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ABSTRACT

A mathematical model is devloped for the Class V Flextensional

Underwater Acoustic Transducer Shell.
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INTRODUCTION

The flextensional imderwater acoustic transducer concept is pres-

ently undergoing extensive analytical evaluations. In general, the

various flextensional designs can be placed in one of five different

clarses [1]. This report describes an analytical model developed for

the Class V fiextensional underwater acoustic transducershell. A picture of

this concept 's shown in Figure 1 and a detailed sketch of a typical

design is given in Figure 2.

Flextensional transducer designs of the general type shown in Figure

1 was originally proposed as having possible applications as a soro. -cy

transducer. As shown in Figure 2 this type of design consists of two

shallow spherical shells bonded at a boundary and a thin piezoelectric

disk Joined at this boundary by utilizing an epoxy cement. The piezo-

electric disk is isolated electrically from the two shells by removing

the silver electrodes beyond the region of contact between the shells

and the ceramic disk. Sufficient epoxy is applied so as to firmly at-

tach the disk to the inside shell boundary. Two small holes are drilled

through the shells and serve as entrance for the electrical leads to the

electrodes plateu onto the ceramic disk.

Although this class of flextensional designs is designed prim•ri:

to be used as a sonobuoy transducer there are special environments where

this type of transducer could be used mainly as a source of acoustic

energy. In this instance an additional clumping load would have to be

applied around the boundary.

If the Class V type of flextensional design is to function satis-

factory as a sensor then the flat portion of the response curve needs

to be as broad as possible. Associated with most attmpts to increase



FIG. 1. PICTURE OF FLEXTENSIONAL SHALLOW SHELL SONOBUOY
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the sensitivity of the shallow shell concept is a reduction in the sys-

teas fundamental resonant frequency. Of course, a reduction in the

fundamental resonant frequency reduces the usable frequency range of

the concept. An empirical equation has been derived that effectively

predicts the sensitivity of this concept belov the fundamental resonant

frequency.

If the total performance capacity for this type of transducer design

is to be fully realized then it is necessary that a detailed mathematical

model be developed. The purpose for this report is to present an anal-

ytical model that can predict the dynamic characteristics for this type

of sonobuoy shell design. Of course once a dynamic model of the shell

exists, then conbining such a model vith the solution developed for a

thin piezoelectric disk vith rn arbitrary impendance on the boundary 13]

will result in a math model for the coplete system in air. If in ad-

dition the external acoustic loads are determined by utilizing a numeri-

cal technique such as has been developed by Hess 14], then a counlete

math model ,ii1 exist.

The math model descrWibe by the main body of' this rtport assumes

that the edges of tht shells are horizontally guided-pinned. In at-

tempting to let"Mrt0e an empirical equation that vwjuld consistently predict

the receiving sensitivity of the shallow shell concept considerable dif-

ficulty was encountered. One reason for this difficulty was the inability

to establish the degree of clamping between the surrounding shells and

the ceramic disk. Possible :taues of this vanwt.ion are the size of the

shell-ceramic contact area, the variation in the stiffness of the bond

Joint vhich holds the ceramic e -A the tvo shells together and the
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variation in the thermal expansions between the shells and piezoelectric

disk during the curing stage. It has been initially assumed that the

bond joint acts more as a pinned boundary than as a clamped one. Also

from a practical standpoint it has been necessary to taper the edges

of the shell as is shown in Figure 2.
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STRAIN ENERGY IN A SPHERE

Static Potential Energy of a Sphere

Using the results obtained by Langhaar (5) , one can specialize them

to obtain the strain energy of a sphere or spherical section. Noting

Fig. 3 which is the same as McDonald's [ 6 1 , one can write the parametric

eqs. of a sphere. These are

-1U6 =

' (1)

and Lj =
In eqs. ki), the parameters are choosen

Xýand (=a 112)

and the radius of the sphere has been denoted as "a". Using Langhaar's

approach along with (2) above, one finds

and from (1)

a .- zlý

so that

Likewise, one finds

where
X Q-.. 

