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ABSTRACT 

Preliminary results of analyzing extremely low frequency (ELF) 

electromagnetic noise recorded in Florida and Malta are presented.    The 

results include wideband waveforms,   power density spectra,  amplitude 

probability distributions and probability distributions for the duration of the 

interval between noise bursts.    The distinctly non-Gaussian nature of the 

noise is demonstrated in a variety of ways. 
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PRELIMINARY ANALYSIS OF ELF NOISE 

I. INTRODUCTION 

Electromagnetic noise in the ELF frequency band (1 - 300 Hz) is 

primarily generated by lightning strokes propagating in the earth-ionosphere 

cavity.     The low attenuation rate that arises from this mode of propagation 

means that the noise level at a given location can be significantly affected by 

thunderstorms  (i.e. ,   lightning strokes) hundreds of miles away. 

In this report we, 

(1) present some preliminary results of the analysis of wide- 

band 0 to 300 Hz) ELF noise recorded by Lincoln Laboratory [ 1] in Florida 

during 1968; 

(2) discuss the approach toward noise analysis that has 

evolved to date. 

The distinctly non-Gaussian nature of the wideband noise process is 

clearly demonstrated.    The preliminary noise analysis is discussed in the 

context of developing a mathematical model for the noise process based on 

the first and second order statistics.    Finally we describe some results of 

analysis oriented toward developing a model that more explicitly takes into 

account the large spikes (due to lightning strokes) that characterize the 

wideband process.    The effort in this area has focused on obtaining a statisti- 

cal description of both the arrival times between spikes and the time duration 

of a given spike. 

II. DATA ANALYSIS 

In Fig.   2-1,  we indicate the overall structure of the noise pro- 

cessing at Lincoln Laboratory.    The raw noise data are recorded wideband 

(approximately 3 to 300 Hz) and put into digital form by use of an A/D con- 

verter;   all further processing takes place on the Lincoln Laboratory 360 

computer.    A first step is processing the wideband noise to yield noise 



amplitude distributions and spectra.    The recorded noise represents the 

result of passing the actual noise through an antenna,   recording system,   etc. 

Equalization is necessary to remove the effects of this processing.    Finally, 

we obtain the statistical characteristics for the equalized noise. 

Next,  we discuss some details of the methods used to obtain the various 

statistical characteristics of the data.    The computer program which obtains 

estimates of the spectral density of the noise process uses a form of the 

direct method known as the  "direct segment" method. [2, 3]    In the direct 

method of spectral analysis,   the data is transformed immediately in the 

frequency domain and then the spectrum is computed from the transformed data. 

The "direct segment" method obtains the spectra by the following steps: 

(1) for each sensor,  the sampled data values which are to be 

used in the estimation are divided into a number of smaller groups,   each 

representing a continuous  segment of the process. 

(2) the data in each segment for each sensor is transformed to 

the frequency domain and these transforms are then used to obtain an estimate 

of the spectrum for each sensor and the cross spectrum between selected 

pairs of sensors (these spectra and cross spectra estimates are called the 

modified periodogram and modified cross periodogram respectively). [3] 

(3) the stability of the spectra and cross spectra estimates is 

then increased by averaging over the spectra and cross spectra for various 

segments. 

The three criteria most frequently used to judge the merits of a spectra 

estimation procedure are: 

(1) the bias of the estimate 

(2) the variance of the estimate 

(3) the amount of computer time required to obtain the estimate. 

Capon,   et.  al[2]  have examined these issues in considerable detail and con- 

clude that the approach utilized here yields approximately the same bias and 



variance as other approaches,   in addition to requiring considerably less 

computer time.    Furthermore,  and perhaps most importantly for ELF noise 

spectra estimation,  the "direct segment" method allows us to test for and 

measure nonstationarity (i.e.,  a spectrum which is slowly changing with 

time) by examining differences between the spectral estimates for different 

segments. 

