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SUMMARY

FAR-WING COLLISION BROADENING STUDIES - Chapter I

The work reported ;n Chapter I is a continuation of our studies of

absorption in the far wings of molecular bands. It is in these spectral

regions that conventional pressure broadening theories of photo absorption

are Known to be inapplicable. A striking example is to be found in the far

wings of certain infrared bands of CO2 . Here it is found that deviations

from conventional (Lorentz-type) line shapes can assume order of magnitude

proportions at spectral distances of the order of 100 to 200 cm 1 from the

band center.

The present work is focused on the markedly sub-Lorentzian absorption

which has been observed in the far wings of the CO2 band centered at 2350 cm-1

(4.3 microns). The basic broadening mechanism is assumed to arise from per-

turbations of the rotational motion via short-range repulsive interaction

between the absorbing molecule and a perturbing system (assumed monatomic for

simplicity). In the limit in which the repulsive interaction is taken to

have infinite slope (hard-sphere limit), the absorption is found to vary with

frequency as (w-w ) 4. In the more realistic case in which the repulsive

interaction is assumed to be of the form, V = e"ar (with realistic values for

the "range-constant," a), it is found that, in the far-wing, the absorption

may be written as the product of a Lorentz line-shape and a factor which falls

off exponentially with increasing frequency-shift from the line center, in

general agreement with Benedict's empirical formula. In fact, an upper-

bound estimate in the frequency range, w-w0 = 200-250 cm 1, is lower than the
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SUMMARY (continued)

measured absorption by a factor which varies from 10 to 15. It is strongly

believed that this discrepancy is due principally to the omission of at-

tractive interactions; their inclusion into the mathematical apparatus of

the theory is feasible, and will constitute the subject matter of a future

investigation.

BEAM DYNAMICS - Chapter II

We have obtained a fairly simple closed form expression for the maximum

flux which the thermal self-defocusing effect permits us to transmit through

the atmosphere. This analysis takes into account the effect of target motion,

and is an extension of a previous analysis in which only stationary targets

are considered. In the case of a stationary target the limitation was found

to be on the energy per unit area which can be transmitted, whereas for a

moving target the limitation is found to be on the power density. The ex-

pression for the maximum flux depends upon such parameters as the initial

beam intensity, the initial beam diameter, the target distance, the rotational

rate of the beam 'nd the effective absorption coefficient for heating of air

by light at the laser frequency.

Our analysis is in the ray optics approximation, so that diffraction

spreading is ignored. Furthermore, to avoid the complication of accounting

for sonic effects, we have assumed that the time required for the beam to

pass through any air mass is longer than the time required for sound to

propagate in air across the beam; as a consequence, our results are meaningful

only for targets moving at subsonic velocities. In addition, rather than

2
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SUMMARY (continued)

treat the rotation of the beam exactly by using time-varying initial con-

ditions on the ray trajectories, we have simulated it by assigning to each

air mass an effective illumination period, which depends on its distance

from the laser.

In general the manner in which the beam self-defocuses depends upon

the specific shape of its initial power profile. We have concerned our-

selves with the special case in which the initial flux distribution is

uniform in the interior of the beam, and falls off exponentially at the edge,

as illustrated in Fig. 1. For this case we find that the interior rays

propagate undeflected up to a certain distance, then deflect outwards; the

closer the ray is to the edge, the shorter the distance is at which it first

deflects (see Fig. 2). Therefore, the behavior of the beam may be described

as follows: The flux in the interior remains undiminished, but the outer

rays gradually peel off, so that the diameter of the undegraded interior

decreases with distance.

Our solution is valid only in certain regions of space; as a result we

cannot describe the behavior of the rays after they begin to deflect, but

we can predict the diameter of the undegraded beam interior as a function of

propagation distance. Therefore, as a criterion for when the beam has lost

its effectiveness, we have assumed somewhat arbitrarily that the beam edge

may be permitted to eat its way into the interior by no more than one fourth

of the initial beam diameter.

Using this criterion we have provided several illustrative numerical

examples; in all of these we have assumed a CO2 laser with a diameter of

3



SUMMARY (continued)

one meter. For a stationary target in the zenith direction at an altitude

much greater than the atmospheric scale height (8 km) we find a limiting

2energy/area of 0.95 joules/cm2. For a stationary target on the ground at

2a distance of 1 km from the laser we find a limit of 240 joules/cm . If

the target is flying directly overhead at an altitude of 10 km and with a

velocity of 500 mph, we obtain a limiting flux of 197 watts/cm2 . Finally,

if the target is on the ground and moving normal to the line of sight with

a velocity of 10 m/sec (= 21.6 mph) at a distance of 1 km, we estimate a

maximum flux of 610 watts/cm2.

4



Chapter I

FAR-WING COLLISION BROADENING 1STUDIES
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1. INTRODUCTION

In recent years, there has developed an awareness of the fact that

published theories of pressure broadening of spectral lines are quite at

variance with experiment with respect to magnitude and frequency-dependence

of absorption in the extreme wings of the lines. In particular, in the case

of infrared vibration-rotation molecular bands, the theories universally pre-

dict the Lorentz-line shape; their principal focus has to do with the dependence

of the two parameters - width and shift - of the individual rotational com-

ponents on such variables as J-values, temperature, and types of assumed inter-

molecular interactions. Experimentally, however, it is found that deviations

from the Lorentz line-shape occur at spectral distances from the center of an

individual line as small as a few cm"I. In the extreme wings - at distances

% 100 -200 cm"! from the band center of vibration-rotation lines - the

discrepancies may assume order-of-magnitude proportions. In fact, recent

experiments by Winters, Silverman, and Benedict, and Burch and Gryvnak 2 have

shown that the absorption in the extreme high-frequency wings of a number of

CO2 bands is sub-Lorentzian by several orders of magnitude (.10"2). Benedict

et alI have in particular found that, in order to fit their experimental data,

it was necessary to multiplj the Lorentz shape by an empirical factor which

decreases exponentially with increasing distance from the band-center. Similar

2results have been obtained by Burch and Gryvnak , with, however, one noteworthy

exception. Namely, in the far-wing (high-frequency) wing of the 3v3 -band of

CO2 in the vicinity of 7000 cm1, the absorptiun of the self-braodened band,

while sub-Lorentzian, is much higher than that found by Benedict et alI for

the comparable situation of the self-broadened wing of the fundamental ,3 band

(in fie vicinity of 2400 cm'I).



During the past year, work has been focused primarily on deve'oping

a basic understanding of the above described sub-Lorentzian behavior in the

far wings of vibration-rotation bands. This work constitutes the subject

matter of the present report

Two basic mechanisms have been considered: (I) collisional ?irtur-

bation of the rotational motion of the absorbing molecule, and (2) collisional

perturbation of its vibrational motion In our work, the main effort has

been concentrated on the first of these, namely rotational perturbations. 3

The basic treatment is given in Section 2. Comparison with experiment (and

discussion thereot) is presented in Section 3; in Section 4 future possible

developments of the theory are outlined and overall prospects assessed

With respect to the mechanism of vibrational perturbations, brief

preliminary estimates, based on a simplification of the treatment given in

one of our previous ONIR reports4 indicate that its contribution to the far-

wing absorption is substantially smaller than that due to rotational pertur-

bations A systematic investigat on of this mechanism is therefore reserved

for the future.

7



2. ABSORPTION DUE TO ROTATIONAL PERTURBATIONS - BASIC THEORY

In this section, the far-wing absorption due to collisional perturbations

of the rotational motion of a radiating molecule will be studied. In line

with 'Lhe remarks of the introduction, the radiating molecule will be taken to

be a linear (C02 -like) system; for simplicity the perturber will be assumed

monatomic (noble-gas atom).

The starting point of the calculation is a vector generalization of

equations (I) and (2) of a previous paper5 for the spectral intensity, I(w);

it takes the form

IM - ,A(w)j2 , (2.1)

A(M) = 1 e n(t)dt . (2.2)- 2-fT) I-T/2

As in Ref. 5 the symbol K ... )Av denotes an average over all types of

collisions, and T is an arbitrarily large time interval. The new ingredient

is the replacement of the scalar phase-shift factor, ei1(t), by the unit

vector, n(t), giving the direction of the transition dipole-moment, P_(t), of

the radiating molecule via the expression,

i_(t) = Po n(t) e (2.3)

where w is the absolute magnitude of the transition dipole-moment and where

Wo is the frequency at the band origin, i.e., the frequency associated with

purely vibrational motion. The time-variation of n(t) is thus associated

solely with the rotatory motion of the axis of symmetry of the linear molecule;

8



in line with the experiments discussed in the introduction, the treatment will

be confined to transitions involving the so-called v3 -mode (i.e., asymmetric

vibrations parallel to the axis of the linear molecule), so that n(t) is

parallel to the axis of symmetry.

It may be remarked that, with In(t)j = 1, the factor 1/(2iT)½ in (2.2)

guarantees that I(w) is properly normalized, i.e.,

fI(w)dw 1 . (2.4)
co
0

in the present treatment, the rotational motion will be treated clas-

sically; 7 one then has

d-t- - =w (t) x n , (2.5)
dt -p

where wp (t) is the instantaneous rotational frequency.

Performing two successive integrations-by-parts, and introducing (2.5)

one has

',+T/2 w xn(t) -i(W-W 0)t
A(w) =(27T)"½';2•o e dt

-T/2

-/ ( t t)x n(t)+w•M x Lp (t)xn(t)] i(W-W o)t(2TT)"½-W- 2 1 e-i dt

J-T/2

(2.6)

where the integrated terms at T/2 and -T/2 have been discarded. 8

9



The basic motivation in going from (2.2) to (2.6) is contained in the

classical picture of rotational perturbations, a picture originally developed

by Debye, and which we feel particularly appropriate for the description of

perturbations arising from short-range (repulsive) interaction potentials 9

between the radiating molecule and a (monatomic) perturber. According to

this picture, the effect of such collisions is simply to change the vector

angular velocity of rotation, E (generally, both in direction and magnitude).-p

Following Debye, we shall assume (at least for the time being) that such

changes occur instantaneously (impact-type collisions); subsequently, a

generalization taking into account the finite time-duration of collisions

will be introduced.

