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Abstract

This paper describes some of the techniques which are

currently being used to investigate finite amplitude waves
in elastic and viscoelastic materials. In particular we

show how the simple wave solutions, which describe finite

amplitude plane progressing waves in elastic materials, may

be modified to describe the effects of reflection from

boundaries, deformations behind curved wave fronts, and the

effects of locally small damping mechanisms.
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1. Introduction

The simplest significant example of a finite amplitude

wavelike disturbance whose properties are thoroughly under-

stood occurs when an infinite half-space of elastic material

is loaded at its plane boundary by a time varying normal

traction. If the mechanical response of the material is

isotropic and homogeneous with respect to its state before

the traction is applied then, if all sources of power are

negligible compared with the mechanical power generated by

the stresses, up to the instant when a shock forms the

deformation is produced by a simple wave, (see Taylor [1]).

These waves are fully amplitude dispersed: the wavelets at

which the strain is invariant propagate at an invariant speed

which is determined by the strain level carried. Both the

stress level and material velocity are also invariant at each

wavelet and can be computed from the strain by relations

which are characteristic of the material and are independent

of the variation in traction which produced the wave. In

this paper we will show how the simple wave solutions can be

used as building blocks to construct theories which describe

the global effects of locally small non-uniformities and

attenuating mechanisms such as weak shocks, material viscosity,

and radial spreading of the disturbance.

2. Small Amplitude, Finite Rate Theory.

To describe one dimensional longitudinal disturbances

in an elastic material let

x = x(X,t) (2.1)

be the position at time t, measured from the boundary X=O

of the material, of the material particle X which in some

reference state, when the material was at constant density p0

and constant hydrostatic pressure PO, was at a distance X from



the driven end. Let T(X,t) be the traction measured from
this reference state. Then, the momentum equation for the

material relates T to the material velocity

;xu(X,t)= (2.2)

by

aT au- o(2.3)
a o1 at

For isentropic deformations of an elastic material whose

response is homogeneous with respect to the reference state

T = T(e) (2.4)

is a known function of the strain

e = - 1. (2.5)

For small strains, we assume that

T = E[e+Me2 +O(e3)]. (2.6)

if we take

= u/ao, and = ot (2.7)

as the velocity and time measures, where

a= IE (2.8)
p0

is the sound speed in the reference configuration, then, if

the bars are dropped, (2.3) reads

2 De au (2.9)a ax at



-. 3-

where, by (2.6),

a2 = l+2Me+O(e . (2.10)

Equations (2.9) and (2.10) are supplemented by the continuity

equation

au 3e (2.11)

which is obtained by eliminating x(X,t) from (2.2) and (2.5).

In any simple wave moving into a uniform region where

e-=O, irrespective of the form of the input signal

e(0,t) = h(t), (2.12)

the material velocity can be calculated from the strain by

the relation

u = -J a(s)ds, = -c(e) say. (2.13)
0

For small strains

c(e) 1 2 e[l+ 1e+0(e (2.14)

The variation of e(X,t) dupends, of course, on h(t). It

is given implicLtly by

e = h (a) (2.15)

where the arrival time of the characteristic wavelet c=constant,

which left X=O at t=a, is gi-en by

t = a+X/a(e). (2.16)

For small elongations e, which satisfy the condition that

U



-4-

JMej<<, (2.17)

the traction T at any (X,t) can be calculated from e to a

good approximation by the linear law

T = Ee (2.18)

while, according to (2.13) and (2.14), the material velocity
is also given to a good approximation by

u = -e. (2.19)

It also seems reasonable to suppose that when (2.17) holds

the variation in e(X,t) is governed to a first approximation

by (2.9) and (2.11) with a-l. This is not necessarily so.
The approximation eL to e predicted by this model is

eL = h(aL), (2.20)

where

a = t-X. (2.21)

The mean value theorem of differential calculus together

with conditions (2.15), (2.16), (2.18) and (2.19) imply

that at any (X,t)

eL- 11 = h(aL)-h(a)
e e

= el' for some e between a and aL,

= D(e)lh'(O)IX, (2.22)

where

D(e) = [ = MI[l+0(e)]. (2.23)



According to (.2.22) and (2.23), if (2.17) holds, only in

the near field where

X<<jMmax.lh'jI I (2.24)

do the predictions of the linear theory of elasticity agree

with those of the nonlinear theory.t Equivalently, the

linear theory may be used to describe conditions over the

range O<X<L only if (2.17) holds and if

a
amplitude of imposed strain rate << 0 , say.

