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ABSTRACT

The program SAGA exoloits short arc orbital constrairts in effecting the
adjustment of observations made by geodetic tracking nets emkracing both optical systems
(e.g., PC=1000, MOTS) and electronic ranging systems (Lasers, Secor, Geoceiver, etc.). ,

Provisions are made for consideration of:

a) random errors in the observations and in the iiming of observations;

b) serially correlated errors in observations;

c) errors in the adopted location of the cenrar of mass;

d) svstematic errors governed Ly erior mouels having coefficients

subject to apriori con*raiis,

The averall tracking net can include an indefinitely large number of stations (many
hundreds) as long as no more than fifteen participate successfully in the observations of
any pass. All orbital state vectors are treated as unknown and no limits are sct on the
number of state vectors thet can be solved for simultaneously. Allowances are made in
optical error modelling for reinitialization of error coefficients that becomes necessary
when any station exposes more than one plate on a given pass. In the case of electronic
tracking, up to three dropouts in tracking can be accommodated for each staticon on
each pass with appropriate reinitialization of error coefficients. A maximum of aver
250 error coefficients can be exercised in the reduction of each pass. This becomes
computationally feasible by virtue of algorithms providing the solution to problems in

what is termed second order partitioned regression.
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1.0 INTRODUCTION

In previous series of investigations conducted by DBA Systems far AFCRL
(Brown, Bush, Sibol (1963), (1964); Brown (1964b), we developed most of the theoretical

framework for the present undertaking, namely the development of a general and advanced

computer program for short arc geodesy. This program, hereafter referred to as SAGA (Short
Arc Geodetic Adjustment), has drawn on and benefitted from experience gained from three
preceding programs that were also based on the theoretical development referred to above.
These predecessors consist of the following programs developed by DBA:

4 Q) GDAP (GEOS Data Adjustment Program) developed for NASA Goddard

during the period 1966-1967 for the short arc reduction of observations
of geodetic satellites (Lynn, 1967);

2 MCT (Method of Continuous Traces) developed for AFCRL during the

period 1966-1967 for the recovery of geode tic positions from measure=

ments of sun-illuminated passive satellites rscorded against the stellar !
background (Brown, Trotter, 1967); ﬁ‘

) NAP (Tracking Network Analysis Program) developed for NASA Geddard
during the period 1967-196? for long arc erbital reduction, terrestrial,

lunar, or interplanetary, with options for recovery of station coordinates
ond error model coefficients (Lynn, et al, 1969).

Properties of SAGA relative to GDAP, MCT and NAP are indicated in Table 1. All four

programs are capable of exercising short arc orbital constraints in an unlimited multi-epoch }

. st
Ry p—

mode (that is, the number of state vectors that can be solved for simultaneousiy is without

present limif). In addition, NAP can exercise long arc constraints and con accommodate

extraterrestrial orbits (it employs a general n body integrator capabls of integrating through
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1.

12,

13.

14.

15,

Short arc constraints (unlimircd-no. cpochs)
Long arc constraints (unlimited no. epochs)
Extraterrestrial orbits

Geometric option (orbital constraints not used)
Recovery of staticn locations

(a) limited number
(b) unlimited number

Recovery of coctticients of potential function
Recovery of coordinates of center of mass
Recovery of tracking error coefficients

{0) optionally reinitialized after every pass
(b) optionally stable over specified sets of passes

Consideration of random timing ciror

Option for consideration of :eiiully correlated errors
by Autoregressive Feodlack T

Solution of general normal equations by First Order
Partitioned Regression

Solution of general normal equations by Second
Order Partitioned Regression

Tracking systems accommodated

(o) Optical (PC-1000, MOTS, Baker-Nunn,
BC-4, etc.)

(b) Electronic Runging (Lasers, SECOR,
GRARR, Radars)

(c) Microwave Intciferometer (MINITRACK)

(d) Noncumulative, one way doppler (TRANET)

(e) Cumulative, one way doppler (GEOCEIVER)

Structure of program and organization of input/output
optimized primarily for '
(0) Recovery of station locations
(b) Recovery of precise orbits
- {€) Recovery of tracking error coefficients

Program operational on

(a) CDC 3100/3200 (16X core, 4 mag. tape units)
{b) CDC 3800 (Naval Rescarch Lab.)

{c) UNIVAC 1230 (NASA Goddard)

(d) 18M 360/75/91/95 (NASA Goddard)

(e) 1BM 7044/7094 (AFCRL)

X

KR

XXX X

XXX

X

KKK X

X
X

X

X

) Extension underway to add indicated capability.
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spheres of influence while allowing the gravitational potential of the currently dominant
center of attraction to be represented by solid spherical harmonics up to degree and order
(n,m) = (24,24), While NAP can be employed for satellite geode- its primary intent and
organizationare directed toward precise determination of orbits with appropriate consideration
being given to (a) serially correlated errors of tracking systems, (b) sysiematic errors of
tracking systems, (c) errors in locations of tracking stations and (d) errors in coefficients of

the potential function (at this writing the capability (d) is in the process of being implemented

in NAP). Two advanced features first introduced in NAP have besn incorporated into SAGA,

namely, solution of the normal equations by means of second order partitioned regression

and consideration of serially correlated errors by autorcgressive fesdback. In Sections 4
and § of this report we shall provide the detailed development of the theories of partitioned
regression and autoregressive feedbaclc,

All four programs can recover coordinates of tracking stations. However, in
forming the reduced system of normal equations GDAP and NAP retain the system in core.
This places a definite limit to the number of stations that can be solved for simultaneously
(typically to 20 to &0 depending on computer). On the other hand, SAGA employs the
logical development originally proved in MCT wherein the reduced normal equetlons are
generated piecewise in core but ara cumulatively formed on an external file (magnetic tope
or disk) . By this means it becomes practical to accommodate an overall tracking network
1 embracing literally hundreds of unknown stations. The arimary restriction is thot only a

i limited subset of stations is regarded as participating successfully in the observation of any

given pass (in SAGA the number is limited to a maximum of fifteen). Such a restriction is
of no practical consequence in actual short arc operations, for rarely would as many as

fifteen stations participate on a given pass, rmuch less all be successful .

Error mode! coefficients appropriate to each channel of observations can be
carried as adjustable constrained parameters in all four programs. In MCT and SAGA, all
exercised error coefficients are regarded as unstable from pass to pass and thus ars auto-

matically reinitialized on each pass. GDAP and NAP also have this capability but are

somewhat more fiexible in that any desired subset of error coefficients can, on option, be




treated as stable over a specified set of posses. For example, timing bias from a given
station can be regarded, when desired, as stable over certain specified passes, rather
than belng reinitialized on each pass as are the other coefficients. This capability was
not incorporated into SAGA primarily because it complicates considerably the logic and

set up of the program and has proven to be a feature that is not often exercised in practice,

Of the four programs only GDAP has the option to perform geodetic reductions

in a strictly geometric mode. This option was not incorporated into the other programs -

because experience with GDAP demonstrated the clear superiority in satellite geodesy
of the short arc mode over the geometrical mode. In particular, recovery of tracking error
coefficients has been found to be far superior in tha short are mod=, Comparative analyses

of the short arc versus the geometrical ap; ‘ouch are made in Brown (1967a) and Brown (1968).

SAGA incorporate- cu..uin unique capabilities which experience with the other

- programs indicated would be desirable, One is consideration of random timing error. This

was included primarily to make proper allowances in the reduation of PC-1000 chopping
observations of passive satellites in view of studies indicating an rms mechanical jitter of
about 0.3 ms in the operation of the chopping shutter. lnasmuch as relatively close

satellite passes can cross the plate of a PC-1000 at rates up to 10mm/sec., an rms error in
timing of 0.3 ms can be equivalent to as much as 3 mic~-s on the plate and thus be
comparabla to plate measuring errors.  Although it remains yet to be determined, random
timing error might also potentially be of significance with the Geoceiver, particularly if

rms noise levels in phase determination amounting to only about 0.1m are achieved as
projected in the design. Inasmuch as range rate of an observed satellite can amount fo as
much as 5000m/sec, an rms error in timing of as little as 2) microseconds can be equivalent
to the expected ms error of 0,1m in phase determination. Therefore, to be on the sofe side,
SAGA aiso makes provisions for the possibility of significant ra..lom timing error in electronic

observations.

Another unig e feature of SAGA is its ability to take rigorously into account
errors in the adopted center of mass of the eorth, As was pointed out in Brown {1967), when

one elects in a short arc reduction to hold fixed the coordinates of a selected station, one

-4 -
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thereby implicitly defines what is to be regarded s the location of the Earth's center

of mass. The error in this implicitly adopted center of mass does have an effect (albeit

a rather weak effect in most cases) on recovered coordinates of tracking stations. In the
case of optical tracking networks of continental extent, the effect of such errors is very
nearly equivalent to that of an error in scale. Through a series of exercises conducted
with GDAP, Lynn, (1969) established, for example, that an error of 50 meters in

the vertical component of the adopted location of tha center of mass (verticei, that Is,
with respect to the fixed station) can cause an error In scale of about 1:200,000 in a
continental network. In view of such findings, we incorporated into SAGA the capability
of treating the coordinates of the adopted center of mass as constrained parameters. This
means that in sufficiently strong tracking networks of continental extent, the possibility
emerges of improving the location of the center of rmass relative to the origin of the
cdopted datum, In wecker, more limited networks the main benefit of carrying coordinates
of the center of mass as constrained parameters lies in the more comprehensive ond realistic
error propagation that is thereby produced (here, no significant improvement in the location

of the center of mass is to be expected).

SAGA also differs from the other programs in that more comprehensive error
models are employed for optical tracking systems. In addition SAGA is expressly designed
to accommodate observations made by Geoceivers, Ranging error models that have so far
been incorporated into GDAP and NAP are not sufficiently general to accommodate
Geoceiver observations (should the need arise, however, they could readily be extended
to do so). In the next two sections we shall go into the detailed developmant of the optical

and electronic error models employed in SAGA.

From the foregoing review it can be appreciated that SAGA provides a powerful
tool for satellite geodesy, What is not yet apparent is the fact that in spite of its flexibility
SAGA has been designed to be easy to set up and use, This is accomplished in part by
building into the program selectable sets of standard ontions sufficiently broad to cover most
routine situarions likely to be encountered in practice, Special situations can be accommodated

when required, but at the expense of a more ex’ensive set up of control parameters, "
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2.0 OPTICAL OBSERVATIONAL EQUATIONS

2,1 Projective Equations

¥, as in Figure 1, X, Y, Z dencie the space coordinates of @ point photographed
by a camera lc = }a* X¢, Y, Z¢, it is well known that the image .coordinates x,y are

ideally given by the projactive equations

A (X=Xc) +B (Y-Y¢) +C (Z2~-Z°¢) _ |
= x,te

x =
T 7 D(X=Xt) +E(Y=Y®) 4 F (2~2%)
M oo AOCXT) +B (Y-Ye) +OZ-20)
= c
YT KX +E Vv) T 2T
in which ’
Xpe¥pe€ = coordinates of center of projection is image space (note: the
z axis of image space is directed along the camera axis; thus
¢ corresponds to focal length).
A B C | = orientation matrix = matrix of direction cosines of x,¥,2 of

A BY c image space relative to X, Y,Z axes of object space
(specifically, A,B,C are direction cosines of x relative to

D E F X,Y,Z; A'B'C' of y relative to X,Y,Z oand D,E,F of z
relative to X, Y, Z).

The orientation matrix can be expressed uniquely in terms of three angles. If the X, ¥,z
axes of image space and the X, Y, Z axes of object space are related by the angles

@, w,x indicated in Figure 2, the orientation matrix can be shown to assume the form:

A B C] -eoéa So8x~glanax sinw sinx sinx cosx~cosa ginw sink cod w ainx
(2 A BCle cosa gink~ sinq 81D w 608K’ ~sina shax-cosa sinw eosx " goswoosx |,
. DETP sina cos w aOB R 0O W sjaw

>

By div‘iding the numerator and denominator of the ratio on the right hand of (1) by:
@) R = [X-X) (Y=yep + zozeyp it

one can express the projective equations in terms of direction cosines:

-7-




e e

LS

e

. FIGURE 1

FIGURE 2

PRI IR TO RN C R s NS

S




(oo g

R T R R S R ST ST T == P B T

- A\ + By + Cv
X T %TC DNtEp +Fy
(4)
AN+ +C'Y
y = ypte
DA +Eu +Fv
wherein

5) A= (XX)R, p=(Y-YOR, v=Z-Z)R,

Equations (1) and (4) can be put into the alternate form:

A XX Akexy) + Ally-y,) +De

v Z=Z®  Clx=x,) + C'(y-y,) *Fc
(8) .

B Y-Y® B (x=x,) +B'{y=y,) +§f_ .

v Z-Z° = Clx=x,) +C'{y-y,) +Fc

The direction cosines A, 4,V can be expressed also as:

sin a* cos w*

]

@

cosa* cos w*

v = sin w*

in which a*, w* are measured in the same sense as the &, w that define the direction

of the camera axis (Fig. 2).

Once the projective parameters &, w, %, X,,¥,,¢ (and possibly others, such as
coefficients of distortion) have boen determined from a plate reduction based on measured
plate coordinates of selected stars, the plt;te coordinates of satellite images can be
e‘mployed in equations (6) and (7) to establish their directions a*, w*. If X,Y, Z are
svitably defined, a*, w* will be equivalent to Greenwich hour angle and declination,
which, in turn, can be converted into right ascension and declination if the time of

the ohservation is known.

It has turned out that optical observations published by the various data

. gathering organizations consist of the derived quantities right ascensicn ond declination

-9-
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(accompanied by time) instead of the original observations, namely, the measured
plate cocrdinates. Thus the uncritical user is likely to regard right ascension and
declination as directly observed quantities rather than as derived quantities. While
errors in plate coordinates 'remain uncorrelated for all regions of the celestial sphere,
errors in right ascension and declination become highly comrelated in polar regions.
Since most organizations do not dccompany their published right ascensions and
declinations with covariance matrices, such correlation is not generally taken
properly into account. Consider, for example, ths extreme case of a plate centered
at the pole. [f plate measuring accuracies are equal in x and y {0, =0, =0), it can
be shown that the standard deviations of the derived right ascension and declination
(e, §) are given by:

0y = (otan 8)/c

8
® o = (osin? O)/c

and the correlation between &, § Is given by:
9) Pas = 2sin otcos .

Thus correlations between &, 8 can range between - to +1 for points onthe same plate.

To those versed in analytical photogrammetry, there is good reason to prefer
plate coordinates over derived angles. Aside from the matter of correlation, the
projective equations (1) relating x,y and X, Y, Z are actually simpler than the relations
between &, § and X,Y,Z. However, the overriding reason for preferring the projective
equotions has to do with error modeling. Systematic errors in optical directions are in
large part attributable t - -rors in the projective parameters produced by the plate
re. :tion. Especially significant, in many instances, is the angular instability of
the camera throughout the data gathering period. As will shortly be demonsirated, a
physically meaningful optical error model can be expressed in an especially compact
form when the projective equations provide the observational equations for the reduction

In particular, we shall show that four error coefficients can account for a total of eight

-10-




distinct sources of systematic error.

ot oot T e it ke e 5.4

Because plate coordinates and associated projective parameters are not generally
available, one may resort to what may be termed the 'dummy camera method' to

reconstruct from the given angles sets of plate coordinates that are approximately

I

equivalent to those actually measured. The dummy camera method involves the
e following steps:

T

y i

1) afocal length ¢ is adopted that approximates the focal iength of the
camera actually used;

2) acentral ray is selected to define the direction of the camera axis
(02, w) in equation (2);

- D TN

i 3) with the swing angle % provisionally set equal to zero, the orientation
. matrix of the dummy camera is evaluated from (2);

ot

4) the given angles for each ray are converted into direction cosines
A, 1,V by means of such relations as (7) (typically a* corresponds to

Greenwich hour angle computed from sidereal time and right ascension and.
w* corresponds to declination);

TR

' 5) with x, and y, set to zero, with ¢ equal to the value adopted in step (1)
1 and with the orientation matrix computed in step (3), the direction cosines

A, U,V are substituted into eqs. (4) to generate equivalent plate coordinates

L X, Y.

The dummy plate coordinates thus generated together with the adopted projective
parameters of the dummy camera provide artifical chservations having errors equivalent,
for all practical purposes, to the errors in the original observations. For reasons shortly
to be made clear, one extra step in he dummy camera projection is desirable. This is
to redefine the swing angle x (provisionally assigned a value of zero in step (3)) so that
the x axis coincides approximately with the trace of the satellite. In this regard we
would note that when the original observations are uncorrelated and are of the some

accuracy (0, =0, = a), so also are transformed values x',y' defined by: -

x' = xcos u=ysin X

y' = ysin xt+txcos x.

o S




This means that the x axis of the dummy camera can be arbitrarily directed without
significantly altering the error structure of the dummy observations. Accordingly,
directing the x axis of the dummy camera along the trace of the satellite is altogether
acceptable, even though this may not necessarily correspond to the direction of the

original x axis.

2.2 Optical Error Model

The x,y coordinates reconstructed by the dummy camera method may be

represented as:

m
X = X, +¢ —
? q
(10)
n
= e -
Y Yp a
in which
m 1A B8 C A
an il = {A 8 C b .
q D E F v

The systematic errors in x and y attributable to systematic errors in projective parameters

may be represented as:

m c m
x = &, += dc+=me-c—
*q q q5q

2
(12) .
= h €S -
by = &y, + 6c+q &n <:qa 6q.

The errors &m, On, 8q arise from errors in the orientation matrix. Let Aa, Aw, Ax denote

three infinitesimal rotations that serve to correct the orientation matrix. Then if m',n',q"

=12- _ .
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denote the correct values of m,n,q, one can write:

m' ) ax sl fAa B ¢l
3) || = |-ax 1 aw|la e cllul,
g b ~Aw 1 | |D E F_||v

r
rl Ax Dba m
= =% ] Aw n
-0y =Aw 1 J q

Here, it will be noted that the matrix in the quantities Ao, & w, Ax qualifies as an
orthogonal matrix if terms of second order are neglected when the matrix is multiplied by
its transpose . Therefore, it is a rotation matrix. However, Aa, Aw, Ax do not consist
of wirect additive corrections to the e, w, ® implicit in ﬂ;e original orientation matrix.
Physically, B and Aw are components of rotation of the camera axis in the xz and yz
planes of image space, and &« is a gomponent of rotation about the camera axis. The

errors in m, n,q attributable to errors in the orientation matrix are given by:

dm m'=m 0 Ax  Aa| |m ‘nAx+qbda
(14) |dn ! -Ax 0  Awjin] = |-mAn+gqdw] .
dq q' -q -da -Aw 0 }.lq -mAa = nlw].

]
=)
1
=4
it

Before substituting these results into (12), we shall express Ao, Aw, Ax as:

Aa = ba+T ba
(15)  Bbw = bw+r 6w )
Ax = & +7 6%

in which T denotes the time of the observation relative to the time of the cenfral ray
defining the direction of the axis of the dummy camera. By virtue of (15), we odo;;f

the assumption that the orientation of the camera is not necessarily strictly stationary

2% : §
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but may be changing infinitesimally with time. If we now substitute (15) Into (14)

and then substitute this result into (12) we shall arrive at the expressions:

= X x? x
Ox = ox, + = be-¢ (I+?) ba +;Z 6w +y Ox
-c (l +§)76& + 3‘&11'6&: + yT OX
(16)

5y=6y’+§66+¥-6a+c(1+ bw - x &xn

ONN’ nNN-J

+5cx1‘6&+ c (l+ )rﬁd! - xr 0% -

In the reduction leading to this result we employed the relations x=x({m/q), y=c(n/q)

which follow from the consideration that x, =y, =0 In dummy camera projection.

As it stands, the error model (16) involves a total of nine parameters. However,
the number can be reduced to a total of four essential parameters by certain considerations.
First we note that for cameras of long focal length such as the MOTS and PC~1000, x and
y are less than one tenth as great as c. Accordingly, terms x3/c? and y? /c® may be set
equal to zero without significant effect. We now recall the fact that the swing angle »
is chosen in the adopted method of dummy camera projection so that the x axis coincides
very nearly with the photographic trace of the satellite (which in tum typically departs
from linearity by only a few hundred microns at most). Thus for all points on the trace
» 73 0. Moreover, the x coordinates of points along the trace can be represented
approximately by the relation x =xr where x denotes the mean rate of chon‘ge of x over
the plate. If in line with these considerations we make the following set of sub-
stitutions into (16):

(17)  x3/c® = y3/e® = 0, y=0, x=xr

’

we shall obtain the result:

ey

e b N ,..ﬂ‘ kb

(Lo LT

L,

4




PR

N T N T N

R o ]

(18a) 6x = bx,-cda + 3= bc = or b&
(18b) 6y = 8y, ~cbw = xr 6x = cr bw ~ xt? b,

We sce in (18a) that the coefficients of 6x,and Oa are constant multiples of each other;
the same is true of the coefficients 5¢c and §a. This means that Sa alone is sufficient to
account for the combined cffects of infinitesimal changes in o and x,. Likewlse, 8¢
alone is sufficient to account for the comtined effects of an infinitesimal change in scale
(or focal length) and an infinitesimal rate of change in the 6 component of rotation.
Similarly in (18b) we find that 8y, and 6w are perfectly coupled, as also are §x and
8w. Thus, the rotations 8w and 6 x serve also to account for 8y, and 6w respectively.
Further simplification can be achieved f sm consideration of the fact that with cameras
having a focal length that is many times larger than the pl(:te format, the term in 6 is
liniy to be relatively insignificant in comparison with the terms in & and 6. For
cameras such as MOTS and PC~1000 the coefficients ¢t of 6 and & in (18a) and

(18b) are about ten times larger than the maximum value of the coefficient xt? = x1 of
5x. This means that §x must be about ten times greater than 6a and 6 in order to
induce a comparable error. In a study of camera stability reported by Brown (1969) the
maximum values of 8¢, 5&, and 6x for a PC-1000 w:re found to be about 0101 /sec for
6 and 6w and about 0Y02/sec for §x. Although 6% did become about twice as

great as 86, 5 Its net effect was only one fifth as great inasmuch as |max x| » O0.1c,
In view of such consider.rions, we regard carrying 5% in the error model to be generally

of dubious value and accordingly have dropped it in further treatment of the model.

By virtue of the findings of the previous paragraph, we may drop from the

general error mode| (16) the tems in 0x, By,, 60,6 and §x%. This leaves a four
parameter mode!l of the form:

6x _c(,_'__x_:;_) -’fcz y i;— (6 |
[+
(19) =
L-ﬁy XY C(]'*'ﬁ) -x )4 bw
C c3 c
6x
s..ac_.i
=la= e .

PP P

e




This compact model is sufficient to account not only for biases in six projective

parameters but also for my uniform drift of the camera axis throughout the exposure.

Onc must not lose sight of the fact that this result does depend in part on dummy camera
projection that places the trace of the satellite through the plate center and approximately .

along the x axis of the plate.

When optical systems are employed to record a flashing light, synchronization
of all observations is automatic and the problem of interstarion timing bias does not arise.
However, when shutters are employed to chop the traces of sun illuminated passive
satellites, the possibility does arise that local clocks may be inadequately synchronized.
In this case the error model (19) must be augmented by terms of the fom:

Bx, x 6t

(20) . '
0y, = ybt,

where Ot represents the interstation timing bias. In ¢ short arc tracking network 8t can
and should be forced equal to zero for one arbitrarily selected station in the network.

The biases &t for the remaining stations are subject to a priori constraints appropriate to
the timing system employed.

In cases where optical and electronic systems both track a satellite carrying a
flashing light,interstation timing bias is accommodated in SAGA by treating the timing of

the optical system es unbiased and the timing of the electronic systems as biased relative
to the optical system.

A common and desirable practice in optical tracking is to reorient each camera |,
one or more times during the course of a pass in order to obtain extended coverage from
a given station, MOTS cameras occasionally obtain as many as four plates on a given
pass and two or three plates are common. Under such circumstances it becomes
necessary to reinitialize the error model for each plate (except for interstation timing
bias which would be common to all plates at a given staticn for a given pass). This

means thot if a particular station were to acquire four plates on a given pass, one
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would have to determine an independent set of ccefficients 6o, 6w, Ox, C}:c for each
plate and, where applicable, @ single interstation timing bias 8¢ for all pilafes. As a
conscquence, an oplical station can require the exercisc of as many as seventeen error
coefficients for a single pass. Such a capability is provided in SAGA. Let us consider
what this implies in view of the fact that SAGA is designed to accommodate as many as
fifteen stations on a given pass. The most extreme situation wouid e one in which all
fifteen stations are employad in a chopping mode and each stction successfully acquires
four plates. The number of error parameters to be recovered on a single pass would then
amount to 15x 17=1 = 254 (the timing bias at one station is corstrained to zero). Such

@ reduction becomes practical only by virtue of the use of second order partitioned
regression as is discussed in Section 4.

2.3 APriori Constraints

By virtue of the stellar control employed in plate reductions, systematic errors
in ¢ 1'ly determined directions are sharply bounded. The error budget for a PC~1000
reduction provided in Table 2 is taken from Brown, Bush, Sibol (1963). For cuirent
validity the bﬁdget need be changed in only a few respects. The use of the SAQO star
catalog in place of the Boss catalog would about halve the contribution of item A3.
Tangential or lens decentering distortion is now rouiinely culibrated and removed
according to methods developed in Brown (1964), (1966). As a result items A6 and
B6 of the error budget can Be reduced to about one third their former values. The most
significant change to the budget affects item A1l which is concerned with camera
stability. The budget calls for rejection of the plate if comparison between pre and
post orientations indicates the presence of camera instability equivalent to more than
one third the net rms error in the plate coordinafes. This recommendation has been
found to be too stringent te ba fo!lowed in general oractice. Instead, instability is

tolerated to the point where its effects on direction are comparable with those random

errors. In effect, this means that some PC~1000 plates are accepted even though a change

in orientotion of as much as two seconds of arc exists between pre and post calibrations.

