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THEORY OF ACTIVE NONRECIPROCAL NETWORKS^ 

ABSTRACT 

This investigation sets forth theory and experimental data for active nonreciprocal networks. 

A simple way is shown of achieving nonreciprocity using a magnetic field device exhibiting 

small amounts of differential phase shift. In the theoretical treatment, use is made of scat- 

tering parameters. The effect on nonreciprocity of having cascaded and parallel connected 

elements is considered. How matching and scattering from various junctions influences non- 

reciprocity is included. Two simple devices exhibiting nonreciprocity are discussed in detail: 

a differential amplifier, and a differential attenuator; and a procedure is given for their use 

in active network synthesis. For these devices, the meander line is the nonreciprocal element 

utilizing a magnetic field. A new meander-line design is presented, realizing a desired im- 

pedance,  based on recent data on odd- and even-mode velocities along coupled microstrips. 

From the experimental work, data are reported on a meander line showing impedance charac- 

teristics which are in good agreement with theory and showing the amount of differential phase 

shift possible. To realize an element with loss, an experimental bilateral microstrip atten- 

uator is described whose resistances are short silver-deposited lines. Measurements show 

satisfactory matching for a 6-dB model. A complete design is given for a microstrip differ- 

ential attenuator using the loss and nonreciprocal elements mentioned operating near 3 GHz. 

Scattering parameters measured on a model differential attenuator show very close agreement 

with theory. Data are presented on both the differential attenuation and the insertion loss of 

this realized model. 

A theoretical analysis is given in Appendix A of two lossless three-port circuits capable of ex- 

hibiting nonreciprocity using small amounts of differential phase shift. The analysis demon- 

strates that relations between variables exist that will allow perfect matching at input and out- 

put ports and will allow the desired nonreciprocity without depending entirely on the existence 

of circulation. 

Accepted for the Air Force 
Franklin C. Hudson 
Chief, Lincoln Laboratory Office 

t This report is based on a thesis of the same title submitted to the Faculty of the Worcester 
Polytechnic Institute, Worcester, Massachusetts, on 5 December 1968 in partial fulfillment 
of the requirements for the Degree of Doctor of Philosophy in Electrical Engineering. 
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THEORY OF ACTIVE NONRECIPROCAL NETWORKS 

I.     INTRODUCTION 

Much has been written concerning a class of electrical networks which may be characterized 
as being bilateral,   passive,   linear,  and composed of finite lumped elements.    The theory has 
been developed to such a degree that various mathematical disciplines have been established 
whereby these networks may be synthesized directly from a given analytic function. 

This report is concerned with a different and more general class of networks for which bi- 
lateralness,  or reciprocity,  is no longer a requirement.    At least for a part of the development, 
the restriction of passivity is also to be removed.    Further,  since the intended application is at 
microwave frequencies,  elements possessing distributed rather than lumped parameters are uti- 
lized.    Thus,  this less restrictive class of networks is identified as being nonreciprocal, active, 
and linear (at least within a limited operating range). 

In the following sections,  the theory of active nonreciprocal two-port networks is extended 
to include those whose transmission characteristics may be interchanged by a simple switching 

scheme.    The theory shows that nonreciprocal forward-to-backward gain may be achieved by 
the proper interconnection of active elements and of passive elements that do not exhibit recip- 
rocal phase delay.    A basic active circuit is described using the minimum number of components 
necessary for the existence of such nonreciprocal characteristics.    A second device exhibiting 
nonreciprocal forward-to-backward attenuation is also predicted by the theory.    For the latter 
device,  a design is given together with an analysis of data from an experimental model.    In Ap- 

pendix A,  two types of imperfect circulators are analyzed as three-port nonreciprocal lossless 

devices.    Appendix B consists of a listing of programs written in Fortran H language specifically 
for the IBM-360 computer installation at Lincoln Laboratory.    Finally,  a bibliography pertinent 

to this report is included as Appendix C. 
The remainder of this section is devoted to describing the nature and scope of this specific 

investigation of active nonreciprocal network theory. As a first step, to obtain the proper per- 

spective, a brief discussion is given of several pertinent contributions to the theory from other 
investigators. 

A.    Work of Previous Investigators 

Information is available in the literature dealing with the analysis and synthesis of nonre- 
ciprocal circuits,  various active devices which include conventional tunnel-diode amplifiers, 
and distributed parameter microstrip transmission lines. 



1. Nonreciprocity 

Nonreciprocity results from the interaction of a signal magnetic field with a magnetized 
medium.    Thus,  a way exists of controlling nonreciprocal phase by reversing a steady magnetic 
field.    If the terminal characteristics of a network are dependent upon nonreciprocal phase,   then 
the terminal characteristics themselves may be switched by such a magnetic bias. 

It 2-5 Su      and Carlin,  et al.,        have demonstrated the realization of desired nonreciprocity in 
conventional active network synthesis.    However,  these realizations are totally predicated upon 

the use of a gyrator capable of exhibiting a full 180° of nonreciprocal phase shift.    Wenzel   and 
others have shown how microwave reciprocal and nonreciprocal filters may be designed using 

techniques of modern network synthesis. 

Several passive devices are available that do not display equal bilateral phase delay;  more- 

over,  unlike the gyrator,  these devices may have only a few degrees of nonreciprocal phase. 

Little information is available on the application of these devices to network theory.    One such 
7 

device,  the meander line,   is analyzed by Hair and Roome. 

2. Active Devices 

Single-port nonlinear devices exhibiting negative resistance have been reported in the tech- 
nical literature for many decades.    Although they are considered unstable,  they have been ap- 

Q 

plied in many useful ways.    Of these negative resistances available today,  the Gunn   device, 
9 10 the Read   avalanche diode,  the L. S. A.     (limited space-charge accumulation) mode device,  and 

11   12 the tunnel diode    '       have been shown to hold promise for the future. 
Increasing interest has been created in the very active field of microwave transmission by 

use of physically small active devices similar to the tunnel diode operating at higher and higher 

frequencies.    Certainly,  tunnel diodes are not new,  for these particular devices have been ap- 
13 plied successfully ever since the discovery of the phenomenon of tunneling by Esaki.       Two 

basic amplifiers are in use today:   the transmission type,  utilizing the concept of a two-port 
negative resistance;   and the reflection type,   utilizing the concept of a one-port negative resist- 
ance.    In the latter,  some additional device is required with which to separate the waves   inci- 

14 dent upon and reflected from the negative resistance.    Scanlan      shows the use of three- and 
15 four-port ideal circulators with which to perform the separation.    On the other hand, Gallagher 

shows a matched pair of negative resistors in conjunction with a 90° 3-dB hybrid junction as a 
means to this end. 

3. Microstrip Transmission Lines 

The interconnection of elements at microwave frequencies is most easily accomplished to- 

day by the distributed parameter microstrip line consisting of a single narrow strip separated 
from a ground plane by a slab of dielectric.    The properties of these microstrip lines were first 

set forth by Wheeler.       The characteristics of propagation along two such microstrips coupled 
17 

together have been analyzed recently by Weiss and Bryant. 
A Q 

Jones and Bolljahn     worked out design equations for various filter configurations using 
coupled lines in the strip-line transmission scheme where normal modes propagate along lines 
with the same velocity.    Similar physical configurations exist in the microstrip transmission 

t Numbered references are listed at the end of this report on p.66. 



scheine, but here,  owing to a dielectric-air boundary,  the normal modes propagate with differ- 
ent velocities.    Differences in propagation velocity certainly alter the predicted filter response 

of a given configuration.    These filter design equations have not been modified for the microstrip 

system. 

4.     Periodic Sections 

No information is available concerning networks of periodic structure where each iteration 

is itself an active nonreciprocal section. 

B. Statement of the Problem 

This study deals specifically with a desired network of potentially periodic structure oper- 

ating at microwave frequencies.    Each individual section is to be a basic active network capable 

of producing nonreciprocal gain by utilizing nonreciprocal phase-shift elements.    Such a section 

thus can provide some degree of unilateral gain in a direction determined by the elements which 
exhibit a small amount of nonreciprocal phase shift.    Since the nonreciprocal phase shift is re- 

versed by inverting a magnetic field, the unilateral gain through the network will also be con- 

sidered switchable. 

C. Objectives 

The objectives of this report are:   (1) to contribute to the body of knowledge of active nonre- 
ciprocal network theory sufficiently to allow the prediction of basic configurations that exhibit 
some degree of unilateral and switchable gain with small amounts of nonreciprocal phase shift; 
and (2) to reduce to practicality one of the devices predicted,  thus to substantiate the theoretical 
development. 