,



Fiouw* 3

Coordinate $,yStes
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so that

Now, neglecting the quadratic terms, and the terms (E - 2a2/E)x

w and ( 2- 2g2/) w one obtains

and

+ -.-- - Q Q

r=kii+I



By looking at (6) and (7) it is seen that e g are needed so that

specializing his ellipsoid of revolution's results (aub), one obtains

Va.3
hence

_ • -I/a

On using (3) and (5) equations (8) and (9) become

(10)

and
. -- -

12



Ielce using (3), (5, and (11) in (6) gives

1 % = e-t "Lk- ) (12a)

Likewise (7) gives

(12b)

Eqs. (12a) and (i2b) agree with (21) and (22) obtained by Langhaar [51

on pg. 187.

Therefore the energy due to stretching

for a sphere is as follows:

+ ~ ~I~ -I 
6

It should be noted that (13) agrees with eq. (2.1.1) of McDonald's (6
paper. (McDonald uses u, v, and Z meaning u, v, w).

The bending energy , V2 , can be similarily obtained, A&

13



Eqs. (14, is also seen to agree with McDonald's [6 ] eqs. (2.1.2).

The potential energy off the external forces, R, denoted in Fig. 1 by

, readily give

0 0(15)

9 -i Ei) 6 (14)

Exact Solution In Circumferential Direction

The following middle surface displacement fields are assumed:

a hnd ( ,

of th sysem1i



These expressions can then be substituted into equations (13) and (i4).

To use (17)in (13 and (14), one should note the derviatives with respect

to e,O of (17). To differentiate the series in (17) one assumes all the

necessary conditions as noted in Widder's [7 ] Advanced Calculus, pg. 305,

extended to two variables.

Hence, c

,.. S-. .

Ce Y\

i0

and 1~

where

Consider the first term of (13) and using ( 7)and (18),

15



Taking the integral w. r. t. 0 inside the sign and utilizing

orthogonality gives

S(19)

Similarily one can work with the remaining term of equation (13).

Therefore the strain energy due to membrane becomes
6 cc

I- -0 "•"•L.*Z,- ,, +

~ (20)

Similarly the strain energy due to bending is

dOWN

Consider the following substitutions for the load terms:

'1 : ( &a ,. , j;(22 )

e. ~a(~) Q



where Sm = Fourier coefficient depending on the circumferential dis-

tribution of the load. Using (17)Mand (23)gives using orthogonality

-ITi 0d*'.I LA - - A

S rO 0j 1 (23)

Physical Interpretation of Assumed Displacements and Loads

Consider the case m-=O of eqs. ( ) and (23). For '17)

v~& )b = L

From (24ý the displacements are independent of * and are thus rotionally

symmetrical about the axis of revolution. In this case the displacement

of any point is the same as every other point on the same latitude.

Thus one can show a w-displacement on a cross-section of the spherical

cap to be something similar to Fig. - which could be rotated about z to

give the shell configuration.

Likewise, the load, (!3) reduces to

:0 (25o)

and :
%here ife) tote) are forces per unit area. Hence fr= (11' in the

case of rotational symmetry, there is zero load in the y-direction. And

in a cross-section view which again could be rotated about z, one notes

that the loading is similar to that shown in Fig. 5 .

One can next observe the mal term and its effect on displacements.

Eq. (i!) gives

17



Figure 4 Typical w-displacement for cross-section undergoing

rotationally symmetrical vibrations

Figure 5 Cross-secticn v:ew cfT external loads for rotationally



-Lk. 9.4 L )Q v- ~ ) • ,(
•.-V - -Q .(26)

Thus if one assumes some el, where 0<0,4, to be the latitude to be

observed, and observing only the v-displacement, then the v-displacement

as a function of 0 on the 8.e1 latitude is as shown in Fig.6.

