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i 

By 

Richard C.  Grinold 

Division of Engineering and Applied Physics 

Harvard University    Cambridge, Massachusetts 

ABSTRACT 

Many structured large-scale linear programming problems can 

be transformed into an equivalent problem of maximizing a piecewise 

linear, concave function subject to linear constraints.   The equivalent 

problem can, in turn, be solved in a finite number of steps using a 

steepest ascent algorithm.   This principle is applied to block diagonal 

systems yielding refinements of existing algorithms.   An application 

to the multi-stage problem yields an entirely new algorithm. 



INTRODUCTION 

There are two distinct approaches for the solution of large-scale 

linear programs.    The direct or compact basis technique uses special 

pivoting and storage rules to maintain an easily handled form of the 

basis.    We shall consider the indirect approach.    The key element in 

this method is the definition and solution of an equivalent concave pro- 

gramming problem.    This equivalent problem is generally much smaller 

than the original problem.   In many papers it is not mentioned explicitly. 

This paper is related to and motivated by the work of Geoffrion [ll] 

< 

and Lasdon [16].    They discuss two methods, which Geoffrion has aptly 

termed price and resource directive, of defining equivalent problems 

for nonlinear, organizational problems.    In addition, several possible 

solution techniques are described.    Both authors propose the use of 

large step gradient or feasible direction algorithms.    Our attention 

will be focused on this type of algorithm when the original problem is 

linear.    While we are restricting our attention to linear programs, we 

do consider a wider class of problem.    Thus multi-stage as well as 

block diagonal (organizational) problems are considered.    In principle 

the theory is applicable to any large scale linear program that can 

be transformed into an equivalent problem of maximizing a piece- 

wise linear, concave function.   In this case we give a general method 

for constructing an algorithm.   Also, by restricting our attention to 

linear problems, we are able to obtain sharper results, such as finite 

convergence. 
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We shall demonstrate that the equivalent problem can itself be 

transformed into a second linear program.    This new linear program 

is then solved in a finite number of steps using the Primal-Dual (PD) 

algorithm of Dantzig,  Ford and Fulkerson, [8].   If a Feasible Direction 

(FD) algorithm,  [22],  is designed for the concave program it yields a 

procedure identical* to the PD algorithm.    This extends the equivalence 

from the linear case: [22], page 100. Three examples are explored and 

the algorithm is applied to the equivalent concave program in each in- 

stance.   The three are: block diagonal problems, using the price direc- 

tive approach, block diagonal problems, with the resource directive 

approach, and multi-stage or lower block trianglular problems.    In 

each instance we obtain a finite algorithm for solving these problems. 

Section I quickly reviews basic facts of linear programming and 

linear inequalities, while introducing necessary terminology.   In sec- 

tion II we examine the fundamental problem, maximizing a piecewise 

linear, concave function subject to linear inequalities.    The Primal- 

Dual (PD) and Feasible Direction (FD) algorithms are outlined and 

compared.    The remaining three sections describe applications of the 

general principle. 

The examples given in sections III-V are complementary.    The 

first presents an application of the method in a familiar setting,  i. e. 

the price directive approach to the block diagonal problem.   This paves 

the way for a description of the resource directive method for the same, 

block diagonal problem.    This application,  in turn, employs many of the 

techniques needed in the multi-stage example. 

'The two differ only in the selection of step size. 



In the first two applications we obtain refinements of existing 

algorithms.    The method and results in the multi-stage case are 

entirely new.    This problem originally motivated the study. 

A few items have been intentionally ommitted.    There is no 

attempt to show direct applicability of the theory for each example. 

It is a straight forward exercise to transform any of the equivalent 

problems into the form of (11:1).    In all the examples described, the 

question of finding a first feasible solution is ommitted.    Information 

on this can be found in, [2], [6] and [23].    No detailed comparison 

with other algorithms has been made.    There is no speculation on * 

the relative efficiency of the procedures, and no consideration of 

the implementation problems.    The purpose of the paper is to demon- 
* 

strate a unified manner in which algorithms can be constructed and to 

show the results in three familiar cases. 

An effort has been made to minimize notation.    Superscripts 

are used to differentiate among vectors and matrices, while sub- 

scripts indicate elements of a particular vector or matrix.    When no 

confusion is possible the notation p   e P will indicate that p   is a 

column of the matrix P.    The vector e, prehaps superscripted, will 

indicate a vector of ones of appropriate length.    Thus if X is an n 

n 

vector e\ = y X., and if p is a scalar p(e) = (p,p,... ,p).    The norm 

i=l 

of a vector is the absolute value of the sum of its coordinates:   thus 

n 

l|f|| = yU-l  •    Finally, the operator Min, when applied to a vector 

i=l 
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takes on the value of the smallest coordinate.   Therefore Min [uP] 

is equal to the minimum of the scalars up , for p   c P. 

I.    BACKGROUND 

The facts and definitions used in the paper are summarized 

here. 

First consider the convex polyhedral set X 

X = fx| Ax =b, x^ 0} (1) 

A vector p is an extreme point of X if p cannot be expressed as a 

proper convex combination of two distinct points in X.    Vector r is 

an extreme ray of X if r is an extreme point of the set Y. 

Y sfy| Ay = 0, ey =1, yS 0] (2) 

Let the extreme points and rays be the columns of P and R, 

resp..   We rely heavily on the important representation theorem of 

Goldman. 