H.    THEORY 

In this section,  the theory of active nonreciprocal networks is developed sufficiently to pre- 
dict several models which show interesting characteristics.    The effect of mismatched active 

elements and different junctions on these nonreciprocal characteristics is considered.   A sim- 
ple procedure is set forth whereby these devices might be utilized in the area of active network 

synthesis.    Throughout the analysis,  liberal use is made of the scattering formalism. 

A.    Definitions 

1.     Scattering Parameters 

One manner in which to characterize a two-port network is given by 

Es   = SllEid + S12Ei2 <« 

and 

Es2 = hi*! + S22Ei2 <2> 

1 2 where E.   is the complex wave amplitude incident on port 1,  E.   is the complex amplitude inci- 
1 1 1 2 dent on port 2,  E    is the complex wave amplitude scattered from port 1,  E    is the wave scat- s s 

tered from port 2,  and S. .,  S.2,  S?.,  and S?? are the directional-coupling or scattering param- 
eters.    The ordered double subscript,   i.e.,  S.?,  is intended to mean scattering referred to 



port 1 from port 2.    Examination of Eqs. (1) and (2) shows that S. . and S     have the significance 
of input reflection coefficients, while S_. and S.? are the forward and backward transmission 

coefficients,  respectively. 
Equations (1) and (2) may be combined in a single matrix equation as 

or 

Sll        S12 

S21        S22 

[S] 

E. 
l 

E. 

(3) 

(4) 

2.     Unitarity 

Certain useful relations between the scattering parameters may be derived by considering 
the energy relations at the driving-point terminals of a given multi-port network. 

The total real power delivered to any network may be written in matrix form as 

P = Re(I*]t X E]) (5) 

where I*], is the conjugate transpose or so-called Hermitian conjugate of the matrix I].    If the 
network is lossless,   P must vanish.    On substituting the scattering parameters for I*]   and as- 
suming that the driving-point impedance is identical at each terminal of the multi-port network, 
the condition for zero power loss becomes 

[S*]t [S] = [U] 

or 

[S][S*] [U] 

(6) 

(7) 

where [U] is a unit diagonal matrix.    Thus,  the scattering matrix itself representing a lossless 
network is unitary. 

In order to satisfy the equality indicated in either Eq. (6) or (7),  S*]. must be the inverse 
-1 of the scattering matrix,   i. e.,  [S]     .     The determinant of such a matrix must have a unit 

magnitude. 
A condition such as unitarity is often a valuable asset in the algebraic simplification of ma- 

trix manipulations,  and will be used in the development that follows. 

3.     Reciprocity 

Of the several possible identities which come from the expansion of Eqs. (6) and (7),  the 

following two will suffice to illustrate reciprocity: 

and 

\su\2 + \si2\2 = i 

IS^+IS^I2«! 

(8) 

(9) 



Clearly,  then,  for a lossless network |S     | = |s?. |,  which serves to illustrate the fact that the 

only nonreciprocity possible is in the arguments of these transmission coefficients. 

The visible effect of reciprocity or nonreciprocity on a scattering matrix is the symmetri- 

cal condition of the matrix about the principal diagonal. If the matrix is symmetrical, the net- 

work is bilateral; however, if there is dissymmetry about the main diagonal, the network pos- 

sesses   some degree of nonreciprocity. 

4.     Differential Phase 

A particular network which is lossless,  hence satisfying the unitarity condition,  and nonre- 

ciprocal only to the extent that the argument of S.? does not equal the argument of S    ,   is said 

to exhibit differential phase shift.    If the phase delay in the forward transmission direction is 
-1<P. ,  the phase delay in the reverse transmission direction is e  ■"+,  and the two-port network 

is matched at both ports,   then the scattering matrix for this device is 

[S] 
0 

-}<p_ 

-iv. 

(10) 

It is noted the matrix of Eq. (10) demonstrates nonreciprocity by the dissymmetry of phase 

about the main diagonal;  however,  owing to the fact that the network is lossless,   |S _| =   |s_. |. 

The two directional phase angles cp    and <p    will appear many times in the analysis to follow. 

In order to assist in simplifying as much as possible,   a differential phase factor is defined as 

-i[(<p-cp   )/2] 
6 = e . (11) 

B.   Circuit Configurations 

Of the many possible methods of interconnecting individual elements to achieve nonrecipro- 

cal or differential gain,   perhaps the simplest to consider is the cascade or tandem connection. 

1.     Cascade Connection 

Figure 1 shows a cascading of three obstacles or scatterers,   a bilateral amplifier with which 

to make the total circuit active,  and a matched element exhibiting differential phase. 

|U-4-l2?ll"| 

Ob, 
AMPLIFIER 

(bilateral) 

ri     Sl 0     G 

G     0 

-I -I 

r+j<P 

:-]< 

Fig. 1.    General cascade connection. 



Theorem I. 

Any number of circuit elements consisting of lossless scattering obstacles,  bilateral ampli- 
fiers,  and elements exhibiting differential phase when cascaded together produce at most nonrec- 

iprocity in the arguments of the overall transmission characteristics.    The magnitudes of the 
transmission parameters are always equal.    If a cascaded circuit is to show nonreciprocal am- 

plitudes,   it then follows that such nonreciprocity must be present in one or more of the elements 
cascaded together. 

Proof. 

The input-output waves at the various numbered junctions of the general cascade connection 
of Fig. 1 are related by directional-coupling parameters and are given in matrix form by 

10 

E 

(12) 

K 

0    G 

G     0 

(13) 

s. 

(14) 

and 

E 

s 

,6 

0        e-i«' 

S^ 0 

r2     S2 

(15) 

E.u 

(16) 

A change in notation has been adopted for this proof to avoid confusion where there are several 
similar double subscript scattering terms — for example, five different S. . terms. In addition, 

the notation for the differential phase is altered slightly to simplify the handling of this proof. 
It is advantageous to rewrite each matrix equation in a transmission form relating the inci- 

dent and scattered waves at one terminal to the incident and scattered waves at the opposite ter- 
minal. This may be accomplished by expanding each matrix equation indicated and recollecting 
terms to yield 



\ i     si '    si 

(17) 

0     1/G 

G       0 
(18) 

E 

s 3 

r',r. k~m 

E. 

(19) 

and 

E 

E. 

K 

o      e-^ 

.-J? 

E. 

\  2        s?   )     s 

l 

(20) 

(21) 

At an interface between successive elements indicated in Fig. 1,  waves must be continuous 
across the boundary.    Thus,  a wave scattered to the left becomes the wave incident from the 

2 2 left,  etc.    This means that E.   from Eq. (17),  for example,   is identically equal to E     in Eq. (18). 
Satisfying the boundary condition requires merely the inversion of the rows of a given transmis- 
sion matrix equation.    Substituting each successive inverted equation into Eq. (17) forms 

E.1 

v'l       sd  )    Sl 

V  3        s,   /     s. 

0     l/G 

-]<P 
\ 2       s     /    s? 

(22) 

0        e -}<P E 



Equation (22) may be simplified by applying the condition of unitarity to each of the three 

lossless scattering obstacles as 

sisl-rlrl =€ 

S2S2     r2r2      £ 
-ißz 

and 

s^s3-r'3r3 = e 
-iß, 

(23) 

(24) 

(25) 

since the determinant of each matrix involved must have a magnitude of one.    Equation (22) now 

becomes 

1 
~rl 

-ißt 
e 

i 

rl_ 

G 

0 

0 

1/G 

' -iß, 

~r3 

r' 3 

1 0 

0 

e-3<P 
S1S2S3 

-J/3, 

"r2        d 

E.u 

E 

(26) 

Performing the indicated matrix multiplication and then rewriting the resulting transmission- 

form equation in scattering form gives 

') + r'3e I G + (-r^r^r, + r',)  Q a'.sLaLe"-'™ 

^-rlr2e -r1
r3J G + (-r^r3 + 1) g 

+i v 
8lB2B3e 

(-rlrk£"^3-rlr3)G + (-r2r3+1)G- 

(rl6 -W3)Gt(r3{      2 + rJi 
/ -iß* x 

(-rlr2e"    3 - rlr3)  G + (-r2r3 + »  ff (-rlr2£"J"3 - rlr3) G + <-r2r3 + «  (T 

Of particular interest is the ratio of the overall S?. and S.~ terms,  which becomes 

S21       sls2s3e 

E. 
l 

(27) 

12 S'lS2S3 
(28) 

Owing to the fact that each of the three obstacles was lossless such that  |s. |  = |s' |,   |s, | =  |sL |, 

and  |s-, |  =  Is', |,   it is evident that 

|s21l= |s12| (29) 

The only amount of nonreciprocity ever possible exists in differing arguments of the S.. and S_.. 
12 21 



Regardless of what selection is made from among lossless scatterers, bilateral amplifiers, 
or differential phase shifters, the analysis of a cascaded group of these elements always yields 
an equation similar to Eq. (28).    Thus,  the magnitude of the overall transmission parameters is 

always the same as shown by Eq. (29). 
It should be noted that the bilateral amplification G can only scale the magnitudes of S. _ 

and S_., since this term appears in the denominator common to the two coefficients. The author 
has worked out the case where the bilateral amplifier is not matched but rather is mismatched by 

differing amounts at the two ports. The extra r-terms to properly account for the mismatch ap- 
pear in the numerator of S, . and S__, and also appear as an extra complexity of the denominator 

common to all scattering coefficients. Thus, reflections in cascade caused by mismatching can- 
not aid in obtaining nonreciprocity from differential phase but only to the scaling of S , and S    . 