When such a change is continuous (as opposed to a suddan disturbance), its effect on
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TABLE 2 ERROR BUDGET FOR PC~1000 FOR POINTS OUTSIDE ATMOSPHERE

RMS CONTRIBUTION IN MICRONS UNDER;

' (a) (b) (c)
ERRCR SOQURCE Favorable Normal Unfavorable . ¢
Conditions  Conditions _Conditions ¢
1. Random setting error (average of 2 settings). 1.0 1.5 2.9 x‘i
2, Emulsion instability. 1.0 1.5 2.5 - é
3. Low frequency atmospheric shimmer. 0.5 1.0 3.0 3
4. Star cotaloy error (Boss). 2.0 3.0 4,0 ¢
w 5. Residua. (adia! distortion. 0.5 1.0 2.0
o z 6. Residual tangential distortion, 1.0 2.0 4.0
g o) 7. Flatness of surface ot emulsion, 3.0 0.0 0.5
= E 8. Residual differential refraction 0.0 0,5 1.0
2= 9. Residual comparator ecrors, 0.5 1.0 1.5
2Z |10, Timing errors (WWV). 0.5 1.0 2,0
< 5 11, Camera instability (below threshold of
i routine detectability). 1.0 1.5 2.0
< POOLED RSS TOTALS: 3.0y 4.9u 8.2y
w 1. Random setting error {overage of 2 settings), 1.0 1.5 2,0
O 2. Emulsion instobility. 1.0 1.5 2.5
Z ., 3. High frequency atmospheric shimmer. 1.0 2.5 5.0
Q0 | 4. Residual error in calibrated orientation, 0.5 1.0 1.5
<7 5. Residuai radial distorticn, 1.0 1.5 2.5
Z Q | 6. Residual tongential distortion, 1.0 2.0 4,0 .
2 52| 7. Flatness of surface of emulsion, 0.0 0.0 0.5
= g 8. Residual parallactic refraction, 0.5 1.0 1.5
oo x| 9. Residual comparator errors, 0.5 1.0 1.5 ,
o POOLED RSS TOTALS: 2.4 4,5 8.0 }

GENERAL QUALIFICATIONS;

Q.

bl

C.

el
f.
g'

Calibration is assumed to involve at least 40 stellar images compactly distributed about flashing light trace
and divided approximately equolly between pre- and postcalibrations.

Elevation angle of camera is taken as 30° and altitude of flashes as 400nm,

Photopiocessing procedure recommended by Gallnow and Hageman (Astronomical Journal, ppP. 399-404, Vol.}
61, Nov. 1956) is assumed employed in order to minimize emulsion instability; for same season, points . }
within one centimeter of edge of plate are assumed npt to be measured, ]
Atmospheric shimmer is taken to be that characteristic of maritime subtropical atmosphere ot 30° elevation {
angle with PC-1000 employed at full (200 mm) aperture. : Rl

Timing errors (WWV) are taken as 5, 10, and 20 milliseconds.for cases {a), {b), (c), respectively,

Comparator is assumed to be calibrated and properly operated.

Plates ore assumed  *  rejected if cumperison between individual pre and post orfentations indicate ’

presence of cam: Jility equivaleni to more than one third the net rms error in the plate coordinates. ‘
i
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satellite directions is likely to be less than one second of arc because of the relatively

St

short time interval spanned by the satellite observations.

In view of current practice, we would suggest that a priori constraints for

St Lot LN g

PC-1000 and MOTS optical error coefficients be selected from one of the following

three schedules:

Schedule | Criterion [ Oy Ou Oy Oc

1 (favorable) 0, <34 05 Cv'5 190 0u
2 {normal) 3<g,<6p | 1V0 10 2Y0 204
3 {unfavorable) | 0, > 64 195 15 370 30u

The quantity o, refers to the ms error achieved in the plate reduction.

A primary advantage of the short arc approuch to satellite geodesy over the
geometric approach is the practibility of accounting for systematic errors in extensive
networks through error modeling. On strongly observed arcs, adjusted values of many
of the error coefficients can constitute substantial improvements over a priori values.
On the other hand, some error coefficients may prove to be intractible, thair
accuracies after adjustment being no better than before adjustment. This has been
used as an argument against the exercise of error models in the adjustment. Such an
argument is unsound for it is clearly important that the effects of statistically bounded .
systematic ervors be rigorously taken into account even when such errors are not
amenable to worthwhile reduction. This is especially so inthe case of plates
containing a large number of satellite images, as when passive satellites are recorded.
Here, one wou'!d obtain unduly optimistic estimates of accuracy from error propagation

if one were to ignore the possible existence of systematic error.

2.4  Sp=cial Corrections

SAGA is designed to accept any opticul observations that are provided in the
GEOS format of the NASA data bank. Unfortunately, there is no uniform standard

Bl te s R LA —
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with regard te certain corrections that is followed by all agencies producing optical

data. In particular, the following corrections may or may not have been applied by

given agency:

1)  polar motion;

2) conversion of times to UT1;

3) parallactic refraction;

4) phase angle correction (chopping of passive satellites);

5) propagation delay (chopping of passive satellites).

Because of the lack of homogeneity in the application of such corrections, SAGA has been

provided with a special preprocessor which serves to apply these corrections as needed.

Characteristics of the preprocessor are ciscussed in Part Il of this report.

2.5 Orbital Constraints

The orbital integrator employed by SAGA is that developed by Hartwell (1968),
(1969). It employs a power series solution to the equations of motion wherein each
coefficient is formed in terms of its predecessors by means of recursive algorithms. The
version of the integrator employed in SAGA truncates the gravitational potential at
(n,m) = (4,4) inasmuch as this has proven to be entirely adequate in short arc applications
(Brown 1967). If x,y,z denote the geocentric inertial coordinates at an arbitrary time r
relative i0 an adopted epoch 7=0, the power series solution of the equations of moticn

can be represented as:

- g, 4, G ...0, K o 7]
@) |y y| = [b by ba.oeby {71
z z Co € Cgessty| [T° 2T

i

in which all of the coefficients are functions of the six initial conditions at T =0




T T T YT

(namely: Xo,¥0+s 20+ %o+ Yor20) and gravitational coefficients. The series is truncated
automatically when a prespecified tolerance (presently taken as 0,001 m) is satisfied
for the maxium value of T to be exercised. If the epoch is taken near midarc, the

radius of convergence of each expansion is suficiently great to accommodate arcs as

long as one third of a revolution for nearly circular orbits.

The versicn of the integrator employed in SAGA also geneiates power series

solutions to the variational equations relating errors in x,y, z at time T to errors in the
adopted location of the center of mass and errors in the six initial conditions. If we
let Xoo+ Yoo r Zoo denote the earth-fixed coordinates of the center of mass, the matrix

of partial derivatives generated by the integrator (the matrizant) can be expressed as

_ 90, y,z;t)

(220 Q = TRNON
; (,9) a(Xleoolzow"OIYolzolxol)'olzo)
E: 011 nm *e e nm
3 =0y Qg ... Qg

Oy Oz ... Op

¥ in which each QL. is, in turn, a polynomial:
#
j: (23) QL. = {ao a1 aa LN aﬂ)&' ]-!
T
7-3
L7

¢

Inertial coordinates generated by tha orbital integrator can be referred to an

earth-fixed framework by the application of the transformation:

e as  cmn

X

X
Y Y
. R O
Z z
@) 1ol = [r ] |
¥ y
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in which

cos YT sin Ypr O =sin¥T7 cos¥T O
(25) R = |=sin P cosyT Of, Ii=lb ~cosPr =sinypr O}.
0 0 1 0 0 0

In a similar manner the matrizant can be transformed to earth fixed coordinates by the

operation:

(26) d "= R G = a(XpY,Z;'l") .
(30 9) (3' S)(S'B) a(XNIleZm,xo'yo,zo,;(o'yolio)

With these results we are now in a position to develop the optical observational equations

for the short arc reduction.

2.6  Optical Observational Equations

If the X, Y, Z in the projective equations (1) are replaced by the values computed

Py

from (24), the equations become functionally of the form:

x = f (xcchlZcl)%ollezmlxorYorzorio').'o:io;") 3
(27) ' : L] . ;‘
y = B3 (X% Y, Z% Xoo 1 Yoo r Zep # Xor Yor ZorXo r Yor Zo it)

If x°,y° denote the observed values of x,y, the cdjusted vaives corrected for systematic

error can be expressed as:

x = x°+v, +xv, +x8t+ bx

(28)

Y y°+v,+§'v,+§'6f+6y

where 6x, 6y are given by (19). In.(28) vy, ¥, denote residuals reflecting random error
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in x and y, and v, denotes the residual reflecting random error timing. The terms
in 8t account for the bias in timing (eq. (20)). We naw set up the relations:
XE = (XY™ + BXE  Xpp =XB +8Xo X =3 +8x5 %o =xT + 8%,

@9) YO =(Y)P+EYT Ypo =YR t0Yp o =¥ty Yo =¥3 +8y

where the orientation matrix has been developed by dummy camera projection. The

values of the plate coordinates computed from (31) then become:

ZE = (ZC)0+ §2¢  Zy, =ZR +6Zy, zo=xX +0zq 2 =P + 6%,
in which the superscripts (00) denote approximetions and the §'s ure correspdnding
corrections. Substituting these into the right hand side of (27) and linearizing the
resulting expressions by Taylors series, we obtain:
X = Xw"'ax : n o " (bxc,ﬁw;ﬁzc,..., 69016*0"
a(xcivclzclxm:Yoolzma’blYoczolxolYovzo
(30) 3y . c RN
y = Ym+ " - - (6x ,6“,52 ,...,6y°,62°)
a(xcIYcIZchmIYmIzmIXOIyolzoleIYOlzo) ‘
in which
x® = f1((xc)°°;(Y°)°°r---:zg°) b
G1) . | N
Yo = ), (Y9, ...,220) . '
To arrive at explicit expressions for the elements of the linearized observational equations, ]
we let X®,Y%,Z% , X% ,Y®, 7% danate the components of position and velocity for the )
time T of the observation as computed from equations (21) and (24) in which the given E
approximations in (29) are employed in the integration. Then we define the auxiliory: -;},% 4
. o
m°°" A B CT [x®-(xeyo ‘*E %
(32) |[n®] = [Ar 8 ] [Y® - (ye)e éé :
. Bk 9
q® D E F Z® - (Z¢)® :_‘gg _
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xoﬂ
(33) =
y°° q n

where ¢ denotes the focal length adopted in dummy camera projection. The partial

derivatives of the plate coordinates with respect to station coordinates is given by:

3x,y) i
(1) = mtil
(34) (23") B(XC,YC.ZC) q

als

1'0 =x%c| |A B C
0 1 =% | |A' B C'
' D EF

In terms of this the partial derivatives of the plate coordinates with respect to center of
mass and orbital state vector are given by:

. . a("lY) =
35 8@ = 7= e
o @re) Ko YooreenrZp) (3e3) (3.0)

in which & is given by (26). The time derivatives of the plate coordinates required in
(28) can be computed from:

& .xm
@36 | X = 8@ |
: ).’ (3 ,3) t{m
%),

If we partition B®) as:

a(x’ )’) § a(xt Y) [
(3) = S =| BEY; géY
@7) (38’9) 3(%o0r Yoo r Zoo) : 3o + Yo 1 Zg rXor YorZe) @3 (3e)

the linearized observation equations can be put into the form:

@38 A v = B® g - e sE) . pE) @ ~ BB g0 - B W = ¢
G.0)6,3) (6,803 (@), (o)) (B)0n) (a6 (@0
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X
(39) 8@ = . 5@ = (81,
Y
2 X r&a
- (1 +—-) zy Yy = )
e c ¢ w
B(‘) = - , 6(‘) = .
xy P Y o
b ¢ s
? At this point we shall recognize that as many as four plates may be acquired ot a given
3 station for a given pass. Accordingly, there may be as many as four sets of eror
3 coefficients, Letting p denote the pth plate (max p=4) recorded and introducing the
: subscript | to denote the i th point observed by the station, we may express the pair of
5 finearized observational equations generated jth point, if cbserved on plate p, as:
L w0 Ay
3
1 in which
3
3
E
-25-
——— — S -

z - . '\w:«-!g pre 7]
B N T S §
g it s Do

P R S
Sin ok <37 5 M PR =




TR - R S = < S i oy i i

(41) 8, = "'[B(;)s B(:) B(::Q B(:J) 511’3(:): EH,B(:} 53,3(3 €‘v3(::]
(@ a+e) @) (/2 (@) (1) (3,49) (a,4) (3,4) (3,4)

@2 8 = (60 gan gan’ ga) gw’ g@T g s@")
(@+4,2) (18) (1,3) (1,8) (1,9 (1,4) (3,4) (1,4) (1,4)

The dimension 4 in these expression. is introduced to denote the total number of error
coefficients exercised by the given station on the given pass. The quantity £, is defined
as:

£, =1 if i=p

£.,=0if i#p.

43)

In this fomulation it is understood that the number of purameters generated by a given
station for a given pass increases by four with each plate successfully recorded. Thus
B , may range from a minimum of a (2,17) matrix for a single plate to @ maximum of a

12,29) for a set of four piates.

2.7  Normal Equations

We are now in a .posiﬁon to consider the formation of the nomal equaﬁons'
for optical observations. In doing so, we shall employ the methodology employed in
Brown, Trotter (1967). Accordingly, we first form the normal equations for a given
staﬁon’and pass, ignoring the existence of other stations and other passes. If the
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covariance matrix of the random errors in plate coordinates and timing for the jth

point from the given station is denoted by:

63 0 0
H ' .
@4 A 0 o:J ol ,

3
3,3)
( 0 0 op

the system of normal equations generated by the point can be expressed as:

(45 N, 8=c,

in which
-1
Ny = By (A,A,A])7 B,
46)
_nt T,~1
c, =8, (A;AA)) €.

It is to be noted that since:

. oy s F ;‘3 O'T? 0
T o
47) A A A = 0 0'3’+ y? a:,
the results of the multiplication by (A s Ay A ,)-1 can also be effected by treating fhis
matrix as a unit matrix in (46) after modifying B‘ and ¢, by dividing their first and

- . 3 3 o a -] 3
second rows, respectively, by (0‘,’ +x, OF, )é and (0‘,‘+y, 0‘.,-,)# .

The system nomal equatibns generated by all points from the given station and

pass is simply:

48) NO§ =c¢
where

‘N = TN,
(48a)

¢ = Ec: .




Covmres v

We now introduce subscripts i and k to denote the ith station and k th pass respectively.

The normal equations (48) may then be written in more detailed partitioned form as:

[On]g‘ [Gn]m [0113 [Uijm ai [ellk
(era) @r3)  (:8) (3l (er2) (3. )
Wl Ozl (01, Gl Boo [éaly
@,3) @r3)  (e8)  (Bity) (3/1) @r1) |
@ | . . . _ ) - .
(U, (U5 Ny Ny 5, Cx
G0)  (8:2)  (ve)  itg) 1) €:1)
O WL, Ny N, by <y
L(.{‘gcra) (‘4*,3) (5!4—") «’gg"{’f‘) (‘(‘[kll) ("wn
- L nnd e -

We shall find it conveﬁienf to proceed formally os if ali m stations in the tracking network
were to observe all passes (presently, this assumption will be dropped)l If we then assume
that (49) has been evaluated for all m stations (i=1,2,...,m), and merge the resulting
individual sets of normal equations into a common system by the process of zero augmentation
devcloped in Brown, Trotter (1967), we shall obtain the system (50) indicated on the next
page. If a particular station does not participate in the tracking of the kth pass, equation
(50) should be modified by (a) replacing all elements corresponding to the station in the
Uand & portions of the nomal equations by zeroes, and (b) deleting from the remainder

of the normal equations the elements corresponding to the station.

By adopting tho partitioning indicated by the broken lines in (50), we can

represent the system of normal equations for the k th pass in the more compact form:

~28-
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We next assume that (51) has been evaluated for all n observed passes (k=1,2,...,n)
and again resort to the process of zero augmentation to merge all such individual sets of
normal equations into @ common sysiem. This leads to the system indicated in equation
(52) below. We shall assume tivat weight matrices \75/, \;V,, P W,( reflecting the apriori
constraints to be exercised in the adjustment have been absorbed into the appropriate

_diagonal blocks of (52). Then (52) represents the final system of normal equations.
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~ Having fonmed the system of normal equations for the adjustment, we must now
address the problem of solving the system, expecially in view of the consideration that
it can grow to huge dimensions. We do this in Section 4 which is devoted to the
theory of partitioned regression. We need only point out here thet the system of nomal
equations (52) is precisely of the same form as the second order partitioned system
indicated in equation (66) of Section 4, Accordingly, by applying the algorithms of
second order partitioned regression as developed in Section 4 to the present problem,
one can execute a practical solution of the nomal equations no matter how many arcs

are processed or how many error parameters are introduced by each arc.

2.8  Analysis of Residuals

After the nommal equations have been solved by the algorithm for second order

partitioned regression, the optical rasiduals can be computed from:

vl
T -l
63) v, ={v,p = A,AVAA, AT (e, =B, 6).
W),

These residuals are employed in SAGA, along with residuals corresponding to other

observed quantities, to compute:

(quadratic form of all residualz)

s -
(degrees of freedom)

The observational equations are then relinearized about the new approximations to the
parameters and the solution is iterated, leading to fresh residuals and a new value for 5.
This process is repeated until successive values of s differ by less than a preset criterion
or the maximum allowable number of iterations hava been executed. Computational

details are given in Section 6.

Upon convergence, the final observational residuals fror designated channels

can, on option, be subjected to an autoregressive analysis. When this option is

exercised, the entire solution is repeated with serial correlation being July considered

in accordance with the process of autoregressive feedback developed in Section 5.
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2.9  Master Survey File

Before the adjustment of satellite observations can be undertaken, it is
necessary to set up a@ Master Survey File for the entire tracking net ultimately to be
adjusted. This file contains the initial coordinates of all stations and the covariance

matrix of the coordinates.

When initial coordinates are expressed as geographical coordinates, a
preliminary program (SET-UP) transforms these coordinates into Geocentric Cartesian
coordinates and computes the associated covariance matrix. In order to permit the
investigator considerable flexibility in imposing inferstation constraints, SET-UP
also pemits the directional components and the length of the vector joining arbitrary
pairs of stations to be constrained to any desired degree. In addition, it permits the
introduction of any number of linear constraints between arbitrary pairs of stations.
Thus if X$,Y®,Z%), (X, YR ,Z) denote the initial coordinates of stations p and

q, the program admits constraints of the form:
(54) a0y XP+aa YR+ Z9 + By XT + B, YO +Ba 2 = Uy,

in which U, is considered to be an observation of prespecified variance oiq and the

a's and B's are prespecified coefficients. Such constraints serve a variety of functions,
including () holding selected stations fixed relative to u designated station (datum
constraints), (b) defining directions of cooidinate axes (for adjustments limited to ranging

observations), (c) imposing special reiations between stations.

All specified interstation constraints are properly exercised by SET-UP in
developing the a priori covariance matrix 11 of the geocentric coordinates of the
tracking net. Details of this process are given in Part Il. The location of the center
‘of mass with respect to the adopted geometric origin is treated as if it were the last
tracking station of the net. By virtue of this artifice, the covariance matrix A serves

to accommodate the a priori covariance matrix of the coordinates of the center of mass.

.The Master Survey File is set up but once for a given tracking net. SAGA
calls upon this file whenever it requires either the a priori coordinates of a given station

A -1
or the a priori weight matrix (W = A ) of the entire vector of station coordinates.
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3.0 ELECTRONIC RANGING OBSERVATIONS

3.1 The Geoceiver

In this section we shali develop observational equations and error models
appropriate to various electronic ranging systems: lasers, Secor, GRARR, Radars, and
Geoceiver. We shall place particular emphasis on the Geoceiver system both because
of its potential future importance to satellite geodesy and because its error model turns

out to be sufficiently broad to encompass those of all other ranging systems.

Characteristics of the Geoceiver are discussed in Stansell, et. al. (1965).

Briefly, the Geoceiver is a compact, self-contained, relatively inexpensive (under

$100K), manpack, doppler tracking unit designed to track Transit satellit 's as well as
other satellites radiating on either of the frequency pairs: 162/324M Hz, 150/400M Hz.
Reception of dual frequencies provid~s t- means for correction of ionospheric refraction.

Like t':: Tranet system, the Gcoceiver exploits one way doppler. However, Tranet

TR T RTH

1 opuiutes on cycle counts in a destructive mode; that is, at preset intervals it measures
the time required to acquire a preset number of doppler cycles, whereupon, it ceases
counting until the start of the next interval. Thus, continuity of cycle count is lost
and it becomes necessary to treat Tranet observations as being essentially a measure of
doppler frequency (or, equivalently, of range rate). By contrast, Geoceiver operates
on cycle counts in a nondestructive mode; that is, continuity of cycle count is

3 preserved (as long as phase lock is maintained). It is this fact that permits Geocelver
to be viewed as being inherently a ranging system, for if the transmitted frequency from
the satellite and the reference freuency generated by Geoceiver were perfectly

F matched and both were perfectly stable, the scaled cumulative cycle count of beat

frequency would, except for an unknown additive constant of integration, represent ¢

dircct measure of slant range. In practice, this measure is contaminated by the unknown
offset between transmitted frequency and local reference frequency as well as by any
drifts of the two frequencies. Such factors can, however, be taken into account by

error modelling.

-33- .

{
i
i
i

;g@%

gt

T A RN T TR TSN S T H B, P




3.2  Geoceiver Observational Equations and Error Model

To arrive at the Geoceiver observational equation we find it convenient

first to define the quantities:

r = distance of satellite from station at time t (station clock)

frequency transmitted from satellite

a"
[}

f = frequency received at station at time t
v = total velocity of sateilite at time t

8' = angle between velocity vector ¥ and vector directed from observer to
satellite ot time t (cos 6' =7-V)

r = rate of change of range at time t =v cos 6'.

The relativistic equation describing the Duppler effect on frequency is then of the form
(JOOS, THEORETICAL PHYSICS):

) i = -! ' - ! ¥
) § =0-Ycos 8/y) (c) .
Setting v cos B' =7 and solving for r, we get:

f " v\’
] ]-'*.-o ‘-(z)

o fo=f 1
=g fo +-i-

-
L}

@

Ol%

+ higher order terms.

Let f denote the reference frequency generated by the Geoceiver. Then (2) can be written:

@ f=A [Af+(f°-f3)]+-]i- 1;3
where

A =/
4

Af=§ ~f.
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The quantity X represents the wavelength of the transmitted frequency and the quantity
represents the beat frequency generated by the Geocelver. If we now assume that f, and

fy are constant over the tracking interval, we can Integrate both sides of (3) between an
arbitrary time T = 0 and a later time T to obtain:

(5) re=rg = AN+ =f,)r+ 81,

in which
r = range at time T, ,
ro = range at time 7=0,
N = f" Afd,

o

T
Ar, = -21; j; v2 dt =special relativistic correction.

The integral defining N represents the number of cycles of beat frequency accumulated from
the initiation of counting (7=0) until time 7.

In the case of Geoceiver, cycle counts are cumulated over intervals of nominally
one minute. Specifically, Geocelver generates the cycle counts:

Ts
© AN, =§ ' Afat
Ty

in which 7,., and 7 represent the times of the first poslﬂve cycle crossings following
successive one minute marks T -1 and T K. shown ln the accompanymg figure.
Following readout, the counter is reset to zero before the next positive cycle crossing
is counted in the next interval and continuity of cycle count is maintalned. The cycle
count N appearing in (5) can be related to the counts generated in (6) by the relation:
@ N, = afd=(" Afdf+;: Afdt+ ... +;:’ Af dt.

0 0 =1

=AN1+AN: +l.. +AN’.
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<— . AN, cycles >
(AN,isan integer)
. 3
. . . . . ¢
LFE L . Y ts w
j=1'st minute first positive jth minute  first pesitive counter is reset before
mark* cycle crossing mark cycle crossing  next positive cycle
following T .y - following T, crossing thereby assuring

that cycle following t,
is counted in next interval

*NOTE: When Transit satellites are tracked, one minute marks for triggering readout are -
generated by interpolation within the standard two minute synchronization words impressed

on the received signal; otherwise, one minute marks are generated internally.

. -

FIGURE 3. Illustrating method used by Geoceiver to obtain continuous count of cycles of beat frequency. .
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+ One might expect from (7) that errors in successive N, are highly cerrelated by virtue 15 1
of being formed of common AN, . This is not the case, however, whan Goocejver Is | ‘:‘ l\
functioning properly (i.e., no cycles are dropped from or added to each count) for i;
the AN,, being integers, may be viewed as being free of error. The quantity properly }g :
to be regarded as subject to error is T, the time of the end of each counting interval, f 1

‘? 0
Errors in successive times T, and 7, are not likely to be strongly correlated, -

In practice, the frequencies f, and fy are not perfectly known, nor are they i
perfectly stable. To account for biases and linear drifts in these frequencies we may E
write:
(8) - ) ;;

fo = fo, + 06 +fir -
in which ] - :f:

fo = adopted value of transmitted freéuency 1 7 i

f& = adopted value of local reference frequency

&f, = bias in adopted value of f, at r=0 P ' ‘-

6fy = bias in adopted value of fy at 7=0 =

f.o,é', = drift rates of f, and fy, respectively. E »
For Geoceiver, the offset Afy, = fy, = fy, between the adopted frequencies can range ., .
between 16 Ke and 32Ke, depending on the type of satellite. Because of this and the
fact that dbpp’.er ranges between £10Kc, the beat frequency Af will never cross through -
zero. This obviates the need for distinguishing between positive and negative cycle: . ?3 ':'

‘ If we substitute (8) into (3) and expand the resulting expression for 1/f, into the series §
1] o, _ f Fo
(9) - S (]--Q-—'Q“T+ -cn) x ) 7?
fo foo fo foo
we shall obtain the result é 4
~37- B
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/ . - 2
(10) ¢ = X, ( --?—fg-> (AF = Afy) + Xo (6, = 863) + X5 (fo ~f3)7 +% \-;- + higher order terms,

[s0]
where

Q) = ?-c— = wavelength corresponding to adopted frequency of transmission.