Accordingly, let it be assumed that the molecule undergoes a series of

collisions at times ti(-T/2 < tI < t 2 <... < ti < ...... < tn < T/2), at

which !, changes suddenly. In particular, the angular velocities before and

after the i'th collision are respectively denoted as lpi - A-ii/2 and

-pi + Lýi/2; thus, ALi is the change at the i'th collision and Ipi is the

arithmetic mean of the angular velocities before and after the i'th collision.

It is then immediately apparent that, for the factor dpidt, occurring in the

first term of the curly bracket of (2.6), one may write

dw N
et 1 i( ) (2.7)

with the result that the contribution, A(1)(w), of this first term to A(w) is

N -Awixn ] -i(W-Wo)ti
- (,T) e 0 , (2.8)

i~i

10



where is the (momentary) orientation of the axis of the linear molecule at

the time of the i'th impact, t.V

In order to treat the second member of (2.6) in this spirit, let us

carry out another integration-by-parts on it. Discarding, again, the physically

spurious contributions at ± T/2, we have

A(w)-A( 1 (w) (2,T)"½ f w x [wpxn(t)] + x1px 5  x n(t dt

-T/2

+ Rem (2.9)

where the term denoted as "Rem" is obtained by differentiating n(t) and using

(2.5); its integrand is a vector-product expression involving the factor,

(W-o ) 3, three powers of w (t), the orientation-vector n(t), and the ex-0 -i(W o)t

ponential e

It is clear from these remarks that "Rem" may be treated by an additional

integration-by-parts to yield terms whose 4ntegrands have magnitudes W pdwp/dt

4/ (--)4.
together with "remainder-integrands" W w4/(w• ) . Iterating this

procedure, one may in fact construct a series in ascending powers of w p(t)/(W-Wo);

it is here assumed without proof that such a series is at least asymptotically

convergent (i.e., in that the error is of the order of the first discarded term).

The applicability of the whole procedure then depends upon the smallness of the

parameter, w p/(W-W ), where wp is a typical rotational frequency. Assuming

that this parameter is sufficiently small let us discard "Rem" in (2.9) without

further ado.

11



The first term on the r.h.s. of (2.9), herewith designated as A(2)(w),

is now evaluated straightforwardly with the use of (2.7); one has

N (2T)½ + x-W (• )tI

A(2)(w)= !(2T)½fi[1 i + + e o 0 (2.10)- i1

Equation (2.10) is to be regarded as a first-order correction to A (w) in

the (assumed) asymptotic series

A(w) MA(1 (w) + A(2)( ) + .... , (211)

which has now to be inserted into (2.1).

In carrying out this last mentioned stage of the calculation, one may

achieve a substantial simplification by introducing the so-called "wing-

assumption," specifically, that

(W-W 0) T >> 1 ,(2,12)

where T is the mean time between successive collisions (assumed to be binary)
-i(w-wo)ti

This condition guarantees that the phase factors, e 0 i (after averaging

over the appropriate statistical distribution of times between collisions,

ti+I -ti, are essentially uncorrelated, i.e.,

(e'i('•WO)(tjti~j~i 1 (2.13t)

Ignoring these correlations, it then follows (subject to one further qualifi-

cation, to be discussed immediately below) that cross-terms in (2.1)(involving

12



products of contributions of different collisions) drop out, and one has

N w•-I x n 2
1(W) = r i-- (-o) 0 .....))i (2.14)

Av

where (. ). represents the i'th term in the r.h.s. of (2.10)10.

The above mentioned qualification concerns the possibility that the

orientation vector, n(t), may undergo variations between colisiions which
i(W-W,0 )t

compensate those of the phase factor, e . It is however, immediately

seen from (2.5) that this possibility can only be realized provided that

there is available a rotational frequency, wp. in the near vicinity of (W-W ),

such that

('•o 0- W p )T

But in this case our spectral frequency would be located close to one of the

unperturbed rotational components of the band - a situation which is anti-

thetical to that of interest in the present paper.

Returning to (2.14), one notes that, since the collisions are statis-

tically independent of each other, the sum may simply be replaced by the

total number of collisions in time T; since this number N is T/T, one has

1 (M. )2 + ( ..... )il
((w) 0 1K # .A

Avv

r(2.15)

Av

13



where the term (.....)I has been discarded in the interest of obtaining the

simplest zero'th order result. 11 With awI perpendicular to ni (as in the case

for all angular velocities of rotation of linear molecules), (2.15) may be

written as

/IA~iI2N
I(w) =0)4 (2.16)

At this point, some brief remarks on the quantity, l/T, are in order.

As remarked above (and as will be developed much more fuily below), an impact-

type approach is only valid when the duration, Tc, of a collision is small

compared to a time which (cf. especially (2.35) and (2.36) and the text para-

graph after that containing these equations) is n 1 . i.e.,

IWW0ITc << 1 . (2.17)

Now it turns out (as will be seen below) that for values of Iw-w01 of ex-

perimental relevance (-. 200 cm' 1), (2.17) can be satisfied only for collisions

governed by steeply rising, short-range repulsive potentials (in fact, rather

more steeply rising than is realistically to be expected). Moreover, it will

also be found that, when (2.17) is not satisfied, the predictions of impact

theory, as given by (2.16), are modified principally by the inclusion of an

exponential factor whose argument is - 2wlw-w 0oc.

From these remarks, it follows a fortiori that collisions of impact

parameter appreciably larger than gas-kinetic radii - i.e., those involving

the multipole-type, long range interactions (of predominant interest to the

12
Lorentz-type impact theories, whose domain of validity is confined

14



to the near vicinity of an individual rotational component of a band ( 1 cm 1)

-will be quite ineffective in the far-wing region. Thus, in expressing lIT

in terms of a cross-section, a , via the relationship

1 = Nvo, (2.18)
T

(where v Is a suitably averaged velocity of the perturbing atom relative to

the radiating molecule), we must infer from the above remarks that a is at

most of the order of a gas-kinetic cross-section.

Excursus: At this point, it is of interest, and perhaps useful, to discuss

certain other features of comparison between the Lorentz-type impact theories 12

and that contained in Eq. (2.16). As stated above (cf. Section 1), and ex-
12

plicitly in the cited references, the Lorentz-type theories all predict

line shapes whose wing-behavior is of the form

M(,) 1 12 (2.19)

Now a fundamental postulate of these theories is that collisions be regarded

as impacts - i.e., of time duration small compared to any other physically

relevant time-like quantity in the problem. Our theory - or at least the

version presented up to this point - is based on the same postulate. Never-

theless, as is clearly seen from (2.16), the frequency-dependence is of the

type

Wherein lies the difference?

15



The answer, in ou,,- opinion, is contained in an additional assumption,

first introduced implicitly by Anderson;13 namely, if one is dealing with a

number of lines (or individual components of a composite line) of frequencies

wi.." i""... it is a1ecessary that the spectral frquency, w, lie closer to any

one of the lines, say wI, than to the others, i.e.,

I << I -W #J l •( . )
IW.'W~I IWj~i (2.21)

In our theory, just the opposite assumption is made, namely 14

IW-w0I >> ' Il

It is hoped to verify the above conjecture in detail in the future.

At this time we proceed to discuss matters rather more relevant for the inter-

pretation of the CO02 wing-experiments. Primary among these is the question

of the validity of an impact-type theory (as Oescribed by Eq. (2.7) and the

two paragraphs preceding it). Specifically, we now consider the effect of the

actual time-duration of collisions - i.e., the time interval over which the

collision-induced change in rotational frequency, awi. occurs.

In order to investigate this question it is necessary to determine the

details of the time va~riation of tp(t) in the interval of collLiJon. is To do

this properly would invrove rather complicated calculations and accurate

knowledge of interatomic interactions (between the perturbing atom and trose

of the radiatine linear molecule). Since the latter information is not avail-

able, and since we wish to gVA at the basic essence of the effect, we shall

attack the problem in an aJmittedly simple-minded manner, as follows.

16



Let us begin by noting that, as remarked in the text surrounding

Eq,. (2.17), we have already restricted the treatment to a model in which the

interaction Vn'between the radiating molecule and perturbing (nohle-gas)

atom is repulsive. In the interest of definiteness and simplicity, we now

postulate a particular form for this interaction. Specifically, it is as-

sumed that V int is the sum of interactions between the noble-gas perturber

and the individual atoms of the radiating molecule, i.e.,

Vin ' iVa e ,'i ri (2.23)

(where rna is the interatomic distance between the perturber (sympolized by

subscript "a") and the i'th atomic constituent of the molecule, and the Vi

and mia are constaints determining the magnitudes and ranges of the component

interactions).

We have now to note a point of decisive importance for the calculation.

Namely, the range constants, mia' turn out to be generally of the order of

4xlO8cm1 (i.e., a few inverse angstroms), whereas a typical interaction

distance, R ial defined, e.g. in terms of the distance of closest approach of

two colliding atoms) is -, 3x1O_8 i.e., a few angstromns; one thus has

1 1. <1(.4
Qiaia" 1(224

The smallness of the parameter, l/aiaRi a, pey-mits certain substantial 4

simplifications. The most important of these is associated with the fact

that the depth of penetration of two colliding atom~s, which is -.I/mia, and

which, as %-Ill be seen shortly, is intimately linked up with the detailed

17



time-dependence of p in a collision interval, is small compared to the radius

of curvature of surfaces of constant potential. This feature suggests that a

reasonable approximation would be to neglect said curvature altogether. In

particu'lir. it suggests that the time-dependence of the re'4ttve velocity of

the noble-gas atom with respect to its collision partner16 (e.g., in the case

of C02 , one of the oxygen atoms) be treated as a one-dimensional problem of

a particle moving in a potential field of the form V e "x (where the direction

of the one-dimensional coordinate, x, is taken parallel to the line Joining

the centers of the two colliding atoms). For such a problem, it is Immediately

seen that only the normal component of relative velocity (parallel to the

x-axis) would be altered by collision; denoting this component simply by v,

one has

v-. dx vo[1-ec(xxc)1 , (2.25)

where xc is the distance of closest approach, 17 and v0 the normal component

of relative velocity at infinity (i.e., outside the penetration region). The

solution of (2.25) is

x 2 log cosh 2v°(t-t)

which gives
v Vo(t-to)

v - v0 tanh ( , (2.26)

(tc being the time at which the distance of closest approach is attained).

