L

691841

'pf_T's"-—-—-—O-v'T T e

-

. o =
A b A Y : T g p
4 _ i 2
’ - Yy
. e 'y t
) \ 4 \
tad X -
y *
k) “
L5 \ M kN
\ v .
A » »
> {
d k.
\
iy
Tha | "
-
1 1 !

& Office of Naval Research ok
Contract NOOG14-07-A-0200~0008 . R -372-012

oy )
P l’ \
y N
\ J , ( P,
& 5 /
S \ :
/2 1 :
il |
i 4
o . .
1
it ".« ' |
.. 1_
" : ,
Ayl PIR : { "
11 N t
; U Richard C. Grineld -
; 5 :
¥ i
April 1969 :
A : i ; ‘
L ] | ; . s . \ %
- {
{ | s A ‘? e
Y E:
T ! ) . . ! . . '
RN Technical Report No. 587
i 4 ‘ru | s ) v . 3 "( . ) i
/ i s { 7 ? d o
5 VR P g &gy oy M Ty
N 1 This document has. been approved for 'public release}.
%) ¥ and sale;\its distribution {s unlimited, Reproduction in
(N 0 .71 |Whole or in part is permitted by the U, S.. Government |,
B n i g A e SRR i Vil ; K
) % P R d ¥ | "
L A o ) ) = ) : o
M ¢ . Olvision ‘of Engineoring apd ‘Applied Physics
e Iy Sarverd University + Cambridgs, Massachusstts
R 3 , "
!
1 : I g I
Reproduced by tha
CLEARINGHOUSE
1 lor Foderal Scientific & Tachnical |
r Infermation Springfield Va. 22131 Prsos
irsbfryineind : : ey g IR et sl st

k]

~t

 STEEPEST ASCENT FOR LARGE-SCALE LINEAR  PROBRAMS




Office of Naval Research
Contract N00014-67-A-0298-0006
NR -372-012

STEEPEST ASCENT FOR LARGE-SCALE LINEAR PROGRAMS
By
Richard C, Grinold

Technical Report No, 587 J

This document has been approved for public release
and sale; its distribution is unlimited, Reproduction in
whole or in part is permitted by the U, S, Government,

April 1969

The research reported in this document was made possible through
support extendedd the Division of Engineering and Applied Physics,
Harvard University by the U. S, Army Research Office, the U, S,
Air Force Office of Scientific Research and the U, S, Officeof
Naval Research under the Joint Services Electronics Program by
Contracts N00014-67-A -0298-0006, 0005, and 0008,

Division of Engineering and Applied Physics i
Harvard University Cambridge, Massachusetts

.



STEEPEST ASCENT FOR LARGE-SCALE LINEAR PROGRAMS

By

. Richard C, Grinold

Division of Engineering and Applied Physics
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ABSTRACT

Many structured large-scale linear programming problems can
be transformed into an equivalent problem of maximizing a piecewise
linear, concave function subject to linear constraints, The equivalent
problem can, in turn, be solved in a finite number of steps using a
steepest ascent algorithm, This principle is applied to block diagonal
systems yielding refinements of existing algorithms. An application

to the multi-stage problem yields an entirely new algorithm,
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INTRODUCTION

There are two distinct approaches for the solution of large-scale
linear programs, The direct or compact basis technique uses special
pivoting and storage rules to maintain an easily handled form of the
basis, We shall consider the indirect approach, The key element in
this method is the definition and solution of an equivalent concave pro-
gramming problem, This equivalent problem is generally much smaller
than the original problem, In many papers it is not mentioned explicitly,

This paper is relatedto and motivated by the work of Geoffrion [11]
and Lasdon [16]. They discuss two methods, which Geoffrion has aptly
termed price and resource directive, of defining equivalent problems
for nonlinear, organizational problems, In addition, several possible
solution techniques are described, Both authors propose the use of
large step gradient or feasible direction algorithms. Our attention
will be focused on this type of algorithm when the original problem is
linear, While we are restricting our attention to linear programs, we
do consider a wider class of problem, Thus multi-stage as well as
block diagonal (organizational) problems are considered., In principle
the theory is applicable to any large scale linear program that can
be transformed into an equivalent problem of maximizing a piece-
wise linear, concave function, In this case we give a general method
for constructing an algorithm, Also, by restricting our attention to
linear problems, we are able to obtain sharper results, such as finite

convergence,

3
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We shall demonstrate that the equivalent problem can itself be
transformed into a second linear program. This new linear program
is then solved in a finite number of steps using the Primal-Dual (PD)
algorithm of Dantzig, Ford and Fulkerson, [8]. If a Feasible Direction
(FD) algorithm, [22], is designed for the concave program it yields a
procedure identical* to the PD algorithm, This extends the equivalence
from the linear case: [22], page 100, Three examples are explored and
the algorithm is applied to the equivalent concave program in each in-
stance, The three are: block diagonal problems, using the price direc-
tive approach, block diagonal problems, with the resource directive
approach, and multi-stage or lower block trianglular problems, In
each instance we obtain a finite algorithm for solving these problems.

