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Modulated Simple Waves: An Approach To Attenuated Finite
Amplitude Waves

M.P. MORTELL
Center for the Application of Mathematics,
Lehigh University
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Department of Theoretical Mechanics,
Nottingham University

E. VARLEY
Center for the Application of Mathematics,
Lehigh University

Abstract

This paper describes some of the techniques which are
currently being used to investigate finite amplitude waves
in elastic and viscoelastic materials. In particular we
show how the simple wave solutions, which describe finite
amplitude plane progressing waves in elastic materials, may
be modified to describe the effects of reflection from
boundaries, deformations behind curved wave fronts, and the
effects of locally small damping mechanisms,

]’his document has been approved for public release and sale;
its distribution is unlimited.
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1. Introduction

The simplest significant example of a finite amplitude
wavelike disturbance whose properties are thoroughly under-
stood occurs when an infinite half-space of elastic material
is loaded at its plane boundary by a time varying normal
traction. If the mechanical response of the material is
isotropic and homogeneous with respect to its state before
the traction is applied then, if all sources of power are
negligible compared with the mechanical power generated by
the stresses, up to the instant when a shock forms the
deformation is produced by a simple wave, (see Taylor [1]).
These waves are fully amplitude dispersed: the wavelets at
which the strain is invariant propagate at an invariant speed
which is determined by the strain level carried. Both the
stress level and material velocity are also invariant at each
wavelet and can be computed from the strain by relations
which are characteristic of the material and are independent
of the variation in traction which produced the wave. 1In

this paper we will show how the simple wave solutions can be
used as building blocks to construct theories which describe
the global effects of locally small non-uniformities and
attenuating mechanisms such as weak shocks, material viscosity,
and radial spreading of the disturbance.

2., Small Amplitude, Finite Rate Theory.

To describe one dimensional longitudinal disturbances
in an elastic material let

x = x(X,t) (2.1)

be the position at time t, measured from the boundary X=0

of the material, of the material particle X which in some
reference state, when the material was at constant density Py
and constant hydrostatic pressure p,, was at a distance X from
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the driven end. Let T(X,t) be the traction measured from
this reference state. Then, the momentum equation for the
material relates T to the material velocity

u(X,t) = %’% (2.2)
by

oT _ 3u

w: = po —t . (2.3)

For isentropic deformations of an elastic material whose
response is homogeneous with respect to the reference state

T = T(e) (2.4)

is a known function of the strain

e=g§- 1. (2.5)

For small strains, we assume that
. 2 3
T = E[e+Me +0(e”)]. (2.6)
1f we take
u = u/ao, and t = a,t (2.7)
as the velocity and time measures, where
= /E.
a 5= . (2.8)

is the sound speed in the reference configuration, then, if
the bars are dropped, (2.3) reads

n
QL

a2 88 . 3u | (2.9)
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where, by (2.6),

a® = 1+2Me+0(e?). (2.10)

Equations (2.9) and (2.10) are supplemented by the continuity
equation

u _ 2e 2,1
= = e (2.11)

which is obtained by eliminating x(X,t) from {2.2) and (2.5).

In any simple wave moving into a uniform region where
e=0, irrespective of the form of the input signal

e(0,t) = h(t), (2.12)

the material velocity can be calculated from the strain by
the relation

e
u = -J a(s)ds, = -c(e) say. (2,13)
o}

For small strains

1

cle) = e[1+7Me+O(e2)]. (2.14)

The variation of e(X,t) depends, of course, on h(t). It
is given implic.tly by

e = h(a) (2.15)

where the arrival time of the characteristic wavelet a=constant,
which left X=0 at t=a, is gi—en by

t = a+X/a(e). (2.16)

For small elongations e, which satisfy the condition that
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IMe|~<<z1, (2.17)

the traction T at any (X,t) can be calculated from e to a
good approximation by the linear law

T = Ee (2.18)

while, according to (2.13) and (2.14), the material velocity
is also given to a good approximation by

u = -e, (2.19)