The method by which the data is transformed to the frequency domain 

deserves some discussion in so far as it reflects on the bias and the amount 

of computer time required.    The transform of the noise data  x.(t)  in the n 

segment;   j       sensor and frequency w,    is 

J? jmw, T 
X    (wk)   =     YJ      w(m)  x   [mT+(n-l)NT] eJ        k (II-1) 

m= 1 

where;   w(m) =  a weighting function used to reduce the bias due to spectral 

sidelobes.   [6] 

N = the number of sample values of x(t)  used per segment. 

x. [mT+(n-l)NT]   =  the value of x.(t)  at time  t =  mT + (n-l)NT 
j J 

T = the sampling interval. 

The  X.   (w, )  are computed for  w,   =  27Tk(-~) k =  0, 1, . . .N using the Fast 

Fourier Transform (FFT).    Typically  N is on the order of 1024-2048 

(corresponding to a data segment 1-2 seconds long).    The use of the FFT 

algorithm reduces the computation time by approximately 100 times over 

that used by previous investigations of EL.F noise. [4] 

The estimate of the spectral density at frequency  w for the j 

channel is taken to be: 

.th 

S (w) 1 
M        x 

MNT     U       Ü 
n= 1 

X.   (w) (II-2) 



where;   M = number of segments we average over 

N 
u = w i iw(m)]2- 

m= 1 

It can be shown that the estimate defined by II-2 is equivalent to computing 

the power at the output of a linear filter and dividing by the filter bandwidth. 

Thus our estimate of the density at frequency w  represents an average of the 

power at frequencies in the passband of the equivalent digital filter.    In 

Fig.   2-2 we show a plot of the frequency response of the filter defined by 

equation II-2 for the  w(m)  used here 

[w(m)   =    1  - 

N 
m~   2 which is known as a   1 -   |t |   window] . 

Bias in the estimate of S.(w)  is primarily caused by large spectral compo- 

nents at a side-lobe of the spectrum.    As can be seen from Fig.   2-2,  the 

nearest side lobe has a level of 26 dB down with the higher order side lobes 

over 55 dB down. 

Stability of the spectral estimates for ELF noise is somewhat difficult 

to establish a priori since the measurements to date of narrowband statistics 

were at wider bandwidths than those used here.    One can use tabulated results[ 5] 

for the variance of spectral estimates of a Gaussian process as a lower 

bound on the expected variations of the spectra.    The spectra considered in 

this report were obtained by averaging over 50 segments,  which yields a 

90$   confidence limit of ± 1 dB if the process were stationary and Gaussian. 

The particular amplitude probability distributions obtained for the ELF 

noise are: 

(1) the sample probability density function,   p' (x) 

(2) an estimate of the ensemble probability density function 



based on  p'(x)   (the method by which this estimate is obtained will be described 

in a separate report) 

(3)       the sample exceedance probability  P      (x). ex 

The functions   p^x)  and  P     (x)  are estimated as follows: ex 

p'(x)   =   —   [fraction of noise samples in range (x - —,  x+-j)] 

P     (x)   =   fraction of noise samples having values   ^ x. 

where  6    is typically .05 c      ((7     =   standard deviation of x). x        x 

The statistical properties of p^(x)  will be discussed thoroughly in the 

report mentioned above,   so we will confine our discussion of estimate bias 

and variance to  P     (x).    It can be shown that if the  N noise samples of the ex 
process used in obtaining   P     (x)  are statistically independent and all drawn ex 
from an ensemble whose ensemble,  i.e.,   "true" exceedance is   P     (x),  then exv 

E lPexWl   =   Pex<X> <n"3> 

and 

Var[Pex(x)]   =   (1) Pex(x) [ 1 - Pex(x)] 

A useful measure of the reliability of the estimate   P     (x)   is the ratio ex 

_   yVar[Pex(x)]      _     £ 

EI?exWl /^ 

rl  -  P     (x) 
R _ x ^—    =    v 

ex—    . (n-4) 
x) 

In general,  we would like  R < -j ,   so that we find for a given  N,  the smallest 

P     (x)  that we would expect to  "reliably" estimate is ex 

In practice,  the samples used are not statistically independent,  and 



there is no simple way to quantitatively estimate the effects of the lack of 

independence.    One indication of the degree of independence is the normalized 

auto-cor relation function 

M (T)   _   E[x(t)x(t + T)1 
V [T) Varfx(t)l t)] 

considered as a function of  T .    For the wideband (i. e. ,  2 - 300 Hz) noise 

analyzed to date,   it seems that <p (T)  goes to zero when   \T\   is of a duration 

corresponding to 3 - 5 samples.    This suggests that one probably should 

multiply  N in equation II-5 by an additional factor (e.g. ,   l/2 or  l/3 to take 

into account the statistical dependence between the samples. 

