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ABSTRACT

The program SAGA exploits short arc orbital constrc•.ints in effecting the

adjustment of observations made by geodetic tracking nets embrac~ng both optical systems

(e.g., PC-1000, MOTS) and electronic rcraging systems (Lasers, Secov, Geoceiver, etc.).

Provisions ore made for consideration of:

a) random errors in the observations and in the timing of observations;

b) serially correlated errors in obser,-ations;

c) errors in the adopted location cf the cenwer of mass;

d) systematic errors governed LY erior mouels having coefficients
subject to a priori conorah,.4.

The overall tracking net can include an indefinitely large number of stations (many

hundreds) o,, long as no more than fifteen participate successfully in the observations of

any pass. All orbital state vectors are treated as unknown and no limits are set on the

number of state vectors that can be solved for simultaneously. Allowances are made in

optical error modelling for reinitialization of error coefficients that becomes necessary

when any station exposes more than one plate on a given pass. In the case of electronic

tracking, up to three dropouts in tracking can be accommodated for each station on

each pass with appropriate reinitialization of error coefficients. A maximum of over

250 error coefficients can be exercised in the reduction of each pass. This becomes

computationally feasible by virtue of algorithms providing the solution to problems in

what is termed second order partitioned regression.
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1.0 INTRODUCTION

In previous series of investigations conducted by DBA Systems for AFCRL

(Brown, Bush, Sibol (1963), (1964); Brown (1964b), we developed most of the theoretical

framework for the present undertaking, namely the development of a general and advanced

computer program for short arc geodesy. This program, hereafter referred to as SAGA (Short

Arc Geodetic Adjustment), has drawn on and benefitted from experience gained from three

preceding programs that were also based on the theoretical development referred to above.

These predecessors consist of the following programs developed by DBA:

(1) GDAP (GEOS Data Adjustment Program) developed for NASA Goddard
during the period 1966-1967 for the short arc reduction of observations
of geodetic satellites (Lynn, 1967);

(2) MCT (Method of Continuous Traces) developed for AFCRL during the

period 1966-1967 for the recovery of geod( tic positions from measure-

ments of sun.-1lluminated passive satellites rocorded against the stellar

background (Brown, Trotter, 1967);

(3) NAP (Tracking Network Analysis Program) developed for NASA Goddard

during the period 1967-1969 for long arc orbital reduction, terrestrial,

lunar, or Interplanetary, with options for recovery of station coordinates

and error model coefficients (Lynn, et al, 1969).

Properties oi SAGA relative to GDAP, MCT and NAP are indicated in Table 1. All four

programs are capable of exercising short arc orbital constraints in on unlimited multi-epoch

mode (that is, the number of state vectors that can be solved for simultaneously is without

present limit). In addition, NAP can exercise long arc constraints and can accommodate

extraterrestrial orbits (it employs a general n body integrator capablr, of in•egrating through

S-1- 1



Feature CDAP MCT NAP SAGA

1. Short arc constraints (unlimited no. epochs) X X X X

2. Long arc constraints (unlimited no. epochs) X

3. Extraterrestrial orbits X

4. Geometric option (orbital constraints not used) X

5. Recovery of station locations

(a) limited number X X
(b) unlimited number X X

A. Recovery of coetricients of potential function

7. Recovery of coordinates of center of mass X

8. Recovery of tracking error coefficients

(a) optionally reinitialized after every pass X X X X
(b) optionally stable over spocified sets of posses X X

9. Consideration of random timing e. ror X

10. Option for consideration cr .eiiolly correlated errors
by Autoregressive Fc,-r6Uk x .X

11. Solution of general normal equations by First Order
Partitioned Regression X X.,

12. Solution of general normal equations by Second
Order Partitioned Regression X X

13. Tracking systems accommodated

(a) Optical (PC-1000, MOTS, Baker-Nunn,
BC-4, etc.) X X X X

(b) Electronic Ronoing (Lasers, SECOR,
GRARR, Radars) X X X

(c) Microwave Int,:rFerometer (MINITRACK) X X
(c) Noncumulativo, one way doppler (TRANET) X X
(e) Cumulative, one way doppler (GEOCEIVER) X

14. Structure of program and organization of input/output
optimized primarily for

(a) Recovcry of station locations X X
(b) Recovery of precise orbits X
(c) Recovery of tracking error coefficients X

15. Program operational on

(a) CDC 3100/3200 (16K core, 4 mag. tape units) X X
(b) CDC 3800 (Naval Research Lab.) X
(c) UNIVAC 1230 (NASA Goddard) X
(dD IBM 360/75/91/95 (NASA Goddard) X X
(e) IBM 7044/7094 (AFCRL) X X

Extension underway to add indicated capability.
-2--
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spheres of influence while allowing the gravitational potential of the currently dominant

center of attraction to be represented by solid spherical harmonics up to degree and order

(n,m) = (24t24). While NAP can be employed for satellite geode--- its primary Intent and

organization are directed toward precise determination of orbits with appropriate consideration

being given to (a) serially correlated errors of tracking systoms, (b) syslematic errors of

tracking systems, (c) errors in locations of tracking stations and (d) errors In coefficients of

the potential function (at this writing the capability (d) is in the process of being Implemented

in NAP). Two advanced features first introduced in NAP have been incorporated Into SAGA,

namely, solution of the normal equations by means of second order partitioned regression

and consideration of serially correlated errors by autoregressive feedback. In Sections 4

and 5 of this report we shall provide the detailed development of the theories of partitioned

regression and autoregressive feedbaeek.

All four programs c•an recover coordinates of tracking stations. However, In

forming the reduced system of normal equations GDAP and NAP retain the system in core.

This plqces a definite limit to the number of stations that can be solved for simultaneously

(typically to 20 to 60 depending on computer). On the other hand, SAGA employs the

logical development originally proved in MCT wherein the reduced normal equat"ons are

generated piecewise in core but anr cumulatively formed on an external file (magnetic tape

or disk). By this means it becomes practical to accommodate an overall tracking network

embracing literally hundreds of unknown stations. Th. primary restriction is that only a

limited subset of stations is regarded as participating successfully in the observation of any

given pass (in SAGA the number is limited to a maximum of fifteen). Such a restriction Is

of no practical consequence in actual short arc operations, for rarely would as many as

fifteen stations participate on a given pass, rroucl, less all be successful.

Error model coefficients appropriate to each channel of observations can be

carried as adjustable constrained parameters in all four programs. In MCT and SAGA, all

exercised error coefficients are regarded as unstable from pass to pass and thus are auto-

matically reinitialized on each pass. GDAP and NAP also have this capability but are

somewhat more flexible in that any desired subset of error coefficients can, on option, be

-3-
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treated as stable over a specified set of posses. For example, timing bias from a given

station can be regarded, when desired, as stable over cedain specified passes, rather
than being reinitialized on each pass as are the other coefficients. This capability was

not Incorporated into SAGA primarily because it complicates considerably the logic and

set up of the program and has proven to be a feature that is not often exercised in practice.

Of the four programs only GDAP has the option to perform geodetic reductions

in a strictly geometric mode. This option was not incorporated into the other programs

because experience with GDAP demonstrated the clear superiority in satellite geodesy

of the short arc mode over the geometrical mode. In particular, recovery of tracking error

coefficients has been found to be far superior in th3 short arc mod,. Comparative analyses

of the short arc versus the geometrical np; , ouch are made in Brown (1967a) and Brown (1968).

SAGA incorporate( -.in unique capabilities which experience with the other

programs indicated would be desirable. One is consideration of random timing error. This

was included primarily to make proper allowances in the reduction of PC-1000 chopping

observations of passive satellites in view of studies indicating an rms mechanical jitter of

about 0.3 ms in the operation of the chopping shutter. Inasmuch as relatively close

satellite passes can cross the plate of a PC-1000 at rates up to 10mm/sec., an rms error in

timing of 0.3 ms can be equivalent to as much as 3 micr - '. on the plate and thus be

comparabb, to plate measuring errors. Although it reains yet to be determined, random

timing error might also potentially be of significance with the Geoceiver. particularly if

rms noise levels in phase detem,:,,ation amounting to only about 0.1 m are achieved as

projected in the design. Inasmuch as range rate of an observed satellite can amount to as

much as 5000m/sec, an rms error in timing of .is little as 20 microseconds can be equivalent

to the expected rms error of 0.1 m in phase determination. Therefore, to be on the safe side,

SAGA also makes provisions for the possibility of significant rc,.,om timing error in electronic

observations.

Another uniq, a feature of SAGA is its ability to take rigorously into account

errors in the adopted center of mass of the earth. As was pointed out in Brown (1967), when

one elects in a short arc reduction to hold fixed the coordinates of a selected station, one
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thereby implicitly defines what is to be regarded as the location of the Earth's center

of mass. The error in this implicitly adopted center of mass does have an effect (albeit

a rather weak effect in most cases) on recovered coordinates of tracking stations. In the

case of optical tracking networks of continental extent, the effect of such errors is very

nearly equivalent to that of an error in scale, Through a series of exercises conducted

with GDAP, Lynn, (1969) established, for example, that an error of 50Qmeters in

the vertical component of the adopted location of the center of mass (vertic4', that is,

with respect to the fixed station) can cause an error in scale of about 1:200,000 In a

continental network. In view of such findings, we incorporated into SAGA the capability

of treating the coordinates of the adopted center of mass as constrained parameters. This
Smeans that in sufficiently strong tracking networks of continental extent, th~e possibility

emerges of improving the location of the center of mass relative to the -)rigin of the

cdopted datum. In weaker, more limited networks the main benefit oi carrying coordinates

of the center of mass as constrained parameters lies in the more comprehensive and realistic

error propagation that is thereby produced (here, no significant improvement in the location

of the center of mass is to be expected).

SAGA also differs from the other programs in that more comprehensive error

models are employed for optical tracking systems. In addition SAGA is expressly designed

to accommodate observations made by Geocelvers. Ranging error models that have so fd r

been incorporated into GDAP and NAP are not sufficiently general to accommodate

Geoceiver observations (should the need arise, however, they could readily be extended

to do so). In the next two sections we shall go into the detailed development of the optical

and electronic error model- employed in SAGA.

From the foregoing review it can be appreciated that SAGA provides a powerful

tool for satellite geodesy. What is not yet apparent is the fact that in spite of its flexibility

SAGA has been designed to be easy to set up and use. This is accomplished in part by

building into the program selectable sets of standard options sufficiently broad to cover most

routine situarions likely to be encountered in practice. Special situations can be accon¢roodated

when required, but at the expense of a more extensive set up of control parameters.
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2.0 OPTCAL OBSERVATIONAL EQUATIONS

2.1 Projective Equations

If, as in Figure 1, X,YZ denote the space coordinates of a point photographed
by a camera ic 1 at Xc ,YZC, it is well known that the imagecoordinates xty are
ideally given by the projective equations

A (X-Xc) + B (Y-YC) + C (Z-Zc)
D (X-Xc) + E (Y-Yc) + F (Z-Zc)

(1) yA'(X-xc) +E' (Y-Yc) +Q(Z-ZC)y - y,+ aD (X-Xc) + E (Y-Ye) + F (Z-Zc)

in which

xy,,y, c coordinates of center of projection is image space (note: the
z axis of image space is directed along the camera axis; thus
c corresponds to focal length).

A! B C orientation matrix matrix of direction cosines of xy, z of
image space relative to X, Y, Z axes of object space(specifically, A,B,C are direction cosines of x relative to

E F X,Y,Z; A'B'C' of y relative to X,Y,Z and D,E,F of zrelative to X, Y, Z).

The orientation matrix can be expressed uniquely in terms of three angles. If the x,y,z
axes of image space and the X,Y,Z axes of object space are related by the angles
a, w, x indicated in Figure 2, the orientation matrix can be shown to assume the form:

[ A B C BOO S CO O KM s n ai l j j l i 1 @ 6 c es 1 n a Gl x o @ e s n
(2) AV C. oas•- so.,inx-i j.nauwoosm' -sin *Lanl - o8ienvaoax Oeoa W a"0x1E sin a GO$ (M a** e Q WsinOI W

By dividing the numerator and denominator of the ratio on the right hand of (1) by:

5(3) R (X-XC)2 + (Y-.'YC) + (Z.Zc)2j]

one can express the projective equations in terms of direction cosines:

-7-
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i_ ~ A•.+ BA, + Cu

A' X + C 'J C

DX + EA• + Fv

wherein

(5) X (x-xo)/R, =YY)R V= ZZ)R

Equations (1) and (4) can be put into the alternate form:

X X-Xc= A(x-x•,) + A'(y-y,,) +Dc

V Z-ZC C(x'-xs,) + C'(y-yr,) + Fc

(6)
/• Y-YO B (x-x,,) + B' (y-y,) + E¢

V Z-Zc C(x-x,) +C'-(y-y,,) + Fc

The direction cosines X, p, v can be expressed also as:

•.=sin a•* cos wJ*

'7U/ = Cosac* Cos W*

v = sin w*

in which ax*, w* ire measured in the some sense as the at, wu that define the direction

of the camera axis (Fig. 2).

Once the projective parameters az, W, X, xp, yp, c (and possibly others, such a

coefficients of distortion) have boon determined from a plate reduction based an memurecd

plate coordinates of selected stars, the plate coordinates of satellite images can be|

employed in equations (6) and (7) to establish their directions ax*, w*. If X, Y, Z are!

suitably defined, ax*, wu* will be equivalent to Greenwich hour angle and declination,

I

which, in turn, can be converted into right ascension and declination if the time of

the observation is known.

It has turned out that optical observations published by the various data

gathering organizations consist of the derived quantities right ascension and declination

,-9-
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(accompanied by time) instead of the original observations, namely, the measured

plate coordinates. Thus the uncritical user is likely to regard right ascension and

declination as directly observed quantities rather than as derived quantities. WMile

errors in plate coordinates 'remain uncorrelated for all regions of the celestial sphere,

errors in right ascension and declination become highly correlated in polar regions.

Since most organizations do not accompany their published right ascensions and

declinations with covariance matrices, such correlation is not generally taken

properly into account. Consider, for example, the extreme case of a plate centered

at the pole. If plate measuring accuracies are equal in x and y (a. = cry = a), it can

be shown that the standard deviations of the derived right ascension and declination

(c, 8) are given by:

or= (a tan 8)/c

(8)
a 6 = (asin" 6)/c

and the correlation between t, 8 Is given by:

(9) p*6 = 2 sin 0cos c.

Thus correlations between ax, 6 can range between -1 to +1 for points on the same plate.

To those versed in analytical photogrommetry, there is good reason to prefer

plate coordinates over derived angles. Aside oram the matter of correlation, the

projective equations (1) relating x,y and X,Y,Z are actually simpler than the relations

between oc, 6 and X,Y, Z. However, the overriding reason for preferring the projective

equations has to do with error modeling. Systematic errors in optical directions are in

large part attributable t. 'rors in the projective parameters produced by the plate

re-. :tion. Especiall> significant, in many instances, is the angular !nstability of

the camera throughout the data gathering period. As will shortly be demonstrated, a

physically meaningful optical error model can be expressed in an especially compact

form when the projective equations provide the observational equations for the reduction

In particular, we shall show that four error coefficients can account for a total of eight

-10-£ __ _ _____ ____
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distinct sources of systematic error.

Because plate coordinates and associated projective parameters are not generally

available, one may resort to what may be termed the 'dummy camera method' to

reconstruct from the given angles sets of plate coordinates that are approximately

equivalent to those actually measured. The dummy camera method Involves the

following steps:

1) a focal length c is adopted that approximates the focal length of the
camera actually used;

2) a central ray is selected to define the direction of the camera axis

(o., w) in equation (2);

3) with the swing angle x provisionally set equal to zero, the orientation
matrix of the dummy camera is evaluated from (2);

4) the given angles for each ray are converted into direction cosines
X,,, v by means of such relations as (7) (typically 0t* corresponds to
Greenwich hour angle computed from sidereal time and right ascension andj• corresponds to declination);

5) with x. and y. set to zero, with c equal to the value adopted in step (1)
and with the orientation matrix computed in step (3), the direction cosines

x,y.he X, p~, v are substituted into eqs. (4) to tgnerate equivalent plate coordinates <
The dummy plate coordinates thus generated together with the adopted projective

parameters of the dummy camera provide artifical cbservations having errors equivalent,

for all practical purposes, to the errors in the original observations. For reasons shortly

to be made clear, one extra step in 1he dummy camera projection is desirable. This is

to redefine the swing angle x (provisionally assigned a value of zero In step,(3)) so that

the x axis coincides approximately with the trace of the satellite. In this regard we

would note that when the original observations are uncorrelated and are of the same

accuracy (Xa2 = " r), so also are transformed values x',y' defined by:

xi = x cos x - ysin x

"y' = y sin x + xcos x .



This means that the x axis of the dummy camera can be arbitrarily directed without

significantly altering the error structure of the dummy observations. Accordingly,

directing the x axis of the dummy camera along the traco of the satellite is altogether

acceptable, even though this may not necessarily correspond to the direction of the

original x axis.

2.2 Optical Error Model

The x, y coordinates reconstructed by the dummy camera method may be

represented as:

X = x+c I-m
(10)n

y = yW+c -n
q

in which

(11) ' B '

The systematic errors in x and y attributable to systematic errors in projective parameters

may be represented as: 1
6x = 6x, +m Ln &+ Ex -Cm --• c €

(12)
6y;,+ c+Ean- c2 q

8y = Y~q 8€q 8nc-q3 6

The errors ftn, On, 6q arise from errors in the orientation matrix. Lot ba, w, Ax denote
three infinitesimal rotations that serve to correct the orientation matrix. Then if m', n',q#

-12-
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denote the correct values of m,n,q, one can write:

m' Ax Aa A B C X

(13) n' = 6 I ' B' ,

I~ AX caK

-AX w n

Here, it wil I be noted that the matrix In the quantities a, b • •Ax qualifies as on

orthogonal matrix if terms of second order are neglected when the matrix is multiplied by

its i'tCwspose. Therefore, it is a rotation matrix. However, Ax, Aw, Ax do not consist

o' .:rect additive corrections to the a•, w, x implicit in tlhe original orientation matrix.

Physically, A•o and Aware components of rotation of the camera axis in the xz and yz

planes of image space, and Ax is a component of rotation about the camera axis. The

errors in m, n,.q attributable to errors in the orientation matrix are given by:

(14) dn n' -n - 0 AW dm [mlx [+ Ax Ac mqAwK
dq q-Aa -Aw 0 q•A-nAw.

Before substituting these results into (12), we shall express Ar,&W,Ax as:

AU = 6a+T 6& j
(15) A = 6w +•&•x i

*A AX= ax + 'r

in which Tr denotes the time of the observation relative to the time of the central ray

defining the direction of the axis of the dummy camera. By virtue of (15), we adopt

the assumption that the orientation of the comera is not necessarily strictly stationary i

'•' -13-

'\



'4

Ii

ii
IBLANK PAGEK~

I II

iii

• !liii

SliI



but may be changing infinitesimally with time. If we now substitute (15) Into (14)
and then substitute this result into (12) we shall arrive at the expressions:

6x UP +Xi6 )60 W+y6I I
-€ I + x-2)r6& + M r6 ( + yr 80

(16)

6y r6y, +Y- 6c+ M, 6a+c (1+Z) 6W -x Ox
+xc& cc c1• •-• x 2•

In the reduction leading to this result we employed the relations x =x(m/q), y =c(n/q)

which follow from the consideration that x, =y, =0 In dummy camera projection.

As it stands, the error model (16) involves a total of nine parameters. However,
the number can be reduced to a total of four essential parameters by certain considerations.
First we note that for cameras of long focal length such as the MOTS and PC-!000, x and

y are less than one tenth as great as c. Accordingly, terms x2/C2 and y2/c 2 may be set
equal to zero withoujt significant effect. We now recall the fact that the swing angle x

is chosen in the adopted method of dummy camera projection so that the x axis coincides
very nearly with the photographic trace of the satellite (which in turn typically departs
from linearity by only a few hundred microns at most). Thus for all points on the trace

os 0. Moreover, the x coordinates of points along the trace can be represented

approximately by the relation x=',r where ý denotes the mean rate of change of x over
the plate. If in line with these consideratioin we make the following set of sub-

stitutions into (16):

(17) x1/c0 = y2/c * = 0, y=O, x-Ar

we shall obtain the result: .

-14-



(180) 6x = 6x -c61 + -6c -cr6&
pc

(18b) by = 8 y, -c6w- xr 6x - c8 - • t- 6 X.

We see in (I8a) that the coefficients of 6x, and 6a are constant multiples of each other;

the same is true of the coefficients 6c and 6&. Thi! means that 6a alone is sufficient to

account for the combined effects of infinitesimal changes in 0t and x.. Likewlse, Oc

alone is sufficient to account for the comLined effects of an infinitesimal change in scale

(or focal length) and an infinitesimal rate of change in the 6 a component of rotation.

Similarly in (18b) we find that by, and 8w are perfectly coupled, as also are 6x and

8¢b. Thus, the rotations 6w and 6xserve also to account for by, and 6;X respectively.

Further simplification can be achieved f, )m consideration of the fact that with cameras
J,

having a focal length that is many times larger than the plate format, the term in 6 is

li'•cIy to be relatively insignificant in comparison with the terms in 6& and B(. For

cameras such as MOTS and PC-1000 the coefficients cr of 6& and 8bj in (18a) and

(l 8b) are about ten times larger than the maximum value of the coefficient xt• = xr of

6,. This means that Ocmust be about ten times greater than 8& and 6 C, in order to

induce a comparable error. In a study of camera stability reported by Brown (1969) the

maximum values of 6&, Vo, and 8j for a PC-1000 wcit found to be about 0'01/sec for

6& and 68ý and about 0.'02/sec for 8c. Although 86 did become about twice as

great as 6&, 6 • its net effect was only one fifth as great inasmuch as I max xj o 0.1 c.

In view of such considert.L!-;ns, we regard carrying 5c in the error model to be generally

of dubious value and accordingly have dropped it in further treatment of the model. A

By virtue of the findings of the previous paragraph, we may drop from the

general error model (16) the terms in 8x. 6y;, 8&, Vu and 86. This leaves a four

parameter model of the form:

(19) cik. x X OYj / ca c

6o X

LO C-t



This compact model is sufficient to account not only for biases in six projective

parameters but also for my uniform drift of the camera axis throughout the exposure.

One must not lose sight of the fact that this result does depend in part on dummy camera

projection that places the trace of the satellite through the plate center and approximately

along the x axis of the plate.

When optical systems are employed to record a flashing light, synchronization

of all observations is automatic and the problem of interstation timing bias does not arise.

However, when shutters are employed to chop the traces of sun illuminated passive

satellites, the possibility does arise that local clocks may be Inadequately synchronized,

In this case the error model (19) must be augmented by terms of the form:

6xt = x6t
(2o)

6yt t

where Vt represents the interstation timing bias. In c short arc tracking network Ot can

and should be forced equal to zero for one arbitrarily selected station in the network.