It also seems reasonable to suppose that when (2.17) holds
the variation in e(X,t) is governed to a first approximation
by (2.9) and (2.11) with asl. This is not necessarily so.
The approximation e, to e predicted by this model is

e = h(aL), (2.20)
where

ap = t-X. (2.21)
The mean value theorem of differential calculus together
with conditiens (2.15), (2.16), (2.18) and (2.19) imply
that at any (X,t)

b Y Y S Pl
e e
(aL-a)h'(e)‘
= S l, for some 6 between a and Ops
= D(e) |n' (8)]x, (2.22)
where
= (& 2| =
D(e) ael IM|[1+0(e)]. (2.23)
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According to (2.22) and (2.23), if (2.17) holds, only in
the near field where

X<<|Mmax. |ht]|™% (2.24)

do the predictions of the linear theory of elasticity agree
with those of the nonlinear theory.f Equivalently, the
linear theory may be used to describe conditions over the
range 0<X<L only if (2.17) holds and if

a
0

amplitude of imposed strain rate << ML = w, say.

(2.25)

L

Theories for which the restriction (2.17) holds but fér which
the restriction (2.24) does not are called small amplitude,
finite rate theories. Most of the general theories describing

nonlinear effects in wavelike deformations are valid only in
this 1limit. In what follows we restrict attention to such
theories.

According to (2.14)-(2.16), to a first approximation
conditions in a small amplitude, finite rate simple wave are
described parametrically by

e = -u = h(a), (2.26)

where the arrival time t=t(oa,X) of the characteristic
wavelet o is given by

THere we are discussing the role of the linear theory
of elasticity as an approximation to the nonlinear theory
of elasticity. 1In section 6 we show that if damping
mechanisms are taken into account the range of validity of
the linear theory of elasticity may be much wider than that
indicated by the inequality (2.24).




t-X = a-Mh(a)X, = o (2.27)

LC
Because the wave described by (2.26) and (2.27) is amplitude
dispersed its profile distorts as it propagates. A measure
of the distortion is the incremental arrival time

at _ 2%,
P(a,X) = z= = === = 1-Mh'(a)X. (2.28)

At any wavelet, the ratio of the strain rate to the input
strain rate

3%/5% k=0 = oX/%x|x=0 " P

= X|[X=0

According to linear theory p=1 and the level of the strain
rate in the material, like the level of the strain, is bounded
by its value at X=0. By contrast the finite rate theory
predicts that even though the strain level is still bounded by
its level at X=0, because the characteristic wavelets which
carry invariant, but different, values of strain may coalesce,
the strain rate may become unbounded compared with its level

at input. This usually heralds the formation of a shock layer.
In this layer the model of the material, defined by the
equation of state ﬁ4:4), is usually invalid and must be refined
tc take into account mechanisms which can be safely neglected
outside it. Examples of such mechanism are material viscosity
and heat conduction. If the transmitting material is an
elastic rod or string then the lateral inertia of the material,
which can be neglected outside shock layers and away from

the driven edge, is also locally important, (see Parker and’
Varley [ 2 ]). If it can be argued, or observed, that the
shocks do not produce reflected waves, so that away from

shocks the variations in e,u and T are still given by (2.18),
(2.19), (2.26) and (2.?7), then the shock trajectories and
their effect on the deformation can readily be calculated
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without, at the same time, determining their structures.
The main effect of such weak shocks is to attenuate the
amplitude of the disturbance.