In Fig.   2-3 we show the raw power spectrum density for a wideband 

tape recorded in Florida in February 1968.    The spectral lines at multiples 

of 60 Hz presumably are due to power lines near the recording site.    The 

equalization process removes these lines and low-pass filters the data to 

approximately 2 50 Hz using a linear phase digital filter developed at Lincoln 

Laboratory.    (This filter will be described in a later report. ) 

Because of the difficulty of locating recording sites completely free of 

power-line radiation of the type shown in Fig.   2-3,  a subject of considerable 

interest is the amount of power-line components that can be tolerated.    In 

terms of the spectra of the ELF noise,  one can assume that the ELF noise 

spectra are reasonable smooth and thus can estimate the ELF spectra at the 

power-line frequencies by examination of the spectra adjacent to the power 

frequencies.    From the viewpoint of spectral analysis alone,  a power-line 

component as much as 50 dB above the nearby ELF density will not bias the 

spectrum significantly,  provided that a suitable spectral window is used. 

The next issue that arises is the effect on the APD of ELF noise of 

notch filtering and low-pass filtering.    A segment of data recorded in Florida 

in May 1968 had a 60-Hz component corresponding to a power 23 dB below 

the ELF noise power (the 60-Hz rms level was 0. 067 of the rms of the ELF 

noise) and no other noticeable power-line components.    The APD's before 



and after applying a filter with notches at 60 and 180 Hz and a passband from 

0 - 300 Hz were compared, and virtually no difference was found either in the 

behavior for small values of the input or in the behavior for large values of 

the input (i.e. ,  on the tails).    Hence,  we assume that the notch filtering and 

low-pass filtering do not significantly change the properties of the ELF 

noise process. 

Next, we consider the point at which the power-line component seems 

to significantly affect the APD. We find that this point lies somewhere bet- 

ween the two cases below: 

Total Power in Power-Line Power in Largest Power-Line 
Components (dB re ELF power     Component (dB re ELF power 
less power-line components less power-line components 

Little or 
no effect - 8.6 - 10. 0 

-1.1 -1.5 

Finally,  we consider how large the power-line content may be before 

usable data cannot be obtained by appropriate filtering.    Data recorded in 

New Hampshire in March 1968 had power-line components whose sum power 

was   14. 7 dB above the ELF noise power to 180 Hz (the most prominent 

power-line component had a power   13.7 dB above the ELF noise power).    The 

APD after filtering was qualitatively quite similar to the results of filtering 

Florida data (which had far smaller power-line components) to the same band- 

width and also qualitatively similar to the APD of Florida data before filter- 

ing.    Thus,  it appears that useful information can be obtained in cases where 

significant power-line components are present,  although we have not yet set 

an upper bound on allowable power-line levels. 



III.       NOISE WAVEFORMS 

In Fig.   3-1,  we show a sample of the wideband noise recorded in 

Florida during January 1968.    This particular sample corresponds to an 

absolute noise level at 50 Hz of -131 dB with respect to (wrt) 1 amp/meter/ 

y Hz; i. e. ,  a low level noise sample.    In Figs.   3-2 and 3-3,   we show samples 

of wideband noise recorded in Florida during high local thunderstorm activity- 

period in June and July.    The June sample corresponds to an absolute noise 

level of -111 dB wrt lA/m/^Hz; i. e. ,   a very high level noise sample. 

By (careful) examination of the various waveforms on the loops (and 

whip),   one can ascertain information regarding the location of thunderstorm 

sources with respect to the measurement site.      In both cases,  there seem to 

be sources that lie largely in the plane of one of the loop antennas;    i. e. , 

sources almost directly east (and/or west) and almost directly south (and/or 

north) of the receiver. 