It should also be noted that eqs. (26) relates the stretching type of

motion in some manner. Thus when u and v are taking on their maximum

and minimum values, the v-displacements (circumferential) is zero;

however, v is maximum when u and v are zero so as to allo-w u and v

to take on their maximum and minimum values by stretching at this point.

One can likewise carry on this analysis and look at other values of

m, however, it is felt that a good physical grasp should have already

been obtained.

19



Figure 6

'YPical vw-displacement for minl and some a



APPROXIMATIONS FOR THE DERIVATIVES IDI THE BOUNDARY SEGMENTS

The crown point of the dome, the point of zero meridian (co-latitude),

is considered a boundary. Hence a statement must be made about the dis-

placement at this node.

Two cases are distinguished. The first is that in vhch the vi-

brations are rotarionally symfetrical about the axis of revolution. In

this case the displaroement of any point is the same as ever-, other point

on the same meridian. This case arises when m w 0. Therefore, the only

possible motion at the crown is one in which the crown node is displaced

in a radial direction only, with no accompanying tangential movement, and

the slope remains zero. This is expressed mathematically as

Z
and,* (27)

McDonald [ 61 chooses to 'use the finite difference expression for

the first derivat4ve having an order of error of h2 vhile the second

deritiv-ee expression Is the one vwth an order of error of h. Since

he starts at 9 a 0 sod proceeds positive along the spents then the

fox-rard dl fference is thus the one used. Hence for the ocimral 4&.-

placment, he flbar-t and second derivatives are



= - ) •(28)

and
H

) (29)

vhere h a 2M8 * 2/a. Hence usinr the B. C. given by (27')ln connection

vith (28?and (29),

LA. I a 0 (30)0

so that -. L -4)

o I (31)

V I I

0 1- a

Aals* since v.1 0,

I ) (32)

so that

ata

0 a&0



In the second case, since the displacements are in general a function of

,the lor.gitudiral arngle, then they must be zero at the crown or the

displacement at the crown would be di fferent for each value of ;. Hence

•-o'- v~o' :- - L-,- O )/-

so that eqs. (2) and (3) become

and (35)

The boundary conditions at the lower edge, e, depend on the type of

support. In the case of the clamped-edge dome studied by McDonald [6 1,

the 3 displacement components and the derivative of the radial displace-

ment must vanish, i.e.

(36)
andC



Using the same order of errors as in the crown boundary condition,

the backward finite difference expressions are

%' +

(37)

tv I- +N% - N-S a

hence

U-1-

(38)

•H AJ- A-j

Also

so that

6(39)

'4



One possible boundary condition for our problem is that of a radial

guided boundary with the pinned condition(there might be some torsional

spring like effect but for now it is neglected). This arises from the

physical fact that two of the srherical caps are placed back-to-back so

that it is assum.ed that motion in one is the same as motion in the other.

The B. C. is shown more clearly in Figure 7 which denotes a cross-section.

Thus from the physical problem, the case of rotational symmetry is the only

one of interest, hence it is assumed that m = 0. In this case the boundary

conditions on the lower edge are

moment at ( -& , (LO)

and

displacement in z-direction * (41)

There is no boundary condition on v because v(6, €) = 0.

The B. C. given by (40 ý will be discussed later on; when ex-

pressions for moments are written; howeve', the B. C. given by (41) can be

considered here.

With respect to Figure 8

displacement in z-direction - 1 C -- L .

(142)

and

displacement parallel to xy plane I+
(143)

25



Figure 7

Cross-section view of guided-pinned boundary condition

Figure 8

Displacemerts at guided-pinned edge

26



Using (4h.) with (42) results in one mathematical boundary condition,

N N (44)

or

U)X N o cr asLA (45)

Another possible boundary condition is that of the radially guided

clamped end. This condition requires that

displacement in z--direction I

and

(46)

The first condition again gives rise to either (44) or (45). The second

condition by use of (37) gives

"L z .*_-V'J -A- 1 (47)
N 3 N-I N-a

Physically, the boundary condition is somewhere between the clamped

and pinned cases of the guided ends; however, how much between is unknown

since the exact effects of the epoxy in terms of an equivalent torsional

spring effect is unknown.