The biases 6t for the remaining stations are subject to a priori constraints appropriate to

the timing system employed.

In cases where optical and electronic systems both track a satellite carrying a

flashing lightinterstation timing bias is accommodated in SAGA by treating the timing of

the optical system as unibiased and the timing of the electronic systems as biased relative
to the optical system.

A common and desirable practice in optical trackingis to reorient each camera

one or more times during the course of a pass in order to obtain extended coverage from

a given station. MOTS cameras occasionally obtain as many as four plates on a given

pass and two or three plates are common. Under such circumstances it becomes

necessary to reinitialize the error model for each plate (except for interstation timing

bias which would be common to all plates at a given station for a given pass). This

means that ;f a particular station were to acquire four plates on a given pass, one

ii -16-



would have to determine an .ndependent set of coefficients ba, 6w, 6x, Ji C for each

plate and, where applicable, v single interstation timing bias 6t for all plates. As a

consequence, an optical station can require the exercisc of as many as seventeen error

coefficients for a single pass. Stch a capability is provided in SAGA. Let us consider

what this implies in view of the fact that SAGA is designed to accommodate as many as

•{ - fifteen stations on a given pass. The most extreme situation would be one in which all

fifteen stations are empleyed in a chopping mode and each station successfully acquires

four plates. The number of error parameters to be recovered on a single pass would -hen

amount to 15x 17-1 = 254 (the timing bias at one station is constrained to zero). Such

c reduction becomes practical only by virtue of the use of second order partitioned

regression as is discussed in Section 4.

2.3 A Priori Constraints

By virtue of the stellar control employed in plate reductions, systematic errors

in "'ly determined directions are sharply bounded. The error budget for a PC-1000

reduction provided in Table 2 is taken from Brown, Bush, Sibol (1963). For current

validity the budget need be changed in only a few respects. The use of the SAO star

catalog in place of the Boss catalog would about halve ihe contribution of item A3.

Tangential or lens decentering distortion is now roulinely culibrated and removed

according to methods developed in Brown (1964), (1966). As a result items A6 and

B6 of the error budget can be reduced to about one third their former values. The most

significant change to the budget affects item Al 1 which is concerned with camera

stability. The budget calls for iejection of the plate if comparison between pro and

post orientations indicates the presence of camera instability equivalent to more than

one third the net rms error in the )!ate coordinates. This recommendation has been

found to bee too stringent to be followed in general Praclice. Instead, instability is

tolerated to the point where its effects on direction are comparable with those random
errors. In effect, this means that some PC-1 000 plates are accepted even though a change
in orientation of as much as two seconds of arc exists between pre and post calibrations.

When such a change is continuous (as opposed to a suddan disturbance), its effect on
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TABLE 2 ERROR BUDGET FOR PC-1000 FOR POINTS OUTSIDE ATMOSPHERE

RMS CONTRIBUTION IN MICRONS UNDER_.

(a) (b) (W)ERROR SOURCE Favorable Normal Unfavorable
Condition% Conditions Conditions

1. Random setting error (average of 2 settings). 1.0 1.5 2.0
2. Emulsion instability. 1.0 1.5 2.5
3. Low frequency otmospheric shimmer. 0.5 1.0 3.0
4. Star cotolog error (Boss). 2.0 3.0 4.0

0. 5. Residuao *adial distortion. 0.5 1.0 2.0
0 z 6. Residual tangential distortion. 1.0 2.0 4.0

-• 7. Flatness of surface at emulsion. 0.0 0.O, 0.58. Residual differential refraction 0.0 0.5 1.0
9. Residual comparator errors. 0.5 1.0 1.5

S10. Timing errors (WWV). 0.5 1.0 2.0
u 11. Camera instability (below threshold of

routine detectability). 1.0 1.5 2.0
POOLED RSS TOTALS: 3.0Ia 4.9p' 8.2 p

1. Random setting error (average of 2 settings). 1.0 1.5 2.0
0 2. Emulsion instability. 1.0 1.5 2.5

3. High frequency atmospheric shimmer. 1.0 2.5 5.0
2 0 4. Residual error in calibrated orientation. 0.5 1.0 1.5iF

S5. Residual radial distortion. 1.0 1.5 2.5Z 0 6. Residual tangential distortion. 1.0 2.0 4.0
w 7. Flatness of surface of emulsion. 0.0 0.0 0.5S8. Residual parallactic refraction. 0.5 1.0 1.5

o . 9. Residual comparator errors. 0.5 1.0 1.5
-_ POOLED RSS TOTALS: 2.4 pi 4.5 p' 8.0 i
GENERAL QUALIFICATIONS:

a. Calibration is assumed to invalve at least 40 stellar images compactly distributed about flashing light traceI
and divided approximately equally between pre- and postcalibrations.

b. Elevation angle of camera is taken as 30* and altitude oa flashes as 400nm.
r. Photopioctssing procedure recommended by Gallnow and Hageman (Astronomical Journal, pp. 399-404, Vol.ý

61, Nov. 1956) is assumed employed in order to minimize emulsion instability; for some reason, points
within one centimeter of edge or plate are assumed npt to be measured.

d. Atmospheric shimmer is taken to be that characteristic of maritime subtropical atmosphere at 30' e!evation
angle with PC-1000 employed at full (200mm) aperture.

e. Timing errors (WWV) ore taken as 5, 10, and 20 milliseconds-for cases (a), (b), (c), respectively.

f. Coomparator is assumed to be calibrated and properly operated.

g. Plates ore ossumed rejected if comparison between individual pre and post orientations indicate
presence of cam, A]lity equivalent to more than one third the net rms error in the plate coordinates.

-18-
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satellite directions is likely to be less than one second of are because of the relatively
S~short timt. interval spanned by the satellite observations.

In view of current practice, we would suggest that a priori constraints for

PC-i 000 c.1d MOTS optical error coefficients be selected from one of the following

three schedules.

II
Schedule Criterion Cr a x r

1 (favorable) a, <31. 0]5 C.5 1". 0 1OA

2 (normal) 3<0a. <6 1"'.0 1".0 2'0 20/A

3 (unfavorable) a. > 64 1.15 11.5 31.0 30/1

The quantity a. refers to the rms error achieved in the plate reduction.

A primary advantage of the short arc approach to satellite geodesy over the
geometric approach is the practibility of accounting for systematic errors in extensive

networks through error modeling. On strongly observed arcs, adjusted values of many

of the error coefficients can constitute substantial improvements over a priori values.

On the other hand, some error coefficients may prove to be intractible, their

accuracies after adjustment being no better than before adjustment. This has been

used as an argument against the exercise of error models in the adjustment. Such an

argument is unsound for it is clearly important that the effects of statistically bounded

systematic errors be rigorously taken into account even when such errors are not

amenable to worthwhile reduction. This is especially so inthe case of plates

containing a large number of satellite images, as when passive satellites are recorded.

Here, one would obtain unduly optimistic estimates of accuracy from error propagation

if one were to ignore the possible existence of systematic error.

2.4 Special Corrections

SAGA is designed to accept any optical observations that are provided in the

GEOS format of the NASA data bank. Unfortunately, Chere is no uniform standard

-19-
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with regard to certain corrections that is followed by all agencies producing optical

data. In particular, the following corrections may or may not have been applied by a

given agency:

1) polar motion;

2) conversion of times to UTI;

3) parallactic refraction;

4) phase angle correction (chopping of passive satellites);

5) propagation delay (chopping of passive satellites).

Because of the lack of homogeneity in the application of such corrections, SAGA has been

provided with a special preprocessor which serves to apply these corrections as needed.

Characteristics of the preprocessor are ciscussed in Part II of this report.

2.5 Orbital Constraints

The orbital integrator employed by SAGA is that developed by Hartwell (1968),

(1969). It employs a power series solution to the equations of motion wherein each

coefficient is formed in terms of its predecessors by means of recursive algorithms. The
version of the integrator employed in SAGA truncates the gravitational potential at|
(n,m) = (4,4) inasmuch as this has proven to be entirely adequate in short arc applications I
(Brown 1967). If x,y,z denote the geocentric inertial coordinates at an arbitrary time -r

relative 6o an adopted epoch '=0, the power series solution of the equations of motion

can be represented as:F _

(21) y b0  b1  b2 .. 1 TI I
.Z LJ c c c. rT 2,r

in which all of the coefficients are functions of the six initial conditions at " 0
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(namely: x y, ooo , I o, 0 o) and gravitational coefficients. The series is truncated

automatically when a prespecified tolerance (presently taken as 0.001 m) is satisfied

for the maximum value of 'r to be exercised. If the epoch is taken near midarc, the

radius of convergence of each expansion is suf'iciently great to accommodate arcs as

long as one third of a revolution for nearly circular orbits.

The version of the integrator employed in SAGA also geneiates power series

solutions to the variational equations relating errors in x, y,z at time -r to errors in the

adopted location of the center of mass and errors in the six initial conditions. If we

let Xoo, Yea,Z., denote the earth-fixed coordinates of the center of mass, the matrix

of partial derivatives generated by the Integrator (the matrizant) can be expressed as

(22) • = ~ .(~~zt

l• (•,•) a(xoo, Yooo, z=, xoyo,,,o,,o,;,o, •)

n11'L ... 1=

in which each C4, is, in turn, a polynomial:

(23) Ota. = (ko a2 Of2 ... 1

7-2

[ - .

Inertial coordinates generated by the orbital integrator can be referred to an

earth-fixed framework by the application of the transformation:

x

Z z

(24) X II
0 y

Z] 
-21



in which

cos O sino 01 [sin Or cos Or C]

(25) R o-sin Co ij Lo - 0

In a similar manner the matrizant can be transformed to earth fixed coordinates by the

operation:

O(X, Y, Z;'r)
(26) ,' R D =

(s, 9) (3, 3)(3,9) 200o YcO' 7'oXofYO, Zo, o, 'o, i)

With these results we are now in a position to develop the optical observational equations

for the short arc reduction.

2.6 Optical Observational Equations

If the X,Y,Z in the projective equations (1) are replaced by the values computed

from (24), the equations become functionally of the form:

X = fl (XCYC,Zc,XY'OO,Z 0 ,,xo, Yo,Zoixoiio;t)
(27)

Y = f, (xCYCzCI,•,OYOOZCDXoIyOIOo,ioP ;t).

If x', y' denote the observed values of x, y, the cdjusted values corrected for systematic

error can be expressed as: "

x +x+v +;v +x6t+6x

(28)
y = y0 +v +yv, +yjot+Oy

where .x, 6y are given by (19). In (28) v.,vT denote residuals reflecting random error



4

in x and y, and vt denotes the residual reflecting random error timing. The terms

in 8t account for the bias in timing (eq. (20)). We now set up the relations:

Xc = XC)00+ 6xC 00~+X +0 g +8x;toxo =(xo) + x .o =4x + 8X' X0 = <o + 6xo ýo =,o ;0 6•

(29) rC =(YC)OO+ 68 Y o Y= +6Yco yo = yo + yo jo - joY + 8o

ZC=(ZC) + ZC z =z + 67z . +6,z o zD =• a+8

in which the superscripts (oo)denote approximations and the 8's are carresplnding

corrections. Substituting these into the right hand side of (27) and linearizing the

resulting expressions by Taylors series, we obtain:

x = XOO + ((Xaxeze x1,Yo, 6YoeO OrYoZo

= +b•x0 ,zex' ,, 6Y eo,.,, ,,7)

in which

t x00 = f ((XC), I(YC),..., 1 Z

y = fa((X )oo, (Y')o0,...,- ). 0

To arrive at explicit expressions for the elements of the linearized observational equations,

we let XOOy~o,Z0O,0oONo oo denote the components of position and velocity for the

time -r of the observation as computed from equations (21) and (24) in which the given

approximations in (29) are employed in the integration. Then we define the aixillary:

(32) =c AB'Cj O - (X OT Yc

qDEF zo- (ZC)O :j
where the orientation matrix has been developed by dummy camera projection. The

values of the plate coordinates computed from (31) then become:
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(33) [Y0 ®

where c denotes the focal length adopted in dummy camera projection. The partial

derivatives of the plate coordinates with respect to station coordinates is given by:

(~~*)~ f' .-x'/C [A BC1
(= (Xc,YC,Zc) ;6 1 -yOO/cj A' B' C'

(LE E F]

In terms of this the partial derivatives of the plate coordinates with respect to center of

mas and orbital state vector are given by:

(35" B(2 = 3) .(()) ,(2,9) W(~,OO, • •OD 1,o ' (2,0) (3,0.0)

in which 4ý is given by (26). The time derivative,,, of the plate coordinates required in

(28) can be computed from:

(36) a(1

if we partition B(2) as:

(•,,) Y) B(X, Y)), (2,.)
(37) 8(2) 7 VXy axy)B B~

(2,P9) [RX1 ,YO, o Y. Z. 'X (2,0)J

the linearized observation equations can be put into the form:

(38) - A v - ()6(3) -) B(2') 8 - B() 6(3) - B) ( - B(4) 8- = (

"(0,,3)(3,) (8,,)(3,,1) (2,3)(3,,) (2,o)0•,1) (2,1) (IL,) (2,,) (4,,) (3,,)
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i.1 which

0 1 ,,
A L ZO X0,~ Ox

(39) S(3) = [ (1 -- (at)

B (4) €•c a w o' ax

c +f I
e

At this point we shall recognize that as many as four plates may be acquired at a given
starton for a given pass. Accordingly, there may be as many as four sets of error
coefficients. Letting p denote the pth plate (max p=4) recorded and introducing the
subscript j to denote the j th point observed by the station, we may express the pair of
linearized observational equations generated j th point, If observed on plot* p, wt

(40) Ajvj +B• 8 = j

in which
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o~'1

(41 B! [ 3

(•,a) (2, a) (2,S) (2,) (a,4) (a, 4) (2, 4) (2,4)

(42) 6 = ( 6( 2&)T 8 6(ab) )T 6 (4 )T 8(4 )T 6(4 )T 8 -(4 )?)T

(•¢,•) (I.,S) (1,3)() (18 (1,. (%,4)(,) (1,4) (1,4)

The dimension -t in these expressior.. is introduced to denote the total number of error

coefficients exercised by the given station on the given pass. The quantity t,, is defined

as:

. =1 if i=p
(43) if

In this formulation it is understood that the number of parameters generated by a given

station for a given pass increases by four with each plate uccessfully recorded. Thus

B 3 may range from a minimum of a (2,17) matrix for a single plate to a maximum of a

(2,29) for a set of four plates.

2.7 Normal Equations

We are now in a position to consider the formation of the normal equations

for optical observations. In doing so, we shall employ the methodology employed in

Brown, Trotter (1967). Accordingly, we first form the normal equations for a given

station and pass, ignoring the existence of other stations and other passes. If the
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covariance matrix of the random errors in plate coordinates and timing for the j th

point from the given station is denoted by:

(44) A0 a2o

the system of normal equations generated by the point can be expressed as:

(45) N 6= C

in which

N = B (AJAAA)' Bj

(46)
T T .,

cj= Bj(Aj AjAs cj

It is to be noted that since:

(47) A AJ A [ T
J 4 J2 12

the results of the multiplication by (A4 As Aj) cin also be effected by treating this

matrix as a unit matrix in (46) after modifying B J and c, by dividing their first and
ar 0i) and (62t +y J Ir

second rows, rerpectively, by (ax +•S a J and

The system normal equations generated by all points from the given station and

pass is simply:

(48) N 6 c

where

-N Z
(480)

c E C,
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We now introduce subscripts i and k to denote the i th station and kth pass respectively.

The normal equations (48) may then be written in more detailed partitioned form as:

T/ A
/

(49) [••

(6, 3) (0 , 3) o il ( , ,•)( , ) o i, )

We shall find it convenient to proceed formally as if all m stations in the tracking network
were to observe all posses (presently, this assumption will be dropped4 If we then assume

that (49) has been evaluated for aol m stations (i = 1,2,.. ., m), and merge the resulting

individual sets of normal equations into a common system by the process of zero augmentation

devwloped in Brown, Trotter (19%7), we shall obtain the system (50) indicated on t6e next

page. If a particular station does not participate in the tracking of the kth pass, equation

(50) should be modified by (a) replacing all elements corresponding to the station in the

o fnd Z portions of the normal equations by zeroes, and (b) deleting from the remainder

of the normal equations the elements corresponding to the -tation.

By adopting tho partitioning indicated by the broken lines in (50), we can

represent the system of normal equations for the k th pass in the more compact form:
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U1, U1, Uk] 6 ]
(51) T; N 1  1

We next assume that (51) has been evaluated for all n observed passes (k=1,2, .. ,n)J

nind again resort to the process of zero augmentation to merge all such individual sets of

normal equations into a common sy,,em. This leads to the system indicated in equation

(52) below. We shall assume that weight matrices WI Wk I W* reflecting the a priori
constraints to be exercised in the adjustment have been absorbed into the appropriate

diagonal blocks of (52). Then (52) represents the final system of normal equations.

'..O o.-/

0v CD

4IZ

(52) U,79:00 6 E•

-T -- N, 0_" 0

OT 0 0 fN4 a 8 .2 0 0 6;c2

(52 nex t asum tha -No? has beneautdfralnobevdpse k=,. .,n

' , 0 0 0 0 .N o

L�..� i'o 0 0 l *..N#I N3 0

sinA exah.~ Ma sa~a •'i.sa " a sz i.a aa '~-' " i 1 4,; jf•/ ~ia..~-.



Having fanned the system of normal equations for the adjustment, we must now

address the problem of solving the system, expecially in view of the consideration that v"

it can grow to huge dimensions. We do this in Section 4 which is devoted to the

theory of partitioned regression. We need only point out here that the system of normal
equations (52) is precisely of the some form as the second order partitioned system

indicated in equation (66) of Section 4. Accordingly, by applying the algorithms of

second order partitioned regression as developed in Section 4 to the present problem,

one can execute a practical solution of the normal equations no matter how many arics

are processed or how many error parameters are introduced by each arc.

2.8 Analysis of Residuals

After the normal equations have been solved by the algorithm for second order

partitioned regression, the optical residuals can be computed from:

(53) v, v = AjAj(AAJ AO) (J -B 6).
vt

These residuals are employed in SAGA, along with residuals corresponding to other

observed quantities, to compute:

s (quadratic form of all residual.- )" | ~~(degrees of freedom)"

The observational equations are then relinearized about the new approximations to the

parameters and the solution is iterated, leading to fresh residuals and a new value for so

This process is repeated until successive values of s differ by less than a preset criterion

or the maximum allowable number of iterations have been executed. Computnsiodrl

details are given in Section 6.

Upon convergence, the final observational residuals from designated channels

can, on option, be subjected to an autoregressive analysis. When this option is

exercised, the entire solution is repeated with serial correlation being July considered

in accordance with the process of autoregressive feedback developed in Section 5.

-31-

. . .



2.9 Master Survey File

Before the adjustment of satellite observations can be undertaken, it is

necessary to set up a Master Survey File for the entire tracking net ultimately to be
adjusted. This file contains the initial coordinates of all stations and the covarlance

matrix of the coordinates.

When ini.tial coordinntes are expressed as geographical coordinates, a

preliminary program (SET-UP) transforms these coordinates into Geocentric Cartesian

coordinates and computes the associated covariance matrix. in order to permit the

investigator considerable flexibility in imposing interstation constraints, SET-UP

also permits the directional components and the length of the vector joining arbitrary

pairs of stations to be constrained to any desired degree. In addition, it permits the

introduction of any number of linear constraints between arbitrary pairs of stations.

Thus if ( ,ZO), CXY ,Z,-) denote the initial coordinates of stations p and

q, the program admits constraints of the form:

(54) 0 X'° + a T + O z7 + P xO + 2 • +P3• z•° :U1.

in which U is considered to be an observation of prespecified variance rG and the

a 's and g's are prespecified coefficients. Such constraints serve a variety of functions,

including (a) holding selected stations fixed relative to a designated station (datum
constraints), (b) defining directions of cooidinate axes (for adjustments limited to ranging
observations), (c) imposing special relations between stations.

All specified interstation constraints are properly exercised by SET-UP in

developing the a priori covariance matrix A of the geocentric coordinates of the

tracking net. Details of this process are given in Part II. The location of the center

'of mass with respect to the adopted geometric origin is treated as if it were the last
tracking station of the net. By virtue of this artifice, the covariance matrix A serves

to accommodate the a priori covariance matrix of the coordinates of the center of mass.

The Master Survey File is set up but once for a given tracking net. SAGA

ScalIs upon this file whenever it requires either the a priori coordinates of a given station

or the a priori weight matrix (WA A ) of the entire vector of station coordinates.
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3.0 ELECTRONIC RANGING OBSERVATIONS

3.1 The Geoceiver

In this section we shali develop observational equations and error models

appropriate to various electronic ranging systems: lasers, Secor, GRARR, Radars, and

Geoceiver. We shall place particular emphasis on the Geoceiver system both because

of its potential future importance to satellite geodesy and because its error model turns

out to be sufficiently broad to encompass those of all other ranging systems.

Characteristics of the Geoceiver are discussed in Stansell, et. al. (1965).

Briefly, the Geoceiver is a compact, self-contained, relatively inexpensive (under

$100K), manpack, doppler tracking unit designed to track Transit satellit .s as well as

other satellites radiating on either of the frequency pairs: 162/324M Hz, 150/400M Hz.

Reception of dual frequencies provid'es tl, means for correction of ionospheric refraction.

SLike t'- Tranet system, the G.ý,ceiver exploits one way doppler. However, Tranet

oFp.,.v:es on cycle counts in a destructive mode; that is, at preset intervals it measures

the time required to acquire a preset number of doppler cycles, whereupon, it ceases

counting until the start of the next interval. Thus, continuity of cycle count is lost

and it becomes necessary to treat Tranet observations as being essentially a measure of

doppler frequency (or, equivalently, of range rate). By contrast, Geoceiver operates

on cycle counts in a nondestructive mode; that is, continuity of cycle count is

r preserved (as long as phase lock is maintained). It is this fact that permits Geoceiver

to be viewed as being inherently a ranging system, for if the transmitted frequency from

the satellite and the reference freuency generated by Geoceiver were perfectly

matched and both were perfectly stable, ihe scaled cumulative cycle count of beat

frequency would, except for an unknown additive constant of integration, represent a

direct measure of slant range. In practice, this measure is contaminated by the unknown

offset between transmitted frequency and local reference frequency as well as by any

drifts of the two frequencies. Such factors can, however, be taken into account by

error modell ing.
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3.2 Geoceiver Observational Equations and Error Model

To arrive at the Geoceiver observational equation we find it convenient

first to define the quantities: I
r = distance of satellite from station at time t (station clock)

fo = frequency transmitted from satellite

f = frequency received at station at time t

v = total velocity of satellite at time t

0' = angle between velocity vector V, and vector directed from observer to
satellite at time t (cos 6' ==' 7)
rate of change of range at time t = v cos 6'.