(2.25)

Theories for which the restriction (2.17) holds but f6r which

the restriction (2.24) does not are called small amplitude,

finite rate theories. Most of the general theories describing

nonlinear effects in wavelike deformations are valid only in

this limit. In what follows we restrict attention to such

theories,

According to (2.14)-(2.16), to a first approximation

conditions in a small amplitude, finite rate simple wave are

described parametrically by

e = -u = h(a), (2.26)

where the arrival time t=t(,X) of the characteristic

wavelet a is given by

tHere we are discussing the role of the linear theory

of elasticity as an approximation to the nonlinear theory

of elasticity. In section 6 we show that if damping

mechanisms are taken into account the range of validity of

the linear theory of elasticity may be much wider than that

indicated by the inequality (2.24).
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t-X a-Mh(a)X, = cL. (2.27)

Because the wave described by (2.26) and (2.27) is amplitude

dispersed its profile distorts as it propagates. A measure

of the distortion is the incremental arrival time

p~aX)-at _aL
p(aaX) 1-Mh'(a)X. (2.28)

At any wavelet, the ratio of the strain rate to the input

strain rate

De/3e 3e/el-
Pt1 -t1X=O -=  1X=O p

According to linear theory p=l and the level of the strain

rate in the material, like the level of the strain, is bounded

by its value at X=O. By contrast the finite rate theory

predicts that even though the strain level is still bounded by

its level at X=O, because the characteristic wavelets which

carry invariant, but different, values of strain may coalesce,

the strain rate may become unbounded compared with its level

at input. This usually heralds the formation of a shock layer.

In this layer the model of the material, defined by the

equation of state (Z.4), is usually invalid and must be refined

to take into account mechanisms which can be safely neglected

outside it. Examples of such mechanism are material viscosity

and heat conduction. If the transmitting material is an

elastic rod or string then the lateral inertia of the material,

which can be neglected outside shock layers and away from

the driven edge, is also locally important, (see Parker and'

Varley [ 2 ]). If it can be argued, or observed, that the
shocks do not produce reflected waves, so that away from

shocks the variations in e,u and T are still given by (2.18),
(2.19), (2.26) and (2.27), then the shock trajectories and

their effect on the deformation can readily be calculated
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without, at the same time, determining their structures.

The main effect of such weak shocks is to attenuate the

amplitude of the disturbance.

3. Weak Shocks

Shocks attenuate a simple wave because the characteristic

wavelets, each of which carries a constant value of e and u,

coalesce into it. In fact, according to the elastic model,

if a shock is allowed to propagate into an infinite region all

wavelets except those carrying vanishingly small values of u

and e will coalesce into it, or some other shock, so that

ultimately the disturbance will be fully attenuated. If

t=S(X) denotes the arrival time of a shock at X, if a+ (X)

and a-(X) are the characteristic wavelets immediately ahead

and behind the shock, then the condition that a particle

position is unchanged by the passage of the shock together

with the law relating the change in momentum to the change

in traction imply that u=-e both before and after the passage

of the shock and that

S(X) = 1-.m{h(c+)+h(c)}. (3.1)

Also, the condition that the wavelets a and a- are at the

shock at the same time imply that

S-X = c+-Mh(a+)X = a--Mh(a-)X. (3.2)

Once the input signal h(a) is specified, equations (3.1) and

(3.2) govern the variations of S(X), a+ (X) and a-(X) at any

shock.

To illustrate the role of shocks as L 'enuating mechanisms,

consider the special case of a shock moving into an un-

disturbed region so that h(a+)tO for v.+<0. Then (3.1) and
(3.2) integrate to give
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X 2 2 h(s)ds, and t = X+a--Mh(c-)X (3.3)
Mh2 (a-) 0

as the parametric representation of the shock trajectory.

