t-
Ay = o3 (2vT)-/2[f——L¥].—1—2} e o, (2.8)
=]




where n is the (momentary) orientation of the axis of the linear molecule at

the time of the i'th impact, ti‘

In order to treat the second member of (2.6) in this spirit, let us
carry out another integration-by-parts on it. Discarding, again, the physically

spurious contributions at + T/2, we have

+T/2{ [ ]}
A(w)'A(l)(w) = (21rT)m;5 —Eﬂ [,Pxn(t)] EE X n(t)

i(w-wo)

-T/2
+ Rem (2.9)

where the term denoted as "Rem" is obtained by differentiating‘g(t) and using
(2.5); its integrand is a vector-product expression involving the facicr,

(m-mo)'3, thr?e poyers of gp(t), the orientation-vector n(t), and the ex-
i w~w )t
ponential e 0

It is clear from these remarks that "Rem" may be treated by an add;tional

dw, /dt

integration-by-parts to yield terms whose ‘ntegrands have magnitudes ~ 22——2;3—
w=w
(]

together with "remainder-integrands" ~ wg/(w-wo)4. Iterating this
procedure, one may in fact construct a series in ascending powers of wp(t)/(w-wo);

it is here assumed without proof that such a series is at least asymptotically

convergent (i.e., in that the error is of the order of the first discarded term).
The applicability of the whole procedure then depends upon the smallness of the

parameter, wp/(w-wo), where w_ is a typical rotationat frequency. Assuming

p
that this parameter is sufficiently small let us discard "Rem" in (2.9) without

further ado.

11
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The first term on the r.h.s. of (2.9), herewith designated as A(z)(w),

is now evaluated straightforwardly with the use of (2.7); one has

A% w) ’1r§1(zm"‘{Aﬁ el n_z] +%1X[A2°x ) RS
= 1 w-wo

Equation (2.10) is to be regarded as a first-order correction to Aﬂl)(w) in

the (assumed) asymptotic series

Aw) = AW+ a@py e L, (2.11)

which has now to be inserted into (2.1).

In carrying out this last mentioned stage of the calculation, one may
achieve a substantial simplification by introducing the so-called "wing-

assumption," specifically, that

(w-wo) > 1 (2.12)

where t is the mean time between successive collisions (assumed to be binary)

‘1 (w-wo)ti

This condition guarantees that the phase factors, e (after averaging

over the appropriate statistical distribution of times between collisions,

t1+1 'ti’ are essentially uncorrelated, i.e.,

-1 (w-wo)(t- - t'l
<e J >Jf1 <<¢ 1 . (2]3)

Ignoring these correlations, it then follows (subject to one further qualifi-

cation, to be discussed immediately below) that cross-terms in (2.1)(involving

12




products of contributions of different collisions) drop out, and one has

1 N Buy X Dy 2
I(w) = m z -—-——2-*‘ ( vasee )I (2 ]4)
i=1 (m-wo) )
Av
where (..... )i represents the i'th term in the r.h.s. of (2.10)10.

The above mentioned qualification concerns the possibility that the
orientation vector, n(t), may undergo variations between coliisions which
compensate those of the phase factor, eI(w-w°)t. It is however, immediately
seen from (2.5) that this possibility can only be realized provided that
there is available a rotational frequency, wps in the near vicinity of (w-wo),
such that

(w-uo -w )t

P

But in this case our spectral frequency would be located close to one of the
unperturbed rotational components of the band — a situation which is anti-

thetical to that of interest in the present paper.

Returning to (2.14), one notes that, since the collisions are statis-
tically independent of each other, the sum may simply be replaced by the

total number of collisions in time T; since this number N is T/t, one has

bwg X N IZ
Hw) = ?;? w-w ) + (..... )1|
Av

" 1 3xni2
> (2.15)

2_< (w-w)|

Av
13

|




where the term (.....)1 has been discarded in the interest of obtaining the

11

simplest zero'th order result.”” With Buy perpendicular to.g1 (as in the case

for all angular velocities of rotation of 1inear molecules), (2.15) may be

1 /Av

e (w-wo)4

written as

I{w) = (2.16)

At this point, some brief remarks on the quantity, 1/t, are in order,
As remarked above (and as will be developed much more fuily below), an impact-
type approach is only valid when the duration, Teo of a collision is small
compared to a time which (cf. especially (2.35) and (2.36) and the text para-

graph after that containing these equations) is ~ T:F%:—r , 1.e.,
0

|w-molrc <« 1 . (2.17)

Now it turns out (as will be seen below) that for values of Iw-w°| of ex-
perimental relevance (»~ 200 cm'l), (2.17) can be satisfied only for collisions
governed by steeply rising, short-range repulsive potentials (in fact, rather
more steeply rising than is realistically to be expected). Moreover, it will
also be found that, when (2.17) is not satisfied, the predictions of impact
theory, as given by (2.16), are modified principally by the inclusion of an

exponential factor whose argument is ~ 2w|w-woltc.

From these remarks, it follows a fortiori that collisions of impact
parameter appreciably larger than gas-kinetic radii — i.e., those involving
the multipole-type, long range interactions (of predominant interest to the

12

Lorentz-type impact theories, - whose domain of validity is confined

14




to the near vicinity of an individual rotational component of a band (< 1 cm'l)
— will be quite ineffective in the far-wing region. Thus, in expressing 1/«

in terms of a cross-section, o , via the relationship

1w, (2.18)

(where v 1s a suitably averaged velocity of the perturbing atom relative to

the radiating molecule), we must infer from the above remarks that o is at
most of the order of a gas-kinetic cross-section.

Excursus: At this point, it is of interest, and perhaps useful, to discuss
certain other features of comparison between the Lorentz-type impact theories12
and that contained in Eq. (2.16). As stated above (cf. Section 1), and ex-
plicitly in the cited references'.12 the Lorentz-type theories all predict

line shapes whose wing-behavior is of the form

(o) « —3 5 - (2.19)
Jumsg)

Now a fundamental pestulate of these theories is that collisions be regarded
as impacts — i.e., of time duration small compared to any other physically
relevant time-like quantity in the problem. Our theory — or at least the

version presented up to this point — is based on the same postulate. Never-

theless, as is clearly seen from (2.16), the frequency-dependence is of the
type ’

1) « —-—‘-‘

Jomu,|

wWherein lies the difference?

15




The answer, in ou opinion, is contained in an additional assumption,

first introduced implicitly by Anderson‘;13

namely, if one is dealing with a
number of 1ines (or individual components of a composite 1ine) of frequencies

we.. wyo.. 1t is necessary that the spectral frequency, w, 1ie closer to any

one of the lines, say wys than to the others, i.e.,

i“’"”1’ << |w-wjf1| . (2.21)

In our theory, just the opposite assumption is made, namely14

lucagl > loggl

It is hoped to verify the above conjecture in detail in the future.
At this time we proceed to discuss matters rather more relevant for the inter-
pretation of the coz wing-experiments. Primary among these is the question
of the validity of an impact-type theory (as escribed by Eq. (2.7) and the
two paragraphs preceding it). Specifically, we now consider the effect of the
actual time-duration of collisions — i.e., the time interval over which the

collision-induced change in rotational frequency, wg . OcCurs.

In order to investigate this question it is necessary %o determine the
details of the time variation of gp(t) in the interval of collision.ls To do
this properly would inveive rather complicated calculations and accurate
knowledge of interatomic interactions (between the perturbing atom and trose
of the radiating linear molecule). Since the latter information is not avail-
able, and since we wish to grt at the basfc essence of the effect, we shall

attack the problem in an aumittedly simple-minded manner, as follows.

16




Let us begin by noting that, as remarked in the text surrounding
Ea. (2.17), we have already restricted the treatment to a model in which the
interaction Vint? between the radiating molecule and perturbing (nohle-gas)
atom is repulsive. In the interest of definiteness and simplicity, we now
postulate a particular form for this interaction. Specifically, 1t {is as-

sumed that V is the sum of interactions between the noble-gas perturber

int
and the individual atoms of the radiating molecule, i.e.,

-{a,.r
ja ia

{where Tia is the interatomic distance between the perturber (sympolized by
subscript "a") and the i'th atomic constituent of the molecule, and the V‘a
and a;, are constants determining the magnitudes and ranges of the component

interactions].

We have now to note a point of decisive importance for the calculation.
Namely, the range constants, a;,, tum out to be generally of the order of
llxloacm"1 (i.e., a few inverse angstroms), whereas a typical interaction

, defined, e.g. in terns of the distance of closest approach of
8

distance, Ria

two colliding atoms) is + 3x10™ i.e., a few angstroms; one thus has

1 1
- " << 1 . (2.2‘)
%ia"1a 2

The smallness of the parameter, 1/aiaa,‘. peratts certain substantial
simplifications. The most important of these is associated with the fact
that the depth of penetration of two colliding atoms, which is ~ 1/u1.. and

which, as will be seen shortly, is intimately linked up with the detailed

17




time-dependence of g in a collision interval, is small compared to the radius
of curvature of surfaces of constant potential. This feature suggests that a
reasonable approximation would be to neglect said curvature altogether. In
particular, it suggests that the time-dependence of the re'ative velocity of
the noble-gas atom with respect to its collision partner16 (e.g., in the case
cf COZ' one of the oxygen atoms) be treated as a one-dimensional problem of

a particle moving in a potential field of the form V e X (where the direction
of the one-dimensional coordinate, x, is taken parallel to the line joining
the centers of the two colliding atoms). For such a problem, it is immediately
seen that only the normal component of relative velocity (parallel to the
x-axis) would be altered by collision; denoting this component simply by v,

one has

(x-x )].;s
ds [1 L (2.25)

vEat -t Y%

17

where X. is the distance of closest approach,”” and Yo the normal component

of relative velocity at infinity (i.e., outside the penetration region). The
solution of (2.25) is

avo(t-tc)

2 log cosh —

x o= X3
which gives

avo(t-to) :
LA tanh —— (2.26)

(tc being the time at which the distance of closest approach is attained).