Section I quickly reviews basic facts of linear programming and
linear inequalities, while introducing necessary terminology. In sec-
tion II we examine the fundamental problem, maximizing a piecewise
linear, concave function subject to linear inequalities, The Primal-
Dual (PD) and Feasible Direction (FD) algorithms are outlined and
compared, The remaining three sections describe applications of the
general principle,

The examples given in sections III-V are complementary, The
first presents an application of the method in a familiar setting, i. e,
the price directive approach to the block diagonal problem, This paves
the way for a description of the resource directive method for the same,
block diagonal problem, This application, in turn, employs many of the

techniques needed in the multi-stage example,

tThe two differ only in the selection of step size,
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In the first two applications we obtain refinements of existing
algorithms. The method and results in the multi-stage case are
entirely new, This problem originally motivated the study,

A few items have been intentionally ommitted, There is no
attempt to show direct applicability of the theory for each example,

It is a straight forward exercise to transform any of the equivalent
problems into the form of (II:1). In all the examples described, the
question of finding a first feasible solution is ommitted. Information
on this can be found in, [2],[6] and [23]. No detailed comparison
with other algorithms has been made, There is no speculation on

the relative efficiency of the procedures, and no consideration of

the implementation problems, The purpose of the paper is to demon-
strate a unified manner in which algorithms can be constructed and to
show the results in three familiar cases,

An effort has been made to minimize notation., Superscripts
are used to differentiate among vectors and matrices, while sub-
scripts indicate elements of a particular vector or matrix, When no
confusion is possible the notation pi € P will indicate that pi is a
column of the matrix P, The vector e, prehaps superscripted, will

indicate a vector of ones of appropriate length, Thus if A is an n

n
vector el = ZXi, and if p is a scalar p(e) = (p,P,...,P). The norm

i=l

of a vector is the absolute value of the sum of its coordinates: thus

n
el = Zl fi, . Finally, the operator Min, when applied to a vector

i=l
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takes on the value of the smallest coordinate, Therefore Min [uP]
is equal to the minimum of the scalars up’, for p1 e P,
I. BACKGROUND

The facts and definitions used in the paper are summarized
here,

First consider the convex polyhedral set X
X = (x| Ax =b, x 2 0]} (1

A vector p is an extreme point of X if p cannot be expressed as a

proper convex combination of two distinct points in X, Vector r is

an extreme ray of X if r is8 an extreme point of the set Y,
Y:{y|Ay=0, ey =1, y2z 0] (2)

Let the extreme points and rays be the columns of P and R,
resp.. We rely heavily on the important representation theorem of
Goldman,

Th: (Goldman) [13]
(3)

x€X ifandonlyif x=PA +Ry, where er=1,AZ20, yZ0

Now consider the linear programming problem:

Min (c - u)x
(4)
Subject to x € X

Using (3), we can deduce the following about problem (4):

(i) The problem is feasible iff X has an extreme point,
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(ii) For anyxe X
(c ~ux=(c-uPA +(c-u)RA : eA =1, AZ0,yZ0
(iii) Problem (4) has a finite optimal solution iff X is nonvoid and
(c =u)R 20,
(iv) If (4) has a finite optimal solution it has an extreme point
optimal solution,
Now we will assume A has full row rank, and that (4) has been
solved by the simplex method yielding a finite optimal solution, The

final simplex tableau yields a new representation of X,
X ={(w,y,2) | Iw + Fy + Dz =b, w2 0, yZ0, zZ 0}

(w,y, z) reflects a partitioning of the columns of A into three sets,

and (I, F, D,b) are the coefficients found in the final simplex tableau,
The reduced cost coefficients for the three vectors are (0,0,d), where
d> 0, If b is the optimal value of (4) then the value of any solution

x =(w,vy, z) is given by
(c =u)x =0w + 0y +dz + &

From this it is easy to see that:
Prop: (5)

x =(w,y,z) is optimal if and only if Iw + Fy =b, wz 0, yZ0andz =0

Therefore the set of optimal solutions, X, is also a convex polyhedral
set and its defining relations may be obtained directly from the final

simplex tableaut

1 Of course this data can be obtained using the revised .simplex method,
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where A = (LLF), x =(w,y).
X can also be defined in terms of the extreme points and rays
of X. Let P be the matrix of optimal extreme point solutions and R

the matrix of extreme tight rays. If p is a column of B, then (¢ - u)p = §;

if r is a column of R,then (¢ - u)r = 0
Prop: (6)
xeX ifandonlyif x =PA +Ry where ek =1, A20, yZ20

Proof;

For any feasible x,

(c ~u)x =(c =u)PA+(c -u)Ry ; where eA =1, A20,yZ0
Since the optimal value is 6 we must have

(c-up 26 for each pi e P

(¢ - u)rJ 20 foreachr) ¢R
Thus it is easy to see that

(c - u)x = 6 if and only if
(c - u)p' > 6 implies Ai =0

(c - u)rj > 0 implies Yj =0

|

Some information about P and R can be derived from the final

This establishes (6).