According to (3.3), for a shock to form at the front a=O,

Mh'(0)>O. Then, the point and time of formation are given

by

XF = tF = [Mh'(O)]-  (3.4)

and, by (2.28), at formation p(o,XF)=0 so that the strain

rate is unbounded. For definiteness, suppose that Me(t,O)

increases monotonically from zero to some maximum value

at time tm and then descreases monotonically to zero at to.

Then, once formed, the strength of the shock, Mh(c-),

increases from zero until it reaches its maximum strength

when it reaches the particle

M 2 h(s)ds. (3.5)Xm Mh (a m)I

Then, the shock strength decreases until at distances which

are large compared with the shock attenuation length

ka 2MJtOh(s)ds (3.6)

the shock strength

Mh(a-) (-)2[l+o(l)] (3.7)

For X<X , in the pulse generated at X=O over the time interval

O<t<t0

max{Me(t,X)} = max{Me(t,O)} (3.8)

so that the amplitude of the pulse is not attenuated. How-

ever, for X>Xm
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max.{Me(t,X)} shock strength = (3.9)

so that ultimately the amplitude of the pulse is vanishingly

small. Note that because all the characteristic wavelets

except those carrying vanishingly small values of Mh(a)

ultimately coalesce into shocks, the deformation outside shock

layers is ultimately-independent of the details of the

input signal h(a): the signal is fully amplitude dispersed.

In the far field, between shocks

to-t

Me={1---0-} (3.10)

and, at any X, the profile of Me is an N-wave.

4. Small Non-uniformities

When a disturbance is not adjacent to a uniform region

it is no longer generated by.a simple wave. However, the

deformation at any particle can always be thought of as

generated by two progressing waves- an a-wave moving to the
right and a $-wave moving to the left. In the a-wave the

combination of variables

= [u-c(e)] (4.1)f(

is invariant at each a-wavelet which propagates so that

D ja = a(e). (4.2)

In the $-wave the combirnation of variables

g = [u+c(e)] (4.3)

is invariant at each -wavelet which propagates so that
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DXi - -a(e). (4.4)

If the elastic material occupies the .egion 0<X<L and if

f = F(t) at X = 0,

while (4.5)

g = G(t) at X = L,

and if an a-wavelet is tagged by the time it left X=0, while

a 8-wavelet is tagged by the time it left X=L, then according

to (4.1)-(4.5)

u = G($)+F(a), and c = G($)-F(a). (4.6)

If the a-wave is a simple wave then G($)=O and since a(e)

is invariant at an a-wavelet (2.2) integrates to give (2.16)

for its arrival time at X.

Classical linear theory takes a=l in (4.2) and (4.4)

to give

t = a+X = $+L-X (4.7)

for the arrival times. The only interaction between the

a and a waves is at the boundaries X=0 and X=L. The main

mathematical problem of linear theory is to determine the

signal functions F(a) and G(8) from prescribed initial and

boundary data: this usually involves solving linear difference

equations.

If no restriction is placed on the amplitudes of the

signal functions F and G there is no general mathematical

technique for determining the arrival times. To see how

conditions in the a-component of the disturbance are

influenced by the O-component, following Mortell and Varley

[ 3 ] we take (a,X) as the independent variables and c(a,X)

together with the incremental arrival time p(a,X) as the
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dependent variables. It can be shown that conditions

(4.1)-(4.4) imply that

-3.(/a(c p) a'(c)a 2(c)F'(a) (4.8)

and that

+ F

+FI(at) la -(c) p~ (4.9)

where

u = c+2F(a). (4.10)

In (4.8) and (4.9) a is considered a function of c rather than

e. The -component of the disturbance is said not to interact

with the a-component if the trajectory of an a-wavelet is

determined only by the signal F() it carries: then the a-wave

2s a simple wave. According to the linear approximation there

is no such interaction and both the a and 8 waves are non-

dispersed simple waves. This approximation is valid when

(i) IMe<<l;

while (4.11)

(ii) both IMF'()j<< L and JMG'(a)<<wL.

However, according to (4.8), even when the restriction (ii)

is dropped, in the small amplitude finite rate limit there

is no interaction and

t-X = a+F(a)X (4.12)

so the a-wave is still a simple wave even though it is

propagating into a non-uniform region. A similar analysis

applied to the $-component of the disturbance yields
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t+(X-L) - O+MG(0) (X-L) (4.13)

in the small amplitude finite rate limit. The description

(4.6), (4.12) and (4.13) can be applied to many nonlinear

phenomena which occur when the amplitude of the disturbance

is small in the sense (4.11) (i). It has been used by Mortell

and Varley [ 4 ] to discuss resonant oscillations and the
decay of standing waves. The determination of the signal

functions P and G usually involves solving nonlinear difference

equations.