18




Before proceeding further, we must point out that the reievance of the
simple one-dimensional problem, discussed immediately above, to our problem

rests upon an additional approximation in which the repulsive potential field

is regarded as stationary (in the relative coordinate of the two atoms) during
the time interval of a collision (~ llavo). Such an idealization would be
valid provided that, apart from their interaction, the two colliding atoms
could be considerad as free, and hence moving in straight lines. Actually,
however, one of the atoms is also rotating; taking this complication into
account would require us to consider a problem in which the (planar) potential
enerqy surface is undergoing rotatory motion. The neglect of such motion

requires that the parameter wplavo be sufficiently small, {.e.,

i 1 . (2.27)

It has now to be remarked that (2.27), which is equivalent to requiring
that the angle of rotation during a collision interval be small (compared to
a radian), may be somewhat more marginally satisfied in practice than (2.24).

For example, in CO2 /Rco where R., is the (O distance (~ 1 angstrom).

,mp‘vmt
In this case, (2.27) becomes

Now, in the worst possible case, in which the noble-gas atom is very heavy,

)_18

V_.. * v and one has vrot:’o°aco ~ 1/4, which is iess satisfactory than (2.24

rot
However. in a treatment of the type given in this paper, it appears to us as

19




still appropriate to regard wp/av as a small parameter; higher order corrections

can always be studied by perturbation techniques at some future occasion.19

Within the framework of conditions (2.24) and (2.27), we now postulate
that the time-dependence of wp(t) in the interval of a collision is the same

as that given by the r.h,s. of (2.26), i.e.,

Qw, Qv.i (t-ti )

= =1 -
Ep(t) = ung + - tath ——— (2.28)

where v is the value of Yo for the i'th collision.

The basis of this postulate is contained in the following physical
argument. Let us consider, for example, the coilision of a noble-gas atom
with one of the oxygen atoms of a co, molecule. Equation (2.26) implies that,

during the collision-interval there exists a force, F, given by

2[“vi(t'ti)]
e

E = E, sech , (2.29)
where [within the vramework of (2.24) and (2.27)], Eo is a temporaliy-constant

vector parallel to the line of centers of the two colliding atoms (at the
time instant, ti’ of closest approach in the i'th collision). Now, the
component of this force perpendicular to the CO2 axis gives rise to a torque,

which [again within the framework of (2.24) and (2.27)] is of the form

2 avi(t-ti)
T = T, sech” ——— (2.30a)
where
T, = RegxEy s (2.30b)

20



(with n, the value of n at t = t;). Noting, now, that

gt =1 (2.31)

(with I = moment of inertia of the molecule), one integrates, obtaining

(2.28)20, q.e.d.

The stage has been reached where our program of going beyond the confines
of impact theory may now be realized. Let us first obtain a lowest-order

result by substituting (2.28) into the first term of (2.6). One has then

to evaluate21

+1/2
-Aw) = (20T)7%
Vi

av; (Awsx ny)

i 2 O.V,i (t-ti) -i(m-wo)t

sech” —y——e dt. (2.32)

Noting that the sech2 factor in (2.32) limits the time integration to
intervals, % 2/“Vi’ which ar? sma}] compared to the time between collisions,
ilw~w )t

and that the phase factor e undergoes many oscillations between

collisions, one has

L - (w-w. )t
-ﬂl(w) = (2¢T) ; e o Bug X N, eﬂ.i
where #
+oo
av. av.tl -i(w-w )t
J. = sech?| —1— | e "4t , (2.33)
i T 2
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is evaluated in Appendix I; the result [cf. (1.5))

g . Zﬂ(w-wo) e-ﬂ(w-mo)/avi

i aV.i

-Zn(w-wo)/avi (2.34)

l-e

The contribution of A;(w) to I(w) is obtained by th- same procedure as
was used earlier [cf. text between Eqs. (2.11) and (2.15)]; the result is

e g (- e T )

I = - + (ool )

w ITS <i (w_wo)Z av; l-e-Zﬂ(w-w077aVi i "
Awg 2

Y 2%1 1 -1I)4 F(Zﬂ(w-wo)/avi£> (2.35)

wwo AV

where

F(x) = e | x| (2.36)

X) = (1-e'x)2 - \sinh X/ 2 : :

(2.35) embodies two approximations. The first of these is the neglect of

the term (..... )i [which represents the contribution of the second term of
(2.6)]. Unlike the impact case, discussed above, the smallness parameter is
not wp/w, but rather?? IAwplavi; the second is based in the smallness of the
parameter “pi/avi' in that in the first term of (2.6) n is taken to be
constant (equal to its vaiue, n; at the instant of closest approach of the
colliding atoms (cf. text surrounding (2.27) and following (2.28), especially
footnote 19.

22




Equation (2.35), in conjunction with (2.36), contains the looked-for
generalization of (2.15), i.e., the inclusion of the efféct of the finite
duration of collisions, T N 2/av; (cf. Ref. 21). In particular, as
1.+ 0 le.g., by going to the hard-sphere limit o + o, F(2n(m-m°2/av1) + 1,
and (2.35) reduces to (2.15)). On the other hand, in the case that-lw-wolrc

is large, specifically, when

2T | w-w
——l-—-gl > 1, (2.37)

av;
(the case which, as will be seen below, obtains in the far-wing experiments
in COZ)’ the "form-factor” F(2n(w-mo)/avi) causes a sharp reduction in the

spectral intensity, I(w), [relative to the impact-theory expressién (2.15)1.

In particular, one has, to a sufficiently good approximation,

/o, 2402 -2m)u-
| By |~ 4m 27| w wol/avi

ey 1
an(w-wo) oy,
‘ Av

which begins to look like the empirical formula suggested by Benedict, et a].l

However, in order tu obtain an expression which can be compared with ex-
periment, the rather complicated averaging process involving the consideration
of all types of impacts (according to their initial trajectories) as well as

a thermal average over all the velocities (those of translation of the col-
1iding partners as well as that associated with the rotatory motion of the

radiating molecule). The systematic treatment of the total averaging process

23
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will be deferred for the future. However, certain preliminary studies, in
particular those concerned with the thermal averaging of the relative velocity,

Vi (appearing in the exponential factor of (2.38)] will now be presented.23

The basis of the discussion is the fact that distribution of relative

velocities, Vis is given by the standard Loltzmann relation

2 2
-v, [2v
P(Vi) - 1 e i T

’ (2.39)
TTVT

where vT2 is the mean square relative velocity.24

The normalization coefficient in (2.39) is chosen so as to include
both signs of Vie Since we are momentarily concerned with the collision of
the perturber with a particular "surface-element” of the molecule (eventually

to be averaged) we consider only positive v and therefore have

v Zpu.2
2 " 12vy

P(vi) = ﬁ'
v

T

(2.39')

Inserting (2.39') into (2.38) one has

4ﬂ2|Aw 12 -2n|wew_|/av
- 1 —i ()
I(m) T — _2..7__ e

aVv

2t (w-w_)2
0 0

2 -v2/2vT2

d . 2.40
e y (2.40)
T coll
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where < Dol indicates that the average over the geometric variables
defining collisions has yet to be taken. Looking now at the integral within
the braces of (2.40), one notes that, under the condition specified by (2.37),
the exponential factors in the integrand, which may collectively be written

-F(v) where F(v) = 2"|w-w°|/av + v2/2vT2, are sharply peaked about the

as e
value vg at which F(v) becomes a minimum. This circumstance suggests the
use of the method of steepest descents, according to which F(v) is approximated

by the first two nonvanishing terms of its Taylor expansion about Vs i.e.,

F(v) = Flvg) + % F"(v) (V-vs)2

(the term linear in (v-vs) vanishing since v_ is determined by the condition

s
that F'(vs) = 0); moreover, the algebraic factors in the integrand, such as
Bu and Vi are approximated by their values at the saddle point,25 Ams and
vs). Omitting the details of the calculation, one finds that

onlug]
2n|w-w
(a) vV o= yo|—2
s T avy ]
.~ l I_'2/3
2njw-w
_ 3 0
() Flvg) = 7|7
" - 2
(c) F'(vg) = 3/vq
so that 2/3
, ) _ %[Zﬂlw-wol]
4n° | duw, | av
1 ey 4% T
(w) = - ()% e (2.41)
211 (w-w )2 o’y 3
() s
coll




It is now of interest to note that the ratio IAmsllvs, which appears

in (2.41), is in fact uniquely determined by the atomic masses of the col-
lision partners, the distance RCO’ and the geometrics of the collision.

Namely, from footnote (20), one has, for any collision,
Reo Reo '
b = 2ax[pe « fLaxn) [IFlee . (28

where n and n. are unit vectors along the momentary molecular axis and the
1ine-between-centers of the colliding atoms. On the other hand, [IFldt is

directly related to the relative velocity, v; in fact

jmdt = 2My (2.43)

26 for the relative motion in the

2

where M is the appropriate reduced mass

collisien. Its calculation must be equivalent to that of Vi » by virtue of

the fact that (2.39) must also be expressible as

2
1 -Mv©/2kT 2
——— 8 ; j.e., v = kT/M .
(ZTWTZ) T

An explicit expression for M is given in Appendix II (cf. text below).

Introducing, then, (2.42) and (2.43) into (2.41) one has

[Zﬂlurwol]2/3

2 2 s ~ 2] av

) - —L (& Msin’e 14" e T . (2.44)
Zﬂ‘r]w-mo' a Req

coll
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where use has been made of the fact that Ico2 = ZREOMO (Mo = mass of oxygen
atom); moreover, from Appendix II [Eqs. 2.24) and (2.25)], one has

o= (kM) (2.45)
R | e e (2.46)
" ["X Mo, o

where "A’ Mco , and Mo'are respectively the masses of the noble-gas perturber-
2

27

atom, the coz molecule, and an oxygen atom”  and © the angle between the

molecular axis and the 1ine-of-centers of cclliding atoms (sfne = |n x n_|).
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3. COMPARISON WITH EXPERIMENT AND DISCUSSION
Let us begin by compuiting an upper bound for the magnitude of (2.44)

1, such that prw°| « 250 cm™), This region

at a frequency w = 2600 cn”
corresponds to the maximum frequency attained in the cited experiments