Th:   (Goldman) [13] 
(3) 

x e X    if and only if    x = PX + Ry,       where      eX = 1, X S 0, y - 0 

Now consider the linear programming problem: 

Min (c - u)x 

Subject to x c X 

Using (3), we can deduce the following about problem (4): 

(i)   The problem is feasible iff X has an extreme point. 

(4) 
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(ii)     For any x € X 

(c - u)x = (c - u)PX + (c - u)RX   :   eX = 1, X ? o, y ä 0 

(iii)   Problem (4) has a finite optimal solution iff X is nonvoid and 

(c - u)R 1 0. 

(iv)    If (4) has a finite optimal solution it has an extreme point 

optimal solution. 

Now we will assume A has full row rank, and that (4) has been 

solved by the simplex method yielding a finite optimal solution. The 

final simplex tableau yields a new representation of X. 

X = {(w, y, z) ( Iw + Fy  + Dz = b, w S 0,  y S 0,  z * 0} 

(w,y, z) reflects a partitioning of the columns of A into three sets, 

and (I, F,D,b) are the coefficients found in the final simplex tableau. 

The reduced cost coefficients for the three vectors are (0,0,d), where 

d > 0.    If 6 is the optimal value of (4) then the value of any solution 

x = (w, y, z) is given by 

(c - u)x = Ow + Oy + dz + 6 

From this it is easy to see that: 

Prop: (5) 

x = (w, y, z) is optimal if and only if Iw + Fy = b,   w S 0,   y 1 0 and z = 0 

Therefore the set of optimal solutions, X, is also a convex polyhedral 

set and its defining relations may be obtained directly from the final 

simplex tableau' 

f Of course this data can be obtained using the revised simplex method. 



X = [x| Ax = b, x5 0] 

where Ä = (I, F), x =(w,y). 

X can also be defined in terms of the extreme points and rays 

of X.    Let P be the matrix of optimal extreme point solutions and R 

the matrix of extreme tight rays.    If p is a column of P,then (c - u)p = 6; 

if r is a column of H,then (c - u)r = 0 

Prop: (6) 

x e X    if and only if   x = PX + Sy    where    eX = 1, X = 0, y S 0 

Proof: 

For any feasible x, 

(c - u)x = (c - u)PX + (c - u)Ry    ;   where    eX = 1, X S 0, y S 0 

Since the optimal value is 6 we must have 

(c - u)p1 S 6     for each p  e P 

(c - u)rJ 5 0      for each rJ e R 

Thus it is easy to see that 

(c - u)x = 6 if and only if 

(c - u)p  > 6 implies X, = 0 

(c - u)rJ > 0 implies y. = 0 

This establishes (6). || 

Some information about P and R can be derived from the final 

tableau,    (w, y) = (b, 0) is obviously an extreme optimal solution. 

pMMMW 



If some column,  say f , of F is nonpositive; then 

(w.yj.yj ) M-^.l.O )/(I + ||fl||) 

is a tight extreme ray.    We will call these the at hand, extreme 

optimal solutions and tight rays. 

A typical problem we shall have is:   given a vector v, and 

scalar p:   Does (p,v) satisfy; 

p(e) + vP S 0 

vR S 0 

(7) 

This question can be answered by considering the linear program 

Min - vx 

s.t. Ax = b, x ^ 0 

(8) 

This type of problem will be refered to as a tight program, since 

we are looking among solutions that are optimal for another objective 

function.   The tight problem has several important properties that we 

shall use in sections III-V. 

Prop: (9) 

(i)      (P» v) solves (7) iff the optimal value of the tight program is S p. 

(ii)     If (p, v) does not solve (7), then the tight program will generate 

and peP, or r e R,  such that 

or 

p + vp > 0 

vr >  0 



Proof: 

The tight problem is assumed to be feasible, so only three 

things can occur. 

Case 1.    The tight problem is unbounded below.    In this case the 

simplex method will generate an extreme ray such that 

-vr < 0. 

Case 2.    The tight problem has an optimal extreme point solution 

p, but -vp< p. 

Case 3.    The tight problem has an optimal extreme point solution 

p, and -vp = p. 

Since p is optimal we must have -vp  5 p, for each column 

p  of P, and -vrJ ? 0, for each rJ e R.   || 

II.   THE   PD  AND   FD  ALGORITHMS 

In this section we shall show how the PD and FD algorithms 

can be applied to solve a simple concave programming problem.   It 

will be clear that the two approaches are nearly identical. 

The simple problem is: 

Maximize h(u) 

(1) 
Subject to u e  U = f u|  uD - g] 

The objective, h(u), is the optimal value of a linear program. 

h(u) ■ Min (c - u)x 

(2) 

Subject to x e X = {x|   Ax = b, x * 0} 



We shall say, h(u) = - • if X is void, and + ^ if (2) is unbounded. 

If either U or X is void then (1) is infeasible.    These cases are 

readily detected,  so we will assume U and X are not empty. 