5. Nonplanar Waves

Simple waves need not be unidirectional. t Even though

the wavelets, at which the stress, strain and material velocity

are invariant, are plane and travel at an invariant velocity,
their speed and direction of travel can vary from wavelet

to wavelet. Trowbridge and Varley [ 6 ] have shown how these

simple waves can be modulated to obtain a global statement

for conditions in an elastic pulse which is moving into a

uniform region. Their analysis is valid in the geometrical

acoustics limit when the local frequency of the pulse is

large compared with the frequency defined by the local curvature

and speed of its front. The technqiues used are an extension

to finite amplitude waves of those used in the linear ray

theories of geometric optics and acoustics, (see Luneberg [ 7 ]).

As an illustration of the theory consider a pulse in a
material whose response is elastic and homogeneous with respect

to its state before its arrival. Then, if

x= x(X,t)

denote the Cartesian co-ordinates (x.), i=1,2,3, of the particle "X"
which prior to the arrival of the pulse had co-ordinates (Xi),

tA general account of such waves in both isotropic and

anisotropic elastic materials has beei. given by Varley [ S .
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the equations governing the isentropic motion of the material

relate the components of the deformation gradient tensor

ax.
e = ('9- ), i,j=1,2,3, (5.2)

J

and the material velocity

ax.
" : (at ) i=1,2,3 (5.3)

by the equations

C(()e'X Po't" (5.4)

In (5.4)

;T
S(Cijrs) = ers) (5.5)

rs

where the Piola-Kirchoff stress tensor T(e) is determined from

the stress-strain relations for the material, and po is the

uniform density in the undeformed material. Equations (5.4)

are supplemented by the compatibility equations

e t = 'X (5.6)

which are obtained by eliminating x(X,t) from (5.2) and (5.3).

A simple wave is composed of a fan of plane wavelets at

each of which e and u are invariant. A wavelet propagates

with an invariant speed which not only depends on the values

of e and u it carries but also on its direction of propagation.

If n() is the unit normal to, and v() the speed of travel

of, the wavelet a, which is tagged by the time t=a when it

passed some reference particle X=Y, then the trajectory of

the wavelet is given by

W(t-a) = N.(X-Y) (5.7)
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where

TN = e n, and W = v-n-u. (5.8)

Since e(a) and u(a) are invariant at any wavelet a,

according to (5.7) in a simple wave

N De
= 0, (5.9)

and

N Du
-'x+ t D- = 0 (S.10)

so that, by (5.6), the variation in e at a particle is related

to the variation in u by

N

e=t+utV = 0. (5.11)

If (5.9) and (5.11) are used, conditions (5.4) imply that

[S(e,N)-p W2 I)u, = 0, (5.12)

where

S (e,N) =C (e)NN (C ekesnkn)
ij iris - r s irjsekr9Y.S)k

- CiklZ(e)nkn,, = sij(e,n) say. (5.13)

It can be shown that the acoustic tensor c depends on e only

through its dependence on the Green-strain tensor G=eTe. Its

particular form is also dependent on the symmetry properties

of the material. According to (5.12), in any simple wave

PoW 2 (e,N) is an eigenvalue of S(e,N) and the acceleration

is an associated right eigenvector. In particular, if p'oW

is a simple root of S then we can write
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' ' (5.14)

and, by (5.11) and (5.14),

RN

= RN (5.15)

where R(e,N) is the unit right eigenvector cotresponding to

the speed W(e,N) and the signal function c is an arbitrary

scalar function of a. Once c and N are specified as functions

of a(=t) at X=Y, equations (5.14) and (5.15) determine the

values of u and e carried by each a-wavelet.

The simple wave relations (5.14) and (5.15) also hold at

a particle immediately after the passage of an acceleration

front, of quite arbitrary shape, which is moving into a uniform

region, (see Varley [ 8 ]). Such a front is a characteristic

surface for the system of quasi-linear hyperbolic equations

(5.4) and (5.6). The speed W(I,N) of the front is related to

its normal N by the characteristic condition (5.12) with e=1.