(cf. Ref. 1, Fig. 3, and Ref. 2, Fig. 14) on the fundamental ) band of COZ.
The motivation for such a computation is our anticipation that the result
will fall substantialiy below the experimental values. If this be the case,
we shall regard the situation as promising, since we have not yet invoked
attractive interactions; according to preliminary calculations these should

give rise to an increase in absorption.28

It will be noted that, apart from the factor 2 occurring in its first
denominator, (2.44) is the product of a Lorentzfan 1ine shape, multiplied by

the quantity <' ..... Although, as has been remarked in Section 2

coll’
[cf. text subsequent to Eq. (2.16)), the factor 1/1, occurring in (2.44),
is expected to be substantially smaller than the corresponding quantities
occurring in the standard Lorentz-type formulae (which apply to the near

vicinities of individual rotational components), we shall ignore this

difference for the time being. 7The main discrepancy between the Lorentz-
type extrapolations used in the cited experiments (cf. Ref. 1, Fig. 2) and
the experimental curves wili therefore be sought in the factor, ( ..... coll’

of (2.44), which we now proceed to estima’e.

for numerical values of the various quantities occurring in (2.44)

(and in the subsidiary expressions {2.45) and (2.46) for v, and M), we take
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M
o,
%

Reo

where MH = 1,67
(3.3, 4, 5, 6),

4 x 108 cm'1 (3.1)

= 21c(250) = (1.9 x 10t1) (250) sec! (3.2)

e 300 (1.38) x 10°16 = 4.15 x 10" ergs (3.3)

- 40m (3.4)

- 4w (3.5)

= 16 M, (3.6)

= 1078 cm'1 R (3.7)
-24

x 10 gm is the mass of the hydrogen atom. Utilizing

one finds (upon setting sing = 1; it is shown below that

this choice maximizes ( ..... ) coll)

M

Y1

= 1M (3.8)

= 1.59 x 105/(12.7)% = 4.5 x 10% cn/sec . (3.9)

From these values, one has

2 2
(aa . 1%37) « .63 (3.10)
2n| 1’2/3
3| <M, 3 2/3
—0 . 3016.5)%3 - 9.15 (3.11)
7[ avy | 7( .

. (2.45) (.63) (4/3) & 9-75

e 17875 . (178) (8 x107Y) - 1.03x107Y . (3.12)




Let us now note that setting siné = 1 minimizes M, thereby maximizing
vrs the result is the maximization of the exponential factor in (2.44). The
remaining siné-dependence, contained in the pre-exponential factor, may be

written as the square of

Msin | sing
”0 MO/MA+ MO/MCOZ+ (l/Z)sinze

sind s (3.13)
.764 + .5 sin®9
which is easily shown to be a monotonically-increasing function of 3in6 in
the range 0 $ sing $ 1. Thus < ..... >coll is maximized by taking sin® equal
to unity, q.e.d.

To proceed further, we may take the liberty of using for 1/t a value
equal to that quoted by Benedict et al (cf. reference 1, page 536) for
COZ- CO2 collisions, namely one corresponding to a width parameter y = 1/2ncr,
of .094 ¢:m"1 (at one atmosphere, STP; this condition is used herein and in
what follows for ail density-dependent quantities. Such a value for 1/t is
quite maximal, first of all because of the remarks in the second parajraph
of this section, and also because the y for self-broadening is known to exceed
that for foreign-gas broadening by a factor ~ 1.5 (cf. reference 1, page 536;

also reference 2, Table [II).

The absorption coefficient, k(w), is given by the expression

k(w) = SI{w) , (3.14)
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where S is the total 1ine strength; its value for the fundamental vy band

of CO2 (as given by reference 1, bottom of page 535) is

S = 2700 an”} atm™l.

Substituting (2.44) into (3.14), one hasz9

ko) = —>— (+***Vcoll

Zm(w-wo)
2n(250)
= 65x102(1.02x10Y = .67 x107en ) atm?

which is lower than the value given by Burch's measurement for argon (cf.

3
reference 2, Fig. 10) by a factor 0 % 15. In view of all the maximal estimates
inv. ved in the above calculation, it seems apparent that a new physical

ingredient has to be introduced into the theory‘31

However, as rewmarked in the first paragraph, such an ingredient already
impends: namely, the existence of attractive interactions, especially the

rapidly varying ones, such as the dispersion {van-der-Waals) interac:ions

= r°6. which attain considerable magnitudes a% the distance of closest ap-

proach. Preliminary exploration indicates that these interactions can be

fncorporated into the mathematical apparatus of the theory. It would there-
fore be highly desirable (and is in fact intended) to pursue this direction

in the near future,




4. FUTURE DEVELOPMENTS AND PROSPECTS

The concluding remarks of the preceding section have brought us to the
stage where a discussion of further developments and overall prospects is now

in order.

A. Further Developments of the Present Theory

1. As pointed out in the last section, the most urgent requirement
is the introduction c. attractive interactions; it is expected (cf. footnote 31)
the effect of these would be to shorten Te and, hence, to increase the magni-
tude, while decreasing the slope, of I(w) in the far wing.

2. A point of more theoreticai (interpretative)interest is the
feature, noted in the excursus following Eq. (2.20) of Section 2, that the
frequency-dependence of our impact result for r(m)(« 1/(w-w0)4)differs from
the Lorentz-type variacion |« 1/(w-wo)2), usually exhibited by impact-type

theor*’es.13

A tentative explanation was suggested in the text subsequent to
Eq. (2.20). It remains to verify this suggestion by a detailed analysis;
from it we may hope to achieve a deeper physica] understanding of the standard

Lorentz-type theories, based on the cited references.13

3. The preliminary estimates of the smaliness of Ivib(w) {which
denotes the contribution of vibrational perturbations to I(w)], mentioned at
the end of the Introduction, should be reinforced by a detailed, systematic
investigation. In particular, it will be desirable to alter the treatment of
reference 4 {which is for the case of a diatomic molecule) to apply to the

scmewhat more complicated situation of a linear triatomic molecule, such as CO,.

4. Since the maximum values of‘n(w-wo), encountered experimentally,

are not really small compared to kT, quantum modifications of our treatment
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should be considered. In this connection, it may be remarked that the treat-
ment of Ivib(w) given in reference 4 is quantum-mechanical, permitting a
comparative study [for arb1trary'h(w~wo)] with the classical limit [attained
when h(w-wo) << kT]. It is proposed to carry out such a study; if it shows
that quantum modifications are important under experimental conditions, an

attempt to introduce them into the present theory should be made.

It must however be stated that, even with all the above-proposed
improvements — including, of course, the proper evaluation of 1/t and
<"“>coll — i.e, a proper averaging over the geometrics of collisions
(in place of the upper-bound estimates given in Section 3), the theory will
still contain residual uncertainties, associated with those of intermolecuiar
force laws; such uncertainties are augmented in I(w), due to the exponential
dependence of this quantity on interaction parameters (as shown, e.g., by
(2.41); preliminary indications are that the introduction of attractive inter-
actions w11l not affect this feature). Looking at the situation positively,
however, one may utilize the present theory [augmented, of course, by the
proposed extensions and improvements (especially the introduction of attractive
forces); as another method for the determination of intermolecular force laws —

to be used 1n conjunction with various other methods,32

From the practical, or engineering point of view, a proper deter-
mination of the interaction parameters contained in I(w) will permit extra-
polation to frequency regions which have not as yet been observed experimentally.
One would thus have available a useful tool for the study of absorption in the
so-called atmospheric "windows," in which absorption is usually dominated by

the far-wings of strong bands
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B. There remains one further subject for future research, which has
not been discussed as yet. Namely, as was noted in the introduction (Section 1),

2

Burch et al™ found that, in the high-frequency far wing of the self-broadened

1

3v3 band of C02, at 7000 cn -, the absorption coefficient k(w), although sub-

Lorentzian, is much higher than would be inferred from the comparable situation

in the case of the fundamental 2 band in the vicinity of 2400 cm'l.

In what
follows, certain speculations, which in our opinion are relevant for the ex-
planation of this rather unique phenomenon, will be outlined. Briefly, we
consider the two-stage process described by the questions,

(0) » ¢ol3)
€0,/ + hw > 0,

cof®) + coéo) > c0f?) + co{t) .

In these equations the superscript attached to CO2 indicates the vibrational
quantum number of the Vq branch (those of the other branches being zero
throughout). The first stage occurs via electromagnetic interaction; the
second may occur via dipole-dipole coupling (which is strongly allowed by
harmonic-oscillator selection rules); also, the adjective "two-stage" (used

above) implies that intermediate enargy need not be conserved.

Now, in considering the physical significance of the above mechanism,
we note the following important fact. Namely, the exponential-type fall-off
characteristic of the present theory depends crucially upon the discrepancy
between the energy of the absorbed 1ight quantum and the vibrational energy
of the absorbing system (as is clearly put in evidence by the occurrence of

the quantity (w-wo) in the argument of the exponentiai factor in the formulae
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of Section 2). With this fundamental point in mind, let s now note that,
due to small anharmonicity, the vibrational energy of the final state
C0§2) * coél) turns out to be larger than that of intermadiate state COés);

in fact, from data in Herzberg's book, one finds that

Iy -1

so that in the high frequency far wing
- (gg + wyg)] < umugg)

i.e., the two-stage reaction permits the realization of a smaller discrepancy
between the energy of the absorbed gquantum and that of the final vibrational
state. From this result we are inclined to infer that the onset of the ex-
ponential fall-off would occur at higher values of w-w, than would be ex-
pected in the absence of this mechanism. As may be seen from Fig. 6,

reference 2, this spectral behavior corresponds to the experimental observations.