27



STRESS RESULTANTS

The stress resultants and hence the stresses in the shell can be

determined from the displacements. This is done by the fact that dis-

placements in the shell are known and have been shown to Le linear in z.

From displacements one can determine strains, and then by use of Hook's

law for an isotropic media, one can determine stresses as a function of

displacement. The stress resultants are then found by integrating the

stresses across the thickness. McDonald [ 6 1, who references Vlasov 8 ],

gives the following eqs. for the stress resultants:

~Q

(48) e

where n!=omient rer unit length acting in the plane of a latitude, i.e.

in the direction e-direction,

N =moment per unit length acting in V -direction,

e =mid-plane force per unit length acting in e-pirection,

N,=mid-plane force per unit length acting in O-direction,

B Eh 3  a Eh= .. . ,, and K=- .•
!2(l-v")a~l-v,

"The positive direction of the stress resultants is shown in Fig. 9.

!low substit,"t.on of displacements in their assumed series form,

eqs. (17) intc (48), gives



Figure 9

Sign convention of stress resultants
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I1
N\o

+ 4 L) Ar _)

+ I.K C~t D~ C-d (49)

S4y

'-or a spherical cap experiencing symmetry deformation, one considers on

the m=O term so that from (L9)N\-• .. 6= C)-r -1)-,Ar Coot

N\ i )+ uj'(e)C..er- E] ) (50)

anN LJ + L iA(4bte

where C) a-K

caýd -%7

7h, stress tro:, e I4me ai:,t Lar. be vr.'ter. Iro= -S)vhil]e

notit4 ez;s. , the •n-ary o zn, at the dcre. %o that

De- 0 elz 0 IA1



ri

(52)

Using the finite diff'erences apprcximutions and boundary conditions,

eqs. (51) and (52) become

(N o.. . =K{( - L )"C(f" ,)t.r6=D40k ol (53)
)CN ....

(N '). - =. K LAr00 4-AY'

& ~ ~~ 8 ., -u r I - -U ,

and (.tut I+

For an interior mcint, the stress resultants on the kth segment are

given by (4 8)tnd .o be

=

}ki

(C)

U ri



+~+

and (N -zKj C, ~ )LA.,k.1~ 4X

N ow foi- the !,cwer edge ',c;..rdaary c~rA.ti'.t the fcllow.,ng finite

differen~ce apprcx±mutij~rs are ut.iiized,

% N Di(57)
aznd ot5 - 1 DI - '" bN%

This procedz.e yieiis "rl .e fz.wn set of equatiorns:

NN

N-1~

iA~J i(5e)

(N IL 'r L



DEVELOPMEINT OF THE EQUATIONS OF MOTION

Energy Expressions for a General Interior Point

Lagrange's equation may be written as

~;L ~ ,,,(60)

where L = T - V is the Lagrangian equal to the difference between the

kinite and potential energy and qjdenotes one of the generalized co-

ordinates ql, q 2 . . . . . . . qw Hence for a stationary system, T=O and V=V

(q."''. q,,,x,y,z) so that r(() 'educes to

D \,/- 0(61)

-denotes q, . or (N÷I) quantities and q is the general

displacement denoting u,v and ,-u or 3(N+1) Uisplacements in general. The

potential energy denoted in (.dI)is the total potential energy, and thus

is the sum of the potential energy of each segment of the dome. Thus,

S(62)

Noting the types of segments formed in Figure 3 one can write (5) as
N

V ' (63)

The potential -nergy it each segment is formed by integrating eqs. (20),

(2i), and (:3) for the interval of each segment and using the appropriate

difference approximations for the derivatives as outlined.