Integrating this expression, as before, we get:
(2) rer, = ko( ...ffe.) (N = Bfgy 7) + X (B, = 82) 7+ Ao (o= F) 72
00
+ Ary + higher order terms.

This can be put into the form:

(13) v = Ao(N = Afy 7) tay +agr+ay 72 +agr+ b, + higher order terms

where:

of
Qg = (1 +-f;f)—) fo

‘ r
*| satellite clock triggers readout, replace 6f, by ('I +E) 6f,
= Xo(6fg= &) ‘

47 If Geoceiver clock triggers readout, replace 6f; by (l +-:-:) &6
(14) -
1o s,
a; = =(8f /)

Substituting:
(15 ¢ = [X-XEP +(Y-Y°)3+(Z-Z°)3]%

(18) = AN =Afy 7)

into (13) we obtain the basic equation

* See equation (25) for explanation.
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(7) © topt ayrtap7? +agr + 87y = [KXOP + (Y-¥e) + 220"
? The development thus far has failed to take into account the refractive effects =
;;; of the ionosphere and troposphere. Nor has it taken into account the effects of (a) §§
hﬂ propagation delay, (b) interstation timing bias and (c) general relativistic effects. ;E
Thus to render (17) more nearly correct we should add fo r° the composite correction: %‘
18 (18)  Ar = Ay + A +Ar, + Ar, O, % ‘
L E :
i - A
 F where i
&
3 Ar; = correction for ionospheric refraction ]
3
i Ar; = correction for tropospheric refraction
; ;’ Ar, = correction for propugation delay

Ar,r = correction for interstation timing offset (or bias)

1o
~
»
il

correction for effect of gravitational potential or frequency (general
relativistic effect).

The two frequency method is used by Geoceiver to detemine ionospheric
refraction. If AAN, denoctes the refraction cycle count (i.e., the cycle count of the

beat frequency between the two received frequencies), the desired correction is given
by:

sk AP,

(19)  Arg = =K Ao (BAN, +AAN + ... + AAN,)

TR R AT "

¢ where K = 1/9 for the frequency pair 162/324 Mc and K =1 /9% for the frequency pair
7 150,400Mc. Alternatively, the correction could be effected by replacing each AN, °
3 in (7) by AN, = K AAN,. '

The correction for tropospheric refraction can be computed by the following

formula derived by J. Willmann (private communication):

(200 Ar, = =20 () j

where 1

/B

«39= ? 1
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a = (ng=1)H,

@1) - s

F(E)= 1/ [sin E+ (sina E +f'-“-°)]
. -

in which

n, = index of refraction at 'ation
r, = radius of earth (meters)
H, = scale height of troposphere (meters).

The value of n, can be comput~d from meteorological measurements at the staiion by means

of the formula:

e B RS T > R R S

Po= 86.26 4 !

(22) n, = 1+10° 103.49 .Leﬂ et (1 +§.7__£) % ;
T, To To ;

where :
P, = atmospheric pressure {mm/Hg) :

e, = water vapor pressure (mm/Hg)

T, = temperature (deg Kelvin).

1 - The scale height Hy can be approximated by:
35 (23) H, = 29.2(T, ~30).

'— The correction for propagation delay serves to correct the range of the sarellite
f to the position occupied at time 7, as measured by the satellite clock (this is equivalent
‘ to the range at time T, +-rE as measured by the station clock):
t .

24)  br, =7 it

When a Geczeiver station is considered as one of several stations participating
in the tracking of a pass, it becomes necessary to allow for the possibility of a significant
hias in the correlation between the clocks at the various stations. If 67, denotes the
offset at epach of the clock at a particular Geoceiver station from the master clock, the

offsat at time T is:

-40-
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of, 6f
or = 670+—3¢=61'o +Ao—9-1

(for readout triggered by timing signals from the satellite clock), and the correction to

be applied to 1° is:
() Brp = 6T =7b7,+ Ao by = T

When the offset is unknown, 87, can be carried as an unknown parameter, subject to

appropriate apricri constraints. The contribution of 6f, can be absorbed into the error

coefficient a, . For readout triggered by the local clock, 6f,in (25) should be replaced
by 6f3.

R

The final correction is attributable to the effects on frequency of the difference

in gravitational potential between the satellite and the recelving station. The correction

is given by:

ookl ot

Cro o ] |i;;r°;

T (W/rg)d
26, Ar, = £ (T B/l

E where
;
' B = gravitational constant & 4x 10** m®/sec®
h = dltitude of satellite
] ro = distance of station from center of earth (same units a3 h).
; It is to be noted that for nearly circular orbits, h is nearly constant over a pass. Consequently,
4
¢ for such orbits Ar, becomes a linear function of v, and the tem in a, in (17) can absorb the
effects of the general relativistic correction. A similar remark applies to the special
; relativistic correction Ar, inasmuch as velocity v is nearly constant for nearly circular orbits.

For greater flexibility we shall augment the Geoceiver arror model by terms to
account for residual interstation timing bias and residual tropospheric refraction (we assume
that the corrections indicated above have been applied but are not wholly adequate). Thus

the full error model becomes:

@27) O = ay ta,r+ayr? +agr +a,r + agf(E) .
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where the terms in a, and ag account for interstation timing bias and residual tropospheric
refraction, respectively. Regarding residual tropospheric refraction we would remark

that ray tracing exercises through actual atmospheric profiles indicate that if the best
possible value of a were employed in (20), the proportional error §R; /R; in the tropospheric
refraction correction could be held to under one percent for £ 2 10° (or to about 0.2m at
E=10°). However, when @ is computed from meteorolcgical measurements made at the
station, 8R;/R, is likely to range from three to five percent for E 2 10° (and thus become
as great 0s 1,0m ot E=10°). Hence, potential improvement by a factor of from three to

five is possible from error modeling.

3.3  Linearized Observational Equations

We have already remarked that the quantity subject to error in Geoceiver
observatiors consists actually of the tiae ussociated with the cycle count (here, we
ignorc momentarily the contribution of errors in corrections for ionospheric refraction).
Let us suppose that for c given value of r° in (17) the measured time is T and the correct

time is T~ ¢, (thus €, denotes the error in 7). Then we can write
28) r(r~e)) = °(r) ~lr) ¢y * higner order terms.

Now, ¢,.. is affributable in part to errors in phase measurement and in part to errors in

T
quentization. Thus, we may write:

20 = ¢ "
W3 e T et e,

where

€, = contribution of phase measuring error

€, = contribution of quantizatio.. error.

RSl ) % I a5 s L A it St 5 Sl okt b il o S SR Bt

If ¢ © denotes the phase measuring error {.xpressed as a fraction of a cycle) giving rise to

Lo

€5, we may write

" €0 ' r
(30) €r= E} :
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1.
where Afrdenotes the beat frequency at time r. But from (10) Afpar (1), so that
o]
B = X, €/ilr).
Substituting this into (29) and substituting the resulting expression into (28), we get:
B2)  rPlr=e;) = ©°r) = ro ey = FlT) € .

Letting v, and v denot¢ residuals corresponding to the errors A, €, 9nd €z, we may

write the Geoceiver observational equations in the expanded form:

(33) 4w trvet A tagta,rHagr® tagr+a,r+ ag fE) =

LK + (Yo + 220710

Af we now replace X,Y,Z on the rig! hai.d side of (33) with the values computed from

the oriviial integrator (eqs (24) and (21) of Sec. 2), we shall obtain an equation of the
functional forms

B4 1= FXG, Y ZE, X, Yoo, Ze o1 YorZo rer Yor Zort)

where r denotes the lefr side of (33).

From this point on we proceed precisely as we did in Section 3 with optical
observations. We express the unknowns in (34) in terms of the same initial approximations

and corrections as were used in the optical reduction (eq. (29), Sec. 3), and thus expand

the resulting expression in Taylor's series to get:

ar

(35) r o= ‘.00.‘. (oxcl GYCIGZCI"’fin &0)7

a(x°,YC,ZC,XOO,Ym,wao,yo,zo,io,)’ro,io)
in which

(36) 1" = F((XE)P, (Y9, ...z, 7).

If we lot X®,Y%®,Z% X0 y0 70 danot the earth fixed coordinates of the satellite as

-4d-
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determined from the integration based on the approximate state vector, the partial

derivatives of r with respect X¢,Y®,Z® can be expressed as:

3
(37) g =

& §§;7§E§=-n“ul.
in which .

A= (X = (XE)0) A
(38)  p o= (Y- (YO®)/0

v = (2% - @Z9%)/%.

The partial derivatives of r with respect to center of mass and orbital state vector are then
given by:

: 3
(39) 1"1‘»(3) = o

(2/9) a(Xm,Ym,...,io)

- g &
(2, 3) (319)
where & is given by (26) of Sec. 3. The approximate value of r can be computed from: .
X%

o) == 8V,
(,9) 700

If we partiticn 8@ as:

) 8@ = [
“ (xs9) ,La(waYootzoo)

c2) | (ue)

d I CR IR
a(’ﬂ) ’ YO 14 zDI >“cu' ).'or io) 6'

the linearized observation equation can be expressed as:

(42) A v - BY ) gy gla. By gy . g g . gl & = .
(1,3) G,2) (3) @,1) (,0) (3,3) (r,8) (6,2) (,8) (5,2) (1,3) (1,0)  §,1)

in which
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r
oz¢ 0Zoo .
8%
(43}
B®) = [r 72 r ¢ fE)], 69 = (o, a5 a3 0,
B = (1), 69 = (a,).

Before proceeding, we shall address one possible problem with Geoceiver tracking that has
not so far been considered. This is concerned with what to do in the case of one or more
temporary tracking dropouts during a fass. When phase lock is lost, the doppler counter
is immecdiately set to zero and remains set to zero until the first one minute mark after
phase lock is restored. Thus u zero cycle count for a given counting interval is @ positive
indication of a dropout during that interval. When counting is resumed following a
dropout,a new c;onsfcnt of integration ry, or equivalently a new error coefficient a,, must
be established. On the other hand, it is clear from their physical interpretation that the
remaining error coefficients (a,,0;,da,0,,ag) will not be altered by a dropouf. Hence,
only @, requires reinitialization following a dropout. For each pass provisions are made
in SAGA to accommodate up to a maximum of three dropouts in tracking from each

participating station. This is accomplished by writing the observational equation
generated by the jth point as:

(44 A, v, +B, b= ¢,

in which -

)

~45m
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us) 8, =[98 8PP 8D £,,80) 6,000 £.,8%) £,,8%))
(x,1e4L) (b (,2) (.8 Us) G,1) () () ()

. 46) 8 = s glen g @) 5(:)7 5(24*)T 5(;)7 6(‘4-)’)t
! (1,13+) (108) (163) (xr8) (1r8)  (1:1) Q1) (1) (43)

) s S ket A i ™ v

in which the subscript p connotes the pth tracking interval (max p=4) and

£,=1if i=p

(47) .
£, =0 if i#p .

x The dimension ¢ indicates the number of error coefficients exercised by the station on the
pass (this can range from a minimum of six to a maximum of nine depending on the number

‘ of tracking dropouts).

TS

i 3.4  Normal Equations

The development of the normal equations g.nerated by Geoceiver observations
i follows precisely the process outlined in Section 2.7 for optical observations. With

suitable (and perfectly obvious) reinterpretation,equations (44) through (49) hold also

for Geoceiver observations. In particular, the partial set of nomal equations generated

3
?{ by a given station for a given pass (eq. {(49) of Sec. 2.7) applies equally to Geoceiver i
observations. So also does the merged system of equations from all staticns for a given 3
. i
’ pass (eq. (50), Sec. 2.7), with one proviso, namely, that each C soceiver station be j
: ; assigned a distinct station numbar even when it is colocated with an optical station. ;
E ; §
| }‘g =46~ '
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This step automatically accounts for the fact that the vector 5-9( of error coefficients
for a Geoceiver is different from the vector 8, of error coefficients for a camera. Should

a Geoceiver be colocated with a camera, appropriate interstation constraints can be

s e _,..ﬂr‘w<
,

exercised to-insure that both stations receive a common adjustment. With this under-
standing then, we can regard the general normal equations (52) as applying equally
well to (a) a network of optical tracking, (b) a network of Geoceivers (or. other

ranging systems), (c) a combined network of optical trackers and Geoceivers.

3.5 APriori Constraints

S T S

% Of the six coefficients ir. the Geoceiver error model, the first two a, and a, have
; large effects and are unlikely to be subject to worthwhile a priori constraints. The remaining
1 -
3 four, on the other hand, have relatively small effects and are subject to rather tight a priori
’; constraints. When the Geoceiver is funciioning properly and when the frequency blas &f,
i
£ of the satellite oscillator is reasonably well monitored, the a priori constraints indicated
in the table below can serve as rough guidelines.
; Typical APriori Constraint
3 Coefficient . Physical Significance (One Sigma)
- : .
a (1 +ﬁ°_) o 10°to 107 m
f '_ , o fm
a, Xo (65, = BF) 102, to 10% %, m/sec
| .« . -1
.1 a, 2 xo(Fy =F5) XofHx10 m/sec?
K - ~7
a, =8, /fs 10° to 10
¥
£ a, 87 (timing bias) 50us
¥
! ﬁ a 8cx (refraction) 0.2m
s
1
§ " In our view, the major shortconiing of Geoceiver is its low sampling rate of only §
i one rzadout per minute. This means that many passes will yield under ten observations §
" $
#
A
4] - -
‘:;?'; ’




WA o,

and even the longest passes are unlikely to yield more than twenty observations. The
justification of the low sumpling rate probably stems from the use (in one mode of operation)
of Transit timing signals to trigger readout of cycle count. Also, a probable factor is the
approach to dﬁ"ra reduction envisioned by the designers of Geoceiver. As outlined in

Stansell, et. al, (1965), this approach involves using an observational equation of the

form:

(48) ry=r,, = AJAN+ (fo = )T o T 1) T neglected higher order terms,

which is relatively weak, geometrically, for small time intervals. This formulation has the
advantage of completely eliminating the error coefficient for zero set a, and of generally
suppressing to insignificance the effects of a;,a;,a,,as (over intervals as short as one
minute). On the other hand, it fails to exploit one of the strongest characteristics of the
Geoceiver, namely, the nondestructive readout of cycle counts. It is clear that (43) is
equally valid for destiuctive or nondestructive readout of cycle counts, whereas our
formulation (eq. (13)) is designed specifically to exploit the nondestructive character of

the readout. If readout is indeed nondestructive, our approach should result in considerably
more effective utilization of Geoceiver observations. On the other hand, our approach
could benefit considerably from an increased sampling rete . An internally triggered readout
every ten or twenty seconds would probably be close to ideal. Such serial correlation as
might thereby be introduced could be properly taken into account by the process of auto-

regressive feedback developed in Section 5.

With the reudout rate as low as it is, one cannot generally expect to obtain from
the adjustment any significant degree of improvement (over a priori values) in the adjusted

error coefficients ay,a,,a5. Here, what one mainly accomplishes is the realization of a
more valid error propagation by considering the effects of these sources of error. The
apriori value of o, is subject to a degree of improvement ranging from slight for short
passes (under 5 minutes) to pronounced for moderately long passes (over 15 minutes), On
long passes observed by several starions (five or more), one can expect to determine values

of a, and a, to accuracies (sigma) of befter than five meters and five millimeters per

second, respectively.
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3.6  Reduction of Other Ranging Systems

Although emphasis in this section has been on the Geoceiver, our treatment of
the Geoceiver as a ranging system makes it possible to employ SAGA for the reduction
of ranging systems in general. The primary requirement for pracessing other ranging
observations through SAGA is that they be presented to the program in the Geos data
format. With active ranging systems, the coefficient a, would ordinarily be subject to
very tight apriori constraints le.g., a few meters for lasers), and the coefficients a,,
a, would be inapplicable and hence would be suppressed. An option is provided
within SAGA for the application of corrections for tropospheric refrastion in the event
that such corrections are lacking. |
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4,0  THEORY AND EXECUTION PARTITIONED REGRESSION

4.V First Order Partitioned Regression

SAGA is designed to process an arbitarily large number of passes, each observed

by a subset of as many as fifteen stations each of which can conceivably (with re~
initialization of error coefficients) introduce as".“many as seventeen error coefficients

peculiar to the pass. Accordingly, SAGA generotes a patterned system of normal

equations that grows in dimensions both with the number of passes processed and with

the number of error parometers exercised on each pass. In practical applications, the

normal equations can grow to embrace thousands of unknowns and thus be unamenable

to solution by conventional reductions that fail to exploit the patterned characteristics

of the system. In this section we shall develop practical agorithms for the solution of
normal equations related to those generate by SAGA. ’

The normal equations for a general regression analysis may be written as
() N&=¢

in which § deriotes the parametric vector to be estimated, N is the coefficient matrix,

and c is the constant column. Let § be arbitrarily be partitioned into two vectors
5, & so that

Then the original nomal equations partitioned to be conformable with the partitioning of
6 can be written as '

@ (N NS e
NT N|I6 cl.

To this point the normal equations are of perfectly general form. We now abandon full
generality by assuming that the parametric vector § is common to most  if not all, of the
original cbservationa!l equations, whereas & is composed of {possibly) a large number of
subvectors 31 , 53, .. .,.G'n, each of which appears only in a subgroup of observational
equations to the exclusion of other subvectors of G. Under these circumstances, the

nomal equations (3) assume the specialized form
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Here, the N portion of the matrix assumes a block diagonal form by virtue of the assumption

that for all i #§, '5'l and 3, do not appear in common observational equations.

To derive this result we may proceed as follows. The linearized observational
equations may be o Jered into groups corresponding to the various parametric subvectors
.6‘, . Thus we write

Vi +é:. é+.é1 61 €6
G vg +éaé+§ﬂ % T €

v, +Bu6+.3.n 'G.n"'e‘n

Here the v's are residual vectors, the éi's and .B't's are the coefficient matrices of the
parametric vectors & and 8!, respectively, and the ¢'s are the discrepancies between
actual observations and their computed values. We note that, in accord with the above
discussion, the § vector is distinguished by being common to all groups of the observational
equations, whereas each 8, vector appears in one and only one group of observational

equations. The above system may be written

& |

~ " ™ .o - — =
Vz Bl B‘ O XX} 0 e Ez
: .. &
(6) Va + Bz 0 Bﬂ sas o e = Ga
R R 1 B
v [[B. 0 0 ... | Le]

1.
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or more compacti. as,

EESRA >y S 1 |

¢) v+B86=¢.

If A denotes the covariance matrix of the vector of observations, the minimum variance

TTSBRERER LA

: adjustment is obtained £, determining, of vectors v and § that satisfy (7). that particular
t pair that leads to the minimization of the quadratic form
it 3
0 ©® s=viAT v L I
| This process leads to the nomal equations 3
3 ) Né=c, ‘.
. §
b where 1
) (9aq) N =BT A—l B, :
E 3 _i
bt (9b) c =BT A" €. ;
We shall now assume that A is of the form ;
(100 A =diag (Ay A «++ Ay) 3 3
. ‘.3
r where each A, consists to the covariance matrix of the observational vector corresponding 1 ’ %
to the residual vector v, . Then inasmuch as B and ¢ are of the forms E g
— - N B
B 8 0 ... 0 y _ 3
éa 0 .B.a o0 O €= 'l é
(] 1) B = E . : L l e = . , - g
B, 0 0 ...B, € E 4
- - - 3 }5
It follows by direct evaliation of (9a ) and (9b ) that the nomal equations (9) are of the ¥
form (4) in which ‘ a
(1) N=R +Ng+...+N,, &=& +& +...+¢, ; ]
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wherein

. . . ’ . . -l
(13) N =81 A7 B,, ¢, =8 A, e,

ARG R I . Rk

and in which

(14) N, =67 o] B

o . -] . ve -l
(15) N, =B8] A: Byo ¢, =B} A{ €.

B 5 b AL s o H AP

It is to be noted that this result applies to any set of observational equations of the form (5)
for which the covariance matrix of the observational vector is of the form (10). Systems of
this nature arise in a broad range of applications. In particular, such systems are generated
in trajectory and orbital analysis when coefficients of tracking error models are to be
recovered simultanecusly with trajectory p rometers. Before taking up specific examples,
however, we shall continue in an abstract vein to study the properties of systems of nomnal

equations having the particular patterried structyre of (4).

Returning then, to equation (4), we first remark that when the number of elements

in the § vector is small compared with the number in the évector, the block diagonality

of the N portion of the matrix is but of minor advantage to the solution of the system.
However, in many problems the order of § is much greater than that of §, while at the

same time the order of each 'ﬁ.s is either smaller than that of 6 or else is of roughly comparable
magnitude. Moreover, the number n of .6.‘ submatrices may be very large and without any
particular preset limit. Here, the normal equations can assume enomous dimensions and

the possibility of a practical solution hinges entirely on the block diagonality of N.

We shall call a system of normal equations of the form (4), a first order partitioned

system and shall express the coefficient matrix schematically as

. ¢
o ik s e e

(16) . N~
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The sense of this dic gram is the following: the horizontal and vertical arrows;lrepresent
solid rows and columns, respecn'\'/ely, of elements that are not necessarily zet';o; the
diagonal arrow represents a block diagonal array of submatrices; the blank regions
between the arrows represent the portions of the matrix that ore completely filled with
zero elements. The arrowheads are indicative of the fact that the size of the matrix can
grow without a preset limit. We shall find this diagrammatic representation of a first

order partitioned system to be a convenient point of departure in our later discussions of

higher order partitioned systems.

Aside from noting that the block diagonality of a first order partitioned system
provides the key to its practical solution, we have vet to develop the details of the

solution. We shall now remedy this deficiency. To begin, let us formolly define the
inverse of N to be

L [
(17) N =m=]|_

M™ M
where M, IV\,‘:M are each of the same order, respectively, as their counierparts N, N, N
in N. lnasmuch as NM =1, the unit matrix, by virtue of the definition of M, we may

write the equivalent relation in partitioned form to get

v — '3

noR) MM o
(8) | _ .
N N {MT M oy,
Peirforming the multiplication on the left hand side of the equation and equating

the resulting elements with the corresponding elements on the right, we arrive ot the

foliowing four motrix equations:
[i9g) NM + NMT =1

(195) NM +NM =0

(19c) NTM + NMT =0

(9d) N*M + NM =1 .

«55=
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Since we have already exploited the fact that the inverte of a symmetric matrix

is itself symmetric, the above system of four matrix equations involves but three
vnknown matrices: M, M, M. Various mutually consistent solutions are possible
depending on which set of three one elects to solve. In view of the fact that we are
ultimately going to regard N as large, but block diagonal, it turns out appropriate to
select equations (19a), (19¢), and (19d) for the solution, Accordingly, first solving
(19¢) for MT in terms of M, we get

20) M7 =-N"'R™M

b cniS SN s i S S N

and upon substituting this into (19a) and (19¢), we have
@la) NM-NN*R'm =1,

| @) ~RT MRNT R =1,

‘ The :,-»;iu.ﬁon of (21a) for M and that of (21b) f;:r M gives
; (20) M= (N - RRTRY™

%' (220) M= N R RTMRRT .
!

Once M has been obtained from (22q), the result can be substituted in (22b) to obtain
i M and in (20) to obtain M7, Thereupon, the formal solution of the original normal
equations (2) may be written

-1

? b NOR| e M Rl
i (23) &6=|..= o =1._

H 5 R* NI |¢ MY M | €
or as

{

; 24a) B=Me +M¢g,
(24b) B = M7+ ME.
Alternatively, by virtue of the expression for M given by (20), & can be written as

' 25 §=Mi-RK™e).

e 25

RSN e s e e e e

. ‘ R -




Similarly, by virtue of (20) and (22b) the expression (24b) for § becomes

-~ .

26)  §=-NT"Rr Mmeé+ (N2 + N R MRNE
The right hand side of which can be factored to yield
o eeml,, el VIR Lol
7y &6§=N &¢-N N'M-RN Q.
Equation (25) pemits this to be written in the more compact form
@) §=N"¢- N\ g,

Equations (22a), (25) and (28) constitute the major preliminary results that we seek

They are preliminary because we have yet ‘o exploit the block diagonality of N. This
! immediaely permits us to write

. -~
| r_N,"‘o vee 0|

Y ) RN7=0o R’ ..o
?L' : : LKy 0
' o 0 ... N:i]

Since N is of the form
@) N=(N N, ... N.,),
the expression @ = N™* N7 becomes

; BN

By  Q@=|N; Ryl = [q,

N7 Q

and the expression R = NN~ N' = NQ becomes . :

T - P i 3
(2 R= N, NTRI+R,KZ*RL+ .., + N N2RY 1

K@ +N,Q +...+ N, Q, | :i

Ry +Ry # ... +R,

f." _, LT 2 WT YO T SRRy 2y - o = > sl
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& Ny© 0 ...0 [lg Q,
; . . sn =2 . .
@) B=|8|=|0 N ..o fle,{-]|a| s

At this point we recall from equation (12) that the matrices N and & can be expressed os
(33) N=N, + N, +...+N,

@3b) ¢ =¢ *ey t..FE

in which l'\l,, ¢, are generated by the particular subset of observational equations
caentaining .6'1 (and hence by the some subset that generates N,, N,, and €,). i follows

then, that M can be written as
@4 M=N +Ng+...+N_ = (R +Rg+...+R)
or ¢s

@) M=S +S, +...+S$

where

(3%; S, =N

Similarily, the expression & - N N-I'c' in (25) assumes the form

e =

(37) e-RNNTE=(@ +&+.0. +8) ~ (@8 +Quey +... +Q,T,)

=T+t +T,
where

(38) <&, =¢,-Q,¢,.