The above remarks constitute the bare framework of an idea which
we propose to use as a basis for the development of a theory which we hope
will provide an explanation of the anomalous absorption observed by Burch
for th.  rase. In this connection, we have been encouraged by recent infor-
mation from Burch (private conversation) that similar behavior has been
observed for the high frequency, far wing of the self-broadened 3v3 line of
N20c Examination of the relevant anharmonicity parameters in Herzberg's
book indicates that here also the above described, two-stage process is

energetically favored
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APPENDIX I

In this appendix the intégral

sech —1r—-e dt (1.1)

will be evaluated. To this end it is first convenient to introduce a new

variable of integration

£ = avit/Z

and rewrite (I.1) as

J, = 1

; i sech™t e . (I.2)

-00

[+m 2 -Zi(w-mo)u/avi

One then considers a clockwise integration over the rectangular contour whose
corners are the points -», 4o, +=-jm, -o-im, The integration over the top
side (-» » +o) gives (I.2). For the integration over the bottom side

(=im + -=+im), one notes that (a) the sechzw factor remains unchanged, (b)

-ZW(w-wo)/avi
the exponential factor gets multiplied by a constant e and the
-2n(w-wo)/avi

sign is negative; the result is then -e Since the contributions

of the vertical sides are zero (by virtue of the sech2£ factor),one has

J

i -Zn(w-w T7av, 7 s (13)
lI- e

sech“¢ e .

o

, [ 2 -21r(w-w°)§/avi
7]

7
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where Cp denotes a counter-clockwise integration around a small circle the
center of which is the single pole of the integrand (within the original
rectangle) at the point £ = -m1/2. Expanding sech2£ in the neighborhood of

§ = -mi/2, one has (with £ = - B+ 2)

5 e > dz

C F 4
P

} y '"(w'wo)/av.i e'Z',(w‘wo)Z/GV,i
i

] 2m (w-w, ) e-n(w-wo)/avi) . (1.4)

O.V.i

which, together with (I.3), yields

g . 21r(m-wo) e-'rr(w-wo)/av1 (1.5)
i avy -Zﬂ(w-wd)/avi : :
l-e
|
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APPENDIX 11

The subject matter of this appendix is the derivation of an expression
for the probability distribution of the relative velocity of two colliding
atoms, one of which is a constituent of a triatomic linear molecule. For the
sake of definiteness we consider the text case of a noble-gas atom, e.g.,
argon, colliding with one of the oxygen atoms of COZ' One task is then to

derive (2.39), i.e..33

P(v) “‘lz"' -v2/2v$ (11.1)
v = e .
(21rv.|.Y5

where v is the component of relative velocity of colliding noble gas and
xoygen atom, together with an explicit expression for v%; the calculation
will also yield [cf.text subsequent to Eq. (2.43)] an expression for the

reduced mass, M.

The starting point of the calculation is an expression for the
probability distribution of the various elementary velocities involved in

the problem, to wit

Plyps vgr 3) d3!Ad3!gd2!r
3 2,,.2 3 2,,.2
d7v -v,/2v dv -v /2v
. A ACTANL . " =g Tg
(2nv2 ) 7 - (Zvv2 ) e
i TA Tg
2 2.2
d v, R VRIS (11.2)
X|~—a— e
zvar
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In this expression, Yas and v, respectively denote the vector velocities

v
=Js
of the noble-gas atom, the center of gravity of the CO2 molecule, and the

3!A and dagg refer

to the three-dimensional (cartesian) volume-elements of Ya and !g; the

rotational velocity of said molecule. The notations d

notation dzgf takes account of the fact that, by virtue of the condition

!r'ﬂ- = D s (II.3)

there are only two independent components of rotational velocity, both
perpendicular to n,

On the r.h.s. of (11.2), the constants V1A ng, and Vi, are given by

the formulae

vip = kT/MA (I11.4a)
& M =
ng = kT/Mg = kT/Mc02 (11.4b)
2
kTR
2 o0 _ kT
vTr =z -—r—— = zﬁa— (II4C)

In the case of the first two square brackets, the insertion of (II 4a)
and (11 .4b) y1eld the manifestly correct Boltzmann distributions (the factors

(2"VA) and (vag, taking care of the normalizations).

The third square bracket, describing the distributicn of the rotational
velocity, requires some comment. First of all, we note the obvious feature
of its difference 1n form from the other two brackets; this difference arises

solely from the above-noted two-dimensional character of the motion. In order
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;

to clarify the bracket further, we note that it may be written in the form
2 2,2
2 . dhu Reod 2V
- Zm;r!
r
{w = angular velocity)

which, with the use (JI 4c), becomes

2 2
Pla)dle = g o 10/ (11.5)
on,
with
2 2,2
™ = Y1r'Reo
= KT/, (11.6)

2

and where the notation d"w takes note of the fact that w is also a two-

dimensional vector, perpendicular to the molecular axis, n.

Equation (11.5) aiready begins to resemble the_§:§?gzrd expression;
in particular with respect to the Boltzmann factor, e T. In order to
achieve an even more familiar fcrm, let us go over to a two-dimensional
polar coordinate system, in which w is expressed in terms of its magnitude,
and angle, ¢, with respect to an axis perpendicular to n, but otherwise

2

arbitrary; then, upon using the formula d"w = wdwd® and integrating over g,

one obtairs the standard angular-velocity distribution function

lode _-Twl/2kT
T e

Plw)ds = , (11.7)
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or, in terms of angular momentum, J = luw

2
P(J)dd %g% e~V /21KT (11.8)
It should finailv be remarked that the third bracket of the r.h.s. of
(I1.2) may be obtained from ti.c fundamental prescription of statistical
mechanics, which, for the case of rotational motion, reads

-H /KT
o/

P(0,01pg.p, )dededp dpy = 7 dodedp,dp,

(11.9)

where
_o 112 2 2
Hr = '2-1'[ 8 + p¢/sin 9]

is the rotational Hamiltonian, d¢dedp0dpe is a differential volume element

in the four-dimensional phase defined by the rotational coordinates 6, ¢, and
associated canonical momenta, Py and p¢. and z is the partition function
{which w111 not be written down explicitly here, since from our point of view
it is merely a normalizing coefficient). Briefly, the procedure is transform
from the canonical momenta to the associated velocities, via the formulae

v. = R.5 = feo {11.11a)
o T Pe :
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thereby obtaining34

2w [Eeda |
P(e.e;pg.p;)d@d¢dpedp¢ = e . (11.12}

ZReq
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Note, now that (11.12) is equal to the typical spatial volume element
dQn = 51n0d6d¢ (defining the direction of n) multiplied by a factor which,

in view of (Il 4c), may be written as

-[vg+v:]/2v$r
P(v e )dv dv, = (const) e

o dvedv . (11.13)

¢

Since the direction of Ve and v¢ are both perpendicular to n (as well as to
each other), the r.h.s. of (I1.13) is in fact equal (apart from a normalization

constant) to the third bracket of (11.2), q.e.d.

With these preliminary remarks on the validity of (11.2) out of the
way, we now proceed to a second basic formula, namely, the relationship
between v and the vector velocities occurring in {(11.2). Remembering that v
denotes the component of relative velocity of colliding atoms (in our example
the noble-gas perturber h one of the oxygen atoms of COZ) parallel te the

line-of-centers of said ¢ s (i.e., ton ), have

v = (xA—zgq,.)-gc ,

which, upon going cver to a cartesian system whose z-axis is parallet to the
molecular axis, n, may be written as
Ax Vgx~ Vel * N (vAy' oy’

) . (i1t

v = (v

t e (vAx gx

one notes the absence of the term linear in v, since, with n along the z-3x::¢

(I1.3) becomes Ver * 0.
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In proceeding further, it is expedient to go over to a more general

notation, in which (I11.2) is written ‘n the form

P( Ydv,....d i -——fﬁflj; Vs (11.15)
R P [ T A e - e ’ (1L,
‘ b f=1{ (2nv2,)?

where 1 refers to the cartesian components ¢f the varicus velocities. For
the sake of definiteness, i = 1,2,3 denote the x,y,z components of Vs

i = 3,4,5 the corresponding components of v_, and i = 7,8 tne x,y components

v
—g
°f.!r Inspection of relations (II.4a,b,c) then show that

s vh, i s KM, (11.16a)
S22 2
Vg © st = Vig k./MCO2 (11.1€b)
v§7 . v§8‘= KT/, | (11.16c)
In this new notation (11.14) may be written as
v = % Uvs | (11.17)
where
3 = 3 = 3y = N v11.18a)
. e = g = ¢ 3
2 * % % % o (IT.180) .
a3 = 3 = N, . 11.18c)
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"~ The nornialized expression for P(v) is now written as

Plv) = Idv1 ..... fde P(....vi....)d(v-i aivi) . (11.19)

Equation (II1.19) expresses the fact that P(v) is gotten by integration over
all values of v, which are subject to ine constraint imposed by (11.17)
(and incorporated in (I1.19) by the delta-function). Expressirg the delta-

function in its Dirichlet representaticn
+oc
_ 1 ixt
G(X) = ?F { e dt

and utilizing (11.15), one then has

e oo 2,2 .
P(V) = o ( ivt ( dv; SZAC TR P
v) = T | dt e " m, ——— e (11, 20)
) o o (21TV.H) 2 |

The evaluation of the veloc-ty integrals”iszstandard; one obtains for each
-tvi.as
square bracket in (I1.20) a factcr e T so that (11.20) becomes

+00 Z 2
. -t"v3/2
Pv) = 5% eVte T g, (11.21)

-0

where

2 2,2
VT = Z ai/vTi . (11.22)
1
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The t-integration is now done, yielding,

2,,.2
Y /2vT

P(v) = 11.23
V) (51:‘1?._); e ( )

1

which is identical to (II.1), q.e.d. Moreover, the required explicit expression
for v% is given by (I11.22), in conjunction with formulae (II.18a,b,c) and

(II.16a,b,c). Combining these relatiorships one has, without further ado

2 1 1 1 .2 J . \
v = kTl + o7 + sin" , (I1.24;
T [MA o, Mo

where, with 6 the angle between n. and the z axis — that is, between n. and

the molecular axis n, the obvious relation

has been used.

We may now note briefly that (11.24) used in conuunction with the text

relationship

2

; Vi o® kT/M

yields for the reduced mass, M, the expression

o1 1 .. 1 2
= gttt sin%e . (11.25)

M
A €0, 0

X[

45




REFERENCES

B.H. Winters, S. Silverman, and W.S. Benedict, J. Quant. Spectroscopic

Radiation Transfer, Vol. 4, 527 (1964).

D.E. Burch, D.A. Gryvnak, R.R. Patty, and C.E. Bartky, J. Opt. Soc. Am.
59, 267-280 (1969).

It should be mentioned that a treatment of far-wing absorption due to
rotational perturbations was given in our previous ONR report (S. Altshuler,
D. Arnush, L.M. Frantz, T.D. Holstein, "High Intensity Laser Propagation

in the Atmosphere," TRW Semiannual Report 05691-6005-R000, 1 March 1967 -

31 August 1967, especially Chapter 1), for the case of a pure rotational
band. However, in the present work, the spectral frequency, w, obeys the

(u. = vibrational frequency), in contrast to

ot 0
the case treated in the cited report, wherein wy = 0; this difference turn:

condition g < lwrwoi << w

()
out to effect a profound modification of the magnitude and frequency-

dependence of the absorption.

S. Altshuler, D. Arnush, L.M. Frantz, T.D. Holstein, "High Intensity Laser
Propagation in the Atmosphere,” TRW Final Report 05691-6003-R000, 1 Nov.