tableau, (w,y) =(b,0) is obviously an extreme optimal solution,
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If some column, say fl, of F is nonpositive; then
(Wo Yy Ygeenees) = (=0, 1,0,.. .0 /01 + 1)

is a tight extreme ray., We will call these the at hand, extreme
optimal solutions and tight rays,
A typical problem we shall have is: given a vector v, and

scalar p: Does (p, v) satisfy;

ple) +vP = 0

vR=0
This question can be answered by considering the linear program

Min - vx

s,t. Ax=b, X2 0

This type of problem will be refered to as a tight program, since

we are looking among solutions that are optimal for another objective

function, The tight problem has several important properties that we

shall use in sections III-V,

Prop:

(i)  (p, v) solves (7) iff the optimal value of the tight program is £p,

(ii) If (p,v) does not solve (7), then the tight program will generate

and p € P,orre R, such that

p+vp>0

or
vr> 0

(N

(8)

(9)
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Proof:
The tight problem is assumed to be feasible, so only three
things can occur,
Case 1. The tight problem is unbounded below., In this case the
simplex method will generate an extreme ray such that
-vr < 0,
Case2, The tight problem has an optimal extreme point solution
p, but -vp< p,
Case 3, The tight problem has an optimal extreme point solution
p, and -vp = p,
Since p is optimal we must have -vpi z p, for each column

pi of B, and -vr) Z 0, for each e R, t

II. THE PD AND FD ALGORITHMS

In this section we shall show how the PD and FD algorithms
can be applied to solve a simple concave programming problem, It
will be clear that the two approaches are nearly identical,

The simple problem is:

Maximize h(u)
(1)
Subject to ue U ={u| uD = g}

The objective, h(u), is the optimal value of a linecar program,
h{u) = Min (c - u)x

(2)
Subject to x € X = {x| Ax =b, xZ 0]}



We shall say, h(u) = -« if X is void, and + = if (2) is unbounded,
If either U or X is void then (1) is infeasible, These cases are
readily detected, so we will assume U and X are not empty.

As noted in I, we can write x as
x=P\+Ry ; eA=1,A20,y20

where P is the matrix of extreme points, and R the matrix of
extreme rays. Suppose for some rj, that (c - u)rj < 0; then (2)

has no lower bound, and h(u) = -®, Since we are trying to maximize
h(u) this situation should be avoided. This is accomplished by adding
the constraints (c - u)R £ 0 to the original problem, Under those

restrictions
h(u) = Min[(c - wP]

In other words, (2) has an extreme point optimal solution, Thus

instead of (1) we could look at the equivalent problem
Maximize Min [(c - u)P] (3)

Subject touD = g
uR = cR S

Problem (3) can be simplified further by introducing the scalar
objective p and requiring p = (c - u)p1 for all pl € P, Thus

(1) can be expressed as a linear program,
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Maximize p (4)
Subject to p(e) + uP = cP

uR = cR

uDsg

o

Unfortunately, wedon't know P and R and it is computationally
impractical to find them, The PD algorithm can work in this enviro-
ment since it is only concerned with the active, or tight constraints,
We shall assume the reader is familiar with the PD algorithm and
briefly indicate its application to (4). Complete descriptions and
proofs of finite convergence can be found in: [6],[8], [20].

Assume we have established that U and X are nonempty, our
current solution (0, u) satisfies the constaints of (4), and & = h(u),

Let P be the matrix of pi satisfying

6 =h(u) =(c - wp;

R the matrix of r’ satisfying
0 =(c - u)rj H

and finally D the matrix of gk satisfying

g = udk i

P,R,and D represent the optimal extreme points, tight extreme

rays and tight constraints,

To obtain a new dual solution we solve the restricted problem,
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Maximize p (5)
Subject to p(e) + vBP =0
vR=0

20

Oi

A4

('lv'ln-n'l)§ vz(,l1,.,])

The restricted problem always has an optimal solution (p, v) with
pZ0, Ifp =0, then (6,u) is the optimal solution to problem (4);

other wise we compute the following numbers:

er

f j.

M = Minimum (S=9X
{j| ve! > 0} l,

2 g, - ud

A® = Minimum [——k—

{k|vas 0} V¢

r i
A3 = Minimum ‘\(&_U)_L'-_b

B 1
{il]o +vp'>0}] PtVP

X = Min[kl,kz,k3] >0

If A is infinite: (4) is unbounded, otherwise the new solution is
(6,u) +X(p,v). There is a strict improvement at each iteration and
the optimal solution is attained in a finite number of iterations,
Now we shall describe the application of a FD algorithm to (1),
The objective, h(u), is concave and piecewise linear, but not differenti-

able, We will show below, however, that it does have finite directional

T B p&y%‘,.ﬁ' ?'e;.;.
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derivatives in all the interesting directions, The directional

derivative of h(u) in the direction v is defined as:

h{u +a v) - h(u)
a

vh(u:v) = limit
ClL--»O+

Suppose we have a u € U and h(u) is finite, A direction v is
feasible if (u + av) € U for some a > 0, This implies that vdk = 105
for each k such that ud® = g We will look for the feasible direc-

tion that maximizes the rate of increase in h, That is
Maximize vh(u:v)
Subject to vD S 0
(-1, -1,..,-)=v=(,1,..,))