18
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Before proceeding further, we must point out that the relevance of the

simple one-dimensional problem, discussed immediately above, to our problem

rests upon an additional approximation in which the repulsive potential field

is regarded as stationary (in the relative coordinate of the two atoms) during

the time interval of a collision (-. 1/aVo). Such an idealization would be

valid provided that, apart from their Interaction, the two colliding atoms

could be considered as free, and hence moving in straight lines. Actually,

however, one of the atoms is also rotating; taking this complication into

account would require us to consider a problem in which the (planar) potential

energy surface is undergoing rotatory motion. The neglect of such motion

requires that the parameter wp/Ov 0 be sufficiently small, i.e.,

WP << 1 (2.27,)
Mv 0

It has now to be remarked that (2.27), which is equivalent to requiring

that the angle of rotation during a collision interval be small (compared to

a radian), may be somewhat more marginally satisfied in practice than (2.24).

For example, in C02, wp a vrot/RCO where RCO is the CO distance (• 1 angstrom).

In this case, (2.27) becomes

vrot 1 1 1

vo - lTVroto

Now, in the worst possible case, in which the noble-gas atom is very heavy,

vrot k v and one has Vrot.' o0 Ro ". 1/4, WOch is less satisfactory than (2.24).18

However. in a treatment of the type given in this paper, it appears to us as

19



still appropriate to regard w p fv as a small parameter; higher order corrections

can always be studied by perturbation techniques at some future occasion. 19

Within the framework of conditions (2.24) and (2.27), we now postulate

that the time-dependence of w p(t) in the interval of a collision is the same

as that given by the r.h.s. of (2.26), i.e.,

wi cvi.(t-ti)
Ip(t) = wpi + -2 tanh -T - (2.28)

where vi is the value of vo for the i'th collision.

The basis of this postulate is contained in the following physical

argument. Let us consider, for example, the collision of a noble-gas atom

with one of the oxygen atoms of a CO2 molecule. Equation (2.26) implies that,

during the collision-interval there exists a force, F, given by

F = F r sech12[vi(t-ti(2- 2l (2.29)

where [within the -iramework of (2.24) and (2.27)], F. is a temporally-constant

vector parallel to the line of centers of the two colliding atoms (at the

time instant, ti, of closest approach in the i'th collision). Now, the

component of this force perpendicular to the CO2 axis gives rise to a torque,

which [again within the framework of (2.24) and (2.27)] is of the form

T = T- sech2 av (t-t (2.30a)

woere

R = RCO.x Fo , (2.30b)

20



(with n.i the value of n at t - ti). Noting, now, that

I et = T (2.31)

(with I = moment of inertia of the molecule), one integrates, obtaining

(2.28) 20, q.e.d.

The stage has been reached where our program of going beyond the confines

of impact theory may now be realized. Let us first obtain a lowest-order

result by substituting (2.28) into the first term of (2.6). One has then

to evaluate21

j+T/I2 aVi (twiX n 'i) 2avi(t-ti) . i(w.,.O)t

"1(2rT)'½ Z _-T/2r- sech2 2 e dt. (2.32)

Noting that the sech2 factor in (2.32) limits the time integration to

intervals, ý 2/avi, which are small compared to the time between collisions,

and that the phase factor e undergoes many oscillations between

collisions, one has

-A -i (W-W0)ti
-A1 (w) : (27T)- e Ai x i to i

1

where
+cvi 2c:vit -i (w-wo)t

"= sech e w dt , (2.33)
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is evaluated in Appendix I; the result [cf. (1.5)]

s =27r(w-W i0 (W____________

a= 0 e 21r (W-40)v (2.34)
i -e- 70v

The contribution of AI(w) to I(M) is obtained by th,: same procedure as

was used earlier [cf. text between Eqs. (2.11) and (2.15)]; the result is

I(w) K -wixni 2n(W-W0) e-rO )/v 1  + 1

2 )2 +v( -2.r(w-wT 0  . /
a 1-e 1 Av

1 / 1 Aw112 F2rWWVv(.5

where

F(x) x 2 ex/= 2 (2.36)
(1.e-e)' ýsinh x/2)

(2.35) embodies two approximations. The first of these is the neglect of

the term ( ..... )i [which represents the contribution of the second term of

(2.6)]. Unlike the impact case, discussed above, the smallness parameter is

not w 1w, but rather 22 IJAWp Vi; the second is based in the smallness of the

parameter wpi/cvi, in that in the first term of (2.6) n is taken to be

constant (equal to its value, ai at the instant of closest approach of the

colliding atoms (cf. text surrounding (2.27) and following (2.28), especially

footnote 19.
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Equation (2.35), in conjunction with (2.36), contains the looked-for

generalization of (2.15), i.e., the inclusion of the effect of the finite

duration of collisions, t c ý 2/avi (cf. Ref. 21). In particular, as

Tc - 0 [e.g., by going to the hard-sphere limit a , F(2v(w-w0o/cvi) - i,

and (2.35) reduces to (2.15)]. On the other hand, in the case that lI-woITc

is large, specifically, when

>>0  1 , (2.37)

(the case which, as will be seen below, obtains in the far-wing experiments

in C02 ), the "form-factor" F(2T(w-w 0 )/avi) causes a sharp reduction in the

spectral intensity, I(w), [relative to the impact-theory expression (2.15)].

In particular, one has, to a sufficiently good approximation,

1 /IA.i12 4•2 2Twolcv

I(w) • 1 2 e----r--- e (2.38
2wr-i(w-wo ) "Av

which begins to look like the empirical formula suggested by Benedict, et al.'

However, in order to obtain an expression which can be compared with ex-

periment, the rather complicated averaging process involving the consideration

of all types of impacts (according to their initial trajectories) as well as

a thermal average over all the velocities (those of translation of the col-

liding partners as well as that associated with the rotatory motion of the

radiating molecule). The systematic treatment of the total averaging process
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Ir

will be deferred for the future. However, certain preliminary studies, in

particular those concerned with the thermal averaging of the relative velocity,

vi, [appearing in the exponential factor of (2.38)] will now be presented. 2 3

The basis of the discussion is the fact that distribution of relative

velocities, vi, is given by the standard Loltzmann relation
2 2/

-vi /vT2 (2.39)P(vi) - - ,(239

T

where vT2 is the mean square relative velocity. 24

The normalization coefficient in (2.39) is chosen so as to include

both signs of vi. Since we are momentarily concerned with the collision of

the perturber with a particular "surface-element" of the molecule (eventually

to be averaged) we consider only positive vi and therefore have

-v "2/2VT

P(vi) 2 T e /.vT (2.39')

Inserting (2.39') into (2.38) one has

I(w) = 1 ir 4-21-~tl2

41T214w0) -v7l-wIa

IMi 2 2

27T(W.Wo)2 .0a2v 2 e

2 ev /2v d2v (2.40)
(2wVT2)4

Cll
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where ... >coll indicates that the average over the geometric variables

defining collisions has yet to be taken. Looking now at the integral within

the braces of (2.40), one notes that, under the condition specified by (2.37),

the exponential factors in the integrand, which may collectively be written

as e"F-(v) where F(v) = 27lw-wol/av + v2!2VT2, are sharply peaked about the

value vS at which F(v) becomes a minimum. This circumstance suggests the

use of the method of steepest descents, according to which F(v) is approximated

by the first two nonvanishing terms of its Taylor expansion about vs, i.e.,

F(v) • F(vs) + I F"(v ) (v-v )2

(the term linear in (v-vs) vanishing since v is determined by the condition

that F'(v s) = 0); moreover, the algebraic factors in the integrand, such as

Ai and vi, are approximated by their values at the saddle point,25 AWs and

v s). Omitting the details of the calculation, one finds that

(a) 
vs = v 12 l- ol|

T[ 
_-2/3

(b) F(v ) = 3[FTrI wo 01]

(c) F"(vs) = 3/VT2

so that \ 2/3

4r 2 1 [2 24]
I(w) = 1 ()2 e (2.41)

)col
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It is now of interest to note that the ratio 1L4sl/Vs, which appears

in (2.41), is in fact uniquely determined by the atomic masses of the col-

lision partners, the distance RCO, and the geometrics of the collision.

Namely, from footnote (20), one has, for any collision,

AW -- nx F.dt - - LJ x n fIFIdt , (2.42)

where n and nc are unit vectors along the momentary molecular axis and the

line-between-centers of the colliding atoms. On the other hand, fIFIdt is

directly related to the relative velocity, v; in fact

f IFIdt = 2Mv (2.43)

where M is the appropriate reduced mass 2 6 for the relative motion in the

collision. Its calculation must be equivalent to that of VT2 , by virtue of

the fact that (2.39) must also be expressible as

1 -Mv2 /2kT ; i.e., vT kT/M.

An explicit expression for M is given in Appendix II (cf. text below).

Introducing, then, (2.42) and (2.43) into (2.41) one has

3 'f ° 1jA? j]]2/3

1 - 2 2S in2e 2' vT
(M) 2q,,_ow• 2  1.sn, e (2.44)

Coll
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where use has been made of the fact that 'CO2 a 2RqOO (N0 - mass of oxygen

atom); moreover, from Appendix II (Eqs. 2.24) and (2.25)), one has

VT (kT/M)½ (2.45)

SI + + sin2 , (2.46)

where MA, MCO2, and "0 are respectively the masses of the noble-gas perturber-

atom, the CO2 molecule, and an oxygen atom27 and e the angle between the

molecular axis and the line-of-centers of celliding atoms (sine - In x nj).
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3. COMPARISON WITH EXPERIPNT AND DISCUSSION

Let us begin by computing an upper bound for the magnitude of (2.44)

at a frequency w - 2600 crn," such that Iw-w01 - 250 cm 1  This region

corresponds to the max•,pum frequency attained in the cited experiments

(cf. Ref. 1, Fig. 3, and Ref. 2, Fig. 14) on the fundamental v3 band of CO2 .

The motivation for such a computation is our anticipation that the result

will fall substantially below the experimental values. If this be the case,

we shall regard the situation as promising, since we have not yet invoked

attractive interactions; according to preliminary calculations these should

give rise to an increase in absorption. 28

It will be noted that, apart from the factor 2 occurring in its first

denominator, (2.44) is the product of a Lorentzian line shape, multiplied by

the quantity ( ..... >coll Although, as has been remarked in Section 2

[cf. text subsequent to Eq. (2.16)), the factor li/T, occurring in (2.44),

is expected to be substantially smaller than the corresponding quantities

occurring in the standard Lorentz-type formulae (which apply to the near

vicinities of individual rotational components), we shall ignore this

difference for the time being. The main discrepancy between the Lorentz-

type extrapolations used in the cited experiments (cf. Ref. 1, Fig. 2) and

the experimental curves wllN therefore be sought in the factor, (..-..>coll'
of (2.44), which we now proceed to estimate.