1965 - 28 Feb 1967, especially Chapter I.
T.D. Holstewn, Phys. Rev. 79, 774 (1950).

Specifically, it is the matrix element of the dipole moment operator
between the nitial and final vibrational states; here, and in what fol-
Tows, the manifestly valid approximation of taking Mo constant will be

employed.
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10.

11.

This assumption is appropriate when the J-values associated with the
transition are high (as in the case of C02). It should be remarked,
however, that the approximation also implicitly assumes the rotational
Hamiltonians of the initial and final vibrational s*ates to be the same,
i.e., equal moments of inertia. In the case of the CO2 Tines investigated
in the cited experimentsl’2 there exist slight departures from said
equality (as is evidenced by the existence of band-heads for these lines).
It 1s, however, anticipated (and hopefully to be shown in the future) that
the applicability of the present calculation to C02 will not be invalidated

by these departures (which are relatively very small indeed).

As will be seen, if the number of optically-effective collisions in the
interval -T/2 £ ¢ £ 7/2 is large (as is the case, since T is arbitrarily
large), the contribution of the integrated terms at +T/2 is relatively
negligible. Actually they constitute a spurious artifact of the theory,

in that the basic equation (2.2) implies the sudden "switching-on-and-off"
of the electromagnetic field at times t = #7/2. As is known, terms arising

from such formulations have no physical significance.

For the time being, 1t is assumed that these are dominant. The inclusion

of long-range interactions is reserved for a future investigation.

In writing down (2.14), the higher-order terms associated with Aﬁ3)(w),

etc., have been neglected.

It may be pointed out, in passiny, that (.....). is [cf. (2.8), (2.10)

i
and the second sentence after Eq. (2.15)] 90° out of phase with the
retained term; hence its contribution to I(w) is quadratic in the

smaliness parameter iwp/(w—wo)l
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Cf. P.W Anderson, Phys. Rev. 76, 647-661 (1949); also, C.J. Tsao and
B. Curnutte, J Quant. Spectrosc. Radiat. Transfer 2, 41-91 (1962), which

constitutes an augmented exposition of Anderson's work.

P.W. Anderson, reference 12, especially the last paragraph of page 649,
to the effect that the individual (rotational) components of a composite
line must be well separated. (The alternate possibility states by him
that the width exceed the separation of the components is irrelevant for
the situation encountered in the cited experimentsl’z.) In our opinion,
the additional stipulation given by the text Eq. (2.21) is required.

For this, Anderson's condition is necessary but not sufficient.

Strictly speaking, our A, represents the impact-induced alteration of
rotational frequency Generally, however, this may be expected to be of
the order of thermally-accessible rotational frequencies, 1 e., essentially
the rotational spread of the band. Anderson's theory, on the other hand,
applies to a particular rotational component of a vibrational band [In
this connection, we have perpetrated somewhat of a swindle 1n writing
down (2 19), 1n that Wy should be replaced by a symbol denoting a partic-
ular rotational component However, as noted above in Section 1, the
usual practice of experimentaiists in analyzing their data, namely by
comparing them with a "theoretical" I(w), taken as a sum of Lorentzian
contributior from the indiv1duai lines, leads to (2 19) in the far-wing

region (as defined by (2.22).]

Specifically, this will involve the replacement of 6(t-t1) 1 (2 6) by

a surtable finite-width function
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16.

17.

18.

19.

20.

21.

The time-dependence of this relative velocity will shortly be shown to
be intimately linked up with (in fact essentially identical to) that of

gp in a collision interval.

The r.h.s. of (2.25) is obtained from the more basic relation

v o= (e e - v e

(where M is the appropriate reduced mass) by factoring from the square

root the initial "normal" energy, E = %-Mvg, and introducing Xe = %409 g-.

In the case of a noble gas of intermediate mass, such as argon, one may

take v v 1/v2; the smallness parameter is then ~ 1/5-6.

lr'ot/v

Incidentally, preliminary considerations indicate that said corrections
v
rot

are quadratic 1n

1
sl
Within the framework of (2.24) and (2.27), the overall frequency change,
bwi, 15 swmply equal to (Ryo/1)n, x | Fdt; explicit values may always
be obtained by going to the impact limit (o > =) and using standard
methods of classical mechanics (as is, in fact, done in the latter part
of this section)

av;
It will be noted that the factor (‘Il) sechz[avi(t-ti)/Z] reduces to

d(t-t1) in the 1mmi. o » = , i.e., in the 1imit in which the repulsive
potential becomes that between two hard spheres For such a potential
collisions are clearly pure mpacts. In the case of finite o, it is

also clear that e X 2/av,
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22.

23.

24.

25

26.

This statement is based on preliminary studies which also indicate

that the contribution of (..... ): is quadratic in the new parameter

i
A systematic study is reserved for the future.

Since v, appears in the rapidly varying exponential factor of (2.38),

we believe that the thermal average is the most important. In particular,
as will be seen below, it leads to an exponential factor whose argument

is fractional in (w-w_ ), rather than linear [as is superficially ex-

()
hibited by (2.38)1.

More generally, it 1s being asserted that the distribution of the pro-
jection of an arbitrary sum of velocities along an arbitrary direction
obeys (2.39), with a suitably chosen v%. This assertion it easily proved
for the case when all the component velocities refer to purely linear
motion. Its proof for the case when one of the components is rotationa!l
is somewhat more subtle, and will be given in Appendix II. It is also
subject to the limitation of (2 27); only within that limitation is 1t

possible to regard the rotational motion as linear.

It is here presumed that the rotational velocity 1s also 1nvolved n

the thermal average.

A1l other masses have appropriate subscripts attached to them, so no

notational problems arise.
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27.

28.

29,

30.

Under the assumption [incorporated by Eq. (2.23)] that the interaction
between the perturber and the molecule is a sum of spherical interaction
between the perturber and the individual atomic constituents, and with
the condition expressed by (2.24), it is clear that only perturber-

oxygen collisions contribute to nonvanishing Aw;'s.

A simlar effect is known to exist for the very analogous case of vibra-

tional deactivation (cf. K. F. Herzfeld and T.A. Litovitz, Absorption and

Dispersion of Ultrasonic Waves, Acad. Press Inc., New York, 1959,

pp. 278-285.

If one expresses 1/t ir save numbers (which is equivalent to replacing
it by y) and expresses frequencies also in wave numbers, k(w) comes out

1 2

in umts of cm ~ atm © (STP), as is to be expected since it is proportional

to the product of densities of absorbing and perturbing gases.

Alternatively, we can recalculate the theoretical k(w) by taking wewy =
210 cm'1 {corresponding to w = 2560 cm'l, at which an actual measurement
was made); 1t turns out that <w >c011 gets increased by a factor of
(2 86}, which together with a factor (250/210)2 (which accounts for the
change 1n (w-uo)-z), yrelds a theoretical k(w) of 2.7 «x 107/ cm ! atm'z,
to be compared with Burch's value, - 2 4 x 10 en ! atn™?  Thus the
theoretical k{.) s st11l lower than the experimental value by a sub-

stantial factor (} 10).

51




3.

32.

33.

34.

It may also be remarked that the average theoretical slope of

, -1 -1
loge [[...ﬂ>coll] 3 (w-wo), in the range between 210 ¢m ~ and 250 cm

\
is & f026 cm, whereas the corresponding experimental slope (as closely
as we are able to estimate it from Fig. 14 of Ref. 2) is & .014 cm,
Hovwever, in this region, experimental uncertainties are substantial;
moreover, (and more importantly) the theory in its present form requires

much further devalopment (and refinement) for a comparison of such

details as slopes to be of any real significance.

For a review of these, see Advances in Chemical Physics, Vol. 12:

Intermolecular Forces, edited by J.0. Hirschfelder (Interscience

Publishers, 1967).
The subscript, i, 1n (2.39), is dropped for convenience.

Note that in relating the differentials of the momenta to those of

tne associated velocities, the coordinates ¢ and 6 are held constant
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CHAPTER 11

BEAM DYNAMICS
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I. INTRODUCTION

This report is concerned with the effect of target motion on thermal
self-defocusing. In a previous studyl we have produced a description of the
self-defocusing effect applicable only to the case of a stationary target,
that is, to the situation in which the laser beam heats & fixed air mass
throughout the entire pulse period. If the target is moving, however, the
beam must be rotated, and a given air mass is heated only for the time
required for the beam to pass through it; consequently, there must be less

defocusing.

7t was found that for a stationary target the limitation caused by
self-defocusing is on the total amount of energy that can be delivered to
the target. However, ‘or a moving target we expect the limitation to be on
the deliverable power. The reason there is no limitation on the total eneray
is simply that new air masses are constantly being used for the beam path,
so there is no cumulative heating. By analogy to the stationary-target case
we expect & limitation on the energy deliverable through any given air mass,
so the maximum transmittable power depends on how rapidly the beam rotates.
The amount of time a particular air mass 1s heated depends on its distance
from the laser, anrd is smallest at the tarqet distance (its value there 1s
simply the beam width divided by the target velocity). Therefore, we can
obtain a simp! > overestimate of the maximum transmittable power Yrom the
energy limit calculated in the stationary target casei. namely, the latter

energy divided by the heating time at the tfarget.

In this report we obtair a more precise cstimate of the maximur trans-

mittable power by extending the stationary-target aralysis. The extension 1s
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somewhat crude, but it at least accounts for the dependence of the heating
time of any air mass on its distance from the laser. The crudity lies in the
way that we treac the beam rotation. Instead of sclving equations that
properly describe a beam continuously rotating into new regions of air, we
use the equations that describe a stationary beam; we simulate the rotation
by assigning to the air at any given distance from the laser a heating in-
terval estimated from the time it would take a rotating beam to pass through
it.

The stationary-beam analysis is based on the ray optics approximation,
that is, diffraction spreading is ignored. In addition, it is assumed that
the time required for the beam to pass through any air mass is longer than
the time required for sound to propagate in air dcross the beam. Further-
more, another approximation is nade, which significantly simplifies the
mathematical system. An integral which arpears in the equations, namely the
time i1ntegral of the light flux at any point in space, is replaced by the
simple product of the instantaneous flux and the time. As a result the time
becomes a trivial parameter instead of an independent variable, and the
equations become soluble tor a certain special case Now, 1n the extension
described 1n this report, what we have done to simulate the beam rotation 1§
to replace the actual tinefin this product of flux and time) by the time
interval cver which the air .nass at the point in gquesticn has been 1lluminaied.
Although this time i1nterva! now depends on one 0f the i1ndependent variables,
ramely, the distance from {he Teser, we find that *he equations are sti!l

soluble for the sare special case as betore.
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The particuldar manner in which the beam spreads by self-defocusing has
been found to depend on the specific shape of its initial power profile. For
example, if the power profile is uniform in the center and falls off only at
the edges, then initially the rays in the uniform interior will not deflect
at all, but the rays at the edge will peel off and deflect outwards. Thus
the way that the beam degenerates is that the beam edge gradually erodes.