The last constraint bounds the direction, since Vh(u:v) is8 homo-

geneous in v, D is the matrix of tight constraints: dk ¢ B iff ud® = g
Suppose (c - u)rj =0, and vrj > 0,then for every a> 0

(c =u - ().v)rj <0, soh(u +av) = -2 and Yh(u:v) = - ®, Since we

are trying to maximize Vh(u:v) we won't consider moving in direc-

tions which give an infinite decrease. If we define R as before, we

can write the direction finding problem as;
Maximize gyh(u:v)

Subject to vD = 0

vR =0

(-1,-1,...,-1)§V§ (l'l’-ovl)
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To show the direction finding problem is equivalent to the
restricted problem, we will use a theorem of Danskin, [5]. A
proof is included since it is slightly different from the original,

First, let's define P as the matrix whose columns, p, satisfy
(c - u)p = h(u)
Th: [5], page 22 (7)
If vR 5 0, then
Vh(u:v) = Min[-vP]

Proof:
Since VR £ 0, there exists a > 0 such that for a ¢ [0,4a]
(c -u-av)R=0

and
h(u +av) = Min[(c - u - av)P]

For any p1 e P,(c -u - o.v)p1 Z h(u +av) fora = 0, and (c - u)pi = h(u)

Thus

o i_ (c-u-av)p' - (c-up' , h{utav) - hiu
vp = a - Q

as 0—» 0+ we get
For any p1 € P,

h(u + av) - h(u)
a

-vpi Z lim sup

a-—»0+

Thus

Min[-vP] 2 lim sup MUt gv) - h(u)

a—> 0+
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n ‘e
Now suppose some sequence 0 satisfies

O.n—bO

h(u +a) - h(w) | g

an

i
For each n, there exists a p % ¢ P such that

i
h(u +a%) =(c - u - av)p "

Since P has a finite number of columns, one must occur infinitely
j%

often, Denote this column as pl and the subsequence on which it

occurs as a™,

For eachm and anyp€ P
{%

h(u + amv) =(c -u - <:.mv)p1 S(c-u- amv)p

In the limit we have:
i* .
h(u) =(c - u)p = Min[(c - u)P]
. i* =
This implies that p° € P: so
%
B = -vpi Z Min[-vP]

Thus

h(u + av) = h(u) , Min[-vf:]

a

lim inf
+
a—s 0

which proves the theorem ||
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Using (7), we can write the direction finding problem as:
Maximize {Min[-vP]}

Subject to VR = 0
vD=0
(-1,-1,..,-1)§ vE (1,1,..,1)

Define a new variable p, requiring that p = -vp1 for p1 € P, and

transform the direction finding problem into a linear program,
Maximize p

Subject to p (e) + vP S 0
vR £ 0
vD=0
('1, 'lo-- 0"1) EvE (lvlr--'l)
This demonstrates the equivalence of the direction finding

and the restricted problems,

As before, (8) will have an optimal solution (p, v) with p £ 0,
If p = 0, then the current solution, u, is optimal for for (1). Other-

wise we can make a strict improvement by changing u in the direction

(8)

v. The next step in the FD algorithm is to move in the direction v and

maximize the objective, h(u + av), while maintaining feasibility:

(u+av) eU,

RS R e e
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To this end we define:

£ Max {A| (u + Av) € U}
g(\) =h(u +2Aiv)
g% = Max (g0 | A = 0}

) = Min [AZ,A4] >0

If ;: is infinite then (1) is unbounded, otherwise we define
(-6-, u) = (8,u) + ;(p, v) as our new solution,

It is easy to see that the )\2 defined in (9) is the same as (6).
Also, note that At =l ; since for Ao A, g(A) is equal to - », If
we graph g(A\) we see it is piecewise linear and concave, It increases
strictly until A = Xs, as defined by (6). At this point the rate of
increase is reduced but the function may continue to increase, Thus
A3 = A* ‘4nd 4n Wome case, see below, A3 < 14.

Therefore the two algorithms are not precisely equivalent, In
some instances they will choose different new solutions, The FD
algorithm will always find a solution with a higher value, On the other
hand, the PD algorithm converges in a finite number of steps, while
the convergence properties of this FD algorithm are uncertain, Also,
the PD algorithm examines more options, After stopping at 13, the
algorithm is still free to go to K4. Thus the step lengths of the PD
algorithm seem to be theoretically superior. In terms of the FD

algorithm, taking suboptimal steps can be interprected as an anti-

zigzagging procedure,
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III, EXAMPLE: BLOCK DIAGONAL LINEAR PROGRAMS-THE
PRICE DIRECTIVE APPROACH

Our first example will be an application to the block diagonal
linear program:
‘T.
t t
Minimize cx
=i

T

Subject to Y tht =d
“l
t=

This problem is familiar to all those who have studied
Dantzig and Wolfe Decomposition, [10]. Other methods have been
proposed by, Balas [2], Bell [3], and Abadie and Williams [1], All
of these methods are price directive, that is they are designed to
solve the concave programming problem (3), We will apply the
algorithm outlined in section II to problem (3). The resulting algo-
rithm is a slight generalization of Balas's, The generalization
allows us to handle the case of unbounded subproblems in a direct
manner, In addition, we have described a convenient method for
solving the restricted problem,