Proceeding further to examine the consequences of the block diagonality of the N portion

of the normal equations, we find that the expression (28) for § can be written as
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From this it follows that

1.

' 40) 5, =N"¢-Q,§,

i which shows that each '6'1 vector can be independently determined once the value of §

et

has been obtained,

- Inasmuch as the inverse of the coefficient matrix of the normal equations provides

the covariance matrix of the adjusted parameters, it follows immediately from the

foregoing development that
1 (41  var (§) =M.

Since M has to be computed in order to obtain the solution for 8, the covariance motrix of
b fails out as a direct by~product of the solution. A corresponding result does not hold for
; the vector §, for although the covariince matrix of § is given by M, we found it posible
to Ly« ass the evaluation of M in the computation of § by equation (40). If, however, we
return *o equation (22b) and trace through the consequences of the biock diagonality of N,
we shall find that the diagonal submatrix of M defining the covariance matrix of 'B., is

given by
vy re=l .
Furthermore, the covariance matrix of an arbitrary pair of vectors .6.‘, '6" is giv‘en by

(43)  cov (0,8 =Q,MQ1, G £].

This completes the derivational development of the theory underiying first order
patterned regression. Because the essential computational flow is perhaps obscured by
derivational detail, it is appropriate that we conclude this section by extracting the
essentials of the reduction. We shall take as our starting point the following set of four

matrices concerned v-ith the i th group of ebservational equations: Byr By, € A,

Starting with i = 1, one first computes in terms of these matrices, the following five motrices:

-
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@44) N, =B] A] B,
@5 R, =8 AT E

@) N, =81 AT,
@8 &, =81 AL e,

) & =B AT ¢

In terms of these the following four auxiliaries are computed:
50 Q,=N; NJ

6y R, =R, Q,

(52) S, =N, -R,

(53 T, =¢, ~QlC,

As §; and ¢, are computed, they are added to the sum of their predecessors and only the
cumulative sum is retained. After all groups of equations have been processed sequentially

in this manner, one arrives at the final valyes.
(54) S=5 +S5;+...+5,,
(55) T=T +T t... +T,,

The solution for § is then obtained immediately from
66 b<Me

< !

. . v -1 . . . H . ! s
in which M =35 " is also the covariance matrix of §. Thereupon the solution for each §,,

in turn, is computed from
e ea=l .
(87) 8, =N; €, -Q,6,
purallel with which the covariance matrix is computed from

(58)  war (8,) = N:l +Q,MQ1.
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Finally, the observational residuals are obtaired by substituting the values determined

for § and 8‘* into the original observational equations, which gives

60) v,=¢,~B8,6=8,8,.

g mmn— T
,

The salicnt properties of the above solution of the normal equatians

characterizing first order patterned regression are

(1)  The overall computational effort generally tends to increase oniy lineorly
with the number of parameters being recovered, rather than with the cube of
the number as in adjustments where patterning is not or cannot be exploited.
This renders practical the solution of important problems involving the

'} ) simultaneous determination of thousands or tens of thousands of unknowns.

{(2)  The process of solving the normal equations proceeds apace with the
formation of the normal equations  Thus by the time the last group of
chservational equations ha: boen processed, the great bulk of the computation
r ' required for the solution has also been completed. '

(3) Core storage requirements are minirqal in a computer progrom, since
the processing for each of the basic groups of observational equations can
proceed independently of that of the other groups.

Before taking up some of the applications of first order partitioned regression, we would
note that the algorithm (equations (44) to (53)) leading to the computation of $,,. T, can
be put into the alternative, more compact form

N N &) B
(60a)

-1 . . '
- e Ay [BA 8, ‘1]
NY N‘ <, BT

it

fued - RS e

s E “his representation facilitates comparison with the algorithm to be developad for second

(606} [sl c,]

order partitioned systems, The application of first order partitioned regression would have

been sufficient for SAGA were it not for the fact that the program's general capabilities

with respect to error modeling can lead to very large N, matrices.
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4.2 Applications of First Order Partitioned Regression

The original application of the above development was made in Brown ‘(19580),
where it provided the basis for the adjustment of a general photogrammetric net, Here, the
& vector corresponded to the unknown elements of orientution of the cameras and each '6',
vector corresponded to the unknown X, Y, Z coordinates of a photographed point. One
specialized application of this theory was to satellite geodesy (Brown, 1958b), wherein
the § vector consisted of the unknown coordinates of a set of cameras and the '6'1 vectors
consisted of the unknown X, Y,Z coordinctes of recorded flashes. This theory was
successfully applied to the determination of the precise location of the location of Bermudo
relative to the North American continent (Brown, 1959) and later to a detailed study of
the feasibility of employing similar techniques on a larger scale to praduce an ultra-precise

survey of key tracking stations along the /..lantic Missile Range (Brown, 1960).

Another class of applications of first order partitioned regression emerged in 1959,
when it was recognized that complex problems of trojectory analysis could be formulated
in a manner leading to normal equations of essentially the same form as those successfully

handled in the photcgrammetric application. Here, the § vector consisted of unknown

coefficients of tracking error models, whereas the '6', consisted of unknown X,Y,Z

coordinates of trajectory points. This application (Brown, et.al.1961) become known as

EMBET (Error Model Best Estimate of Trojectory). \

In due course it became recognized through application of EMBET to conventional
tracking systems that certain systematic errors (e.g., zero set errort) could often be
recovered more accurately through data reduction than they could be established by means
of hardware, In 1960 Brown suggested that self-calibration by means of EMBET should be
exploited as a guiding principle in the very design of new tracking systems. This
philosophy was adopted in the design of the GLOTRAC system. Here, unknown
reference frequencies of remote tracking stations were recoveied in a specific EMBET

reduction called GLAD (GLotrac ADius.fment).,

-
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In Brown (1964b) and in Brewn et. al, (1963), (1954), the feasibility of self-
calibration of tracking systems by means of observations of satellites was extensively
studied and simulated. This led, in particular, to an important version of EMBET
called NEO~EMBET (N Epoch Orbital - Error Mode! Best Estimate of Trajectorv)
NEO<-EMBET renders practical the simultaneous reduction of observations of an unlimited
number of satellite arcs with all arcs being interrelated by certain common parameters
(such as coordinates of tracking stations or stable coefficients of error models) but with
each arc requiring the recovery of a fresh set of orbital elements and, in addition, with

each pass observed by a given tracker requiring recovery of reinitialized error coefficients.

In a study performed for NASA (Brown, Stephenson, Hartwell, 1965) it was
recommended that a special NEO=-EMBET reduction be implemented in support of the
GEOS | Short Arc Experiment. This recommendation was adopted by NASA and led to
the development of an unusually pawé.rfui ~nd flexible program called GDAP (GEQOS
Adjust: =it Program) which is di* uised by Brown (1967a) and is described in detail by
Lynn 1267). Asignificant application of GDAP to the establishment of a much
improved survey of the GEOS short arc tracking network is reported by Brown (1963).

Under a recently completed contract with NASA, GDAP was employed as the
starting point for the development of a still more advanced program called NAP
(Network Analysis Program). Whereas, GDAP can accomodate an unlimited number of
interrelated short ares, NAP is able to accomodate an unilimited number of interrelated
long arcs. However, the long arc application introduces what we shall presently take
up as second order partitioned regression  As has already been indicated, the purpose
of the first part of this section is to provide the background needed for an understanding
of second order partitioned regression Before taking up this topic, we would briefly
cite five more instances where first order partitioned regression has been successfully

cpplied.

In Brown (1964), the technique was applied to the reduction of stellar plates
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recorded by metric cameras of long focal length. Here, random errors in cataloged
stellar positions become significant. Accordingly, the reduction was formulated so
that parameters peculiar to the camera (focal length, distortion, orientation, ete.)
were incorporated into the & vector, whereas the correctiors to the cataloged positions

of the ith star, were accounted for by .6i .

In Brown (1966) EMBET and NEO-EMBET reductions were developed and

chcessfully applied to the reduction of Geodetic SECOR observations.

In Brown and Trotter (1967), first order partitioned regression provided the basis
for the development of the Method of Continuous Traces, a technique for exploiting
measurements of uninterrupted photographic traces of sun-illumined, passive satellites
to establish precise geodetic positions. Thc technique does away with the need for
synchronized chopping shutters, thu. .eading to less expensive, much simplified, and

more .cliable data acquisition.

in Brown (1967b) the development and successful application of a plate measuring
comparator is described. The design of the somparator is based directly on principles of

self-calibration as made practical through first order partitioned regression.

In Brown (1969) the calibration of metric cameras was approached from the stand=-
point that parameters of the inner cone (radial and deceaicring distortion, principal
distance, and coordinates of principal point) are invaricint over an indefinitely large
number of exposures, whereas elements of exterior orientation may change from exposure
to exposure. This formulation of the: problem of camera calibration led to the formation

of a first order partitioned system of normal equations.

From the foregoing discussions it is amply clear that the theory of first order
wartitioned regression has been put to extensive use during the course of the last decade.
Undoubtedly many more applications will emerge in the next few years. There are,
however, as in SAGA, significant problems leading to highly patterned normal equations
that are not amenable to solution by the first order scheme. Many such problems fall into
the province of second order partitioned regression which is the topic of the rehcinder of
this section. We expect that during the next decade a host of applications of second

order partitioned regression will emerge in various disciplines.
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4.3 Second Order Partitioned Regression 4
As in our treatment of first order partiticned regression, we shall proceed first in oo 4
i
an abstract vein in developing the theery of second order portitioned regression. We o
begin by postulating a patterned system of nurmal equations of the form f j
f_a. ~ ~~ o~ = A = l",, = ./ é ‘
U, U,...0,][% 2 -
) - 3
W Yy 0 ...0 1|6 < §
@6H|0; ¢ Ug...0 [|6] = |cq ;
T as
U1 0 0 ..U, 8 | ¢ ;
which, ir will be noted, has the same structure as the first order system defined by 1
sque.ion (4). Also, asin (4), the index n can be indefinitely large. What distinguishes ]
(61) as a second order system is its finer structure. The submatrices ﬁ“ U,,- 8, end ¢, are ; i
of the form ;
(620) U, = (U, Oy Tyg oo u“i]
Ny Ny Ny N“_;] 04 & ] 'Z §
Nz Ny 0 ... 0 641 G i1
s ' . j
(62b) U1= N‘;a 0 Nta see o . 6£= TRE c‘= c‘a ’ 'i N 3
R : ‘ : 1
— . . LA
NT 0 0 200 ‘c. *'F
o Moy g L™ g
in which the index n, can be indefinitely large. It is particularly to be noted that each ‘, E
Ui has the structure of a first order system (and hence can grow without preset limit). This - =
. : p o
coupled with the fact that the number of U, is also without preset limit is the essence of b
o second order patterned system. Such systems may be represented diogrammatically as in K
‘ R
' a4
i
~85= 4
I

|

i Dl il M




b

Figure 4. Here, lthe long horizontal aond vertical arrows represent solid rows‘gnd
columns of nonzero elements and the blocks arrayed along the diagonql individually .
consist of first order patterned systems. Thus a second order system may be descriBed "
as a first order system of first order systems. Similarly, o third order system may( be
described as a first order system -of second order systems. Although we shall not be
directly concerned with the reduction of third and higher order systems, we have
provided a diagrc;mmoric representation of a third order system in Figure 5. While we
have yet to find ¢ solid, practical application for a third order scheme, there do

exist, as we have already suggested, many significant applications of second order

schemes.

Let us proceed formally with (61) as if it were a first order system. We could
then follow the procedure of Section 1 1o uotain a solution first for & and then for each
of the 25'1, in turn. The practical difficulty with this approach is that the U,; unlike
their counterparts f\], ina first order scheme, may grow without set limit, While it is
true that the required inverse of each U‘ could be computed from the algorithm developed
for the first ordér scheme, the pivotal fact is that alth ugh U1 is itself a sparse matrix, its
inverse is not necessarily sparse, and indeed may be completely filled with nonzero elements.
It foliows that the formal solution of (01) for §, given by the expression
) 8- [z @, -7, u;*u;}*‘ [z e, -, u>]

: 1= =1
is computationally practical only when the dimensions of the Ut are reasonably small.
Accordingly, when the Ux are considered to be indefinitely large, the above reduction
is untenable, and ‘fhe, algorithm developed for a first order system cannot be applied
directly to effect the reduction of a seéond order system. As we shall see, however, it

can be applied in an indirect manner to produce a practical reduction.

Let us represent U, more compactly as

R,

»z.

64 U=

Z§

T
1

»Z:
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FIGURE 4. Schemctic of coefficient matrix characteristic of a second order
partitioned system of nommal equations. .
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FIGURE 5. Schematic of coefficient matrix characteristic of a third order portitioned

system of normal gquations.
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which corresponds to the partitioning in (62b). If we then designate the corresponding
partitioning of'luJ(, §, and c,

i

(650) U, = (U, T)),

F ;1

L

= "
65¢) ¢, = | 4],
[F1

(65b) &,

O Om

]

and also recognize that U and ¢ can be expressed as sums of U, and c,, we can express
equation (61) in greater detail as

g

2 a e - . — . - "a™ A A-

> U U Y U, U,... 4, U, i s

=1 . . - « ‘=Io

Uy N N 0.0 ...0 o 6, &

O N Ro o..o oflfg A

Up 0 0 Ny Ny,...0 0 ba ¢a

6| Ty o o0 K N,...0 0 ||| = <
Gz o 00 o0 ..N R|l5| g

The expression U* U,I UT, appearing in (63) can, by virtue of the above partitioning, be
represented in expanded form as - Lo

o - ) .
N, N, | U]
o sam] . - 1 } H
@ U U U =00y |
: NI N, Vig
P

R T . o~ : : ntasaa R SR




- (68)

As in Section 1, we let

-1 .
N, N;l M, M,

1 Ny

Z1

ML M,

By virtue of the results of Section 1, a more detailed representation of the right hand
side of (68) is

.M M, M, -M, Q]
| .= C ey
M M, -Q,M, N7+Q,M Q]

From (67), (68), (69) it follows that

which reduces to

eem)l A

o0 U, 07 Tp=0, M, U7 - U, M, QT -0, QM U+ T RTTL 0, Q8 QLT

This moy be written as

s =lrw

@2 U, 07 Uy=0, NOT+@U, -0,Q)M, U, -0, Q,)

= a1, ;
In a similar manner, we find that the expression U, U, ¢, in (63) may be written as

~ sem)
73) U, U]

.e - sewml ,, . - . » LD

€=U Ny ¢, +{U; -V, Q)M (e, -Qf ¢c)

Although it is not yet readily apparent, equations (72) and (73) constitute the key results
that make practical the reduction of a second order patterned scheme. This is because.

the evaluation of certain critical quantities in these expressions can be performed in terms
of sums of matrices of low order that, in turn, can be readily evaluated during the course of

the reduction of each of the first order systems implicit in the second order system. Before

.
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we demonstrate this, it is convenient to proceed as if the quantities required for the

evaluation of (72) and (73) had been computed. it clorifies matters if we introduce the
following set of auxiliaries

o=l

@4) (N3, =0, -0, NT D7,

@s) [N}, =V, -0, Q,,

78) INT, =, = (N, - R, K7 Ry

‘As might be surmised, these auxiliories have been formulated to be analogous to quantities

involved in a first order process. The analogy is corried further with the formulation of the

following set of secondary auxiliaries:
o9 (@1, = (NI TRy

(80) [R], =[N, [Q),

(81) [s3, =[NJ, - [R],

(82) [], =[e], - [Q]] [¥],

As the [S], and [c], are formed, they are added to the sum of thelr predecessors, This

leads ultimately to the formation of the sums
83) [S] =[5} +[S) +...+[S],,

(84) [c] =[c} +[e) +... +[7T), -
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But these are equivalent to the expressions in brackets on the right hand side of (63),

a direct consequence of the fact that

©5) [s1,=0, -0, 07U,

86) [}, =&, =T, Uj'e, .

Accordingly, the solution for & can be written
®) & =[M] (e,

in which [ﬁ\] is defined as

(©8) [M1=(s] .

Once § has been determined and eliminated, the second order scheme collapses to the

independent reduction of n first order schemes. Specifically,
3 L3 -1 ;I
) 5, =Uy¢ -[Q), 3

But by virtue of (62b) and (62c) the expression 'U:I c, is the same as

— -my =) — p——
ANe Ny Ny ... Nu’ &
N Ny 0 .00 | &,
vo =] - s .o
(?0) U, e, = NI, © Ny-- 0, C,a
‘_Nu‘ 0 o .. NuL L'é“i

the practical evaluation of which is precisely the problem considered in connection with
first order partitioned regression, If we let the vector

‘60‘ -
o & ={

1
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denote the intermediate or provisional solution obtained by applying the first order

process to (90), the final solution may be expressed as

92) 6,=8 -[Q1, §.

. This shows that the reduction of a second order system may be developed in terms of

independent reductions of n first order systems,the solutions of which are subject to

subsequent modification once the vector § has been established.

The practicality of the above reduction hinges on the fact that the dimensions of
the five basic auxiliaries [N],, [FJ],, [N]:l, [¢], ead (€], ore determined by the

orders of the vectors 8 and 6, which, unlike those of the vectors '61, do not increcse

- with n,. Accordingly, these auxiliaries are not subject to unlimited growth as move

and more data ore processed. However, it remains to be snown that their computation

Is a practical matter, for this question had been bypassed in the development beginning
with equation (74),

We begin by anticipating the result that the primary matrices 0,, 0,, N,, 3,, ¢,
that appear explicitly in the second order system (66) are each expressible as sums of

matrices generated at the level of the double subscripted matrices N, ) N, go €g40 Thus

we write

-
L

R o
-

(93e) ¢, =Cyy *+&p .o Hly, .

By virtue of the partitioning of '0‘ and f\.lt implicit in (62a) und (62b), the expression
seml T

N, U} reduces to the form
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(94) N, Ui=1Q,,

L hni

in which Q 1y is defined by

LIS §

7 (95)_‘ _'Qu =N,, UTu .

If we then define the additional auxiiiaries

96) Ry, =0 Q,,
Lo [N]“=0“-i‘t“,

it follows that [N]‘ can be expressed a3

%8) (N1, =[N]y +[NJyg +... +[NY,,,

ond similarly that [¢], can be expressed as
(99) [éjg = [C-'“ + [c]gﬂ A + [é]1|’

In which

- (100) [¢],, =¢,, "Q'u €4y

" Becouse U and Q, are row and column vectors of U 14 and Q“, respecﬂvely, it further

follows that LN]‘ can be expressed as
(101 (R, =CRYy +INDa * oo + N,

In which
(102) [Ny, =V,,-T;,Q,, .
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Finally, we note that the matrices [N]:1= Mx and [¢], =7, would be generated
during the nomal course of the reduction of a first order system. It follows, then,
that by augmenting the reduction of a first order system by the generation of
equations (95), (96), (97), (100) and (102) (all of which involve simple operations on
matrices of low order) and by performing, in a cumulative manner, the summations
(98), (99), (101), one can generate the auxiliaries (74) through (78) that are required

for the reduction of the second order system .

We shall shortly extract from the above derivation a concise computational
outline of the reduction of a second order system. But before so doing, we shall
clarify certain points that might still be obscure. First, let us return to the matter
of the evaluation in (63) of the expression U‘ 'L.J:l ﬁ{ which we pointed out is
impractical to accomplish in a direct manner when U; is large. The key to an
appreciation of precisely why the indirect reduction just derived is practical, whereas
a direct reduction is impractical, lies in a consideration of the final temm on the right

hand side of equation {72). This term can be written out more fully as

“ | | Uy,

008 T, M Q10 =0, Ty oo By ) [ Qua | M4, [, Qg e, ] | T
Ur

....Q“tb Lull

The amount of computation required for the evaluation of this expression depends
alfogetﬁer on the order in which the multiplications are performed. An inefficient
reducticn would consist of evaluating first the expression Q, l\'/\i Q7 and then pre and
post-multiplying this result by U, and U: . An efficient reduction would consist of
evaluating first the expression U, Q, and then pre and post-multiplying A.A‘ by this
result and its transpese. To see this readily, suppose that M, and the -l.J” ond Q,
were all scalars. Then one could easily verify that evaluation of (103) by the

inefficient procedure would require on the order of 2na, multiplications and n: additions,
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whereas evaiuation by the efficient procedure would require about 2n, multiplications
ond n, additions. Accordingly, the practicability of the reduction of a second order
system can be said to depend essentially on efficient manipulation of matrices. The
direct evaluation of the key expression Ux U:1 UTi is impractical simply because it
entails matrix operations that are inefficient in view of the desired end result (note here
that the full inverse of U, is not generally of interest, and hence its evaluation as an
intermediary is of no direct value). B8y examining the finer structure of this expression,
we find that means do exist for its efficient evaluation, and it is this fact that leads to

a practical reduction of a second order system.

It will be noted that in developing the reduction of the second order system we

adopted notation paralleling that used in the reduction of a first order system (compare

. equations {79)-(89) with (50)-(57)).. Thi suggests that the reduction of a second order

system is ckin to the double opplication of the reduction of a first order system. That
thiz is indeed so is especially obvious from the foliowing alternative development
atfributabie to John Stephenson (private communication). The original second order

system (66) can be rearranged as follows

2 oa N . P — [ -~ B A
> u U Up oo Ut Uy Ug e U, | 6 28,
=1 =1
U oN 0.0 R 0...0 {[§ &
1
Uy 0 N;...0 '0 N,...0 ||, s
Dol Sk :
L] . l — .
Ui 0 0 ...N!0 0 .. N Il§s, ¢,
(104 | == =om oo oo Rt PETL LTS oit IEL I Y
vy NI 0...0 : , 0 ... 0 6 G
Uy 0 Ni...o ,0 N,...0 ||%, <
A c ot :
. » » L] .l Ll . . )
U o o..N'o o..KN |53, ¢
e ? ' ‘— »...-J L.. ‘-J
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Let this be abbreviated as follows in accordance with the partitioning indicated by
the broken lines:

PP|[6] [¢
aesy 1 1] |F
prpjls) (e

Ther the reduced normal equations in the vecior § as obtained by application of the
first order algorithm for the eliminotion of & is

(106) (P-FPPr)§=¢-PPC.

It is readily verified that the expressions P PP and P 'li-l‘d reduce to <. co ste
(17)
. 2 -‘ - e ] e - teml - tta] e -— esam)] —— -: —. anem! ]
k 2 UGNSUD U NDND O U NN L UUNGTNT _ pIATR N:"',
-k =1 TN § _.T o "-1-1‘ ) =1 seml .,
R NKTR 0 .. 0 N
. . v, — 0t m]m= = el | o e .
E.”“’T" ﬁﬂN:U; 0 Ng NBIN;-" 0 , PP c= NIN;ln
NNTTE 0 0 ...N NN N, N,
_ 2 n n°'a ,:J - | .J ]

The key points here are that P PP has precisely the same structure as P and that N? '

is a block diagonal matrix, The latter fact permits the elements of the above matrices to be
expressed as sums of low order matrices. Thus

— -l -_1
U Ny Up= ZU N Uy,
- -l . - vl = i
U, N{'Ry= 20, N7, Ny, .
- 00 ] - — seml i
(108) Ny N, Ni= ENuNu Nl i
- sewl, - -1, i
Ug Ng¢, = ZU,, N, €13 1
Lo e, = 3
N, NG = BN NG €,
3
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1 é where all the sums run from | = 1 ton,. The form of the reduced nomal equations
3 (106) is
; (109) .
- mm S % [
{ ~ - =) - - ttm] - 0 - atm) - . - ] - A - sewl,, I .
L 2L -UNUD U =U NN Up=UgNg U e U= U N UY § €, =UN, CT;P -
b =1 — soml e - aimy = . = U W E R
g Op-NND T NN R 0 8 a-NN 7 =
U l-— sram] v . e L Gl . . - 00.1- x ;-
] 01 -~ R, NS T 0 VIR N il ) S 0 85 Ca-NNy 6|4 B
! R . : ‘ Fac ] ) ﬁ. .|l 8
: Ur-N. N, U2 ] 0 . N- NN NI °‘_J € " s G|t
i S . [ Ry SS Y - } .
‘ which in view of the auxiliaries (74) = (78) may be written more concisely as ; x
n L. - - I I O % !
ELNji [le [N]a s tN]n 6 E ccjl .:
F1 -— o - l=‘
[NY |:N:|l o ... 0 & [€
i (110) (N} o [N}, ... © 8| = (1,
B (N.J¥ 0 0 ...(N], 6,4 (€1,
I ~ This reduced system is itself a first order system and its reduction proceeds in accordance
with equations (79) - (89).
The above development makes it clear that the reduction of a second order
‘; ' system can be accomplished be a double application of the reduction of a first order
i system. All that remains to be done is to transcribe the reduction into a concise
j g ‘ " computational flow abstracted from derivational detail. To do this we begin with the
. fact that the system of observational equations that ultimately gives rise to the second
I ' .
. 3 order system is of the form

Py 2
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&

: (1 V,,+§;;3+B:;61+§::3u €4y

t* i=|,2,...,n

The covariance matrix A associated with the observational vector is considered to lxe

. diagonal and peartitioned as

(M12) A= diog by Ag -er A

where in turn

I 1 ko

(113) AF diog (Ayy Agge-- A“z)'

The algorithm for the reduction of a second order system then begins with the evalutition

of the following array of primary matrices

T )

A

] Ugy Uy Uy ey
. .T . -— . -]l A . e
1 (114) 1UL, Ny Nyye )= Ayy By, By, 8y, ‘ul
r : .e
it Nt ‘e
Uy Niy Nyy ey

N1y DNOyy D83 | Vg U 8} |0
(115) =l _ . . N“[U‘i; NIy €4y

[N]Tz: INY,, (€], Uls Ny, ‘:‘_n

14

As each such reduced array is formed it is added to the sum of its predecessors thereby
producing, after running through { = 1,2,...,n,,

(N1, (N, e1,] |=CNY,, BINy, 2ré),,
(116) = .

eRy Ny, te,] |2CN3,, N3, =le,,

c E7°E
E 4 &
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The provisienal solution for 6‘ is obtained from this; orray by means of
. O S |
(7). 8¢ =[N3, (€]

As each array of the form (116), is formed its elements ore operated on to form the
secondary reduced array

e [es3, o) =[ e, en) - o oRaT [eRm e, )
- These are fl.\én~summe;d-cs'fthey' formed to produce, after i has run from 1 ton, .
m9) [ts3 cr1]=[“>: (51, f:ccni].
=1 L
lrf tefms of these, the solution for § is
02 b - [s1” (=)
The revised solutionsfor each of the 81 are then obtoin;d from
a21) b,=& -[N7 RIS i=12...n
and in terms of these the solutions for each of the ‘6.“ are cbtained from
(022 8, = R0, €, - K5, N, 8,

With 3, 61 and '6'“ thus determined, the residuals may be computed from the
observational equations (111)

(123) v, =€, - B, ,6+8,,8, +8,,8,,

Alternatively, if the reduction is iterated until the corrections to the parameters become

insignificant, the residuals may be computed from

(?24) Vig = €4y
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where €, now denotes the discrepancy vector arising from the substitution of the

final values of the parameters into the original observational equations,

The error propagation associated with the adjustment requires the computation
of thase diagonal blocks of the inverse of the coefficient matrix that correspond to

the vectors §, 6 and 6 For § we have immediate.y
(125) var (6)= [S] te [M]
For 5,, the appropriate result is
(126) var 8,) =[S, + [Q], [M][&T;
| where [(‘l]‘ = VEI'\'I]';I [Kl]: . Finally, that for -6.“ is given by
(127) var@,,) = N7, +Q,, var(d,) O,

seml

whereQ“ =N“ N“.