For numerical values of the various quantities occurring in (2.44)

(and in the subsidiary expressions (2.45) and (2.46) for vT and M), we take
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4 x 108 cm" 1  (3.1)

w-wo - 2wc(250) - (1.9 x 1011) (250) sec- 1  (3.2)

kT , 300 (1.38) x 10-16 . 4.15 x 1O14 ergs (3.3)

MA - 40 MH (3.4)

NCO2 4 4 MH (3.5)

"o - 16 Ma (3.6)

RCO = 10-8 cm" 1  (3.7)

where MH ' 1.67 x 10.24 gm is the mass of the hydrogen, atom. Utilizing

(3.3, 4, 5, 6), one finds (upon setting sine - 1; it is shown below that

this choice maximizes ( ... ) coll)

M - 12 . 7 H (3.8)

VT = 1.59 x 10 5/(12..7) - 4.5 x 104 a/sec . (3.9)

From these values, one has

2  (12.7 2 .63 (3.10)

2/3

3 2iiIWiW 0 ] 1 16.5) 2/ a 9.75 (3.11)

so that

... )coll 2 (2.45) (.63) (4/3)h eg'975

a 1.78 e" (1.78) (.58 x 10.) • 1.03 x 10- . (3.12)
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Let us now note that setting sine = 1 minimizes M, thereby maximizing

VT; the result is the maximization of the exponential factor in (2.44). The

remaining sine-dependence, contained in the pre-exponential factor, may be

written as the square of

Msin sine

-M MOIMA+ MO/MCO+ (2 /)+sin 26

- sine (3.13)
.764 + .5 sin e

which is easily shown to be a monotonically-increasing function of sine in

the range 0 ý sine ý 1. Thus ( ..... )Coll is maximized by taking sine equal

to unity, q.e.d.

To proceed further, we may take the liberty of using for I/t a value

equal to that quoted by Benedict et al (cf. reference 1, page 536) for

C02- C2 collisions, namely one corresponding to a width parameter y = l/2crT,

of .094 m- (at one atmosphere, STP; this condition is used herein and in

what follows for all density-dependent quantities. Such a value for I/T is

quite maximal, first of all because of the remarks in the second paragraph

of this section, and also because the y for self-broadening is known to exceed

that for foreign-gas broadening by a factor ' 1.5 (cf. reference 1, page 536;

also reference 2, Table III).

The absorption coefficient, k(w), is given by the eApression

k() - S(() , (3.14)

30
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where S is the total line strength; its value for the fundamental v3 band

of CO2 (as given by reference 1, bottom of page 535) is

.1 -1
S - 2700 cnm' atm

Substituting (2.4) into (3.14), one has20

k~w) S

.) (2700)(.0 10 x -4
1.03 x 1

2Tr(250)

-. 2 -4-7 -1 -2
= .65 x 10 2 (1.02 x 10 4 ) = .67 x 10cm"1 atm

which is lower than the value given by Burch's measurement for argon (cf.

reference 2, Fig. 10) by a factor 3 0 ý 15. In view of all the maximal estimates

inv.'ved in thE above calculation, it seems apparent that a new physical
31

ingredient has to be introduced into the theory. 1

However, as re:narked in the first paragraph, such an ingredient already

impends: namely, tiie existence of attractive interactions, especially the

rapidly varying ones, such as the dispersion 'van-der-Waals) interactions

r"6 , which attain considerable magnitudes at the distance of closest ap-

proach. Preliminary exploration indicates that these interactions can be

incorporated into the mathem.atical apparatus of the theory. It would there- *

fore be highly desirable (and is in fact intended) to pursue this direction

in the near future.
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4. FUTURE DEVELOPMENTS AND PROSPECTS

The concluding remarks of the preceding section have brought us to the

stage where a discussion of further developments and ovrrall prospects is now

in order.

A. Further Developments of the Present Theory

1. As pointed out in the last section, the most urgent requirement

is the introduction c, attractive interactions; it is expected (cf. footnote 31)

the effect of these would be to shorten Tc and, hence, to increase the magni-

tude, while decreasing the slope, of I(w) in the far wing.

2. A point of more theoreticai (interpretative)interest is the

feature, noted in the excursus following Eq. (2.20) of Section 2, that the

frequency-dependence of our impact result for I(w)(c( 1/(w-•w) 4)differs from

the Lorentz-type variacion ( 1I/(W-Wo) 2), usually exhibited by impact-type

theories. 13  A tentative explanation was suggested in the text subsequent to

Eq. (2.20). It remains to verify this suggestion by a detailed analysis;

from it we may hope to achieve a deeper physical understanding of the standard

Lorentz-type theories, based on the cited references. 13

3. The preliminary estimates of the smallness of Ivib(w) [which

denotes the contribution of vibrational perturbations to I(w)], mentioned at

the end of the !ntroduction, should be reinforced by a detailed, systematic

investigation. In particular, it will be desirable to alter the treatment of

reference 4 (which is for the case of a diatomic molecule) to apply to the

scmewhat more complicated situation of a linear triatomic molecule, such as CO2.

4. Since the maximum values of(w-w 0o), encountered experimentally,

are not really small compared to kT, quantum modifications of our treatment
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should be considered, In this connection, it may be remarked that the treat-

ment of Ivib() given in reference 4 is quantum-mechanical, permitting a

comparative study [for arbitrary l(w-wo)] with the classical limit [attained

when 1 (to-w ) < kT]. It is proposed to carry out such a study; if it shows

that quantum modifications are important under experimental conditions, an

attempt to introduce them into the present theory should be made.

It must however be stated that, even with all the above-proposed

improvements - including, of course, the proper evaluation of 1/t and

(... c01l - i.e , a proper averaging over the geometrics of collisions

(in place of the upper-bound estimates given in Section 3), the theory will

still contain residual uncertainties, associated with those of intermolecular

force laws; such uncertainties are augmented in 1(w), due to the exponential

dependence of this quantity on interaction parameters (as shown, eog., by

(2.41); preliminary indications are that the introduction of attractive inter-

actions will not affect this feature). Looking at the situation positively,

however, one may utilize the present theory [augmented, of course, by the

proposed extensions and improvements (especiallý the introduction of attractive

forces)i as another method for the determination of intermolecular force laws -

to be used in conjunction with various other methods. 32

From the practical, or engineering point of view, a proper deter-

mination of the interaction parameters contained in I(w) will permit extra-

polation to frequency regions which have not as yet been observed experimentally.

One would thua have available a useful tool For the study of absorption in the

so-called atmospheric "windows," in which absorption is usually dominated by

the far-wings of strong bands
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B. There remains one further subject for future research, which has

not been discussed as yet. Namely, as was noted in the introduction (Section 1),

Burch et al2 found that, in the high-frequency far wing of the self-broadened

3v3 band of CO2 , at 7000 cinI, the absorption coefficient k(w), although sub-

Lorentzian, is much higher than would be inferred from the comparable situation

in the case of the fundamental v3 band in the vicinity of 2400 cm" 1 . In what

follows, certain speculations, which in our opinion are relevant for the ex-

planation of this rather unique phenomenon, will be outlined. Briefly, we

consider the two-stage process described by the questions,

C()+ nwý ~CO()

()+ CO , CO( 2 ) + CO(1 )

In these equations the superscript attached to CO 2 indicates the vibrational

quantum number of the v3 branch (those of the other branches being zero

throughout), The first stage occurs via electromagnetic interaction; the

second may occur via dipole-dipole coupling (which is strongly allowed by

harmonic-oscillator selection rules); also, the adjective "two-stage" (used

above) implies that intermediate energy need not be conserved.

Now, in considering the physical significance of the above mechanism,

we note the following important fact. Namely, the exponential-type fall-off

characteristic of the present theory depends crucially upon the discrepancy

between the energy of the absorbed light quantum and the vibrational energy

of the absorbing system (as is clearly put in evidence by the occurrence of

the quantity (w-w ) in the argument of the exponential factor in the formulae
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of Section 2) With this fundamental point in mind, let is now note that,

due to small anharmonicity, the vibrational energy of the final state

C0•2) t COý1) turns out to be larger than that of intermodiate state C0•3);

in fact, from data in Herzberg's book, one finds that

W20 + w w0 "-,3 50 cm"

so that in the high frequency far wing

1 (w2 + o)< (w-w30)

ibe., the two-stage reaction permits the realization of a smaller discrepancy

between the energy of the absorbed quantum and that of the final vibrational

state, From this result we are inclined to infer that the onset of the ex-

ponential fall-off would occur at higher values of w-w than would be ex-

pected in the absence of this mechanism. As may be seen from Fig. 6,

reference 2, this spectral behavior corresponds to the experimental observations.