The tendency for spikes to be followed by another spike approximately 

50 msec later is thought to be due to the physical mechanism of spike pro- 

duction.    A single spike arises from the fields generated by a single lightning 

stroke.    Several  "return strokes" occurring 50 msec apart may accompany 

a main stroke,  thus generating a sequence of spikes.    In Fig.   3-4 we show a 

sample of the wideband noise from February together with the traces that 

result from passing the wideband noise through 3-Hz filters centered at 

various frequencies.     The effect of the large spikes is clearly exhibited in 

these other traces.    It should be pointed out that a Gaussian noise process 

would not exhibit the dependence visible here  between the noise components 

at various frequencies.    Thus,   in Fig.   3-4,   we have a dramatic demonstra- 

tion from the viewpoint of spectral decomposition that the wideband ELF 

noise is not Gaussian. 

In a program where the bulk of data recording and analysis has been 

performed on data from a single geographic location but the region of 

interest is global,  one is interested in the nature of wideband waveforms at 



other locations.    In Fig.   3-5 we show a sample of wideband noise recorded 

in Malta in October  1968.    This particular sample corresponds to a noise 

level of -130 dB wrt lA/m/V Hz; i.e. ,  a level quite close to that for the 

Florida February noise sample.    In Fig.   3-6 we show a sample of wideband 

noise recorded in New Hampshire in March,   1968. 

The loop waveforms shown in Figs.   3-1 to 3-6 represent the   H field 

waveform after passing through the loop (which yields the time derivative of 

the   H field waveform as its output) and the various system amplifiers.    In 

Fig.   3-7 we show the waveforms that resulted from passing the loop data 

through a filter whose filter frequency response from 10 - 300 Hz is the 

inverse of the filter frequency response for the cascade of the loop and sys- 

tem amplifiers. 



IV.      POWER DENSITY SPECTRA 

The wideband power density spectrum is of interest because (as 

indicated in the previous section) the ELF noise in one frequency band is,  in 

general,   correlated with noise in other frequency bands.    Thus,  we are 

interested in the relationship of the out-of-band noise to the inband noise at 

the same instant of time.       The method of spectral analysis described in 

Section II obtains an estimate of the density at all frequencies of interest 

(i.e. ,  from 0 Hz to 500 Hz (=   l/2 sampling rate)) from the same data so 

that we can directly compare the spectrum levels to determine if,  for 

example,   changes in the power at various frequencies are correlated.    Also, 

of course,  one is interested in the values of the spectrum expressed in 

absolute quantities. 

In Figs.   4-1 and 4-2,  we show wideband noise spectra (corrected for 

recording system response) for high level noise days in June and July 1968 

respectively.    The large amount of energy from 4-15 Hz on the July tape 

presumably is due to motion of the antenna caused by the wind (there was a 

nearby thunderstorm).    In Fig.   4-3 we show representative (corrected) 

spectra (including the highest level for each month) for data recorded during 

February,   May,  June and July. 

In Fig.   4-4,  we show the raw spectra for June in order to see how the 

change in power level at one frequency is related to changes in power level 

at other frequencies.    From Fig.   4-4 (and other data not shown here),  it 

appears that the ELF spectra at high noise levels are the same to within a 

It should be noted that most previous (and ongoing) measurements of wide- 
band ELF spectra are not very helpful in this respect for a variety of reasons: 

1. the power at various frequencies is obtained from different por- 
tions of data,   so that one must assume spectral stationarity of the process to 
an extent that may not be justified. [11] 

2. the power is measured at a very small number of frequencies, 
and one must interpolate somewhat arbitrarily between frequencies to estimate 
the complete density.  [4, 11] 

3. the spectra were obtained over a small portion of the frequency 
range of interest. [ 4, 8, 9, 13] 

10 



multiplicative constant,  i.e., 

S(f,   Tj)   =   kS(f,   T2) (IV-1) 

Thus,  given knowledge of the entire spectrum for one period,   one can pre- 

dict the entire spectrum at a new time given knowledge of the spectrum at a 

single frequency of the new time. 