If at t=O the front coincides with a material surface whose

equation is given parametrically by

X : Y(a,b) (5.16)

and if

N = M(a,b) (5.17)

is the normal to this surface at the point (a,b) then, at

any subsequent time t, the equation of the front is

X = Y(a,b)+W, N(I,M)t. (5.18)

According to (5.18), an acceleration front propagates with

constant Lagrangian velocity W,N(I,M) along the bi-characteristic
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curve defined by keeping (a,b) constant in (5.18). In the

sense that it can be shown (see [ 8 ]) that the variation
in acceleration at any point moving with velocity W, N(IM)

can be determined if its value is known at any one time,

t=0 say, these rays are the carriers of the disturbance.

In analogy with the definition of a photon in the theory of

optics, the "particle" (a,b), whose trajectory at the front

where e=l is given by (5.18), may be called an elaston. The

velocity of an elaston is always normal to the front for

an isotropic material, it is not generally so for an anisotropic

material.

The simple wave relations (5.14) and (5.15) also hold to

a first approximation in any high frequency pulse behind the

front (5.18). There the signal is carried by the one

parameter family of characteristic wavelets which at some

previous time coincided with the material surface (5.16).

The normal speed, w(e,n), relative to the material of any

such wavelet is determined by the local deformation e and

by its normal n from the characteristic condition

detls(e,n)-pw 211 = 0. (5.19)

Actually, conditions at any point (a,b) on the material

surface (5.16) at time t=a only influence the deformation

at points on the trajectory

x= x(a,b,a:t) (5.20)

of the elaston (a,b,a), which is labelled by the time t=a

and the point (a,b) at which it crossed the material surface

"S.16). It can be shown (see Varley and Cumberbatch [ 9])

that the trajectory of the elaston is determined from the

bi-characteristic relations

dx
= u+w, (e,n) (5.21)
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where the variation in n(a,b,a:t) is given by

dn
dt~ (nnl)We (en)ex" (5.22)

In (5.21) and (5.22) u and e are considered as functions of

(x,t). Since w is homogeneous of degree one in n,

n~w, = w (5.23)

so, by (5.21),

dx
n- = un+w (5.24)

and the elaston stays on the characteristic wavelet a=constant.

The trajectory of the elaston in particle space

X = X(a,b,a:t) (5.25)

is conveniently described in terms of

w = W(e,N), (5.26)

where

N = eTn. (5.27)

At an elaston

dXdt W' (e'N) (5.28)

where the variation in
A\

N(a,b,a:t) =N IN I  (5.29)

is given by
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A

dN (3
= (NN-1)W,e(e,N)e,X (5.30)

where now e is considered as a function of (X,t).

In the finite amplitude theory the trajectory of an elaston

can only be determined from (5.21) and (5.22) if at the same

time the deformation u(x,t) and e(x,t) are also determined.

The linear theory however neglects the influence of the

deformation on the trajectory of the elaston and formally takes

e-l, and u-O (5.31)

in (5.21) and (5.22) which then integrate to give

n = M(a,b) (5.32)

and

x = Y(a,b)+w, n(l,M)(t-a) (5.33)

as the trajectory of an elaston. In addition, according to

linear theory. (5.14) and (5.15) integrate to give

u =-cR(l,M), (5.34)

and

e-l = cR(1,M)M/W(1,M). (5.35)

The statements (5.33)-(5.34) provide a complete parametric

description of conditions in a high frequency pulse once

the signal function c(a,b,a:t) is known'. It can be shown

that according to linear theory the variation in c at an

elaston satisfies an equation of the form
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dc+at + A(a,b,t)c = 0 (5.36)

where the function A is determined by the material properties,

and by the local geometry of the surface (5,16) at (a,b).