The relativistic equation describing thie P.,ppler effect on frequency is then of the form

(JOOS, THEORETICAL PHYSICS):

1 -) Cos e')j

Setting v cos a' = and solving for r0 we get:

2I
(2) rI

c f~f 1v

c= f + c + higher order terms.

Let f' denote the reference frequency generated by the Geoceiver. Then (2) can be written:

(3) X Af x + (fo - fo) 2g•

where

. =C/fA
(4)

Af= f• -f.
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The quantity X represents the wavelength of the transmitted frequency and the quantity

represents the beat frequency generated by the Geocelver. If we now assume that fo and

f, are constant over the tracking interval, we can Integrate both sides of (3) between an

arbitrary time r 0 and a later time r to obtain:

(5) r - ro =N + X (f.' fo)r + r.

in which

r range at time -r,

ro. range at time = 0,

N f Afdt,

Ar, = f v2 dt = special relativistic correction.
O 0

The integral defining N represents the number of cycles of beat frequency accumulated from

the initiation of counting (T0) until time r-.
i In the case of Geoceiver, cycle counts are cumulated over Intervals of nominally

one minute. Specifically, Geoceiver generates the cycle counts:

i(6) AN 1  f Af dt

in which" "r,- and r, represent the times of the first p•sitive cycle crossings following

successive one minute marks T,.. and T1 , as shown In the accompanying figure.

Following readout, the counter is reset to zero before the next positive cycle crossing
is counted in the next interval and continuity-of cycle count is maintained. The cycle

count N appearing in (5) can be related to the counts generated in (6) by the relation:

(7) NJ f "Af dt Y Af dt+-- Af dt +...+ J Afdt.

=AN+&N2 +... +ANI.
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One might expect from (7) that errors in successive N are highly correlated by virtue

of being formed of common AN . This is not the case, however, when Geocelver is

functioning properly (i.e., no cycles are dropped from or added to each count) for

the A N, being integers, may be viewed as being free of error. The quantity properly

to be regarded as subject to error is r*,, the time of the end of each counting Interval.

Errors r* successive times -r, and 7,- are not likely to be strongly correlated.

In practice, the frequencies fa and f. are not perfectly known, nor are they

perfectly stable. To account for biases and linear drifts in these frequencies we may

write:

fo = 1`60 + NO +foT

(8)

in which

foo = adopted value of transmitted frequency

to = adopted value of local reference frequency

6fo = bias in adopted value of fo at -r= 0

6fo = bias in adopted value of f4 at r=0

f01io. = drift rates of fo and f,, respectively.

For Geoceiver, the offset Afo, = fo - f., between the adopted frequencies can range

between 16Kc and 32Kc, depending on the type of satellite. Because of this and the

fact that doppler ranges between -!0 Kc, the beat frequency Af will never cross through
zero. This obviates the need for distinguishing between positive and negative cycle,

If we substitute (8)' into (3) and expand the resulting expression for 1/f. Into the series

(9) sha obtin (I "Of I'
we shall obtain the result
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(10) X0 =0 (&f - Af. 0 )+ X0 (6f0 -fl) + X0( 0 -O),r +1 + higher order terms,

where

(11) X0  wavelength corresponding to adopted frequency of transmission.

Integrating this expression, as before, we get:

(12) r-ro )=0 A)-o (N A f. r + '1o 6o i) r 2

+ Are + higher order terms.

This can be put into the form:

(13) v= X0(N -Afoo r.)+co + + n,2T++ r+a &r+r +higher order terms

where: .

00 + foo r.wheIf satellite clock triggers readout, replace 6f, by (I +i) _\fc!
X = (8f°- ef) If Geoceiver clock triggers readout, replace 8f; by l +) f j

( 1 4 )1

(32~ X0(;0 0

C3 = - W(6 foi ).

Substituting:

(15) r = [(X-Xc) 2 + (y..yc) + (Z.ZC)2] I
(16) r' = X 0.(N - Afoor) 4
into (13) we obtain the basic equation

* See equation (25) for explanation.
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(17) ro +ao+a 1 T+a 2 T+ r +a 3r+6r+ = [(X.XC)2 +(y..yC)2 +(Z.Zr)2J•.

The development thus far has failed to take into account the refractive effects

of the ionosphere and troposphere. Nor has it taken into account the effects of (a)

propagation delay, (b) interstation timing bias and (c) general relativistic effects.

Thus to render (17) more nearly correct we should add fo r0 the composite correction:

(18) Ar Ar,+A r+Ar.+Ar. + Ar

t• where

SAr, = correction for ionospheric refraction

ArT = correction for tropospheric refractikn

Ar, = correction for propcgation ,elay

Ar1. = correction for interstation timing offset (or bias)

6r.= correction for effect of gravitational potential or frequency (general
relativistic effect).

The two frequency method is used by Geoceiver to determine ionospheric

refraction. If A AN, denotes the refraction cycle count (i.e., the cycle count of the

beat fretluency between the two received frequencies), the desired correction is given

by:

S(19) Ar- -K xo (AA N, + AAN& + .. + ANJ) I
where K = 1/9 for the'frequency pair 162/324 Mc and K = 1/91 for the frequency pair I

6
150,400Mc. Alternatively, the correction could be effected by replacing each AN

in (7) by ANJ - K 6NJ.

The correction for tropospheric refraction can be computed bythe following

formula derived by J. Willmann (private communication):

(20) ArT= -2a f(E)

where I
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(O = (n. - 1) H0

f(E)= 1/ [sin E+in' E +2 )1(210

in which

n. = index of refraction at .-•ation

ro = radius of earth (meters)

Ho = scale height of troposphere (meters).

The value of no can be computed from meteorological measurements at the starlon by means

of the formula-

2 n = i+ 1'e 6.26 (+ 57.48

wherco

Po = atmospheric pressure ýmm/Hg)

eo = water vapor pressure (nm/Hg)

To = temperature (deg Kelvin).

The scale height H. can be approximated by:

(23) HO = 29.2 (To -30).

The correction for propagation delay serves to correct the range of the satellite j
to the position occupied at time r, as measured 6y the satellite clock (this is equivalent

to the range at time r+ -L as measured by the station clock):
jr c

,24) Ar L = r

When a Cecceiver station is considered as one of several stations participating

in the tracking of u pass, it becomes necessary to allow for the possibility of a significant

bias in the correlation between the clocks at the various stations. If &T0 denotes the

offset ot epoch of the clock at a particular Geoceiver station from the master clock, the

offsc4t at time " is:

-40-

S...: + • - • m = , ,7 -• :,, • + +: ,,+++ +: . +. +: . . + . . . . .,.. . . ,. + +. . ,_



I 6f

(for readout triggered by timing signals from the satellite clock), and the correction to

be applied to ro is:

(25) Ar7. 6~r 67,+ X,6f, Tr

When the offset is unknown, 6,"o can be carried as an unknown parameter, subject to

appropriate a prior; constraints. The contribution of 6f, can be absorbed into the error

coefficient al. For readout triggered by the local clock, 6fo in (25) should be replaced

by H'.

The final correction Is attributable to the effects on frequency of the difference

in gravitational potential between the satellite and the receiving station. The correction

is given by:

S(h/to)dr
cro o (0-Vr-J

whe~re
w e = grcivitational constantft 4 x 1014 m3/sece

h = altitude of satellite

ro = distance of station from center of earth (same units as h).

It is to be noted that for nearly circular orbits, h is nearly constant over a pass. Consequently,

for such orbits Ar0 becomes a linear function of "r, and the term in al in (17) can absorb the

effects of the general relativistic correction. A similar remark applies to the special
relativistic correction A~r. inasmuch as velocity v is nearly constant for nearly circular orbits.

For greater flexibility we shall augment the Geoceiver error model by terms to

account for residual interstation tirnlng bias and residual tropospheric refraction (we assume

that the corrections indicated above have been applied but are not wholly adequate). Thus
the ful I error model becomes:

(27) r = 0a + -r+aa +a3 r+a 4 r,+a f(E)
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where the terms in a. and a6 account for interstation timing bias and residual tropospheric

refraction, respectively. Regarding residual tropospheric refraction we would remark

that ray tracing exercises through actual atmospheric profiles indicate that if the best

possible value of ci were employed in (20), the proportional error 6RT/RT in the tropospheric

refraction correction could be held to under one percent for E >_ 10" (or to about 0.2 m at
E = 10°). However, when (x is computed from meteorolo(ical measurements made at the
station, 6RT/Rt is likely to range from three to five percent for E >_ 10* (and thus become

as great as 1 .Omn at E =10°). Hence, potential improvement by a factor of from three to

five is possible from error modeling.

3.3 Linearized Observational Equations

We have already remarked that the quantity, subject to error in Geoceiver

observationsconsists actually of the t*,.,ie w•sociated with the cycle count (here, we I
ignore momentarily the contribution of errors in corrections for ionospheric refraction). j
Let us suppose that for a given value of r° in (17) the measured time is 'r and the correct

time is T - (. (thus cr denotes the error in r). Then we can writeI

(28) r0 (7-E,.) = r (T") - i(1) (" + higner order terms.

Now, •. is attributable in part to errors in phaF-i measurmment and in part to errors in

quantization. TVus, we may write:

(29) + C

where

6' = contribution of phase measuring error

c" = contribution of cquantizatio.. error.

If C denotes the phase measurin; errur (t- Kpressed as a fraction of a cycle) giving rise to

T., we may vrite

(30)
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where Lf-denotes the beat frequency at time -r. But from (10) 1f. r (,r), so that

(31) E. c

Substituting this into (29) and substituting the resulting expression into (28), we get.

(32) r' 0(-Ec) = r' (r) - X, o 0 - ;(r) 4.

Letting v, and vr denot6 residuals corresponding to the errors X. cr and c, we may

write the Geoceiver observational equations in the expanded form:

(33) r' +,rv+ + ao +a&+-+a9 9r+a er +a 4,+a 6  f(E)

[(XXC)- + (Y.YC), + (Z-ZC)2 ]

If we now replace X,Y,Z on the riLnu haig side of (33) with the values computed from

the oroiiul integrator (eqs (24) and (21) of Sec. 2), we shall obtain an equation of the

funcl.:Wnal form:

(34) r = f(Xc,Yc,ZC,Xo,Yy.,zc o,yo,xo ,Zot)

where r denotes the left side of (33).

From this point on we proceed precisely as we did in Section 3 with optical

observations. We express the unknowns in (34) in terms of the same initial approximations

and corrections as were used in the optical reduction (eq. (29), Sec. 3), and thus expand
the resulting expression in Taylor's series to get:

(3S) r = r® + (_x_,____,_z'_,_"",__, ____)
((XC , Yc, Z,, X 0, Ye o, ayo o0, YO, Z0 , A0, o *0)

in which

(36) r.= f((XC)OO,(Yc)oo,...,Z, 00T)o

If we lot X°°,y zOO, ,,kO, ioo denote the earth fixed coordinates of the satellite as
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determined from the integration based on the approximate state vector, the partial j
derivatives of r with respect Xc, yc,Zc can be expressed as:

(37) B(') = _r = -CX A u ]
I

in which

X (X - (XC)0)/r0

(38) / = (YO - (Y')o)/r00

v = (Z' - (ZC)O)/r. O

The partial derivqtives of r with respect to center of mass and orbital state vector ore then j
given by:

(39) 'E"= •r =- B(1)
(",q) a (X Yo "fo) , I.s).(f,,)

where 1 is given by (26) of Sec. 3. The approximate value of i can be computed from:

(00
(40) P.o -O )B(• ~t•o"

If we partition B as:

(41) B (2) = ~ = B (b)

(1,.) LX'.Yc,Zco) I a(x•, Yo, zo,•o,3 'o,•L()idz)J [ (

ihe linearized observation equation can be expressed as:

i
(42) A v - B(1) 6(0) B(2) 6(2 A) " B(2 b) 6( b) B(3) - B(4) 6(4)

in which
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A=L1 ICP v= 62 6(24 == r , I 601.) 6y.

(43)1

B r r2 r " f(E), 6) (a, a. a3 a4

= (1), 6) = (aCo).

Before proceeding, we shall address one possible problem with Geoceiver tracking that has

not so far been considered. This is concerned with what to do in the case of one or more

temporary tracking dropouts during a Foss. When phase lock is lost, the doppler counter

is irnmcdiately set to zero and remains set to zero until the first one minute mark after

phase lock is restored. Thus a zero cycle count for a given counting interval is a positive
indication of a dropout during that interval. When counting is resumed following a

dropouta new constant of integration ro, or equivalently a new error coefficient a., must

be established. On the other hand, it is clear forom their physical interpretation that the

remaining error coefficients (a 2,a 3,a 41a,) will not be altered by a dropout. Hence,

only a. requires reinitialization following a dropout. For each pass provisions are made

in SAGA to accommodote up to a maximum of three dropouts in tracking from each

participating station. This is accomplished by writing the observational equation

generated by the j th point as:

(44) A vý +B 68=

:n which •

I4
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(4,I+IL) ('a ( 4)

(•, U+4-) (1,3) (1,3) (1,G) (1,S) (o) (,) (,) (,)|
(45) B5  3 C ~ ~ B~) ~ ~ ~ ~

in which the subscript p connotei the pth tracking interval (max p=4) and

1 if i p
(47)

(7)0,= if i/p.

The dimension t indicates the number of error coefficients exercised by the station on the

pass (this can range from a minimum of six to a maximum of nine depending on the number

of tracking dropouts).

3.4 Normal Equations

The development of the normal equations g%.nerated by Geoceiver observations

follows precisely the process outlined in Section 2.7 for optical observations. With

suitable (and perfectly obvious) reinterpretation, equations (44) through (49) hold also
for Geoceiver observations. In particular, the partial set of normal equations generated

by a given station for a given pass (eq. (49) of Sec. 2.7) applies equally to Geoceiver

observations. So also does the merged system of equations from all statirns for a given

pass (eq. (50), Sec. 2.7), with one proviso, namely, that each C eoceiver station be

assigned a distinct station number even when it is colocated with an optical station.

-6I!-6
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This step automatically accounts for the fact that the vector F"k of error coefficients

for a Geoceiver is different from the vector ý5" of error coefficients for a camera. Should;1

a Geoceiver be colocated with a camera, appropriate interstation constraints can be

exercised toinsure that both stations receive a common adjustment. With this under-

standing then, we can regard the general normal equations (52) as applying equally

well to (a) a network of optical tracking, (b) a network of Geoceivers (or other

ranging systems), (c) a combined network of optical trackers and Geoceivers.

3.5 A Priori Constraints

Of the six coefficients ir, ýhe Geoceiver error model, the first two ao and a, have

large effects and are unlikely to be subject to worthwhile a priori constraints. The remaining

four, on the other hand, have relatively small effects and are subject to rather tight a priori

constraints. When the Geoceiver is funclioning properly and when the frequency bias 6fo

of the satellite oscillator is reasonably well monitored, the a priori constraints indicated

in the table below can serve as rough guidelines.

Typical A Priori Constraint
Coefficient Physical Significance (One Sigma)

[(

00 1 r 10• to m
fr r

Xa1 (•.o(f- &f) 10,o to 103 X•. m/sec

a2  o(o""to) .0 fx 10" 1 m/sec2

-7
as -NfoA/f0 10 to 10

a 4  6r (timing bias) 50ps

oar 6ae (refraction) 0.2m

In our view, the maior shortcoming of Geoceiver is its low sampling rate of only

one readout per minute. This means that many passes will yield under ten observations

S-4/-
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and even the longest passes are unlikely to yield more than twenty observations. The

justification of the low sampling rate probably stems from the use (in one mode of operation)

of Transit timing signals to trigger readout of cycle count. Also, a probable factor is the

approach to data reduction envisioned by the designers of Geoceiver. As outlined in

Stansell, et. al. (1965), this approach involves using nn observational equation of the

form:

(48) r - rl X0 AN3 + (fo " fo)(T •" 'r-.) + neglected higher order terms,

which is relatively weak, geometrically, for small time intervals. This formulation has the

advantage of completely eliminating the error coefficient for zero set ao and of generally

suppressing to insignificance the effects of a2 iaS,a 4 ,a5 (over intervals as short as one

minute). On the other hand, it fails to exploit one of the strongest characteristics of the

Geoceiver, namely, the nondestructive readout of cycle counts. It is clear that (43) is

equally valid for destructive or nondestructive readout of cycle counts, whereas our

formulation (eq. (13)) is designed specifically to exploit the nondestructive character of

the readout. If readout is indeed nondestructive, our approach should result in considerably

more effective utilization of Geoceiver observations. On the other hand, our approac'i1

could benefit considerably from an increased sampling rate. An internally triggered readout

every ton or twenty seconds would probably be close to ideal. Such serial correlation as

might thereby be introduced could be properly taken into account by the process of auto-

regressive feedback developed in Section 5.

With the readout rate as low as it is, one cannot generally expect to obtain from

the adjustment any Aignificant degree of improvement (over a priori values) in the adjusted

error coefficients a. ,a 4 ,a 5 . Here, what one mainly accomplishes is the realization of a

more valid error propagation by considering the effects of these sources of error. The

a priori value of a. is subject to a degree of improvement ranging from slight for short

passes (under 5 minutes) lo pronounced for moderately long passes (over 15 minutes). On

long passes observed by several starions (five or more), one can expect to determine values

of a 1 and •2 to accuracies (sigma) of better than five meters and five millimeters per

second, respective!y.
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3.6 Reduction of Othe Ranging Systems

Although emphasis in this section has been on the Geoceiver, our treatment of

the Geoceiver as a ranging system makes it possible to employ SAGA for the reduction

of ranging systems in general. The primary requirement for processing other ranging

observations through SAGA is that they be presented to the program in the Geos data

format. With active ranging systems, the coefficient a. would ordinarily be subject to

very tight a priori constraints (e.g., a few meters for lasers), and the coefficients a2 ,

w2 Would be inapplicable and hence would be suppressed. An option is provided

within SAGA for the application of corrections for tropospheric refr-.!on in the event

that such corrections are lacking.

AIg-



i

.1
I
I

I
page interitioflAiAy blank. A

I Is

I
4

I ,, ,

I
if

I



,F 4.0 THEORY AND EXECUTION PARTITIONED REGRESSION

L 4.1 First Order Partitioned Regression

SAGA is designed to process an arbitarily large number of passes, each observed

j. by a subset of as many as fifteen stations each of which can conceivably (with re-

initialization of error coefficients) introduce as'many as seventeen error coefficients

t. peculiar to the pass. Accordingly, SAGA generates a patterned system of normal

equations that grows in dimensions both with the number of passes processed and with

the number of error parameters exercised on each pass. In practical application:-, the

Snormal equations can grow to embrace thousands of unknowns and thus be unamenable

to solution by conventional reductions that fail to exploit the patterned characteristics

of the system. In this section we shall develop practical agorithms for the solution of

normal equations related to those generate(! by SAGA.

The normal equations for a general regression analysis may be written as

(1) N6• c

in which 6 denotes the parametric vector to be estimated, N is the coefficient matrix,

and c is the constant column. Let 6 be arbitrarily be partitioned into two vectors

6, so that

(2) 1 ..

Then the original normal equations partitioned to be conformable with the partitioning of

6 con be written as

(3) N]I~1LýT NJL J~
To this point the normal equations are of perfectly general form. We now abandon full

"generality by assuming that the parametric vector 6 is common to most if not all, of the

original. observational equations, whereas 6 is composed of (possibly) a large number of

subvectors 6,, 62, 6n.. .,&, each of which appears only in a subgroup of observational

equations to the exclusion of other subvectors of 0. Under these circumstances, the

normal equations (3) assume the specialized form

[ ~~-51 - ".



NRTI!R 0 ... 6~ 6

I F(4) .N,,I .0 ,... 0 6, =

"' !: ... 0N ~ L~
(4) T10 0 .

Here, the N portion of the matrix assumes a block diagonal form by virtue of the assumption

thut for all i / j, O and ý" do not appear in common observational equations.

To derive this result we may proceed as follows. The linearized observational

equations may be ca Jered into groups corresponding to the various parametric subvectors

" Thus we write

+81+

(5) v2+ 62+Ba'1=11 .

Here the v's are residual vectors, the B6's and B''s ore the coefficient matrices of the

parametric vectors 8 and W, respectively, and the ('s are the discrepancies between

actual observations and their computed values. We note that, in accord with the above

discussion, the 6 vector is distinguished by being common to all groups of the observational

equations, whereas each S, vector appears in one and only one group of observational

equations. The above system may be written

V1  b , 0 ... o I
(6) v,+ 2 0 o ,...0 .=

B~ 00 BLvu •0 0...B .

-52-
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or more compacti .-as,

v+S6=E.

If A denotes the covariance mctrix of the vector of observations, the minimum variance

adjustment is obtained I: determining, of vectors v and 6 that satisfy (7), that particular

pair that leads to the minimization of the quadratic form

(8) sv.4 V .

This process leads to the normal equations

(9) N6 c,

where

(9a) N BT-•,

(9b) c =B T A A .

We shall now assume that A is of the form

where each A t consists to the covariance matrix of the observational vector corresponding

to the residual vector v,. Then inasmuch as B and rare of the forms I
B. 0• 0 ... 0 (3

i2 0 N2=. 0 C2=

it follows by direct evahation of (9a) and (9b) that the normal equations (9) are of the

form (4) in which

(12) N.=•+ij+...+N, +=, +,•+...+ I

tt
-53-
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wherein

(13) Ný4 6BA B1I, I 8AEI

and in which

(14) F jB . 1  
-

"15) ý I 6T='TA

It is to be noted that this result applies to any set of observational equations of the form (5)

for which the covariance matrix of the observational vector is of the form (10). Systems of

this nature arise in a broad range of applications. In particular, such systems are generated

in trajectory and orbital analysis when coefficients of tracking error models are to be

recovered simultaneously with trajectory p rameters. Before taking up specific examples,

however, we shall continue in an abstract vein to study the properties of systems of nonnal

equations having the particular pat.arred structure of (4). 1

Returning then, to equation (4), we first remark that when the number of elements

in the 6 vector is small compared with the number in the 6 vector, the block diagonality I
of the N portion of the matrix is but of minor advantage to the solution of the system.

However, in many problems the order of 8 is much greater than that of 8, while at the

same time the order of each '6 is either smaller than that of 6 or else is of roughly comparable

magnitude. Moreover, the number n of *8 submatrices may be very large and without any

particular preset limit. Here, the normal equations can assume enormoub dimensions and

the possibility of a practical solution hinges entirely on the block diagonality of N1.

We shall call a system of normal equations of the form (4), a first order partitioned

system and shall express the coefficient matrix schematically as

(16) . N""
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The sense of this dicjram is the following: the horizontal and vertical arrowsfrepresent

solid rows and columns, respectively, of elements that are not necessarily zeeo; the

diagonal arrow represents a block diagonal array of submatrices; the blank regions

between the arrows represent the portions of the matrix that are completely filled with

zero elements. The arrowheads are indicative of the fact that the size of the matrix can

i •grow without a preset limit. We shall find this diagrammatic representation of a fir:t

I, order partitioned system to be a convenient point of departure in our later discussions of

higher order partitioned systems.