Since we are interested in rotational symmetry only, then one can

simplify the above equations. Hence considering only m-0 and V=0, then

33



ITI 1--J + r1  + c~C

+ - JU1I ~CLA., q.WN%'A-. D hV.* 0)

(64)

t CK ask~ . d w ~ V 4

*' e r. s L65

':-9 w tn t .c e poilrtt and wcrkiijq t,:%ard the second boundary,

~~ana zentra d .: Veren..-e !ip~rcximations of O(h) vi be utilized,

I~r ._. _6

A G

~+ IA -



in (68)there are three types of integrals. They are defined as the following:

(69)

and -

Evaluating the Integrals of (69) yields

and :. , l t

Using (70) ,n connection with (68),one can thus obtain the membrane

energy in the jth segment to be

- L r-,...r .
+ ~ +

1A , 1) U-) (7

In a similar manner the bending energy for the Jth segment was determined

and is as follows:

35



+H1A,,•~,, + 1AJ. ldr ,
-tJt

(72)

Otserve that the membrane and bending energy expressions give

the stiffness matrix coefficients while the external load energy gives

the mass matrix by use of D'Alembert's principle. Hence one can now obtain

the stiffness matrix coefficients of all points, except the 8 edge points

and those next to them, by use .f eqs. (T1), and (72).

Now apply D'Alembert's principle to obtain the equations of motion.

Since by D'Aiembert's principle

-(73)

and assu•ming steady state conditions,

gives ý-

Jan A) (74)

Substitution of (74) into (15) gives for rotationally symmetrical vibrations,

0 (75)
36



Now substitution of u=uejwt, etc. into the membrane and bending energies

drops the ejwt from all expressions. Hence (75) can be written now for

the jth segment as

7(76)

37



Energy Expressions for the Dome Point

One can observe that the two equations of motion for the dome point

can be found by evaluating

t - D(77)
0

and -
V 0 (78)

First, one considers eq. (78) where the only energies containing u0

are (V,) + (Q) so that

~LV~)±~O (8o0)

In equation (78) observe that

Therefore substitution of (81) into (78) yields the remaining eqs. of

motion for the dome point given by

2V~ f~1J)~D+~& =D (82)

The boundary conditions to be utilized at the dome point are as follows:
U.(.o) =-v,- 0. ) = 0

and r (83)

McDonald [ 6] adds to this set the following boundary condition,

Ec) 0.vr 1 , -OtýI"ý/ ) D(4

This is adopted in order to obtain a finite solution at the pole.

38



Now rewrite the membrane energy of the dome point segment for the in-

terval 0<6<l/a so that

L~ 
I A, AWUr ý~r~] j-J&~ (55

Using the boundary condition for rotationally symmetric vibratior.s, i.e.

uo=O, one obtains the membrane energy for the dome segment in this problem

to be

C.• ,5• o = '-"" l d1

Likewise for the bending energy,

In a similar manner the inertial energy for the dome point re.-ults to

V- - T_ k_ LA.

(88)
EqLuation of Motion for the Dome Point

To find the eqs. of motion of the dome point w.r.t. w0 , one uses

(82). To do this the expression for (Ue)j=1 is needed. To obtain(U 2)Jl,

it is now possible to nmake use of the general energy expressions for a jth

segment and specialize it for the J=l point. Before doing this, it seems

best to note now that a meridian line is one starting

at the dome point and with increasing e arrives at ;, while a longitude is

for constant 0 and varying •. In Fig. (10) one notes that

39



see. Sd44wi

6D: J

/,

Figure 10

Cross-section view showing segment divisions and their nodes

4 1



•a.- , /<><,(89)

Thus using e 1 ,2/a, one obtains

Ia1
m /~1 - I I

e- rrk-3 ••"'"•+ 0 •• +5 I •• VX'• CA'• /IO,

(90)

Hence w the eq.of motion of the dome point is as follows:

0 
A

++ O-aE C.