As noted in I, we can write x as 

x = PX + RY   ;   eX 8 I, X * 0, Y s 0 

where P is the matrix of extreme points, and R the matrix of 

extreme rays.    Suppose for some r , that (c - u)rJ < 0; then (E) 

has no lower bound, and h(u) = - "».   Since we are trying to maximize 

h(u) this situation should be avoided.    This is accomplished by adding 

the constraints (c - u)R = 0 to the original problem.    Under those 

restrictions 

h(u) = Min[(c - u)P] 

In other words, (2) has an extreme point optimal solution.    Thus 

instead of (1) we could look at the equivalent problem 

Maximize Min [(c - u)P] (3) 

Subject to uD S g 

uR ^ cR 

Problem (3) can be simplified further by introducing the scalar 

objective p and requiring p = (c - u)p  for all p   c P.    Thus 

(1) can be expressed as a linear program. 



• 10. 

Maximize p (4) 

Subject to p(e) + uP ^ cP 
■ 

uR 5 cR 

uD5 g „n s 

Unfortunately, we don't know P and R and it is computationally 

impractical to find them.    The PD algorithm can work in this enviro- 

ment since it is only concerned with the active, or tight constraints. 

We shall assume the reader is familiar with the PD algorithm and 

briefly indicate its application to (4).    Complete descriptions and 

proofs of finite convergence can be found in:   [6], [8], [20]. 

Assume we have established that U and X are nonempty, our 

current solution (6,u) satisfies the constaints of (4), and 6 = h(u). 

Let P be the matrix of p   satisfying 

6 = h(u) = (c - ujp1 ; 

R the matrix of P satisfying 

0 = (c - u)rJ ; 

and finally D the matrix of d    satisfying 

gk=ud     . 

P, R, and D  represent the optimal extreme points, tight extreme 

rays and tight constraints. 

To obtain a new dual solution we solve the restricted problem. 
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Maximize p (5) 

Subject to p(e) + vP S 0 

vRS 0 

vD5 0 

(-l.-l,..-l)£ vS (1,1,.,1) 

The restricted problem always has an optimal solution (p, v) with 

P 5 0. If p = 0, then (ö,u) is the optimal solution to problem (4); 

other wise we compute the following numbers: 

^   = Minimum 

fjlvr^ 03 

(c - u)rj 

vr* 

X   = Minimum 

fk|vdK> 0] . 

gu - ud 

vd' 

X   = Minimum "(c - ute1 - 6 

fi|p+vpi>0}[     P+VP 

T   =Min[X1,X2.X3]   > 0 

IfT is infinite: (4) is unbounded, otherwise the new solution is 

(6,u) +^(p,v).    There is a strict improvement at each iteration and 

the optimal solution is attained in a finite number of iterations. 

Now we shall describe the application of a FD algorithm to (1). 

The objective, h(u),  is concave and piecewise linear, but not differenti- 

able.    We will show below, however, that it does have finite directional 



-12. 

derivatives in all the interesting directions.    The directional 

derivative of h(u) in the direction v is defined as: 

-u/      \      i-    «i.    h(u + a v) - h(u) 7h(u:v) = limit   -* —' »-*• 

a-»0+ 

Suppose we have a u e U and h(u) is finite.   A direction v is 

feasible if (u + av) e U for some a > 0.    This implies that vd   SO, 

for each k such that ud    = g  .    We will look for the feasible direc- 

tion that maximizes the rate of increase in h.    That is 

Maximize 7h(u:v) 

Subject to vD ^  0 

(-1,-1,..,-1)2 v^ (1,1,.., 1) 

The last constraint bounds the direction,  since 7h(u:v) is homo 

geneous in v. D is the matrix of tight constraints: d    e D iff ud    = g, . 

Suppose (c - u)rJ = 0,  and vr^ > 0,then for every a.> 0 

(c - u - av)^ < 0,  so h(u + av) = - » and Vh(u:v) = - co.    Since we 

are trying to maximize Vh(u:v) we won't consider moving in direc- 

tions which give an infinite decrease.    If we define R as before, we 

can write the direction finding problem as; 

Maximize 7h(u:v) 

Subject to vD = 0 

vR ^ 0 

(-1.-1 -1)S VS (1,1,.., 1) 
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To show the direction finding problem is equivalent to the 

restricted problem, we will use a theorem of Danskin, [5],   A 

proof is included since it is slightly different from the original. 

First,  let's define P as the matrix whose columns, p,  satisfy 

(c - u)p = h(u) 

•^ a a 

as a-* 0    we get 

For any pep, 

i > i • h(u + av) - h(u) •vp   5 hm sup  -J    '        ' 

a—»0 

Thus 

Minf-vP]?  lim sup M" + av) - h(u) 
+ a 

a-*0 

Th:   [5], page 22 (7) 

If vR 5 0, then 

7h(u:v) = Min[-vP] 

Proof: 

Since vR = 0, there exists (X> 0 such that for a e [0,ä] 

(c - u - av)R = 0 

and 

h(u + av) = Min[{c - u - av)P] 

For any p1 e P, (c - u - av)p1 = h(u + av) for a * 0, and (c - u)pl = h(u) 

Thus 

i _  (c - u - av)p   - (c - u)p    >   h(u + av) - h(u) 
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Now suppose some sequence CX    satisfies 

a^O 

h(u + av) - h(u) « 

an 

i 
For each n, there exists a p     e P such that 

i 
h(u + a v) = (c - u - a v)p 

Since P has a finite number of columns, one must occur infinitely 

i* often.    Denote this column as p     and the subsequence on which it 

occurs as a   . 