Aside from noting that the block diagonality of a first order partitioned system

provides the key to its practical solution, we have vet to develop the details of the

r solution. We shall now remedy this deficiency. To begin, let us formally define the

inverse of N to be

. ~(17) t4' M /•

where t, M, M are each of the same order, respectively, as their counv'erparts N, N, N

in N. Inasmuch as NM = I, the unit matrix, by virtue of the definition of M, we may

write the equivalent relation in partitioned form to get

(18) M] IM] 0 1
LNTL

Performing the multiplication on the left hand side of the equation and equating

the resulting elements with the corresponding elements on the right, we arrive at the

fol lowing four matrix eqyations:

go jA+ RFT= i
(I9b) NMK4 + NM T = 0

(19d) RT ?& + jFAT = 0

1 -55-
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Since we have already exploited the fact that the inverse of a symmetric matrix

is itself symmetric, the above system of four matrix equations involves but three

unknown matrices; M, M, M. Various mutually consistent solutions are possible

depending on which set of three one elects to solve. In view of the fact that we are

ultimately going to regard R as large, but block diagonal, it turns out appropriate to

select equations (19a), (19c), and (19d) for the solution. Accordingly, first solving

(19c) for MT in terms lf AM, we get

(20) MT N TM
U

and upon substituting this into (19a) and (19c), we have

(21o) f F A - R1 1 RKA
(21b) -FNT MNN +NM =1.

The *2ution of (21a) for M and that of (21b) forM gives

1 22 M =(N -RN MY)
(22b) M• = W'+ R-1 R 1A F W"

Once A has been obtained from (22a), the result can be substituted in (22b) to obtain

M and in (20) to obtain FT. Thereupon, the formal solution of the original normal

equations (2) may be written

(23) 6

Ior as

Alternatively, by virtue of the expression for/M given by (20), • can be written as J
(25) R = - -

-6
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Similarly, by virtue of (20) and (22b) the expression (24b) for • becomes

(26) -f mciTA + Nci NN +f-' MIRNIN/C

The right hand side of which can be factored to yield

(27) 6 =N '- 4TM - NN').

Equation (25) permits this to be written in the more compact form

(28) c - N T .

Equations (22a), (25) and (28) constitute $he major preliminary results that we seek.
They are preliminary because we have yet 'o exploit the block diogonality of I. This

immed;Q~ely permits us to write

N, 0 . 0
(29) N = 0 N2  ... 0

• " 0
0 0 ... N ,:1

Since N is of the form

(30) F 0 N4 ... N R),

the expression Q =iýz NT becomes

SZI -(31) Q= Q 1  R-- '

= Q2

and the expression R = N N -1-: Jq RQ becomes

= ',Q1 + N=8Q2ý+ .. + RL Qr.

= ;R*9 ... +R,
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At this point we recall from equation (12) that the matricet Ný4 and c can be expressed as

r ~~(33a) f4N 1ý+Nrzf+ .+Nlý3

in which Ný41 , ý, are generated by the particular subset of observational equations
co~ntaining "6, (and hence by the some subset that generates Nt, N1, and 'd,). li follows

then, that/• con be written as

(34) M + N, + += *.. , N.-(1 Rg +... R,)i

or as

(35) M•S +Sa +... S,

where

(3$) St= l4- R1 .

Similorily, theexpression 6 -F4 N -&d in (25) assumes the form

(37) Z; - N1 N1' + 162 + -• + , + 6n) -(Qj F1 + Q2;2 + ""+ Q, V',)

+ re + ' + . .. + ',.
where

(38) F-, =6 Q ;ý•

Proceedinq further to examine the consequences of the block diagonality of the N portion

of the normal equations, we find that the expression (28) for 6 can be written as4% N 0 ... 0

(39) 0' 2 .. = 2-

0 0 .. Q ~
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From this it follows that A
,(40) 1 -N

which shows that each t vector can be independently determined once the value of 6

has been obtained.

Inasmuch as the inverse of the coefficient matrix of the normal equations provides

the covariance matrix of the adjusted parameters, it follows immediately from the

foregoing development that

(41) var

Since A has to be computed in order to obtain the solution for 6, the covoriance matrix of

Sfails out as a direct by-product of the solution. A corresponding result does not hold for

the vector 6, for although the covari ince matrix of d is given by A, we found it postible

to b;*:,: the evaluation of A *n the computation of by equation (40). If, however, we

rICw;rr, to equation (22b) and trace through the consequences of the block diagonality of N,

we shall find that the diagonal submatrix of defining the covariance matrix of'8, is

given by

(42) var (" N, I +Q+ Q T t give

Furthermore, the covariance matrix of an arbitrary pair of vectors ip 64 is given by

(43) coy (•1 ' )=QI/Q', (iQj).

This completes the derivational development of the theory underli'ng first order

patterned regression. Because the essential computational flow is perhaps obscured by

derivational detail, it is appropriate that we conclude this section by extracting the

*ssentials of the reduction. We shall take as our starting point the following set of four

matrices concerned vwith the i th group of observational equations: B6, B1, cf, A1 .

Starting with i = 1, one first computes in terms of these matrices, the following five matrices:-
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I A
1 5

(44) 1  AB B1

(48 ZI I A C.4.

(51) R, Pt Q1

A 1 c~A

(15) s1 =i• R I
(52) S, =NA R

(53) -C1
As S, and 'E are computed, they are added to the sum of their predecessors and only the

cumulative sum is retained. After all groups of equations have been processed sequentially

in this manner, one arrives at the final values.

(54) S = " + Sj8 + + S,,,

The solution for 6 is then obtained immediately from

(56) 6M ,

in which/M = S" is also the covariance matrix of 8. Thereupon the solution for each 61,

in turn, is computed from

(57) " U=N •-Q•,

porallel with which the covariance matrix is computed from

(58) var N +)= 0 +Q j QT
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Finally, the observational rosiduals are obtaired by substituting the values determined

for 6 and 6" into the original observational equations, which gives

!• ~(60) v, C- ,- -, .
(0 The s)lient properties of the above solution of the normal equations

characterizing first order patterned regression are

(1) The overall computational effort generally tends to increase only linearly

with the number of parameters being recovered, rather than with the cube of

the number as in adjustments where patterning is not or cannot be exploited.

This renders practical the solution of important problems involving the

simultaneous determination of thousands or tens of thousands of unknowns.

(2) The process of solving the normal equations proceeds apace with the

formation of the normal equutiois Thus by the time the last group of

cbservational equations hmat ýen processed, the great bulk of the computation

crcquired for the solution has also been completed.

(3) Core storage requirements are minimal in a computer program, since

the processing for each of the basic groups of observational equations can

proceed independently of that of the other groups.

Before taking up some of the applications of first order partitioned regression, we would

note that the algorithm (equations (44) to (53)) leading to the computation of S,, r, can

be put into the alternative, more compact form

T F4, N c [ -B ..

!(60ab) = ci•

7,is representation facilitates comparison with the algorithm to be developad for second

order partitioned systems. The application of first order partitioned regression would have

been sufficient for SAGA were it not for the fact that the program's general capabilities

with respect to error modeling can lead to very large N1 matrices.

i• ' "
' m..... .. . i'|i• ••' :'- .... I.. . 1 -'



4.2 Applications of First Order Partitioned Regression .

The original application of the above development was made in Brown (1958o),

where it provided the basis for the adjustment oF a general photogrommetric net. Here, the R
Svector corresponded to the unknown elements of orientution of the cameras and each 'IS

vector corresponded to the unknown X,Y,Z coordinates of a photographed point. One

specialized application of this theory was to satellite geodesy (Brown, 1958b), wherein

the ý vector consisted of the unknown coordinates of a set of cameras and the 'S vectors

consisted of the unknown, X,YZ coordinates of recorded flashes. This theory was

successfully applied to the determination of the precise location of the location of Bermuda

relative to the North American continent (Brown, 1959) and later to a detailed study of

the feasibility of employing similar techniques on a larger scale to produce an ultra-precise

survey of key tracking stations along the lantic Missile Range (Brown, 1960).

Another class of applications of first order partitioned regression emerged in 1959,

when it was recognized that complex problems of trajectory analysis could be formulated

in a manner leading to normal equations of essentially the same form as those successfully

handled in the photogrammetric application. Here, the 6 vector consisted of unknown

coefficients of tracking error models, whereas the ", consisted of unknown X,Y,Z

coordinates of trajectory points. This application (Brown, et.al.19 6 1) became known as

EMBET (Error Model Best Estimate of Trajectory).

In due course it became recognized through application of EMBET to conventional

tracking systems that certain systematic errors (e.g., zero set errors) could often be

recovered more accurately through data reduction than they could be established by means

of hardware. In 1960 Brown suggested that self-calibration by means of EMBET should be

exploited c1s a guiding principle in the very design of new tracking systems. This

philosophy was adopted in the dosign of the GLOTRAC system. Here, unknown

reference frequencies of remote tracking stations were recoveted in a specific EMBET

reduction called GLAD (GLotrac ADjustment).

-62-

_ _ L



In Brown (1964b) and in Brown et. a 1. (1963), (1964), the feasibilIity of selIf- i

calibration of tracking systems by means of observations of satellites was extensively

studied and simulated. This led, in particular, to an important version of EMBET
called NEO-EMBET (N Epoch Orbital - E~rror Model Best Estimate of Trajectory)

NEO-EMBET renders practical the simultaneous reduction of observations of an unlimited

number of satellite arcs with all arcs being interrelated by certain common parameters

(such as coordinates of tracking stations or stable coefficients of error models) but with

each arc requiring the recovery of a fresh set of orbital elements and, in addition, with

each pass observed by a given tracker requiring recovery of reinitialized error coefficients.

In a study performed for NASA (Brown, Stephenson, Hartwell, 1965) it was

recommended that a special NEO-EMBET reduction be implemented in support of the

GEOS I Short Arc Experiment. This recommendation was adopted by NASA and led to

the development of an unusually powerfi rnd flexible program called GDAP (GEOS

Adrust. -t Program) which is d.! ,s- d by Brown (1967a) and is described in detail by

267). A significant application of GDAP to the establishment of a much

improved survey of the GEOS short arc tracking network is reported by Brown (1968).

Under a recently completed contract with NASA, GDAP was employed as the

starting point for the development of a still more advanced program called NAP

(Network Analysis Program). Whereas, GDAP can accomodate an unlimited number of

interrelated short arcs, NAP is able to accomodate an unlimited number of interrelated

long arcs. However, the long arc application introduces what we shall presently take

up as second arder partitioned regression As has already been indicated, the purpose

of the first part of this section is to provide the background needed for an understanding

of second order partitioned regression Before taking up this topic, we would briefly

cite iive more instances where first order partitioned regression has been successfully
rcpplied.

In Brown (1964), the technique was applied to the reduction of stellar plates
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recorded by metric cameras of long focal length. Here, random errors in cataloged

stellar positions become significant. Accordingly, the reduction was formulated so

that pcramneters peculiar to the camera (focal length, distortion, orientation, etc.)

were incorporated into the 6 vector, whereas the correctior.s to the cataloged positions

of the i th star, were accounted for by 6". j -

In Brown (1966) EMBET and NEO-EMBET reductions were developed and

successfully applied to the reduction of Geodetic SECOR observations.

In Brown and Trotter (1967), first order partitioned regression provided the basis

for the development of the Method of Continuous Traces, a technique for exploiting

measurements of uninterrupted photographic traces of sun-illumined, passive satellites

to establish precise geodetic positions. Thu technique does away with the need for

synchronized chopping shutters, thu. eading to less expensive, much simplified, and

more ,,.Tiable data acquisition.

In Brown (1967b) the development and successful application of a plate measuring

comparator is described. The design of the :omparator is based directly on principles of

self-calibration as made practical through first order partitioned regression.

In Brown (1969) the calibration of metric cameras was approached from the stand-

point that parameters of the inner cone (radial and deco.nuring distortion, principal

distance, and coordinates of principal point) are invaricint over an indefinitely large

number of exposures, whereas elements of exterior orientation may change from exposure

to exposure. This formulation of the; problem of camera calibration led to the formation

of a first order partitioned systent of normal equations.

From the foregoing discussions it is amply clear that the theory of first order
partitioned regression has been put to extensive use during the course of the last decade.

Undoubtedly many more applications will emerge in the next few years. There are,

however, as in SAGA, significant problems leading to highly patterned normal equations

that are not amenable to solution by the first order scheme. Many such problems fall into I
the province of second order partitioned regression which is the topic of the remainder of

this section. We expect that during the next decade a host of. applications of second

order partitioned regression will emerge in various disciplines. I
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4.3 Second Order Partitioned R~egression

As in our treatment of first order partitione6 regression, we shall proceed first in

an abstract vein in developing the theory of second order portitioned regression. We

begin by postulating a patterned system of normal equations of the formA

U U,~ U2 ... U O6

ZilT U,1  0 0. 61 C

(61) 'OT o i..o 8

'0 0 0 ...U~ La~J

whichi it will be noted, has the ;ame structure as the first order system defined by

..... -. c...n (4). Also, as in (4), the index n can be indefinitely large. What distinguishes

(6 1) as a second order systemn is its finer structure., The submatrices U, U 6, and c~ ar

of the form

(6c U 11 '01 ... 0Ulu

(62bN N~= N12 N. 00 ~=CI C 1

RT 0 0

N T~ 0 0 ... Ni 1

in which the index inI can be indefinitely large. It is particularly to be noted that each

has the structure of a first order system (and hence can grow without preset limit). This

a second order patterned system. Such systems may be represented diagrammatically as in
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Figure 4. Here, the long horizontal and vertical arrows represent solid rows and

columns of nonzero elements and the blocks arrayed along the diagonal individually•

consist of first order patterned systems. Thus a second order system may be described

as a first order system of first order systems. Similarly, a third order system may be

described as a first order system-of second order systems. Although we shall not be

directly concerned with the reduction of third and higher order systems, we have
provided a diagrammatic representation of a third order system in Figure 5o While we

have yet to find a solid, practical application for a third order scheme, there do

exist, as we have already suggested, many significant applications of second order

schemes.

Let us proceed formally with (61) as if it were a first order system. We could

then follow the procedure of Section 1 to ,otain a solution first for 6 and then for each

of the 6", in turn. The practical difficulty with this approach is that the UJi unlike

their counterparts in a first order scheme, may grow without set limit. While it is

true that the required inverse of each U• could be computed from the algorithm developed

for the first order scheme, the pivotal fact is that alth ugh U1 is itself a sparse matrix, its

inverse is not necessarily sparse, and indeed may be completely filled with nonzero elements. j
It follows that the formal solution of (ol) for 8, given by the expression

(63) U=I: (U 1 - vL u ] [l (, u, c]

is computotionally practical only when the dimensions of the " are reasonably small.

Accordingly, when the LJ, are considered to be indefinitely large, the above reduction

is untenable, and the algorithm developed for a first order system cannot be applied

directly to effect the reduction of a second order system. As we shall see, however, it

can be applied in an indirect manner to produce a practical reduction.

Let us represent U1 more compactly as

In M



I 2I

J

FIGURE 4. Schemctic of coefficient matrix characteristic of a second order
partitioned system of normal equations.
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FIGURE 5. Schematic of coefficient matrix characteristic of a thhrd order partitioned
system of normal .,quat ions.I
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which corresponds to the partitioning in (62b). If we then designate the corresponding

partitioning of U1, 0, andct

(65b) U,

'I
(65c) c

and also recognize that U and c can be expressed as sums of U, and c,, we can express

equation (61) in greater detail asjU- 3.• o, o ...o oJ U, 6

Ol 0 o...o0 0
aI 1A 0 0J ... o 0 0 ,

(66) UT 0 0. "' 0,.. 0 6

T 0 0 0 0 *... I Fl bi t It. ., . 4 l'

UT C o ' o ... NT •=. •=
The expression "Uj UT appearing in (63) caby virtue of the above partitionang, be

represented in expanded form a
II

(67) U U ,' T D
LT. Nj UoT

II
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As in Section 1, we let

,(68) t I ',

By virtue of the results of Section 1, a more detailed representation of the right hand

side of (68) is

(69) t ML'• ~ -Qj N, +-,Q . .,,M,;

From (67), (68), (69) it follows that

(70) U u u• UT (U u / . .[/ -I-,M N1 + ýQTMQJLUd•

which reduces to Q U..• , • • • . -T -U, ( IT + -ýlD + U M , Q U

(71) U 1 U U -= U M1  I t I u Q

This may be written as

(72) U ),UT U= U, N UT u+ (U -uiQI)M~ u )

In a similar manner, we find that the expression U1 U1 ý in (63) may be written as

(73) U1 U id = U N1
2C + (U1 UT Q0 M, (ýl - QT

Although it is not yet readily apparent, equations (72) and (73) constitute the key results

that make practical the reduction of a second order patterned scheme. This is because.

the evaluation of certain critical quantities in these expressions can be performed in terms

of sums of matrices of low order that, in turn, can be readily evaluated during the course of

the reduction of each of the first order systems implicit in the second order system. Before
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we demonstrate this, it is convenient to proceed as If the quantities required for the

following set of auxiliaries

(74) CN 1 =1 5U1  Q 1

(76)tN R,=N1  N1N N)

(77) CJ - 1 N;1 c,

*(78) CU], 1  07c

* As might be surmised, these auxiliaries have been formulated to be analogous to quantities

involved in a first order procass. The analogy is carried further with the formulation of the

following set of secondary auxiliaries:I (79) [Q], = CN) 1 [N]J'

S(80) CR)I, (R, [Q 31

(81) [S)t =[NX'- CR)1

(82) [Z], [6]- CQ]T [FJLIAs the CS)I and Cc], are formed, they are added to the sum of their predecessors. ThisI leads ultimately to the formation of the sums

(83) CS) =cull +1163a+**+Sa
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But these are equivalent to the expressions in brackets on the right1 hand side of (63),

a direct consequence of the fact thatI

j(86) CU3~ 1 c,- U 1  c~Z~,

I

Accordingly, the solution for 8 can be writtenj

In which tM) is defined asj

(88) [I)=S],

Once has been determilned and eliminated, the second order scheme collapse$ to the

independent reduction of n first order schemes. Specifically,

(9) U

But by virtue of (62b) and (62c) the expression Un c 1 Is the same as

N1 Ni Ni ... 0i it1

NT .0 c.;

(90) d c NT1e 02 ... 0

the practical evaluation of which is precisely the problem considered In connection with

firstnorder partitioned regression. If we let the vector

(91) 0,
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denote the intermediate or provisional solution obtained by applying thie first orderI
process to (90), the final solution may be expressed as

(92) 61= 6,-CQ 31 .

This shows that the reduction of a second order system may be developed in termsI of

Independent reductions of n first order systems,the solutions of which ore subject to

subsequent modification once the vector 8 has been established.

The practicality of the above reduction hinges on the fact that the dimensions of I
the five basic auxiliaries C),[R]1, C N): ]', ( c.~id [F)i are determilned by the

orders of the vectors 8 and 6 which, unlike those of the vectors W,, do not increase

with n , Accordingly, these auxiliaries are not subject to unlimited growth as mace

and more data are processed. However, it remains to be sho~wn that their computation

Is a practical matter, for this question had been bypaEad in the development beginning

with equation (74).

We begin by anticipating the result that the primary matrices U1, U1, N,' ell ell
that appear explicitly in the second order system (66) are eae.% expressible as sums5 of

matrices generated at the level of the double subscripted matrices R ~, J#A CA Thus

we write

(93a) 1 =Us% + Ulm+ .+ Olul,

(936) 6 1  Oil IU8 +. n

* (93c) K1 t I rJ1% +~ 12 + .+ Nia,f

(93d) C~ =a1 il+C1 +.. jCi

By virtue of the partitioning of U1 and N1 implicit in (62o) and (62b), the expression

N1 U reduces to the form
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(94) N

in which Q t is defined by

(95) Q1 =N, Ulij

If we then define the additional auxii'arlas

(96) R: "U:Q

it follows that [E] 1 can be expressed as

(98) CfN)I =CFJ 11 + [i4] 18 + + CF31 ,

and similarly that Cýt3 can be expressed as

-. 7,/(99) £C) a =111 + [ills + + 163t',

In which

Because Us and Q1 are raw and column vectors of U14 and Qt, respectively, It further

follows that CN], can be expressed as

(101) E N) = [)1 + C 43a + " + C

in which

-I(10) )N4|• =Ulj -Ujj Qj-

, -74-



Finally, we note that the matrices and C€'• C s .would be generated

during the normal course of the reduction of a first order system. It follows, then,

that by augmenting the reduction of a first order system by the generation of

equations (95), (96), (97), (100) and (102) (all of which involve simple operations on

matrices of low order) and by performing, in a cumulative manner, t+e summations

(98), (99), (101), one can generate the auxiliaries (74) through (78) that are required

for the reduction of the second order system.

We shall shortly extract from the above derivation a concise computational

outline of the reduction of a second order system. But before so doing, we shall

clarify certain points that might still be obscure. First, let us return to the matter

of the evaluation in (63) of the expression UI Ut UT which we pointed out is
impractical to accomplish in a direct mo.nner when Ui, is large. The key to an

appreciation of precisely why the indirect reduction just derived is practical, whereas

a direct reduction is impractical, lies in a consideration of the final term on the right

hand side of equation (72). This term can be written out more fully as

UT

(103) U1 Q M Qr 'OT [-i D 12 1 .. DM [%] Q QT .T~ Q~ T .

Q UT

The amount of computation requ.red for the evaluation of this expression depends

altogether on the order in which the multiplications are performed. An inefficient

reduction would consist of evaluating first the expression Q0 M QT and then pro and

post-multiplying this result by U, and UT. An efficient reduction would consist of

evaluating first the expression D0 O, and then pre and post-multiplying A, by this

result and its transpose. To see this readily, suppose that A, and the UD , and Q

were 911 scalars. Then one could easily verify that evaluation of (103) by the

inefficient procedure would require on the order of 2n• multiplications and no additions,
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whereas evaluation by the efficient procedure would require about 2n, multiplications

and n1 additions. Accordingly, the practicability of the reduction of a second order

system can be said to depend essentially on efficient manipulation of matrices. The
direct evaluation of the key expression U jU is impractical simply because it

entails matrix operations that are inefficient in view of the desired end result (note here

that the full inverse of U6 is not generally of interest, and hence its evaluation as an

intermediary is of no direct value). By examining the finer structure of this expression,

we find that means do exist for its efficient evaluation, and it is this fact that leads to

a practical reduction of a second order system.

