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CONSTITUTIVE RELATIONS FOR AN INELASTIC GRANULAR MEDIUM1

By J. B. Weidler, Jr. 2 and P. R. Paslay3

ABSTRACT

The results of an experimental and analytical program to develop stress-

strain relations for a granular medium are presented. Explicit three-dimen-

sional relations are given which represent the inelastic deformation of the

medium. A simple version of the formulation is used to represent experimental

results for a locally quarried quartz, and an evaluation of the relations is

presented. The simplified relations are seen to be a compromise between math-

ematical tractability on the one hand and accuracy of prediction on the other.

1 Work presented in this paper was sponsored by ARPA Contract SD-86.

2 Brown and Root Inc., Houston, Texas, formerly Brown University.

Brown University, Providence, Rhode Island.
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By J. B. Weidler, Jr. 2 and P. R. Paslay 3

INTRODUCTION

Technological advances in soil mechanics have followed a different devel-

opment pattern from strength of materials and elasticity theory for structural

and machine design applications. While elasticity theory is capable of predict-

ing most structural and machine design behavior within design accuracy, there

is no corresponding theory for soil mechanics.

Mathematical description of soil behavior is extremely difficult. In addi-

tion to having elastic characteristics under certain loadings, its behavior can

be plastic, viscoelastic or thixotropic under other situations. The development

of a mathematical theory which encompasses all these characteristics, even as an

engineering approximation, has not been accomplished. The acceptable mathemati-

cal complexity of any material description is limited by the ability to solve

practical boundary value problems with the description. Although numerical meth-

ods and digital computers have recently extended the acceptable mathematical com-

plexity, there are considerations in soil mechanics, such as material stability,

that are still beyond these extended capabilities.

Most efforts to deduce useful mathematical results for practical soil me-

chanics problems fall into two categories. The first of these is elementary,

three dimensional, theories which describe a limited type of behavior. The

idealizations of Elasticity, Plasticity and Coulomb theory represent examples

1 Work presented in this paper was sponsored by ARPA Contract SD-86.

2 Brown and Root Inc., Houston, Texas, formerly Brown University.

Brown University, Providence, Rhode Island.
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of this approach. The results obtained using these methods in soil mechanics

have been more helpful in establishing trends rather than providing quantita-

tive answers.

The second category is equations which have been deduced empirically to

predict behavior under certain circumstances. Most design formulas fall into

this category. The results in this category often have a theoretical basis

but, in the long run, rely on empiricism. This approach in soil mechanics has

provided the technical basis for practically all design and will probably con-

tinue to play this role for many years.

The work presented here falls into the first category. The idealization

under consideration is, broadly speaking, a granular medium. This means the

behavior is time independent (the stress-strain equations do not have a char-

acteristic time). A pore pressure is not included in this formulation although

it is thought to be straightforward to include this phenomenon in the theory.

Even in this restricted area adequate mathematical representations of ma-

terial behavior is lacking. The most common representation for granular mate-

rials is the Coulomb theory. The basis for this theory is that whenever on any

plane the ratio of resolved shearing stress to the sum of the normal stress and

a constant called the "cohesive strength" reaches a critical value, the mate-

rial flows. The description of how the material flows is the part of this the-

ory that is inadequately resolved. One approach which is used, for example, in

Terzaghi's text1 is to assume the flow is incompressible. It is well known that

granular media can expand or compact during flow. Another objection to the in-

compressibility assumption is that Drucker 2 has shown that normality of the

1 Terzaghi, K., Theoretical Soil Mechanics, Wiley, New York, 1943.

2 Drucker, D. C., "A More Fundamental Approach to Plastic Stress-Strain Relaticns,"

Proc. First U. S. Nat. Congress of App. Mech., ASME, 1951, pp. 487-491.
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deformation rate vector to the loading surface is required if material stabil-

ity is to be insured. The condition of normality necessitates a volume change

and this is the basis for a second approach to the description of the material

flow. A normality requirement leads to a plasticity type formulation for

soils 3 . Hansen 4 has conducted experiments to try to evaluate the normality

assumption for soils. He observed volume changes which were between the zero

volume change required by an incompressibility assumption and the change re-

quired for normality. The significance of these results are that 1) there

are appreciable volume changes during flow and 2) unstable material behavior

should be anticipated for certain flow conditions.
5,6

Earlier work by the authors on granular media was directed to trying to

develop a plasticity type theory with a modified "stability" requirement so

that normality was not a consequence of the requirement. The reason such an

approach is attractive is that the stability postulate due to Drucker has a

physical basis which can be deduced from energy considerations. In the authors'

earlier work it was postulated that energy can be stored and released in the ma-

terial. The energy is taken to be a function of the specific volume. The re-

sult of this study was that the amount of energy storage and release would be

greater, in order to explain Haythornthwaite's results, than one would expect

on physical grounds.