1 we have studied the rate at which

In this and the previous report
the beam edge eats its way in to the interior. To do so we have considered
the special case of an initial flux distribution having the shape indicated
in Fig. 1. Because we are basically interested only in the behavior of the
edge of the beam, we have chesen a planar geometry (for which the equations
have a somewhat simpler form) rather than the more realistic cylindrically

symmetrical geometry. The initial power profile is taken to be uniform along

the negative axis, and to fall off exponentially along the positive axis.

We have obtained a solution to the equations which shows that the
interior rays (the rays originating along the negative axis) go undeflected
for a certain distance, then begin to deflect outwards (towards the positive
axis). This behavior is indicated in Fig. 2 The solution is valid only in
certain regions of space, but for any ray it is correct up to and including
the point at which the ray starts to deflect. Therefore, it provides a first
order description of the desired rate at which the beam edge erodes. We can-
not obtain from our solution the trajectories of the rays after they begin

to peel off.

The distance from the iase- at which any ray begins to deflect depends,

among other things, upon its original distance in from the edge, upon the beam
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intensity, and upon the assumzd distance-dependence of the period for which

any air mass is illuminated. The illumination period in turn depends upon

the angular velocity at which the laser beam is rotated.

For the model we I'ave used, the degradation of the beam is due solely
to the erosion of the outer edge. The interior region is entirely undegraded;
that is, the flux in the interior is undiminished. Without the introduction
of additional conditions into the probiem the choice of a criterion for when
the beam has lost its destructive capabilities is left somewhat arbitrary.
For the sake of providing a definite example we have required that the edge
may be permitted to eat its way in by no more than half the original beam
radius. Using this condition we obtain a simple expression for the maximum
flux which the self-defocusing effect allows us to transmit through the at-
mosphere. The expression depends upon such parameters as the beam intensity,
the beam diameter, the target distance, the rotational rate of the beam, and
the effective absorption coefficient for heating of air by light at the laser

frequency.

In sumnary it should be emphasized that our solution contains a number
of approximations and limitations, which have been mentioned above. Removing
the approximations and limitations would probably require an extensive com-
puter analysis. The major value of our result relative to such an analysis
is that, being analytical, it provides a single expression from which one
can easily estimate the maximum transmittable power under a variety of cir-

cumstances. We shail jive some illustrative examples in a later section.
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2. DERIVATION OF THE EQUATIONS

In this section we derive the equations which describe the propagation
of the light rays in a medium whose optical properties are themselves deter-
mined by heating due to the presence of the 1ight. Most of this derivation
constitutes only a minor modification of the work in reference (1). The
principal difference, as discussed in the previous section, lies in the
introduction of a position-dependent illumination period for the purpose of

simulating the beam rotation.

We assume a planar geometry with the z-axis normal to the laser face,
the x-axis parallel to the laser face, and all quantities being indepencant
of the third coordinate. The laser face is in the z = 0 plane, so that z
is the coordinate denoting distance from the laser along the propagation
direction, and x is the transverse coordinate. The ray trajectories in a
medium of refractive index n are described by the eikonal equation. One of

the standard forms in which the latter may be written is

= n ’ (2.])

(ané
s

a0

there a is a unit vector tangent to the ray path at any point, o is the path

length along a given ray, and s is the value of the transverse coordinate of

any ray at z = 0, that 1s, x(s,z = 0) = s.

It will be convenient to use, instead of the (x,z) coordinate system,
one defined by the planes of constant z and the surfaces generated by the ray
paths (surfaces of constant s), which are the solutions to the problem. Also,

we shall confine ourselves to situations in which the rays deviate from their
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initial directions only by small angles. Therefore, by taking the projection
of the vector equation (2.1) along the transverse axis, transforming to the
{s,2z) coordinate system, and making the small-angie approximation, we obtain

the ray equation

ax 3x _ 3 [.a
T _8-2"2‘ - -as na 1 [ (2.2)

where na(s,z) is the ambient value of the refractive index.

The conservation of energy flux F is stated by (assuming negligible

absorption losses in the atmosphere, and using the small-angle approximation)
F(s,z,t)dx = F(s,0,t)ds . (2.3)

This follows from the fact that the surfaces of constant s are everywhere
tangent to the ray paths, so that no flux escapes through them. The line
element dx is the separation at height z between two rays which are initially
separated by ds, so we may use the relation dx = (3x/3s)ds to obtain from

(2.3) the flux conservation equation,

F(s,z,t) = E%%jgézl ~ (2.4)

Our neglect of absorption losses is quite justifiable for ruby and neodymium
lasers, for which the energy loss in passing vertically through the entire
atmosphere is no more than about one percent. For a CO2 laser about 0.3 of
the incident energy is absorbed in the atmosphere. This loss is not insigni-
cant, but for our purposes it is not great enough to warrant the additional

complications of accounting for it in the conservation equatisn.
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Next we need the relation between the flux and the refractive index.

The rate of change of refractive index is proportional tc the rate of change
of the density, which is proportional to the rate at which heat is deposited
in the atmosphere; the latter in turn is proportional to the flux. The

refractive index for a dilute gas is given by
n-1 = 2npa , (2.5)

where o is the molecular number density and o is the molecular polarizability.

Consequently, we have

dn _ do _ n-1 do
—G.-t- = Zﬂaai' = T a-f . (26)

The density changes according to the equation of state of an ideal gas,
PV = NKT , (2.7)

where p = N/V, and where K denotes Boltzmann's constant. We shall assume
that the heating takes place at constant pressure, sc that from (2.7) we

obtain

(=9
pel

oo )d (2.8)

T |
=
<|o—-
=

The assumption of isobaric heating is valid only if the times of
interest &re large compared with the time required for sound to traverse the

heated reg'ion.1 The velocity of sound in air is about 3x104 cm/sec, so it
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would take several milliseconds to cross a beam a meter in diameter. This
means that if we are considering a stationary target the pulse length must be
greater than several milliseconds, or less for a smaller beam. For a moving
target we have the additional constraint that the beam must rotate sufficiently
slowly that it is effectively stationary during a sound traversal time. It
may easily be seen that this constraint is equivalent to the requirement that
the target velocity be somewhat less than the velocity of sound in air.
Therefore our results will be applicable only to the illumination of subsonic
targets. The direction in which our results err for supersonic targets is
easy to see. When a region of atmosphere is heated, a finite amount of time
is required for the density change to develop. This is the time needed for
sound to cross the heated region. Over a shorter period the density change
and therafore the refractive index change,ic mirh Jess than what we estimate
under the assumption of heating at constant pressure. Consequently the de-
focusing effect will be smaller than estimated. As a result, the amount of
flux that can be transmitted in the case of a supersonic target will be

greater than the upper limit which we shall predict.

To continue, the temperature increase dT for an amount of heat dQ

deposited at constant pressure in a volume V of air is

dQ = deT , (2.9)

where CP is the specific heat at constant pressure. Now if we denote by k the
effective absorption coefficient for heating of air by the laser light, then
the amount of heat per unit volume per unit time deposited due to beam absorp-

tion is given by kF, Therefore, from (2.9) we obtain
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C
o=+ 8- 2 (2.10)
Now, combining (2.10), (2.8) and (2.6), and using the well known ideal gas

relation,

(2.11)

Cv being the specific heat at constant volume, we obtain the desired relation

between refractive index and flux,

dn = . {0=DG-LKF (2.12)

e Y
where y = CP/CV. For air the ratio of specific heats is y = 1.4. Eq.(2.12)
may be integrated to give

(yv=-1){n_-1)k |
n(s,z.t) - n, = - —1———;;2———— J F[(s(x,z,t),z,t]dt . (2.13)

X,2

where Ny is the ambient value of the refractive index in the absence of the
beam. The factor n-1 on the right hand side of (2.12) has been assigned the
fixed value na-l and removed from the integral, since, as may be easily
verified, the fractional change in n is negligible compared to unity. The
subscript x,z on the integral sign emphasizes that the relation (2.12)
applies to a fixed air mass, and therefore to a fixed point in space (x,z).
Since, because of continued heating of the air, the r2y trajectories change
with time, the origin coordinate s(x,z,t) of the ray passing through the
point {x,z) also changes with time. Thus, in the intecral F depends on t not
only explicitly, but also implicitly through the implied variation of s with

time.
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Now we make our most serious approximation. We assume that in the
integral, F may be regarded as constant with respect to both t and s duriny
the period for which the beam passes through the given air mass. We replace

the integral by

{ F[s(x,z,t),z,t]dt -» F(s,z,t)t(z,t) , (2.14)
‘X,2
where -(z,t) is the time interval over which an air mass at distance z from
the laser has been illuminated at time t. How well we simulate the rotation
of the laser beam now depends on how judiciously we choose t(z,t). In the

special case of a stationary target we have t(z,t) = t.

Strictly speaking, the beam rotation should be described by time
dependent boundary conditions on the rays. What we shail do here, as in the
stationary-target case, is to let the z = 0 plane represent the laser face
and require th.* the rays emerge normally from the laser face. That is, the
angle made by the rays relative to the ncrm2', - = 3x/3z, must be zero at
z =0 To represent a rotating beam properly we must do something much more
complicated mathematically. That is, we must require that the rays emerge
normally from a plane which is rotating relative to a cocrdinate system fixed
in the atmosphere. Our use of the approximation (2.14) eliminates this com-

plicaticn

Now, according to (7.5) na-l is proportional to ., the atmospheric
density, and . decreascs exponentially with ltitude. Mowever, according to
the ideal gas law {(2.7) the pressure P is also proportional to .. Conseguently,

in (2.13) the ratio (na-l)/P is independent of density, and therefore of
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altitude, so that the sea level values of " and P may be used. In general

the altitude dependence of k, the effective absorption coeffictent for heating,
is considerably more complicated and uncertatn. For example, for ruby lasers
essentially all of the absorption is by water vapor, and for CO2 lasers about
half is by water vapor. The distribution of atmospheric water vapor, however,
varies drastically from one geographical location to another, as well as from
one time to another. Therefore, for the momert we shall simply regard k as

an unspecified function of altitude, that is,
k = k(zcoss) , (2.18)

where ¢ is the zenith angle at which the beam is propagating through the

atmosphere at any instant of time.