Equations (114) through (127) provide in concise form the complete reduction of a
second order system. Such a system can become indefinitely large in either or both of
two ways: namely, n can become indefinitely large (as in & first order system) or some or
all of the n, can become indefinitely large. When the reduction of a second order system
is accomplished by means of the above algorithm, the overall computational effort tends
to increase linearly wnth the dimensions of both n and n,. Unless the dimensions of the
N and N gy Matrices are grossly disparate, the precise manner in which the normal
equations grow is of little computational consequence. To conclude this section we
would note that the three points listed at the end of Section 4.1 as' characterizing the

reduction of a first order system apply equall y well to a second order system,

————n-————u—-n-_mmwmmwwa;% ]
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4.4 Agplicafion$ of Second Order Partitioned Regression !
Although the programs SAGA and GGDAP are both short arc reductions, they do l
E

s i

L

not apply the same approach to the solution of the nomal equafir.;ns. In GDAP, the
algorithm for a first order patterned system is employed. This is practica! because the
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U, characteristically generated in GDAP reductions do not become excessively large.
Thus relatively little is to be gained in GDAP from application of the second order
algorithm. In SAGA, onte other hand, the l.jl can become quite large, particularly
when error models are reinitialized several times over a pass at many of the participating
stations. For this reason, SAGA employs the algorithm for second order systems, and the
program's capabilities are thus considerably expanded over what would have otherwise

been practical .
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5.0  AUYOREGRESSIVE FEEDBACK

5.1 Introduction

SAGA has an option designed to take serially correlated errors into account.
This capability is of particular value when high sampling rates are exercised, as in
optical chopping of passive satellites. Here, successive observations are likely to
inherit common, slowly changing errors by virtue of their proximity in time and space.
Even though such errors may be weil submerged in the noise, they ultimately set limits
to attainable accuracies — limits that cannot be overcome by increased sampling.
Thus, we can asse:;t that in optical chopping, a set of 500 points on a given plate is,
by virtue of low order serial correlation, unlikely to contain significantly more
information than a representative sample of 50 points. Indeed it can be suid in general
that, even with systematic errors complctely removed, errors in most channels of tracking
observations are not likely to be sirictly Gaussian in character, but, rather, are likely .
to be serially correlated to a greater or lesser degree. In Brown, Bush, Sibol (1943)
we suggested that the key to the practical resolution of such difficulties might well lie
in application of a basic result of autoregressive theory derived by Wise in 1955 ("The
Autocorrelation Function and the Spectral Density Function, " Biometrika 42, pp.
151-159). In Brown, Bush, 'Sibol (1904) we enlarged on this theme and developed the
essence of what we now call 'autoregressive feedback.' We have since implemented a
limited version of this concept in a successful application to the reduction of geodetic
SECOR observations, Brown (1966). Not only does autoregressive feedback appear to
provide a practical answer to the problem of serially correlated errors, it also appears
to be an excellent means for taking into account the effects of unmodelled systematic
error which induce serial correlation into observational residuals resulting from a
conventional adjustment. We consider autoregressive feedback to be an exciting
development, particularly since, as will be seen, its implementation can be so readily
accomplished as a natural adjunct to conventional adjustments which ignore the
presence of serial correlation lIts incorporation into SAGA provides the program with
a capability that, we feel, will become of increasing importance as the significance of

serial correlation becomes more generally appreciated.




5.2  The Autaregressive Model

A stationary sequence of serially correlated errors €,, €,uy, €,ng, ...

is governed by an autoregressive process in which :
V) € =16 tog€at .o ta, €, +1, 3

where the a's are constant coefficients and 7, is a random impulse of zero mean and
variance 02. According to this process, the ith error in the sequence is generated as a
fixed linear combination of a set of its prede cessors in combination with a superimposed,
strictly random impulse. The process indicated in equation (1) is said to be of pth order
because p coefficients are involved in its description. Specific examples of the
character of errors generated by various first order autoregressive processes are to be
found in Brown, Bush, Sibol {1963). Expcrience thus far indicates that autoregressive
processes of low order provide satisfc story stochastic models for errors encountered in
channels of tracking observations. In the case of Geodetic SECOR, sampled at ~ne
point per ten seconds, a first orde: process (i.e., €, =0, €., +7,) has been found
generaily to provide a satisfactory description of the error process Brown (1966)). In
Section 5.4 we shall provide statistical criteria for what constitutes a 'satisfactory’

autoregressive model.

5.3  Inverse Covariance Mairix of Autoregressive Process

As we pointed out in our earlier work, the practical utility of the autoregressive

process in the adjustment of tracking observations stems from the fact that, for a given
se* of autoregressive coefficients (which, as we shall see, can be estimated from the
observations), one can compute the inverse of the covariance matrix of the observational
channel analytically. Equally Important, the inverse turns out to be a multidiagonal -
matrix, the number of diagonals being equal to 2p+1 for a process of pth order. In
Brown, Bush, Sibol (1964) we showed that the basic result to this effect derived originally
by Wise could be put into @ more convenient form, Namely, if A denotes the covariance

matrix of an autoregressive process noverned by coefficients oy, 5, ..., a,, then A”

can be expressed as the following product of lower and upper triangular matrices:

]
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i in which @.=0 forn>p. If this result is applied, for imtmce; to a third order ,~
process involving coefficients &, @, a, one finds, upon performing the above '
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in which

) .. b = :‘a‘
i @

iy 4=

e

c;= 1+ af +af + of

N e BT
+ a0

Gy

by
O

T rofral ap =ttt of ag=l
= -y + @ b, =-q '

- e L

This illustration is sufhcnently generol to demonstrate certain properties of the inverse

that are of pwotol lmportmce fo our concept of autoregressiva feedhock

i (1) the inverse is multi-diagonal, the number of diagonals being
' equal to 7 for p=3 (or equal to 2pt1 in general)

(2) except for pxp submatrices comprising the upper and lower
comers of the matrix, the elements of each diagenal are
constant, the number of different constants being equal to p,
the order of the process ,

g (3) the formulas for the elements of the matrix are sub|ect toa
systematic, ccslly generollzed development,

" Expressions for second and first order processes can be obtained from the above

development by successively equating @, and @, equal to zero in egs. (4).

PyrPas oee
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in the usual manner from
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‘ ' : 5.4 Ectimation of Autoregressive Coefficients

Let us assume that by some means one haos obtained a vector of residuals
] “(Vis V24 +ees vg) that constitutes an estimate of the vector of actual arrors

(€1 €2/ .04 €)). One can then generate a set of autocorrelation coefficients

e e i 4



If we now write the autoregressive function in terms of residuals
©6) Vi Tay Yy tag Viag teetay Vit

and regard this as defining a set of observational equations invelving the auto-
regressive coefficients as unknowns, we can emplay a least squares adjustment

to generate a system of normal equations for the determination of the a@'s.
These turn out to assume the form

- ) -— T =~ "
T Py P By .. Pp o Py
PV P Py e P | @ P,
Pa oy 1 0 ... P =2 o, P3
@) Py Py Py 1 iy Pl f ooy = o, -
'pP pp-l pp-z pp-s wee aP‘ 19 P .
__ ' JL 4 R

In practice, one would wish to estcblish the autoregressive process of lowest order
that satisfactorily medels the cbserved process. To do this one would begin with a

first order process which, from (7), would lead to the estimate
® 4 = Pi.

From this one would compute the secondary residuals 7, from

® M = € = &€




(12) By =§- th —

if these secondary residuals turn cut to be serially uncorrelated, the first order
process can be accepted as satisfactory, To datermine whether or not the 77
are independent, one would first compute their first order coefficient of corre=

lation from

a0 LEM M- i

[ g R — " L
Ini
To determine whether or not r is significantly different from zero, one would
employ the wall known result that the quantity '
14r

(H) z=§ In ——
1=r

Is opproximately normally distributed with mean and variance of
1+p '
1-p

' (13) 6: = 1/(n~3)

in which pis the true, but unknown, correlation coefficient, It follows that, at

tho' 95% level of confidence, r will differ significantly from zero only if

(4 z>1.9/ Jn-3.

If r should turn out to be significantly different from zero, one would then try

a second order process, Here, according to (7), the coefficients would be estab-

lished from
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. 1 » a, :
(15) \ ] L M

which has the solution

st A AP AT vwWF’H’rsﬂ‘ﬂfﬂ” T m

a, ={p, - p, P3)/(1-4),

0 = (07 +£)/(1-£5).

(16)

DR Dauine i it
.

The secondary residuals for the second order process are

(17) n, = €

i o DN

Al it s il

. (o€ + o€

1= 1=2 )'

One would test these for serial i..dependence in precisely the same manner as
described above for the first order process, ‘

b s R

The above procedure would be repeated until a satisfactory fit is obtained, !

- Surprisingly, the simple first order process has been found to be altogether sufficient

AN i

for ranging residuals in most cases we have so far examined. Once a satisfactory
autoregressive mode! has been established, the spectral density function can be

computed analytically from the following elegant result derived by Wise:

- 8) we) = o+ ale'e"" azel2e+ eer ¥t apeipe) =1+ ale_‘e-i- aze"20+ ...+ape"’Pe) i

. where 1= /=T and @ assumes the discrete sample values

2 4n 4 2n-1)

'(]9)9 nlplnlnu "

T, 2 .

i atn c mi sl R e D

P
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~ time span, O may be putin the form

If At- denotes the time between successive points and T=ndt denotes the total

‘ .

(20) e’ = "'?‘;-éf-“l 1 =1, 2,000

where 6, may  be said to correspond to the frequency of 1/25 At cycles per
second. For the first order process, eq. (18) reduces to the following well known

expression for the spectral density function of the damped exponentml autocorre=

lation functign:
@) vie) = 9%/ (1-2Pcos® + P?)

in which we have set a;=p.

5.5 Refined Normal Equations (Single Channe! Case)

From the foregoing it can be seen that a successful autoregressive
analysis of residuals provides the solution to fwo centrel problems of random error
analysis: (1) the determination of the inverse covariarice maotrix of the observational
vector, (2) the determination of the spectral density function of the error process.
It remains to be shown precisely how this information con be used in a refinement of
the adjustment and what ifs use entails in the way of additional complication. For
this purpose we shall consider the specific case of an adjustment of a single channel
of observations governed by a first order autoregressive process. This Is sufficient

to demonstrate the general principles of the operation. Accordingly, we let

(22) € = P& * T
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define a first order process in which

@3) E@) = O

(24) varfn,) = 0 2 (variance of high fraquency componer\t of r-\oise).
25 covip.m.,) = 0 forall x > 0

Then it is easily shown that

(26) E(e) = 0, ' ‘
(27) wvar (e J = O’z/ (1~P2) = ,otal error yariance,
X O.Q -
(28) cov (G‘I el-k) = 1 _‘.pa ’
. ' x
. 29) cor(e,e,_) = p .

It follows that the covariance matrix A of an a vector of errors is

r iy
1 p p? vee  p"
‘ ) o 1 P vee "
(30) A= 1—‘.7-,5?- I
ola) n=1 Ne=2 !
| P P [ oo 1 N
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Let us now assume that the observational vector is employed in an adjustment .

Then the normal equations can be expressed as a ‘ oo -

@y @ A'es = BT ATe

in which 8 denotes the vectar of parametric corrections and the matrix B and the

vector € can be decomposed into

. [~ - -
] . €
bz €2 ‘
(32) B = . ¢ € = . ) g
: - - . ;
L ] * §
b, € 2
L N L

where the b's are row vectors of order ‘equal to that of § ond the ¢'s are scalars,

In a conventicnal adjustment the covariance matrix is taken to be diagonal (0=0),

g

4 . and its inversion is, therefore, trivial.. In the present instance, however, the covar- 3

iance matrix is completely filled (eq.(30)), a fact which introduces complications, é

Because A isin this instance generated by a first order autoregressive process, we §

may employ the results of 5.3 to write immediately the following expression for A” 3

3 :
f -1 =P 0 0 ... 07 i
i A - p . ] + pz 'Ap 0 sen 0 § !

E 3 - 0 -p ] + P‘z ‘p‘ ces 0 3}

1 1 0 ~

A= :

SONS 02 0 0 . =p 1+p2 .., O z

= 0 0 ) 0 0 e l J
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 structure of A-'. First we note thatA™ can be decomposed as follows:

~0 10 100 ... 0]
0010 0 000 ...0
@5 U = 0.001 0 , A= 000 ...0
0000 ...1 000 ...0
—0000---0— ) Looo ]—‘

We shall now trace through the consequences of the patterned and regular

(34) oA = (1+P)I - PU - pu’

- P2 A

Inwhich I isan nxn unitmatrix and U and A are nxn matrices of the farm

0 v.. 07 r

3

If we now let N denote the coefficient matrix of the normal equoﬁc;ds, we may‘ .

© write

BTA™ B

(36) N

1 T T T
<7 1 bz oo by

y laee2)y 1 -pu - puT-pzA]

This expands to




_'(37) N’=;;'— [(Hpa)(bf b, + by by +...+b by)

~p (o] by +bL by +...+ b1, by)
b (baby +b by +...+ bl b))

-0 (b}. b, + bI bn)]

1f we define -

~ (38) Bby =byy- by

end note that then

T T T '
(39) bl-x bt = bz-l (b!.-l. +Ab£-1) =b1-1 bi-; +b.(r..1 Ab1-1 ’

o : |
(40) by by, =by (by - Ab,_,) =bl b, =b} Ab, |,

' it follows that

T T, T T, AT T,
(41) by  by+byb, oy =b,_ by, +b b, +{by_; -by) Ab,_,

T
=by_; by "“b.{ by + Ab{-x N?x-d .

When this result is substituted into (37) und appropriate algebraic manipulations

are performed, one obtains

=—la_ [(1-2p+pe)(bf by + by by +...+brb_)
o .

(42) . +p (AbI Abl + Abl- Aba +...+ AbI.q Abn-l)

+p (1-A)(] by +b1 by

which is the same as

43) N =_‘; [(l-'p)"’ 8o+ pAB AR+ o(1-p)(by by + by bu)]
. [4) ’
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_ in which

1 . —Ab;-‘ [ by=b, | .
. i _ . ) Abg by = bs
. l; (44) AB= : = : .

| - .

E -Aba-s— Lbn.- bn-& l

|

!

In an analogous manner one obtains for the right hand side of the normal equations .

(45) ¢ =-BT A-l € )

L o == [T e pnb Actp-abl ¢ +ble)]|
o3 , . '
r
; in which ' L
— - B o —
Acg, €3 €
Agg € — €3
(46) - Ae= = ..
L_Af_n-.x_ : _fn - fn-L

- Equations (43) and (45) are the results sought. In analyzing them we first
note that when p =I0, the normal equations reduce to the usual expression:

{47) -]—-(BTB)6=—]— B e .
o A

Next we note that since AB and A€ are of first order, the expressions ‘A.BT AB and

ABT A ¢ are of second order and one can assert that

At - chinc I T I P R i




B8 >> 28" AB,

{48)

Ble>AB Ac ' . - B

- This implies thot as long os P is not too close to unity, the normal equations will
be dominated by the leading terms and the solution vector § will be only slightly
dependent on the value of p. Hence in some situations the solution is but weakly
_offected by the presence of even rather moderate serial éorrelcﬁpn. Be this as
it may, the covariance matrix of the solution vector is very strongly dependent on the
degree of seiial correlation. Even when BTB dominates the normal equations, the

covarionce matrix of the porametric vector is given by

a -
@) p=-Z— @9,
(1-p)?
.Thus, if @ were actually equal to 0.9!.ond one were to ignare this fact in the
adjustment, the solution vector itself would probably not be very much affected -
Afor the factor (1-p)? of the leading terms on both sides of the normal equations

" would cancel out), but the covariance matrix associated with the solution would ’
- be incomect by a factor of 100 {or 1/(1-p)3).

Because of the relative insensitivity of the solution vector to serial correlation,
the residuals from the adjustment are also relatively insensitive to serial correlation
(remember we are considering here an adjustment restricted to a single observational
vector). This means that it is a sound and defensible practice to estimate the

_ autoregressive function from residucls of a preliminary adjustment in which the
observational errors are initially considered to be uncorrelated. The autoregressive
function thus initially de’reﬁnined can then be fedback into the solytion according
to the development of this section and the resulting, more nearly correct normal

equations can be solved to generate fresh residuals for a more refined autoregressive

»

.
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analysis, Clécriy, this process can be iterated to stability (ordinarily, a
single iteration is sufficient). Thus autoregressive feedback is an adaptive

. 1
process that ultimately becomes independent of initial or @ priori estimates of
noise variance.

R 1 Returning to the normal equations (43), (45), we note that the extra

computations entailed by rigorous consideration of a first order autoregressive
process are sur?risingly minor, The BTB and BTe terms would have to be computed
in any case and the ABT AB and AﬂT A ¢ terms, being of similar form, follow the
. same logic. Moreover, as Is clear from (42), the equations can be formed in a
Lk cumulative manner, the 1413t step of which would involve only observational

equation: from the tth and iy st observations. Hence, the formation of the

e ro U LB

Do normal equations for a first order process entails a scheme in which a moving pair
of successive observatienal equations are processed at each step; similarily, a
second order process entails a scheme.in which a moving triplet of successive
observational equations are processed '_qrr each step, and so on. A major benefit
Pk to be derived from the admission of an auf?regreséive precessv into the 'adiustment'g

, L is the attainment of more realistic results from error propagation. In

' particular, it would pemit one to extract whatever advanteges are to be gained
from moderately high sampling rates without paying the usual penalty of an absurdly

" optimistic estimation of output accuracies.

‘ 5.6 Normal Equations Multi=Channel Case)

In the preceding section our consideration was limited to an adjustment
. involving only a single observational channel. Let us now turn to a multi-channel
¥ * adjustment in which each channel is serially correlated. We assume, however, that

serial crosscorrelation either does not exist, or else is ignored. Thus the various

observational vectors are statistically independent of one another, Let us now

- consider the problem to be one of orbit detemination in which a set of error

-
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coefficients is to be recovered for each observational channel. Let § denote
the vector ..7 orbital parameters and let §; denote the vector of the error parameters
for the tth chonnel. Let us assume momentarily that only the 1 th channel is to be

exercised in the adjustment, Then the normal equations can be written in the following

. portitioned form

N, N,[s e
(50) | :
-—T - s .e

N‘ N‘ 6‘ : c.‘

Since this system corresponds to but a single cbservational channel we may apply

the results of the preceeding section and assume that autoregressive feedback has
been exercised and that the normal equations (50) ref re end product of the
process. In this regard we would caution that in practice one would have to

exercise temporary, coarse a priori constraints on the parametric vector in the process
of single-channel autoregressive feedback becausg of the near singularity

characteristic of single=chonnel orbital detemination (especially when error models

. coefficients are also to be recovered). Such constraints would not be carried

through the final set of normal equations (50) inasmuch as this system is not to be

. sclyed s an independent system,

Let us now assume that similar, individual and independent adjustments
exercising autoregressive feedback were performed on data channeis 3 ond x
which are also exercised on the same orbit. The correspondfng nommal equations

may thus be written.

I:l‘ N‘ ‘ ré é h.‘k ﬁk ' 8 [

(5]) —T oo !'oo = oo ’ ) _T ' as = .

N, N, 6, € Ne N 6, S
-08=
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We observe that although equations (50) and {51) involve different parametric
i vectors, the subvector 6 is cemmon to all three sefs. Let us now define a . -
t composite parametr.c vector for all three channels as
LE o
6
' F 04
L (52) 6= | ;| -
It I
B .
: | & |
We may then augment each individual set of normal equations with appropriate
b sets of zero elements sc that all will operate on the compesite parametric vector.
: E Thus we get .
N, 0 8) [67 1T
(53) . =
0 0 0 0 6, 0
‘ o o oo |&l|lo
' - -~ L 6"__ I
—. e N e e W
NJ 0 N‘ o 6 c T
} o 0 0 o] | &0
; ] (54) -1 . . =
i Ny, 0 Ny O o, <,
3
. 0 0 0 0 6y 0
L N, 0 0 N, 6 c
o o o o] |¢&]]|o
(55) S
. 0 0 0 0 6, 0
[N 00 0 NJ & ] | ]
| [ : 99-
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We arc now in a position to apply the rule that sets of nomal equations formed
from independent observational vectors and invelving a common parametric vector
can be summed to produce the nomal equations appropriate to the simultaneous

adjustment of the merged set of observations. Accordingly adding (53), (54), (55),

we get
R’s'i'r:laf&z: N, N, NJ 8 ‘;1"'5.4"";1]
-7 - . .
N; Ny ©0 0 6, Cy
(56) _T . S Bl B
_T ' .0 .o se
Ny 0 0 Ny 6, S

Except for the fact that we have yet to introduce the a priori constraint matrices
W, w,, w,, W, ) and supplementary discrepancy vectors (é, ..f‘u .e‘,, 'e',); we
recognize (56) as being of the form of a first order patterned system. By following a

similar development we could show that a second order patterned system of nomal

equations will remain unaltered in form if autoregressive feedback is exercised for

each of the observational channels. It follows, then, that the exercise of autoregressive

feedback in SAGA does not seriously interrupt the general character of the data flow.

In the computational outline provided in Section 6, we anticipate autoregressive feed-

back by the artifice of proceeding as if each channel were governed by a first order

process having a prespecified coefficient of correlation. In general practice, each

such coefficient would, for want of a better value, be set equal to zero in the initial

reduction. However, if the autoregressive feedback option is exercised, the prespecified

values would automatically be replaced in a repetition of the reduction by values

estimated from the residuals computed from the initial reduction (iterated to convergence).
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Although SAGA specifically considers only a first order autoregressive process, o
we would point out that in an article awaiting publication, J. Lynn of DBA shows that
p iterations of & first order autoregressive process is equivalent to a pth order auto-
regressive process. Thus if first order autoregressive feedback should fail to produce
uncorrelated secondary residuals, one could apply the process a second time to obtain

the effect of second order autoregressive feedback, and so on until serially independent

residuals are obtained.

As a final comment we would point out that autoregressive feedback is
indifferent to the origin of the serial correlation in the observational channels. All
or part of the correlation accounted for by the autoregressive process could consist of
correlation induced by unmodelled systematic errors. Indeed, autoregressive feedback
could in principle substitute completely for error modelling. This, however, is
emphatically not to be recommended, for deletion of error coefficients from the model
would induce such a high and persistent degree of serial correlation that the accuracy of
the adjustment would be severely diluted. Hence, autoregressive feedback is more
properly regarded as a powerful tool for accounting for the combined effects of natural
serial correlation in the observations and induced serial correlation resulting from

unavoidable deficiencies (hopefully small) of the mathematical model.
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6.0 COMPUTATIONAL OUTLINE OF SAGA

6.1 Introduction

The analytical basis for SAGA has been developed in the ea .ier sections. However,
in these sections actual computational steps and flow are largely submerged in derivational
detail. The purpose of this section is to extract from the derivation the essentials of the
actual reduction. Our concern here is with the heart of the reduction and not with
peripheral operations. We assume all appropriate preprocessing has been performed for
each observational channel. Computational details of various preprocessing routines
available to SAGA are provided in Part 1l of this report. Part Il also provides details of
the program itself = set up procedures, running inst uctions, flow charts, etc. In addition,
it outlines results produced by SAGA for a tracking network of twenty stations participating
in the observation of twenty seven passes of GEOS A, The network exercised the Goddard
laser, the Geodetic Secor system and various MOTS and PC-1000 cameras (Geoceiver

observations are not expected to become generally available until 1970).