If the numerator and denominator terms of Eq. (28) could be obtained in some sort of additive 
form rather than in the product form, then there would be a possibility that the ratio of S.. /S. _ 

was not always of unit magnitude. 

2.     Parallel-Parallel Connection 

From the previous results,  it would seem,   in addition to scattering waves, that provision 
should be made for an additional conductive path through the network.    The simple parallel- 

parallel connection provides for this. 

Theorem n. 

If a wave is split by a scattering junction,  and if one resulting component wave is amplified 
while the other component is altered by a differential phase element,  and if the waves are brought 
together again in such a way that multiple feedback paths exist, then nonreciprocal gain is pos- 
sible.    The parallel arrangement indicated is necessary for nonreciprocity and is also sufficient. 

Proof. 

The following analysis will suffice to demonstrate the fulfillment of the necessity. 

The circuit arrangement of Fig. 2 shows two junctions for splitting and recombining the sig- 
nal, a single differential phase-shift element, and a bilateral amplifier or active device, as re- 
quired by Theorem II. 

111-4- I;?H~1 

J   = 

-1/3     2/3      2/3 

2/3      -1/3      2/3 

2/3        2/3      -1/3 

amp 

0   G"| 

G    oj 
o 

-2<P. 

-I<P+ 

Fig.2.    Parallel-parallel circuit arrangement. 



There is no loss in apparent generality if the simplest junction is used first in the analysis 
which favors reduced algebraic manipulation.    One of the simplest junctions is formed by the 
converging of three identical lossless transmission lines.    The two junctions shown are then con- 
sidered to be completely symmetrical and lossless.    Owing to the use of lossless lines,  the scat- 

tering coefficients are represented by real numbers,  hence simplifying algebraic manipulation. 
The terminal relations of such a symmetrical junction are 

=    [J] 

E. 
l 

(30) 

and 

[J] 

E.' 

(31) 

where [J] represents the scattering matrix of the symmetrical junction ^ given by 

JH     J12    J13 

J21     J22     J23 

J31     J32    J33 

-1/3 2/3 2/3 

2/3 -1/3 2/3 

2/3        2/3      -1/3 

(32) 

The upper branch of Fig. 2 is designated by 

E 

E' 

Sll  S12 

S21  S22 

E. 

(33) 

and the lower circuit branch is similarly designated by 

E 

]■:. 

Sll     S12 

S21     S22 

(34) 

fC. G. Montgomery, R. H. Dicke, and E.M. Purcell, Principles of Microwave Circuits (McGraw-Hill, New 
York, 1948), p. 427. 

10 



With reference to the right-hand junction,  it is evident that E.   referred to in Eq. (31) is the 

same as E    in Eq. (33),  and E.   in Eq. (31) is the same wave as E4 in Eq. (34).    Similarly,   E 

in Eq. (31) is identical to E2 of Eq. (33),  and E4 of Eq. (31) is the same as E.4 of Eq. (34).    Upon 
making the indicated changes in Eq. (31) and collecting similar terms,  a set of three equations 

relating incident and reflected waves at the junction may be written as 

E2 = J.As^.E1 + s,,E2) + J,,(s'   E3 + si, E4) + J.-E.6 

l 11    21   l 22   l 12    21   l 22   l 13   l (35) 

E4 = J.Js^.E.1 + s,,E2) + J,,(s' E.3 + s' E4) + J,,E.6 l   21 21 l   22 l    22 21 l   22 l    23 i (36) 

E6 = J^.fs^.E.1 + s,,E2) + J,,(s' E3 + s' E4) + J,,E6 

s   31 21 l   22 l    32 21 l   22 l    33 l 
(37) 

1 1 Referring now to the left-hand junction,  it is easily recognized that E.   in Eq. (30) is E     in 
Eq. (33),   E.3 in Eq. (30) is E3 in Eq. (34),  E3 in Eq. (30) is E.3 of Eq. (34),  and E* of Eq. (30) is 
.1 S S 1 s 

E.   of Eq. (33).    Making these substitutions into Eq. (30) and collecting terms generates three 
equations describing the left-hand junction as 

Ei'  = Jll^lX + S12Ei2) + J12<silEi3 + S'l2Ei4> + J13Ei5 (38) 

Ei3 = -W8!!13!1 + S12Ei2) + J22(silEi3 + SlZEi4> + J23Ei5 

Es5 = VlX + S12Ei2) + J32(silEi3 + SbEi4) + J33Ei5 

(39) 

(40) 

A 

Equations (37) and (40) show that the overall scattering parameters may be specified if E. , 
7 3 4 5 6 ^ 

E. ,   E. ,  and E.   can be obtained as functions of E.   and E. .    Equations (35),   (36),   (38),  and 

(39) form a set from which the indicated four variables may be obtained by solution of simulta- 

neous equations.    It will be assumed at the outset that s. .  = s_2 = s'     = s'     = 0.    There is,  of 

course,  a significant saving in algebra by such an assumption.    As an example of the calculation 
involved, 

E.J 

1 
3 S21 -1 2 v6 

_3 Ei 
0 

2 
3 S21 

0 -4E6 

3  l 
-1 

-1 
1 
3 S12 -|E

5 

3  l 3 s12 

0 ^ s 3  12 -f E5 
3  l 

-is' 3 S12 

1 
3 S21 -1 2 , 

3 S21 0 

2 a 
3 21 0 -is' 

3 S21 -1 

-1 
1 
3 S12 

0 2 , 
3 S12 

0 
2 
3 S12 

-1 
1  , 
3 S12 

(41) 

11 



The solution is 

- s     ) E6 

V "* = 9     12      l 
i   " 3 | | 1_ 4     , 4_ , 1_    ,      , 

27  S12S12S21S21       9  S12S21       9  S12S21       9  S12S21       9  S12S21      * 

2 4 2        5        2 2 
3        (9  S21S12 + 9 S12S21 ~ l' Ei   + ( 9 S12S12S21 + 9  S12 (42) 

Assembling all the E. terms in Eqs. (40) and (37) yields a matrix equation of the proper 

form as 

E 

K 

[Sj 

E. 

(43) 

where [S] refers to the overall circuit parameters.    Of particular interest are the S._ and S_ 

terms which become,  from Eqs. (40) and (37), 

S12 = J31s12[Ei6 part of Ei2] + J32s12(Ei6 part of Ei4] 

4 , 4 ,      ,      _ 4 _ 4     , 
9  S12S12S21      9  s12s12s21      9  S12      9  S12 (44) 

and 

S21 = J31S21[Ei5 part °f Ei1] + J32s21tEi5 P*1-1 of Ei3) 

4  ,     ,4       ,  _ 4  ,  _ 4 
9 S12S21S21  9 S12S21S21  9 S21  9 S21 (45) 

The ratio of Eq. (44) to Eq. (45) is 

S 
12 

521 

812(8i2B21-1)+812(812821-1) 

s21(s12s21      i] + S21(s12S21 1) 
(46) 

The character of Eq. (46),  in displaying sums and differences of phasor scattering terms,  shows 

no guarantee that the numerator and denominator are always equal in magnitude.    The possibility 

that S., ^ S,. proves the necessity of the parallel-parallel arrangement. 

The following proves the sufficiency of the parallel arrangement and determines conditions 

that must exist for nonreciprocal gain to be possible. 

It may be assumed that the upper branch of the circuit of Fig. 2 is an amplifier characterized 

by 

[S] 
o       Gei

a 

GJ"      0 
(47) 

where G is the amplification constant, and eja is the amplifier phase delay. Further, it is 

assumed that the differential phase element occupies the lower branch of the same Fig. 2 and 

is given by 
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[S'l 
e3

a'e3<p 

e3<* e-3<P 
(48) 

i(2a') ia' 
substituting the proper terms and making use of the identity e J ' — 1 = 2jeJ      sin a1,  Eq. (46) 

where e-"      represents some common insertion phase,  and e   ""is the differential phase.    By 

substitut 

becomes 

12  _ GeJ   2] sing' + e J y (G e J      - 1) 

21       GeJ   2j sind' + e  JT (G eJ       —1) 

The form of Eq. (49) is 

I   +C-J<\ 

and the ratio 

i   = Geja2j sina' 
' GV2«-! (     ' 

If £   and   7)   are related by a real number,  then the magnitude of Eq. (49) is unity,  and no differ- 

ential gain is ever possible.    If,  on the other hand,   |/i? can be complex,  this proves the suffi- 

ciency of the parallel circuit in creating differential gain. 