For each m and any p e P 

h(u +oi   v)=(c-u-a   v)p     ^ (c - u - a   v)p 

In the limit we have: 

h(u) = (c - ^p1* ^ Min[(c - u)P] 

i*     — This implies that p     e P:   so 

ß = -vp1* * Min[-vP] 

Thus 
D 

ii * h(u + ttv) - h(u) -.   w.  r    Tii lim inf —! '— s   Min[-yPJ 
+ a 

a-*o 

which proves the theorem 
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Using (7), we can write the direction finding problem as: 

Maximize [Min[-vP]) 

Subject to vR = 0 

vD5 0 

(-1,-1,..,-1)5 vS (1,1,..,!) 

Define a new variable p, requiring that P - -vp   for p   e P , and 

transform   the direction finding problem into a linear program. 

Maximize    p (8) 

Subject to p  (e) + vP ^ 0 

vR ^ 0 

vD5 o 

(-1,-1,..,-1)S v^ (1,1....1) 

This demonstrates the equivalence of the direction finding 

and the restricted problems. 

As before, (8) will have an optimal solution (p, v) with p ? 0. 

If p =0, then the current solution, u,  is optimal for for (1).    Other- 

wise we can make a strict improvement by changing u in the direction 

v.    The next step in the FD algorithm is to move in the direction v and 

maximize the objective, h(u +Q>v), while maintaining feasibility: 

(u + dv) e U . 
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To this end we define: 

X2      = Max {X| (u + Xv) e U} 

g(^)    lh{u + Xv) 

g(X4) 5Max{g(X)| X^ 0} 

X =Min{X2,X43   > o 

If X is infinite then (1) is unbounded, otherwise we define 

(6fü) =(6,u) + X(p, v) as our new solution. 
2 

It is easy to see that the X    defined in (9) is the same as (6). 

4       1 1 Also, note that X   ^ X   ; since for X  < X, g(X) is equal to - •,    If 

we graph g(X) we see it is piecewise linear and concave.    It increases 

strictly until X = X   , as defined by (6).    At this point the rate of 

increase is reduced but the function may continue to increase.    Thus 

X   S X   and in some case, see below,  X   < X . 

Therefore the two algorithms are not precisely equivalent.    In 

some instances they will choose different new solutions.    The FD 

algorithm will always find a solution with a higher value.    On the other 

hand, the PD algorithm converges in a finite number of steps, while 

the convergence properties of this FD algorithm are uncertain.    Also, 

the PO algorithm examines more options.    After stopping at X  , the 

algorithm is still free to go to X  .    Thus the step lengths of the PD 

algorithm seem to be theoretically superior.    In terms of the FD 

algorithm, taking suboptimal steps can be interpreted as an anti- 

zigzagging procedure. 
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III.    EXAMPLE:   BLOCK   DIAGONAL   LINEAR   PROGRAMS-THE 

PRICE   DIRECTIVE  APPROACH 

Our first example will be an application to the block diagonal 

linear program: 

T 

Minimize     f c x (1) 
4L» 
t=l 

Subject to   / BV = d 

t=l 

AV sb4, x'ä 0      t sl,2,..,T 

This problem is familiar to all those who have studied 

Dantzig and Wolfe Decomposition,  [10],    Other methods have been 

proposed by, Balas [2].  Bell [3], and Abadie and Williams [l].   All 

of these methods are price directive, that is they are designed to 

solve the concave programming problem (3).   We will apply the 

algorithm outlined in section II to problem (3).   The resulting algo- 

rithm is a slight generalization of Balas's.   The generalization 

allows us to handle the case of unbounded subproblems in a direct 

manner.    In addition, we have described a convenient method for 

solving the restricted problem. 

In what follows we will describe how the algorithm applies to 

this particular problem.    Imbedded in this discussion is the outline 

of a separate algorithm for solving the restricted problem, using the 

Dantzig and Wolfe technique. 
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The subproblems are 

Minimize (c* - uB^x* (2) 

Subject to AV = b*. x* $ 0 

Define h^u) as the optimal value (2).   If (2) is infeasibie 

hV)  ■ + •; and h^u) = - • if (2) is unbounded.   We will assume that 

each subproblem is feasible, if not, then the original problem, (1), 

is infeasible.    It is well known that solving the dual of (1) is equivalent 

to solving 

T 
Maximise   yVfu) (30 

t«l 

Subject to u unrestricted 

Suppose we have found a u such that each subproblem has a 

finite optimal solution.    Let P and ff  denote the matrices of 

optimal extreme points and tight extreme rays for each subproblem. 