No attempt has been made in the outline below to present the reduction in minute
detail. The outline, rather, is intended to serve as a guide to a programmer who in turn

is guided by an analyst having @ sound understanding of the mathematical derivation of
the reduction.

One point regarding the outline requires special clarification. This concerns the
option for autoregressive feedback. In formulating the computations we have found it
is convenient to proceed as if the autoregressive coefficients were known at the outset. In
practice this will not be the case and values of zero will be initially employed for the
coefficients. However, if the autoregressive feedback option is exercised, nonzero values
of the coefficients will become available from the residuals resulting from the initial

solution. Thus our formulation is designed to anticipate the possibility of revised auto-

regressive coefficients.

nl 03-




6.2 Computational Steps ' | ]

A. Constants

i . a) All station data, baseline constraints, etc. are available from Master Survey File.
b) Standard schedules of sigmas and correlations of observations. - ' ;

la) g,, P, standard schedule number O for x

1b) oxr Py standard schedule number 1 for

le) a,r P, standard schedule number 2 for x

20) o0, P, stindard schedule number O for y
2b) oy, P, standard schedule number 1 for y

2c) g,s p, standard schedule number 2fory .

3a) o,  standard schedule number O for optical timing
3b) o standard schedule number 1 for optical timing
3¢) or staﬁdard schedule number 2 for optical timing :

4q) ' Osr Py, Op standard schedule number O for ranges

4b) ¢,,p,, Or standard schedule number 1 for ranges
4c) 0., P,/ Op standard schedule number 2 for ranges

¢) Standard schedules of sigmas of error coefficients,

A et SRR i e L GBS PR

10)  0g4i0 w0y +Tcrly standard schedule number 0 f
1b) G0 10y s OcsCy, standard schedule number 1 optical 7
1c) OO weO s OcrCy standard schedule number 2

2) a9, ,0, ,0, ;6. , 0 ,0, standard schedule number O
) Iol .t' .ﬂ’ l°' I‘l I5

é 2b) standard schedule number 1 electronic

Ony ¢ Oy ¢ Tag 1 Tayr Oag s Ong

. 2c) standard schedule number 2

Osg ¢ Gayr Cag s Tayr Tayy Ovg
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d) Standard schedules of epochal sigmas.
1) 0,/0,/0,/03,05,0; standard schedule number 0
1b)  04/0y/0,/03,04,0; standard schedule number 1

1¢)  0,¢0,+0,:05:0;,6; standard schedule number 2

e) Canr San m=0,1,2,3,4

} hamonic coefficlents of gravity field
n=01,23,4 :

f) ¢ = mean rotational rate of earth

8., Data

a) k =poass number
T, =epoch of Kth poss

b) X0,V ,z,g,)'gg,-?g,'zg = approximate values of inertial initial conditions at t=T,

c) & ==-1,0,10r2
= =1 if nonstandard schedule of epochal sigmas to be used
= 0,1or2 if standard schedules 0,1,2 are to be used

d) If g, =-1 read in altemative 021G yrT5103:04,0; for k th pass

el Lo

e) I=0y,igiyspes "i‘x (m, = 15) schedule of stations participofing on k th pass

f)  Start and stop times of tracking intervals on kth pass from ith station (up to
4 intervals allowed).

topetyy = first and last times of pth interval (meximum p = 4)

g) q=0 indicates optical data

q =1 indicates electronic data

If g =0, duta block for k th pass from ith station consists of the following.

=105=
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i) t,,a,,8,(time, right ascension, declination) {=1,2,...,m,

i) ap = =1,0,1 or 2 {note p=1,2,3 or 4)
= =1, if nonstandard schedule of observational sigmas is to be used for pth interval
0,1 or 2 according to the standard schedule (0, 1,2) to be used for pth interval

iii) If @, =1, use alternative schedule o,, p,, for pth interval

. , Tyr Py
iv) B, = =1,0,10r2
= «], if nonstandard schedule of error model sigmas is to be used for pth interval
= 0,1 or 2 according to the standard schedule (0, 1,2) to be used for pth interval

vi) ¥, = 0if autoregressive feedback option is not to be exercised on pth interval

1 otherwise

-
It

vil) ¢, = nominal focal length of camera

If 9 =1, data block for k th pass from i th station consists of the following.

f) t,,r; (time, range) { =1,2,...,m,

. 1) a,,.B,,7, are defined as in optical case except that they refer now to ranging
observations.

C. Computations
Part |. Orbital Integration

Read in data for kth pass. Perform orbital integration with initial conditions given
by (b). Results of integration are: '

. Qo 01 03 ose a,
1) P =Ulby by bg...by =coefficienfs of X,Y,Z polynomials (degree p)

co c; c. see c'
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Ry Oy -o- Qo
(2) 0 % 105 0 ... Qg | =coefficients of matrizant polynomials

(2,9 (a+1)) Quy Dag -+ Qo
in which
&) Qp, = lao @y «oo g} = row vector of coefficients
- (1,a00)

the matrix f can also be partitioned os

(vo(a+1 ) -

(4) Q= ( QO ﬁ1 ng )‘
(3,8at3)(s,34+3) (5,80+3)

The matrices P and ) are stored for later use.

Part lla. Optical Reduction (use if q=0; if q=1; go on to Part lia)

(5) Use dummy camera approach to project each of up to four pic “as onto hypothetical
plates. Aim camerc axis at nominal midpoint to get ¢, ¢y. Let X be initiolly zero, but

then modify it so that final x axis is aligned with trace (as in .0 snuous traces).
Results of (5) are sets of plate coordinafes
6) XY, i=1,2, ...,m‘-

and orientation matrices

A B C
A'B' C'} 2=1,2,...,p (maxp=4)
D E F L (p = number plates on puss) ,

For pth tracking interval (plate) compute ephemeris for each point within interval. Thus for

time t, compute:




X i qo q‘ XX ﬂ’ 1' l
@y y|=]b b .oby | |77 27
z 2z Cy o+ C .
. S G » ’? prPd
. ] -l
"In which

Ty =t - T, {0, =epoch for kth pass) .

Set up matrices

coslb"" sin $T,

0
(3) R,=-g!r|lb‘f', cos P, 0), R,=p 'CNW& =sin yry
1

0 0

¥ = rotational rate of earth.

Transform inerfial coordinates 1o earth fixed coordinates

X %]
Y ‘ y
Z RS 0 z
%okl R, R,[{x|"
Y y
_z_l i ]

Evaluate the matrizant for time T,

Qi gy Oygy 000 Ryoy
(10) By= 10g, QOgpy e Osoy

(a,9)
a1y Ospy oo« Baoy

in which
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i

Jau

e

B
m e = T
Luy 9&. ]
(1,1) (1r4+1) .
q
[ Ty

Transform the matrizant Q, to earth fixed coordinates.

(12 &, = R, Q.

(319_) , (3s8) (3,9)

From the X 1Yy Zy obtained from (9) and the X‘; ,Yi ,Z’i obtained from the master survey
file. compute for pth plate

' ¢

m A B C Xy =X
() qng = JA B C'} LY, ~Y,
alyy D EF)|2Z,-2

and from these the plate coordinates

x°° m
(14) <y°° , = q—i- [n] (¢ = focal length of camera).
» 59 Py

Set up matrix

f £ b 1o k]|t B C
(15) - A B C

gy i, %o --yf;°/cJ b E F|

A e 9 s GBIt .0 51
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Using designated schedule of sigmas, compute:

3 « @ 3 &
o,” (o +X,c.,.)%

(17)

I

Oy, " (0% +v3 cr?,-);dF .

Set up the F.ilowing coefficient matric: -

08) BG) = S @ £ 6,
(113_) . o

(19 86

s

. ]
(1) ~ ‘ am, ! @b
By @, = 18,k Bn)(”')

{1s0) (23) (s.9) (1x3) 1 (we)hr

n
|
|
»

@0 B )
(1,1) L (PR

]

)
@) B)6)

(3,4) vi

(22) €,6) = : {"g%'xw}'

U:’ ;
In terms of the above set up the composite matrix

@) 1Y 1| @

@3) B, ,0 =1B,,() B ) 18 ) | B )
| Gty ) (ra) i ()

£

LpTp

Bm k) £ )

(4) 11)
8P p’(x) capgpj(x) £4pB,~J(x)

(3, 4) @4 (1,4) (1,4

——— e e ne—rr———
s
B..,(x)
¥l
"
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i b Y 8 i

WP

(el

in which

£, = lifasb
= 0ifatd.

Perform the above computations for point {+1 also, getting:

(24) B,' IR’ {x) and €y, sta x).

Compute:

@5) 8B, ) = B, o) =B,, )

@8) Be, &) = €, gy ) = g, &) ’

WIEENE

In terms of the chove compute:

@) 1,60 = (1=pye) By ) Byy &) +Pyq BB, () BT, &)

b ks it LR

in which p,, denotes correlation coefficient p, from input schedule. Superscript p is added
to indicate that in later solution p, may differ from plate to plate. Similarly compute:

(28) ¢, = (1=p,.0 B, .&K) ¢, &) +p,, AB), ) 6gy ).

As N, ,(x) and ¢, ,(x) are generated, evoluate the sums

by ]

29) Nyx) ={30 NG| +8,,00-p,, )8 &) 0, (%)*B:. (x) By, &)

=0y

S pii e it it i o o L el )

LS

L g L)

% | o
B0 60 =|5 €& | *Pyell=Py )L, ) €&, ) 8L, &) ¢y, . 6

=,

in which ‘

By (x) and B,, ()

correspond to first and last peints on pth plate-
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Computaridns‘ precisely paralleling those (18) thiv (30) are performed for the y coardinate.
Thus: ‘

|
(18a) B40) = — @ & §),,
(2,9) 793
(150) 8%, ) = B00) @, = {807 ¢ 8(::)()')}
(209) {18} (39) (s00) :(h‘)

2oa) 89,0 = —— {7}
(‘ll )

o<

L

21a) 5(:),(),) = _‘_... gﬁcl E9) x

‘”

o
(220) ¢, ,() = oy {V:Os " s}‘
. | X

In terms of the above set up

B,,(r) = some e (23) with y replacing x
(1,23+4p)

Equations (24a) — (30a) are the some as (24) — (30) with y replacing x. Ultimate result Is
N, (), ¢,(y). Combine these with N, () and ¢, (x) to get

N, = N, )+ N, {y)
(15+4v)(10743)

@1
¢, = ¢, {x) +c,(y).

" (1a+43,1)

~11% -

.
= bt it b4 7 13 kA LIRSS e St e i

5

AT RN b L

N I T - 3

LSRR RPN AT R IO W

2 e BRI o dnbe b B R

+ TN St Ao el i

Nty s

o sl "

T ma T AT i S

o e bl




This completes initial computations for p th plate from i th station for k th pass. Perform
above for all plates covering pass (maximum p=4) from i th station. Add together all N,

and ¢,'s. End cesult is N, , ¢, in which subscripts i (station number) and k (pass

number) hove now been introduced. Proceed to Part 1il.

Part Ilb. Electronic Reduction (if q=1, the following reduction is performed)

For time t, repeat steps (7) through (12) of Part Il. Then proceed as follows .
From XYy, Z, computed from (9) evaluate:

(2) @

[0, + (v, Yo + @, -2

(33)

>
[ ¥
!

= X0y = YIS0, vy = (2,225

A T e TR R T A N TR e

G 10 = X, 4p Ve, 2,

35) AZ-= ”o e? §in ®,
: e

((:l,e2 = parameters of spheroid)

i @, ®, =geographic latitude

B6) & = [0CF + (VP + @ +aziP P

@7y 2§ = Xi/rc,, u§ = YC,/fcu Vi = (Z; +£\Zi )/7, direction cosines to station,

IR SEGRANCY 8 FRREIY R

T AR NER T T I G T TV I IR a0 I T e e
¥ 2 - TR RRRY ] ¥

' (38) sin E, =X§x,+uiu,+viu’. i
b
If ranges are not corrected for tropospheric refraction, evaluate: \% 3
A g
&
4 P, -¢,) 5748 % ;
4 -6 =€ €0 ]
3 : -1 = 103.5 22" +86.3 [1+—— ) =— gl
_ (39) N,-1 10 T ( T ) T, ¥ |
i
where g j
Y |
3
iR
: -113~ .‘ !
! i
A Poiptatid posm cnnrt 2 ma chl Lok RaaE TR ST E WEao. e L S s em o e

1
T Trme el w aam AeMe e abbaat

0 e N ML




“0) H,

f
N
¢
I
1
;
-k
y
]
!
|
i
3
§L

P, = pressure (mm) at station
T, = temperature ( K) ot station
€, = water vapor pressure (mm) at station,

For optical (-Iqser) ranges set €, =0 in (39) and replace second term by 0.58/A% where A is

the wavelength of the light in microns.

29.2 (T,-30)

@ a = 2(N-DH
K = 4(Hy /1)

1

i

“2) #E,)

sinE, +[sinP E, +|<3'_|;<e

(43) Ar, = « f(E,) = refraction correction (to be used in equation (48)).

If ranges have been corrected for tropospheric refrcéﬁon, set =0 'n (43). For pth tracking

interval set up the matrices

(6 1

(4-4) BPJ = [>‘j U 1'3]

[+
Tps

e rs . 3,
in which g denotes the expression (0} + 1~ or)
?

@5 &2

2

) v

= [ @Y
¥ By @y = \B(MBM}

(46; 8y, = —{1 2 > f©)}

LR

#n 8P = LI}

¥

|

o

. Setup

('ﬁ; = f;"Tk)

H 00 . | s} , \
(48} L {rH - (r s o ri)f , where ry is the measured range .

€y
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ik, J:g .
s

In terms of the above set up the composite matrix:

) 1. (1) (2 (v (@ @) () (4) @)
. (49) Bv; - Bp: Bv: Bp: BP1€'19893 ganBH g-SvBN E‘WBD:

(111 7'*1’) (113 )(113)(115)(115) (11") \’1") ("’1) ("'l)

e T ————————"

B,

e gL R T I8 T

in which
£,, = Vifa=b

Cifardb.

"

g Y

Perform the above computations for point i1 also, getting:

el e el

(50) Bv, :H; 1€ g1

B RENL T AR

Next computations paralle! those indicated in (25) ~ (30). The end results are:

1 % - -

: _ T T
4 7)) N, = Z N“ + Py (l'ppr)EBa,v Bn,p +Bb,v Bbﬂ] g
. =f I=ayp g
i o T T '
: (52) ¢, = Z Co3 *Por (]—pvr)[Bc,p €29 +$b,'v Eb,P] j
' J:.p . 3
. ; in which a,p and b, p denote first and last points of p th tracking interval. This completes % 4
A . .
8 initial computations for p th tracking interval from i th station. Add together all N,'s and L 11
: k c,'s. Endresult is N,,, C;x in which subscripts i (station number) and k {pass number) have g =
f now been introduced. Proceed to Part Il}. g
: Part 1ll. Second Order Partitioned Regression % !
From Part lla or Part b the matrices N, , c,, are generated from the observations :%f‘ i
F{ 1 of the k th pass from the i th station. These matrices can be partitioned as follows: % ;
! 3
x B

Candvh

k)

~115- “




~ . -

ch Uak U:k

(c.8) (ss8 (8:2)

L) T * —

(53) Ny = Uge Ny Ny«

’ (a,e) (6,8) (6,{,)

-1 — . .
Utk ka Nu: + Wuc
(te) (18) (42)

-

in which 4 depénds on the number of tracking intervals and the type of data (optical or

cik

~
Cax

(1,8)

Cix
(18)
€

(1:&)

) -~

electronic). Also, the apriori weight matrix Wik has been introduced. This is computed

from:

Plate 1

(54) W, = digg (—z' 3 2 3 T

Plate 2

- Plate p (max p=4)
P i T WP P S S N

2 2 =2 2 2 2 3
(forgpﬁcol) t O‘a Uw Ux Oc Oa O'w 0'7(_ C. Ua O'w 0"‘ Cc
one for each unbroken
tracking interval
A ——
. YA R B T 1
(55) Wy = diag 7—;7‘;—15"]5“—]; e
. Ul cl cl Ul 0‘3 O.I cl cl
(for electronic) v " % 4 5 o o o
@ . . . . +(0)
8x = corrections resulting from qth iterative cycle (6“ =0).
In terms of elements of N,, , c,, compute:
tN]“g [N]n: UU: Uﬂ: Ulk
(s,e) (s,8) L
Ge) | _ . = -y : - - (Nik +Wu<) [Uu:
[NTG,  [NJ Upe Ny Ny
(s,8) (e,8)
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B S L

T T R YR

T TR T

A e TR

103, Uy
G,s) “
(57) = - (Nye +W,)
[8]11: éik Fju:
_glle )J Lo

=1 1.

Cix =

L A=
Wi 2
1=

2
.éﬂ()

This completes the separate computations for the observations of the k th pass from the ith

station. Repartition the matrices generated in (56) aad (57) as:

~
= e =] 3 . R
[N]u: : [N]uc cNu]xk [N12]£k| ENi:'lk
(e,2) 1 (s,8) (a,8) (s,8) | f(a,8)
T 1
(58) ['-:"allk : [f\.‘!]ik = [I.\l],a]:k [Nga]gk: [Ng]u !
[ (e/¢) i (s,8) (a,3) (,2) 1 (308)
N TRy 1 DN,
(e,3) (e,3) 1 (s,8) |

5N
(s,1)

[e),x

~

L__(6,1)

( [y T
(s,1)

= [‘.:B](k .
(a,1)
(el
(e,1)

As the matrices defined in (58) are generated by each station participating in the

observation of the kth pass, set up the matrices:

Ny dy 0
. 0 (NuJe
(59 (N] = . .
{(ao, 43,38 +a) ’ ’
¥ ¥ 0 0

Ay A FpereB e AR TS B AR o Y G

v [Nl'],]’.kk

. “ lk [
ENlﬁ]zlk Z CNaajgf
k 3=1

[Nsly
[Nla]sak

L VS




gy IR T

L~ R Y Ttmen

[N)

(a w8, e)

(N,

(N3,

AL

{
&
PINS

]i X

Ry

Z1

B]Hk

=1 _

To

©0) [N% =[N3, + (R, +.+CR, ,

(ar0)

en €k =

(a e t+3, 1)

Set up the aprioriweight matrix of orbital parameters using schedule indicated in input:

L 1] ] ] 1
(62) W, = diag (-T -5 5

{e/8)

Compute:

' (63) c S ]k

(any+3, 2u,+)

(r8)

(ere)

[él ]"1 X

-

RN

fed
1 iukg

ik
T (el
LAt

- .

%o cI"o

= [NL - (R AING, +V]

(8r8) "

, [€) = [E'_]‘;k 4.-[8'_\12,: +"'+[6']‘%."'

(/1)
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. : . . -1
‘ 64 lad = &1, -[NJ, {INI, +Wk} lm, - W, z: a
(3&{*3,1) - =1

This completes computations for kth pass. Merge [S], in the master survey file
(ougmented by 3 rows scolumns to accommodate the coordinates of the earth's center
of mass.) Repeat the above process until all passes have been absorbed into master
survey matrix. Final result is 3m+3, 3m+3 matrix S+W (W is augmented to account

for center of mass) and 3m+3, 1 vector c. Compute vector of corrections to survey and

A PSS R TR R T T B MW«MW%WW‘”M*”’?WWW‘M

center of mass (superscript (L) is used to designate the 4 th fteration of the solution).

(65) ' 8({/) = (5+W)- ( -W 2 5( )\ where & A(O) =0.
(snt3,00%2) 4=

-

For each pass, in tumn, compute the vector of corrections to the orbital parameters:
-1 -1 7
[ . 'Y ‘L-‘ 0 o . - _T il (‘L)
= ORI A B G AU A e L R A L b
[ ! (s,1) ’ '

in which [sjk denotes that portion of 3 containing the set of stations participating on the

kth pass, i.e.:

o
4 5y,
; p -~
(6=
4 ”
] 3
: o,
;. 860

The error parameters for the ith station and k th pass are computed from:

11
{
!
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=1
N O [ W LA N WERGLE R {2
(67) 6\12) = (Nn\-*'wsk) Cw Wlk Z G(w) - (Nzk *‘Wak) qu Gi )‘
(1) {t,4) 1) 4 :

4 o (L
Add corrections provided by 3(1) to sutvey and corrections provided by Gk( ) to initial

conditions of k th pass. From error parameters compute the following corrections for i th

station und kth pass.

. EXS @
Ox, = pr Bj(x) Z o)
) V() 4s (4,0
(68) optical case
4-1
= b (4
by =Ty B0 T80
! Yo(,L) b 1)
1] L—l e
(@9) 6‘.pa = o."‘pj B, §1 5({'2} veleCtroqlc case_

in which the B | matrices are based on the latest approximations for survey and oibit. The

residuals for the kth tracking interval are then computed from:

0_2
X 00
v [ — % - (x 4 Gx )
Xp 2, 2 2 . { PJ 95 bl

Y] 2

Xy Or I
0 = {x - (x, +0x } optic
(70) V'T,,J o2 "”"24 ) Py ¢ 7 pj) ptical case

o
= - +
M2 {y"s ¥s, ﬁy”a)}
2
o‘r 00
o T (e o)
! u, +r oF
7n . electronic case

S i

s AR

s, 2 B ALY e

'
SRTCTT
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In (70), (71) the quantities x° °% and r

survey

(72) @ = |sum of squares of weighted residuals for all stations and all passes ‘

degrees of freedom =

vyt Yoy

and orbit.

) are based on the most recent values for

Compute yrand mean error for £ th iteration from:

ks

degrees of freedom

2(total number optical points) + (total number of ranges)

~6(number of passes) - (tota! number error parameters)
-3(number stations) .

-

Solution is considered to have converged when:

73) [o%~Y - o“')l = ¢,

a prespecified constant or when five iterations have been performed, in the event the

o~

ad

;511

§
i

g

Bdnna

it

v llE L i eV

ARG RTOTAAY N 2

inequality is not satisfied for £ £ 5.
. . . . . 4
Part 1V. Autoregressive Feedback (Option exercised only if ¥, = 1 for tracking interval)
After solution hus converged, compute final primary residuals from (70) or (71). ]
For each tracking interval compute: i
g p
2 |
TV, Tvx Vi T
o = [ | v = Pyh Py
Py no. pts. in trucking interval Py no. pis. in tracking interval ; }
;E 4
NE - 3
zv Y v, v E
P ip LA
3 3t 3
S = O y 0 = v 7 N
(74) {55, no. pts. in tracking interval Y, no. pts. in tracking interval o
§
Ty L
rvj Evrpﬁ-;vrh . 3 i
",/ no. pts. in tracking inteival Ys, T To. pts. in tracking interval i
}é
L
A S
N s o e e R W ii
a3 b it t Py LG - e e s LAt - WY 1 B s oA sy By RN Y L |




|
g
|

T
e P T ML iy 1 e

5 = B

(75) Poy = Ypr/5es
- /.=

Fr o YUpr/Spr .

Repeat the gencral adjustment with sy, s, ., s, replacing oy, a,,, 0, and with the
values of P, Opyr P, from (75) being used in place of values specified in input. licrate
to convergence. Recompute primary residuals, as in (70). In temms of primary residucls,

compute secondary residuals as follows:

o
v -V
X
Py

v

<
il

-p v
¥ P b4
Py y pj"‘l

Vi =V, =~p__V .
Pr-r
¥ Py Py

Compute rms of primary and secondary residuals for each tracking interval.

-,
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1.0 ° INTRODUCTION™

e et —— e ———

The davelopmeni of the Short Arc Geodetic Adjustment (SAGA) grogram hes provided
satallite geodesy with another very accurato reduction tool, This program, we Lelicve, is one
of the most advanced reduction programs yet developed for precise geodetic positioning by means
of satellite observations, i can handle any combination of dircctional or ranging observations,
Specifically, these are:

Sk e S W

a. Optical (active ond passive): PC~1000, MOTS, BAKER-NUNMN, EC-4,
b. Electronic: Gaodetic SECOR, GEOCFIVER, LASER,

Each obsarvation parametar moy be subjsct to systematic errors yoverned by an error rmode!
having either unknowa coefficients or statistically constrained cocfficients. In tho optical cose
the angular ciements of external oricntation a, w, x may be subjected to slight adjusinents that
are consistent with their ectual accuracies. The orieataiion accurucy is typicolly 008 of aic in
a, » and 290 in %. The excreise of orientation error mode! constraints is particularly tmportant
in chopping shutter chservations. A conventional reduciion of a large quontity of chopping shutier
ohservations par ploie, with the existence of systematic error in oricatation would lead to an unduly
eptimisiic eiror propugation. In a chepping operation (as opposed to a flashing light}, allowarnce;
shoyld be made for uneartainiies in inter-stution timing synchronization., The inter-station timirg

. bius simulotas the case of nun.-'synchrcnization batween stations observing a common satellite pass.
The ciccironic error modal accomadetes biases in zero sat, timing, {requency (satellite oscillaler),

frequency (ground oscitloter), frequency drift and refraction. SAGA will accept as many os 4

observaiion infervals from the varivuy freckess. This cilows ovservaiion drop vut with a rew zero

seiting of ranges and re-oriantation of the cptical tracker,

* The material presented in the first two sections of Part Il was originally given in @ paper at
' the American Genphysical Union (AGU) Meeting in Washington, D.C., in May 1969 as a
joint effort by DBA and AFCRL (see Reference &).
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A

The errer model adopted for ranging systems is of the form

O = ayta,THa,T? +a,r tagrtag csc £

r,r = range and range rate at time T (T=0 at cepocly)

E = local elevation angle

G011 9,83,9,,a5 = crvor coefficients accounting for systematic errors in zero

set, frequency offset (between satellite and ground station
oscillators), frequency drifts, frequency bias, timing bias
and residual refraction.