Substitution for the exponentials in Eq. (50) gives 

£        2iG (cos a + jsina)sina' ,_., 
"VT  = ~2 2       ' ' G    (cos a + j sin a)   — 1 

By inverting,  dividing,  collecting of terms and simplifying,  the ratio becomes 

1  =  1  ,„» 
r\       . G sin a        _1_ sin a  . _ . , G cos a 1_ cos a . v-"' 

[ 2 sin a1       2G sin a' '     J     2 sin a'       2G sin a' ' 

It may be determined from this equation that (1) if G is not 1.0,  or that (2)   a  is not n(jr/2) where 

n is odd,   I/T? cannot be totally real and thus the magnitude of Eq. (49) is guaranteed something 

other than unity.    These conditions on Eq. (52) are sufficient to allow differential gain.    It is to 

be noted from Eq. (52) that the nonreal condition can be met with a = 0.    Thus,  in this analysis, 

the amplifier does not need to have additional phase delay. 

Corollary. 

The minimum number of components required to achieve the desired nonreciprocal gain is 

four. 

The specification is for two junctions with which to split the conducting waves,  one amplifier 

or active device to provide gain,  and one differential phase element for control. 

Scattering Matrix. 

The complete scattering matrix for the overall circuit parameters of Eq. (43) is shown in 

Fig. 3.    First it is noted the matrix does not possess symmetry about the principal diagonal, 

which indicates the presence of nonreciprocity.    Second,   if all terms containing <p   are inter- 

changed for <p   and vice-versa, the matrix terms would switch about the main diagonal,  indi- 

cating a swap (end for end) of the network transmission characteristics. 
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C.    Matching Constraint 

The fact that the present application is for a periodic structure of identical interconnected 

networks raises the question concerning each input reflection parameter S. ..    If this term and 

S-_ are made to vanish,  this would greatly simplify the present analysis.    Further,  Theorem I 

demonstrated that there will be no sacrifice of nonreciprocal gain by constraining the impedance 

to a match. 

In order for S. . to vanish,  the numerator must be zero,  i. e., 11 

-j((p  +<p  ) 7 . -jcp -J<P,\        -j(<P, + <P  ) 
3G e        +     '   + G* - 4G(e       ~ + e       +J+e "+3 = 0      . (53) 

It should be noted here that the gain of the amplifier required for this matched constraint is a 

function of the junction parameters and the two phase shifts,   <p   and <p  . 

In order to simplify Eq. (53) as much as possible,  a term representing the average insertion 

phase of any component is defined as 

-iU<p.+<p )/2] 
e = e +     ~ . (54) 

With the use of this definition and the definition of differential phase factor given in Eq. (11), 

we may rewrite Eq. (53) as 

(3G2 + 1) e2 - 4G(eö* + eö) + (G2 + 3) = 0 (55) 

where 6* represents the conjugate of 6.    Regrouping these terms yields a quadratic equation in 

the complex amplifier gain required as 

G2(3e2 + 1) + G(-8e Re 6) + (e2 + 3) = 0      . (56) 

Solving this quadratic. 

n      4g Re 6   .     /l6e    Re    6        €    + 3 ,,,. 
° " —2         /  2 2 2       ' (57) 

36^ + 1       -4   (3e    + 1) 3e    + 1 

This is a particular type quadratic wherein the two roots are reciprocal conjugates of one an- 

other.    This may be demonstrated by considering the terms from the quadratic Eq. (56) that 

identify the product of the two roots as 

r e2 + 3   = J_     e2 + 3 (58) 

12      3e2 + 1       e2  (e*)2 + 3 

2 2 where e    is complex but of unit magnitude,  and (e* )    is its conjugate.    It should be noted that 

the magnitude of this product is unity.    The argument of the r. r   product is 

2                                        2 ,         .      .     -1     Im c            ,     -1     Im (e*)            -, .     -1 Im e ,,0. arg(r.r  ) = tan      =■ — tan      ; '—^ — 2 tan       (59) 
1  L 3 + Re e 3 + Re (e*r Re e 

but the second term is conjugate to the first;   so, 

2 , v     ,/.     -1     Im e -1 Im e\ 
arg(r r  ) = 2ltan       r -tan     577J      • 1   L x 3 + Re e «e e/ 

Hence,  the two roots are reciprocal in magnitude but of conjugate angles. 

(60) 

15 



o © 
c © 

coo 
o c o 

o 
c 

c 
c 

o o 
o © 

© o 
© c 

c 
© 

o 
c 

c 
o 

© c © © 
O O © © 

ceo 
© © c 

© O © 
c © c 

© 
© 

© o © o © o 
© o c © © c 

© 
C 

o 
c 

© © © 
© © © 

o © 
o © 

OOOGOOOOO 
o o © c c o o © © 

o 
© 

c 
r 

c 
© 

OCOC   COCOOC- 
C © C  ©  ©  C   © o ©  © 

•               s /                \ 

c 
© 

© c c o c c 
© o © c  © © 

c 
c 

o 
r 

CO© 
©©r 

o o 
o o 

c o © o o 
o o © o o 

© o 
© © 

o o 
© © 

o 
© 

© 
© 

O 
c 

© 
c 

^f in N 
m m «c 

—' t~ in 
N   ^ ITi 

A© c 
r»~'©  © © 

O C C C  ©  © 
© © © © © © 

o 
© 

© 
© 

O ©  © 
© ©  © 

/ \ 
\ 

© cr. A o o o o © o © 
o o o o o 

© © 
© © 

© © 
o o 

© 
o 

c 
c 

/ 
~f oc o- tri NC 
(«O in r» © o 

© -c in c 
o 

\ 

m 

© c © o o © 
©   C  O C C  © 

© © 
© © 

o o c 
o © C ©  © r- in o-' c   ©  © 

o o 
o o 

o o o 
o o © 

o 
c 

c 
c 

© o 
c o 

c o 
© o ©/ 

1 

An 
er 

•1 r» OL 
~k r\ ro 

— a. r~ — -i © 1 o c t c c 
r» © C O © © 

\ 

c 
c 

© 
© 

©   C•   v. 
c c © 

rv rv c\j 

o o 
o c 

o o o 
o o o © 

e 
o 

o © 
o o O  *J 

/ 

1 

mi 
IT r» © 

cr cc ^ in 
ro in «c -o ~o in 

oo cc -o 
ro —i © 

<r 
r- 

V 

-<4oooc 
LT rv\© o o ©» 

o 
o 

© 
© 

c o © 
CO© 

^ ,-. ~-t _l r-< - - - - " (M Cv rV IN CM N M 

\ 
» 

m ■* «VC ©' © 
r- in ro p © © 

o o o o o 
o © o o o 

o 
c 

o 
c 

© © 
© o 

/ 
^ .* in 
/o in r~ © 

© c 
— vt 

Hdff 
>c r- x 

-a- © co 
0>  IiS 

-• © © 
-o ^- -> © 

© 
c 

© o o © 
c © o c 

/ 
rv rvj rv CM   CV   f\J 

\ 
© © o o o o 
O O O O O o 

© 
o 

/ 
<=/*• 
C/ro 

/ 
IT ro 
ro m 

-3->*^inr-ooco© 
mr"-©^*ro^Dcc©^ 

m o co 
F-l    —    O 

© o *- in 
\ 

<r -t -i- s*- t> © 
© r- in ro Of ©■ 

---.-■V 
\ 

© © —' ro m 4H 
r- cr r- IT ^ J 

o 
CJ 

© 
o 

O O © 
O o O 

C\j (VI OJ rv rv ro ro ro rv rv rv rv rv, 

o © 
c © 

o o o 
© o o 

o 
o 3 I-) © © 

c rr 
rn 
in 

r~ © x 
© •—< rv 

r\l cc  in 
ro   rv —* 

N ^3 m 
©   P-   LT. ro Ci 

©. 
a 

© o © 
o o - 

rvr\irvc\ir\jmrorocororv<\Jrvr\jrv 

o © © 

/ 
/ 

o -C -o INJ rv ro vD © © r\j 1» rv o —* © ^0 © rv rv ro. -0 c <r irt o O o o 
o © © O © f ro 1ft •0 cc © rv * ^3 CC —' ro * >t <r ro r~> CC .0 <r rv C S •0 IT ro -AO O a c 

trNjrvrvrviNimfnrororomfOnjfNjojrvrM' 