3. Weak Shocks

Shocks attenuate a simple wave because the characteristic
wavelets, each of which carries a constant value of e and u,
coalesce into it. In fact, according to the elastic model,
if a shock is allowed to propagate into an infinite region all
wavelets except those carrying vanishingly small values of u
and e will coalesce into it, or some other shock, so that
ultimately the disturbance will be fully attenuated. If
t=S(X) denotes the arrival time of a shock at X, if a+(X)
and o  (X) are the characteristic wavelets immediately ahead
and behind the shock, then the condition that a particle
position is unchanged by the passage of the shock together
with the law relating the change in momentum to the change

in traction imply that u=-e both before and after the passage
of the shock and that

ST(X) = 1-%M{h(a+)+h(a’)}. (3.1)

Also, the condition that the wavelets a” and o~ are at the
shock at the same time imply that

S-X = " -Mh(a")X = a”-Mh(a")X. (3.2)

Once the input signai n(a) is specified, equations (3.1) and
(3.2) govern the variations of S(X), a+(X) and a” (X) at any
shock. '

To illustrate the role of shocks as ¢ :enuating mechanisms,
consider the special case ¢f a shock moving into an un-
disturbed region so that h(a+)50 for a+§0. Then (3.1) and
(3.2) integrate to give




- S h(S)dS, and t = X+a'-Mh(a")X (3.3)
Mh® (a7) o

as the parametric representation of the shock trajectory.
According to (3.3), for a shock to form at the front a=0,
Mh'(0)>0. Then, the point and time of formation are given

by

Xp = tp = [Mh'(0)]"t (3.4)
and, by (2.28), at formation p(o,XF)=0 so that the strain
rate is unbounded. For definiteness, suppose that Me(t,0)
increases monotonically from zero to some maximum value

at time t, and then descreases monotonically to zero at t.
Then, once formed, the strength of the shock, Mh(a™),
increases from zero until it reaches its maximum strength
when it reaches the particle

2 "n
Xm = ——— h(s)ds. (3.5)

Mh (am) o
Then, the shock strength decreases until at distances which

are large compared with the shock attenuation length

t
8, = ZMJ °h(s)ds (3.6)
o
the sho;k strength
- 2’& =
Mh(a™) = () ¥[1+o(1)] (3.7)

For X<Xm, in the pulse generated at X=0 over the time interval

Oitito

max{Me(t,X)} = max{Me(t,0)} (3.8)

so that the amplitude of the pulse is not attenuated. How-
ever, for X>Xm '
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2L
max.{Me(t,X)} = shock strength = 0[(—%92], (3.9)

so that ultimately the amplitude of the pulse is vanishingly
small. Note that because all the characteristic wavelets
except those carrying vanishingly small values of Mh(a)
ultimately coalesce into shocks, the deformation outside shock
layers is ultimately -independent of the details of the

input signal h(a): the signal is fully amplitude dispersed.

In the far field, between shocks

to-t
Me={1---—x-—} (3.10)

and, at any X, the profile of Me is an N-wave.

4, Small Non-uniformities

When a disturbance is not adjacent to a uniform region
it is no longer generated by a simple wave. However, the
deformation at any particle can always be thought of as
generated by two progressing waves- an a-wave moving to the
right and a B-wave moving to the left. In the a-wave the
combination of variables

£ = zlu-c(e)] (4.1)
is invariant at each a-wavelet which propagates so that

'ﬁ‘fa= a(e). (4.2)

In the B-wave the combiration of variables

g = %[u+CCe)] (4.3)

'is invariant at each B-wavelet which propagates so that
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%% o = -ale). (4.4)

If the elastic material occupies the .sgion 0<X<L and if

_ f = F(t) at X =0, .
while (4.5)
g = G(t) at X =

(-

and if an a-wavelet is tagged by the time it left X=0, while
a B-wavelet is tagged by the time it left X=L, then according
to (4.1)-(4.5)

u = G(B)+F(a), and c = G(B)-F(a). (4.6)

If the a-wave is a simple wave then G(B)=0 and since a(e)
is invariant at an a-wavelet (2.2) integrates to give (2.16)
for its arrival time at X.
Classical linear theory takes aZ=l in (4.2) and (4.4)
to give

t = a+X = B+L-X 4.7)

for the arrival times. The only interaction between the

a and B waves is at the boundaries X=0 and X=L. The main
mathematical problem of linear theory is to determine the
signal functions F(a) and G(B) from prescribed initial and
boundary data: this usually involves solving linear difference
equations.