It will be noted that in developing the reduction of the second order system we

adopted notation paralleling that used in the reduction of a first order system (compare

equations C79)-(89) with (50)-(57)). 1-10 suggests that the reduction of a second order

system is Akin to the double application of the reduction of a first order system. That

this is indeed so is especially obvious from the following alternative development

attributable to John Stephenson (private communication). The original second order

system (66) ctn be rearranged as follows

U2... jUii U2  ..
= 0I 0 .=

U 0 0 ... o . 0 ... o 6 i

UýT o ... 0 , 0 ... 0

: .I. - . I '
* . - . ..

U; 0 0 RT. 0 0 ... 6"... ... 0 iT: -.76
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Let this be abbreviated as follows in accordance with the partitioning indicated by

the broken lines:

.1(105) L..i i cc
Then the reduced normal equations in the vector 6 as obtained by application of the

first order algorithm for the elimination of " is

(1o6) -•-'P i•P) I --T '-'•i"•"

It is readily verified that the expressions " and'N P P reduce to .

Usi"l,. • N, UT ,• oV f , Do ý,'F ... U. ..-IF' N1 C,"•

0 0 PP NA R

The key points here are that P" PPV' has precisely the same structure as P and that 'N* "

is a block diagonal matrix. The latter fact permits the elements of the above matrices to be

expressed as sums of low order matrices. Thus

Oi N D W1 UTJ

D1 N F NI= RT N 1 '

(108) N1 NN1 is, is I
,I N, C, i j cis

.-. 7,



where all the sums run from j ito n,. The form of the reduced normal equationsi (106) is

(109)

S(•-• N UT0) 0, -• l F-41N 0,-• No U•.. ,-••, UT, c 1 c-, •)UI , N 
N.UT.

OT -F4N NI UT .0 lq, f- l 4T 0' 68,: N9 N2 in-- "- " -
N,, ... I o,, =lli"N 6, "•-NN, c*,

which in v'ew of the auxiliaries (74) - (78) may be written more concisely as

*[N], [ N) 1 [N)2 ... 0N3 6I-- I_

(110) EN4]T 0 EN ], ... 0 C= C')
. . . . I
N•,)3T  0 0 ... EN]3 c, C'11  j

This reduced system is itself a first order system and its reduction proceeds in accordance

with equations (79) - (89).

The above development makes it clear that the reduction of a second order
system con be accomplished be a double application of the reduction of a first order

system. All that remains to be done is to transcribe the reduction into a concise

computational flow abstracted from derivational detail. To do this we begin with the
fact that the system of observational equations that ultimately gives rise to the second

order system is of the form
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i= 1,2,...,nl

The covariance matrix A associated with the observational vector is considered to 66

diagonal and partitioned as

(112) A diag (Al Aa ... A,)

where in turn

(113) A = diog (Ai Ala ... At,,

The algorithm for the reduction of a second order system then begins with the evaloltwon

of the following array of primary matrices

pT

In erm o thse hefollowing primary reduced array is formed

U1 UU 13 U1 .. _ -3

rL [sIs Ij Ji
(11 ) 1 CNJI DT CIT N

As each such reduced array is formed it is added to the sum of its predecessors thereby

producing, after running through j = 1,2,.. .,n ,

(116) ENL i ~ ~I

N__T

31~~~~ til ý1 [ERj C]4EU13
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The provisional solution for • is obtained from this array by means of I

(117) &• =CNE 1  i

As each array of the form (116), is formed its elements are operated on to form the I
secondary reduced array ji
_(I118) 1[ Sit C~c]I, j[CrNJ [a11 - ~~1[R],)7 [cý 1  9 3TI C

These are then-summed as they formed to producetafter I has run from 1 to n,

(119 [is] EL1 ES) 1  Cc],c

In terms of these, the solution for 8 is

(120) 6 = ES)37 1 C.61

The revised solutionsfor each of the 6 are then obtained from

(121) Efi]-' E CN) E4 6 i l,2,...,n

and in terms of these the solutions for each of the 86 are obtained from

ý(122) is. 4 1•Ict ••NI•

With 8, 61 and 6 1 thus determined, the residuals may be computed from the

observational equations (111)

(123) v,,=Cis(t- O +Bis 14 +ampted f]

Alternatively, if the reduction is iterated until the corrections to the parameters become

insignificant, the residuals may be computed from

(124) vts CisJ



A

whcre C now denotes the discrepancy vector arising from the substitution of the
final values of the parameters into the original observational equations.

The error propagation associated with the adjustment requires the computation 5
of those diagonal blocks of the inverse of the coefficient matrix that correspond to
the vectors 6, a nd For B we have immediate.y
(125) var(6) S

For 8i, the appropriate result is

(126) var('s) = CS]j'+ C(JI CA C[6],

where [Q] 1 = EN]1 C F]JT Finally, that for is given by

(127) var(6, W)=N1 +Q1 j var(6 )CT,

where Qt Jw, NJ".

Equations (114) through (127) provide in concise form the complete reduction of a
second order system. Such a system can become indefinitely large in either or both of
two ways: namely, n can become indefinitely large (as in a first order system) or some or
all of the n, can become indefinitely large. When the reduction of a second order system
is accomplished by means of the above algorithm, the overall computational effort tends|
to increase linearly with the dimensions of both n and n,. Unless the dimensions of the I
N1 and ill matrices are grossly disparate, the precise manner in which the normal
equations grow is of little computational consequence. To conclude this section wewould note that the three points listed at the end of Section 4.1 as characterizing the

reduction of a first order system apply equally well to a second order system.

4.4 Applications of Second Order Partitioned Regression

Although the programs SAGA and GDAP are both short arc reductions, they do
not apply the same approach to the solution of the normal equations. In GDAP, the
algorithm for a first order patterned system is employed. This is practical because the
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U, characteristically generated in GDAP reductions do not become excessively large.

Thus relatively little is to be gained in GDAP from application of the second order

algorithm. In SAGA, on*he other hand, the U, can become quite large, particularly

when error models are reinitialized several times over a pass at many of the participating

stations. For this reason, SAGA employs the algorithm for second order systems, and the

program's capabilities are thus considerably expanded over what would have otherwise

been practical.

-I
I,_

I
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5.0 AUTOREGRESSIVE FEEDBACK

5.1 Introduction

SAGA has an option designed to take serially correlated errors into account.

This capability is of particular value when high sampling rates are exercised, as in

optical chopping of passive satellites. Here, successive observations are likely to

inherit common, slowly changing errors by virtue of their proximity in time and space.

Even though such errors may be well submerged in the noise, they ultimately set limits

to attainable accuracies - limits that cannot be overcome by increased sampling.
Thus, we can assert that in optical chopping, a set of 500 points on a given plate is,
by virtue of low order serial correlation, unlikely to contain significantly more

information than a representative sample of 50 points. Indeed it can be suid in general

that, even with systematic errors complettly removed, errors in most channels of tracking

observations are not likely to be strictly Gaussian in character, but, rather, are likely

to be serially correlated to a greater or lesser degree. In Brown, Bush, Sibol (1963)

we suggested that the key to the practical resolution of su'ch difficulties might well lie

in application of a basic result of autoregressive theory derived by Wise in 1955 ("The

Autocorrelation Function and the Spectral Density Function," Biometrika 42, pp.

151-159). In Brown, Bush, Sibol (1964) we enlarged on this theme and developed the

essence of what we now call 'autoregressive feedback.' We have since implemented a

limited version of this concept in a successful application to the reduction of geodetic

SECOR observations, Brown (1966). Not only does autoregressive feedback appear to

provide a practical answer to the problem of serially correlated errors, it also appears

to be an excellent means for taking into account the effects of unmodelled systematic

error which induce serial correlation into observational residuals resulting from a

conventional adjustment. We consider autoregress.t-e feedback to be an exciting

development, particularly since, as will be seen, its implementation can be so readily

accomplished as a natural adjunct to conventional adjustments which ignore the

presence of serial correlation Its incorporation into SAGA provides the program with

a capability that, we feel, will become of increasing importance as the significance of

serial correlation becomes more generally appreciated.

-83-
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5.2 The Autoregressive Model

A stationary sequence of serially correlated errors c(, cl-., ir-g,"

is governed by an autoregressive process in which

(1) Z1 = a•.l +0•t2 ..g + ... + p + i Ct.+ +?

where the a's are constant coefficients and 17 is a random impulse of zero mean and

variance 0 . According to this process, the i th error in the sequence is generated as a

fixed linear combination of a set of its predf zessors in combination with a superimposed,

strictly random impulse. The process indicated in equation (1) is said to be of pth order

because p coefficients are involved in its description. Specific examples of the

character of errors generated by various first order autoregressive processes are to be

found in Brown, Bush, Sibol ?1963). Exporience thus far indicates that autoregressive

processes of low order provide :vtisfc; -tory stochastic models for errors encountered in
channels of tracking observations. In the case of Geodetic SECOR, sampled at rne

point per ten seconds, a first order° process (i.e., el = oil ct. +ti1 ) has been found

generally to prqvide a satisfactory description of the error process (Brown (1966)). In

Section 5.4 we shall provide statistical criteria for what constitutes a 'satisfactory'

autoregressive model.

5.3 Inverse Covariance Malrix of Autoregressive Process

As we pointed out in our earlier work, the practical utility of the autoregressive

process in the adjustment of tracking observations stems from the fact that, for a given

se' .if autoregressive coefficients (which, as we shall see, can be estimated from the

observations), one can compute the inverse of the covariance matrix of the observational

channel analytically. Equally !,-portant, the inverse turns out to be a multidiagonal

matrix, the number of diagonals being equal to 2 p+1 for a process of pth order. In

Brown, Bush, Sibol (1964) we showed that the basic result to this effect derived originally

by Wise could be put into a more convenient form. Namely, if A denotes the covariance

matrix of an autoregressive process aoverned by coefficients ac=, ... , av, then A-
can be expressed as the following product of lower and upper triangular matrices:
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(2 a) •s... a". ja1i -1 0 0 ... 0 0 -1 a! fz *... In.,

( 2 a -1 0 a., 0 0 0 -0 d1 0;,
a a a1  -1 ... 0o o 00 o-i , *. . .

* 5 0 0 6 5 * * *

*'n-i amn-1  rn ..4  ,.. -1 0 000 0.. -
L -

in which %n= 0 for n >p. If this result is applied, for instance, to'o third orderprocess involving coefficients a, 02, ý ;, one finds, upon performing the above

matrix multiplication that A-' assumes the form

I
a.-3 b.-2c..id\0 0 0 0 .. , 0 0 0 0
t ab.-,c d\ 0 0 0 .... 0 0 0 0
C..1 .. a.a-ib c d O 0 ... 0 0 0 0

d c b c d\ .. 0 0 0 0
0 c b a b c ,..0 0 0 0

0 0 \d c b a b c .. 0 0 0 0
00 0 0 d 0 0 ....b - ii

(3) a A' = 0 0 0 c b a '0
*%.,. . ...

* \ • . . S0 0 0 0 .0 O0' *0 .... a b a '.d

0 0 0 0 0 0 0 .. b a.-ib-i...I
0 0 0 0 0 0 0 0\.dc.4 b.a.. ab.,!• _°00 00 0 o0 00 .. d=zb=.

] q.
II.._

• -- . Z . .
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in which

ao--+~a~ .~ i.a'r .c4a 2  + 1  .. m
b ~ ~ +-r *"1z • I = +er + 0I -2 +'

b b -al+Ctl % + 24 % b-.,.1  -a +a1 &I b..2 -
(4)

d=-Cf

This illustration is sufficiently general to demonstrate certain. properties of the inverse

that are of pivotal impMance to 6ur concept of autoregressiv. feedback:

(1) the inverse is multi-diagonal, the number of diagonals being
equal to 7 for p=3 (or equal to 2p+ 1 in general)

(2) except for pxp submatrices comprising the upper and lower
comers of the matrix, the elements of each diagonal areconstant, the number of different constants being equal to p,

the order of the process .

(3) the formulas for the elements of the matrix are subject to a

systematic, easily generalized development.

Expressions foi- second and first order processes can be obtained from the above j
development by successively equating 0 and C12 equal to zero in eqs. (4).

5.4 Estimation of Autoregressive Coefficients

Let usassume that by some means one has obtained a vector of residuals
S(VI, V2 ,.,Vn) that constitutes an estimate of the vector of actual error$

('61, IE2r•, ed). One can then generate a set of autocorrelatlon coefficients

P2,Ps, .. in the usual manner from

T Vi vI'-kII
S~-86.-
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If we now write the autoregressive function in terms of residuals

(6) v --V t+toa+jv. +. &P VIP4+1k
and regard this as defining a set of observational equations involving the auto-

regressive coefficients as unknowns, we can employ a least squares adjustment

to generate a system of normal equations for the determination of :the G,.

These turn out to assume the form

"P2 P1  1 P1  1S(7) P3  P2 P1  ... PP 04

p-I p-2 P-32 " Pp

In practice, one would wish to establish Mne autoregressive process of lowest order

that satisfactorily models the observed process. To do this one would begin with a

first order process which, from (7), would lead to the estimate

I

(8) a P 1  .

From this one would compute the secondary residuals 77, from

(9) 71t C1 -
0 11- 1
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If these secondary residuals turn out to be serially uncorrelated, the first order

process can be accepted as satisfactory. To determine whether or not the 7 s

are independent, one would first compute their first order coefficient of corre-

Iction from

(10) r _ ._ _,

To determine whether or not r is significantly different from zero, one would

employ the wall known result that the quantity

(11) z=I In.--.lr-
1-r

Is approximately normally distributed with mean and variance of

(12) /.,=j In
1-p.

(13) o = 1/(n-3)z

In which p is the true, but unknown, correlation coefficient. Itrfollows that, at

tho 95% level of confidence, r will differ significantly from zero only if

(14) z > 1.96/ In-• .

If r should turn out to be significantly different from zero, one would then try

a second order process. Here, according to (7), the coefficients would be estab-

lished from

t -.88
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•1) P, C12 P2

I

which has the solution

kA= P - P0•, p)/(1-p),
(16)

&Q 1- +Pavo-.1).

The secondary residuals for the second order process are

S(17)El " (i- + O'2E 1- 2 "

One would test these for serial i,.dependence in precisely the some manner as

1 described above for the first order proeess.

The above'procedure would be repeated until a satisfactory fit is obtained. I
Surprisingly, the simple first order process has been found to be altogether sufficient

for ranging residuals in most cases we have so far examined. Once a satisfactory

j autoregressive model has been established, the spectral density function can be

computed analytically from the following elegant result derived by Wise:

( (18) V(e) = or21(-+ + e+ 08 + pe)(- + &I e7e'+ 010"28+."

&I/-1c e + 02 e + a aPeep

where 1 = f and 0 assumes the discrete sample values

27r 41r 67r 2(n-1)(19) 8 =r -2"-v' •'"" -E-

1 ' .-89- r
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If At denotes the time between successive points and T = n At denotes the total

time span, 6 may be put in the form

2 1&
.(20) e0 r 1, 2, =l2''n

where 61 may be sold to correspond to the frequency of 1/ 2 j At cycles per

second. For the first order process, eq. (18) reduces to the following well known -

expression for the spectral density function of the damped exponential outocorre-

lotion function:

(21) v(6) = .a 2/( - 2 cos 8 + p2) 4
I

in which we have set &I= P.

5.5 Refined Normal Equations (Single Channel Case)

From the foregoing it can be seen that a successful autoregressive

analysis of residuals provides the solution to two centrcl problems.of random error

on~lysisx (1) the determination of the inverse covariaoncu matrix of the observational

vector, (2) the determination of the spectral density function of the error process. I

It remains to be shown precisely how this information'con be used in a refinement of

the adjustment and what its use entails in the way of additional complication. For

this purpose we shalI consider the specific case of an adjustment of a single channel

of observations governed by a first order autoregressive process. This Is sufficient

to demonstrate the general principles of the operation. Accordingly, we let

P 
'I
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define a first order process in which ýj

(23) E•(q) 0

- (24) var ai ) = . 2 (variance of high frequency component of noise).

(25) cov(l,llk) = 0 for all k> 0 0

Then it is easily shown that

(26) E.(c 1 ) = 0

(27) var (C1 ) = a2/(l - P2) - ,otal error variance,

(28) cov(Cl•P.k) = -

(29) car (cI'iEI-k) = p "

It follows that the covariance matrix A of an n vector of errors is

( A1 p p *2  [n
P I A " . .. p,n -1

(30) A= o p2 p I go* pn-2

: : pn-2 : ..

1 ~-91 ,
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Let us now assume that the observational vector is employed in an adjustment.

Then the normal equations can be expressed as

(31) (BT A B) 6T BA c

in which 6 denotes the vector of parametric corrections and the matrix B and the
vector c can be decomposed into

(32)B A 2 [ L
"Lbln

where the b s ore row vectors of order equal to that of 6 and the c' s are scalars.

in a conventional adjustment the covariance matrix is taken to be diagonal (P=0),

and its inversion is, therefore, trivial. In the present instance, however, the covar-

iance matrix is completely filled (eq!.(30)), a fact which introduces complications.

Because A is in this instance generated by a first order autoregressive process, we

may employ the results of 5.3 to write immediately the following expression for A,

-I -p 0 0 ... 0
p l+p 2  -p 0 ... 0

' ,.1 1 0 -p 1 + 2 _p too 0
(33) A 7 0 0 -P l ... 0 p

0 0 0 0 ... 1
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We shall now trace through the consequences of the patterned and regular

structure of A-. First we note thatA71 can be decomposed as follows:

(34) q"2- =. - PU - puT p)2A

In which I is an nxn unit matrix and U and Aare nxn matrices of the form

-0 11 0 0 ... 0-

0 0 1 0 0 0 0 0 ... 0

0 0 0 1 0 , 0 0 ... 0
(35) U "A.-

. . : . ... . .

0 0 0 0 ... 1 0 0 0 ... 0

_0 0 0 0 ... 0 -0 0 0 ... l-

If we now let N denote the coefficient matrix of the normal equations, we may

Swrite

(36) N = BTAI B
S- ~b,-

-= 1 (bTbT .. U bn ) PUT-P2,I b2  *

T bne t

This expands to
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T T T

T T T

T T

- (bio b, + b• +.÷h_ b.)

If we define

(38) Abi b,- bi

end note that then

(39) bi... bi bi- (bi-,. + Abi 1.) bi I i- + bi-,. &bi,

T T T T
(40) bi bi-, ibi(bi Abi-. 1 ) bi bi b IAb II

It follows that

T +T T T tb bT..
(41) bi-,1 bi+b61 b i-, bT - bi. bi + Ib. -I6b) 66-

T T T=b1._1 61 -.1 + b1 61 + j ~ 461-

When this result is substituted into (37) and appropriate algebraic manipulations

ore performed, one obtains

N,=) [(- P Q (b----T

N =-.-1- (1-2BTB+ P')BT bi + b -b +.. .+ b, Tb)
(42) +P (&bi &bi +Ab2 Ab2 +...+ Abu.._I L6n-

+p (1-p)(b1 bi + b. b.)~

which is the same as

- or

S.-.-- - - ~-9-- -- *--- - . - -- -------



in which

tb ~ b - b,

Ab2  b3  b2

(4)A B -

In an analogous manner one obtains for the right hand side of the normal equations

T -
(45) c BA C

-~ I12 pBT Ac +p(I-p)(bL El + .c

in which

(46) c

Equations (43) and (45) are the results sought. In analyzing them we first

note that when P= 0, the normal equations reduce to the usual expression:Ii

JT T(47) -L(B B) =- B C

Next we note that since AB and Ac are of first order, the expres ions.AB AB andI TAB 6~C are of second order and one can assert that
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T T
SB >> AB AB,(48) RT~Bt >>T

This imrplies that as long as P is not too close to unity, the normal equations will

be dominated by the leading terms and the solution vector 6 will be only slightly

dependent on the value of p. Hence in some situations the solution is but weakly

affected by the presence of even rather moderate serial correlation. Be this as )
it may, the covariance matrix of the solution vector is very strongly dependent on the

degree of serial correlation. Even when BTB domi-notes the normal equations, the

covariance matrix of the parametric vector is given by

"(49) E: AL .(BTB) -1
P _P (1-P) 2

.. ihus, f P were actually equal to 0.9and one were to ignore this fact in the

adjustment, the solution vector itself would probably not be very much affected

ffor the factor (l-P)) of the leading terms on both sides of the normal equations

would cancel out), but the covariance matrix associated with the solution would

be incorrect by a factor of 100 (or f/(t-p)•).

Because of the relative insensitivity of the solution vector to serial correaition,

the residuals from the adjustment are also relatively insensitive to serial correlation

(remember we are considering here on adjustment restricted to a single observational

vector). This means that it is a sound and defensible practice to estimate the 1
autoregressive function from residuals of a.preliminary adjustment in which the •1

observational errors are initially considered to be uncorrelated. The autoregressive

function thus initially determined can then be fedback into the solution according

to the development of this section and the resulting, more nearly correct normal

equations can be solved to generate fresh residuals for a more refined autoregressive

-. -- ~~~~-6-----.--.5
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analysis. Clearly, this process can be iterated to stability (ordinarily, a

single iteration is sufficient). Thus autoregressive feedback is an adaptive

process that ultimately becomes independent of initial or a priori estimates of I
noise variance.

Returning to the normal equations (43), (45), we note that the extra

computations entailed by rigorous consideration of a first order autoregressive

process are surprisingly minor. The BTB and BT c terms would have to be computed

in any case and the ABT AB and ABT At terms, being of similar form, follow the

some logic. Moreover, as Is clear from (42), the equations can b-. formed in a

cumulative manner, the 14 st step of which would involve only observational

equation. from thq i th and r+1 st observations. Hence, the formation of the

Sonormal equations for a first-order process entails a scheme in which a moving pair
S! ~of successive observatliana equations are processed at each step; similarily, a

second order process entails a scheme in which a moving triplet of successive

observational equations are processed qt each step, and soon. A major benefit

to be derived from the admission of an autoregressive process into the adjustment.
is the attainment of more recaistic results from error propagation. In

particular, it would permit one to extract whatever advantages are to be gained

from moderately high sampling rates without paying the usual penalty of an absurdly
optimistic e:timation of output accuracies.

5.6 Normal Equations (Multi-Channel Case)

SIn the preceding section our consideration was limited to an adjustment

involving only a slingle observational channel. Let us now turn to a multi-channel

adjustment in which each channel is serially correlated. We assume, however, that

serial crosscorrelation either does not exist, or else is ignored. Thus the various

observational vectors are statistically independent of one another. Let us now

consider the problem to be one of orbit determination in which a set of error

JIii -97-



- coefficients is to be recovered for each observational channel. Let 6 denote

the vector _' orbital parameters and let ii denote the vector of the error parameters

for the i th channel. Let us assume momentarily that only the ,th channel is to be

exercised in the adjustment. Then the normal equations can be written in the following

partitioned form

NE N, N

(50) N [

Since this system corresponds to but a single observational channel we may apply

the results of the preceeding section and assume that auloregressive feedback has

been exercised and that the normal equations (50) rer se end product of the

process. In this regard we would caution that in practice one would have to

exercise temporary, coarse a priori constraints on the parametric.vector in the process

of single-channel autoregressive feedback because of the near singularity

chara:teristic of single-channel orbital determination (especially when error models

coefficients are also to be recovered). Such constraints would not be carried

through the final set of normal equations (50) inasmuch as this system is not to be

sclved as an independent system.