Drucker, D. C., Henkel, D. J. and Gibson, R. E., "Soil Mechanics and Work-
Hardening Theories of Plasticity," ASCE Trans., Vol. 122, 1957, pp. 338-346.

Hansen, J. B., Earth Pressure Calculation, Danish Technical Press, Copen-
hagen, Denmark, 1953.

Weidler, J. B. and Paslay, P. R., "Analytical Description of Behavior of
Granular Media," Jour. of Engr. Mech. Div., Proc. ASCE, April 1969, Vol. 95,
EM2, pp. 379-395.

Paslay, P. R. and Weidler, J. B., "An Analysis of the Triaxial Test for Co-

hesionless Soils," Jour. of Engr. Mech. Div., Proc. ASCE, June 1969, Vol. 95,
EM3.
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The work presented here is a different attempt to formulate stress-strain

equations for granular materials which are predictive and yet tractable. The

notion of a limit surface has been modified to make the presentation of this

theory straightforward. A relationship is introduced between the mean normal

stress, the density and the rate of change of volume. The result is a specific

three-dimensional theory that predicts several phenomena which earlier theories

could not. Experimental results from shear tests are used to give a critical

evaluation of the theory which suggests it is an engineering compromise between

accuracy and complication which should be adequate for many practical situations.

THEORY; GENERAL CONSIDERATIONS

This development depends on several physical assumptions which are stated

here at the onset so the mathematical development can proceed without interrup-

tion.

When an element of a granular medium, large enough to be treated as a con-

tinuum, is loaded monotonically, it responds elastically and it is assumed that

one of two phenomena occur when the load becomes sufficiently high. The first

is that the individual grains crush. This will occur, for example, if the load-

ing is hydrostatic compression. The second is that the element distorts due to

shearing motion as in a shear test. Undoubtedly some particles fracture during

shearing, but this is neglected. The only response which this theory considers

is the shearing response.

The magnitude of the shear stress required to initiate flow is assumed to

be a function of the mechanical state of the material and mean normal stress.

This mechanical state is assumed to be measured by the specific volume of the

material.
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In conventional plasticity theory the yield surfaces are all cylinders in

principal stress space and are identified by their cross section on the n plane

(the Mises condition is a circle while the Tresca condition is a hexagon). The

Coulomb condition is a six sided pyramid in principal stress space. On the 1

plane a six-sided figure with threefold symmetry results. In the theory devel-

oped here, a surface of revolution will represent the limit surface at any time.

The intersection of a w plane with the surface of revolution will be a circle

whose radius depends on the mechanical state. This choice of limit surface

makes possible an approximation to Coulomb theory and is mathematically easier

to work with than the Coulomb theory for many problems.

Experiments, such as shear box tests, indicate that when flow is induced,

there is a volume change. As shearing proceeds, the volume reaches an equilib-

rium value which is related to the normal load applied during shearing. If the

specific volume is above (below) its equilibrium value when shearing commences,

then the specific volume decreases (increases) during the shearing flow and ap-

proaches the equilibrium value.

In order to incorporate the above ideas into a theory, it is convenient to

work in a strain space rather than a stress space owing to the mechanical state

being described in terms of specific volume. The reduced elastic components of

strain are deduced from the difference of the total reduced strain e and the

reduced inelastic strain a . The stresses and elastic strains are to be rela-

ted through a linear Hooke's law so that the Mises condition may be written as

(e - a)-(e - a) f p 2 (a,a) .... ........... (1)

where p(a,a) abbreviated as p is the elastic shear strain required to initi-

ate inelastic flow, a is the mean normal stress (tensile stresses measured as
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positive) and a is the inelastic volumetric strain. The function p(Oc)

will be assumed to have the following properties

p(Oa) = 0 ......................... (2)

P(o,0) 0 0 ........................ (3)

The first property simply implies that when there is no mean normal compres-

sion, there is no resistance to flow. The second property adjusts the refer-

ence state from which the plastic volume change is measured. Fig. 1 depicts

the loading surface graphically.