The model was derived to apply specifically to Geoceiver observations but is applicable to

ranging systems in general when appropriate constraints are placed on the error coefficients.

Systematic enors in opticai sbservations are assumed to be governed by error

models of the form:

where

in which

Ox

dy.

f, =

I —

Xy
X, ¥

[

i

G fy T a,fa tagl, va,f, + agfg

' U
A fy tagfy 4 a,fl +a,f, +agfl

-(c?® +x2)% - f) = xy/e
xy/c 2 - WSy e
y fy, = =x

x/c 1=yl

5 fo= g

plate coordinates of satellite image -

]

rate of change of plate coordinates

1

nominal focal length of camera.
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e v vawaiaates are geacrally reconstructed from publishad angles (righr ascension,

TP AR RIS

Wil ion) by @ process of ‘dummy camera poojection', wherein the given angles are
projecicd vinio the plate of e fictitious camera aimed at the middie of the recorded arc.
The optical viror cocfficients ay through a;; account for the combined effects ~f bioses
in e cngular elements of orientation of the cameic, the elements of inferior orientation

(ceordinates of principal point and focal length), and timing. They also account for any

1 lincar drift in the direction of the camerc axis throughout the exposure.

_ To demonstrate the capabilities and the performance of SAGA, we reduced a

% network consisting of optical and ranging observations. These involved the PC~1000

; (active and passive), MOTS, SECOR and the LASER. Twenty seven (27) orbits were

3 chosen that provided a good geometrical relationship between observing stations and
observed oibits for accurate station position deiermination (see Figure 1).
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2.0 RESULTS OF REDUCTIONS

Twenty stations paticipated in the complete network, The one sigma error of the
network survey determination was typically 3 to 5 meters, cepending upon the station
geometry relative to the neiwork and the amount of observations from the station. The

error propagation is inlcrnal to the network with the origin at Hunter AFB.

The optical obser-ations were assumed subjuct to orientation biases of 1.0 in @, w
and 270 in x for all passes. The orbit parameters were completely relaxed to 1x 10°* meters
in position, 5. meters/second in valocity. The range measurements were azsumed to be
subject to a systematic bias of 10 meters with a random noisc of 1 meter. The random error
of the optical cbservation was 5 microns in plate x and y coordinates. See Table | for all

input errors.

The SECQOR observations vere made on orbits that had no optical observations. Four
orbits were observed by four SLCQR stations (5333, 5001, 5649, 5861) and one orbit wos
observed by three stations (5333, 5001, 5449), Matching of available SECOR observations
with available optical mecsurerient. resulted in little strength from either. Therefore the
five were selected that providad jood geometry with the four SECOR stations. The SECOR
stations were incorparated intc the overall network by applying constraints between the

SECOR and optical co=~locaied siations (e.g. 3861, 5861, see Figure 2).

Laser range mecasurcments from station 7051 were obtained on four passes in conjuncticon
with optical observations. Optical station 1042 and station 7051 are again treated as co~

located stations by constraining the direction anddistance between them.

. Table Il reflects the strength of each pass into the overall solution. For instance,
orbits twenty one and twenty two are very weak in orbit determination since only two stations
observed. The accuracy of ihe orbit determination reflects the degree of contribution of the
pass fo overali surveys. The accuracy of the orbit position (X, Y, Z) is largely dependent on
the intersection angle of station observations and the accuracy of the measurements. The
determination of velocity components improves significantly as the length of the data span

observed increases.
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TABLE )

Station Participation

Participating Stations
1034, 7039, 7037, 7075

1042, 7037, 7040, 7039, 1022, 7075

7039, 7040, 1042, 7051

7040, 7036, 7039, 1022, 7051

7036, 1022, 7075, 7051

7039, 7037, 7075, 7040, 7051

7040, 7037, 7039

7040, 7027, 1034, 7036, 7039, 7075
7036, 7039, 7037, 1022, 1042, 7075

7040, 1042, 7039
7039, 3405, 3402, 3841

7032, 1022, 7040, 1042, 3861

7036, 7037, 7039

7037, 7036, 7039, 7075
3657, 3861, 3401

3401, 3405

3401, 3106

3657, 3405, 3648
3457, 3106, 3648
3657, 3405, 3402
3401, 3402, 3648, 3106
3402, 3401, 3657, 3106
5001, 5649, 5333, 5861
5001, 5649, 5333, 5861
5001, 5649, 5333, 5861
5001, 5649, 5333
5001, 5649, 5333, 5861

Intervais

et et = S RO N NN ND~LHNOWONDWWULNRENNN WM

Total number of observation sets

¥ Observed Sets*

-—
o N O

BWNBEBAAMUNWAEUGNONWOAROOO O~ OMO

13

“The number of observed sets represent the total number of camera photos and intervals
of range chservation for each pass. Each flash sequence represents one interval.,
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TADLE 2

A Priori Constraints on Error Parameters

Station No. Input Sigmas .
—— Latiiude Longitude Height
(sec.) (scc.) (meters)

3001 0,200 0.290 5,00
5333 - 0.200 0.200 5.00
5019 0,001 Q.0M 0,10
5501 0.290 0.200 5.50
7051 , 0.200 0.200 5.00
305 0,200 0.320 8,00
2402 0.200 ' 0.200 5,00
J367 0.200 ) 0,200 5.00
2108 " 0,350 0.350 . 8.00
5841 ‘ 0.200 0.200 5.00
2401 ) . 0.200 0.200 5.00
7040 0.350 - 0.350 8.00
1022 0,200 0.200 5.00
1O : 0.200 0.200 5,00
1042 0.200 0.200 5.00
7057 0,200 ' 0.200 5.00
7083 o 0.200 0.200 5.00
705¢ ' 0.800 - 0.800 25.00
7075 . 0.200 0.200 5,00
3643 : 0.001 0.001 0.10
Observations

_C_)f_t_x_t_:_c‘:‘\__ Electronic:

Crientation:
og = 1. Arc seconds

o, = 1. C Timing, 5,= 1% 107*
g = 2.

Timing (Inter=station): '
o = 1x10°% (active) -,

-0y = 3 milliseconds (passive)
Measurement:

oy = S microns

Zere set, g, = 10 meters
Rar.dom Range, o,= | meter

Input Error of Initial Conditions:

} Plate coordinates

5 microns Position, Velocity

g, =
o = 10microns Focal length ' %=0,=0, 1x10% meter
- -4 .o Ox ¥ 0y = 0; meters/seconds
o = 1x10 Random timing
T
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TABLE 3
1 Standard Deviation of Recaverad Orbitel Elamants
2 (Meters and Meters/Second)
E PosNo. o i S 5 I K
-; 9 14 14 37 027 .03 ~.054 :
f(_ ; 2 9 12 7 029 033 024 ;
35 8 9 8 .021 024 021 5
5 4 28 34 .632 .026 040 .
36 6 8 7 .03 ,022 020
37 7 8 7 .024 023 027
i 69 272 279 .158 A .468
1 14 8 .G22 .028 .021
12 19 4 035 054 .040
10 15 17 19 035 .038 064
1 27 30 12 .067 123 132
! 12 14 7 8 .037 .036 044
13 B 24 4 088 103 101
k 4 10 7 10 019 031 021
20 7 . 13 13 .518 .887 .944
21 29 92 184 . 397 .394 1.097
] o . 128 140 223 -786 936 .906
o 23 20 9 19 .034 .038 ,043
3 24 78 28 20 7 .044 140 i,
‘ 25 15 18 23 838 1.126 1.634 j
26 1 15 13 .050 .083 15 :
27 s n 8 196 .321 432
40 29 3] 12 .059 .094 .052
| 39 30 19 18 R} 078 .062 _ !
T 4 46 10 o2 .048 03 029 :
f 41 25 54 10 061 105 070 :
43 o7 % 26 07 . .035 054
B
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TABLE 4

,

Station Coordinate Adjustmeiis (Meters)

l Station Corrections Standard Error
§ AX AY AZ oy a, a
. 5001 259 -3.18 -5,03 5.4 4.5 3.2
5333 577 =040 =12.10 3.9 4.8 4.7
5649 0.0 0.0 0.0 0.03 0.09 0.06
5861 8.51 -8.50 -5.02 3.3 3.3 3.2
i 7051 799 9.9 -1 4.1 3.7 3.5
3405 ~2.0 -9.66  =15.32 7.2 7.4 7.9
; 3402 10,41 -0.42 ~2.77 4.9 4.9 5.4
i 3657 -3.02 6.29 ~4.93 3.1 43 3.2
: 3106 15,57 9.76 5.00 9.2 8.0 9.7
i 5361 8.48  -B.56 -5.00 3.3 3.3 3.2
5 3401 7.34  -3.98 4.37 4.0 5.0 4.8
7040 -2.42  23.81  ~13.91 6.2 6.5 6.9

1022 -1.16 2.03 -2.72 " 4.4 4.3 4.8
1034 -1.81 -6.31 0.69 4.0 5.0 5.2
1042 2.94 2.34 2.74 4.0 4,0 3.5
, 7037 -2.28 -0.68 -10.06 3.7 4.1 4.1
v 7036 13.77 -13.58 3.58 4.7 4.6 4.7
' 703% 18.71 5.74 6,81 5.5 6.0 - 5.5
7075 -0.60 . 5,53 2,07 3.5 4.4 4.3
3648 0.0 0.9 0.0 0.03 0.09 0.06
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The total correstions (Table V) to survey and the propagated errors are consistent
with the obscrvation network with the origin at Hunier AFB. The propagated errors reflect
the internal network accuracies and ivlustraie the strength of this particular solution. The
recovery of some stations was weaker than others due to the limited observations from the
station. Bermuda was @ priority fuctor in selecting orbits, therefore the network provided
strong geometry for the determini. on of its coordinates. Bemuda (7039) participated in
thirteen (13) passes which inve's»d twenty four (24) plates (or 24 different flash sequences).
Antigua participated in only four different passes with a total of 5 plates. The position
recovery tor Antigua was nearly twice that for Bermuda. On the other hand the input error '
for Antigua was much.smal‘ler than that for Bermuda (meaning the apriori information was
better), The improvement of the recovered \vordinates over the a priori information was

not as significant for Antiguu. Table Il tists the observing station for each pass.

A typical recovered bias in 2ptica! orientation &, w, and % was .2 arc seconds.
The largest recovered bias was .8 arc seconds. Recovered biases in laser cbservations ranged
from 4 to 10 meters and SECOR biases ranged from 6 to 27 meters. The random noise was

approximately 1 to 2 meters in both LASER and SECOR measurements.

This program Gécommodafes adjustments to the center of mass. The results preseated
were obtained with the center of mass held fixed. As a preliminary experiment an adjustment
was made with the center of mass relaxed to 50 meters in X, Y,Z. The corrections to the
coordinates of the center of mass were 10, 35 and =27 in X, Y and Z respectively with
standard devi%!;icns of 39 meters. The change in station surveys was riegligible. This
experiment was made to demonstrate the programs ccpabilities in recovering the center of
mass. The network is goncentrated on a small section of the earths surface and the geometry
with respect to the center of mass was very weak. Further studies will be undertaken with

emphasis placed on orbital geometry and observing station locations relative to the center cf

indgss.
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Lonciusions

Ih view of the various instrumentations and observing modes used in this reduction,
it ’s apparent that this program could be used with any type optical or ranging system
presently employed in global tracking. The Geoccivcr~ was given some special consideration
in the errer model of range measuring type systems. Terms for frequency biases and frequency

drift were designed to accommodate errors introduced by the satellite and ground oscillators.

This presentation is intended to primarily demonstrate the capabilities of the SAGA
reduction program. It is not our intention to imply that the results should lead to a change
in position of Bermuda or any other station in the network. But the corrections and accuracies
in the subject solution arc meaningful with respect to this network. The accuracy of 5te 6
meters recovery of the Bermuda coordinates clearly illustrates the potential of recovering
the surveys of other stations that have large survey errors. The reduction demonstrates the
impressive potential of SAGA as a tool for establishing continental and inter-continental

surveys to a high degree of accuracy.
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3.0 PROIRAM DFSCRIMION

h

1w SAGA prograni is a multi-orbital reduction program designed to recovery station
geodetic courdinaics and bias parameters associated with the measuring system being employed.
As many as four zero seftings of the defined orbit may be used. This provides the capability

of cbserving as many as four different segment combinations of the orbit by the various trackers.
Optical and ranging obscrvations are accepted and these are specifically PC~1000, BC-4,
MOTS, BAKER-NUNNS, SECOR, LASER, and GEQCEIVER.

Input formats are primarily the same as the GEQS format except in special cases in
which the data has been processed through a data prep program (see Appendix D) for special
corrections. This is a program option which was included to provide program simplicity and

more importantly to provide SAGA with consistent and pre~-edited data.

SAGA consists of six major programs which are directed by a control program. The
first two (MASTER and PREP) read all input dota and store them into disk files or tape for use
in the iteration cycle. They also compute the station covariance mairix and baseline
constraints. The orbit integratar, which is part of the iteration cycle, performs orbit
integration from the time of the initial conditions to the desired apoch. At the time of
epoch it updates the pasition, velocity and time on the first iteration. Subsequent iterations
need only to ba exnainded on the corrected orbit and no further integration performed. The
user should provide initial conditions as near the desired epoci as possible to prevent error
build up which leads to additional iterations to acquire convergence. NORMAL forms the
normal equations. SOLVE salves for survey correction. OQUTER solves for orbit and

observation biascs and updates the master file.

Five iterations are the maximum number of iterations before cutoff. If convergence is

sl o

ek
e

not obtained before the cutoff point the data is probably unstable and may be diverging. At

thic time one should analyze the data characteristies.
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4.0 SUBROUTING DISCIIPTION

This section gives a brief description of subroutines and their primary mathematical
operation. The calling sequence of cach is defined as followr
CLEAR (X, N)

This subroutine clears an array X of size N.

X Awray to be cleared

N Number of elements in X

AUGVRT (A, NR, NC. ND)

AUGVRT replaces the matrix A by A inverse augmented by the solution matrix.

¢ A The matrix to ke inverted
; NR  Row dimension of A to be inverted
F NC Column dimension of A io be inverted

ND  Actual dimension of A

P e 1,14 T 0

MATMPY (A, NRA, NCA, B, NRB, NCB, C,M1,M2)

MATMPY will multiply A and B and store into C. The options of M1 provide any
allowable transpose combination and M1 allows such storage combinations as the simple

product, negative product, sum into previous C (positive or negative).

A First array to be multiplied |
NRA  Rows of A

RCA  Celumns of A

; B Second array

NRB  Rows of B

NCB  Columns of B

C Storage array of product AB
ﬁ M1 Transpose opticn
M2 Action of product R to storage array C

-] 5~
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UPDATE (ICN, KTR, [PS, DEL, XPO, VPO, ZPO, XOT, YOT, ZOT)

This program updates the matrizant for a new step in time.

N

ICN Makes decision on to integrate position and velocity
KTR Number of ferms to use in series

EPS Truncation crror 1imit

DEL Valid step size

XPO,YPO,ZPO Irput position
XOT,YOT,ZOT Output position

ZER (A,N,M)

ZER zeros the array A for N times M values starting at location A(1).

A Array to be set to zero
M Rows of A
N Columns of A

ATRACT (L,K,8,5,10T, NS, NROW)

This routine will disect array B in 3x3 matrices C (3x3) and write a file on tape or

disk identified by station ID from array L.

Array containing identification of disected 3x3 arrays
Number of 3x3 matrices along diagonal of B

Array containing K squared 3x3 matrices

v @ x

Array containing K 3x1 matrices

10T Unit number of tape or disk to be written on
NS Dummy integer

NROW  Rank of desired partitioned size array

DUMMY (C AST,OR, A E,TP,IC, IS, PH‘,CH, HE,IDNT,P,Q)

This program simulates a dummy camera projection of right ascension and

declinations to plate coordinates.
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GAST
OR
A

E

TP
IC

s
PH
CH
HE
IDNT
P

Q

Greenwich sidereal tine
Quiput cricntarion matrix
Array of plate X coordinates
Array of plate Y coordinafes
Time of i th X, Y coordinate
Number of coordinates read
Station identification number
Array of station latitudes
Array of station longitude
Array of station heights
Array of stativn identification numbers
Latitude of observing station

Longitude of abserving station

COVAR {""A,SLAM,SH, R, A, ECC, SIGMA)

This routine computes the coveriance matrix of a station in geocentric coordinates

given geodetic error in latitude, longitude ond height.

SLA
SLAM
SH

R

A
ECC

SIGMA Input errors in latitude, longitude and height

EXTRAC (L,K,B,CC, NS)

E

Lotitude of station
Longitude of station
Height of station
Qutput covariant matrix (3,3) !
Semi-major axis of carth

Eccentricity of earth

This subroutine exiracts 3x3 matrices from array B and writes them on unit 3.,

!

Array contaijning position of 3x3 matrices in B that are going on unit 3

Number of 3x3 matrices along the diagonal of B
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3
CcC
NS

Array being disected
State vector to be disected into 3x1 matrices

Sizc of submatrix.

DRIVER (NN, [U,TM,GH, DT, XOT,VEM)

This program evaluates the coefficients for position, velocity and matrizant at

time TM.

NN

V)
™
GH
DT
XOT
VEM

If NN =1 read tape unit U for coefficients and orbit parameters at
epoch, otherwise expand only about epoch

Tape unit - . be read

Time of observation

Corrected output iime from epoch
Increment in time that coefficients are good
Cutput position and velocity

Ovutput matrizant

MATRUP (KTR, DEL, UVM, UVO)

Subroutine to update matrizant with respect ro time.

KTR
DEL
UVM
uvo

Number of terms in series
Increment in time from epoch
Coefficient matrix

Updated matrizant

CRV (AX,ECC,VC,IDINT,EPS, 1D, IPR)

CRV updates station geocentric coordinates from corrections in previous iteration.

£
ECC
(e
IDNT

Semi-major exis of earth

P,

Eccenfrncnf’)‘l_gf/.f'gath\’» .

" Array con}aining station X,Y,Z

Array of identification numbers
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) 31
- i) Array of starion corrections ’,’? i
4 n 3
i 1D ID of station match KR
¥ IPR Fiag set if stution has already been outputed § 3
’ % ]
LLH (AX,[SQR,P,Q,R,OP,OL, OH) i B
Conv geocentric Cartesian coerdinates to geodetic coordinates. b
: 3 2.
i 3
: AX Semi-major axis of earth §
} ESQR  Eccentricity squared of earth B
p Geocentric Z g B
Q Geocentric X '
( R Geocentric Y .
y . .
QP Qutput latitude %
g oL Output longitude
; OH Qutput height
ATANN (X,Y)
d This is a function that computes the angle between the vectors X and Y.
t
: X First vector
Y Second vector
I DEG (AN,I1,J,5)
)
DEG converts an angle AN to degrees,minutes and seconds.
] AN The angle in radians
E ] Output degrees
' J Output minutes
S Qutput seconds
-19-
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GEOC (XL, YL, HT, A, ES,V)

GEOC convests geedetic position (B, X ,h) to geocentric coordinates (X,Y,Z).

XL Latitude {radians)

YL Longitude (radians)

BT Height (metors)

A Semi-major axis of earth (meters)
ES Eccentricity of earth squared

\'s Returned array containing X,Y,Z
ERCOE (EPP,NID,K,L,J)

ERCOE outputs observation bias corrections of electronic error model terms.

EPP Array containing bias corrections

NID Array containing station identifications
K Detines observation interva!

L Station identification

J Index defining station in pass

ERMCOD (EPP,NID,K, L, J)

ERMOD outputs observation bias corrections of optical error model terms.

EPP
NID
K

L

J

Array containing bias corrections
Array confaining station identifications
Defines observation interval

Station identification

Index défining station in pass
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EXPAND XPO,YPC ZPO,CNM, SNM,LCT, ICT, UMT, VMT,CT8,CTT ERD, XMU,
ALF, OMG, ECC, NTE, KTR, KIJR, NHT, CDC, CTW, KEY, DMT, KRG}

.

\ i 3
XPQ E |
YPO Power series for position (X,Y,Z) -
2P0 § :
(S:!\r;lii.\AA} Potential coefficient ﬁ

Contro) tables

UMT Expansion series

VMT Expansion series
CTT ! Coefficient tables

ERD Radius of earth

XMU Gravity constant

ALF Greenwich hour angle
OMG  Rotation rate of earth
ECC Eccentricity squared
NTE Tables control parameter

KTR Number of terms in series

KDR Number of terms in drag

NHT Zero
able Ballistic coefficient
CTw Drag time

KEY Integration control constant
DMT Dummy array

KRG Defines the number of terms in series.
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A, lInput

This section will describe the program input parameters and illustrate the
output formats. Input will be defined as specification cards and a complete
orbit set. A run consisting of more than one orbit is made by simply stating

the number of orbits on the first specification card. A complete set of N orbits

] -+ is illustrated in Figure 1.

i
e
i

b

:
w3
&

Baseline Constraints

Card No. Nome  Field Columns  Units Description
i P 14 1- 4 Station ID  (1st station)
1Q 14 5-8 Station ID  (2nd station)
IS 12 9-10 #0, read linear constraints
Al F2.0 1119 Degrees A priori azimuth
EL F%.0 20-28 Degrees Apriori elevation
RA F9.0 29-36 Meters Apriori range
NS F7.0 38-45 Arc sec Azimuth sigma
J S(2) F7.0 46-53 Arc sec Elevation sigma
A S(3) F7.0 54-61 Meters Range sigma
Ul F12.0 6273 Linear error if IS#0
' SU F7.0  74-80 Origin error
2% XD F12.0 25-36 Degrees Station latitude
YD F12.0 37-48 Degrees Station longitude
HT F12.0  49-60 Meters Station height
3% AX F12.0 1-12 Meters Earth axis
ECC F12.0 13-24 Eccentricity squared
XP F12.0 25-3% Degrees Station latitude
YP F12.0 37-48 Degrees Station longitude
HP F12.0 . 49-60 Meters Station height
* CStation position for the two baseline stations involved.
25~
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Card No. Name  Field Columns Units Description
IFIS £0
4 COE(1) F11.0 1-11
. . . Linear coefficients between

station pair

COE(7) FN1.0 47-77

Repeat the above cards for each baseline desired, then follow the last baseline set with a
blank card.

o ala i e b bk S A B

5 BLANK
Specification Cards g ;
Card No. Name  Field Columns Units Description i
1 NPASS F13.0 1-13 Number of passes E |
ECC F13.0 14-26 Eccentricity squared : I
AX F13.0 27-39 Meters Semi-maju axis
GR F13.0 40-52 Meters® /Sec® Gravitation constant i
ROT  F13.0 53-65 Radians/Sec Rotation rate of earth i 8
2A IDNT 17 1-7 Station 1D g .
G1 F7.0 8-14 Degrees Latitude x
G2 F7.0  15-21 Minutes %a |
G3 F7.0 22-28 Seconds g
G4  F7.0  29-35 Degrees Longitude (West) :
G5 F7.0 36-42 Minutes ‘ ; o
Gé6 F7.0  43-49 Seconds 3
G7 F7.0 50-56 Meters Height (above spheroid) %
CM(1) F7.0 57-63 Seconds Sigma latitude
CM(2) F7.0 5471 Seconds Sigma longitude
CM(3) F7.0 72-78 Meters Sigma height
24




Description

These are station cards. Follow

Sigma of center of mass

Input sigma of plate x
Correlation coefficient
Sigma of plate y
Correlation coefficient
Sigma of time

Sigma of range

Correlation coefficient

3B and 3C are the second and third alternate schedules of error inputs for

pfcfe or pass data. 3A is the standard schedule of error input. Cards 3 and

Orientation sigma &, w,; x

Focal length sigma

Interstation timing sigma

4R and 4C are the alternate schedules of sigmas for station measurements.

Card No. Name  Field Columns Uinits
2B 28 is the same as 2A for the next station.
the last station card with a blank.
2C Blank
2D Ox F13.0 1-13 Meters
o F13.0  14-26  Meters
4 oy F13.0 27-39 Meters
| 3A STII) F11.0 1-11 Meters
2 12-22 Unitless
3 23-33 Meters
4 34-44 Unitless
‘j 5 45-55 Seconds
' 3 56-66 Meters
7 67-77 Unitless
3B&3C
4 are for optical observations.
4A ST21(1) F13.0 1-13 Radians
2 14-26 Radians
3 27-39 Radians
4 40-52 °  Meters
5 53-65 Seconds
48 & 4C
' 5A ST31(1) F13.0  1-13 Meters
2 14-26 Meters
3 27-3%9 Meters
4 40-52 Radians
) 53-65 Seconds
6 66-78 Radians }
~25-

Error coefficients of

electronic error model
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Card No.

Name

Field

Columns

Units

S5B&5C

6A

68&6C

58 and 5C are alfernate schedules for range observations.

STAI(1) F13.0

6B and 6C are alternate schedules of orbit sigmas.

[= & B N L)

4

1-13
14-26
27-39
40-52
53-65
66-78

Meters
Meters
Meters
Meters/Sec
Meters/Scc
Meters/Sec

Orbit lnng

Each orbit will be set up as shown below.