+- i, C-0 0 ,)-C•-) - )- (91)

The final stiffness ceifficients are defined similar to McDonald's [9)

i.e., S k ere refer to the displacement component by vhich the coefficient

Is multiplied and k designates the particular eqs. from vhich the coefficient

comes. Hence (9.) can be written to

~41



where -~TTr~1 1
"•o I-

J (92)

a1 T 1

.......... .0,,f

an~d

Equation of Motion for Jul Point

The eqs. of motion for the point next to the dome point vill nov be

obtained since the eqs. v.r.t. the ul and v1 displacements cannot be

obtained from a general expressed. This is due to the fact that the

energy expressions for J7O contain uI and v1.

The eqs. v.r.t. u gill be considered tirst. ,'he e*-ergy vhich is a

function of u1 is

42



so that the eqs. of motion is given by

Substitution of U J-091 and Cj=l into equation (94) and evaluating

the partial derivatives yields,

IA-~i II) 0'

where

(95)

and

Equation ( ) is the u1 eq . of motion of the point Jul.

To obtain the 2nd eq. of motion for the point Jul, one obtains the

energy expressions which are functions of w1 . Hence

"i' Vr
(96)

L3



so that

t =D *-r, (97)

In a similar manner the equation of motion of the Jul point with respect

to w1 was determined to be,

where

--t Z)) 4-ýA.- - ý4,')o

7- v

4,-

(98

~...

la .I (I Uk Y>W 4 a/,A -Y01

"~~ Vl--% r . -• .



4And %&

s1 r% 4



Equations of Motion for J-2 Point

Nuw to obtain the v2 eq. of motion, one forms the energies containing

the factor w .2 Therefore,

yr>LV~a+ U k) 6t1 -z ID +~Ž
+ CU ) 'a _3 1 (99)

Thus the w. eqs. of motiorn is given by

Again substituting for the various energy expressions yields the (1 "

foilowing w 2 eq, of motion for the J=2 point.

_A +J.t a S a I)A )O+

.-t



77k 36

+ _A 6

+ ~ %3- q~± A4x

and Z7 :R2 77To K U ) I~,A

It shouli te noted that :he o2 eqaation of moti-n can le obtained from

the general interior eq-a.,icns ginec- t is not affected by the boundary puint.

Eouatlcns of "Ztiol. fcr the General =k interlor i½n's

Now the eqs. of mo,-ion for a general interior coi::t are needed. These will

be obtained by considering the partial derivatives

and

For(102' the energies ccrntaininw the factor uk are the only ones of interest;

hence,

47



-.us ousi-,tn Ye -'

The erner~ie.3 ~ -:: tef~c w. are a-z *_OLOWS:

(106)

cn._ý tre Feera_' of cnction -for the '=k 7point,

gie~~i~frei j. ~ ~ Gbare su'tstituted Thto eaaution~

"...... y e'. s .e q n mc.Ie -k -cint fs fdows:

where kI C =W. /j

L. Tr z;
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Energy Expression for the Lower Edge Half-Segment

The energy expressions for the J=N half-segment are

-ý=INK 
N (n

and

Fbr the lower edgethe finite difference approximations to be used are

and (112)

%•" • %..,6-%N-+ $N-, "
Substituting the finite difference approximations and evaluating yields,

P".
+ LLt a( I ))Ur 113
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4,- (-T.-IN+

a+1IfNN4 l

s.~ard'~J~r *.he energies cf the lover edge half-segment before

ti.e 'Lo,ý;nary 2:ý_ditiorns are applied. The integrals ir.(ll1)Xnd(1l4)canr be

e~'1'iae~as was dcrne previously. Evaluating the integrals yields the following

entergy exj7'essics

cu Iis Z)" a le)I N '4ý [.ý N_ LL ý-NitU'4.'