A conspicuous exception to IV-1 occurs at low frequencies in periods 

of rather low noise level.    In Fig.   4-5,  we show the corrected and uncorrected 

spectra density for a low noise period in February 1968.    The peaks in the 

spectra at 8,   14 and 21 Hz are caused by resonances of the earth-ionosphere 

cavity,   i.e. ,  the Schumann resonances (so named because Schumann [ 16] 

predicted their existence theoretically before they were measured).    These 

were first measured experimentally by workers at Lincoln Laboratory [6„7] 

and have since been studied by a number of investigators. [ 8-9, 12-13, 15, 17]  To 

date,  we have studied the properties of these resonances only cursorily as 

we have observed them only at low noise levels. 

Another characterization of a random process closely related to the 

power density spectrum is the auto-correlation function (for stationary 

ergodic processes,   the auto-correlation function and power density spectrum 

are a Fourier transform pair).    In Fig.   4-6,  we show the normalized auto- 

correlation function 

.   E[x(t) x(t+T)l 
& [T)   "        Var [x(t)] 

for a sample of noise recorded in June after the power line frequencies have 

been removed and 

(1) the noise filtered to produce a spectrum that is constant 

over the passband. 

(2) the noise filtered to produce a noise process corresponding 

to the H field at the loop (i. e. , put through the inverse filter for the antenna 

and amplifier electronics). 

*   E[x(t)]    =   0 

11 



V.        NOISE AMPLITUDE STATISTICS 

The noise amplitude statistics are of interest for several 

reasons: 

(1) they give some useful information toward describing the 

wideband noise process.    For example,   if the wideband noise process had a 

Gaussian probability density function,  one could then apply the large amount 

of available knowledge regarding Gaussian noise to develop appropriate mathe- 

matic models.    Unfortunately,  as we shall show,  the wideband ELF noise 

amplitude statistics are distinctly non-Gaussian and so we must consider a 

more general model for the noise. 

(2) for the case where the noise process is sampled such that 

successive noise samples are identically distributed statistically independent 

random variables,  the sampled noise process can be completely characterized 

by either its probability density function or its exceedance probability. 

(3) for the case where the successive samples are not statisti- 

cally independent, the first order noise amplitude statistics provide informa- 

tion that may be useful in developing a model. 

In Figs.   5-1 and 5-2 we show the sample probability density function 

and sample exceedance probability for wideband data corresponding to high, 

medium and low noise levels.    In Fig.   5-2 we have plotted the exceedance 

probabilities in standard deviation units (i.e.,   rms units) from the mean so 

that we may compare the exceedance probability for Gaussian noise of the 

same level.    We note that the ELF noise is characterized by much slower 

tails,  i. e. ,  large values are far more probable for ELF noise than for 

Gaussian noise of the same level. 

Another way to demonstrate the slow tails of the wideband ELF process 

as compared to a Gaussian process is shown in Fig.   5-3 where we plot the 

fraction of noise power corresponding to absolute values ^ a given noise 

amplitude in rms units.    We see that for Gaussian noise,   only . 1$ of the 

noise power corresponds to amplitudes above 4 rms units where as for the 

12 



EL.F noise data,  approximately 80$ of the noise power corresponds to 

amplitudes above 4 rms units. 

The data shown in Figs.   5-1 and 5-2 represents the noise amplitude 

statistics for the noise process as recorded on the analog tapes before any 

equalization.    In Fig.   5-4 we show the sample exceedance probability (SEP) 

for data from a high noise level period in June as recorded as well as the 

SEP for the same data after: 

(1) filtering to remove power lines and to give a passband from 

10 - 300 Hz; 

(2) filtering to produce a spectra that was constant from 10 - 

300 Hz and in which the phase distortion due to the loop antenna was removed; 

(3) filtering to remove the amplitude and phase distortion due 

the antenna and amplifiers from 10 - 300 Hz. 

From Fig.   5-4,  we see that the exceedance probability for the various forms 

of the wideband process are not very different qualitatively. 

In Fig.   3-2,  we saw that the waveforms on the E field sensor (i.e. ,  the 

whip) were severely distorted during periods of high noise levels because of 

the environmental conditions.    In view of the experimental problems in 

recording the whip data,  we have been primarily concerned with analysis of 

the loop data.    A question that naturally arises is the degree of statistical 

similarity between the loop and whip data for periods when the whip data was 

recorded satisfactorily.    In Fig.   5-5,  we plot the exceedance probability for 

the two loop channels and a whip for a period in February with a noise level 

of -131 dB wrt 1 A/M/JHZ   at 50 Hz (i.e. ,  a low noise level).    We see that 

the exceedance probability has virtually the same form for all three sensors. 