The above remarks constitute the bare framework of an idea which

we propose to use as a basis for the development of a theory which we hope

will provide an explanation of the anomalous absorption observed by Burch

for th, case. In this connection, we have been encouraged by recent infor-

mation from Burch (private conversation) that similar behavior has been

observed for the high frequency, far wing of the self-broadened 3v3 line of

N20. Examination of the relevant anharmonicity parameters in Herzberg's

book indicates that here also the above described, two-stage process is

energetically favored
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APPENDIX I

In this appendix the integral

dvi + sech2 Xvit -i(W-W°)t

-0 T .-- 7 -e dt (1.1)

will be evaluated. To this end it is first convenient to introduce a new

variable of integration

S= cvit/2

and rewrite (1.L) as

r+se 2 .2i(w-w 0)U/vi-= sech e (1.2)

One then considers a clockwise integration over the rectangular contour whose

corners are the points -001 +o00 +o-ijr, -o-if. The integration over the top

side (-- - +-) gives (1.2). For the integration over the bottom side

(-in - -- +in), one notes that (a) the sech 2 p factor remains unchanged, (b)-2w(w-wo)/ctvi

the exponential factor gets multiplied by a constant e 0 1 and the-2r(w-wo)/c•vi

sign is negative; the result is then -e 0 1* Since the contributions

of the vertical sides are zero (by virtue of the sech 2 factor),one has

1 -2_r(w-w 0 )/a i ? ; (1 3)

F -2r(w-wo)•/ctvi
1 sech2C e 0 1 d&i T J Cp

p
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where C denotes a counter-clockwise integration around a small circle the

center of which is the single pole of the integrand (within the original

rectangle) at the point = -7ri/2. Expanding sech 2 & in the neighborhood of

= -Tri/2, one has (with • = - -+ z)

7"•('-w )/ v -21(w-w°0 z/an•t= e 2e dz
z2

Cp

2Tr(W-Wo 0 -7r(w-w 0/Vvi)
- e (1.4)avi

which, together with (1.3), yields

27r(W-W ) e ((W-W)/av 1
v. -2=(•-o)/v (1.5)

I 1vi 1-e 2 i
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APPENDIX II

The subject matter of this appendix is the derivation of an expression

for the probability distribution of the relative velocity of two colliding

atoms, one of which is a constituent of a triatomic linear molecule. For the

sake of definiteness we consider the text case of a noble-gas atom, e.g.,

argon, colliding with one of the oxygen atoms of CO2 . One task is then to

derive (2.39), i.e., 3 3

P(v) I e'/2 (II.1)
(2iTvýT')

where v is the component of relative velocity of colliding noble gas and

xoygen atom, together with an explicit expression for v ; the calculation

will also yield [cf.text subsequent to Eq. (2.43)] an expression for the

reduced mass, M.

The starting point of the calculation is an expression for the

probability distribution of the various elementary velocities involved in

the problem, to wit

P(-, -v- .v) d3 d3-yvd2v

d3 v 2 /2v 2 d 32Vv/ 2 e

TrgE 2rT 2
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In this expression, IA' v and v. respectively denote the vector velocities

of the noble-gas atom, the center of gravity of the CO2 molecule, and the

rotational velocity of said molecule. The notations d3 v and d 3 v refer-A -1
to the three-dimensional (cartesian) volume-elements of A and Yg; the

notation d2v4 takes account of the fact that, by virtue of the condition

vr.n = , (01.3)

there are only two independent components of rotational velocity, both

perpendicular to n,

On the r.h.s, of (11.2), the constants vTA, vTg, and vTr are given by

the formulae

S2 =kT/MA (II.4a)TA

VTg kTMg = kT/Mco 2  (11.4b)

2 kTR 2
2 CO Vk114c

VTr __T = 2R7 (I4c)
0

In the case of the first two square brackets, the insertion of (II 4a)

and (I1 4b) yield the manifestly correct Boltzmann distributions (the factors

(2rv 232and 12 grv2j taking care of the normalizations).

The third square bracket, describing the distribution of the rotational

velocity, requires some comment. First of all, we note the obvious feature

of its difference in form from the other two brackets; this difference arises

solely from the above-noted two-dimensional character of the motion. In order
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to clarify the bracket further, we note that it may be written in the form

22 2 "2/2

P(w)d21 d2W e-wCOw 1 VTr

(w = angular velocity)

which, with the use (II,4c), becomes

p(w)d2w a W e-1W2 /2kT (11.5)

with

2 - 2 R2
Tr VT/ CO

- kTfl (11.6)

and where the notation d2w takes note of the fact that w is also a two-

dimensional vector, perpendicular to the molecular axis, n.

Equation (11.5) already begins to resemble the standard expression;
-I1wi2kT

in particular with respect tj the Boltzmann factor, e . In order to

achieve an even more familiar form, let us go over to a two-dimensional

polar coordinate system, in which w is expressed in terms of its magnitude,

and angle, o, with respect to an axis perpendicular to n, but otherwise

arbitrary; then, upon using the formula d2 w -dwd and integrating over T,

one obtains the standard angular-velocity distribution function

P(kw r- IW2 /2kT, (II.7)
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or, in terms of angular momentum, J = Iw

P(J)dJ JdJ e-J 2/21kT
NdT e (II.8)

It should flnely be remarked that the third bracket of the r.h.s. of

(11.2) may be obtained from tt,c fundamental prescription of statistical

mechanics, which, for the case of rotational motion, reads

P(0'0;p6'p¢)dcdedp dp0  1 -HkT dddPdPe , (1I.9)

where

Hr 1.= + P2 /sin 2e]Hr 2T•l e oi

is the rotational Hamiltonian, dodedp 0 dpe is a differential volume element

in the four-dimensional phase defined by the rotational coordinates e, *, and

associated canonical momenta, p0 and pV, and z is the partition function

(which will not be written down explicitly here, since from our point of view

it is merely a normalizing coefficient). Briefly, the procedure is transform

from the canonical momenta to the associated velocities, via the formulae

ve RCO- 
(ll.lla)

RCO

V¢ R Rc(sinO); 'C sTT-PO (11.11b)

thereby obtaining
34

12 -(I/R•O)[v2+v2]/2kTC eeP(e,¢;p,,p.)dedtdp dp, e 1.2

zRCO
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Note, now that (11.12) is equal to the typical spatial volume element

d n a slnOdOd0 (defining the direction of n) multiplied by a factor which,

in view of (II 4c), may be written as

_[ve 2+2)/v¢]2V

P(ve0 v,)dvedv, = (const) e eTr dvedv. (II.13)

Since the direction of v0 and v¢ are both perpendicular to n (as well as to

each other), the r.h.s. of (11.13) is in fact equal (apart from a normalization

constant) to the third bracket of (11.2), q.e.d. f
With these preliminary remarks on the validity of (11.2) out of the

way, we now proceed to a second basic formula, namely, the relationship

between v and the vector velocities occurring in (11.2). Remembering that v

denotes the component of relative velocity of colliding atoms (in our example

the noble-gas perturber h one of the oxygen atoms of CO2 ) parallel to the

line-of-centers of said 4 ims (i.e., to n ), we have
-;-c

v = -v

which, upon going cver to a cartesian system whose z-axis is parallel to the

molecular axis, n, may be written as

ncx(VAx-Vgx-Vr) + ncy (VAy-Vgy-Vry)

+ n cz(VAx-Vgd)

one notes the absence of the term linear in vrz since, with n along the z-)xi.

(11.3) becomes v, - 0.
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In proceeding further, it is expedient to go over to a more general

notation, in which (11.2) is written 4ri the form

8 
2v /2 v 1P(....v . )dv ... dv "" = il IVi e. 1 T. )

where i refers to the cartesian components ef the varicus velocities. For

the sake of definiteness, i = 1,2,3 denote the x,y,z components of YA.

1 = 3,4,5 the corresponding components of , and i = 7,8 tne x,y components

of vr Inspection of relations (ll.4a,b,c) then show that

V 2 = V2 T= kT/MA (1.16a)

VT7 v8 1 kT/2 M (IIT16a) A

VT4 = VT5 =~ V 6= I 0 (11.16b)

2 2
v V kT/2.Mf. (11.16c)T7 T8

In this new notation (11.14) may be written as

V aiv1i

where

aI a 4 7 nCX (1I.18a)

a2 5 8 ncy (11 l8b)

"a - 0 !II.18c)3 6 nCz
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"The normalized expression for P(v) is now written as

P(v) dv1  .... dv8  P( .... vi .... )6(v-1 aivi) (I1119)
i

Equation (11.19) expresses the fact that P(v) is gotten by integration over
all values of vi which are subject to the constraint imposed by (11.17)

(and incorporated in (11.19) by the delta-function). Expressirg the delta-

function in its Dirichlet representation

6(x) ixt dt

and utilizinn (11.15), one then has

+c +CO dv 2/2v 2 - tV
-,e dt e1Vt edv -vi. Ti itv (1 20)P(v) •, e t (_11( 20))

L100(2IrTi)

The evaluation of the velocvtv integrals is standard; one obtains for each
-tv2 a2

square bracket in (11.20) a factcr e Ti i so that (11.20) becomes

+00 -2v2 /2

P(v) = • e dt (11.21)

where

v{ 2 ai/v2i (1f-22)
i
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The t-integration is now done, yielding,

v 2/2v 
2

P(v) v e (11.23)

which is identical to (II.1), q.e.d. Moreover, the required explicit expression

2for vT is given by (11.22), in conjunction with formulae (II.18a,b,c) and

(II.16a,b,c). Combining these relatiorships one has, without further ado

vT=kT + + sin29 (11.24)

where, with e the angle between n c and the z axis - that is, between nc and

the molecular axis n, the obvious relation

2 + n2  : (n x n!)2sin2 ncx cy -

has been used.

We may now note briefly thdt (11.24) used in conuunction with the text

relationship

v = kT/M

yields for the reduced mass, M, the expression

1 1A+ I + -L sin2e (11.25)
5M 0  2M0
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BEAM DYNAMICS
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I

I. INTRODUCTION

This report is concerned with the effect of target motion on thermal

self-defocusing. In a previous study we have produced a description of the

self-defocusing effect applicable only to the case of a stationary target,

that is, to the situation in which the laser beam heats a fixed air mass

throughout the entire pulse period. If the target is moving, however, the

beam must be rotated, and a given air mass is heated only for the time

required for the beam to pass through it; consequently, there must be less

defocusing.

It was found that for a stationary target the limitation caused by

self-defocusing is on the total amount of energy that can be delivered to

the target. However, for a moving target we expect the limitation to be on

the deliverable power. The reason there is no limitation on the total enerqy

is simply that new air masses are constantly being used for the beam path,

so there is no cumulative heating. By analogy to the stationary-target case

we expect a limitation on the energy deliverable through any given air mass,

so the maximum transmittable power depends on how rapidly the beam rotates.

The amount of time a particular air mass is heated depends on its distance

from the laser, and is smallest at the target distance (its value there is

simply the beam width divided by the target velocity). Therefore, we can

obtain a simpl2 overestimate of the maximum transmittable power from the

energy limit calculated in the stationary target cases. naarly, the latter

energy divided by the heating timre at the target.