S1

$2

S3

C1
C2
C3

P
P2
P3

7.0
7.0
12.0

- 7.0

7.0
12.0

7.0
7.0
12,0

Hours
Minut s

Seconds

Hours
Minutes
Seconds

hours
Minutes

Seconds

Description

Sigmas of orbital initial
conditions (position)

Sigmas of orbital initial %
conditiops (velocity)

Time of initia! conditions

Time of desired epoch

Hour angle of Greenwich forzero

hour of day of initial conditions




e b o bt s o

TP

e

e

"y

¥
S

Card No. Name  Field Columns Units Description ‘;
2 N F13.0 1-13 Meters Initial position :
2 14-26
3 27-39
4 49-52 Meters/Sec Initial velocity
5 53-65
6 66-78
3 IDPAS 15 1-5 Pass identitication :
IORE 15 610 Selects orbit sigma schedule ;
NSTA 1§ 11-15 Number of stations in pass
NINT 15 ~16-20 - Number of intervals observed o
4% FLEA  F12.0 1-12 Meters Focal length if optical
ITYPE 18 13-20 - is electronic, +is optical g
1S | I8 21-2 Selects station sigma schedule ‘
I8 I8 29-36 Selects optical plate schedule {
NP 18 37-44 Number of intervals observed ‘
NID 18 45-52 {dentification of interval observed
* Each station observing will have a card defined by 4. These cards define
all data information for the particular station.
5 INT 14 1- 4 Number of total intervals observed
HR F10.4  5-14 Hours Start time of observations

MIN F10.4 15-24 Minutes
SEC F10.4 25-34 Seconds
Xv F10.4 35-44 Hours Stop time of observations
XN F10.4 45-54 Minutes
XM F10.4 55-64 Seconds

G § RN AT S S




The following cards are obscrvation cards and will follow the same order as the

station data definition cards 4. Let & represent an op-ical obscivation set and 7

it it R e

clectronic. A blank card follows cach sct of observations.

Cord No.  Name  Field Columns Units Description
6A GEOS formatted data in right ascension and declination
7A GEOQOS formatted data in range J
68 w7 -7 Station identification nunber |
T() F13.0 8-20 Seconds Time of observation |
XN F13.0 24-28 Meters Plaie X coordinate :
Y(l) F13.0 29-446 Seconds Plate Y coordinate :
7B 1D~ |7 1-7 Station identification number §
T({) F17.0 8-24 Seconds Time of observation
RANGE F17.0 25-41 Meters Range measurement :
;
B. Output P
Program PREP outputs the primary input control parameters which define ER
the error parameters and survey. This provides the user with later references to ;
the network characteristics, participating stations and apriori errors of the SR
particular computer run. Other output is adjusted parameters, residuals, ;
standard deviations of recovered parameters, correction ta all adjustable parameters «
and total corrections to survey parameters. ;
For each orbit in the solution the following output is written.
k . ' !
' 1) Residuals for each observation for each station. )
; 2) Sigma (standard aeviation) of recovered timing and orientation biases
t‘ for optical measurements. . :
. z |
. ~NQ . o
o
& i
- — - -
|
|
‘ |




3} Siama of tecavered timing biase

bieses and range error mode! coefficients
ranga nicasurements.
4) Sigma of vecovered orbit position and velocity.
5)  Corrections to survey.
6) Sigma of survey corrections.
7)  Corrections to position and velocity coordinates.
8) Corrections to measurcement parameters,
9) Total corrections to survey .

Final survey in latitude, longitude, and height.

\
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Orbit N
/ |
/ |
/ |
/- |
/ |
R o
&5 |
/
] /
/
Blank
Data Nth Station
~ |
v :
& ( [Blonk i
Data Station 1 / \ %
! Orbit Specification g
- .. . Fa ¥ :,,
Soecification Cards 4
{ i
s
E IR
aseline Constraints ’ _ i |
E- i
; B
“ \,,- o
FIGURE 1. DATA SET
¢ ~30-




Ll o

ﬁATA
ERCOE
ERMOD

/DEG /"

/ATANN
/iLH
/ CRV
; / OUTER
' / SOLVE
;- / VARIEQ
t . | . /EXPAND Overlay 5
ZORB]T Overlay 4
/MarRup </
/ DRIVER
_ / EXTRACT /
: / NORMAL /
] / COVAR
£ / DUMMY
/[ PREP Overlay 3
'- ATRACT
1 / MASTER |
; /ZER Overlay 2
v} / UPDATE
, . //MATMPY // - Overlay 1
-k AUGVRT
i / GEOC /
j / CLEAR
] CNTR

Overlay 0

FIGURE 2. DECK SETUP
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6.0 GLOSSARY OF TERMS

A.

(EL RO LS

n ~
Frogram constants

Program Name
———— e e e

RAD
GR
ROT
AXIS
ECC

CNM
SNM

Quantity Description
.01745329252 Rudian to degrees conversion
Input (optional) Gravitation constant
tnput(optional) Earth rotation rate (meters®/second’)
Input{opiional) Earth semi-major axis
Input(optional) Earth cccentricity squared

Smithsonian standard earth model for 1966 throughM, N =4, 4.

Symbol Corelation

Program Name

ROT
GR
STD(1)
STD(2)
STD(3)
STD(4)
STD(5)
STD(6)
STD(7)
STER(1)
STER(2)
STER(3)
STER(4)
STER(5)
STEL(1)
STEL(2)
STEL(3)
STEL(4)
STEL(5)
STEL(6)

s LA 9

Math Symbol Description
) Earth rotation rate
T /Earth gravitation constant
o Standard error in plate x
o Coarrelation coefficient in plate x
o, Standard error in plate y
Py Correlation coefficient in plate y
o Standard error in timing
or Standard error in range
Py Correlation coefficient of range
Co
o Error in orientation
Ox
7 Error in focal length
Gy lnterstation timing bias
Ou, Zero set error constraint
Oy, Interstation timing bias error constraint
O, Frequency bias constraint (sateliite oscillator)
oy, Frequency bias constraint (ground oscillator)
T, Frequency drift constraint
0., Residual refraction error constraint

-33~
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.
g
|
. é :
7 E’ogrcm Name Math Symbol Descrintion i
5‘
i
ORB(1) o, \ ,
1
OR3(2) v
b4 i
ORB() o
- . 3
ORB(4) o, Standard error of position and velocity ‘
ORB(5) a, : :
ORB(8) o } !
R1 - R; Rotation matrix (inertial to earth fixed) ; 1
,_ XE X,
YE Y Orbit position for the jth observation i
% ! (earth fixed) ﬂ i
ZE z i
{ - ! 1
" & P
y ve Earf.h fixed coordinates of the ith ; |
; station . i
i
z z I
i Xp <00
Computed plate coordinates i i
YP y5° 3 !
: y o
XJ xS [
Measured plate coordinates i ‘
0 5 +
YJ Y ] i
TJ t, Time of jth measurement |
: %
RJ e Computed range H
3
: XJ r Measured range g
? DR Br, Refraction correction to range éj
| i
wDD W, A priori weight matrix g !
{ i
- 34~ E
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ARG O At o

BRI

[T eer 2 S B

Do o R
rrogiam iNdnie

Maih Symboi

S
EPO

EPP
NSTA

NPASS
IC
XDl
YDI
ZDI

VK

o>

N- < 5 —

Lo}

D,-scriE)ﬁon

Station correction vector
Orbit correction vector

Correction vector to error parameters

Number of stations in k th pass
Number of passes in network
Number of observations

Earth fixed velocity

Coefficients of matrizant polynomials
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Pre Processor

A.  General Deseription

q

The Pre Processor (PREPRO) program was designed as a supplement to SAGA. It

niakes corrections to data for peolar motion, paraliaciic refraction, time corrections

5 (UTC-UTT or SAC-UT1), and phase angle. At option the data is fit to a series of
; pelynomials (2nd thru 6th order) for random measurement residuals evaluation.

In addition to optical comections, PREPRO also converts GEOCEIVER observations
(Doppler counts) to range differences corrected for ionospheric refraction. The residual
option also exist for range measurements.

;, Care must be taken in the application of the admissible preprocessor corrections

f«z so that corrections that have already been made are not duplicated. Thus the fact thai

i— ?C~1000 data processed to date by ACIC have not been corrected for polar motion,

j_ parallactic refraction or for UTC to UT1 .does not preclude that at some time in the future
!’;: ACIC policy may change in this regard. When and if it does, the corrections should no
ﬁ longer be applied in the Pre Processor. Thus one should remain up to date on the policies

of the various agencies that provide data. In the table below it is indicated which
corrections should be applied in the Pre Processor to the various types of data as of

January 1969. Though not listed in the table, corrections for phase of optically observed

spherical passive sateliites can also be generated on option by the Pre Processor.

Corrections, when needed, for tropospheric ranging refraction are applied in the main

program rather than in the Pre Processor.
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TABLE 1

Corrections Remaining to be Applied by Pre-Processor (as of January 1969)

PC-1000
MOTS

BAKERNUNMN

BC-4
SECOR
GEOCEIVER
LASER

Polar
Motion

Parallactic
Refraction

uTC-UTI

A1-UT]

lonospheric
Refraction

X

X

X
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The wser selects from Table | the corrections desired.

Non-zero values are inserted

. the first card corresponding to the particuiar corraction. For each correction desired

the follow=uo input cards furnish needed input paiumeters to accomplish the correction.

These evo outlined according to each correction,

Specification Card

cai st Uk au AL cEl S S

I e s o it e e il

Card No. Name  Ficld Columns Units
1 ITPE 14 1- 4
1POL 14 5~ 8
IREF 14 9-12
ICCOR 14 13-16
RE 14 17-20
IPHS 14 21-24
1SAO 14 25-28
ITPE =1
Optical Data
2 H F4.0 1- 4 Degrees
B F4.0 53-8 Minutes
D F7.0 9-15 Seconds
T F7.0 16-22 Degrees
Z F7.0 23-29 Minutes
\Y F7.0 30-36 Seconds
HE F7.0 37-43 Meters
F F9.0 44-52 Meters
I1DD 14 53-56
-53~

DescriErion

Type of measurement (Range or
optic)

Polar motion
Parallactic refraction
UTC 2 UTY time
Residual computation
Phase angle correctirsn

SAQ to UT1 correction

Station latitude

Station longitude

Station height
Focal length

Station identification

S




)
3 o F4.0 1= Dogrees Greenwich hour angle k-
O 4.0 5~ 8 Minuies For day of interest §
S F7.0 =15 Seconas % 1
1 SHT F7.0 1620 Nautical Miles  Satellite height % !
3 COR F7.0 23-29 Scaonds UTC-UTT correction §
XAN F7.0 30-36 Aic seconds x polar angle 5
YAN F7.0 37-43 Arc scconds y polar angle ? i
SCAL  F9.0  44-52 Scale on residuals ’§ %
£
Insert Only If ISAO # 0 4
4A TAU F4.0 1- 4 Years Fraction of tropical year g
; TZ F4.0 5- 8 Epoch of equinox ; |
DEL  F7.0  9-15  Radions Nutation in longitude 1
* O3l F7.0 16--22 Radians Obliquity of the ecliptic ;
: GID  F7.0  23-29 Seconds ATl time minus UTC time £
Insert Only If IPHS #0 é D]
& RADI FI0.0 1-10 Metess Radius of satelfite i
HEG, ,10.0 11-20 Meters Height of satellite i
: RAS F10.0 21-30 Degrees Right ascension of sun ‘é !
: DES F10.0  31-40 Deagrees Daclination of sun by
5 DATA - GEOS Format §
f 6 Blank §
! :
i
|
|
b
; -54-
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3
3
Card No. Name  Field Columns Units Description h
[TPE = 2 x
Range Data %
73
Follow specification card with GEQS formaited range data. Follow the data with a blank g
. card to terminate the set, b
f ITPE = 3 % ;
! GEOQCEIVER Data g
] 2 cs F10.0  1-10 Mts/sec Light speed : i
- FO F10.0 11-20 Cyc/sec GEOQCEIVER reference frequency .
FS F10.0 21-30 Cyc/sec Transmitted frequency
3 ID {10 1-10 Station identification E )
X F18.¥ 11-28 Time
Yl F18.9  29-47 Doppler count mzasurement
RR F18.9  48-65 Refractive Doppler count '
4 Blank ;
C. Output g
The output is in punched card form. The format is compatible with SAGA input. The v
!
only written output is the residuals of the 2nd thru éth order polynomials and conic. '
Written output of the corrected observations may be obtained by changing the file
unit number to the appropriate output file number. '
18 D.  Analysis
[ Polar Motion Correction
; Let:
T = timc of obscrvation in years and days (e.g., T=1966.385)
t = fime of chservation from ZULU midnight
2, 6= right ascension observed
x,7= anglcs of polar motion (radians).
55
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m § = aopparont Greenwich sidercal iime af time 1 of observatinn
= A, + wi, where A, = Greenwich hour angle
w = carth's rerational rate

(2) Intorms of given &, 5 «nd computed volue of 8 - <,y evaluate the expression

A [cos 8 ~sin 8 0 1 0 «x i’ cos 8 sin 8 0 cos mpcos 8
{
W= 4sin @ cas® Oy 01wy ! -sin § cos B 0 sin et cos &

ilv 0 0

o
9
—_—
x
“~

l 0 0 1 sind
I

(3}  Compute r', &' frem the relctions

H [— AL
sine g/ Ny

e
Cos r= k/ ~ -
sin & = v (sign of &' is same as sign of v)

4)  Replace w, 6 by o', &'

Phose Angle Carrzction

The apparent direstion of a spherical, sun refleciing, satellite may be tiused,
depending upon the portion of surfuce observed. Two dilferent types of light reflections
cre crcountered. First is that of diffueed reflection, waich it the result of reflections

from irreguiar surfaces. The moon is o exam;

: of ditfused reflestion, Secend is that
of speceiar retlostions, the result of Hight reficcted from smooth surfaces such as a mirror,

noine case of non-ipherical satelli. g, the correciion is treated as a constant pias

and v (oction 4). An attempt 1o apply dircetion zorrections would be nearly impossibie

and coiteinly imrraciical because of various satellite configurations and attitudes.
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Sl prudiaGie thine of ceseivaiiain s required in defermining the direction of
foe s o the caitn's center. The time of eitier the pre=~ or post=calibration is suf-

ficient. ! soth are avaliable the mean of the two may be taken as the time of observation.

AL Ol lusodd Dotlection

Compute the divection cosines (incrrial} of the sun for time of observation, given

cight ascansion (), deciination (8) and time.

A = oL o cos b
(M u

v = sin &,

= 5in v CO5 O

™ b |
)\;} cer § sin &, 0 A
(2 tu, ' cos 8, win B, O u
y;J 0 O ] v |
where

(3) 65 = 9(,0

oot \
LAY,

night ascension of Greenwich tor year of interest
rotation rate of carth in radians/day

ty = timc in days and decimal days from January 0, -

V. = Addu, itk

be the dircorion vecter from the carth's center to the sun. Assume V, is parailel to the

veetor fram the satelitte fo the sun. ‘
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Compute Y, L, wy gy from e, & tasatellite and let

/ ‘ - M B i
(%) \1“.: SONGLTH PR

be the ith direction vecror from station i to the satellite.
The dot product of (tV,) aid (=V,) yiclds the intersection angle at the satellite

-1
(O) ‘ngj s €O ((fvl) (-Vg { 5\) e

The distance d,, normal to V,; from the satellire center is inversely proportional

to the percentage of the illuminated surface viewed by camera iv Solve for d, ,:

d,, - d,
(7) — = 1 -~ My d'l.) = ‘J-...
ry 7 5in Ny

where 1, is the satellite radivs ond d, ; has the same direction as =V, . The correction

vactor le ; is
(E) Vlu = d;:)\s_i_"' d;;“-if d;ﬂ-’-_‘i
The magnitude ¢f vau is:

b

3

(9 R, o= |0 =XD7 (Y (2028
Then T/p is:

(0} Voy = Ryl ARy P4 Rygwgk

The vecior V, from station i te the ith saisllite center is:

(1) V., =V, +V
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Compoic ihe i, 1, and & components of Vy,

i - 1y
G L S, = iy I
] ) I' { | '\R”
A J
\b 1/ V"’ UH/
(?3) vV o= (S;“" S;‘:‘.j-f-bau)l .

The new direciion cosines corrected to the center of the satellite are:

/3y, _/5113\
(14)(,, L I
i

Y

V \ Ly !
!

i “// \S(q }//

Replace A,., ;0 v,, in Appendix B with (Y4) and convert to new & 5 .

the triangulation except the residual computations.

2. Smacutar Reflectiin

The only difference from the correction in (A) is the computation of di,. Since
we awume a truly spherical satellite, the basic laws of reflectivity hold (the angle of

fection cquals the angle of incidence). The solution of dj, becomes a simple relation

of the lavw of sines and cosines.

Coumputes
Oy dly, = orosinrgsin(m - 2eg,)
Wheic
L, = 77“/2.
~59-
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CPFQUIIVER Range Diflerence Compuiation

See Seaiton 3.0 of irart | for a detailed analysis of the GEQCEIVER range

difference reductions and the formation of the basic errar model.
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[POL#0 j
—-——/—-——_» Polar Motion w :
o
LiF/0 |7 Parallactic
—_' ._.___; Refraction N
ICORZ0 uTC-UTI
IRESH
o7 - Residuals
IPHS; i
HS#0 Phase Angle %
S
| | Read, ITPE,IPOL, i 154070 SAQ-UTI g ]
' | IREF,iCOR, IRES, NN § i
| IPHS,15A0 5 o
No .
;
) ITPE =2 Range Residual 1
Only }
]
i
]
[TPE=3

GEOCEIVER ]

; AN
: A

: Pre-Precessor Program %
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Caileal obuervations are convertod frem right ascension and declination to plate

Cuvielieees (K, Y. Fiast convert right ascension and declination to azimuth (A ) and

veveeiod )y Asume the middle observation (azimuth and elevation) to be the

v ol e peineipal axis of the camera., The external orientation elements

{0,y vocome:
- A, w=E, andlet x=0.

For “he ith station end time F, compute the focal hour angle of the jth observation.

-r

b

55 P 1L00273791 b, - A - o
Wiiaro

.= Creeawich hour angle at +=0 (apparent)
.7 ossarving ime {universal) in angular measurement from Greenwich (radians)
A= longiiude of station (West)

& oFrigit ascension of ebservation

o= darifude of station

‘; I-I U [\I

$in £ = sin 7 sin 8+ cos B cos & cos (t)

S
cor = = {1 =sia E)®

sin A= =cos &sin (+,)/cos E

ces A= Gin &= 5in psin E)fcos & cos E)

-1

AL tan (a Afeos A)

- X - . g -
£, = dan  (sin E/cos F)

=45~
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use midpoint A,, £, 1o compute the local orientation matrix .

o g

\ -cos & sin & 0
! ! = ‘—-sm VSIN W =COS ¥ Sin (9 COsm

/y \sm frCOs (0GOS M COs (¢ sin W

<rltiabi stk S T o

o> P> 2>
m> Gr> o>
Ty )y N>

S el g 3
TN

3

1 / sin A cos E

v ,l 1
m = cosA cos b i

D
n/, sink 3 o

|
0

an¢

\
-
w3
)
2.

_

A B C'|| m .
D E F \n/ 1 ;
E the plate coordinates for the |th point are:
+ :i ~ — j
x, = <:u5/wJ |
: Yy = evy/wy 3 i
%
. Let (Q_,ﬂ\ln), (>“<b,§,b) denote the coordinates of the first and last points on the trace. Let ]
: . i
% denote the angle between the line joining these two points and the X axis. Then ,
: compute: .
" ; - — ~ -~ ’ 7 ‘
. sin = ~(y, =Y, )/1,, oo
&
cosx = (xb -xu)/rub :
1
e ~A v A oan S
rl'b = L(Xb _xu)u +(>‘l‘0 -Ya)’] :
L The new x, ¥y coordinates are: H
| i
:%.
~66m ,,%
#{
i
!




J——y

|

!—x—! l—~cos X sin x-! ;2-]

= ‘ ®
l_y [sin o cos uJ QJJ S

The rotation of the local orientation into the master frame is accomplished by:

1A B8 C ~cos ¥ sin x 0 A lg C 0 1 0 cosA =sinA O
A B' C'| = sinx cosn O ;\' B &' ~sin¢ 0 cos¢||sinA cosX O
D E F 0 0 1 15 é E cos¢p O sing 0 0 1

The coordinates x,, ¥, and the master orientation matrix serve as input to the main program.
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At

Py, q,compute (subscripts j are omitted in following):

(M

Interstation Constraints

Incorporation of Special Interstation Constraints

From the latest approximations to the coordinates of the |th specified station pair

}

DXy = ()% = )0

I

Aqu (Yg)oo - (YC)DO

qQ

1

AZ, = (Z)% - (Z)°°

]

28

(A%, (Y, + (82,7 12

= LX)+ (AY P T

_,
]

¢ AT o 00 00 = . i A0
sin AR = AY,/r¥, ALl =arcsin GinA2Q)

sin Eoy = AZ/R5e, Ene =arc sin (sin Enq)

00

A‘PQ= éXN/RN
_ 00
Bpg™ AYW/RPQ

U = AZ/RE.

b B Rk s o

1 Compute: :;; .
g 3 i
| i
e ‘n
; 5
i |
; =
4 55 i
; e =
1 . PR
-} :
! N i
f £
1 = AR ARt C = S/ P m& N 1
; {
' 1
; i
l: _-
k£




. T — T ———— = T

()

o 1 8AY N cos A - 1o 3. 1 (agsinEg)
Moo, X, Oh,  m Mo, 09X, iy Moo
1 A% 1 sinA% ) 3¢ 1 (yqsinEpd)
Q = = e L= = o
13 Tn Y, Sh 12 Ce, O, e [
1 . 0 X 1 g 1 (1 =yysinEny
a — cewmmmn  Eer—r—— - ==
13 cAm aZP B O‘E“ azp O'qu '-P‘
00
1 RS X
[4 - -
oo, X, Taye
00
1T RE
€ < = Hpq
Ory 3Ys Orpe
1R
[+ = ;= v .
" Crp azn Triq ¥

When a prespecified linear constraint is to be imposed on the coordinates of stations

p and q compute:

O U2 =y 060+ ara YD +anlZ5°+ BLOXE)™+ BalY 48,250

g 1 3U®

P -——— a
11 P axg o 1
p _lau® 1 o
13 U---g?i' -]

1
¢ 325 o

4 1 auee g
Ll
d =:-I— ?_Ll.g__l
e o
d =1.auoo ]_
¥ az§

L)

Y i s i




In terms of the above set up:

Qy Gy @iy vay oy —a;5 | Azimuth Constraint

@ U = byy by by =byy =byg -bya | Elevation Constraint

€1 Cim €3 =€y =G =¢;3 | Distance Constraint

__du dys dig =dyy =dig =dys | Linear Constraint

8 0 0 (0
Let ,‘XM,EM,R‘,‘;,UM denote the measured vaiuves and let Ta, » T¢, . T, 00"

be the corresponding standard deviations. Then set up the discrepancy vector:

0 A0 7]

(A = AM)/UAN
W .0

(Epq - qu)/c'qu
o 0

(an = qu)/o'ﬂ,q

L(U?: = Uiq)/cupq_

If a particular type of constraint is not to be exercised between points p and q, the rows
of U, and ¢,, corresponding to that constraint should be set equal to zero. Thus if a
distance constraint were to be rows of U, and ¢,, would consist of zero elements. In
ferms of qu and €,q COMpUte:

s.. =Ul U c..=U"

vq) ps “pas  Cpq pa €pq *
(8 xe

Partition S, and ¢, as follows:

f—-. . = [ . =
Sy Spe ]
(a,8) (a,a) (2,1)
(5) Sp= 2T ’ 7 cpq= . *
h Sk S S
(3,3) (a,a) (3, 1)
L— J b vl
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(6)  Merge S, and ¢,q into the proper position of the network normal equation, S

and ¢, respectively.

(7)  Continue as above until all interstation constraints have thus been processed.
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Preliminary Geocciver Computations

The raw Geoceiver cycle counts AN, are first converted to range differences

between the satellite over the time interval t,.,to t,. If &
fo = transmitted frequency R
f, = Geoceiver reference frequency %;Z;
t, = time of {th cycle count '3
1
s, = slant range between Geoceiver and satellite 13
¢ = velocity of light v
then h
where §
N = o/f

and D, is the cycle count corrected for ionospheric refraction. D, is given by:

D,= AN,-KAAN,

: where

1

' AAN, = refractive cycle count

' § K = 9 for 162-324mc reception

| F K = 9 1/6 for 150-400mc reception.

The ranga differences are converted to relative ranges by:

ry = Osy +Asy +... + b,y

where

r, = change in range from time t =1, to time t =t .

3

The quantities t,,r, constitute the input to the main program. When any particular
AN, is equal to zero, this means that phase lock was lost during the jth counting interval

and it becomes necessary in the main program to reinitialize zero set at time ty.

e
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13, aesTRract The rrogram SAGA exploits short arc orbital constraints in effecting the
adjustment of observations made by geodetic tracking nets embhracing both optical
svstems (e, g., PC-100C, MOTS) and electronic ranging systems (lLasers, Secor,
Geoceiver, etc). Foovisions are made {or consiueration oL

a) random errors in the observations and in the timing of observations;

b) serially correlated errors in observations;

c) errors in the adopted location of the center of mass;

d) systematic errors governed by error models having coefficients subject to a prior
constraints,

The overall tracking net can include an indefinitely large number of stations (many
hundreds) as long as no more than fifteen participate successfully in the observations
of any pass, All orbital state vectors are treated as unknown and no limits are set on
the number of state vectors that can be solved for simultaneously. Allowances are
made in optical error modelling for reinitialization of error coefficients that becomes
necessary when any station exposes more than one plate on a given pass, In the case
of electronic tracking, up to three dropouts in tracking can be accommodated for each]
station on each pass with appropriate reinitialization of error coefficients, A maxi-
murmn of over 250 error coefficients can be exercised in the reduction of each pass,
This becomes computationally feasible by virtue of algorithms providing the solution
to problems in what is termed second order partitioned regression,
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