If no restriction is placed on the amplitudes of the

s ok upesnieitian 1

signal functions F and G there is no general mathematical
technique for determining the arrival times. To see how
conditions in the a-component of the disturbance are
influenced by the B-component, following Mortell and Varley
[ 3] we take (&,X) as the independent var:iables and c(a,X)
together with the incremental arrival time p(a,X) as the

WAL L K S
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dependent variables. It can be shown that conditions
(4.1)-(4.4) imply that

5%(/5TET p) = a'(C)a-%(C)F'(a) (4.8)
and that
§—§ + F'(a) = %—a(C)p%;Cc—, (4.9)
where

u = c+2F(a). (4.10)

In (4.8) and (4.9) a is considered a function of ¢ rather than
e. The B-component of the disturbance is said not to interact
with the a-component if the trajectory of an a-wavelet is
determined only by the signal F(a) it carries: then the a-wave
is a simple wave. According to the linear approximation there
is no such interaction and both the a and B waves are non-
dispersed simple waves. This approximation is valid when

(1) . |Me | <<1;
while (4.11)

(ii) both |MF'(a)|<<wL and IMG'(B)]<<wL.
However, according to (4.8), even when the restriction (ii)
is dropped, in the small amplitude finite rate limit there
is no interaction and

t-X = a+F(a)X (4.12)

so the a-wave is still a simple wave even though it is

propagating into a non-uniform region. A similar analysis
applied to the B-component of the disturbance yields
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t+(X-L) = B+MG(8) (X-L) (4.13)

in the small amplitude finite rate limit. The description
(4.6), (4.12) and (4.13) can be applied to many nonlinear
phenomena which occur when the amplitude of the disturbance

is small in the sense (4.11) (i). It has been used by Mortell
and Varley [ 4 ] to discuss resonant osciliations and the

decay of standing waves. The determination of the signal
functions F and G usually involves solving nonlinear difference
equations.

3 5. Nonplanar Waves

Simple waves need not be unidirectional.f Even though
the wavelets, at which the stress, strain and material velocity
; are invariant, are plane and travel at an invariant velocity,
* their speed and direction of travel can vary from wavelet
to wavelet. Trowbridge and Varley [ 6 ] have shown how these
simple waves can be modulated to obtain a global statement
; for conditions in an elastic pulse which is moving into a
F‘ uniform region. Their analysis is valid in the geometrical
] acoustics 1limit when the local frequency of the pulse is
large compared with the frequency defined by the local curvature
and speed of its front. The technqiues used are an extension
to finite amplitude waves of those used in the linear ray
theories of geometric optics and acoustics, (see Luneberg [ 7 ]).
As an illustration of the theory consider a pulse in a
material whose response is elastic and homogeneous with respect

to its state before its arrival. Then, if

IANE L ot i Al

x = x(%,1)

RN S R S i e

denote the Cartesian co-ordinates (xi), i=1,2,3, of the particle "X"
g which prior to the arrival of the pulse had co-ordinates (Xi),

; -
i A general account of such waves in both isotropic and
anisotropic elastic materials has beer. given by Varley [ S ].
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the equations governing the isentropic motion of the material
relate the components of the deformation gradient tensor

3 oX .
4 e = (x)» 1,3=1,2,3, (5.2)
E J
- and the material velocity
| 8y .
f u = (5p9), 1i=1,2,3 (5.3)
: by the equations
t.
! Cledesy = Polsy: \(5'4)
In (5.4)
: eT
i - - (i)
C= (Cyyp) = GoD)s (5.5)
rs
4 where the Piola-Kirchoff stress tensor I(e) is determined from

the stress-strain relations for the material, and s is the
uniform density in the undeformed material. Equations (5.4)
are supplemented by the compatibility equations