Thus 

(c* - ÜB*)?*-hViMe1) 
and 

(c* - UBSR* «0 

If we sre considering changing u in the direction v, we must insure 

that - vB K   t 0 for each t:   otherwise any slight change will make one 

of the subproblems unbounded.   Using Theorem 11:7, we can see that 

VIIVKV) «Minf-vB*?1! 
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The restricted problem ie 

T 

Meximiee    > Min (-vßV) 
AM 
t«l 

Subject to vB1^'i 0.     t«l,2,..,T 

(-1. .|)f vi (l.l 1) 

Thii is c^uivelenl to 

MeaimlBe p1 ♦ p2 ♦    ♦ pT (4) 

Subject to p'u1) ♦ vBV ■ 0 

vB^^O     t»l.2....T 

rineilv.  thr duel of (4) t* 

MtotmlM r(     .  » (4) 

T 

Sublet to     » B^lf,i, ♦ IV) ♦ r* • »> e 0 

•'^ •!    fl.l....T 

ProbUm (l| CM W flee^ b» «IM Oeeitlfl ead Welle motbod. I« 

•v*«tf UM leek ol •ttumvrat.efl »11 MM COIMMM el T^   ea4 I  .    Ve «ill 

4eecrilM MM mmpmw cycle of «be elferMbm. 
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At the «tart of each major cycle a basic feasible solution of (5) 

will be available, and selection of the new price u, will generate new 

extreme points and extreme rays from at least one subproblem. 

For each subproblem we have available a matrix representation 

of the optimal solutions. 

X   « (x ( A x   =F, x   5 oj   ,   A   = (I,F ), x   = (w ,y ) 

In this particular procedure we are going to be solving an incom- 

plete inversion of (5).    Thus all of the optimal extreme points and 

extreme rays are not known, just the few we have left from former 

restricted   problems and the new ones we find at hand.    We will call 

the problem the partial or cut down version of (5).    Thus we have a cut 

down version of the restricted problem, which ignores some of the 

columns. 

12 T Suppose we have solved a cut down version of (S) and (P , P p   , v) 
1    2 T 

are the optimal multipliers.    If (P ,P P   .v) is feasible for (4), then 

it is optimal.    Frasibility can be tested by solving the ti£ht subproblems (6). 

Mm   -VHV (6) 

Subject Co A1«1 • B*. x1 •  0 

II, for every t. the opiim«! valu« of (6) is no less then p , then 

(0,0 r   , vf Is leasible lor (4). and thus optimal.    In any other 

• •'  i>» iifM »ubprobUms wtll general« new columns for (S).    This 

prece4ore coMiftues «atll (91 kM Wen solved, yielding a set of optimal 

mvllipler« (I ,# £   ,«f.    TKe colomns ol(«| lor which 
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p4 + vB*? = 0 

or 

vBtr = 0 

can be retained.    These extreme points and extreme rays will be 

optimal and tight for the next price u .   Thus for the next cycle we will 

at least retain a basic feasible solution of (5).    The other extreme points 

and rays in (5) can be deleted .     They will not be optimal or tight in the 

subproblems (2) for the new price u . 

To find the new price we consider the parametric objectives 

(c   - uB   - (XB ) x   in the subproblems (2).   a is increased until some new 

activity has a zero reduced cost coefficient.    Let a   be the value of a at 

which this occurs. 

Then let: 

a* «Min fa1! t «l,2,..,Tl (7) 

If a    is infinite, then (3) is unbounded:   otherwise let 

u* ■ u + a v 

and for every t such that a   = a   , determine the new optimal solution or 

tight ray and introduce them into (5).    This completes a major cycle. 

The algorithm is summarised below, but first a few passing 

comments. 

If T is very large we might want to use a compact basis technique- 

in solving (S). The generalised upper bounding approach, (9),of DsnUig 

and Van Slyke can be employed. 

Finally, as an alternative approsch we note that problem (5) is 

equivalent to (H) which can.   in turn,  be solved using Rosen's tachniqu« 
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Minimize   e(n + a) (8) 

T 

Subject to  2^' .Wt I     + In - la = 0 

t=l     L j 

Iw* + FV rb*     t = l.2,..,T 

w1 S o, y1 * 0, n 5 0, o S 0 

B   is the restriction of B   to those activities that can be positive in an 

optimal basis. 

BLOCK   DIAGONAL-PR ICE   DIRECTIVE 

Step 0:       Obtain a u such that each subproblem,(2)( has a finite optimal 

solution.    If no such u exist, then the dual of (1) is infeasible. 

If any subproblem is infeasible, then (1) is infeasible. 

Step It       Problem (S) is solved using the Dantsig and Wolfe Decomposition 

technique.    Columns are generated from the tight subproblems 

(6).   u is optimal if the /alue of (5) is 0. 

Step 2:       Given the optimal multipliers of (S), analyse the subproblems. 

(2)lparamctrically to determine a new u.    If a    in (7) is infinite. 

then (I) is infeasible:   otherwise generate the new columns and 

• end them to (S).    Go to step 1. 
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rv.   EXAMPLE:    BLOCK   DIAGONAL   LINEAR    PROGRAMS-THE 

RESOURCE   DIRECTIVE   APPROACH 

This example outline« another method for solving (I). 

T 

Minimise  AcV (1) 

t«l 

T 

Subject to    » H ä    - d 

t'l 

A1«1 -b* , a*' 0     t »1.2....T 

As before we shall apply our method to an equivalent, this tirnr 

convex, programming problem (14).   The fundamental idea is partition- 

ing the vector d among the subproblems, and letting the sectors compete 

for scarce resources.    This approach was originally considered by 

Benders (4|(and Kornal and Liplak |1S|.    It has recently been discussed 

in much greater generality by Geoffrlon (ll^and Stlverman (H|.    For 

complete background and motivation see (ll). 

When the slgorithm of section II Is applied to (4) we obtsln sn 

algorithm similar to Zschau's (2S); but s great deal easier to Implement. 