C8 ýC ý ~l

N [0 
-Ucc- at .

(iE

(V) Z. -4Ur 14N +2 Ir,+, TN.+ A -52t



N ~N N-1

Up to this point, all work or the (j=N) lower edge half-segment has

been general and can be used for any edge condition. In order to obtain the

eqs. of motion for a particular b. c., one must, now specialize (115) and

(ll)by use of the appropriate boundary condition.

The inertial energy term for the j=N point is now

(JC~~ - ny ý' LC~LN~~I[(u

(117)

Equation of Motion for the J=N Point

The b. c. for the guided-pinned case are given by (40) and (iib) will

be used in eqs. (115)and (ii6)while (40) will be saved. Eqs. [].)) is

Z CN-% Z)ctb I .e (N-8)

Therefore, the bending energy for the pinned boundary edge half-segment

is given by equation (116) i.e.

N
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N-I ti

a

L7aN LLN

Now noting eq. 40o to be

N (120)1

and substituting into the energy expressions to obtain the *nergy of the lower

edge half-segm~ent with a guided-pinned boundary, the meiemraz* energy tecomess

[8=N L tIVW t~iL NQ+ + 4
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Using ( 0 ) in (1l7)gives o, a

OR-)~ U - rP 01 tx ( .6

To i (122)

To obtain the single eq. of motion for the lower edge node, one

considers only

There is only crne eq. of motion lor the N-node since WN + WN are not In-

dependent as shown ty ( 2). Thus, one finds

4 (124&)

Thus using L124) in (123) 'the eq. of motion for the lower edge node is

given by

N. N
N C,.= ,N •.

+ (125)

N

Substitution of. the varicus energies into (1L)yields the equation of

m.oticn for *he icwer edge node cf a guide--p-r.ned toundary as follows:

-N-i N N N N--a.)

+D
"N



where

_ L.A.. A

Lc}' C&V ,eV A",

+ c\tQ4\

to,~a 70 -Z
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EQuations of Motion for the J=N-1 Point

The eqs. of motion for the J=N-1 segment can be found from

(127)

and

V (128)

For (127) one notes that

and for (128j 
(129)

* ** (130)

Thus using (127) and (130) in (128)and(127) respectivelythe eqs. of

motion become

L.N-I '-

and 
(1311

NiNi N-I N-I
(132)

Substitution of the various energies yields the u._1 equation of motion

as follows:

(133)
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where

LA %N- - - • AN'• • -, • Y

C-) 04 + ;t 0a 7. JC-) , , , •.-
LI-U- .? h

SNN- 1 71- 0 VcN- N - C-o L.- -7 " " ' •' •"

ZAA) a,: -t)'.4

The WNI equation of motion is determined in a similar manner end is

given by equation (134)-

S " +, +w•. O-< +,,

N-i N-N-I

(134)

'44 ++ 0s (,,

where
N- i N-1 '

ad A- " G
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Equations of Motion for the J=N-2 Point

At first, it appears that the 2nd point off the boundary of the shell

would be a general point. However, as in the case of the dome point, this

is not true of the J=N-2 node. The eqs. of motion of the lower edge node

except for the coefficient SN N- since all coefficients except this oneexcpt or he oeficint N N-2'

check out as symmetric, are given by the general eqs. of motion, i.e. eqL.