© O O | (M >o o 
"OiKI + O 

^0 oj 
r- r> 

in o 
r— f> ^f in 

co >*••"•< ^ © 
in 'n ^ rvj © 

lPNH«r^fl0 0i\) 
Sl^mfHOir'.o-trri 

r" - -1 - 
\ 
\ 

J^.O o © 
-A<->   °   © 

r>J'\j'Njrvj(V!rOro-o-ororOror*j^jr\jrvf\J 

O O 
O O 

©   b CO ©  ro 
OHnj+m 

oj © 
CO © 

r^ © 
I ro in 

rv >0 
=0 O 

© rv 
* -0 

r~ rv 0> © v0 rv©r--h-©ojP—  roO 
roinro-J©C0Oin-}' 

_ V. -i - 

\ 
\ 

CO   o\©   ^> 
rv -i'p © 

Nf\|r\jryrArt>mrrirnrrifllmrriMr\j(\ji\j-*H'-*-H-<H^-M-H 

O O 
O O /5 rv ro ■* in r» 

O  ro 
ro O rv 

_( ,-< ** rv rvj 

•4- J5 

NJ   CM 
•     * 

rv m 
in ~o 

rv r~ro vj- -H 

r~ o m ro -J 
r*-ro—4f-*rO>o—icotn 
co ^o -t oj o ^o p— m >t 

rorOro-ororOrOrOrxjrvrNjCVOJ^^—i_-t^_^_4^_i 

vT   -o ro\. 
-O rv 

ro ro \p 
rv r-i p 

omoinonoinomo-noLnoxvon©noinomonomOun©-n©inon 
■jOr-SO'Ä^^'f'trtllflrvlrij-(-rfOQr>r/icocONS-0^ininit^'nr<iN(\iHrt 

© 
-e 

X 
CL 

UJ 
rr 

o 

<r     '■= o o o * r- 
O 
< 

c 
D 

Li. 
trt 

ÜJ U 
© to 

< Ü 

£*:  a- 

~    UJ 
Q-14- 
E  o 
O    4- 
^    .C 

o  5 
4)   -t 

4-      O -E  ° 
CD  CD 
O    C 
E^ 
>-   u 
o -t «-   o 
c   E 

.2   co 
4-      C 

Q.IO 

E   ^ 
o  o 

•    v> 

LL.    Q. 

(69p)   3   3SVHd   N0I183SNI   39VM3AV 

16 



A program was written for the Lincoln Laboratory IBM-360 computer in order to solve for 

values of G as a function of the average insertion phase e  and the differential phase factor 6. 

The program is shown in Appendix B,  Fig. B-l.    Inasmuch as the objective is to produce nonre- 

ciprocal gain,  the program selects the larger of the two roots of the above quadratic. 

Figure 4 shows the results of the computer solution for the magnitude of the vector ampli- 

fier gain G for small values of differential phase factor and for various values of the insertion 

phase.    Of particular significance is the fact that magnitudes on this gain profile,  required to 

satisfy the matching constraint,  are relatively small.    No nonreciprocal gain is possible if 

G = 1;  therefore,  the valid solutions all lie within the horseshoe-shaped boundary indicated by 

the dashed line. 

The limited ranges of the variables  e  and 6  may be identified with various conditions ap- 

plied to the basic quadratic Eq. (57).    Valid solutions for G > 1 as identified in Fig. 4 exist only 

when the radical term of Eq. (57) is real.    When the radical term is either zero or imaginary, 

G = 1,  which does not satisfy condition 1 of Eq. (52);  thus,  nonreciprocity is not possible. 

Particular arguments of G are required to satisfy the matching constraint.    Figure 5 shows 

the profile of G angles required for given variables  e  and <5.    Here again,  the horseshoe curve 

has been repeated to bound those values that satisfy the requirement for G > 1. 

It should be noted that the coordinates of this horseshoe boundary curve may be defined 

quite easily.    To this end,   Eq. (57) may be rewritten restricting its application to the solution 

boundary where the magnitude of G is 1.0 as 

2 * 2  ,  , 
(61) UU.e = 4%Reö ±   /l6%Re\ö      %+3 

3e^ + 1       \l   (3€,: + 1)          It    + 1 

where 9   is the angle on G.    Factoring an e  out of this equation 

terms gives 

|i|/_e =e 
4 Re 6 ± Vl6 Re2 6 - (6 Re e2 + 10) 

3e
2 + l 

(62) 

The bracketed quantity is required to be of magnitude 1.0.    Assume'that the radical term is 
2 2 imaginary,  i.e.,   16 Re   ö < (6 Re €    + 10).    The bracket now has a magnitude of 1.    This means 

2 
r,      2      16 Re   6      , ,,- iLI\ Re e    =  7 1.667 (63) 

is the relation defining the coordinates of the boundary of the dashed curves utilized in Figs. 4 

and 5. 

The diagram of Fig. 6 illustrates how the various areas of the gain profile of Fig. 4 and the 

angle profile of Fig. 5 are related to the conditions on the radical term of Eq. (62). 

Other general areas of the insertion phase — differential phase space might be expected to 

yield additional solutions still within the matching constraint. An examination of Eq. (56) shows 

this to be true in that any addition or subtraction of 180* to the variable 6 yields the identical 

condition, since only the real part of 6 is involved. Further, the addition of multiples of 180° 

to the variable e provides the same magnitudes of G, but, as Eq. (62) shows, the argument of 

G will depend on these 180° multipliers. The possible cyclic repetitions of the solution areas 

are shown in Fig. 7. 
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Fig. 6.    Diagram identifying areas of gain profiles    H 

of Figs. 4 and 5 with certain constraints on Eq. (59).     $ 
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Fig. 7.   Diagram illustrating cyclic repetitions of valid solution 
areas of gain profile as a function of e and 6. 

D.    Matched Differential Amplifier 

Having determined that a range of G does exist for which a matched input and output is pos- 
sible for potential iterations of the minimum-element basic circuit configuration,   it remains to 
show what range of nonreciprocal gain is possible. 

1.      Range of S12 

A modified computer program was written to determine values of G,  S.0,  and S... over 
smaller increments of the variables of insertion phase and differential phase factor in order to 
show more smoothly what variations exist in the parameters. 

Figure 8 shows the results of the computer solution for S _.    Here, the magnitude of S.2 

is displayed as a function of the average insertion phase e,  and the differential phase factor  6. 

Superimposed on this resultant array is a contour map of equal S  , magnitudes.    A pole of the 
function is in evidence near the value of e =55° and ö = 35",  where the reverse transmission 
parameter S.2 reaches a high value. 
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Attention is still drawn to the fact that the absolute gain of the actual circuit amplifier is 

still only 3.7 at most.    The fact that S.~ has such a high value in the vicinity of the pole is caused 
by the denominator of the expression tending to zero. 

2. Range of S 

Figure 9 shows the computer results for S? . with variables of smaller increments.    Again, 
superimposed on the array is a contour map of equal S      magnitudes.    Unlike the array of the 

previous transmission parameter,  there is no pole of the function in evidence;  moreover,  the 

values of S_ . magnitude are,  in general,  more nearly the values of the circuit amplifier gain. 
This function seems to be quite regular over the range of interest. 

3. Ratio of S21/S12 

Of special significance is the ratio of the forward-to-reverse transmission scattering param- 
eters.    This determines the magnitude of the nonreciprocal gain possible. 

Figure 10 shows such a ratio over the range of the original computer program variables. 
Spectacular,  of course,  is the point represented by the presence of the singularity of S,_,  i. e., 
e = 55° and 6 = 35°,  where the nonreciprocal gain ratio S2./S,2 is 1:0.01.    It is necessary to 
keep in mind,  however,  that all values of S.2 and S2. are >1 within any range where the differ- 
ential amplifier is matched.    This represents gain in both directions.    The ratio of gains,   i. e., 
S_./S.2,  is the nonreciprocity desired. 

Attention is called to the fact that Fig. 10 shows no nonreciprocal gain to be possible when 
the insertion phase is either 90° or 180°,  a result predicted by the sufficiency condition proved 

on p. 13. 

E.    Matched Differential Attenuator 

Referring again to the constraint of a matched input and,  because of the symmetry in the 
scattering matrix of Fig. 3,  a matched output, we will recall that the necessary amplifier gain 
required was one complex root from a special quadratic,  Eq. (57).    The theoretical development 
of the matched differential amplifier was based solely on the selection of the larger of the two 

reciprocal conjugate roots. 
Owing to the character of the quadratic equation,  the alternate root for any given e  and 6 

must have a magnitude <1.    Thus,  the required match is produced by an "amplifier" having a 
bilateral "gain"  G < 1,  or bilateral loss.    The computer program was modified to select the 

smaller root;  this modification is shown in Appendix B,   Fig. B-2. 