Actuslly,  It is closer to Geoffrlon (ll). although we get some »Imp^ifira« 

tiun and finite convergence by considering the all linear case. 

The »ubproblems are: 

Minimise cV (2) 

Subject to B a   ay 

iV . b1. a1 « 0 
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These are obtained by partitioning the vector d,    ' y   s d.    We will 

t=l 

find it more convenient to work with the dual of (2). 

14 t  t ^    1.1 Maximize u y   + v b 

Subject to U'A* ♦ V'B* » c* 

These are the problems we propose to solve, but we'll resist 

the temptation to transform them into "standard form".    Define h (y ) 

as the optimal value of ()).    As usual,  h (y ) is f • if (3) is   unbounded 

and • • if (3) is infeasible.    Note that if any subproblem,(3)(is infeasiblc, 

then the dual of (I) is also infeasible.    The convex proRramming problem 

equivalent to (1) is: 

T 

fl 
(4) 

Subject »o   yy    ■ d 

T t 
t-l 

Before describing the restricted problem, we will look at (3) 

in grrater detail, omitting superscripts.    Assume for some y.  h(vl 

is finite, and let (u. V) d«*noli' the matrix of optimal fMrem«' solutions, 

Thus each row (u,v) of (D. V) is an extreme point satisfying: 

uy  ♦ vb « h(y) 
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Similarly, let (R.Q) be the matvix of tight extreme rays.   If an extreme 

ray (r.q) i> a row of (R .Q) then 

ry + qb = 0 

We are interested in changing y in some direction a.   Unless 

Rs '  0, we will have h (y -f as) = -f •, for any positive a.    In addition, 

we can show that 

Vh(y:z) = Max [Üs] 

if I ■ < 0. 

As before, the final simplex tableau will contain a matrix representa- 

tion of the set of optimal solution.   Rather than describing these equations 

we will denote the set as W . 

The reader can easily establish that (5) is the correct form for the 

restricted problem. 

T 

Minimise  Yp* («>) 

t>l 

Subject to P^eS - üV « 0 

-RVt 0 

(-1.-I,..,-1) ' s1 '   (I,1,..,U for t S l.i,..,T 

and T 

1 £.'., 
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We propose to solve (5) using the dual simplex method with 

upper bounded variables, [21].    As before, after the subproblems 

have been solved certain new columns from U   and R    will be 

available.    These are added as constraints to (5), which is solved 

by doing dual simplex steps.    Thus we have solved a version of (5) 

in which some of the constraints have been ignored.    Suppose 
t     t    T 

f p ,z J    . it optimal for this cut down version of (5).    We can show 

that fp ,B J    . is optimal for (5), with all constraints considered, by 

checking to see if fp ,z )    . is feasible for (5).    This is accomplished 

by solving the tight subproblems: 

Maximize u z (6) 

Subject to (u*, v*) € W* 

a a        'T* 

The current solution fp ,z J . will be feasible for (5) if the optimal 

value of each tight subproblem is no greater than p . Otherwise the 

tight subproblem will generate a u   or f   such that; 

p* - GV < 0 

or 

f V < o 

These rows are added to (5) and we do dual fimplex steps until a n«-w 

optimum  iz attained.    Thiz procedure iz repeated until an optimal 
T 

t     t     T ^   »t 
zolution of (S),   [p ,K /    . iz available.    If    \   p   ■ 0,  then the current 

t>l 
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partition solves (4):   otherwise we can make a strict improvement 

by changing the current partition in the direction of fa j    . . 

For each subproblem ()), consider the parametric objective 

function u (y   4 at ) ♦ v b .    Increase a until some new column is 

able to enter the basis or an unbounded solution is detected.    Call 

the value of a for which this occurs a .    Let 

0* «Mlnla*! I •!•!•...T] (71 

• 
If a    is infinite then we have an unbounded solution of (4).    Other« 

wise, the new partition is 

(yV -y1 ♦**•' . 

For each t,  such that a   • a , we send the new eatreme points and 

rays to (M. where they will be infeasible under the old soluttor. 
t    t   T 

(p . • it., •    In addition, all the rows of (M that were slacli unier 

the old optimal solution can be dropped, whil« the tight rows are 

retained. 

The principle is eaactly the same as th« on« employed In thr 

price directive case, but wr hav* ««en fit to solve thr raslnrted 

problem r. *her than it* dual.    Th« solution of thr restricted problen« 

involves the use of a Dantslg and Wolfe scheme for row generation. 

At any iteration in th« solution of (M. Ihr cut down or partial version 

of (9), I« solved using the dual simple« method with upper-bounded 

variables. 
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BLOCK   DIAGONAL-RESOURCE   OIRCCTIVC   APPROACH 

Step 0:     Find • partition of d such thnt «nch «ubproblem. Ol. !**• • 

finite optimal »olution.    If no «uch partition «niata. then (1) 

ia infeaaibla.    If any aubproblem ia infeaaible. tben the dual 

of (i) ia infeaaible.    Srnd the optimal eatreme aoluliona and 

tight raya, at hand, to the reatricted problotn. 

Seep 1:     Solve the partial veraion of IS) by the dual aimploa method 

with upper bounded variablea, and generate ne« row« by 

aoWtng the tight aubproblema,(4|.   II UM nptunal val«*e ol ( M 

ia aerc^then the cnrrenl aolutton is optimal. 