(108). Thus the only eq. to be formulated in this section is

0 (135)

For (135) one can note that

+ N- -a, (136)

Thus using (13 6 )in (137)gives the equation of motion as

kAa+ 
--- 4& .+

¶1-I2ý (137)
Evaluation of the various coefficients defined yields,

N -r (A rA rJ -)

- -A •r(138)

where

-tA? tA. 7
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PROBLEM FORMULATION

Summary of Equations of Motion

Since all the required equations of motion have now been derived it is

possible to gather all the eqs. of motion for the guided-pinned spherical

cap for easier reference. They are as follows:

190: eq. of motion w.r.t. w (dome point):

(139)
J=l: eq. of motion w.r.t. Ul:

eqs. of motion w.r.t. wl: (1ho)

, t- I a azo -t" Lr€-aI

J=2: eq. of motion w.r.t. u 2(with k=2):V_ t._ ,_CSV- V ÷'V_ J.- CIA A- C

) (142)
eqs. of motion w.r.t. w2

(OSVJ) ( 6A r.(143)

k: (k = 3,4,...,.N-4, N-3):

eqs. of motion w.r.t. Uk

4 (144)

eqs. of motion w.r.t. wk:

=•,l•=g:(145)

eqs. of motion w.r.t. u1 -2 with kzN-2:
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eqs. of motion w.r.t. w1 -2

+ wN-2 4-.

eqs. of motion w.r.t, U 1 ..i:

(148)

eqs. of motion w.r. t. u A

(s--N- N " --z ' N- N- - N V-1 NiK -c ,8)
eqs.) of LotAo w-N- :L

"N-i N-'1 - -, (1489)

jfl(lower edge boundary node):

eqs. of motion w.r.t. w-

(SN- I - +() L4LA i'CZ - 4-ý' SN

Matrix gepresentat r on

It is evi~dent that most of .... • _t"f.. coefficients have a symmetric

property. Hence the eqs. of motion can te arranged in such an order that they

will have a symm~etric stiffness matrix. From .McDonald's paper [9] one

observes that there appears to be two methods of arrangement for the dis-

placement vector. They are for our case

tA,.

t4-t

+ L A,

N-1 VI\Ifl N N LAý N-Z

+ ( C.) "
Matrix Rpresentaion N N I L~a'4t P) 10



The first type looks the most promising since to obtain the second type

vector one would have to put the 3 eqs. of J-O and J=l in some symmetrical)

form and this seems to be impossible. Therefore, consider all the u eqs.

and then all the w equations. Hence, one obtains the following stiffness

matrix:
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The resulting mass matrix is a digonal matrix so that the notation

can be shortened as follows: mI U= m u = m , etc. The matrix can

be written as

tL-

k..

VYI

'I,
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T"herefore, the system of 2(N+1)-2 eqs. of motion can be written as

[ E[S]-[r )]I [G%] --&O (151)

14ow, one can group into dimensionless quantities and rearrange terms

in eqs.(. (1.)•b multiplying them by

so that the group coefficients of the energy expression are as follows:

(152)

.r3

Hence eqs. (12 CaL be written as

where [:J is nor. the stiffness matrix,

and 01~i) JJ (154)

where

Therefore the new mass matrix is of the form:

70
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Now define

Coef-)

Then

Coef 0(156)

Now the stiffness coefficients of the stiffness matrix from the eqs. of

motion will be redefined to coincide with eqs. (153) Thus the coefficients

are listed as follows: (157)

F I L - 4"

(160)

The coefficients of the u eqs. are given by the general expressions for k=2,3...,

N-3, N-2, so that

14, 7,) PA r:+, L-, I(K ,. X

72 0' (162)

4, (163)
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(i6,)
and for N-i and N

N-1 ly-I

(165)
tk. • ,, ___,

t--• V -- •j ,) o
IN-i N

S(167)

-N-i , --

(168)

NN . a,- J

+A Y (,-ce) k j- >'
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NN

(170)

~ ~ (172)

A.A, A .A m c rý A )(1 7 2 )
0 - ' 

Jý 4

* S



_ - , 'S ,AA AAA

+ .A @ , ]Y\J c,< (176)

(179)

+ ) c rA - '/k' + 1; (178)

and from general expressions where k=3, 4..., N-4IN-3

T5

i.



Ok (182)

L ~

(183)
and for N-2 and N-1,

A,ý s + '4 L-A N

+ A

- '~A t~-' '~((185)
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