1.     Range of S2- 

The range of values of the forward transmission parameter is shown in Fig. 11 as a function 
of the variable insertion phase e and differential phase factor ö.    Because the values of G are 
reciprocal to those used previously,  the magnitude of a given value of S?. is the reciprocal of 
that obtained with the same e  and 6  as before.    This means that all S2- values are <1 within 
the range where a match can be effected. 
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2. Range of S 

In similar fashion,   Fig. 12 shows the range of values of the reverse transmission parameter 
as a function of the same variables.    Again,   each value given is the exact reciprocal of a value 
obtained with the first computer solution for the same variables.    All S._ values are therefore 
< 1.     A point of interest is that of € =55° and ö =35°,  which shows the function tending to zero, 
the reciprocal of the previously located value obtained in the vicinity of the pole. 

3. Ratio of S21/S12 

The ratio of reciprocals is the reciprocal of the original variables.    The ratio of S?./S.-, 

utilizing the complex values of G  (which are <1 ),  is everywhere the reciprocal of the values 

shown previously in Fig. 10. 

Of special interest is the fact that significant nonreciprocity exists with this analysis,  which 

predicts the existence of a matched differential attenuator.    If the insertion loss in one direction 
can be kept low while the loss in the opposite direction is high,   this differential attenuator might 

be a practical isolator.    Particularly appropriate to the isolation concept is the theoretical dif- 
ferential loss ratio of 100:1,   shown in Fig. 10 at € =55° and ö = 35°. 

F.     Use of Non-ideal Active Device 

It will now be of interest to return to the active circuit discussed on p. 11.    The theoretical 
development to this point was predicated on the use of a special two-port active device capable 
of bilateral amplification while being matched both at input and output.    Such a device perfectly 
matched is considered ideal.    Several active devices are potentially applicable here,  but they 

are considered non-ideal due to the fact that perfect matching cannot be achieved.    Thus,  it is 
of practical interest to know whether amplifier matching is really required. 

The effect on the required gain and nonreciprocity of the overall differential device caused 
by relaxing the matched requirement (thus to produce additional internal reflections) is now to 
be determined.    First,  the mismatch to the non-ideal active device will be characterized as 
being entirely real in order to simplify the algebraic manipulation.    Following this development, 
the influence that a reflection phase angle has on mismatching will be considered briefly. 

1.     General Scattering Matrix 

Let the scattering matrix of the active element in Fig. 2 be represented by 

S     = 
R    G 

G    R 
(64) 

where R is the input and output reflection coefficient,  assumed to be real.    The symmetrical 
junction given by Eq. (32) and the matched differential phase-shift element are retained for this 

analysis.    Equations (35) through (40) are still appropriate.    Of the original assumptions made, 
the only one that remains is s'     = s'_ = 0. 
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Making the necessary substitutions into the indicated equations gives,   for a typical term, 

l 

1 
3 S21 -(I s22+ 1) 2 „6 

~3 Ei 

2 
3 S21 

2 
3 S22 -fEl' 

1  Sll + 1) 
1 
3 S12 -K5 

2 
3 Sll 

2 s 
3 S12 -K5 

2_    , 
3  S12 

-i s' 3     12 

1 
3  S21 

3  S21 

(js11+l) 

3  Sll 

-(-a      + 1)       — s' K 3     22        '       3     21 

3  S22 

__ 1 
3  S12 

2 
3  S12 

3  S21 -1 

2 , 
3 S12 

4_    , 
3  S12 

(65) 

where s.? = s.,.  = R.    The solution of this typical term is given as 

,2 4    , _2 _Z        _2 _2,     5 
l9 s12s21     9 s12s21     9 Slls22    9 S22     3 sll     3J    i 

K 
+ ^27 S12S12S21     27 S11S12322+ 27 S12S22     9 S11S12 + 9 S12     9 S12^ Ei 

9 [S12S21 +4s12S21_SllS12S21 + S12S21 ~SllS22_3s22~3sll ~9 

~s12si2s21s21~S12s21s22 + slls'l2s21s22 + 4s12S2l' 

(66) 

The form of matrix Eq. (43) still applies; therefore,  assembling all R. terms,   Eq. (44) may 

be rewritten as 

12 ltt_5 n _6 , ^«^[E^partofE1] 
with E. =0, E. =1 

+ s12[E.6 part of E.2]) + ^s^fE.6 part of E4] 

27  ^-6silSi2
S22-6silSi2 + 6si2Si2S21  H 6si2Si2S21 

-6si2s22-6s12-6si2} (67) 
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and Eq. (45) may be rewritten as 

21 ^6      = J31(s21[Ei5 part °f Ei1] + S22[Ei5 part °f Ei2]) 

with Ei =1, E. =0 

+ J32S21[Ei5Part°fEi3] 

=  h (6si2S21S21 + 6S12S21S21 - 6SHS21S22- 6S21S22 

-6S11S21-6S21-6S21>       • 

The ratio of Eq. (67) to Eq. (68) is 

S12  _  s12(s12S21 ~ 1) + 312(~S11S22 ~ Sll ~ 322 ~ 1 + S12S21) 

S21 S21(s12S21 ~ 1) + s21(s12S21 ~ SHS22 ~ S22 ~ SH ~ 1} 

After making the proper substitutions indicated by 

(68) 

(69) 

and 

[S] 
R        GeJ" 

G£J
a        R 

[S'J     = 
eJ«6J<P 

eja e-3<P 

(70) 

(71) 

Eq. (69) becomes 

12  _    G€;ja2j sing' + ej<iP[G2ej2a-(R2 + 2R + 1)] 

Ge^j sin a1 + e'J <p[GZ^Za - (R2 + 2R + 1)] 
(72) 

The form of this equation is still £  + e^^n/i + e"•'''%, which will always have a magnitude of 

unity whenever the ratio £ /y is real.    The ratio 

Gejg2j sin a1 

,2   jZa G"eJ"" -(R" + 2R + 1) 

Substituting for the exponents and collecting terms yields 

i   _ 1 

(73) 

(74) 
V       [G sin«       (R2 + 2R + 1) sin a 1    _ . [G cos a   _ (R2 + 2R + 1) cos a 1 

[2 sin a'       " 2G sin a'J       J[2sina' 2G sin a' J 

It is necessary that  a have values other than n(jr/2),  where n is odd, to keep the ratio from 

being entirely real.    This is part of the same sufficiency condition found before on p. 13;  however, 

now,  in addition, the restriction imposed on G must be broadened to include the effect of R.    It 

is evident that Eq. (74) is also real whenever 

„      R    + 2R + 1 
G =  g       . 

Thus,   |G| cannot be |R + 11 for differential gain to be possible. 

(75) 
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The complete scattering matrix for the basic differential circuit with amplifier reflections 
is shown in Fig. 13.    If R is chosen as 0, the matrix terms degenerate to those terms displayed 
in Fig. 3. 

2.     Vector Space Representation 

With finite reflections R,  the gain G is now a function of three variables and must be repre- 

sented in three-dimensional vector space.    The amplifier gain G required to provide a matched 
differential circuit now depends on its own reflection coefficient R,  as well as e and 6.    G may 
be solved for from the s.. term of the matrix in Fig. 13.    Making the substitutions for <p   and 
<p ,  this becomes 

G _ 4e Re 6 ± >7l6e2 Re2 (a) - (3e2 + 1) [(~3R2 + 2R + 1) e2 + (-R2 - 2R + 3)] (?6) 

3c2 + 1 

This result should be compared with Eq. (57),  which is for the case of R = 0. 
The computer program was extended to solve for the complex amplifier gain G required 

for various values of e  and ö  with chosen increments of real reflection coefficients  R.    The 
program additions indicated may be found listed in Appendix B,  Fig. B-3.    Figure 14 shows a 

three-dimensional representation of all the possible solutions of this problem in reflection- 

insertion phase-differential phase space. 
For successively larger positive values of R,  the second complex term under the radical 

of Eq. (76) has a diminishing magnitude;  thus,  larger values of <5  are allowable for a matched 
solution regardless of the value of e.    On the other hand,  for successively larger negative values 
of R,  the second term under the radical becomes smaller in magnitude for large values of e  and 
larger in magnitude with very small values of e.    A larger magnitude of this second term de- 
creases the allowable ö, thus limiting the range over which solutions are possible.    For suc- 

cessively larger negative values of R with e  near 90°,  there exists a continuous range of pos- 
sible values of ö without limit.    If a large range of ö  is desired,   R  should be negative,  which 
means the amplifier should have an impedance lower than that of the feeding line.    These de- 
pendences on 6 are reflected in the dissymmetry of the spatial configuration. 