A second function is introduced to determine the equilibrium volume for

a given mean normal stress. The function is denoted by at(a) or abbrevia-

ted as ao .

The requirements for inelastic flow to occur are that the Mises condition

equality

(e - a)-(e - a) = p2 (aa) ......... (4)

be satisfied and that a loading condition, deduced by differentiation of the

Mises condition, inequality,

(e - a)e- (p2), > 0 ........ ..... ... (5)(e- a.~- 2 'a)o . .

be satisfied. If Eqs. 4 and 5 are not simultaneously satisfied, then only

elastic deformation occurs.

When inelastic flow does occur, a flow law is required to describe the

deformation. To describe the flow law introduced here, it is convenient to

refer to a principal strain space where the Mises condition describes a cyl-

inder. If the loading conditions, Eqs. 4 and 5, are satisfied, then the di-

rection of the deformation rate vector in the strain space is such that its
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projection on the t plane going through point A is normal to the cylinder.

The component of the deformation rate vector perpendicular to the 7 plane is

determined by the mean normal stress and the separation between the current in-

elastic volume strain, a , and the equilibrium volume strain a°(C) . Analy-

tically this may be expressed as follows

=(e - a) if yield and loading ... 0....... (6)

otherwise
X= Xh(a.,'ao - a) conditions are satisfied, a .0........ (7)

In Eqs. 6 and 7, A is an arbitrary parameter and h(o,a° - a) abbreviated

as h is a function which has the following property

h(ao) = 0 ..... ............... ... (8)

since the inelastic volume change and the equilibrium volume change coincide

in this circumstance. A may be eliminated from Eqs. 6 and 7 by differenti-

ating the Mises condition equality (which must remain valid during inelastic

flow) and substituting Eqs. 6 and 7. This procedure leads to

(ea) - r~'ca
2 = . . . . . . . (9)

p 2 + (p2),a h
11

so that, by noting Eq. 5, X is positive when p2 + 1 (p 2 ), h is positive.

When A is positive, it simply means that the projection of the deformation

rate vector on the w plane at point A is directed radially outward from the

Mises condition surface. Substitution of Eq. 9 into 6 and 7 gives



--8--

(e-a)'e -4 (p 2 ),
a 2 a (e -a) if yield and =0 .. ...... .. (10)

+1 (p 2 ) h
S+2 a' loading con-

otherwise
ditions are

(e-a)'e - g (p 2 ), a
a2h satisfied , .0 ......... (11)

p2 + 1 (p2), h
2 'a

Finally, the stress and elastic strain states must be related through

Hooke's law. The reduced elastic strain is (e - a) and the elastic volume

change per unit volume is (c - a) so that

s = 2G(e - a) ....... .............. .. (12)

a = K(E - a) ........ .............. .. (13)

where K and G are functions of a and a .

Eqs. 4, 5, 10, 11, 12 and 13 complete the constitutive formulation for

the material. For the solution of boundary value problems, the equilibrium

equations and strain compatibility equations must be included to form an ap-

propriate set of field equations.

THEORY; SIMPLEST CASE

In order to make a practical evaluation of the formulation presented in

the preceding section, a specific choice has been made for each of the func-

tions p(a,a), a°(a) and h(a,a° - a) . The simplest case which yields

qualitatively correct predictions for elementary deformations is as follows

G(a,a)p(a,a) = +aaG oP.l (...........(1)

ao(a) =ao + ............... (15)



-9-

h(a,a° - a) (c° - a)h ... (16)
O1

where G 1 1  ao ao and hI are constants dependent on the particular

granular medium being represented. The Eqs. 14, 15, 16 satisfy the Condi-

tions 2, 3, 8.

With the simplified definition loading occurs whenever

G2 (a,a)(e - a) (e - a) = G0
2p1 1

2 a 2 a 2 . .. . . . . . . . . . .. (17)

and

2aG
G2 (o,a)(e - a).e - GG 211 2 o 2 (l - '-) * > 0 ..... (18)

otherwise there is no loading. The stress-deformation relations then become

(G2 (a,a)(e-a).-/Go2 ll2a2a2) + G a 1)-
1 ~l a) (e -a) .............. (19)

1 +Yr-c h(aO+aOa-a):t(l1olI a G
__ ] loading

aG,0G

(G2 (a,a)(e-a)-e/Go2pll2a2a2)~- (i G0 a hG h (a O + a~a a ) . . . . . (20)