Once the varia-ion in c at the surface (5.16),

c = f(a,b,t), (5.37)

is specified, equation (5.36) is integrated subject to the

initial condition that at t=

c =  f(a,b,a), (5.38)

As a simple illustration which exhibits some of the

important differences between the predictions of the linear

and the finite rate theories, we consider a pulse which is

generated in an isotropic material when the boundary surface

(5.16) is suddenly loaded by a time varying normal traction

which may also vary with (a,b). Such a situation occurs when

the surface is impacted by a pressure wave. For an isotropic

material the local speed w is always of the iorm

2
w = U(el,e 2 ,e3)(n-n) 2  (5.39)

where U is a symmetric function of (e1 ,e2 ,e3 )-the eigenvalues

of the strain tensor (ee T)T-l. In a pulse generated by a

varying normal pressure the normal to the characteristic

wavelets n is a principal direction. The rate of stretching

in this direction is also much more rapid than in any other

direction so that, to a first approximation,

e = e3  = 1: (5.40)

R = n : n(a,b), and N = (l+e)n (5.41)
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so that both the particle and elaston paths are along fixed

rays w;ich are normal to the impacted surface (5.16). Equations

(5.14) and (5.15) integrate to give

e = l+enn (5.42)

and

u = -c(e)n (5.43)

where c(e) is given by (2.13) with T(e) interpreted as the

principal stress in the n-direction when e2=e3 =1. In terms of

T(e) the speed of the front U is given by

2 2 54pO U (l+e)2T'(e): (5.44)

the trajectory of an elaston is given by

dx
- = [U(e)-c(e)]n(a,b), (5.45)

or, in particle space, by

DX

=t a(e)n(a,b). (5.46)

The strain field is given by

T 2g = ee = l+[(l+e) -l]nn (5.47)

and the stress field by

t = (T-S)I+Snn (5.48)

In (5.48) the material function T(e) has already been defined

and the material function 1S(e) is the maximum shear stress at

any point. Note that both T and S can be determined from the

behaviour of the material in the uniaxial deformations discussed

in section 3.
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It remains to determine the variation in e and to relate

it to its specified variation

e = H(a,b,t) on X = Y(a,b). (5.49)

Once e is determined equations (5.45) and (5.46) can be integrated

to obtain x and X as functions of (a,b,a,t). Trowbridge and

Varley [ 6 ] show that the variation in e at an elaston is

governed by a nonlinear first order ordinary differential

equation - the nonlinear transport equation. Moreover, in terms

of the distance measure Xwhich varies at an elaston so that

- a(e) (5.50)
dt

and satisfies the auxiliary condition that

X = 0 on X = Y(a,b), (5.51)

this equation integrates to give a relation of the form

X 1 X

G(e) = H(a,b,X)(I+-T)-2(I+T) -  (5.52)
I  p2

for the variation in e. In (5.52), G(e) is a material function

Pl(a,b) and p2 (a,b) are the principal radii of curvature at

the particle (a,b) of the material surface X = Y(ab) before

it is loaded) and H(a,b,a) is determined from the variation of

e at this surface as

H = G(h(a,b,a)). (5.53)

In terms of X, equations (5.46) integrate to give

X = Xn(a,b)+Y(a,b). (5.54)

Once e(a,b,:X) is determined from (5.52), the equation
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dt [a(e)]- (

can be integrated, subject to the condition that

t = awhen X = 0, (5.56)

to give t(a,b,a:X) which, together with equations (5.42), (5.43),

(5.47), (5.48), (5.52) and (5.54), give a complete (parametric)

description of the velocity, strain, and stress field in the

high frequency pulse.

In the small amplitude finite rate limit, (5.52) implies

that

e = h(a,b,a)(l+- X) -2(I+-X) - -  (5.57)

while (5.43) and (5.48) are approximated by

u = -en, and t = (Xl+2pnn)e. (5.58)

where X and p are the Lam6 constants. Equations (6.54) are

unchanged and (5.54) implies that

t-X = at-Mh(a,b,a)[ ds , (5.59)

Pi P2
where t is normalized as in (2.7) with E=X+2p. The classical

linear theory would take

= aL = t-X (5.60)

in (5.59)

As an illustration of the differences between the predictions

of the linear and finite rate theories consider the case when

the loaded boundary is a sphere of unloaded radius Ro . Then

P1 = P2 = R (5.61)
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and (5.57) reads