:l e, = u, (5'6)

which are obtained by eliminating §(§,t) from (5.2) and (5.3).
] A simple wave is composed of a fan of plane wavelets at

b each of which e and u are invariant. A wavelet propagates
with an invariant speed which not only depends on the values
of e and u it carries but also on its direction of propagation.
If Q(a) is the unit normal to, and v(a) the speed of travel
of, the wavelet a, which is tagged by the time t=a when it
passed some reference particle X=Y, then the trajectory of

T T

the wavelet is given by

E W(t-a) = Ne(X-Y) (5.7)

TR T

Ay - -

T

i
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where

N = eTn, and W = v-n-u, (5.8)

Since e(a) and u(a) are invariant at any wavelet «,
according to (5.7) in a simple wave

% N De 5 g

: Erx*eril = X = O (5.9)
3 ~ ~

i and

g N DB 5.10
: Loyl T BX|a = O (5.10)

v

so that, by (5.6), the variation in e at a particle is related

to the variation in u by

N

g’té-];l’tﬁ. = 0, (5.11)

If (5.9) and (S5.11) are used, conditions (S5.4) imply that
[S(e,N)-p Wllu,, = 0, (5.12)
where

5;5(eN)

(e)NrNs = (C

C:’Lsz ~ irjsekrezs)nknﬂ,

Cikacf)nkng’ = Sij(g,g) say. (5.13)

It can be shown that the acoustic tensor c depends on e only
threough its dependence on the Green-strain tensor §=9Tg. Its
‘particular form is also dependent on the symmetry properties
of the material. According to (5.12), in any simple wave
powz(g,§) is an eigenvalue of §(§,§) and the acceleration Uy
is an associated right eigenvector. In particular, if p'ow2

is a simple root of S then we can write
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u,, = c,tg (5.14)

where g(g,g) is the unit right eigenvector corresponding to
the speed W(§,§) and the signal function ¢ is an arbitrary
scalar function of a. Once c and N are specified as functions
of a(=t) at §=X, equations (5.14) énd (5.15) determine the
values of u and e carried by each a-wavelet,

The simple wave relations (5.14) and (5.15) also hold at
a perticle immediately after the passage of an acceleration
front, of quite arbitrary shape, which is moving into a uniform
region, (see Varley [ 8 ]). Such a front is a characteristic
surface for the system of quasi-linear hyperbolic equations
(5.4) and (S5.6). The speed W(%,§) of the front is related to
its normal N by the characteristic condition (5.12) with ezl.
If at t=0 the front coincides with a material surface whose
equation is given parametrically by

§ = X(a,b) (5.16)
and if
§ = M(a,b) (5.17)

is the normal to this surface at the point (a,b) then, at
any subsequent time t, the equation of the front is

X = Y(a,b)+W, (1,1)t. (5.18)

According to (5.18), an acceleration front propagates with
constant Lagrangian velocity W,N(l,M)-along the bi-characteristic

~
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curve defined by keeping (a,b) constant in (5.18). In the
sense that it can be shown (see [ 8 ]) that the variation
in acceleration at any point moving with velocity W,N(E,@)
can be determined if its value is known at any one time,
t=0 say, these rays are the carriers of the disturbance.
In analogy with the definition of a photon in the theory of
optics, the '"particle'" (a,b), whose trajectory at the front
where e=1 is given by (5.18), may be called an glaston. The
velocity of an elaston is always normal to the front for
an isotropic material, it is not generally so for an anisotropic
material.