"1oa . ...... 
(21 0

1 + /-- h (aO+a~~a-a):t<l -1lol a G

= 0 (21)

3*no loading
0 .e. ........ . ...................... . .......... ...e. ...... .... (22)

In the following sections these stress-deformation relations are evalua-

ted against experimental results. The form chosen for G(a,a) is one which

has been determined experimentally, reported in the literature 7 and can be ap-

proximated by

7 Hardin, Bobby 0., "Dynamic Versus Static Shear Modulus for Dry Sand," ASTM
Materials Research and Standards, Vol. 5, No. 5, pp. 232-235.
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G(ac)a 10,850 /- (.0833 - , a < 0 ..... (23)

where a and G(o,a) are in psi.

COMPARISON OF SIMPLEST THEORY WITH EXPERIMENTAL RESULTS

The comparison with experiment to be presented here is based on 77 shear

tests which were run on locally quarried quartz sand. The shear test apparatus

is shown graphically in Fig. 2. The tests used in this evaluation are part of

a large set of tests run as part of another investigation and have been re-

ported in detail 8 . The test consists of shearing the top half of a shear box

at a slow enough rate to make inertia effects negligible. The shearing force,

T , required to accomplish this motion is measured. The normal load N is ap-

plied through weights so that it remains constant during the test. The verti-

cal and horizontal components of the shear box motion are measured.

There are many drawbacks to using such tests for the evaluation of consti-

tutive relations. The most obvious is that the state of deformation in the

sample is not uniform. It will be observed in the following that a number of

assumptions is required in order to reach a critical evaluation of the theory

from these tests.

A typical set of data for a compacted sand is sketched in Fig. 3a. If the

data beyond about two grain diameters is observed, it is seen that the average

specific volume decreases while the shear load also decreases. As the shearing

progresses, both T and 6 appear to asymptotically approach constant values.V

The authors have ignored 6H displacements of less than two grain diameters be-

cause extraneous settling and orientation effects are occurring which would

8 Weidler, J. B., "The Flow Behavior of Sand at Failure," Brown University, Di-

vision of Engineering Report ARPA E59, August 1968.
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possibly not be present in a natural, undisturbed foundation. When a loose

sand is tested, the results follow the pattern shown in Fig. 3b. For each

test the following data were recorded:

initial specific volume, v (in 3 /#)

nominal normal stress, N ÷ A (#/in2 )

nominal initial shearing stress, T ÷ A or T2 gr. dia A (#/in2 )
amax 2 gr. da

d6ý 
~or 

6 Id6 H T daxtUH 2 gr. dia

The experiments reported here were run for 5 values of N a A which were 46.1,

37.3, 28.5, 19.7 and 10.9 psi and for assorted values of v from 17.5 to

20.5 in 3 /lb. It should be noted that out of the 77 tests, only one had the

character of Fig. 3b owing to the difficulty of obtaining sufficiently loose

initial states.

Fig. 4 shows the result of plotting the nominal initial shearing stress

as a function of initial specific volume for the different values of nominal

normal stress. An approximation to the value of G(a)p 1 can be achieved from

this curve if it is assumed that the nominal initial shearing stress defines

the initiation of inelastic flow for a mean normal stress equal to the nominal

normal stress and a volumetric inelastic strain given by

v-24 (v in units of in 3/#) ............... (24)24

Eq. 24 is deduced from the figure by 1) extrapolating the curves for differ-

ent values of N ÷ A in Fig. 4 to a nominal initial shearing stress of zero,

2) finding that the average v determined this way for the different values

TEORNIOAL LIARY
RLDO. 918

ABERDEEN PROVITNO GROURD, MD.
SfP-TL



-12-

of N ÷!A is 24 in 3/lb and 3) measuring the volumetric strain from the ref-

erence value of 24 in 3/lb. The above scheme then leads to the following equa-

tion:

nominal initial shearing stress = Go (N ÷ A)(-a). . . . . (25)

The straight lines shown in Fig. 4 are deduced by setting

Gop11 = 4.00 ...... ............... . (26)