In this report we obtair a more precise estimate of the rAximuT- trans-

mittable power by extending the stationary-tarqet analysis. The exte'sion is
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somewhat crude, but it at least accounts for the dependence of the heating

time of any air mass on its distance from the laser. The crudity lies in the

way that we treat the beam rotation. Instead of solving equations that

properly describe a beam continuously rotating into new regions of air, we.

use the equations that describe a stationary beam; we simulate the rotation

by assigning to the air 3t any given distance from the laser a heating in-

terval estimated from the time it would take a rotating beam to pass through

it,

T'he stationary-beam analysis is based on the ray optics approximation,

that is, diffraction spreading is ignored. In addition, it is assumed that

the time required for the beam to pass through any air mass is longer than

the time required for sound to propagate in air across the beam. Further-

more, another approximation is nade, which significantly simplifies the

mathematical system. An integral which arpears in the equations, namely the

time integral of the light flux at any point in space, is replaced by the

simple product of the instantaneous flux and the time. As a result the time

becomes a trivial parameter instead of an independent variable, and the

equations become soluble for a certdin special case Now, in the extension

described in this report, what we have done to simulate the beam rotation is

to replace the actual ti4 ýin this product of fl-,x and time) by the time

interval over which the air nass at the point in question has been illuminated.

Although this time interval now depends on one of the indtoendent variables,

rame-1, the distance .rc, t"- laser, we find that the equations are still

soluble for the same special case as before.
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The particuldr manner in which the beam spread, by self-defocusing has

been found to depend on the specific shape of its initial power profile. For

example, if the power profile is uniform in the center and falls off only at

the edges, then initially the rays in the uniform interior will not deflect

at all, but the rays at the edge will peel off and deflect outwards. Thus

the way that the beam degenerates is that the beam edge gradually erodes,

In this and the previous report we have studied the rate at which

the beam edge eats its way in to the interior. To do so we have considered

the special case of an initial flux distribution having the shape indicated

in Fig- 1. Because we are basically interested only in the behavior of the

edge of the beam, we have chosen a planar geometry (for which the equations

have a somewhat simpler form) rather than the more realistic cylindrically

symmetrical geometry, The initial power profile is taken to be uniform along

the negative axis, and to fall off exponentially along the positive axis.

We have obtained a solution to the equations which shows that the

interior rays (the rays originating along the negative axis) go undeflected

for a certain distance, then begin to deflect outwards (towards the positive

axis). This behavior is indicated in Fig. 2 The solution is valid only in

certain regions of space, but for any ray it is correct up to and including

the point at which the ray starts to deflect. Therefore, it provides a first

order description of the desired rate at which the beam edge erodes. We can-

not obtain from our solution the trajectories of the rays after they begin

to peel off.

The distance from the iasec at which any ray begins to deflect depends,

among other things, upon its original distance in from the edge, upon the beam

56



intensity, and upon the assumad distance-dependence of the period for which

any air mass is illuminated. The illumination period in turn depends upon

the angular velocity at which the laser beam is rotated.

For the model we lave used, the degradation of the beam is due solely

to the erosion of the outer edge. The interior region is entirely undegraded;

that is, the flux in the interior is undiminished. Without the introduction

of additional conditions into the problem the choice of a criterion for when

the beam has lost its destructive capabilities is left somewhat arbitrary.

For the sake of providing a definite example we have required that the edge

may be permitted to eat its way in by no more than half the original beam

radius. Using this condition we obtain a simple expression for the maximum

flux which the self-defocusing effect allows us to transmit through the at-

mosphere. The expression depends upon such parameters as the beam intensity,

the beam diameter, the target distance, the rotational rate of the beam, and

the effective absorption coefficient for heating of air by light at the laser

frequency.

In sumnary it should be emphasized that our solution contains a number

of approximations and limitations, which have been mentioned above. Removinq

the approximations and limitations would probably require an extensive com-

puter analysis. The major value of our result relative to such an analysis

is that, being analytical, it provides a single expression from which one

can easily estimate the maximum transmittable power under a variety of cir-

cumstances. We shall live some illustrative examples in a later section.
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2. DERIVATION OF THE EQUATIONS

In this section we derive the equations which describe the propagation

of the light rays in a medium whose optical properties are themselves deter-

mined by heating due to the presence of the light. Most of this derivation

constitutes only a minor modification of the work in reference (1). The

principal difference, as discussed in the previous section, lies in the

introduction of a position-dependent illumination period for the purpose of

simulating the beam rotation.

We assume a planar geometry with the z-axis normal to the laser face,

the x-axis parallel to the laser face, and all quantities being indeperindnt

of the third coordinate, The laser face is in the z = 0 plane, so that z

is the coordinate denoting distance from the laser along the propagation

direction, and x is the transverse coordinate. The ray trajectories in a

medium of refractive index n are described by the eikonal equation. One cf

the standard forms in which the latter may be written is

= vn (2.1)

,here a is a unit vector tangent to the ray path at any point, a is the path

length along a given ray, and s is the value of the transverse coordinate of

any ray at z = 0, that is, x(s,z = 0) = s.

It will be convenient to use, instead of the (x,z) coordinate system,

one defined by the planes of constant z and the surfaces generated by the ray

paths (surfaces of constant s), which are the solutions to the problem. Also,

we shall confine ourselves to situations in which the rays deviate from their
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initial directions only by small angles. Therefore, by taking the projection

of the vector equation (2.1) along the transverse axis, transforfring to the

ks,z) coordinate system, and making the small-angle approximation, we obtain

the ray equation

ax a2x a Ina'n1as 3z- a7- -' (2.2)

where n a(sz) is the ambient value of the refractive index.

The conservation of energy flux F is stated by (assuming negligible

absorption losses in the atmosphere, and using the small-angle approximation)

F(s,zt)dx = F(s,O,t)ds . (2.3)

This follows from the fact that the surfaces of constant s are everywhere

tangent to the ray paths, so that no flux escapes through them. The line

element dx is the separation at height z between two rays which are initially

separated by ds, so we may use the relation dx = (axias)ds to obtain from

(2.3) the flux conservation equation,

F(s,z,t) = F(sO-t) (2.4)ax/as

Our neglect of absorption losses is quite justifiable for ruby and neodymium

lasers, for which the energy loss in passing vertically through the entire

atmosphere is no more than about one percent. For a CO2 laser about 0.3 of

the incident energy is absorbed in the atmosphere. This loss is not insigni-

cant, but for our purposes it is not great enough to warrant the additional

complications of accounting for it in the conservation equation.
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Next we need the relation between the flux and the refractive index.

The rate of change of refractive index is proportional to the rate of change

of the density, which is proportional to the rate at which heat is deposited

in the atmosphere; the latter in turn is proportional to the flux. The

refractive index for a dilute gas is given by

n-1 = 2 rpa , (2.5)

where p is the molecular number density and c is the molecular polarizability.

Consequently, we have

dn _ 2n do = -1 dp
2t at- p. (2.6)

The density changes according to the equation of state of an ideal gas,

PV = NKT , (2.7)

where p = N/V, and where K denotes Boltzmann's constant. We shall assume

that the heating takes place at constant pressure, so that from (2.7) we

obtain

1 dp 1 dV NK dT
70= F- T U . (2.8)

The assumption of isobaric heating is valid only if the times of

interest are large compared with the time required for sound to traverse th..

heated region. The velocity of sound in air is about 3x104 cm/sec, so it
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would take several milliseconos to cross a beam a meter in diameter. This

means that if we are considering a stationary target the pulse length must be

greater than several milliseconds, or less for a smaller beam. For a moving

target we have the additional constraint that the beam must rotate sufficiently

slowly that it is effectively stationary during a sound traversal time. It

may easily be seen that this constraint is equivalent to the requirement that

the target velocity be somewhat less than the velocity of sound in air.

Therefore our results will be applicable only to the illumination of subsonic

targets. The direction in which our results err for supersonic targets is

easy to see. When a region of atmosphere is heated, a finite amount of time

is required for the density change to develop. This is the time needed for

sound to cross the heated region. Over a shorter period the density change

and therefore the rpfractive index chnge,!• --,,h less than what we estim~te

under the assumption of heating at constant pressure. Consequently the de-

focusing effect will be smaller than estimated. As a result, the amount of

flux that can be transmitted in the case of a supersonic target will be

greater than the upper limit which we shall predict.

To continue, the temperature increase dT for an amount of heat dQ

deposited at constant pressure in a volume V of air is

dQ = CpdT , (2.9)

where Cp is the specific heat at constant pressure. Now if we denote by k the

effective absorption coefficient for heating of air by the laser light, then

the amount of heat per unit volume per unit time deposited due to beam absorp-

tion is given by kF. Therefore, from (2.9) we obtain
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kF = 1 Cp dT

F V = - . (2.10)

Now, combining (2.10), (2.8) and (2.6), and using the well known ideal gas

relation,

NK = Cp- Cv , (2.11)

CV being the specific heat at constant volume, we obtain the desired relation

between refractive index and flux,

dnt 0-)yp , (2.12)

where y z p, CV. For air the ratio of specific heats is y = 1.4. Eq.(2.12)

may be integrated to give

n(s,zt) - n y1)(n 1) F[(s(x,z,t),z,t dt , (2.13)

Xz

where na is the ambient value of the refractive index in the absence of the

beam. The factor n-1 on the right hand side of (2.12) has been assigned the

fixed value na-1 and removed from the integral, since, as may be easily

verified, the fractional change in n is negligible compared to unity. The

subscript x,z on the integral sign emphasizes that the relation (2.12)

applies to a fixed air mass, and therefore to a fixed point in space (x,z).

Since, because of continued heating of the air, the ray trajectories change

with time, the origin coordinate s(x,z,t) of the ray passing through the

point (xz) also changes with time. Thus, in the integral F depends on t not

only explicitly, but also implicitly through the implied variation of s with

time.
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Now we make our most serious approximation. We assume that in the

integral, F may be regarded as constant with respect to both t and s durin,

the period for which the beam passes through the given air mass. We replace

the integral by

f F[s(x,z,t),z,t]dt -- F(s,z,t)T(z,t) , (2.14)
"Xtz

where r(z,t) is the time interval over which an air mass at distance z from

the laser has been illuminated at time t. How well we simulate the rotation

of the laser beam now depends on how judiciously we choose r(z,t). In the

special case of a stationary target we have T(z,t) Z t.