In what follows we will describe how the algorithm applics to

this particular problem. Imbedded in this discussion is the outline

of a separate algorithm for solving the restricted problem, using the

Dantzig and Wolfe technique,

(N
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The subproblems are
Minimize (ct : uBt)xt (2)
Subject to Atxt = bt, xtz 0

Define ht(u) as the optimal value (2). If (2) is infeasible
h%u) = +; and h(u) = - ® if (2) is unbounded, We will assume that
each subproblem is feasible, if not, then the original problem, (1),
is infeasible, It is well known that solving the dual of (1) is equivalent

to solving

T
Maximize th(u) (30
t=l

Subject to u unrestricted

Suppote we have found a u such that each subproblem has a
finite optimal solution. Let B' and K® denote the matrices of
optimal extreme points and tight extreme rays for each subproblem,
Thus
(c* - uBYHB* = htu)eY
and
(t - uBYR = 0
If we are considering changing u in the direction v, we must insure
that - VB*' ¥ 0 for each t: otherwise any slight change will make one

of the subproblems unbounded, Uring Theorem lI:7, we can see that

h(u:v) = Mln[-vB'F']
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The restricted problem is

T
Maximize ZMin [-vB’Pt]

t=)
Subject to vBR 50, ts=1,2,...T

(-1, -. ....l)f vE (. l....0

Thie is equivalent to

Maximize o’ ODZ = d s +07 (4)
Subject to p'(e’) ¢ vB'P £ 0
vB'R'=0 tel2,..,T
(<lo=ly.oo=N® v (L1,..,0
Finally, the dual of (4) e
Minimize e(n ) (5

T
Subject to P BYPU SRYY e . e 0
-
ts)

e‘x'

=l e¢s,2.,..7
&'eo,y'to,neo.»eo

Problem () can be solved by the Danteig and Wolfe method, to
svoid the tash of enumerating all the columne of l‘" and '.. We will

deocribe one major cycle of the algorithm,
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At the start of each major cycle a basic feasible solution of (5)
will be available, and selection of the new price u, will generate new
extreme points and extreme rays from at least one subproblem,

For each subproblem we have available a matrix representation

of the optimal solutions,
Rt =2 AR =B bz o), AU FY, 2= whyh)

In this particular procedure we are going to be solving an incom-
plete inversion of (5). Thus all of the optimal extreme points and
extreme rays are not known, just the few we have left from former
restricted problems and the new ones we find at hand, We will call
the problem the partial or cut down version of (5). Thus we have a cut
down version of the restricted problem, which ignores some of the
columne,

Suppose we have solved a cut down version of (5) and (Dl. Dz. THID O DT

2 T

are the optimal multipliers, If (Dl.a veesosbP ,v) is feasible for (4), then

it is optimal, Fecasibility can be tested by solving the tight subproblems (6).

Min -vB':! (6)

Subject to K'&' . 5‘, 2o

If, for every t, the optimal value of (6) is no less then p'. then

(p‘. cz. ceool T. v) is feasible for (4), and thus optimal. In any other

case the tight subproblems will generate new columns for (5). This
procedure continues until (5) has been solved, yielding a set of optimal

2 g
multiplers (5..& xolels .vT.". The columne of () foer which

. V)
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st+eB%p =0

or
vBtr = 0

can be retained, These extreme points and extreme rays will be
optimal and tight for the next price u', Thus for the next cycle we will
at least retain a basic feasible solution of (5). The other extreme points
and rays in (5) can be deleted . They will not be optimal or tight in the
subproblems (2) for the new price u'.

To find the new price we consider the parametric objectives
(c:t - uBt - aBt) xt in the subproblems (2). a is increased until some new
activity has a zero reduced cost coefficient, Let at be the value of a at
which this occurs,

Then let:
* . t
a =Minfa’] t=12,..,T)] (7)
If a.'.l is infinite, then (3) is unbounded: otherwise let
*.
u=zu+a v

*
t-a , determine the new optimal solution or

and for every t such that a
tight ray and introduce them into (5). This completes a major cycle,
The algorithm is summarized below, but first a few passing
comments,
If T is very large we might want to use a compact basis technique
in solving (5). The generalized upper bounding approach, [9),of Dantzig
and Van Slyke can be employed,

Finally, as an alternative approach we note that problem (5) is

cquivalent to (8) which can, in turn, be solved using Roscu's technique



-23-

Minimize e(n +0) (8)

T
== rt‘.
Subject to 2 B WtJ +I -0 =0

e U

wte FYyE=B e=l2,..,T

t. S
B' is the restriction of B to those activities that can be positive in an

optimal basis,

Step 0:

Step I3

Step 2:

BLOCK DIAGONAL-PRICE DIRECTIVE

Obtain a u such that each subproblem,(2), has a finite optimal
solution., If no such u exist, then the dual of (1) is infeasible.

If any subproblem is infeasible, then (l) is infeasible,

Problem (5) {s solved using the Dantzig and Wolfe Decomposition
technique. Columns are generated from the tight subproblems
(6). u is optimal if the salue of (S) is 0.