We now have for the relation between the refractive index and the flux,

(y-l;(na-l)k(zcoso)F(s,z,t)z(z.t)

nis,z,t) - na(z) = - . . (2 16)

Now, the system of equations which we wish to solve is composed of the
ray equation (2.2), the flux conservation equation (2.4), and the relation
between flux and refractive index (2.16). First we eliminate the flux between
{2.4) and (2.16), and obtain a relationship between the value of the refractive
index at any point {(s,2z) and its value along the same ray path but at the

laser face,

Y.
n{s,C) na(O)

.x/ (3.9

nis,z,t) - nafz) x T(z,t) ., 12.17)
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wiiere we have defined

Tz,t) = Xzeoap) x{z,t) 2.18
k0 T(O,t.)- ( )

and k. - k(0).

nNexi, it is convenient to define the dimensionless, positive quantity,

na(O)-n(s,O,t)

f(S,t) = —n-(n-)——— N (2.19) '
a

so that {2.17) may be rewritten in the form [recall that n is so close to unity

that unless index differences are involved we may write na(z) = na(Oﬂ

n,(2)-n(s,z,t) (5 4)7(z,t)

na(Z) ax/3s

(2.20)
now, physically, f(s,t) may be regarded as a reduced flux. To see this we
use (2 'G) and the definition (2.19) of f(s,t) and obtain

(-1} (n, =)k, (0,8)
f(s,t) = P F(s,0,t) . (2.21)

Thus, f(s,t) is seen to have the same s-dependence as F(s,0,t). That is, it

is proportional to the power profile at the laser face.

Finally, we may eliminate the refractive index by inserting (2.20) into

thz ray equation (2.2) to obtain

h

¢
ax otx 1 . _ 3 }¥(s)
s .2 Tz} as[a ]35} (2.22)
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We have simplified the notation by suppressing the parametric t-dependence. ;

O

To obtain the ray trajectories we must now solve (2.22) with the appropriate

boundary conditions,

x(s,0) (2.23a)

}
w
-

TR O s R

6(s,0) g-’z‘-(s,O) = 0. (2.23b)

Vet R Lo
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3. SOLUTIN = - e B

performing the derivatives in {2.22) and setting
X = s +X o, (3.1)

(so that Xy is the transverse displacement of the ray originating at x = s)

we may rewrite (2.22) in the faorr

3 2. 2
P § S -f(s)ixl«»dfhf}- = 0 (3.2)
3S azz Tz a;?"' ds . ‘

d i

- , 3.3
F o (3.3)
g.g- = A (3.4)

Actually, it will be useful to transform only selected terms in (3.2), so as

to recast it in the form

X a°X ax %X
] ( 1, 1 o1 ) 1 ( 3 l)d
1+ — + CARNIA + 143 — = 0 , (3.5)
( 3s 352 ord 9z 3z | T2 -2 8s | ds
where
Xi(ps€) = x{(s,2) . (3.6)
. ! aT %y
We now assume that in (3.5) the 5 terms and the-—jf e term

may be dropped. Both of these terms vanish at the boundary plane 2 =0,
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X
because of the boundary conditions xl(s,O) = 0 and 8(s,0) = 3;1 (s,0) = 0.
We shall see that in fact there exists a useful solution for which they vanish
over an entire region of space; in that region of space the solution will be

exact.

The approximate equation which we obtain from (3.5) is now

2 X 2 X
1 1, df
- +o0— = 0 . (3.7)
agz ap2 ds

Equation (3.7) is linear with constent coefficients, and can be solved in
closed form. We shall nct go through the details of solving it here; however,
for completeness the proccdure has been included in an appendix. The solution,

with the required houndary conditions, is

xy(s,2} = 2 - gls,g) - gls,-€) , (3.8)
where g(s,£) is given by
g(s,t)
ds'
- , (3.9)
CT A
S

and £ ir turr iz a tunction of z according to
(Z
e(z) = ! AMzT) dz' . (3.10)
)

The last equation follows from .he transformation (3.4)
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Now, the terms we have dropped do not vanish in general. It is only
for a special choice of the initial power profile f(s) that they vanish in a
region of interest. That special case was mentirned in the introduction and
is illustrated in Fig. 1. The initial flux distribution is uniform along the
negative axis, s € 0, which represents the interior of the more properly cy-
lindrical beam. It falls off exponentially along the positive asix; the 7ail-

off region represents the beam edge. Specifically, we have

a , s <0

f(s) = . (3.11)
a2 e-ZS/A s 20

for times greater than t = 0. For t < 0, we assume the flux to be zero; that

2

is, the beam is turned on at t = 0. The constant a“, according to (2.21), is

given by

o (D -1k Fr(0,t)

2 - 5 : (3.12)

where Fo is the (uniform) initial flux magnitude along the negative transverse

axis.

[t is easy to see physically why we expect that for this flux distri-
bution the terms we have dropped from (3.5) will vanish over a finite region
of space. Along the negative axis the flux is initially uniform, so the air
will be heated uniformly. Consequently, the refractive index will change,
but its change will be uniform with respect to the transverse direction, so
there will be no transverse gradient. As a result, the light rays will

initially not be bent, so the displacement X1 will be zero; furthermore, the
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uniformity will propagate in the z-direction. In the region where X has the i

constant value zero, we have axl/as = axl/az = (0, so that the terms we have

ignored actually vanish identically.

The situation is different along the pesitive transverse axis. The
fiux, and therefore the heating rate, is greatest at the beam edge (s = 0)
and falls off for larger positive s. Therefore, the refractive index increases
in the positive transverse direction. According to the eikonal equation (2.1),
the rays deflect in the direction of increasing index. Therefore, they im-
mediately begin to peel off in the positive transverse direction, which is
equivalent to peeling off outward from a cylindrically symmetrical beam. As
these outer rays peel off, the beam edge is displaced inwards (in the negative
transverse direction) with increasing z, and the rays at *the new edge peel
off. Thus the rays in the region of initially uniform flux distribution
propagate undeflected only for a limited distance, then they deflect outwards

(in the positive transverse direction).

To see just how far they propagate undeflected we insert the explicit
expression (3.11) for the initial flux distribution into the general solution

(3.8, 3.9, 3.10) and obtain the explicit solution,

0

’ S § -a§
S+d£-A]Oge(1+S/A+aE/A) , -ag < s <0
xl(s.z) = < A
25+A+ag->es/‘-Aloge(ag/x+es/x’ , 0 <5 g Aloge(1+a£/x)
. Zs-Aloge(ezs/A-azgz/Az) , Aloge(1+a£/A) <5 . (3.13)
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Here £(z) is understood to be a known function of z, determined from Eq. (3.10).
To obtain an explicit expression for ¢(z) we must first specify T(z,t); doing
so is equivalent to specifying the mean 11lumination time of an air mass at

a distance z at time t. In order to get a feel for the properties of the
solution (3.13) it 1s probably best to think of it in terms of the simple
special case of a stationary target, with both the target and the laser at
zero altitude. In this case we find from (2.18) that T(z,t) = 1, and as a

result we have z(z) = z

In the reqion s < -ac(z), then, we have axl/az = 9Xy/3s = 0, so that
1n this region, as wel! as everywhere along the boundary plane z = 0, (3.13)
1s an exdct solution of (3.5). Elsewhere, as we have said, the rays deflect,
so that the terms we have dropped 1n going from (3.5) to (3.7) do not vanish.
In fact, these terms quickly become sufficiently large that the solution (3.8)
is not a good approximation except 1n and very close to the region s < -ag(z).
For s . -at(z), but ac(z) - {sj << |, 1t may be seen that the neglected terms
are st*'! quite smal!, so that the solution is st111 quite accurate. From

(3 3) we see that under these corditions the ray trajectories are

xl(s,z) i 2%-(ag+s)2 2 ?% (az_-.sl)2 . (3.14)

Therefore, we find that the outer edge of the beam (the region of
diverging rays) eats into the interior region (the region of initially uniform
flux distribution) along the curve s - -at(2) That 1s, for any negative s,
the corresponding ray propagates undeflected until 1t reaches a distance z
from the laser face given by :(z) = -s,/a; then it begins to diverge para-

botically in :{(z) according to (3 14) This behavior is 11lustrated in Fig. 2.
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It should be noted that the distance z at which an interior ray first begins
to defiect does not depend on the steepness of the beam's original edge shape.
However, once the ray begins to deflect, it does so more rapidly for a more
steeply descending beam edge; more precisely, we see from (3.14) that the ray
displacement X1 is proportional to 1/x, where A is the scale length for the

exponential fall-off of the beam edge.

The region in which (3.14) is valid is quite small; from (3.14) we only
learn the initial behavior of the rays when they begin to deflect. Since we
do not know the details of how much the beam spreads once it does so, we must
make a somewhat arbitrary choice of a criterion for when the beam is to be
considered too degraded to be effective. Now, we have seen from the solution
(3.13) that the beam interior is entirely undegraded, in the sense that the
power density is undiminished; however, the beam edge moves steadily inward,
so that the undegraded interior decreases in size. We assume that when the
region of undiminished power density gets too small the beam is no longer
useful. Therefore, if we denote by So the maximum distance which we can
tolerate having the beam's edge eat into i1ts interior, then from

e(z) = 5,/2 (3.15)

and the definition (3.12) of a, we find

yPSz
o= 0 ” : (3 16)
(v-1){n,-1)k (0,t)e"(2)

For a specified S5 and a target at distance z, Fo is then the limit due to

self-defocusing on the flux which can be transmitted through the atmosphere.
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It is desirable to simplify {3.16) somewhat by going back to the
definitions (3.10) of £(z) and (2.18) of T(z,t) and noting that

z b
g(z) = ;Ezf%gf%§ [k(z'cos¢)r(z',t)] dz'

The term kox(O,t) in (3.16) may be canceled and we obtain finally

2
. vPSo

©  (y-1){n-1)n(2)

where

2 k
n(z) = [k(z'cos¢)r(z',t)] dz'
0

(3.17)

(3.18a)

(3.18b)

Before we can obtain numbers from (3.18) we must still choose a function

1(z,t) which describes the beam rotatior, and we must pick a value of So° In

the next section we shall give several illustrative examples of the use of

(3.18). In all of these examples we shall assume that the beam has lost its

destructive ability when the beam edge has eaten its way in by one quarter of

its original diameter, So = D/4.