The evaluation of ao and aO . in Eq. 15 can be accomplished by plottingd 6v o 1
d6--as a function of a for each different nominal normal stress. In this
d6H

case five curves are obtained. By extrapolating these curves to the point wheredv
d6--Vis zero, an approximation to the equilibrium volume for each nominal normal
ZH

stress may be obtained. The necessary data for accomplishing this procedure are

plotted in Fig. 5. A plot of the equilibrium volumes as a function of nominal

normal stress which results from this procedure is given in Fig. 6. If N * A

is interpreted as -a , the straight line approximation shown in Fig. 6 is rep-

resented by

a0 = - .124 ......... ................ ... (27)
0

a .0009 1/psi ....................... (28)

dSv
To make use of measured values of d-- for the determination of G(a,a)hl,

d6H

a brief derivation is required. For the first increment of flow from some

specified state, the stress-deformation Relations 19 and 20 predict the rates

of change of strain and volume. If the ratio of the xy component of a from

Eq. 19 to a from Eq. 20 is formed, the following equation results
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a (e -a )xy : xy xy.. .. 29

r-,, h (aO+aO~y-a)

Combining this with the yield condition from Eq. 17 for this case yields

G(a,a) Xy Go11. . . ..... (30)
a hI (aOa~a-a)

Now an approximation to Xy from the experiments can be obtained as follows

ax =Y 1 d6H 
(1

a ~ d6HS2 d6....................... (31)
a V

so that

2G opll .r, d6v
( )h= + -) H ........... ( .............. ... (32)

This equation then determines G(a,a)h1 for each shear test in terms of the

constants GoPl ' o I a which have already been determined and the meas-
ured values a , a and d6v/d6H * As before a is approximated by -N A

and the procedure is straightforward. The value given for G(O,a) from Eq. 23

then makes possible a determination of h1 for each experiment. As h1 was

supposed constant in the theory, this calculation procedure furnishes a crucial

test for the theory. Fig. 7 shows the results of the calculations for h1

Whether or not Fig. 7 is regarded as a partial verification of the theory

or not is a matter of viewpoint. In classical plasticity theory the predicted

and measured values of strain increment ratios9 vary by as much as 2:1 and yet

Naghdi, P. M., Rowley, J. C., and Beadle, C. W., "Experiments Concerning the
Yield Surface and the Assumption of Linearity in the Plastic Stress-Strain
Relations," Journal of Applied Mechanics, Vol. 22, No. 3, 1955, pp. 416-420.
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the theory is widely accepted. It appears that deviations of the same order

are present here for a much more complicated material behavior so that the

authors view Fig. 7 as encouraging.
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APPENDIX - NOTATION

A = cross-sectional area of shear test apparatus;

see Fig. 2

a= reduced inelastic strain tensor

b.b = quadratic invariant of b, b-b = . b.. b..
131

where b.. are components of b referred to

Cartesian coordinates

e= reduced total strain tensor

G G(alo) = shear modulus which depends on inelastic volume
change and mean normal stress; see Eq. 12

Go Pi, a0, 1, hI = a set of constants which describe the simplified
theory. See Eqs. 1, 2, 3 and 10

h = h(a, a' - a) = a function first appearing in Eq. 7

K = K(a,a) = bulk modulus which depends on inelastic volume
change and mean normal stress; see Eq. 13

N = normal force on shear test apparatus; see Fig. 2

s= reduced stress tensor, s.i = 1.. - (6
where a is the stress ( k

T = tangential force on shear test apparatus; see
Fig. 2

v = specific volume

a = inelastic volume strain measured from loose state

ao ao(a) = a function first appearing in Eq. 7

6 V = displacement downward of shear test apparatus cover;
see Fig. 2

6 H = horizontal displacement of shear test apparatus
cover; see Fig. 2

S= total volume change measured from loose state

A= parameter first appearing in-Eqs. 6 and 7
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P =(ac) = function of mean normal stress and inelastic
volume change first appearing in Eq. 1

C= mean normal stress



CAPTIONS FOR FIGURES

Fig. 1 - Sketch showing relation of strain point to limit surface in

strain space.

Fig. 2 - Shear box testing apparatus.

Fig. 3 - Sketches of Typical Results from Shear Box Tests. a) for a

Compacted Sand and b) for a Loose Sand.

Fig. 4 - Nominal initial shearing stress versus initial specific volume

for indicated values of the nominal normal stress.

Fig. 5 - Rate of change of the vertical displacement with respect to the

horizontal displacement as a function of the initial inelastic

volume strain measured from loose state for indicated values of

the nominal normal stress.

Fig. 6 - Equilibrium inelastic volume strain as a function of the nominal

normal stress.

Fig. 7 - Variation of h with inelastic volume strain and nominal normal

stress. For a perfect match between theory and experiment h1

is constant.
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