Let us now assume that similar, individual and independent adjustments

exercising autoregressive feedback were performed on data channels i and k

which are also exercised on the same orbit. The corresponding normal equations

may thus be written.

(5j~ -T T
I N L6J N6 Ný I j
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We observe that although equations (50) and (51) involve different parametric

vectors, the subvector 6 is common to all three sets. Lot us now define a
composite paramerric vector for all three channels as

6 '

(52) 6

I.I
i "

We may then augment each individual set of normal equations with appropriate

sets of zer, elememits so that all will operate on the composite parametric vector.

Thus we get ... . . L-. _ # . ... .. .. . ..

(53)

0 0 0 0 6
_0 o 0 0 _0N N1 0 0 6

0 0 0 0 6. 0=

(54) • o •S o0 . 0 6 _

0 0 00 0

(55) '

L 0 0 ijL
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We are now in a position to apply the rule that sets of normal equations formed

from independent observational vectors and involving a common parametric vector

can be summed to produce the normal equations appropriate to the simultaneous

adjustment of the merged set of observations. Accordingly adding (53), (54), (55),

we get

N, +N, + N , Nj N~ ' c1 +CJ+ c--------- ---------------- ---------- I
-4TII 1 0 0

T 0 0

Except for the fact that we have yet to introduce the a prior; constraint matrices

recognize (,6) as being of the form of a first order patterned system. By following aW~ n upeetr icepnyvcos(,~ i;w

similar developnent we could show that a second order patterned system of normalj

equations will• remain unaltered in form if autoregressive feedback is exercised for

each of the observational channels. It follows, then, that the exercise of autoregressive

feedback in SAGA does not seriously interrupt the general character of the data flow.

in the computational outline provided in Section 6, we anticipate autoregressive feed-

back by the artifice of proceeding as if each channel were governed by a fPrst order I
process having a prespecified coefficient of correlation. In general practice, each

sucn coefficient would, for want of a better value, be set equal to zero in the initial

reduction. However, if the autoregressive feedback option is exercised, the prespecified "

values would automatically Le replaced in a repetition of the reduction by values

estimated from the residuals computed From the initial reduction (iterated to convergence).

I ~-100-''
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6.0 COMPUTATIONAL OUTLINE OF SAGA

6.1 Introduction '

The analytical basis for SAGA has been developed in the ea ;ier sections. However,

in these sections actual computational steps and flow are largely submerged in derivatlonal

detail. The purpose of this section is to extract from the derivation the essentials of the

actual reduction. Our concern here is with the heart of the reduction and not with

peripheral operations. We assume all appropriate preprocessing has been performed for

each observational channel. Computational details of various prerocessing routines

available to SAGA are provided in Part II of this report. Part II also provides details of

the program itself - set up procedures, running insi -uctions, flow charts, etc. In addition,

it outlines results produced by SAGA for a tracking network of twenty stations participating

in the observation of twenty seven passes of GEOS A. The network exercised the Goddard

laser, the Geodetic Secor system and various MOTS and PC-1 000 cameras (Geoceiver

observations are not expected to become generally available until 1970).

No attempt has been made in the outline below to present the reduction in minute

detail. The outline, rather, is intended to serve as a guide to a programmer who in turn

is guided by an analyst having a sound understanding of the mathematical derivation of

the reduction.

One point regarding the outline requires special clarification. Ths concerns the

option for autoregressive feedback. In formulating the computations we have found it

is convenie,t to proceed as If the autoregressive coefficients were known at the outset. In

practice this will not be the case and values of zero will be initially employed for the

coefficients. However, if the autoregressive feedback option is exercised, nonzero values

of the coefficients will became available from the residuals resulting from the initial

solution. Thus our formulation is designed to anticipate the possibility of revised auto-

regressive coefficients.
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6.2 Computational Step

A. Constants I
a) All station data, baseline constraints, etc. are available from Master Survey File.

b) Standard schedules of sigmas and correlations of observations. I
la) a,, pt standard schedule number 0 for x

Ib) •x, p, standard schedule number 1 for x

2

2c) a7, p, standard schedule number 2 for x

2a) ay, p7  standard schedule number 0 for y

2b) a07 P1  standard schedule number 1 for y t

2c) c, p1  standard schedule number 2 for y tmn

3a) a. standard schedule number 0 for optical timing
3b) a0 - standard schedule number 1' for optical timing I
3 c) o'q standard schedule number 2 for optical timing

4a) y, p, r standard schedule number 0 for ranges

4b) r,, P,, ar standard schedule number 1 for ranges

4c) o',, p,, ar standard schedule number 2 for ranges

c) Standard schedules of sigmas of error coefficients.

la) aCra•,ax a©,crt standard schedule number 0

Ib) .a r,acrx , atcrt standard schedule number 1 optical

Ic) cataax, a©,ar standard schedule number 2

2a) Uao, I a, #,aA, o's, a&o standard schedule number 0

2b) 0 , , 0%, , % standard schedule number 1 electronic

2c) CF... ,,•• a. , ,• , a+ * standard schedule number 2
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d) Standard schedules of epochal sigmas.

la) sCr or ,#r ir standard schedule number 0

Ib) a raead jaja, standard schedule number 1

10 orxa3,,,o r ifst ad scandeard schedule number 2

),harmonic coefficients f gravity field
n "0, 1,2,3,4

f) =mean rotational rate of earth

B. Data

a) k = pass number

Tt = epoch of K th pass

b) fir, 2T aTn •ls, t tim" approximate values of inertial initial conditions at t -T

c) cj -0, lor2

= -1 if nonstandard schedule of epochal sigmas to be used
-- 0, 1 or2 If standard schedules 0, 1,2 are to be used

d) If -1 read in alternative a,,CrT,a,a5, ÷,c al-i~r for kth pass

e) " - is,![,•• .. i (mI g- 15) schedule of stations participating on k th pass

f) Start and stop times of tracking intervals on k th pasn from i th station (up to

4 intervals allowed).

AIftbt "= first and lost times of p th interval (maximum p =4)

g) q = 0 indicates optical data

q = I indicates electronic data

Ifq 0dcta block for k th pass from i th station consists of the following.
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i) tv*,3. (time, right ascension, declination) j= 1,2,...,0m

Hi) up = -1,0,1 or 2 (note p=1,2,3or4)

= -1, if nonstandard schedule of observational sigmas Is to be used for pth interval

= 0, 1 or 2 according to the standard schedule (0,1,2) to be used for pth interval

IV) -, =-I,0 or 2
-1, If nonstandard schedule of error model sigmas is to be used for pth interval
0 1 or 2 according to the standard schedule (0,1,2) to be used for pth interval

v) , -1, use nonstandard schedule aa, aw, ax, ac, at

vi) v, = 0 if autoregressive feedback option is not to be exercised on pth interval

1 1 otherwise .

vii) c, = nominal focal length of camera

Ifq I 1, data block for k th pass from i th station consists of the following.

1) t,,r, (time, range) j = 1, 2 ,...,m e
ii) ,es,/pys are defined as in optical case except that they refer now to rnging

observations.

C. Computations

Part I. Orbital Integration

Read in data for kth pass. Perform orbital integration with initial conditions given

by (b). Results of integration are: -

(1) b% bb ... b, coefficients of X,Y,Z polynomials (degree p)

GO { Go c y..,
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(2)= •0 Ds ... (e = coefficients of matrlzant polynomials

(2) 032 (1* SO)

in which

(3) 0= ato % ... aq) = row vector of coefficients
(Iq+1)

the matrix 1i can also be partitioned as
(A,= (,+i))

(4) 6 1o cisn )

(3,,q+3)(8,,3q+) (m,,S+3)

i The matrices P and a are stored for later use.

Part Ila. Optical Reduction (use if q =0; if q =1; go on to Part Ila)

(5) Use dummy camera approach to project each of up to four pic -s onto hypothetical
plates. Aim camera axis at nominal midpoint to get 01,(. Let Xbe initially zero, but
then modify it so that final x axis is aligned with trace (as in ,•x'anuous traces).

Results of (5) are sets of plate coordinates

(6) txg,ly, i=l,2,r...,mj

and orientation matrices

A B C\

A' B' C'J L=1,2,...,p (maxp=4)

D E F (p number plates on pass).

For p th tracking interval (plate) compute ephemeris for each point within interval. Thus forjtime t• compute:

ij~~ r, ~I



1 0

iI

2

] o Cl C!

Iii
71Pr'

in which I

TSi t Tv (T1  epochfor kth pass).

Set up matrices

0 0 1 0 0 0

-* rotational rate of earth.

Transform inertial coordinates to earth fixed coordinates ii

x x. ' . I

z R- 0 z

-j j Li 3

i ~ ~Evaluate the matrizant for timerI, "

(10) [0
Lr,. u.., ... s j

in which

-08-
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V

TI

TqLu

Transform the matrizant 0 to earth fixed coordinates.

•.r(12) = R• n

f(o,9 ((,a (dS ,e)

From the X5,YJZ, obtained from (9) and the Xc Z, obtained from the master survey

file. compute for pth plate

m AB C X• -X X

(13) n fA' B' 'jYJ •

Iq • .p E FJ 1P 1 Z z

and from these the plate coordinates

() _ (c focal length of camera).(14) 0 q rnJ

Set up matrix

[f, f31 E xOO xo/cl [A B C
(15) 1 fa O/c A' B' CJI, fs 0 1 -•o/ E

Lf• f fl f 2 f3E

(!6) ( Y3I

E I
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Using designated scheduAe of sigmas, compute:

=N

(17)

07 +3 )

Set up the f.Alowing coefficient matrjr.

0(1) B -1 Wf

(19) B W -B (X) 4 B 2

(i, I) , t(3, l ) ( )+

(20) BI W x*-;I:(-- -1[

(4) 1 c~--fx~)xll
(21) BP W - c c01 •)' * CI -

(22) cpj(x) -Xq -X

In terms of the above set up the composite matrix

(23) B,( =B 5 ) B, (x)B3 )B,() BP (x) V BV(x) (x)B 3 vl B;xS ~4 B~()

B,(x)

7-

-. •o- A.. . ,.• •4,



iI ,

in which

Perform the above computations for point j+1 also, getting:

(24) BP, 34 (x) and C,, +(x)

Compute:

(25) 6 B9 (x) Bf, t.l , ) - ,(x)

(26) c,:(x) =

In terms of the above compute:

(27) t = -p,.f B .(X)Bj ()+P 2 &B'T (x) AB (X)

in which p,1 denotes correlation coefficient P. from input schedule. Superscript p is added.

to indicate that in later solution p, may differ from plate to plate. Similarly compute:

(28) c, •(x) * (1 "P, B)" ý ( K) +P• •BJ .) B (K).(X ="IP B W6' X
As NV J(K) and c. (x) are generated, evaluate the sums

(29) N,()) IP x +. -P11 X) (el W 0111 W + 9, (X) B1 (X))A

(30)~~~ CW0 ,. plI-p)(B., (X) (a, (K) + e,, (X' •)

• () ,nnd 8,: (x)
in which correspond to first and lost p•inr oan pth plate-

'( , W and c,, (x)I



Computations precisely paralleling those (18) thou (30) are perfonred for the y coordiniate.

Thus:

W+

(18 ) apjW01 r

(Igo ) B1 -081 .

(15')•,() =: 1 ,y) 1*,) I1,* i('* I

•,Oa) B,(y) = - ° {p }
(3)

0-) BP 3(y)"
(21a) Btn(y) =- 3 t) 12 4 -.

Ny) C C

(22a) -, )4(N lG : 3 }$
VS

* In terms of the above set up

B , ,y) same as (2) wit' y replacing x

II

Equations (24a) - (30a) are the same as (24) - (30) with y replacing x. Ultimate result is

N,e(y), cl(y). Combine these with N. (x) and c.(k) to get

PN NV Nk) +N. (y)

(31)

G, W +c' (Y

(.1~ a +



This completes initial computations for pth plate from i th station for k th pass. Perform

-above for alI plates covering pass (maximum p=4) from i th station. Add together all N

i and c,'s. End result is N• sk 4,,in which subscripts i (station number) and k (pass

number) have now been introduced. Proceed to Part I1l.

Part lib. Electronic Reduction (if q=1, the following reduction is performed)

For time tI repeat steps (7) through (12) of Part II. Then proceed as follows.

Fro X.j1 Ys,Zl computed from (9) evaluate:

i,(32) rO, = (X .- Xc ) + (Y -Y's) + (z ,-Z• =:

(34) o .Oj +O4 3 j

S3) ..e2 sin 4D, a, e = parameters of spheroid•35) ~, si= ( geographic latitude )
i(36) re Clvcf) - f• + (zc +•z,5 )2

i!i
(37) )/ Xc /r u c Y/rc , Vc = (Z+\ Z )/rc, direction cosines to station,

S~c + c "1(38) sin E, X1X3+UL4II +V1 V 3 .

If ranges are not corrected for tropospheric refraction, evaluate:

(3 9)-co )1+ 86.3 +

where

-S ~- 11- -..-- '-.. . •~



rii

P. = pressure (mm) at station

To = temperature ( K) at station

co = water vapor pressure (mm) at station.

For optical (loser) ranges set E. =0 in (39) and replace second term by 0.58/X' where Xis

the wavelength of the light in microns.

(40) 1o - 29.2 (r0 -30)

(41) cl =

(4)- E) sin E + [si r- E 3 + K?••

(43) ArF ( f(E refraction correction (to be used in equation (48)).

If ranges have been corrected for tropospheric refraction, set jV=O n (43). For pth tracking

interval set up the matrices

B(i) 1 r • L • z •

(44) B - , l'

in which r, denotes the expression (aY + r2 2' . Set up

(45) = -B (D =

(3 0(T, t t -TI,
(46) = -BP T r r°° rC° f(E)(,T

(4)

(47) B-'

(48'" r - (r+ , where r is the measwed range.

k -114-
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In terms of the above set up the composite matrix:

(49) B B B BB8

!• ~ in which"

tab 1 I ifa=b

= 0 if a•/.

Perform the above computations for point j+1 also, getting:

(50) B, 3+,

Next computations parallel those indicated in (25) - (30). The end results are:

(51) N, N = N~ +P9~ (I -P,- ) BT, B , +BT, Bb,

bii
(52) , = c. 3 +pp, (0- p ,) p c)r + Bb;p,,S

in which a,p and b,p denote first and last points of pth tracking interval. This completes

"initial computations for pth tracking interval from i th ztation. Add together all N 'sand

c s. End result is N•, Cik in which subscripts i (station number) and k (Pass number) have •
now been introduced. Proceed to Part Ill.

Part Ill. Second Order Partitioned Regression

From Part Ila or Part lib the matrices Nt,, cik are generated from the observations

of the k th piss from the i th station. These matrices can be partitioned as follows:

r 
-115-



A I

(o,8) (Os) (ec,)

(53) N• = U~k Nic ' = li

L

Uk Nzjk N 1k k cjk

in which J, depends on the number of tracking intervals and the type of data (optical or

electronic). Also, the apriori weight matrix W•k has been introduced. This is computed!
from:

Plate 1 Plate 2 Plate p(max p= 4 )

(54) W 1 diag 2 -2 -- 2 - 2 - 2 2 - 2 ---- 2 2 - 2kc cr• crcy crc % atr • cr •a • ax c

(for ptical)

one for each unbroken
tracking interval

(for electronic)\• 2: 14 ,,, 4 go' 0 0 'o!

(q))

8k = corrections resulting from qth iterative cycle (6 '0).

In terms of elements of Nk, c.k compute:

' N]jk [ Njjk Ul l l

(56) L) (N +W u T

-1q6-
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Ii, tI
CNj 1 Ik

(57)I Ik F:R

This completes the separate computations for the observations of the k th pass from the i th

station. Repartition the matrices generated in (56) and (57) as:

*1M

c I]t [Nt I -~ li A21 Ik31
(58 U~LC: C~J~= ~l~k [N 2 Jk CN2]lk~

i-• -

As the matrices defined in (58) are generated by each station participating in the

observation of the kth pass, set up the matrices:

I -

[kli.k .... 0o l

0 [i]k 0..r

(59) j : :
(M %1,+3,a , +3 a "

7k

T

1 -] .. N72-

12ks



tl

61I
(60) EN3. • + [i +...+t]N +,

(6,B) (er, ) (6' 8) (,3 ) 6

2

Set up the a prioiiweight matrix of orbital parameters using schedule indicated in input-

(62) tC=diag ,1 I = I

(aY,) C (o) a o c2

jic

Compute:
-1

(63) CS. - CR R c+ Jk*
(is M •+3, 3 Mk+3

-118-



(64) r+, I k

This completes computations for kth pass. Merge ISXk in the master survey file

(augmented by 3 rows cseolumns to accommodate the coordinates of the earth's center

of mass.) Repeat the above process until all passes have been absorbed into master

survey matrix. Final result is 3m+3, 3m+3 matrix S+W QN; is augmented to account

for center of mass) and 3m+3, I vector c. Compute vector of corrections to survey and

center of mass (superscript (t) is used to designate the t, th Iteration of the solution).

(65) " where 6 0.

For each pass, in turn, compute the vector of corrections to the orbital parameters:

(66) k(t k' +ýk 1621E, - ~ - AL

,(6'2) " "1 I +i E 1, +

A A

in which I)]• denotes that portion of 8 contai~ning the set of stations participating on the

kth pass, i.e. j.

The error parameters for the i th station and k th pass are computed from:

L



()1 T

(67 61k, k) Cik 6 tk ik 6(Q (14\,)

Add corrections provided by SA) to survey and corrections provided by 6k to initial

conditions of k th pass. From error parameteis compute the following corrections for i th

station and kth pass.

(68) optical case

S=a, iB1(v) 2 (z

II

(69) 6,• a electrornc case
r.BP,

in which the B matrices are based on the latest approximations for survey and orbit. The

residuals for the kth trocking interval are then computed from:

(00X '0

V -'+ '.xp - (xt +x

X~ 2

xIoT {00
S 2x -(P +Xopia caseV7O) V1-TP opticalj

S00 1 +
VYP4 P 5 +

= P U .2 r. (rP + 6r...

(71) electronic case

U ' -12j
T
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In (70), (71) the quanilities x", y0 and r 0 are based on the most recent values fori

survey and orbit.

"Compute yrand mean error for t, th iteration from:

(72) ( sum of squares of weighted residuals for all stations and all passes
1 degrees of freedom

degrees of freedom = 2(total number optical points) + (total number of ranges)
-6(number of posses) - (total number error parameters)
-3(number stations).

SSolution is considered to have converged when:

(73)f -,

a prespecified constant or when five iterations have been performed, in the event the

inequality is not satisfied for t1,5 5.

Part IV. Autoregressive Feedback (Option exercised only if Yp 1 for tracking interval)

After solution has converged, compute final primary residuals from (70) or (71).

For each tracking interval compute:

a Vx

sx o pts. in t-racking interval u., no. pis. in tracking interval

( 7 4 ) s;pP F=y %J + 1

P iisy . pts. in trac-k-ing interval no. pts. in tracking interrval

WW - iUv



I
( ý

(75) p Z u,,!s

Repeat hlie gencral adjustmcnt with s•, sp , Si repla•ing orP, ( , o Y1 and w;th the

values of P•, Opyl Pp from (75) being used in place of values specified in input. Iterate

to converqenco. Recompute primary residuals, as in (70). In terms of primary residuals,

compute secondary residuals as follows:

V -"V - PxV -

f"Compute rms of primary and secondary residuals For each tracking interval.

I } .
•V. =V

yp

VIPrz
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I ~Oi\TFOPUCTIION

Tho davelopmrieo: of iho Short Arc Goodefic Adjustment (SAGA) F~roj-or has providlcd

5atl-ll itc. C'Codesy with 0oimothcr ver~y accurato reodu(;mor tool. This pro~jrair., ict 'Lalicvtý, is orie

of scitellitc observations. It can handleaon>' combinotiori of directional or ranjino observations.

*Speci~icaliy, fihoso are:

a. Optical (active crnd passive): PC-100O, MOTS, BAK ER-NUNN, EC-4,

b. Electronic: Gaodefic SECOR, GEOCEFIVER, LASER.

Each ol-,srvotioii p~icirametnr may be subject to systamatic errors tyavernod by oni crror ramodo

haviln, e1fithr unk<nown Coefficient!; cr s~aiisiically constrained cocfFicients. In tho optical cc'se

the cn-,,lar cioraants of "xtarnal oricnlotion x, W, x may U subiocted to sliol.1 adju,;.nmnts that

are consistent \V111 thcir accual accurocius. Thec orle-ritaton. accurucy is typically O'5 of aiic inI

Sanmd 2'.0 in x. The exerclse of orientation error model constraints is particularly imnpordanl

in cho,-piný, shulter cbservatiins. A convont'oncul rcdý..Hon of a large quonitily of chopping sinut'ýr
-sevc~tions per plt, th e --.tecc 0 f systematic error in orientation would lead to on undujly

ctpli:-nisiic oi-ror propccjation. In a chcopp*,no operation (cis opposed to a flas~ine liqht) cllowasncei
Le u=di fo -netainties in intr~r-s~totion timinj syrhchronizutlon. Tihe inter-stct ion timino

*bias simiuloaie the case of nun-synchrecnizotio~i between stcaioris observino a common satel lite pass.

firecquc cy (gr'ound oscillator), freq~uency driff arid vefraction. SAGA will accepL as rnany as 4

observaiion inieryciis froam th-a vu;itw. tracker-s. This 61ows oseýrvo~i-ri drop cwt with a r~ewr zero

srttino of ranges and re-orientation of the optical. tracker.

j * The material presented in the first two sections of Part If was originally given in a paper at
the American Geophysical Union (AGU) Meeting in Washington, D.C., in May' 1969 as a
joint effort by DBA and AFCRL (see Reference 6).



I
Tihe er.c-i nmodcel cd~ptcd foi rangingj sysijcm. is of the form

)0 =o a-T o1' 0, ar T oart ar a csc E

in which

r, r ran,3e and .Onoc rote at tinic T7(r = 0 at .pod~)

E = local elevation angle
I

a error coefficients accounting for systematic errors in zero
set, frequency offset (between satellite and ground stationr
oscillators), frequency drifts, frequency bias, timing bias
and residual refraction.

The model was derived to apply specifically to Geoceiver observations but is applicable to

ranging systems in general when appropriate constraints are placed on the error coefficients.
Systematic eriars in optical observations ore assumed to be governed by error

models of the form:

6x %f + a~f�+ + 3 fS +af• +a f.

where

f -(c" + X2)/"c f = xy/C

i2 x-y/c C

"r Y f• -x

Ff 4  x/c f' /
-S 5

I

in which

x,y plate coordinates of satellite image
= rate of change of plate coordinates

c nominal focal length of camera.