In Fig.   5-6 we show the exceedance probability for a sample of high 

noise level data from June as a function of the bandwidth of the process 

(linear phase) digital filters with passband gains of 1.0 were applied to the 

wideband data to give the noise processes from which we obtain the data for 

13 



Fig.   5-6.    The exceedance probability of the envelope of the narrow band ELF 

process is also of interest because other investigators have measured this. 

In Fig.   5-7 we plot the exceedance probability for some data from February. 

We see that the exceedance probability is Rayleigh for small values,  but 

decreases more slowly than a Rayleigh process for large field values.    This 

behavior is quite similar to that obtained by other investigators. [ 13-15,   17-18] 

Another topic of interest is the differences between the statistics for 

data at high noise levels.    In Fig.   5-8 we plot the exceedance probability for 

several segments of data recorded during high noise levels in June.    From 

Fig.   5-8 we do not see any clear correlation between spectral level and the 

tails of the exceedance probability. 

In Fig.   5-9 we show the exceedance probability for data recorded in 

Malta in October,   1968.    We note that Fig.   5-9 is quite similar to the Florida 

data shown in Figs.   5-2 and 5-8.    In Fig.   5-10 we plot the exceedance 

probability for various data from Malta and Florida. 

14 



VI.       STUDIES TOWARD A MORE COMPLICATED MODEL FOR ELF NOISE 

Next we wish to consider a more complicated model for the ELF 

noise process that will at least in part account for the physical origin of the 

noise.     From Section III,   it is clear that the most prominent feature of the 

noise is the large spikes which seem to occur in a haphazard way in time. 

This suggests a model in which the observed noise is the sum of a random 

pulse process (corresponding to the lightening strokes) and a background 

process. 

Such models have been proposed and analyzed in part by Beckmann, [ 18] 
and Furutsu and Ishida.   [ 19]   In all these cases,   the model proposed 

(in the case of the ELF band) suggests that the received noise consists of the 

sum of a pulse process and Gaussian noise.     The pulse process is generated 

by having a Poisson impulse process (i. e. ,   a series of impulses that are 

Poisson distributed in time) excite a fixed filter with the strength of each 

impulse being random. 

Here we will discuss analysis to date oriented toward determining the 

appropriateness of a model in which the observed noise is the sum of a pulse 

process and a background process.     We have focused our attention on 

analyzing the pulse process as a series of point events in time.     The particular 

point events that we have chosen to investigate are the "beginning" and "end" 

respectively of the pulses (the criteria by which "beginning" and "end" are 

defined will be discussed in detail later).     This choice of point events leads 

one into a consideration of statistical characteristics of the intervals between 

pulses and the duration of a pulse. 

The results given here are primarily concerned with characterizing the 

probability density functions of the intervals between bursts and the duration 

of a burst.    However,   we will present some preliminary results of an investi- 

gation to determine if the intervals between events are independent identically 

distributed random variables. 

15 



Establishing a suitable quantitative criteria for the presence of a pulse 

in wideband ELF noise is much more difficult than determining pulse presence 

in the envelope of narrowband ELF noise l20L  as can be seen by inspection of the 

waveforms in Figs.   3-1 to 3-6.    In Fig.   6-1 we show the particular criteria 

we have used to define a pulse.     These criteria have been established on a 

somewhat arbitrary basis.    However,   as we shall show,   the results to date 

do not seem to be very sensitive qualitatively to the particular relationship 

of various parameters. 

There are a variety of statistics one may consider in characterizing the 

process of pulses.     The most common of these are: 

(1) the mean interval at various values of  TT ,   T    and  S v   ' Luc 

(2) the sample exceedance probability of intervals as a function 

of interval duration for various values of  TT ,   T     and   S  . L       u c 

Such statistics are most useful when they can be used to estimate parameters, 

etc.   for a clearly defined mathematical model for the process.     For example, 

if the intervals between pulses were Poisson distributed,   knowledge of the 

mean interval would completely specify the probability distribution of these 

intervals. 