Given the optimal multipliers of (5), analyze the subprobleme.
(2),parametrically to determine a new u, If 0‘ in (7) is infinite,
then (1) is infeasible: otherwisce gencerate the new columns and

send them to (5). Go to step |,
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IV. EXAMPLE: BLOCK DIAGONAL LINEAR PROGRAMS-THE
RESOURCE DIRECTIVE APPROACH

This example outlines another method for solving (l).

T
Minimize Zc'x‘ (1)
tzl

T
Subject to ? B‘xt =d

L

t=l

t t

AL s xtr0 2., T

As before we shall apply our method to an equivalent, this time
convex, programming problem [14], The fundamental idea is partition-
ing the vector d among the subproblems, and letting the gectors compete
for scarce resources, This approach was originally considered by
Benders [4],and Kornai and Liptak [1S]. 1t hae recently been discussed
in much greater generality by Geoffrion [11},and Silverman (19]). For
complete background and motivation see [11).

When the algorithm of section 11 is applied to (4) we obtain an
algorithm similar to Zechau's [23}); but a great deal easier io implement.,
Actually, it is closer to Geoffrion [11], although we get some aimplifica -
tion and finite convergence by considering the all lincar case,

The subproblems are:

t t

Minimize ¢ x (2)

Subject to B'x' . y'

PN i
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T
These are obtained by partitioning the vector d, Y yt =d, We will
t=1

find it more convenient to work with the dual of (2).

Maximize u‘yt + vtbt

(3)

Subject to ntAt + vtBt s ¢t

Thesc are the problems we propose to solve, but we'll resist

the temptation to transform them into ''standard form'., Define ht(y')

as the optimal value of (3), As usual, h'(y') is +* {f (3) is unbounded
and - = {f (3) is infcasible., Note that if any subproblem,(3),is infeasible,
then the dual of () is also infcasible, The convex programming problem

equivalent to (1) is:

T

Minimize Zh’(y')

t=l
(4)

T

Subject to Zy' = d
t=l

Before describing the restricted problem, we will look at (3)
in greater detail, omitting superscripts, Assume for some y, h(y)
is finite, and let (T, V) denote the matrix of optimal extreme solutions,

Thus cach row (u, v) of (U, V) is an extreme point satisfying:

uy ¢+ vh = h(y)



<26~

Similarly, let (R, Q) be the matrix of tight extreme rays, If an extreme

ray (r,q) is a row of (R,Q) then
ry +qb =0

We are interested in changing y in some direction z. Unless
Rz = 0, we will have h (y +az) = + @, for any positive a, In addition,

we can show that
Yh(y:z) = Max (Uz]

ifRz= 0,

As before, the final simplex tableau will contain a matrix representa-
tion of the set of optimal solution, Rather than describing these equations
we will denote the set as W',

The reader can ecasily establish that (5) is the correct form for the

restricted problem,

T
Minimize ZD' (5)
t=|

Subject to Dt(e'\ - 0%tz o
- htzt 20

t.

(-l,-L..,-D" 2 " (L,..,Dfort=12,,,,T

and
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We propose to solve (5) using the dual simplex method with
upper bounded variables, [21]. As before, after the subproblems
have been solved certain new columns from TG and Rt wili be
available, These are added as constraints to (5), which is solved
by doing dual simplex steps., Thus we have solved a version of (5)
in which some of the constraints have been ignored. Suppose
{pt, zt]tzl 18 optimal for this cut down version of (5). We can show
that [pt, zt]tzl is optimal for (5), with all constraints considered, by
checking to see if {pt,zt]tzl is feasible for (5). This is accomplished

by solving the tight subproblems:

Maximize utzt (6)

Subject to (u!, vt ¢ Wt

¢ry will be feasible for (5) if the optimal
¢

value of each tight subproblem is no greater than p°, Otherwise the

The current solution fpt, 2t}

tight subproblem will generate a &' or #* such that;

ot . attco
or

it eo

These rows arc added to (5) and we do dual simplex steps until a new

optimum is attained, This proccdure is repeated until an optimal

1; is available, If }.“ 5' £ 0, then the current
S

solution of (5), [Dt.ztlh
tsl
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partition solves (4): otherwise we can make a strict improvement
by changing the current partition in the direction of (;tlt‘:‘l .

For each subproblem (3), consider the parametric objective
function ut(yt + ci‘) + v‘bt. Increase a until some new column {e
able to enter the basis or an unbounded solution is detected. Call

the value of a for which this occurs a'. Let
. t
a -Mln[alttl.l....'rl

If G. is infinite then we have an unbounded solution of (4). Other-

wise, the new partition is

(Yt,' - Y' oc'i' .