Certainly,  any value of R  other than zero in Eq. (76) will cause the roots of the quadratic 
Eq. (76) to be different than reciprocal conjugates.    Hence,  the differential attenuator model will 
not have characteristics that are reciprocal to those of the differential gain model for any non- 

zero value of R. 

3.     Dependence on Reflection Angle 

In practice, a fourth dimension is certain to be present as the phase angle on R.    The effect 
that this angle has on the three-dimensional solution space is to be determined.    A single plane 

was passed through the reflection phase space diagram of Fig. 14 at the point where R = +0.2 and 

parallel to the insertion- and differential-phase coordinate axes. 
The phase angle on R = 0.2 was varied from —120° to +120° in order to determine just how 

susceptible the required values of G were to changes in reflection angle. Again, the computer 
program was rewritten.    The substitutions required will be found in Appendix B,  Fig. B-4. 

Figure 15 shows a resulting three-dimensional configuration representing the solution space 

of R = 0.2 as influenced by reflection coefficient phase.    The figure shows the reflection coeffi- 
cent phase to vary only from—90° to +90°,   and illustrates the fact that varying the phase 
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Fig. 14. Three-dimensional representation showing all Fig. 15. Illustration showing all solutions of |G| >1 
possible problem solutions of |G| >1 in reflection- as a function of amplifier reflection coefficient phase 
insertion phase-differential phase space. angle, insertion phase  e,and differential phase factor 

8; amplifier reflection coefficient |R| =0.2. 

angle on the amplifier reflection coefficient does not limit the range of €  or 6  for possible solu- 
tions.    However,   it does produce a change in symmetry about the plane e = 90° with higher re- 
flection angles.    With these higher angles, the range of values of 6  is extended to include a 
greater number of possible solutions. 

By relieving conditions on the ideal amplifier,  several active devices become practical. 
Among these is the simple reflection-type tunnel-diode amplifier consisting basically of a scat- 
tering junction and the terminating negative resistance.    There is also a need for some stabilizing 
networkt which will add sufficient loss to compensate for the negative resistance at unwanted 
frequencies. 

G.    Alternate Junctions 

To determine the effect that the scattering junction itself might have on nonreciprocity,  two 
general solutions were worked out using junctions different from the symmetrical lossless junc- 

tions in the basic matched differential amplifier arrangement.    One junction,  formed by a 50-ohm 
line feeding two identical 100-ohm lines,   is to be identified in the following as a balanced junction. 

The other junction formed by the converging of a 50-,   25-,  and 100-ohm line is arbitrarily chosen 

and is to be identified in the following analysis as a completely nonsymmetrical junction.    These 

junctions are shown schematically in Fig. I6(a-b).    Since the theoretical development parallels the 
cases already treated,  it will not be presented in as much detail.    Suffice it to say that changing 
the junctions changes the numerical coefficients appearing in the various scattering matrices. 
The general properties of forward-to-backward differential gain and differential loss remain as 
before.    The first configuration to be analyzed is that of the basic differential amplifier using two 

balanced junctions. 

t J. H. Lepoff, "Design Procedure for a Shunt Stabilizing Circuit for Tunnel Diode Amplifiers," private 
communication. 
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|U-4-l22»J] 

Z01=5° 

z02 = 100 

Z03=10° 

(a) (b) 

Fig. 16.   Diagrammatic representation of lossless scattering junctions:   (a) a balanced 
junction, (b) a nonsymmetrical junction. 

1.     Balanced Junctions 

The balanced junction chosen is represented by the matrix 

[J]    = 

0 

1 

l 

N/2 

1 i 

42 N/2 

1 
2 

1 
2 

1 
2 

1 
2 

(77) 

The resulting overall scattering matrix, utilizing two of these balanced junctions,  is shown 
in Fig. 17.    The matrix does display symmetry about the secondary diagonal,  and it folds over 
along the principal diagonal if <p   and <p   are interchanged. 

The computer program was written to solve for possible amplifier gain,  which would allow 
for the matched differential amplifier.    Program substitutions are listed in Appendix B,  Fig. B-5. 
The result of such an analysis gives a three-dimensional figure in reflection-phase space,  as 
shown in Fig. 18.    It is interesting to point out that no solution is ever possible when R = 0, due 
to.the fact that an incoming wave splits once at the first junction,  matches, the input to both the 
upper path and the lower path,   combines,   and emerges as a single wave again.    Thus,  the sep- 
arated waves just converge on the second balanced junction;  there is no feedback possible. 

2.     Nonsymmetrical Junctions 

The second alternate solution chosen was that utilizing the junction of Fig. 16(b).    The scat- 
tering matrix for this completely nonsymmetrical junction of 50-,   25-,  and 100-ohm lines is 

given as 

[J] 

0.1428 0.5714 0.8081 

0.5714 -0.7142 0.4040 

0.8081   0.4040 -0.4285 

(78) 
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Fig. 18. Reflection-phase space representation 
showing possible problem solutions of | G | > 1 
when using balanced scattering junctions. 

Figure 19 shows the complete differential scattering matrix resulting from this  special choice. 
A computer program,  altered for the use of these special junctions and still requiring a 

match,  i.e.,   S. . =0,  may be found in Appendix B,   Fig. B-6.    The computer solution gave values 

of G > 1 within a three-dimensional field of reflection-phase space that displayed interesting 
characteristics.    For an amplifier reflection coefficient of zero,  no solution is possible;  that 
is to say,  nonreciprocity is not possible with a matched input.    For successively larger negative 
values of R,  a single lobe in solution space centered on e = 90° is evident, very much like that 
of Fig. 14.    On the other hand,  with successively larger positive values of R,   a double lobe is in 
evidence,  one lobe being centered on e - 0 and the other on e = 180°. 

H.    Use in Active Network Synthesis 

The theory developed thus far has been sufficient to predict two matched differential units — 

one an amplifier,  and the other an attenuator.    Each unit is capable of exhibiting considerable 

nonreciprocity with small amounts of differential phase.    The use of two scattering junctions, 
one active element,  and one element exhibiting differential phase defines the amplifier;  while 
two scattering junctions,  one passive element,  and one differential phase element define the 
attenuator. 

In the field of active network synthesis, where the requirement of reciprocity has been re- 
moved from analytic functions,  there has been no way to realize the nonreciprocity except by 
using one or more gyrators.    Starting with a given nonpositive-real immittance function,  the 
nonreciprocity could be removed by a gyrator network to leave a positive-real remainder func- 
tion which could be realized by several classical techniques.    Use of the devices under discussion 
here could offer an alternate way of achieving the desired nonreciprocity,  but with small amounts 

of differential phase. 

1.     Composite Cascade 

Perhaps a more general scheme would be to achieve gain in one direction and loss in the 
other by cascading together one each of the previously described nonreciprocal units, thus pro- 

ducing a composite cascaded unit. 
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From the vast solutions of the matched differential amplifier and matched differential atten- 

uator,   it is possible to pick variables such that the cascading of one each of these presents an 

overall scattering matrix,   given as 

[S]     = 
L 0 c 

(79) 

where 1 < G   < N,  and 0 < L   < 1.    The value  N used here is merely an upper bound.    The param- 

eters S.? and S?. may be interchanged readily by interchanging <p   and <p . 

2.     Iterations of Composite Cascades 

If additional gain or loss is required,  the entire composite network may be repeated.    Fig- 

ure 20 shows the iteration of two such composite cascaded networks.    The terminal relations 

are 

and 

E 
£ 

E: 

s 

s 

K 

0      G. 

Lc      ° 

0      G 

L 0 c 

E. 

E. 

i:. 

(80) 

(81) 

Fig. 20.   Iteration of two composite cascaded differential networks. 

To be conformable, these equations are rewritten in transmission or chain form as 

I, 

(82) 

K 
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and 

E. 
l 

E 

J_ 
L 

G        0 c 

E. 

E 

(83) 

By substituting Eq. (83) into Eq. (82),  the overall transmission matrix equation becomes 

E 

L G 0 c 

G2L2 

c   c E 

(84) 

Converting this back to a scattering matrix equation. 

E 

(85) 

It is obvious that continued iterations of n of these structures can realize a scattering ma- 
trix,  given by 

[S| 

0       G 

Ln      0 
(86) 

Thus,  the amount of nonreciprocity is dependent both on the number of iterations and on the dif- 
ferential gain and loss chosen in realizing the basic composite cascade. 