-2-
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S•'.... .,, c.i o c ally ieconstiucted f1cor publi~hc d angle:, (right os-cension,

•:,.',.,~i. ],) a o piocCss of duwniny' camera p.ojccrion', wlherein thc riven angles are

SFJc.;'LJ 0jio the plate of a ficlitious comera aimed at the middle of the recorded arc.

-h, opiical .- ou •ocfficients a. through a,, account for the combined effects "f bioses

h" ,. ,..ýjulai ckwmants of orientation of the comeic, the elements of interior orientation

(ccordi-;tes of principal point and focal length), and timing. 1hey also account for any

lirwac' drift in the direction of the camera axis throughout the exposure.

To dcmonstrate the capabilities and the performance of SAGA, we reduced a

network consisting of optical and ranging observations. These involved the PC-1000
(active and passive), MOTS, SECOR and the LASER. Twenty seven (27) orbLrs were

chosen that provided a good geometrical relationship between observing stations and

observed orbits for accurate station position delermination (see Figure 1).

It
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2.0 tKLSOLI S OF' REL'CTIONS

Twenty stations pii.ticilxted in ýhe complete netwoik. The one sigma error of the

network survey determination wos typically 3 to 5 meters, (depending upon the station

geometry relative to the noetwork and the amount of observations fron the station. The

error propagation is internal to lic network with the origin at Hunter AFB. .

The opticol obse.r-tt-Os were assumed subljuiA to orientation biases of 1"o0 in a, w

and 2'.'0 in x for all p-osses. I he orbit parameters were completely relaxed to I x 10' meters

in position, 5. fietters/secend in v.-locity. The range measurements were azsumed to be

subject to a systematic bias, o-f 10 rieters with a random noise of 1 meter. The random error

of tie optical observation w,,o• 5 microns in plate x and y coordinates. See Table I for all

input errors.

The SECOR observatioirs were made on orbits that had no optical observations. Four

orbits were observed by foyr S.COR stations (5333, 5001, 5649, 5661) and one orbit was

observed by three stations (533'3, 5001, 5649). Matching of available SECOR observations

with available optical mecsur•.rnc:T resulted in little strength from either. Therefore the

five were selected that pro\,ited jood geometry with the four SECOR stations. The SECOR

stations were incorporated intc the overall network by applying constraints between the

SECOR and optical co-loca.d slatians (e.g. 3861, 5861, see Figure 2).

Laser range measurcments from station 7051 were obtained on four passes in conjunction

with optical observations. Optical station 1042 and station 7051 are again treated as co-

located stations by constraining the direction anddistance between them.

Table II reflects the strength of each pass into the overall solution. For instance,

orbits twenty one and twenty two are very weak in orbit determination since only two stations
observed. The accuracy of ihe orbit determination reflects the degree of contribution of the
pass to overall surveys. The accuracy of the orbit position (XYZ) is largely de6pendent ot,

the intersection angle of station observations and the accuracy of the measurements. The

determination of velocity components improves significantly as the length of the data span

observed .ncreases. I
-5-



TABLE 1

Station Participation

Orbit No. Participating Stations Intervals # Observed Sets*

9 1034, 7039, 7037, 7075 4 9
1042, 7037, 7040, 7039, 1022, 7075 3 12

3.5 7039, 7040, 1042, 7051 2 6

5 7040, 7036, 7039, 1022, 7051 2 6
36 7036, 1022, 7075, 7051 2 4
37 7039, 7037, 7075, 7040, 7051 4 9
1 7040, 7037, 7039 2 43 7040, 7037, 1034, 7036, 7039, 7/075 3 11

8 7036, 7039, 7037, 1022, 1042, 7075 3 9I0 7040, 1042, 7039 3 6

21 Y039, 3405, 3402, 3861 2 5
12 7039, 1022, 7040, 1042, 3861 3 8
13 7036, 7037, 7039 2 44 7037, 7036, 7039, 7075 4 10

20 3657, 3861, 3401 1 3
21 3401, 3405 2 2
22 3401S 3106 2 2223 3657, 3405, 3648 2 5
2-. 36-57, 3106, 3648 2 4
25 3657, 3405, 3402 1 3
2 41 3401, 3402, 3648, 3106 2 5
27 3402, 3401, 3657, 3106 2 4

40 5001, 5649, 5333, 5861 1 4
5001, 5649, 5333, 5861 1 4

42 5001, 5649, 5333, 5861 1 44r 1 5001,• 5649, 5333 1 3
4 30 5001, 5649, 5333, 5861 4

Total number of observation sets 131

*The number of observed sets represent the total number of camera photos and intervals

of rcnge observation for each pass. Each flash sequence represents one interval.

I
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'AU
TANI.E 2

A Priori Constraints on Error Parameters

Station No. input Sigmas

Latitudo Lonoitudo Height
(see.) (soc.) (mctor)

.1010 1 O. 20.2000.00
0.200 0.200 5.00

5 0.001 0.091 8.10
S5&•1 0.200 0.200 5.'00
-051 0.200 0.200 5.00,'005.350 0.330 8.001 4.022 0.200 0.200 5.00

0.2(X) 0.200 5.00

2",57 0.200 0.200 5.00'
1,!0 . 350 0. 350 8.00

1 0.200 0.200 5.00
1 0.200 0.200 5.007 •,I: O. 350 0. 350 8.00

1022 0.200 0.200 5.00
0 .•-,02 COX 0.200 5. 00

'-.-0.200 0.200 5.O00

C =37 A.r200 0.200 5.00

0 2.

", 0:6 '0. 200 0. 200 5.O00
7075 0..200 0.800 25.00
"0753 0.200 0.200 25.O00

31643 0.001 0.001 0. 10

Observations

Optical: Eiectronic:

Ori1ntation: Zmro set, a. 1 10 meters
I. =1. Arc seconds Ra,.on Ronea , a= meteor
S= andoTiming, at= I -

, = 2.
T i m in c ; ( l n t e r -' s t a t i o n ) : I C .

art = 1 x l O.4 (O c t" v e

at = 3 milliseconds (passive)

0, = 5 microns• Input Error of Initial Conditions:
o• 5 lcrns)Plate coordinates Position, Velocity

cc =t 10 microns Focal lengt x 91,=a11x 0' meter
N = a; mtr/eod

I• X 1 x10- Random timing a 3 • mtr/eod

t -7-
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TABLE 3
Standard Deviation o-f Recovered Orbital! EImome..s

(Meters and Meters/Second)

Pass No. I9 14 14 37 .027 .031 -

2 9 12 7 .029 .033 .026

35 8 9 8 .021 .024 .02i

5 34 28 34 .032 .026 .040

36 6 2 7 .031 .022 .020 I
37 7 a 7 .024 .023 .027

i 69 272 279 .158 .411 .468

3 11 14 8 .022 .028 .021

8 12 19 14 .035 .054 .040

10 15 17 19 .035 .038 .064

I1 27 30 12 .067 .0123 K132

12 14 7 8 .037 .036 .044 1
13 29 24 44 .088 .103 .101

4 10 17 10 .019 .031 .021 1
20 7 13 13 .518 .887 .944

21 29 92 184 .397 .394 1.097

22 128 140 223 .786 .936 .906

23 20 9 19 .034 .038 .043

24 78 23 20 .347 .044 .140

25 15 18 23 .838 1.126 1.634

26 11 15 13 .050 .083 .115

27 5 11 8 .196 .321 .432

40 29 31 12 .059 .094 .052

39 30 19 Is .111 .078 .062

42 46 10 22 .048 .036 .029

41 25 54 10 .061 .105. .070

43 17 36 26 .037 .035 .054

4 I!
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TABLE 4

Station Coordinate Adjustments (Meter4)

Stut ion Corrections Standard Error a
AX ,Y AZ a ,o

5001 2.59 -3.18 -5.03 3,4 4.5 3.2

5333 5.77 -0.40 -12.16 3.9 4.8 4.7

5649 0.0 0.0 0.0 0.03 0.09 0.06

751 -7.95 -. 9 -.1 .1 3.5S581 8.51 -8.50 -5.02 3.3 3.3 3.2
S7051 -7.99 -Y.3"S9 -8.11 _A. 1 3.,ý 3.5

3405 -2.0 -9.66 -15.32 7.2 7.4 7.9

S3402 10.41 -0.42 -2.77 4.9 4.9 5.4

3657 -3.02 6.29 --4.93 3.1 4.3 3.2

J3106 15.57 9.76 5.00 9.2 8.0 9.7

`361 8.48 -8.56 -5.00 3.3 3.3 3.2

3401 -7.34 -3.98 4.37 4.0 5.0 4.8

7040 -2.42 23.81 -13.91 6.2 6.5 6.9

1022 -1.16 2.03 -2.72 4.4 4.3 4.8

1034 -1.81 -6.31 0.69 4.0 5.0 5.2

1042 2.94 2.34 2.74 4.0 4.0 3.5

7037 -2.28 -0.68 -10.06 3.7 4.1 4.147036 13.77 -13.58 3.58 4.7 4.6 4.7

7039 18.71 5.74 6.81 5.5 6.0 5.5

7075 -0.60 5.53 2.07 3.5 4.4 4.3I3648 0.0 0.0 0.0 0.03 0.09 0.06

I'"
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The total corrections (Table IV) to survey and the propagated errors ore consistent

with the observation network with the origin at Hunter AFB. The propagated errors reflect

the internal network accuracies and idlustrare the strength of this particular solution. The

recovery of some stations was weaker than others due to the limited observations from the

station Bermudc was a priority fiactor in selecting orbits, therefore the network provided

strong geometry for the determin. on of its coordinates. Bermuda (7039) participated in

thirteen (13) passes which invw' 4 twenty four (24) plates (or 24 different flash sequences).

Antigua participated in only four different posses with a total of 5 plates. The position

recovery tor Antigua was nearly twice that for Bermuda. On the other hand the input error

for Antigua was much smaller than that for Bermuda (meaning the a priori information was

better). The improvement of the recovered .oordinates over the a priori information was

not as significant for Antigua. Table III lists the observing station for each pass.

A typical recovered bias in ..ptica! orientation a, w, and x was .2 arc seconds.

The largest recovered bias was .8 arc seconds. Recovered biases in laser observations ranged

from 4 to 10 meters and SECOR biases ranged from 6 to 27 meters. The random noise was

approximately 1 to 2 meters in both LASER and SECOR measurements.

This program accommodates adjustments to the center of mass. The results presented

were obtained with the center of mass held fixed. As a preliminary experiment an adjustment

was mode with the center of moss relaxed to 50 meters in X, Y, Z. The corrections to the

coordinates of the center of mass were 10, 35 and -27 in X, Y and Z respectively with

standard deviaticns of 39 meters. The change in station surveys was negligible. This U
experiment was made to demonstrate the programs capabilities in rec,.vering the center of

mass. The network is qoncentrated on a small section of the earths surface and the geometry

with respect to the center of mass was very weak. Further studies will be undertaken with

emphasis placed on orbital geometry and observing station locations relative to the center cf

Mass.

S-II- iI



h view of the various instrumentations and observing modes used in this reduction,

ti 's uppoint that this prog:am could be used with any type optical or ranging system

presently employed in global tracking. The Geoceivcr was given some special consideration

in the error modcl of range measuring type systems. Terms for frequency biases and frequency

drift were designed to accommodate errors introduced by the satellite and ground oscillators.

This presentation is intended to primarily demonstrate the capabilities of the SAGA

reduction program. It is not our intention to imply that the results should lead to a change

in position of Bermuda or any other station in the network. But the corrections and accuracies

in the subject solution arc meaningful with respect to this network. The accuracy of 5 to 6

meters recovery of the Bermuda coordinates clearly illustrates the potential of recovering

the surveys of other stations that have large survey errors. The reducti~,n demonstrates the

impressive potential of SAGA as a tool for establishing continental and inter-continental

surveys to a high degree of accuracy.

-12-
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Ihc SAGA pro_3ani is a multi-orbitul reduction program designed to recovery station

geodciic coou'inoics and bias parameters associated with the measuring system being employed. 4

As mrony cis f eou r zco :,ettings of thec defined orbit may be used. This provides the capability

of observing as many a; four different segment combinations of the orbit by the various trackers.

Optical and ,angina observations are accepted and these are specifically PC-1 000, BC-4,

MOTS, BAKER-NLINNS, SECOR, LASER, and GEOCEIVER.

Input formals are primarily the some as the GEOS format except in special cases in

which the data has becn processed through a data prep program (see Appendix D) for special

corrections. This is a program option which was included to provide program simplicity and

more importantly to provide SAGA with consistent and pre-edited data.

SAGA consists of six major programs which are directed by a control program. The

first two (MASTER and PREP) read all input data and store them into disk files or tape for use

in the iteration cycle. They also compute the station covarionce matrix and baseline .

constraints. The orbit integrator, which is part of the iteration cycle, performs orbit

integration from thne time of the initial conditions to the desired apoch. At the time of

epoch it updates the position, velocity and time on the first iteration. Subsequent iterations

need only to be. expanded on the corrected orbit and no further integration performed. The I
user should provide initial conditions as near the desired epopc; as possible to prevent error

build up which eads to cdditio,-al iterations to acquire convergence. NORMAL forms the

normal equations. SOLVE solves for survey correction. OUTER solves for orbit and

observation biascs and updates the master file.

Five iterations are the maximum number of iterations before cutoff. If convergence is

not obtained before the cutoff point the data is probably unstable and may be diverging. At

"thL- time one should analyze the data characteristics. I
" + !I
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4.0 SIJIROUTIN! DISCRIPTION

This section gives a brief description of subroutines and their primary mathematical

operation. The calling sequence of each is defined as follow,

CLEAR (, N)

This subroutine clears an array X of size N.

X Array to be cleared

N Number of elements in X

AUGVRT (A, NR, NC, ND)-

AUGVRT replaces the matrix A by A inverse augmented by the solution matrix.

A The matrix to be inverted

NR Row dimension of A to be *.nverted

NC Column dimension of A 'o be InvertedtI
ND Actual dimension of A

MATMPY (A, NRA, NCA, B, NRB, NCB, C,M1, M2)

MATMPY will mvltiply A and B and store into C. The options of MI provide any

allowable transpose combination and M1 allows such storage combinations as the simple

product, negative product, sum into previous C (positive or negative).

A First array to be multiplied

NRA Rows of A

RCA Ccoumns of A

B ' Sucond array

NRB Rows of B

NCB Columns of B

C Storage array of product AB

M1 Transpose option

M2 Action of product R to storage array C

f-15I



UPDATE (ICN,KTR, IPS, [I ,XPO, YPO, ZP7,XOT,YOT,ZOT)

This program updates the matri-ant for a new step in time.

"I CN Mokes decision on to intcgraic position and velocity

KTR Number of timrns to use in series

EPS Truncation ,rror ;imit

DEL Valid step size

XPO,YPOZPO Ihput position

XOT,YOT,ZOT Output position

ZER (A, N,M)

ZER zeros the array A for N times M values starting at location A(1).

A Array to be set to zero

M Rows of A

N Columns of A

ATRACT (L, K, B, S, lOT, NS, NROW)

This routine will disect array B in 3 x3 matrices C (3x3) and write a file on tape or

disk identified by station ID from array L.

L Array containing identification of disected 3x3 arrays
K Number of 3x3 matrices along diagonal of B

B Array containing K squared 3 x3 matrices

S Array containing K 3x1 matrices

lOT Unit number of tape or disk to be written on

NS Dummy integer

NROW Rank of desired partitioned size array

DUMMY (C AST,OR,A,E,IP, IC, IS, PH,CH, HE, IDNT, P,Q)

This program simulates a dummy camera projection of right ascension and

declinations to plate coordinates.

-6- A



GAST Gacoenwi~i ýiAcruolinw

OR Output orFit'111C: ion flieliiX

A Array of plate X coordirntics

E Ai-ray of plate Y coordinoat2s

TP lime of ith X, Y coordinate

IC Number of coordinates read

Is Station identification number

PH Array of station latitudesI

CH Array of station longitude

HE Array of station heights

IDNT Array of station identification numbers

P Latitude of observing station

Q Longitude of abserving station

CO VAR (-.A, SLAMV, Sf1,R, A, ECC, SlOMA)

This routine computes the covcwiaince matrix of a station in geocentric coordinates

given geodetic Error in latitude, longitude and height.SLA atitde f sttio
SLAM Latgitude of station

Sf1 Height of station

R Output covariant mati-ix (3,30

A Semi-major axis of carth

ECC Eccentricity of earth

SIGMA Input errors in latitude, longitude and height

EXTRAC (L, K, B, CC, NS)

This subrout ine extracts 3x3 motrices from array B and writes them on unit 3.

L Array containing position of 3x3 matrices in B that ore going on unit 3

K Number of 3x3 matrices alono the diagonal of B

It -17-



3 Array beiŽnq disocted

CC Stato vector to be disccted into 3xl matrices

NS Size of submatrix.

DRIVER (NN,IU,TM,GH,DT,XOT,VEM)

Ths program evaluates the coefficients for position, velocity and matrizant at

time TM.

NN If NN =-I read tape unit IU for coefficients and orbit parameters at
epoch, otherwise expand only abnut epoch

IU TGpe unit • be read

TM Time of observation

GH Corrected output iime from epoch

DT Increment in time that coefficients are good

XOT Otput. posilion and velocity

VEM Output matrizanr

MATRUP (KTR, DEL, UVM, UVO)

Subroutine to update matrizant with respect ro time.

KTR Number of terms in series

DEL Increment in time from epoch

UVM Coefficient matrix

UVO Updated matrizant

CRV (AX,ECC,VCJDNT,EPSlD,IPR)

CRV updates station geocentric coordinates from corrections in previous iteration..

Semi-major axis of carth

ECC Eccentricity of

VC 'Array containing station X,Y,Z

IDNT Array of identification numbers

-18-
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L:S Arroy of station corrections

ID ID of station match

I IPR Fiag set if stution has already been outputed

LLH (AX, [SQR, P,Q, R,OP,OL,OH)

Cony jeocentric Cartesian coordinates to geodetic coordinates.

AX Semi-major axis of earth

ESQR Eccentricity squared of earth

P Geocentric Z

Q Geocentric X

R Geocentric Y

OP Output latitude

OL Output longilude
!OH Output height

ATANN (X,Y)

This is a function that computes the angle between the vectors X and Y.

X First vector

DEG Second vector .

DEG (AN, I,J,S)

DEG converts an angle AN to degreesminutes and seconds.

AN The angle in radians

I Output degrees

J Output minutes

S Output seconds

1
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GWOC (XL,)'L, HT, A, ES,V)

GEOC convc;ts geodetic position ('T, ,h) to geocentric coordinates (X,Y,Z).

XL Latitude (radians)

YL Longitude (radiqns)
HT Height (meters)

A Semi-major axis of eurth (meters)

ES Eccentricity of earth squared

Returned array containing X,Y,Z

ERCOE (EPP, NID,K,L,J)

ERCOE outputs observation bias corrections of electronic error model terms.

EPP Array containing bias corrections

NID Array containing station identifications

K Defines observation interva!

L Station identification

J Index defining station in pass

ERMOD (EPP,NID,K,L,J)

ERMOD outputs observation bias corrections of optical error model terms.

EPP Array containing bias corrections

NID Array containinQ station identifications

K Defines observation interval

L Station identification

SJ Index defining station in pass

i
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EXPAND (XPO, YPO. ZPO, CNM, SNM, LCT, ICT, UMT, VMT, CTB, CTT, ERD,XMU,
A.FQMG, ECC, NTE, KTR, KLDR, NHT, CDC, CTW, KEY, DMT, KRG)

XP0,
WYO Power series for position (X,Y,Z)

XZPO
CNM, "otential cocfficientsNM I'
[CT . Control tables

ICT I
UMT Expansion series

VMT Expansion series

CIB Coefficient tables

CTT

ERD Radius of earth

XMU Gravity constant

ALF Greenwich hour an•gle

0MG Rotation rate of earth

ECC Eccentricity squared

NTE Tables control parameter

KTR Number of terms in series

KDR Number of terms in drag

NHT Zero

CDC Ballistic coefficient

CTW Drag time

KEY Integration control constant

DMT Dummy array

KRG Defines' the number of terms in series.
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5.•0 I\P 0T-uT7DUT "r'. n 1"C e T

A. Input 1
This soction will describe the program input parameters and illustrate the

output formats. Input will bc defined as specification cards and a complete

orbit sot. A run consisting of more than one orbit is made by simply stating

the number of orbits on the first specification card. A complete set of N orbits

is illustrated in Figure 1.

Baseline Constraints

Card No. Name Field Columns Units Description j

I IP 14 1- 4 Station ID (1st station)

IQ 14 5- 8 Station ID (2nd station)

IS 12 9-10 X0, read linear constraints

AL F9.0 11-19 Degrees A priori azimuth

EL F9.0 20-28 Degrees A priori elevction

RA F9.0 29-36 Meters A priori range

S(I) F7.0 38-45 Arc sec AzImuth sigma

S(2) F7.0 46-53 Arc sec Elevation sigma

5(3) F7.0 54-61 Meters Range sigma

Ul F12.0 62-73 Linear error if" IS0

SU F7.0 74-80 Origin error

2* XD F12.0 25-36 Degrees Stat*oi-, latitude

YD F12.0 37-48 Degrees Station longitude

HT F12.0 49-60 Meters Station height

3* AX F12.0 1-12 Meters Earth axis

ECC F 12.0 13-24 Eccentricity squared

XP F 12.0 25-36 Degrees Station latitude

YP F12.0 37-48 Degrees Station longitude

HP F 12.0 49-60 Meters Station height
Station position for the two baseline stations involved.
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Card No. Nome field Columns Units Description I
4" coE() F11,0 1-11 -A

4 Linear coefficients between"• " ~station pair i i

COE(7) F11.0 67-77 s p

Repeat the above cards for each baseline desired, then follow the last baseline set with ablank card. :

5 BLANK 4
Specification Cards

Card No. Name Field Columns Units Description !

1 NPASS F13.0 1-13 Number of passes

ECC F13.0 14-26 Eccentricity squared

AX F13.0 27-39 Meters Semi-majio axis

GR F13.0 40-52 MetersS/Sec2 Gravitation constant

ROT F13.0 53-65 Radians/Sec Rotation rate of carth

2A IDNT 17 1- 7 Station ID I
G1 F7.0 8-14 Degrees Latitude

G2 F7.0 15-21 Minutes 1[ G3 F7.0 22-28 Seconds

G4 F7.0 29-35 Degrees Longitude (West) j
G5 F7.0 36-42 Minutes

G6 F7.0 43-49 Seconds

G7 F7.0 50-56 Meters Height (above spheroid)

CM(1) F7.0 57-63 Seconds Sigma latitude

CM (2) F7.0 64-71 Seconds Sigma longitude

CM (3) F7.0 72-78 Meters Sigma height

--24-
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Card No. Name Field Columns Unis Description

2B 23 is the same as 2A for the next station. These are station cards. Follow

the last staton card with a blank.