For each t, such that ats o.. we send the new extreme points and
rays to (5), where they will be infeasible under the old solutior.
URS
(68", -
the old optimal solution can be dropped, while the tight rows are

In addition, all the rows of (5) that were slack under

retained,
The principle is exactly the same as the one employed in the

price directive case, but we have seen fit to solve the restricted

problem r:*her than its dual, The solution of the restricted problem

involves the use of a Dantzig and Wolle scheme for row generation,

At any iteration in the solution of (5), the cut down or partial version

of (), (o esolved using the dual simplex method with upper-bounded

variables,

(n
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BLOCK DIAGONAL-RESOURCE DIRECTIVE APPROACH

Step 0: Find a partition of d such that each subproblem, (3), has a
finite optimal solution. If no such partition exiets, thea (1)
is infeasible. If any subproblem i{s infeasibdle, then the dual
of (1) is infeasible, Send the optimal extreme solutions and
tight rays, at hand, to the restricted problem,

Step I: Solve the partial version of (5) by the dual simplexs method
with upper bounded variables, and generate new rowse by
solving the tight subproblemas,(6). If the optimal value of (%)
ie zserq then the current solution is optimal,

Step 2: Analyse the subproblema,(3), parametrically to determine the
new partition, 113, (7). Is infinite, then (1) hao an uabounded
solution: otherwise generate the new rowe for (3) and go te

V. EXAMPLE: MULTI-STAGE LINEAR PROGRAMS-TRAJECTORY
OPTIMIZATION

In this example we shall examine the multi-stage or lower bloch

triangular lincar program:

Min i("l' n
ts)
ted
|
Subject to Al s d' e Z"“l.
osl
l"o ."Oxooaot
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Like the block diagonal problem, which is a special case, this
problem has been studied extensively, A host of special techniques
are described in, [17] and two compact basis methods are outlined

in [14], and [18]. The problem can be hammered into block diagonal
form, but this is awkward, A recent report, [12], by Glassey discus-
ses some of these points and proposes an interesting price-resource
communication technique which solves a special case of (2).

First, we will make an assumption about (1), in order to trans-
form it into a more manageble form, (2). Then we'll describe (2) in
terms of an equivalent convex programming problem, This equivalent
problem is solved using the algorithm of section II,

Although the methods we are describing apply to (1), we will
make an assumption which allows us to discuss a special case. The
general case is described briefly in an appendix,

Our assumption is:

t

H® =H® forallsandt=s +1, s +2,..,T

Using this assumption and subtracting rows we can transform (1) into

an equivalent problem:

T
Minimize 2 ctxt (2)
t=1

Subject to Abt = bt 4 kb-Lt-L

11V

£tz 0 t=12,..,T

t t-1

Here, K.‘ =Ht +At fort=1,.,.,T-1: and Ko =0, Also, bt =d -d

fort =2,3,,..,T; and bl =dl.
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The dual of (2) is
Tl
Maximize 2 wibt (3)

Subject to wAt= ct + wttlkt t=1,2,..,T

If (2) is considered as a sequential problem, then the right

-t-1 t-l}

hand side, [b +K - z describes a trajectory, Our pro-

cedure is called trajectory optimization since we are going to fix
the trajectory and then find the best solution that follows it, This
computation yields information useful in finding a better trajectory or
indicates that the present trajectory is optimal. As with price and
resource directive approaches, selection of a trajectory allows us

to decompose the problem into easily solvable subproblems,
1 2 21 -1

For our purpose the vector z =(2,z ,.,.., ) defines a tra-
jectory {bt + Kt-12t- l] . The subproblems optimize along this
path,
Minimize ctxt (4)
Subject to A'xt = b ¢ K*1at]
Ktxt = Ktzt
xt 20

where Ko = KT =0

The subproblems we will actually solve are the duals of (4).
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Maximise ut(bt + K5~ 1at"]) + viKctst (5)

Subject to utAt + vth s ct

The optimal value of (5) is given by the function ht(z). As
usual, h'(z) is += if (5) is unbounded and - = if (5) has no feasible
solution,

The equivalent convex programming problem is

T
'P
Minimize  h
-
t=1

t(2) (6)

Subject to z = 0

The equivalence is almost tautalogical. It is based on two
facts, If {xt]tzl is any feasible solution of (2) then [xt]'{_'l1 deter-

tzl is feasible, Also, if for

solves the subproblems (4), then { xt}'{;ll traces

mines a trajectory along which [xt]

t, T
some z, {x }t=l

out the same trajectory as z and {xt}tzl is a feasible soluti n of (2),

Theorem: (7)
(i) If {xt]tzl solves (2), then {xt}iil solves (6).

(ii) If {zt];r;ll solves (6), then any solution along the trajectory

t t-1 t-1, T
{b"+K "z }tl

;4 solves (2).
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Proof:

Suppose {xt]tzl solves (2).