= h(a,b,a)(R- 1  (5.62)eR

0

where

R = R +X (5.63)
0

is the radial distance to the particle X before the arrival

of the pulse. Equation (5.59) reads

t-(R-Ro) = a-Mh(a,b,)Rotn.(R-), (5.64)
0

a- M eR n(-). (5.65)
R0

According to both theories the radial spread of the pulse

attenuates the disturbance. However, whereas the linear

theory predicts that the amplitude of the strain rate will always

decrease in the pulse, the nonlinear theory predicts that in

that part of the pulse where M.L>O the strain rate will

increase and ultimately shocks will form. In particular, a

shock will form at the front a=O at a radial distance along

the ray (a,b) given by

= R M2-, (a,b,0) . (5.66)

Another important difference between the predictions of the

two theories is that whereas the linear theory predicts that

the decay in e is like (_) with a coefficient which depends

on the detailed loading pattern, the nonlinear theory predicts

that as R/Ro-*a, away from shocks, the pulse is fully amplitude

dispersed and
t-to R-1

Me o(1 R in ) 1+0 (1) (5.67)
0

so that the asymptotic variation of e is independent of the
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detailed loading pattern.

For a more detailed account of the theory and its

applications the reader is referred to [ 6 ].

6. Effect of Locally Small Damping.

The nonlinear elastic model, which neglects all attenuating

mechanisms outside shock layers, predicts that the level of

the strain rate will always increase in distance from the

driven edge, and that shocks will always form, in any unidirectional

deformation generated by a cyclic loading of the boundary.

This is because in any such loading Mh'(a)>0 at some of the

wavelets which leave the boundary in each cycle. Actually, in

practice, the strain rate will only increase if the amplitude

of the applied strain rate is above some critical value.

Varley and Rogers [ 10 ] and Seymour and Varley [1.1 ] have

discussed in great detail the effect of locally small' damping

in the small amplitude finite rate limit in situations when

it might be thought that the response of the material is

elastic. Again the deformation is considered to be generated

by a slowly modulated simple wave. We briefly review their

results-for periodic deformations.

To model the damping mechanisms, the equation of state

(2.4) is replaced by an equation of state which relates the

stress and strain rates at a particle to the current values

of stress and strain by

at e(T,e) 2e + (T,e), (6.1)

where ¢ and p are material functions. We consider high

frequency deformations for which

e It to > It aat, te)_ s s (6.2)

so that, to a first approximation, the stress variation can
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be calculated from the strain variation at a particle from

the elastic law

dT = (T,e), (6.3)

and the effect of the damping term i is locally small. In

any time periodic deformation the mean of T, T is independent

of X. In any small amplitude periodic deformation the mean

of e, e m, is also independent of X and is related to T bym m
the static law

P(Tm ,em) = 0. (6.4)

If, for convenience, we measure T and e so that

T = e = 0, (6.5)m m

Seymour and Varley [11 ] show that to a first approximation
in the limit (6.2), when the effect of dissipation is

locally small, T can be calculated from e by the linear

elastic law

T = (0,0)e (6.6)

and that u can be calculated from e by the relation

u = -a e (6.7)m

where

a M) = . (6.8),

is the mean sound speed. Relations (6.6) and (6.7) also hold

in an elastic wave. However, the variation in e(X,t) predicted

by the model (2.1) is not, in general, given by (2.26) and
(2.27)
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In terms of the mean attenuation length

z -a .M >0, (6.9)

where @ and the derivatives of i are evaluated at (0,0),

e = h(a)e- x / Zm (6.10)

where

Mk -xlP
t-X/a m = a-( -aM)h(a)(1-e m). (6.11)

m

In (6.11) the parameter

M = (,+ ,X): (6.12)

according to the dynamic elastic law (6.3)

T = (0,0)e[lMe+0(e ). (6.13)

Conditions (6.10) and (6.11) predict that the level of

the strain rate can only begin increasing with X at X=0 if

at X=O

e am

g- > M ' m we say. (6.14)

If

9-I 1 1 l, (6.15)

then the linear dissipative theory which gives

-xl/
e = h(t-X/am)e m (6.16)

is uniformly good approximation to the finite rate theory with
dissipation. if, in addition,
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X<<k M(6.17)m

the predictions of the linear elastic model, which is

e = h(t-X/am), (6.18)

is also good. The nonlinear elastic model is good when

X<< (6.19)m

for imposed strain rates

I3 I>>I I. (6.20)
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