The simple wave relations (5.14) and (5.15) also hold to
a first approximation in any high frequency pulse behind the
front (5.18). There the signal is carried by the one
parameter family of characteristic wavelets which at some
previous time coincided with the material surface (5.16).
The normal speed, w(g,g), relative to the material of any
such wavelet is determined by the local deformation e and
by its normal n from the characteristic condition

detlg(g,g)-powzll = 0, (5.19)

Actually, conditions at any point (a,b) on the material
surface (5.16) at time t=a only influence the deformation
at points on the trajectory

x = x(a,b,a:t) (5.20)

of the elaston (a,b,a), which is labelled by the time t=o
aad the point (a,b) at which it crossed the material surface
{5.16). It can be shown (see Varley and Cumberbatch [ 9])
that the trajectory of the elaston is determined from the
bi-characteristic relations

= B+Y’

(e,n) (5.21)

al. &

n



Pt il 4

ok s aaak™d

KAl

-17-

where the variation in n(a,b,a:t) is given by

dn
3¢ = (an-1)W, (e,n)e, .- (5.22)

In (5.21) and (5.22) u and e are considered as functions of
(x,t). Since w is homogeneous of degree one in n,

new, =W (5.23)
so, by (5.21),
dx
negE = une (5.24)

and the elaston stays on the characteristic wavelet a=constant.

The trajectory of the elaston in particle space
X = X(a,b,a:t) (5.25)

is conveniently described in terms of

w = W(e’lg), (5.26)
where
N = eTQ, (5.27)
At an elaston
dX .
d_z' = W’N(E’N)’ (5°‘8)
where the variation in
N(a,b,a:t) = N/|§| (5.29)

is given by



-18-

dN AN
gt = (WN-1)W, (e,Ne,, (5.30)

where now e is considered as a function of (K,t).

In the finite amplitude theory the trajectory of an elaston
can only be determined from (5.21) and (5.22) if at the same
time the deformation g(f,t) and g(§,t) are also determined.

The linear theory however neglects the influence of the
deformation on the trajectory of the elaston and formally takes

gEl, and 950 (5.31)
in (5.21) and (5.22) which then integrate to give
n = @(a,b) (5.32)
) and
5 X = X(a,b)+w,n(l,¥)(t-a) (5.33)

as the trajectory of an elaston. In addition, according to
linear theory (5.14) and (5.15) integrate to give

b L i 2 b

u =-cR(1,M), (5.34)

TR e

and

TN

e-1 = GR(L,MM/W(1,M). (5.35)

The statements (5.33)-(5.34) provide a complete parametric
description of conditions in a high frequency pulse once
the signal function c(a,b,a:t) is known., It can be shown
3 that according to linear theory the variation in c at an

a elaston satisfies an equation of the form

MR rER I b einl

FLErSETAY
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%% + A(a,b,t)c = 0 (5.36)

where the function A is determined by the material properties,
and by the local geometry of the surface (5.16) at (a,b).
Once the variation in c at the surface (5.16),

(@]
i

f(a,b,t), (5.37)

is specified, equation (5.36) is integrated subject to the
initial condition that at t=a

= f(a,b,qa), (5.38)

O
|

As a simple illustration which exhibits some of the
important differences between the predictions of the linear
and the finite rate theories, we consider a pulse which is
generated in an isotropic material when the boundary surface
(5.16) is suddenly loaded by a time varying normal traction
which may also vary with (a,b). Such a situation occurs when
the surface is impacted by a pressure wave. For an isotropic
material the local speed w is always of the Jorm

1
= en) 2
w = U(el)ee’e3) (1_3 B) (5'39)

where U is a symmetric function of (e.,e,,e,)—the eigenvalues
Y ¢ 1°%2

)
of the strain tensor (ggT)?-l. In a pulse generated by a
varying normal pressure the normal to the characteristic
wavelets n is a principal direction. The rate of stretching
in this direction is also much more rapid than in any other

direction so that, to a first approximation,
e = e = ] (5.40)

R=n-= Q(a,b), and N = (1+e)§ (5.41)
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so that both the particle and elaston paths are along fixed
rays wiich are normal to the impacted surface (5.16). Equations
(5.14) and (5.15) integrate to give

e = l+enn (5.42)
and

u = -c(e)g (5.43)

where c(e) is given by (2.13) with T(e} interpreted as the
principal stress in the n-direction when e, =e.=1. In terms of