2C Blank

2D CrX F13.0 1-13 Meters Sigma of center of mass

G' F13.0 14-26 Meters

CZ F13.0 27-39 Meters

3A ST I1I) Fl] .0 1-11 Meters Input sigma of plate x

2 12-22 Unitless Correlation coefficient

3 23-33 Meters Sigma of plate y

4 34-44 Unitless Correlation coefficient

5 45-55 Seconds Sigma of time

6 56-66 Meters Sigma of range

7 67-77 Unitless Correlation coefficient

3B & 3C 3B and 3C are the second and third alternate schedules of error inputs for

plate or pass data. 3A is the standard schedule of error input. Cards 3 and

4 are for optical observations.

4A ST21 (1) F13.0 1-13 Radians ii
2 14-26 Radians Orientation sigma a, W, x

3 27-39 Radians

4 40-52 Meters Focal length sigma

5 53-65 Seconds Interstation timing sigma

!

4B&4C 4B and 4C are the alternate schedules of sigmas for station measurements.

5A ST31(1) F13.0 1-13 Meters

2 14-26 Meters

3 27-39 Meters Error coefficients of

4 40-52 Radians electronic error model

5 53-65 Seconds

6 66-78 Radians /
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Card No. Name Field Columns Units Description

5B & 5C 5B and 5C are alternate schedules for range observations.

6A ST41(1) F13.0 1-13 Meters
Sigmos of orbital initial2 1426 Mtersconditions (position)

3 27-39 Meters

4 40-52 Meters/Se(
553-65 Meters/Scc Sigmas of orbital initial

condi tio~s (velocity)
6 66-78 Me'ters/See

6B&6C 6B and 6C are alternate schedules of orbit sigmas.

Orbit Input I

Each orbit will be set up as shown below.

S1 7.0 Hours

S2 7.0 Minutas Time of initial conditions

S3 12.0 Seconds

C1 7.0 Hours

C2 7.0 Minutes Time of desired epoch
0C3 12.0 Seconds

SHour angle of Greenwich forzero
P2 7.0 Minutes hour of day of initial conditions

P3 12.0 Seconds

1 _____________ -6-



Card No. Nanc Field Colurns Units Description

2 iIN(1) F13.0 1-13 Meters Initial position

2 14-26

3 27-39

4 40-52 Meters/See Initial velocity

5 53-65

6 66-78

3 IDPAS 15 1- 5 Pass identification

[ORB 15 6-10 Selects orbit sigma schedule

NSTA 15 11-15 Number of stations in pass

NINT 15 16-20 Number of intervals observed

4* FLEA F12.0 1-12 Meters Focal length iUoptical

ITYPE 18 13-20 - is electronic, + is optical

IS 18 21-28 Selects station sigma schedule

lB 18 29-36 Selects optical plate schedule

NP 18 37-44 Number of intervals observed

NID 18 45-52 Identification of interval observed

Each station observing will have a card defined by 4. These cards define

all data information for the particular station.

5 INT 14 1- 4 Number of total intervals observed

HR F110.4 5-14 Hours Start time of observations

MIN F10.4 15-24 Minutes

SEC F10.4 25-34 Seconds

XV F10.4 35-44 Hours Stop time of observations

XN F10.4 45-54 Minutes

XM F110.4 55-64 Seconds

I
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"The following colds are obscrvotion cards and will follow the same order as the

station -ata definition cards 4. Let 6 represent an op-ical observation set and 7

clectronic. A blank cord follows cach set of observations.

Card No. Name Field Columns Units Description

6A GEOS formatted data in right ascension and declination

7A GEOS formatted data in range

6B liD 17 1- 7 Station 'dentification numnber

T(I) F13.0 8-20 Seconds Time of observation

X(I) F13.0 24-28 Meters Plate X coordinate

Y(l) F13.0 29-46 Setonds Plate Y coordinate

7B lID 17 1- 7 Station identification number

T(1) F17.0 8-24 Seconds Time of observation

RANGE F17.0 25-41 Meters Range measurement

B. Output

Program PREP outputs the primary input control parameters which define

the error parameters and survey. This provides, the user with later references to

the network characteristics, participating stations and a priori errors of the

particular computer run. Other output is adjusted parameters, residuals,

standard deviations of recovered parameters, correction to all adjustable parameters

and total corrections to survey parameters.

For each orbit in the solution the following output is written.

1) Residuals for each observation for each station.

2) Sigma (standard atviation) of recovered timing and orientation biases

for optical measurements.

28



3) Sicjma of mcovrcd tim,, bic.-s and ranged err-or uuivU- ns for

ioUng1o mcasurementb.

4) Siama of 'ecove-rd orbit position and velocity.

5) Corrections to surVcey.

6) Sigma of survey corrections.

7) Corrections to position and velocity coordinates.

8) Corrections to mcesurement parameters.

9) Total corrections to survey..

10) Final survey in latitude, longitude, and height.
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6.0 GLOSSARY OF TERMS

A. Projlam nConstants

ProLiam Name Quatitscription

RD .01745329252 Wudian to dcgrces conversion

GR Inpnut(optional) Gravitation constant

ROT Input(optional) Earth rotation rote (meters:/:second")

AXIS lnput(opiional) Earth semi-major axis

ECC Input(optional) Earth eccentricity squared

SNM Sm ithsonian standard earth model for 1966 through M, N 4, 4.

B. Symbol Cn,-relation

Prooram Name Math Symbol Description

ROT Earth rotation rate

GR A* Earth gravitation constant

STD(1) cr, Standard error in plate x

STD(2) Correlation coefficient in plate x

STD(3) Cy Standard error in plate y

STD(4) Correlation coefficient in plate y

STD(5) o', Standard error in timing

STD(6) o'r Standard error in range

STD(7) Or Correlation coefficient of range

STER(1) a

ST,.R(2) a Error in orientation

STER(3) a

STER(4) Gc Error in focal length
STER(5) at Interstation timing bias

STEL(1) Zero set error constraint

STEL(2) Cr., Interstation timing bias error constraint

STEL(3) oý2 Frequency bias constraint (swtellite oscil lator)

STEL(4) oraL Frequency bias constraint (ground oscillator)

STEL(5) 9a Frequency drift constraint

STEL(6) 0'a IResidual refraction error constraint

L-33-



Proqrari Name Math Symol Dcscrion on

ORB(I)

ORS(2) 0

R() Standard error of position ond velocity

ORB(5) (T

ORB(6)

RI R; Rotation matrix (inertial to earth fixed) -

XE X )
Orbit position for the i th observationYE YI (earth fixed)

ZE Z )
X XC

Earth fixed coordinates of the i thY station

z zi .
XP x•o }} Computed plate coordinates

00y p y O O,

Measured plate coordinates
YJ Y .

TJ ts Time of t th measurement

RJ r0 Computed range

XJ Measured range

DR iS r Refraction correction to range

WDD j k A priori weight matrix

-34"-i
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'UrIgUIaTI Ne MthSymboI D.scri ption

S Station correction vector

EPO k Orbit correction vector

EPP 6 i Correction vector to error parameters

NSTA M. Number of stations in k th pass

NPASS K Number of passes in network

IC J Number of observations

XDI < )
YDI Y Earth fixed velocity

ZDI Z

VK 0 Coefficients of matrizant polynomials

3I-
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Pro Processor

A. General D,-scripflori

The Pro Processor (PREPRO) program was designed as a supplement to SAGA. It

mokes corrections to data for polar motion, parallactic refraction, time corrections

(UTC-UT1 or SAO-UT1), and phase angle. At option the data is fit to a series of

polynomials (2nd thru 6th order) for random measurement residuals evaluation.

In addition to optical corrections, PREPRO also converts GEOCEIVER observations

(Doppler counts) to range differences corrected for ionospheric refraction. The residual I"
option also exist for range measurements.

Care must be taken in the application of the admissible preprocessor corrections

so tiat corrections that have already been made are not duplicated. Thus the fact thoW

KC-1000 data processed to date by ACIC have not been corrected for polar motion,

parallactic refruction or for UTC to UTI does not preclude that at some time in the future

AC.C policy may change in this regard. When and if it does, the corrections should no

longer be applied in the Pre Processor. Thus one should remain up to date on the policies

of the various agencies that provide data. In the table below it is indicated which

corrections should be applied in the Pro Processor to the various types of data as of

January 1969. Though not listed in the table,. corrections for phase of optically observed

spherical passive satellites can also be generated on option by the Pre Processor.

Corrections, when needed, for tropospheric ranging refraction are applied in the main S' •: progro~m rather than in ihe Pre Processor.

At-
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II
TABLE 1

Corrections Remaining to be Applied by Pre-Processor (as of January 1969) -

Polar Parailactic Ionospheric
UTC-UT1 Al -UTI

Motion Refraction Refraction .I
PC-I 000 x x x

MOTS X X A

BAKERNUNN X _

BC-4 X

SECO R __.,.

GEOCEIVER _ _ _ _....

LASER,

-

-52-
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The user sclects from Table I the corrections desired. Non-zero values are inscrted

ri•c fthe carc corresoonding to the paricular correction. For each correction desired

the fullow-up input cards furnish needed input paiameters to accomplish the correction.

These o.-o outlined occord'ng to each correction.

Specification Card

Card No. Name Field Columns Units Descripti on

I ITPE 14 1- 4 Type of measurement (Range or
optic)

IPOL 14 5- 8 Polar motion

IREF 14 9-12 Parallactic refraction

ICOR 14 13-16 UTC t, UT1 time

SIRES 14 17-20 Residual computation

I IPHS 14 21-24 Phase angle correctirr,

ISAO 14 25-28 SAO to UTI correction

ITPE = 1
Optical Data

H F4.0 1- 4 Degrees Station latitudeI

B F4.0 5- 8 Minutes

D F7.0 9-15 Seconds

T F7.0 16-22 Degrees Station longitude

Z F7.0 23-29 Minutes

V F7.0 30-36 Seconds

HE F7.0 37-43 Meters Station height

F F9.0 44-52 Meters Focal length
IDD 14 53-56 Station identification

____ '
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Col i"'.

3 P4['.l. 0 1 - , D'q-e.s Greenwich hour angle

5- 8 JWInU C, For day of interest

S F7.0 9-15 Socoilds
SHT F7.0 16-I , Noutical MWcs Sateslite heiht

COR F7.0 23-29 ScC.onds UTC-uri correction

XAN F7.0 30-36 Arc sQconds x polar angle :
YAN F7.0 37-43 Arc seconds y polar angle
SCAL F9.0 44-52 Scale on residuals

Insert Only If ISAO /0

4A TAU F4.0 11- 4 Years Fraction of tropical year I
IZ F4..0 5- 8 Epoch of equinox A
DEL F7.0 9-15 Radians Nutation in longitude

O3LQ F7.0 16-22 &adians Obliquity of the ecliptic
GTD F7.0 23-29 Seconds Al time minus UTC time i

Insert Only If IPHS /0

43 RADJ F0.0 1-10 A ... Radius of satellite

HEG'i, I0.0 11-20 Meters Height of satellite
RAS F10.0 21-30 Degrees Right ascension of sun
DES F10.0 31-40 Degrees Declination of sun

A
5 DATA - GEOS Format i

6 Blank i
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Cc-:: N'No. Name F i7d Columns Units Description

IT PE ý'2
Ranje Data

Follow specification card with GEOS formated range data. Follow the data with a blank
card to terminato the set.*-

'I ITPE =3

GEOCEIVER Data

2 CS F10.0 1-10 Mts/sec Light speed

FO F110.0 11-20 Cyc/sec GEOCEIVER reference frequency

FS F10.0 21-30 Cyc/sec Transmitted frequency

3 ID 110 1-10 Station identification i
X(1) F18.9 11-28 Time

Y(l) F 18.9 29-47 Doppler count rr,3asurement

RR F 18.9 48-65 Refractive Doppler count

4 Blank

C. Output

z

The output is in punched card form. The format is compatible with SAGA input. The

only written output is the residuals of the 2nd thru 6th order polynomials and conic.

Written output of the corrected observations may be obtained by changing the file

unit number to the appropriate output file number.

D. Analysis
Polar Motion Correction

Let.

T = time of observation in years and days (e.g., T=1966.385)

t= time of ehservation from ZULU midnight

r, 6-- right ascension observed

x,/= anclos of polar motion (radians).

.-55-
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(~) c~achŽntCiwcnvich doi-ol iicnck of timc of oLervati'sn

t ~i, where o Gioenwich) hour angle

U2* - cOalth's r')otji nrAl rate

(2) In torms of given ry, 5 -,rd cornr.otcc vciluc of 9 -ý,y evaluate thý expression i

l Cos~ -sin 1) 0 0 x8os sin 8 0 Cos qeCos6
si)" -i 0 Cos 0 0 sin tvcos 6

.- x sin 8

(3). Compute (7', frc-m the rclctio;-s

Phase Angle Ccorr.ý ction

The apaen urezrion of a Spherical, sun rfc.instliemyb isd

dcpcrd;n~j upun ihc portion of i.urfajco observud. Two ifce tpsolghrfeton

ar ecntreFi'st is that of di ffzeýd ref1Cct ion, wh1r;ich it. the r~rult of reflections

Mufccs .Thmoon isa eXUr11In:k Of di fuC-1 refle-.tion. Second is that

,)r sjecio!:r re~flt ti lnen rose lv oF icht cfcc fromr smooth surfaces such as a mirror.

r he co-lu o on'-3.pbrilcal satki i s, tI-jic Conrrenion trc'atad as a constant 'Dias

andy(2tn 4). An attemurpt lo appiydietir ::orroctions would be nearly impossible

and Ccu.i. col, im' racTical becausi.* of vurious zatcel ite configurations and attitudes. I



I

. .C;-re jireC in determining the direction of

1 h fU. :; I ,! ccmnier. The time of vidhor the pre- or post-calibration is suf-

fie,. a,; , o, avc:liable thu mean of the two may be taken os the time of observation.

; ~~A. D')• '.'s, ; phc ;,' ccion

Ca:1;'uic h,' ci-C 1ion cosines (inertial) of the sun for time of observation, given

e'it o cision (' ..c;inction ("j) and tire, .

Cx ri c acs t,

•, = sin ,. c s(1) IJ = Sill (~ S6.

itConvert to earlh-fixed direction cosines

SX_ cos ,I sn 9• 0 x

whore

6=I t Oicen, iun of Grucrwich ior year of interest

rotation ratu of earth in radians/day

timc in days and decimal days from January 0.

Lct

(4) V X, i

be th.,e direction vto:eIr from h•lh uarth's center to the sun. ,Assume V. is parallel to the

vector from h st afuliito !o the sun.

t

-,57-. 1
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•-~•m. \,:..-'s t from ro , 6 to saulllite and lot

(.) \'.. X~irn,, j~v•,k
I

be t1!w th direc ion vector fic,.n station i to th•e satel lite.

The dol product of (NVj) a;.d (-V-,) yields the intersection angle at the satellite 4

STohe distance d, normal to V.-i from tie satellite center is inversely proportional

Ij
to the percentage of the iilunnnated surfucu viewed by comera i. Solve for d,,: 4.4

d,
(7) d, 'I -_ d, ' 'I r 1 -7i , sin O j

where r, ,s ihe satel litc radius and • has Ihe same direction as -VI. The correction

vector V is

(3) V., dXAi + j++ , ' k

The maginitude cfV/,,, is:

(9) R. X -X + (YO-YC)2 + (Zo-Zrj

T he n V, IS:

(10) V:". R, x 1 i + R u~i R V1 5L

Qhe vocior ,from station I to the ith saoillite center is;

!+
(11 V,-5V*1-



urn:x'~* ,On.J l comn)or'nets of ý/n

" " i ]" \PRiJ/i:•
;P 

JI•" ) %

"(13) V (S" S + S

Thv n ,w direction cosines corrected to the center of the satellite are:

:7 : Ij (Sit

(14{ fill II

.,,ki.c >::, •z,, +.)., in Appendix 5 with (14) and convert to new u..8.

the triacnulohion except the residual computations.

g. S!?ecuiur ,e,,ect ...
Since CU 'UI"!e

The only difference from the correction in (A) is the computation of d- Since

we G,'.ýr'cm a truly spkurlcal satellite, the basic laws of reflectivity hold (the angle of

ruCficct'on cqucls the an$1c of incideaice). The solution of d,, becomes a simple relation

oF the lea o. siOes ond cosines. . .

+:, ~Compute; ',

1 d , r, sin ri:,/sin(Tr- 2 •e

Wflu~C/2.

' 11
i -5 9-
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C, (F VVR!-cinpc' VDi f',ýcnct! Comnpoo t Tan

S. Scio ').0 of ilart I for a detailed analysis of the GLOCEIVER rangeI

d f~xcc~rcduý.iion. and Hic foiniation of the bosic error model.
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I PC)L/O ---
k Polar Motn Io

I :•• i'/0 i Pulalluctic

Refraction

-ICRoUTC-UT1

Start IE~(

-Residuals

IPHS/O Phase Angle

Rcad, IIPE, IPOL. ISA 0e SAO-UTI
IREFCO.R,JRES, i 's Ye

IPHS,ISAO IP=
No

ITPE =2 Range Residual
Only

I'rPE =3GEOCEIVER

II

Pre-Proceýsor Program
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-. :.,c, a~ ation ale convcrtcd ilrO;n right ascension and declination to plate
X,. Fi"s' convert right ascension and declination to azimuth (A )and

.• .- ). A~um. the middle obsetvat-ion (azimuth and elevation) to be the
-.... -... ;Q , C pc ox.l a oF tfie camera. The external orientation elements

'i- A , w- E,, and lot x= 0

For "he i th stýt;on end time ft compute the local hour angle of the jth observation.

t: +1.00273791 t

r= 'u.,cnwrch hour angle at t-0 (apparent)

Oý- obsCrvintg ;imo (universal) in angular measurement from Greenwich (radians)

A Z d of suO ation (WVest)

-:t asccnsion of observation

QN ,d o, station

S. -j C. sir, Lin 8+ Cos .coýs cos (t,) 11
cc : E (1-si. E )2  

A

i si,,\ -cos 6 sin (t)!cos E 
:

c,: , (:ir, ,- sin 'sin E)/(cos 6 cos

! " 7o -ar (s:, A/cos A) 
•

•05

Sarn (Kr, E1 6cos 5.)

-65- 
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use midpoint A , E io compute the local orientation matrix.

/A B CCos ev sill v 0
A' B' n' - sin w -cos ey sin c costo

SD^ E F ,/ sin e Cos Wo Cos no cs t sin flw

then

t (sin A cos E

( cosA cos E)

n sin E

anc'

u ~ Cý

the plate coordinates for the i th point are:

" /w
= CV 3 /w 3

Let , (xb) denote the coordinates of the first and last points on the trace. Let

x denote the angle between the line joining these two points and the x axis. Then

compute:

sin b -(9 b-y')/'r.t

Cos Xb

b L.(Xb -U.)2 + (Cyb _yrI

The new x, y coordinates are:

-66- :I



,ii

[y sin x cos x]

The 'rotation of the local orientation into the masler frame is accomplished by:

ABC -Cos X sin x 0 A B C 0 1 0 cas X -sin X 0

' B' C si cos x A' B C' -sin (P 0 cosqý sin X cos X 0

0E F D0 1 F cos L 0 sin ý. 0 0 o

The coordinates x y, and the master orientation matrix serve as input to the main program.

-i
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Interstation Constrains

A. Incorporation of Special Interstation Constraints

From the latest approximations to the coordinates of the j th specified station pair

p•, q. compute (subscripts i are omitted in following):

•i •• --(v~° -0 (xVC° "

6()O 0• = ( (Y-)0~P q P -

tI

v R• = C(6X , J) + (,6 yj")2 + (AZ P)2'l

} r., C (AXm)• + ( tYq)o 3

00
sl [(AX•, =( YsJA I

,•Ya/r , ~ aarc sin (

i En b / p E --arc sin (sin E'0 )

i 4

00

g' = 6Y /R .

g"AZ /Roo

Compute:

gii/

I - .-71- - _ _
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(2 1 i A cosA00 1 , ~ sin E")2

'1. a.--

1 00 00 00
6A Vq 1 sinA0 0  I 1E I (vqsin E.q)

-~ qr A pA q~o ,

0Aq0 1 M (1 I -v,,sin Eo')
a~qaEq )Zp P C pq P

IU = ~ p a 1 = Iii . ~ p

1 B~p 1

ay 11 qR

II jR cm vU 00

d ~ P=ý1 jP
toI

When~~72 a1rsei dlna osriti obeipsdo h oriae fsain



tI

In terms of the above set Lip:Io
31 a 01 -a0 -a01  -a0s Azimuth Constraint

(4) U 131 b b b1, -bl, -biq -b•,n Elevation Constraint

011) c I c 3 c _ -c1 -c12 -cI Distance Constraint

I dj• dL. -d, -d12 -dj_ Linear Constraint

0 0 o00

Let •P , E RP, pq denote the measured values and let aA p a,. P Or V

be the corresponding standard deviations. Then set up the discrepancy vector:

(A QO - A q)/ CrA p

00j a(Ep; q Pq)/CrE
(R oo o/rA

(U0 - LIq)/ov q

If a particular type of constraint is not to be exercised between points p and q, the rows

of U• and Ep corresponding to that constraint should be set equal to zero. Thus if a 1
distance constraint were to be rows of U and ,, would consist of zero elements. In

terms of Up and C compute:

Sq - q U CPq Upq Epq.

Partition S,0 and c q as follows:

( 3 1 3 • , ) ( 3, 1) I
(5) sPQ ýT ,T

Cq

(4,3) (,

-73-



|i
5

I

(6) Mcrgc Spq and cpq into the proper position of the network normal c~uation* S !|

andcl , respectively.

(7) Continue as above until all irinrtorti~on constraints have thus been processedo.•

I

I..
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reliminar% Geoceiver Comnputations I
The raw Geoceiver cycle counts A N are first converted to range differences

between the satellite over the time interval t _.to t. If

fo = transmitted frequency

fo =" Geoceiver reference frequency

t3 = time of j th cycle count

$ = slant range between Geoceiver and satellite IA

c = velocity of light

then

sI = s -s .= D -X-fo)(ti-ts. i

where

SC/f

0

and D is the cycle count corrected for ionospheric refraction. D is given by:

Di= AN - K AANJ

where

&AN = refractive cycle count

K = 9 for 162-324mc reception

K = 9 1/6 for 150-400mc reception.

The range differences are converted to relative ranges by:
whrr AZs., + A~s2 +.. + As•i

r =change in range from time t =to to time t =t l

The quantities t, r, constitute the input to the main program. When any particular

AN is equa I to zero, this means that phase lock was lost during the jth counting interval

and it becomes necessary in the main program to reinitialize zero set at time t, .

I -77-.H. . . .. . . . . ... .. . .• ... ... . . . • • .
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