Consider x = (xl xz.. . .xT-l) as a solution of (6). It is easy to see
that h (x) = ctxt, since xt is a feasible solution of (4). Suppose there
T T
is some other z, and [y }t=l such that 'ctyt ‘. ht (z2) < N ht (x) =
t=1 t=1 £=1
'i‘ tt k& T, . s . .
L cx . Then {y }t=l is feasible for (2), contradicting the optimality
t=
of {x%} T st *

Now assume z solves (6) and fxt]tzl is optimal along that tra-

jectory. If [xt} T does not solve (2) there exists a {Yt]tzl such that

1 2 T-
Cy<&ctx. Y‘-'(Y.Y....Y .

t=1 '1

) determines a trajectory along

which it is feasible, and ht(y) = c'yt for eacht. Thus

contradicting the optimality of z . I

Note the theorem implies the existence of an optimal solution
that is an extreme point optimal solution of each subproblem,

Before stating the restricted problem, we will inspect the sub-
problems, (5), in greater detail. Assume we have found a trajectory
z such that each subproblem (5) has a finite optimal solution. Let
(I_Jt. \_It) be the matrix of extreme optimal solutions, If (ut, vt) is a

row of ('l_Jt,T/t) then it is an extreme point of (5) and
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t,.t 4 Kt-lzt-l t

ut(b ) + viKtzt = hY(z)

Similarly let (ﬁt,ﬁt) be the matrix of extreme tight rays, If (rt,qt) is
a row of (ﬁtﬁt) then (rt,qt) is an extreme ray and

t-1_t-1 t, tt
z

et + K ) +q'ktzt = 0

If we are going to change z = (zl, zz, . zT'l) in the direction

y = (Yl. Yz. Y yT'l). we must have

ith-lyt-l + ﬁthyt =0
or the subproblems, (5), will become unbounded, We can also show
using Theorem II:7, that

vhi(z:y) = Max [Otk-1yE) + Tty Y

Finally, we must have y: 20, if z§ =0.

Using all this information, we can write the restricted problem as:

T
Minimize z ot (6)
t=1
Subject to pl(e}) - Vikly! z 0
- alkly! z 0
oty - Tttt L Tkt = o
RN DG4 2 0 fort=2,3,...,T -1
oT(eT) - GTKT-LT-1 .
CRTRT-L,T-1 5 &
t N ot
Y; z 0 if z, = 0,
' t=l,2,,,,T-l

(-1, -L,....,-D=yt=,1,...,0)
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The restricted problem has the same linked structure as the
original problem,. Note that some of the lower bounds on the yt are
redundant. The method suggested for solving (6) is almost identical
with the resource directive case,

After (5) has been solved, for some z, a matrix representation
of the optimal solutions is available, This is denoted wt . From this
set of linear inequalities, we can immediately discover a few optimal
extreme solutions and tight extreme rays. These are the solutions at
hand., With this and past information we solve a partial or cut down

version of (6), using the dual simplex method with upperbounds, This

T
t=l"

optimal for (6) it it is feasible., Feasibility is checked by solving the

generates a solution y = (yl, yz, o ,yT°l), {pt] This solution is
tight problems

Max w4 ity (N

Subject to (ut, vt) € Wt

The solution is feasible if, for each t, the optimal value of the tight
program is no greater than pt . Otherwise the tight programs gener-
ate an infeasible constraint of (6).

Suppose y is optimal for (6). Now we will change z in the direc-
tion y. The new z must be non negative, so we can proceed no further

than,

B=Min .l ;:< 0,t=1,2,...T-l
-yi

In addition, for each subproblem, (5), we consider the parametric

objective
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t. t

ub + uth"lzt'l +

a uth-l;'t-l + vthzt +a vth;'t

The parameter a is increased until some new reduced cost coefficent
is zero, indicating an unbounded solution or a new extreme optimal

solution, Call that value o.t and let

a* = Min [atl t=12,.., t]
(8)
0 = Min [0.*. Bl>o0

If 8 is infinite then there is an unbounded solution, Otherwise the

new solution is

t=ztioyt t=12,..,T-1

As before the constraints in that are slack after (6) has been

solved can be eliminated, while the tight constraints should be retained.

t

For each t such that a” = §, there '_i.s ta%:ew constraint generated for (6).
z,

1

Also,for each (t, i) such that 6 = , the constraint y: Z 0 is added

to (6). . -

MULTI-STAGE PROGRAMS-TRAJECTORY OPTIMIZATION

Step 0: Find an initial trajectory such that each subproblem, (5),
has a bounded optimal solution. If no such trajecto~y exists,
then (2) is infeasible., If any of the subproblems are infeasible,
then (3) is infeasible, Send the optimal solutions and extreme

rays at hand to the restricted problem.



Step 1:

Step 2:

-3 T

Solve the partial version of the restricted problem by the
dual simplex method with upper bounded variables, and
generate new rows by solving the tight problems,(7). If

the optimal value of (6) is zero, the current trajectory is
optimal,

Determine how far to proceed in the new direction, (8). If
0 is infinite, the problem is unbounded: otherwise generate

the new restricted problem and go to 1,
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APPENDIX

For the general multi-stage problem, (V:I) the subproblems are

fort=12,..,T

Min cxt (1)
tt t =l s
Subjectto A'x =d” + 2 H 2z
s=1
HStxt'-'HStzt s=t+],t+2,...,T

Actually the dual of (1) will be solved

t-1 T
Max u'(at + z Ht%:%) + Z v ot (2)
s=1 s=t+l
T
Subject to utAt + Z gt s g
s=t+l

Although (2) has a large number of variables, it has the same
number of constraints as the subproblems considered in the special
case (V:5).

The construction of the restricted problem is straight forward,
It will inherit the lower block triangular structure of the original prob-

lem (V:l).
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