- 2 73
T{e) the speed of the front U is given by
p U% = (1+e)®T' (e): (5.44)
the trajectory of an elaston is given by
dx
3t = [U(e)-c(e)]n(a,b), (5.45)
or, in particle space, by
DX
5t = a(e)n(a,b). (5.46)
The strain field is given by
= T _ 2
g = ee” = 1+[(1+e)“-1]nn (5.47)
and the stress field by
t = (T-S)%+S§§ (5.48)

In (5.48) the material functicn T(e) has already been defined
and the material function %S(e) is the maximum shear stress at
any point. Note that both T and S can be determined from the
behaviour of the material in the uniaxial deformations discussed
in section 3.
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It remains to determine the variation in e and to relate
it to its specified variation

e = H(a,b,t) on X = Y(a,b). (5.49)

Once e is determined equations (5.45) and (5.46) can be integrated
to obtain x and X as functions of (a,b,a,t). Trowbridge and
Varley [ 6 ] show that the variation in e at an elaston is 6
governed by a nonlinear first order ordinary differential

equation - the nonlinear transport equation. Moreover, in terms

of the distance measure X'which varies at an elaston so that

Q-,Qa
~

= a(e) (5.50)

and satisfies the auxiliary condition that
X =20onX = Y(a,b), (5.51)

this equation integrates to give a relation of the form
1

L L
G(e) = H(a,b,a) (1+=2) "7 (1427 (5.52)
Py Pa

for the variation in e. In (5.52), G(e) is a material function
pl(a,b) and pg(a,b) are the principal radii of curvature at
the particle (a,b) of the material surface X = Y(a,b) before

it is loaded)and H(a,b,a) is determined from the variation of
e at this surface as

H = G(h(a,b,a)). (5.53)
In terms of X, equations (5.46) integrate to give
, X = XQ(a,b)+¥(a,b). (5.54)

Once e(a,b,a:X) is determined from (5.52), the equation
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-1
E = [a(e)] (5.55)
can be integrated, subject to the condition that
t = a when X = 0, (5.56)

to give t(a,b,a:X) which, together with equations (5.42), (5.43),
(5.47), (S5.48), (5.52) and (5.54), give a complete (parametric)
description of the velocity, strain, and stress field in the
high frequency pulse.

In the small amplitude finite rate limit, (5.52) implies
that '
1 L
e = h(a,b,a) (L+—2) "Z(1+Xy "2 (5.57)
1 P2
while (5.43) and (5.48) are approximated by

u = -en, and t = (Al+2unn)e. (5.58)

where A and y are the Lamé constants. Equations (6.54) are

unchanged and (5.54) implies that

X
t-X = a-Mh(a,b,a)[ ds , (5.59)
Jof(1+3) (1452
where t is normalized as in (2.7) with E=A+2u. The classical

linear theory would take
o = a = t-X (5.60)
in (5.59)
As an illustration of the differences between the predictions

of the linear and finite rate theories consider the case when
the loaded boundary is a sphere of unloaded radius R,. Then

ppo= Py = Ro (5.61)
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and (5.57) reads

e = h(a,b,a)(%—)'l (5.62)
0

where

R = RO+X (5'63)

is the radial distance to the particle X before the arrival
of the pulse. Equation (5.59) reads

t-(R-RO)

[{}

a-Mh(a,b,a)Roznﬁg—), (5.64)
0

a-MeRﬁn(%—). (5.65)
0

According to both theories the radial spread of the pulse
attenuates the disturbance. However, whereas the linear

E theory predicts that the amplitude of the !strain rate will always
i decrease in the pulse, the nonlinear theory predicts that in
that part of the pulse where M%§>0 the strain rate will

increase and ultimately shocks will form. In particular, a
shock will form at the front a=0 at a radial distance along
the ray (a,b) given by

R _ oh
£n§; = ROMEE(a’b’O)‘ (5.66)

Another important difference between the predictions of the
two theories is that whereas the linear theory predicts that

el N S f e S g Sy

the decay in e is like (%;——-)'l with a coefficient which depends
‘ on the detailed loading pgttern, the nonlinear theory predicts
1 that as R/RO+M, away from shocks, the pulse is fully amplitude
3 dispersed and

t-t

Me = (1-—¢2) (Ing) TH{1+0 ()] (5.67)
0

ROEL i e

so that the asymptotic variation of e is independent of the

ELRuE i

1
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detailed loading pattern.
For a more detailed account of the theory and its
applications the reader is referred to [ 6 ].