The first aspect of the data we will address is the question of whether 

the intervals between pulses (as defined in Fig.   6-1) form a renewal process, 

i. e. ,   a process where the intervals are independent,   identically distributed 

random variables (the Poisson process is a special case of a renewal process 

where the probability density function of the intervals between bursts is of 

the form   p(t)   =   \e ).     The properties of such process are discussed in 

detail in various texts.   [21] The tests most commonly used to check the 

consistency of the data with the hypothesis of a renewal process are; 

(1)    serial correlation coefficients:   for large numbers of 

intervals,   these are equivalent to the normalized auto correlation function, 

$   (j),   of the discrete process    fx,,   x?,   . . . ,   x       }   where 
o 
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x.   A  duration of the  i      interval 
i   = 

*(j)   = 
E[  (x.-x) (x        -  x)] 

Var (x) (VI-1) 

For a renewal process   $ (j)   =  0  for  j   /  0. 

(2) the spectrum of intervals:   for large number of intervals,   this 

is equivalent to the Fourier transform of  $ (j).     The considerations involved 

in our previous discussion of spectral analysis apply in this case.     For a 

renewal process,   the spectrum of intervals is flat,   i. e. ,   a non-zero constant. 

(3) contingency tables:   these correspond to estimates of the 

joint density function of intervals that are  j  intervals apart;   i. e. ,   p(x,    .    x.)#. 
KTJ,     I 

For a renewal process 

p(x. ,.    x.)   =  p   (x. , .)  p   (x.) rv   l+j,      i'        *xx   l+J     *xv   r 

or alternatively 

p(x. , . I x, )   =  p   (x. , .) rx   l+j '    k'        *xx  i+j' 

(VI-2) 

(VI-3) 

(4)   conditional means:   these correspond to the conditional expecta- 

tion of an interval that is some number of intervals after a given interval, 

i. e. , 

E(X.J      I x.)   =   f   x_.   p(x_. |x.)   dx_. 
l+J    '     l J       i+J   ^    i+J '    i i+j 

(VI-4) 

o 

For renewal processes,   the expected value is independent of x.,   i. e. , 

E(x.+j)   .  E(x) (VI-5) 

*This can of course be extended to triplets of intervals  [e. g. ,   p(x.   .   , ,   x., l+J+K        1 
x.   .)]   and so on.    In practice,   this is hardly ever done because of the 

problem in obtaining adequate estimates. 
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An exact test for independence would involve showing that the joint 

density of all orders of intervals factors analogous to equations   VI-2 on 

VI-3.      This clearly is impossible to show in practice,   and so one is 

generally content with examining the second order properties of the intervals 

(tests  1 and 2 above) and examining the properties of the joint density (tests 

3 and 4) for rather small values of j.     Our (rather limited) analysis to date 

has focused on the use of tests 3 and 4 (although in the near future results 

of applying the first two tests will be available). 

In Figs.   6-2 and 6-3 we show a scattergram based on high noise level 

June data where each row is a plot of the sample conditional probability 

p   (x.       |x. ) where the darkness of the plotted point is proportional to 

p   (x.    lt   x. )    (if there were no intervals of value  x.   followed by an interval rs      1+1        i 1 J 

of value  x.   .,   no point is plotted).    In Figs.   6-4 and 6-5 we plot the sample 

conditional mean interval,   E    (x. , .  I x.),   as a function of x..     The relatively s v  l + l '    r l y 

small number of intervals means that we should expect relatively large 

statistical fluctuations in  p   ( .   ) and  E   ( .   ).     From Figs.   6-4 and  6-5, it s s 
appears that the conditional mean interval is somewhat smaller than the 

(unconditional) mean interval for small lengths of the previous interval;   this 

indicates that there is a slight tendency for short intervals to be followed by 

intervals that are shorter than the "average".    From Figs.   6-2 and 6-3,   it 

would appear that such a correlation does not arise from a case where the 

form of  p    (x.    .  | x. ) is qualitatively different when x.   is small as opposed to 

when  x.   is large.     From Figs.   6-2 to 6-5 (and other results not shown here), 

it appears that the hypothesis that the data can modeled as a renewal process 

is not violently contradicted by the results of the tests utilized to date. 