Strictly speaking, the beam rotation should be described by time

dependent boundary conditions on the rays. What we shall do here, as in thp

stationary-target case, is to let the z - 0 plane represent the laser face

and require 11....•-! the rays emerge normally from the laser face. That is, the

angle made by the rays relative to the n-r- 1, = 4x/4z, must be zero at

z = 0 To represent a rotating beam properly we must do something much more

complicated mathematically. That is, we must require that the rays emerge

normally from a plane which is rotating relative to a coordinate system fixed

in the atmosphere. Our use of the approximation (2.14) eliminates this com-

plication

Now, according to (2.5) n a- is proportional to . , the atmospheric

density, and -decreases exponentially with iltitude. wowever, according to

the ideal gas law (2.7) the pressure P is 4lso proportional to -. Consequently,

in (2.13) the ratio (n3-1)/P is independent of density, and therefore of

63



altitude, so that the sea level values of na and P may be used. In general

the altitude dependence of k, the effective absorption coefficient for heating,

is considerably more complicated and uncertain. For example, for ruby lasers

essentially all of the absorption is by water vapor, and for CO2 lasers about

half Is by water vapor. The distribution of atmospheric water vapor, however,

varies drastically from one geographical location to another, as well as from

one time to another. Therefore, for the moment we siril simply regard k as

an unspecified function of altitude, that is,

k = k(zcoso) , (2.15)

where o is the zenith angle at which the beam is propagatinq through the

atmosphere at any instant of time.

We now have for the relation between the refractive index and the flux,

n(s,z,t) - na (z) = - pa (2 16)

Now, the system of equations which we wish to solve is composed of the

ray equation (2.2), the flux conservation equation (2.4), and the relation

between flux and refractive index (2.16). First we eliminate the flux between

(2.4) and (2.16), and obtain a relationship between the value of the refractive

index at any point (s,z) and its value along the same ray path but at the

lase- face,

n(sC)-n (0)
n(s,z,t) - (Z) a T(z,t) , (2.i7)

a
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where we have defined

kzco., ) T(7,t)
T(z,t) k(0o TT(, tT (2.18)

and ko k(O).

Next, it is convenient to define the dimensionless, positive quantity,

na (O)-n(s,O,t)

f(s,t) -- na (O) (2.19)naO

so that (2.17) may be rewritten in the form Irecall that n is so close to unity

that unless index differences are involved we may write n a(z) = na(O0]

n a(z)-n(szt) f(s,t)T(z,t)
na(Z) x/s(2.20)

Now., physically, f(s,t) may be regarded as a reduced flux. To see this we

use (2 1G) and the definition (2.19) of f(s,t) and obtain

(-f-l)(na-1)ko.1(0,t)

f(st) yP F(s,O,t) (2.21)

Thus, f(s,t) is seen to have the same s-dependence as F(s,O,t). That is, it

s proportional to the power profile at the laser face.

Finally, we may eliminate the refractive index by inserting (2.20) into

the ray equation (2.2) to obtain

ýx )2x 1 aFR(s) 1 (2.22)
-'as ' z2 TT zT - . • -'•L 76-S-65
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We have simplified the notation by suppressing the parametric t-dependence.

To obtain the ray trajectories we must now solve (2.22) with the appropriate

boundary cornditions,

x(s,O) = s , (2.23a)

e(s,O) = .X-(s,O) = 0. (2.23b)
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3. SOLUTi - ..-

Performing the derivatives In (2.22) and setting

x = s +x , (3.1)

(so that x1 is the transverse displacement of the ray originating at x = s)

we may rewrite (2.22) in the forr

3.2 2-- + jXzT " 1 f(s) I 1x+ +-s- . (3.2)

To solvr (3.2) we shall make use of the following transformations of variables,

S(3.3)

d{ fT'- (3.4)

Actually, it will be useful to transform only selected terms in (3.2), so as

to recast it in the form

( a 2 x 1 ý z 7 + 2 + 3 aT 1] = 0 (3.3)
+ I a X.1 7 1  1 3 X 1  3 a x z -7T - Zas ac 2~ T ( d (5

where

Xl(p,&) = xl(s,z) . (3.6)

axl 1 aT axt
We now assume that in (3.5) the a terms and the -term

as7 2T2  z az
may be dropped. Both of these terms vanish at the boundary plane z = 0,
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ax1

because of the boundary conditions x1 (s,0) = 0 and e(s,0) = aT (sO) = 0.

We shall see that in fact there exists a useful solution for which they vanish

over an entire region of space; in that region of space the solution will be

exact.

The approximate equation which we obtain from (3.5) is now

22 X1  a2 X1 + df+ -= 0 (3.7)
aE ap

Equation (3.7) is linear with constant coefficients, and can be solved in

closed form. We shall not go through the details of solving it here; however,

for completeness the procedure has been included in an appendix. The solution,

with the required houndary conditions, is

x1 (s,z) = 2s - g(s,&) - g(s,-&) (3.8)

where g(s,E) is given by

g(s, )
= ds' (39)

and r ir turn i: a ?un:tion of z according to

ý(z) = V/F(z') dz' (3.10)

The last equation follows frnm •he tran$forrndtion (3.4)
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Now, the terms we have dropped do not vanish in general. It is only

for a special choice of the initial power profile f(s) that they vanish in a

region of interest. That special case was mentipned in the introduction and

is illustrated in Fig. 1. The initial flux distribution is uniform along the

negative axis, s 4 0, which represents the interior of the more properly cy-

lindrical beam. It falls off exponentially along the positive asix; the °Iall-

off region represents the beam edge. Specifically, we have

2 ~0la s 0

f(s) = , (3211)
a2 e" 2s/x 9 s 0

for times greater than t =0. For t < 0, we assume the flux to be zero; that

is, the beam is turned on at t = 0. The constant a2 , according to (2.21), is

given by

2 = (y-1)(na-1)k F 0t(0t)ap , (3.12)

where F is the (uniform) initial flux magnitude along the negative transverse

axis.

It is easy to see physically why we expect that for this flux distri-

bution the terms we have dropped from (3.5) will vanish over a finite region

of space. Along the negative axis the flux is initially uniform, so the air

will be heated uniformly. Consequently, the refractive index will change,

but its change will be uniform with respect to the transverse direction, so

there will be no transverse gradient. As a result, the light rays will

initially not be bent, so the displacement x1 will be zero; furthermore, the
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uniformity will propagate in the z-direction. In the region where xI has the

constant value zero, we have x1/as = ax1l/az = 0, so that the terms we have

ignored actually vanish identically.

The situation is different along the positive transverse axis. The

flux, and t~'erefore the heating rate, is greatest at the beam edge (s = 0)

and falls off for larger positive s. Therefore, the refractive index increases

in the positive transverse direction. According to the eikonal equation (2.1),

the rays deflect in the direction of increasing index. Therefore, they im-

mediately begin to peel off in the positive transverse direction, which is

equivalent to peeling off outward from a cylindrically symmetrical beam. As

these outer rays peel off, the beam edge is displaced inwards (in the negative

transverse direction) with increasing z, and the rays at the new edge peel

off. Thus the rays in the region of initially uniform flux distribution

propagate undeflected only for a limited distance, then they deflect outwards

(in the positive transverse direction).

To see just how far they propagate undeflected we insert the explicit

expression (3.11) for the initial flux distribution into the general solution

(3-8, 3.9, 3.10) and obtain the explicit solution,

0 , s 4 -a&

xi(s~z) s+a&-Aloge (l+s/A+aý/A) , -aý , s • 0

2s+A+aý-ieS/x-Aloge(a&/x+eS/' , 0 ' s '< Aloge(1+aW/A)

2s-^loge e 2s/_-a 2 &2/X 21 , log e(1+a&/A) , s (3.13)
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Here ,(z) is understood to be a known function of z, determined from Eq. (3.10).

To obtain an explicit expression for ý(z) we must first specify T(z,t); doing

so is equivalent to specifyinq the mean illumination time of an air mass at

a distance z at time t. In order to get a feel for the properties of the

solution (3.13) it is probably best to think of it in terms of the simple

special case of a stationary target, with both the target and the laser at

zero altitude In this case we find from (2 18) that T(z,t) = 1, and as a

result we have ,(z) L z

In the region s < -aL(z), then, we have axliaz ax 1 S = 0, so that

in this region, as well as everywhere along the boundary plane z = 0, (3.13)

is an exdct solution of (3.5) Elsewhere, as we have said, the rays deflect,

so that the terms we have dropped in going from (3.5) to (3.7) do not vanish.

In fact, these terms quickly become sufficiently large that the solution (3.8)

is not a good approximation except in and very close to the region s < -a&(z).

For s . -aE(z), but aý(z) - isi , 1, it may be seen that the neglected terms

a-e st,'' quite small, so that the solution is still quite accurate. From

(3 13) we see that under these corditions the ray trajectories are

1' I2 1 )2

x1(sz) : - (a•÷s 2 (a-iSl) (3.14)

Therefore, we find that the outer edge of the beam (the region of

diverging rays) eats into the interior region (the region of initially uniform

flux distribution) along the curve s z -ad(z) That is, for any negative s,

the corresponding ray propagates undeflected until it reaches a distance z

from the laser face given by -(z) = -s/a; then it begins to diverge para-

bolically in ýWz) according to (3 14) This behavior is illustrated in Fig. 2.
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It should be noted that the distance z at which an interior ray first begins

to deflect does not depend oti the steepness of the beam's original edge shape.

However, once the ray begins to deflect, it does so more rapidly for a more

steeply descending beam edge; more precisely, we see from (3.14) that the ray

displacement xi is proportional to I/, where x is the scale length for the

exponential fall-off of the beam edge.

The region in which (3.14) is valid is quite small; from (3.14) we only

learn the initial behavior of the rays when they begin to deflect. Since we

do not know the details of how much the beam spreads once it does so, we must

make a somewhat arbitrary choice of a criterion for when the beam is to be

considered too degraded to be effective. Now, we have seen from the solution

(3.13) that the beam interior is entirely undegraded, in the sense that the

power density is undiminished; however, the beam edge moves steadily inward,

so that the undegraded interior decreases in size. We assume that when the

region of undiminished power density gets too small the beam is no longer

useful. Therefore, if we denote by s0 the maximum distance which we can

tolerate having the beam's edge eat into its interior, then from

(z) so/a (3.15)

and the definition (3.12) of a, we find

YP2
0 = YPs0Fo = 02(3 16)

(y-1)(n a- 1)ko0,(Olt)&(z)

For a specified so and a target at distance z, F is then the limit due to

self-defocusing on the flux which can be transmitted through the atmosphere
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It is desirable to simplify (3.16) somewhat by going back to the

definitions (3.10) of &(z) and (2.18) of T(z,t) and noting that

&(z) ot) [k(z'cos)T(z ' dz . (3.17)
0

The term ko0 (O,t) in (3.16) may be canceled and we obtain finally

y 2yPs 0

Fo (y1( 0. (3.18a)
(y-l)(na-1)n 2 (Z)

where

n(z) = [k(z'coso)T(z',t)] dz' . (3.18b)

0

Before we can obtain numbers from (3.18) we must still choose a function

t(z,t) which describes the beam rotation, and we must pick a value of so. In

the next section we shall give several illustrative examples of the use of

(3.18). In all of these examples we shall assume that the beam has lost its

destructive ability when the beam edge has eaten its way in by one quarter of

its original diameter, so = D/4.
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4. ILLUSTRATIVE EXAMPLES

In this section we shall treat several special cases so as to illustrate

the use of (3.18) in calculating Fo, the flux limit due to self-defocusing.