6. Effect of Locally Small Damping.

The nonlinear elastic model, which neglects all attenuating
mechanisms outside shock layers, predicts that the level of
the strain rate will always increase in distance from the
driven edge, and that shocks will always form, in any unidirectional
deformation generated by a cyclic loading of the boundary.
This is because in any such loading Mh'(a)>0 at some of the
wavelets which leave the boundary in each cycle. Actually, in
practice, the strain rate will only increase if the amplitude
of the applied strain rate is above some critical value,.
Varley and Rogers [10 ] and Seymour and Varley [1ll ] have
discussed in great detail the effect of locally small damping
in the small amplitude finite rate limit in situations when
it might be thought that the response of the material 1is
elastic. Again the deformation is considered to be generated
by a slowly modulated simple wave. We briefly review their
results -for periodic deformations.

Tc model the damping mechanisms, the equation of state
(2.4) is replaced by an equation of state which relates the )
stress and strain rates at a particle to the current values
of stress and strain by

= 4(T,e)88 + w(T,e), (6.1)

where ¢ and ¥ are material functions. We consider high
frequency deformations for which

3

so that, to a first approximation, the stress variation can

3

[¢)

>> (6.2)

Q

t
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be calculated from the strain variation at a particle from
the elastic law

= 6(T,e), (6.3)

and the effect of the damping term ¥ is locally small. In
any time periodic deformation the mean of T, Tm, is independent
of X. In any small amplitude periodic deformation the mean

of e, e > is also independent of X and is related to Tm by
the static law

¥(T, ,e,) = 0. (6.4)
If, for convenience, we measure T and e so that
T =¢€e =0, (6.5)

Seymour and Varley [11 ] show that to a first approximation
in the limit (6.2), when the effect of dissipation is

locally small, T can be calculated from e by the linear
elastic law

T = ¢(0,0)e (6.6)
and that u can be calculated from e by the relation
u=-ae .(6-7)
where
a = . (6.8)

is the mean sound speed. Relations (6.6) and (6.7) also hold
in an elastic wave. However, the variation in e(X,t) predicted
by the model (2.1) is not, in general, given by (2.26) and
(2.27)
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In terms of the mean attenuation length

o

= -2a (2 6.9
- Zam(¢¢’o*¢’x)’ >0, (6.9)

L

where ¢ and the derivatives of ¥ are evaluated at (0,0),

e = h(a)e X/im (6.10)
where
M4 -X/%
t-X/a_ = a-(-zﬁ)h(a)(l-e my (6.11)
m

In (6.11) the parameter
M= (20)7M (60, +9,,): (6.12)
according to the dynamic elastic law (6.3)
T = $(0,0)e[1+Me+0(e?)]. (6.13)

Conditions (6.10) and (6.11) predict that the level of
the strain rate can only begin increasing with X at X=0 if

] at X=0
9e 2
3 3T > W0 = w, say. (6.14)
E; n
3 If
.
; ae
: |5gl<<lw,l, (6.15)
g " then the linear dissipative theory which gives
E
b -X/%
e = h(t-X/am)e (6.16)

is uniformly good approximation to the finite rate theory with

dissipation, If, in addition,
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X<<g (6.17)
the predictions of the linear elastic model, which is
e = h(t-X/am), (6.18)
is also good. The noﬁlinear elastic model is good when

x<<2m (6.19)

for imposed strain rates

d
l5£1>> o, (6.20)

T———
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