4. ILLUSTRATIVE EXAMPLES

In this section we shall treat several special cases so as to illustrate
the use of (3.18) in calculating Fo» the flux 1imit due to self-defocusing.
We shall assume we are using a €O, cw laser.* We mentioned in Section 2 that
the altitude dependence of the absorption coefficient for CO2 is rather com-
plicated and uncertain. We shall simply assume that for our purposes it may
be adequately represented by the altitude dependence of the atmospheric
density,

K e-(z/L)cos¢

0 : (4.1)

k(zcos¢) =

where L is the atmospheric scale height, L = 8 km; the value of kO is
ko = 3x10'7cm'1. The values of the other constants which appear in (3.18)

are as follows: The ratio of specific heats in air is v = 1.4, the atmospheric

6

pressure is P = 10° dynes/ca’, and the ambient refractive index is

na-l & 3x10'4. Also, in our examples we shall take the initial beam diameter

to be D = 1m.

Case 1. Statiorary Target

For a staticnary target eacn air mass is illuminated for the entire laser

pulse length t, so that we have

* It is worth recalling here that, as wa: pointed out in Secticn 2z, inere i3
essentially no self-defocusing problem fer giant pulse lasers; the density
change requires a finite amount of time, which is of the order ot milliseconds
for 1 bean of 1 meter diameter. The current giant pulse laser is, however, not
the shswer to the self-defocusing problem, since the amount of energy *hat can
be put out in one pulse is in general far too small for most applications. |If
we think in terms of a rapid succession of giant pulses, then we are in effect
back to the cw laser.
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¢ i s e,

i{z,t) = t . (4.2)

Using (4.2) and (4.1) to obtain n(z), and taking Sg * D/4, where D is the
beam's fnitial diameter, we immediately find from (3.18),

Ft = 7P02c052¢
" 64(y-1)(n,-1)k i°[1-exp(-zcose/2L)1°

(4.3)

Note that the limitation here is not on the flux ro, but rather on the total

energy per unit area Fot which can be transmitted.

If we consider the case of a *arget in the zenith direction (¢ = 0)

at an altitude much greater than the atmospheric scale height (z >> L), then
(4.3) simplifies to

Ft = 1P0°

° 54(v-1)(na-1)k0Li

(4.4)

Putting in the numbers specitied above we obtain

2
Fot = .95 joules/om .

Now let us consider the case in which both the target and the laser are
on the grcund, so that coss = 0. In this case (&.3) reduces to

2
Fot . yPD .
lS(yAl)(n‘-l)koz

{4.5)

For o target at a distance of z = | km, (4.5) yields

Fot = 240 joules/cmz.
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Case 2. Moving Target

For a moving target the accuracy of our results depends on how judi-
ciously we choose the expressica for 1(z,t), the mean illumination time of
an air mass at distance z from the laser. If the angular coordinate ¢ of the
target is changing at the rate &, then at large distances z from the laser
the beam is moving with a linear velocity 6z, so that the time taken for the

beam to cross the air mass is
t(z,t) = Dféz . (4.6)

At small distances this expressicn is quite invalid. The concept of an
average illumination time is meaningful only if this Lime is less than the
total pulse time, that is, if t(z,t) < t. However, the above expression for
t blows up at small 2, so the required inequality is clearly violated If,

nevertheless, we insert (4.6) into the expression (3.18b) for n(z) to obtain

dz' , (4.7}

L
koo %4 e-(z'/ZL)cos¢
n(Z) = —
Y2}

g

o

we may note that for small z2' the integral gces like vz'; consequently, the
contribution to the integral is small from the range in which (4.6) over-

estimates the average illumination time.

we shall use (4.7), but first let us digress momentarily to get &
crude, but somewhat more quantitative estimate of the error involved. For
simplicity we take coss : 0, so that the exponentizl in the integral becomes
unity and the integral is directly evaluable. Then if we regard (4.6) as

invalid up to a distarce 20, but va'id for all larger distances, the
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fractional error is immediately seen to be *
at which 1 becomes as large as t, so that fr¢

However, from (4.6) we also find that D/" = 2

error may be estimated to be /zofz = vi{z,t)/
the total pulse time t is sufficiently greate

time -{(z,t) at the target, we may use (4.7).

Returning to (4.7) we obtain, after a s

integral,
L,
, (2-Lk DY °
~(z) = f - E(vzco:
| vcos:
where
rX 2
Ex) = = et/?
V2r 4-x

is the normal probability integral, having the

(3.18a) we obtain the desired expression for :

£ ,PD:cos:
o ) 2| —
32-04-1)(n -1k LE (.zcc

If the target is flying directly overhe:

so that {4.10) beccmes

A PDV
F0

.. R 2 3
32-(s-1)(n,-1)k L2 E(-z

ootrar

roperty

Himiti

ot MANEe

-refore, the fract

¢ fs the distarce

e z - D/t

ude then, that i€

verage flluminaty

nrmation on the

‘=) = 1. Now from

uX,
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Let us assume that the target is at an altitude z = 10 km and has a velccity
v = 500 mph = 2,23 x 104cm/sec. We have assumed a subsonic velocity (sound

velocity in air is 3 x 10°

cm/sec), since, as we discussed earlier, our model
is not applicable to supersonic velocities. For the chosen altitude and

velocity we find from (4.11)

Fo = 197 watts/cmz.

The average illumination time of an air mass in the neighborhood of the target
is t=D/v=45%x 10'3 sec, so this result for Fo is meaningful only if the
total laser pulse time length t is considerably greater than several millisec.
For laser pulses shorter than v = D/ one would be more accurate in regarding

the beam as stationary and using (4.3).

If the target is on the ground and moving normal to the line of sight
with velocity v, we again have 6 = v/z, but this time cos¢ = 0, so that (4.10)

reduces to (since E(x) ¥ v2/% x for x << 1)

yPDv

0 64(y-1) (n,-1)k 2

5 (4.12)

Taking a target velocity v = 10 m/sec (= 21.6 mph) and a target distance

z=1km, we find

Fo = 610 watts/cmz.

In this case the average illumination time of an air mass near the target

1

is 1 = D/v = 10" sec, so that the laser pulse length must be somewhat

greater than 107! sec for our model to apply.
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APPENDIX

The equation to be solved is

where X1 (p,£) is the ray displacement,

X({psg) = x(s,2) ,

(A1)

(A2)

and the (p,z) coordinate system is related to the (s,z) coordinate system by

the transformations

g _ 1
" 7

5

The boundary conditions are that the initial displacement is zero,

xl(s,O) = 0

and the initial angle of any ray relative to the z axis is zero,

3!1

6(s,0) = = (s,0)

T4
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(A3)

(A4)

(AS)

(A6)




Now.we define the functions S(p), P(s) and £(z) by

$(p) 4
= —_— A7
P IO Vf(s') (A7)
s \
P(s) = g A8
: Jo /f(s") (A8)
£(2) = r AT dz . (A9)
0

According to (A3) the s-p transformation and its inverse are then given by

s = S(p), p = P(s) . (A10)
It will be seen shortly that defining the functions S(p) and P(s) is useful
for avoiding notational confusion.

Next we transform the last term in (Al) as follows, using (A3) and

(A10),

df dp d 1 df _ ., dF
2

:23%%%=2LS£51 : (A11)

dp

so that (Al) becomes

ale ale £ a2
- +2 =0 , A12

22 ape  dp
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or

Lot (X,-25) 0 (A13)
22 ape] % '

The general solution of (A13) is well known to be
X;(p,g) - 25(p) = A(p+g) + B(p-£) , (A14)

where A and B are arbitrary functions.

Now we evaluate A and B from the boundary conditions (A5) and (A6).
Since at z = 0 we have £ = 0, it follows from (A5) that

X1(p,0) = 25(p) - A(p) +B(p) = 0 , (A15)

so that
B(p) = -25(p) - A(p) . (A16)

We may now write (A14) as
Xi(p,e) = 25(p) + Alp+g) - 25(p-¢) - Alp-£) . (A17)

To apply the second boundary condition (A6) we use the transformation

(A4),

1
2 A'(p+g) + A'(p-g) +25' (p-¢) . (A18)

Then from (A6) we obtain
2h'(p) + 25'(p) = 0 , (A19)
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or

A(p) = -S(p) +c , (A20)

where ¢ is an arbitrary constant. Inserting this result into (A15) we now

have

X{(ps€) = 25(p) - S(p+g)-S(p-¢) . (A21)

The final task is to transform back to the (s,z) coordinate system.

From the transformations (A7,8,9) we have
xl(s,z) = 2s-S[P(s)+&(z)1-S[P(s)-£(z)] . (A22)

In addition we have

pshee(a) = [ s i) (A23)
o /f(s')
SIP(s)+e(2)] 4o
P(s)+e(z) = = (A24)
P Jo /f(s')
Subtracting (A24) from (A23) yields
SiP(s)+e(z)) ds’
e(z) = fs T (A25)

which directly determines the function S[P(s)+g(z)]. Finally, we simplify
the notation by defining the function gls,£(z)) as follows,

g(s,) = SIP(s)+e(z)) . (A26)
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The solution may now be written in the (s,z) coordinate system as

x;(s,2) = 2s-g(s,€)-g(s-¢)
where g(s, ) is determined from

£ - JQ(S.E) ds'
s /f(s')

and £(z) is defined as a function of z by

2
e(z) = jmz') dz’

o]
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Fig. 1.

Fols)

3
Uniform distribution of flux Fo(s) emanating from a semi-
infinite laser face (s < 0), with an exponential fall-off
at the edge. The rays originating in the uniform region
along the negative s-axis are initially undeflected.
Those originating along the positive s-axis are immediately
deflected to the right.
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' Fig. 2. Trajectories of rays emanating from the region of

uniform flux distribution (s < 0) depicted in
Fig. 1. The rays go out vertically until they
intersect the dashed line, then they begin
deflecting to the right parabolically with
distance 2.
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