Stvp 2:    Analyse the tubproblemaj lUparametrically to determine the 

new partition.    II a , (7|( |a tnltnit*. thna i u haa an enboonded 

solution:   otherwta« generate the naw rowa for (t| and go to 

•top 1. 

V.   EXAMPLE:   MULTI-fTAOS   UNCA«   FftOC«Ah0.T«AJBCTOaV 

OFTIMtZATION 

la thia eaampl«  wr ahall eanmine the molti-vteg« or lower blora 

triangular linear programt 

i  t I Mia   t"« ■ III 

t.i 

Subject to AV • d' •   2, M**"* 
• •I 

■'•0 ••M....T 

' It- 
i I 
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Like the block diagonal problem, which ia a apecial caae, thia 

problem haa been atudied extensively. A host of special techniques 

are deacribed in, [17] and two compact baaia methods are outlined 

in [14], and [18]. The problem can be hammered into block diagonal 

form, but thi• is awkward. A recent report, [lZ), by Glassey discus-

sea some of theae points and propoaes an interesting price-resource 

communication technique which solves a special caae of (Z). 

Firat, we will make an aasumption about ( 1), in order to trans-

form it into a more manageble form, (Z). Then we'll deacribe (Z) in 

term• of an equivalent convex programming problem. Thia equivalent 

problem ia aolved uaing the algorithm of aection II. 

Although the methode we are deacribing apply to (l), we will 

make an aaauniption which allow• ua to diacuaa a apecial caae. The 

general caae ia deacribed briefly in an appendix. 

Our aaaumption ia: 

t• • H = H for all • and t = s + 1, • + Z, •• , T 

Using thia aaaumption and aubtracting rowe we can transform ( 1) into 

an equivalent problem: 

T 

Minimize L ctxt 

t=l 

S b . t t At t bt + Kt-1 t-1 
U jeC 0 X = X 

t =l,Z, •• ,T 

t t 0 t t t-1 
He r • K .. = .t-i +A for t = 1, • • • T -1: and K = 0. Also, b = d - d 

1 1 
for t = l, 3, • . , T; a·nd b = d • 

(Z) 
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The dual of (Z) is 

T 
~· wt.. t Maximize L -b 

t=l 

. t t t t+l t SubJect tow A ~ c + w K t = 1, Z, •• , T 

If (Z) ia considered aa a sequential problem, then the right 

h d 'd {bt Kt-1 t-1} T d 'b . 0 an 81 e, + x , t=Z eacr1 ea a traJectory. ur pro-

cedure ia called trajectory optimization since we are going to fix 

the trajectory and then find the beat solution that follows it. This 

computation yields information useful in finding a better trajectory or 

indicates that the present trajectory ia optimal. Aa with price and 

resource directive approaches, selection of a trajectory allows ua 

to decompose the problem into easily solvable subproblems. 

1 l T-1 For our purpose the vector z = (z , z , ••• , z ) defines a tra-

. {bt t-1 t-1} T h L. Jectory + K z t=Z • T e aubproulema optimize along this 

path. 

0 T 
where K = K = 0 

M . . . t t 1n1m1ze C X 

5 b . t t At t bt + Kt-1 t-1 U JeC 0 X : Z 

The subproblems we will actually solve are the duals of (4). 

(3) 

(4) 
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The optimal value of (5) is given by the function ht(z). As 

usual, ht(z) i• + • if (5) is unbounded and - • if (5) has no fea•ible 

solution. 

The equivalent convex programming problem is 

T 

Minimize 7 ht(z) 
'-' 
t=l 

Subject to z ~ 0 

The equivalence i• almo•t tautalogical. It i• ba•ed on two 

{ t} T t)T-1 facts. U x t=l i• any fea•ible •olution of (Z) then {x t=l deter-

mine• a trajectory along which {xt1;!'1 i• fea•ible. Al•o, if for 

f t) T f t}T-1 •orne z, x t=l •olve• the •ubproblem• (4), then x t=l trace• 

out the same trajectory as z and {xtlt'!'l i• a fea•ible soluti n of (Z). 

( 5) 

( 6) 

Theorem: ( 7) 

(1.1) U f t)T -l 1 (6) h 1 1 h z t=l so vee , t en any •o ution a ong t e trajectory 

{ t t-1 t-1) T 
b + K z t=l solve• (Z). 
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Proof: 

Consider x = (x1,x2 , •• ,xT-l) as a solution of (6). It is easy to see 

that ht(x) ~ ctx\ since xt is a feasible solution of ( 4). Suppose there 

tJ T T .. t t T t "'t t 
is some other z, and [ y t=l such that ~- c y = L . h (z) < 2.. h (x) ::§ 

T t=l t=l t=l 

~ ctxt • Then ( yt} t~ is feasible for (Z), contradicting the optimality 

t=l 

of [xtJt!l • 

Now assume z solves (6) and fxtJt!l is optimal along that tra

jectory. If [xtJt!l does not solve (Z) there exists a f yt)t'!'l such that 

~ t t __]' t t 1 2 T -1 . . ~ C y < r C X • y : (y , y , • • , y ) determtnes a traJeCtory along 

t=l t=l 

t t t which it is feasible, and h (y) ~ c y for each t • Thus 

contradicting the optimality of z • II 

T T 
~ t t ~ t 
~ c x = L h (z) 

t=l t=l 

Note the theorem implies the existence of an optimal solution 

that is an extreme point optimal solution of each subproblem. 