Thus,   it appears useful to try to characterize the process of intervals 

in somewhat greater detail as a renewal process.     Such a process can be 

completely described by a variety of probability functions for  x,   the length 

of the interval between bursts.     The three that we shall consider here are: 

(1)    the probability density function  p(x) 

18 



(2) the survivor function  R(x)   A  fraction of intervals greater 

than or equal to  x   (this function is analogous to the exceedance probability- 

discussed earlier). 

(3) the hazard function H(x)   A J&S .     The motivation for the 

use of this function (which is also known in other contexts as the failure 

rate,   age-specific failure rate or force of mortality) is somewhat clearer 

if one notes that 

H(x)   dx  =   probability of an interval duration in interval (x,   x+dx) 

conditional on the interval duration being at least of 

length x 

= probability of a pulse in the next  dx   seconds given 

that the last pulse was  x   seconds ago. 

For a Poisson process, 

H(x)   =  X A  intensity or arrival rate of the process for all x. 

These three functions are related as follows: 

R(x)   =   J p(u)du  =  exp   [  -   J  H(u)du] (VI-6) 

x 

In practice,   we found the sample hazard function 

Ps(x) 
Hs<x) ä Bnzr (VI-7) 

where p   (x)    =   sample density function 

=   fraction of intervals in range (x - y,   x  + =-) 

where    6   =   binwidth of calculation 

=   sample survivor function 

=  fraction of intervals   > x. 
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to be most useful in obtaining a model for   p(x)   for small values of x  while 

Rs(x) i 

of   X*. 

R   (x) is more useful when one considers a model of p(x) for large values s 

In Figs.   6-6 and 6-7,   we show R   (x) and   H  (x) for some Florida   ELF s s 
data processed with a variety of values of the parameters in Fig.   6-1.     In 

Figs.   6-8 and 6-9 we show  H  (x) and  p   (x) for several different sets of s s 
data from Florida.     Figures 6-6 to 6-9 are quite representative of the data 

analyzed to date.    From such data we conclude that there the process of 

intervals between pulses in the wideband  ELF  process differs     significantly 

from a Poisson process in that short intervals are more probable  [as measured 

by  H  (x) ]  than larger intervals.     However,   the tails of probability distri- 
S -kx bution of intervals seem to be exponential,   i. e. ,    R(x)  » e for large  x 

which is characteristics of a Poisson process.     The empirical form of  H  (x) s 
does not appear to be fit particularly well over its entire range by common 

probability functions. 

*This arises because  H  (x) is quite sensitive to the statistical fluctuations 

that arise when there is a relatively small number of intervals in the range 

(x - -j,  x  + -j).    As we shall see,   long intervals,   i. e. ,   large values of x, 

are rather infrequent for the Florida   ELF  noise. 
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Fig. 6-6.    Exceedance Probability of Inter-Burst Interval for Various 
Criteria (Florida,   June  1968). 

51 



20 

Q 
er < 
< 

< 
to 

FLA   6/25/68   1450 

NS LOOP 

_L 

118-6-97591 

u 'L *e 

7.1 7.1 2.0 

3.6 3.6 2.0 

1.7 1.7 2.0 

0.2 0.3 0.4 

TIME SINCE  LAST PULSE OCCURED (sec) 

Fig. 6-7.    Hazard Function of Inter-Burst Interval for Various Criteria 
(Florida,   June 1968). 
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Fig.   6-8.    Hazard Function of Interburst Interval for Various 
Florida Data. 

53 



1.0X 10 

£    1.0X10 

GO 

ÜJ 
y    1.0X10 
X 
UJ 

1.0X10 

TUPPER   =   TLOWER = 4.0 RMS UNITS 

SC 
(msec) 

SPECTRUM LEVEL AT 50HzI 
(dB RE 1 A/M/yTfz) 

6/25/68 1450 NS LOOP 2.0 -108dB 
2/15/68 1000 NS LOOP 2.0 -138dB 

1  6/28/68    930 NS LOOP 10.0 -126.5dB 

Fig. 6-9.    Exceedance Probability of Inter-Burst Interval for Various 
Florida Data. 
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