We shall assume we are using a CO2 cw laser. We mentioned in Section 2 that

the altitude dependence of the absorption coefficient for CO2 is rather com-

plicated and uncertain. We shall simply assume that for our purposes it may

be adequately represented by the altitude dependence of the atmospheric

density,

k(zcoso) = k0 e(z/L)cos (4.1)

where L is the atmospheric scale height, L = 8 km; the value of k is
ko = 3x10" 7cm'. The values of the other constants which appear in (3.18)

are as follows: The ratio of specific heats in air is = 1.4, the atmospheric

pressure is P = 106 dynes/cm2 , and the ambient refractive index is

na- 1 - 3x10 4 . Also, in our examples we shall take the initial beam diameter

to be D = Ir,

Case 1. Stationary Target

For a stationary target eacn air hmass is i1lu:ninated for the entire laser

pulse length t, so that we have

* It is worth recalling here that, as wa; pointed out in Section 2, there is

essentially no self-defocusing problem for giant pulse laseri; the density

change requires a finite amount of time, which is of the order of milliseconds

for , beam of 1 meter diameter. The current giant pulse laser is, however, not

the &-iswer to the self-defocusing problem, since the amount of energy that can

be put out in one pulse is in general far too small for most applications. If

we think in terms of a rapid succession of giant pulses, then we are in effect

back to the cw laser.
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T(z,t) = t . (4.2)

Using (4.2) and (4.1) to obtain n(z), and taking so = D/4, where D is the

beam's initial diameter, wi immediately find from (3.18),

SYP2cos (4.3)6 4 (y-1)(na- I)koL ([1-exp(-zcoso/2L)J 2

Note that the limitation here is not on the flux F0, but rather on the total

energy per unit area F0t which can be transmitted.

If we consider the case of a *arget in the zenith direction (0 = 0)

at an altitude much greater than the atmospheric scale height (z >> L),then

(4.3) simplifies to

Fo0 t JpD2 (4.4)

54(Y-1)(n a- l)k .0r

Putting in the numbers specified above we obtain

F t - .95 joules/cm2.0

Now let us consider the ceie in which both the target anI the laser are

on the ground, so that cos; 0 0. In this case (4.3) reduces to

Fot a 1PO2 (4.5)16(-,-!)(n -!)k Z

For t-arget at a distance of z - I km, (4.5) yields

F0t - 240 Jouleslcm2 .
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Case 2. Moving Target

For a moving target the accuracy of our results depends on how judi-

ciously we choose the expressic•i for T(z,t), the mean illumination time of

an air mass at distance z from the laser. If the angular coordinate o of the

target is changing at the rate ;, then at large distances z from the laser

the beam is moving with a linear velocity ;z, so that the time taken for the

beam to cross the air mass is

T(z,t) = D/4z . (4.6)

At small distances this expression is quite invalid. The concept of an

average illumination time is meaningful only if this time is less than the

total pulse time, that is, if T(z,t) < t. However, the above expression for

T blows up at small z, so the required inequality is clearly violated If,

nevertheless, we insert (4.6) into the expression (3.18b) for n(z) to obtain

½,(z) dz' , (4.7)

0

we may note that for small z' the integral goes like P'z; consequently, the

contribution to the integral is small from the range in which (4.6) over-

estimate, .the average illumination time.

We shall use (4.7), but first let us digress momentarily to get a

crude, but somewhat more quantitative estimate of the error involved. For

simplicity we take cos, - 0, so that the exponential in the integral becomes

unity and the integral is directly evaluable. Then if we regard (4.6) as

invalid up to a distance zo, but va'id for all larger distances, the
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fractional error is irmmediately seen to be isP the dista~c

at which Tbecomes as large as t, so that frc & ive zoTD/~.-,

However, fromr (4.6) we also find that D!.. z .vefore, the fract

error may be estimated to be ýz01 ,(z,t)/ ~eco, ude then, that if

the total pulse tirne t is sufficiently greate t6 eaelhrnt

time -(z,t) at the target, we may use (4.7).

Returning to (4.7) we obtain, after a s tra, orrnation on the

integral,

I7 Z) = 0 E(v ico. (4
; Cos:

where

E(x) = 1 xe-t 2 2  (4.

is the normal probability integral, having tOf roperty '2 . Now froir

(3.18a) we obtain the desirel expression for uiii x,

F !-PD .'Cos.
a o

If the target is flying directly overhe! 'av v s.- 1 and v

so that (4.10) becomns

0 -(,-1)(n a -)k 0Lz E2j
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Let us assume that the target is at an altitude z = 10 km and has a velocity

4v = 500 mph = 2.23 x 10 cm/sec. We have assumed a subsonic velocity (sound

velocity in air is 3 x 104 cm/sec), since, as we discussed earlier, our model

is not applicable to supersonic velocities. For the chosen altitude and

velocity we find from (4.11)

F = 197 watts/cm2.0

The average illumination time of an air mass in the neighborhood of the target

is T = D/v = 4.5 x 10-3 sec, so this result for F is meaningful only if the

total laser pulse time length t is considerably greater than several millisec.

For laser pulses shorter than x = D/ one would be more accurate in regarding

the beam as stationary and using (4.3).

If the target is on the ground and moving normal to the line of sight

with velocity v, we again have • = v/z, but this time cosc = 0, so that (4.10)

reduces to (since E(x) - 7 x for x << 1)

F - yPDv (4.12)o 64(y-) (n a-1)ko0 z

Taking a target velocity v = 10 m/sec (= 21.6 mph) and a target distance

z = 1 km, we find

2Fo = 610 watts/cm

In this case the average illumination time of an air mass near the target

is T = D/v = 10-1 sec, so that the laser pulse length must be somewhat

greater than 10-1 sec for our model to apply.
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APPENDIX

The equation to be solved is

X2X1 I 2 X1 df

-r -- -r+rs= 0, (Al)

where X1 (p,E) is the ray displacement,

X (PV ) = xl(sz) , (A2)

and the pc,) coordinate system is related to the (s,z) coordinate system by

the transformations

d (A3)

d = /T .(A4)

The boundary conditions are that the initial displacement is zero,

x1 (sO) = 0 , (A5)

and the initial angle of any ray relative to the z axis is zero,

e(s,O) = 1i (s,O) = 0 . (A6)
7z
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Now.we define the functions S(p), P(s) and &(z) by

IS(P) ds'p= P .._. , (A7)

fo Vf(s')

P(S) = ds' (A8)o Vf'T;'

E(z) = / dz' (A9)
0

According to (A3) the s-p transformation and its inverse are then given by

s = S(p) , p = P(s) . (AlO)

It will be seen shortly that defining the functions S(p) and P(s) is useful

for avoiding notational confusion.

Next we transform the last term in (Al) as follows, using (A3) and

(AlO),

df d d •pfS(p)] ==dd1 df 2 dv-

d ds d2S(All)
dp2

so that (Al) becomes

2X1  1 + d2S d (A12)

3& ap dp
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or

(X 1-"2S) - 0 (A13)

The general solution of (A13) is well known to be

Xl(p,c) - 2 S(p) = A(p+&) + B(p-&) , (A14)

where A and B are arbitrary functions.

Now we evaluate A and B from the boundary conditions (A5) and (A6).

Since at z = Owe have 0 =0, it follows from (A5) that

Xl(p,O) = 2S(p) - A(p) + B(p) = 0 (A16)

so that

B(p) = -2S(p) - A(p) (A16)

We may now write (A14) as

Xl(p,ý) = 2S(p) + A(p+&) - 2S(p-&) - A(p-&) . (A17)

To apply the second boundary condition (A6) we use the transformation

(A4),

1 aX 1 ax1- -= = A'(p+&) + A'(p-&) +2S'(p-&) (A18)

Then from (A6) we obtain

2A'(p) + 2S'(p) = 0 , (A19)
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or

A(p) = -S(p) + c ,(A20)

where c is an arbitrary constant. Inserting this result into (A15) we now

have

Xl(p,&) = 2S(p) - S(p+&)-S(p-ý) .(A21)

The final task is to transform back to the (s,z) coordinate system.

From the transformations (A7,8,9) we have ý

k 1(s,z) = 2s-S(P(s)+&(z)]-S[P(s)-&(z)] (A22)

In addition we have

s~)~z = ' + &(z) ,(A23)

P(s)+&(z) = S[(s)+&(z)] _____ (A24)

Subtracting (A24) from (A23) yields

ý(Z) fS[P(s)+&(z)J ds'(A5

which directly determines the function S[P(s)+t(z)]. Finally, we simplify

the notation by defining the function gts,&(z)J as follows,
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The solution may now be written in the (s,z) coordinate system as

x1(sz) = 2s-g(s,&)-g(s-ý) , (A27)

where g(s, ) is determined from

f g(s,E) ds' (A28)

and &(z) is defined as a function of z by

&(z) = (z'fT'z) dz' (A29)
0
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F O(S)

s
Fig. 1. Uniform distribution of flux F (s) emanating from a semi-

infinite laser face (s c 0). with an exponential fall-off
at the edge. The rays originating in the uniform region
along the negative s-axis are initially undeflected.
Those originating along the positive s-axis are imediately
deflected to the right.
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//

Fig. 2. Trajectories of rays emanating from the region of

uniform flux distribution (s < 0) depicted in
Fig. 1. The rays go out vertically until they

Intersect the dashed line, then they begin

deflecting to the right parabolically with

distance z.
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