Before stating the reiJtricted problem, we will inspect the sub-

problems, (5), in greater detail. Assume we have found a trajectory 

z such that each subproblem ( 5) has a finite optimal solution. Let 

(Ut. yt) be the matrix of extreme optimal solutions. If (ut, vt) is a 

row of (U\ Vt) then it is an extreme point of (5) and 
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Similarly let (Rt,nt) be the matrix of extreme tight rays. If (rt,qi is 

a row of (Rtot) then ( r\ qt) is an extreme ray and 

If we are going to change z = ( z1, zz, •• , z T -l) in the direction 

1 Z T-1 y = (y ,y , •• ,y ), we must have 

or the subproblems, (5), will become unbounded. We can also show 

using Theorem 11:7, that 

Finally, we must have y~ 5!: 0, if z! = 0. 

Using all this information, we can write the restricted problem as: 

T 

Minimize I pt. 

t=l 

p t(et) 

PT(eT) 

_ VlKlyl 

_ 01K1y1 

_ trKt-lyt-1 

- RtKt-1yt-l 

-

- UTKT-lyT-1 

_ R TKT-lyT-1 

t 
yi 

ytKtyt 

atK\t 

( -1, -1, •••• ' -1) ~ y 
t = ( 1, 1, ••• ' 1) 

(6) 

5!: 0 

5!: 0 

5!: 0 

~ 0 for t = Z, 3, •••• T - 1 

5!: 0 

~ 0 

~ 0 if z! = 0 • 
1 

t = 1, Z, •• , T - 1 
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The restricted problem has the same linked structure as the 

t original problem. Note that some of the lower bounds on the y are 

redundant. The method suggested for solving (6) is almost identical 

with the resource directive case. 

After (5) has been solved, for some z, a matrix representation 

of the optimal solutions is available. This is denoted Wt . From this 

set of linear inequalities, we can immediately discover a few optimal 

extreme solutions and tight extreme rays. These are the solutions at 

hand. With this and past information we solve a partial or cut down 

version of (6), using the dual simplex method with upperbounds. This 

. 1 Z T -1 tJ T generates a soluhon y = (y , y , •• , y ) , { p t=l • This solution is 

optimal for (6) it it is feasible. Feasibility is checked by solving the 

tight problems 

t t -t Subject to (u , v ) E: W 

The solution is feasible if, for each t, the optimal value of the tight 

program is no greater than pt. Otherwise the tight programs gener

ate an infeasible const_raint of (6). 

( 7) 

Suppose y is optimal for (6). Now we will change z in the direc-

tion y. The new z must be non negative, so we can proceed no further 

than. 

~ = MinE~\ I Y! < 0, t = I, 2, , • , T - ~ 
In addition, for each subproblem, (5), we consider the parametric 

objective 
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The parameter a. is increased until some new reduced cost coefficeqt 

is zero, indicating an unbounded solution or a new extreme optimal 

solution. t Call that value a. and let 

a. • = Min [a. t I t = 1, Z , • • , t] 

e = Min [a.*, ~] > o 

If 9 is ipfinite then there is an unbounded solution. Otherwise the 

new solution is 

-t t 9 -t z = z + y t=l,Z, •• ,T-1 

As before the constraints in that are slack after (6) has been 

(8) 

solved can be eliminated, while the tight constraints should be retained. 

For each t such that a.t = 9, there is f new constraint generated for (6). 
r-z i 

Also, for each (t, i) such that 9 = 
1

. -! , the constraint y! i1: 0 je added 
-yi 

to (6). 

MULTI-STAGE PROGRAMS-TRAJECTORY OPTIMIZATION 

Step 0: Find an initial trajectory such that each subproblem, ( 5), 

has a bounded optimal solution. If no such trajecto ::-y exists, 

then (Z) is infeasible. If any of the subproblems are infeasible, 

then ( 3) is infeasible. Send the optimal solutions and extreme 

rays at hand to the restricted problem. 
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Step 1: Solve the partial version of the restricted problem by the 

dual Sltnplex method with upper bounded variables, and 

generate new rows by solving the tight problems,(?). If 

the optimal value of ( 6) is zero, the current trajectory is 

optimal. 

Step Z: Determine how far to proceed in the new direction, (8). I£ 

e is infinite, the problem is unbounded: otherwise generate 

the new restricted problem and go to 1. 
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APPENDIX 

For the general multi-stage problem, (V:I) the subproblems are 

for t = 1, z •••• T 

Min t t ex 

t-1 
t t t ~ Htszs Subject to Ax = d + L 

s=l 

(1) 

s = t + 1, t + Z, ••• , T 

Actually the dual of (1) will be solved 

t-1 T 

Max ut(dt + l Htszs) + I vstHstzt (2) 

s=l s=t+l 

T 

Subject to utA t + l vstHst :§ ct 

s=t+l 

Although (Z) has a large number of variables, it has the same 

number of constraints as the subproblems considered in the special 

case (V: 5). 

The construction of the restricted problem is straight forward. 

It will inherit the lower block triangular structure of the original prob-

lem (V:l). 
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