It must be realized that the absolute value of G    and of L    indicated depends on the cascaded 
units being perfectly matched. 

3.     Immittance Relations 

The desired nonreciprocity is specified by the terms of the scattering matrix of Eq. (86). 
Much of the network synthesis is accomplished utilizing immittance relations preferable to such 
scattering terms.    Equation (86) will be converted to the immittance form to show that the scat- 
tering terms necessary for synthesis can easily be recognized even though the function is given 
in the immittance form. 

4 
The impedance matrix   of a two-port network may be obtained from a scattering matrix by 

Z = 2([U]-[S])_1-[U] (87) 
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where [U]   is the unit diagonal matrix.    Thus, 

Z = 2 

1     0 

0     1 Ln       0 c 

1     0 

0     1 

GnLn 

1 +GnLn 

c    c 

2L' 

2G1 

1 +GnLn 

c    c 

(88) 

Similarly,  the admittance matrix may be obtained from 

Y = 2([U) + [S])_1 -[U]      ; 

Y = 2 

p 
i 0 

+ 
0 l 

L 

G 
,-1 

i     0 

0     1 

l-LnGn 

c    c 

1 +LnGn 

c    c 

-2L' 

-2G1 

i +GnLn 

c    c 

(89) 

An immittance matrix may be formed by combining Eqs. (88) and (89) as 

1 + LnGn 

c    c 

-LnGn 

c    c 

±2G 

i l-LnGn 

c   c 

±2L 1 + LnGn 

c    c 

1 -LnGn 

c   c l-LnGn 

c    c 

(90) 

where the +  sign signifies an impedance matrix and the — sign signifies an admittance matrix. 

Given an immittance matrix to realize,  the selection would be made of G   and L   or G 
n c c c 

and L   , where n is the number of iterations of the basic composite cascade.    G    is the product 

of like terms:   for example,   S._ of the matched differential amplifier section and S      of the 

matched differential attenuator section.    In similar fashion, 

c       21 amplifier       21 attenuator (91) 
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In this application to synthesis,  nothing has been mentioned about the phase of either L   or 

G  .    Any amount of phase shift common to the two terms would be realized by a positive-real 

residue function.    An amount of differential phase could be realized by a unit similar to that em- 
ployed in the basic differential gain circuit. 

IE.   REALIZATION OF THE MODEL 

In order to demonstrate practicality and to substantiate the theoretical development,   it was 
decided to realize one of the models predicted.    It was further decided to realize the matched dif- 

ferential attenuator model first,  thus to avoid at the outset the imbedding of an unstable active 
tunnel diode and its necessary stabilizing and terminating circuits.    For such a realization, 

aside from symmetrical scattering junctions,  it is necessary to have a controlling phase-shift 
element and a bilateral attenuator. 

Several experimental procedures were carried out by the author,  both in order to proceed 
at various points in the development and in order to verify some of the theoretical data.    These 
experiments are described below. 

A.   Phase-Shift Element 

The key to either device model is the use of a two-port element which can produce a differ- 
ent phase delay in the forward and reverse conductive directions.    Only a few degrees of such 
differential phase are needed.    Further,  the desire is present of interchanging the transmission 

characteristics of the ports by being able to interchange (p   and <p , the phase delay in the two 
conductive directions. 

An additional requirement of having the input and output reflection coefficients equal to zero 

restricts the impedance of the differential phase unit to 50 ohms,  which is the present standard 
transmission impedance in microstrip. 

Of the several devices reported in the literature which exhibit differential phase,  the mean- 
der line was chosen for this application.    Only a limited number of meanders would be necessary 
to yield a small amount of phase shift at S-band (2.0 to 4.0 GHz). 

Owing to the requirement of this special application,  a need exists to know how to design 
such a line for (a) the required 50-ohm impedance,  and (b) the desired limited differential phase. 
Unfortunately,  there presently exists no procedure for calculating the desired differential phase; 
thus, the following will be limited to the design of a meander line with a limited number of mean- 

ders so far as its impedance alone is concerned. 

1.     Design of Meander Line 

An iterative-type procedure has been developed by Syracuse University Research Corpora-- 
7 

tion    for the proper dimensions of linewidth and line spacing for a given substrate thickness to 
yield a matched meander line.    This procedure is based on an infinite number of meanders and 
depends for accuracy on the reading of several sets of curves giving various fringing capacitances. 

Here, a new approach will be used to determine the meander-line impedance characteristics. 
This will be accomplished by modifying all-pass filter equations to properly account for changing 
propagation velocities, and byusing recent data on such velocities in coupled microstrips.   Where 

only a few meanders will be needed,  such a scheme will be more direct. 

Theory of Coupled Strips:—  The problem of conducting strips  in close proximity 
18 has been solved for a general transmission scheme.     Jones and  Bolljahn      present several 
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solutions of two such parallel coupled lines with various terminations.    However,  their develop- 
ment is for the stripline,  transmission-line system,  with a ground plane above as well as below 
the coupled strips (such a configuration is illustrated in Fig. 21).    Certainly,  propagation along 
the strips is in the TEM mode. 

h ± h  7 -\~-7t C\ ■*-     .   -3      *^- : 

Fig« 21.    Notation used in deriving all-pass filter characteristics in 
stripline transmission system.   After E.M.T. Jones and J. T. BolljahnJ8 

The indicated sets of current generators can excite a so-called even or odd mode of propa- 
gation.    Each normal mode has a characteristic impedance defined by Bolljahn as follows: 

Z      = characteristic impedance of one wire to ground with equal current 
(flowing) in the same directions, 

ZQO = characteristic impedance of one wire to ground with equal current 
(flowing) in opposite directions. 

Results are presented in Ref. 18 for two coupled strips connected together at the far end, 
thus presenting a single meander line.    This is classified as an all-pass filter. 

The image impedance of such a derived filter in the TEM mode is given as 

Z. =   /Z     Z I    v   oe   oo 

and its insertion phase shift  q> can be obtained from 

Z 

(92) 

cos <p 

F^-tan2^ 
""oo  

^ + tan2 ßl 

(93) 

The solution that follows is a modification for microstrip transmission. 

Theory of Coupled Strips in Microstrip:—   Figure 22 shows two parallel lines cou- 
pled in the microstrip transmission system where now the upper ground plane is removed, leav- 
ing air dielectric above the strip and a solid high dielectric substrate below.    Wave propagation 
along the strip is no longer truly in the TEM mode. 

Owing to the fact that all transverse dimensions are much smaller than the wavelength within 
the operating frequency range, the simplifying as sumption is made that the TEM mode still persists. 
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Fig. 22.    Notation used in deriving image impedance characteristic 
for microstrip meander line. 

A recent analysis by Weiss and Bryant     presents data for the even- and odd-mode velocities 
along pairs of coupled microstrips.     Data'   for dielectric constants of 16.0 and  14.4 are repro- 
duced in Appendix B,  Figs. B-7(b) and B-8(b).    These data are directly applicable to the deriva- 
tion of the meander-line impedance. 

Modification of All-Pass Equations:—  The equations derived for the all-pass filter 
or meander line in stripline may now be rederived taking into account the different mode veloci- 
ties for microstrip transmission. 

Referring to Fig. 22,   the input current to each of the terminals may be related to the current 

sources indicated as 

h = h + lZ 

I3 = i3 " i4 

I, = i_ + i, 4       3       4 

The generator currents are,   in turn,  related to the terminal currents by 

h = \ (Ii+ V 

(94) 

w «I-V 
i3 = f d3 +14) 

i4 = i<i4-i3) • (95) 

Since infinite impedance current generators are employed, the strip voltage to the ground 

plane v   . may be obtained from transmission-line theory as 

t These data are reproduced with special permission from J. A. Weiss and T. G. Bryant 
17 
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—jZ     i. cos/3  (I  — x) J   oe 1 re 
al sin/3  I (96) 

where Z      is the even-mode characteristic impedance,  and ß    is the even-mode phase velocity 

along the strip.    Similar expressions exist for the contributions to v   and v,   by the remaining a D 
current sources. 

The terminal voltages for the coupled strips become 

Vl=(val+Va2+Va3 + Va4>lx=0 

V2 = (vbl+Vb2 + Vb3+Vb4)l x = 0 

V3 = (vbl+Vb2 + Vb3+Vb4>l x=l 

V„=(v.+v_+v-+vj| 4 al       a2       a3       a4 ' x=l 
(97) 

Substituting Eq. (96) and similar expressions into Eq. (97) yields a set of equations,   one of which 

is illustrated here as 

cos ß t cos ß I 
Vl = "^oe1!  sin/3 t ~ ^oo^ sinß i ^e o 

Jz     i 
l 

oe 3  sinö t e 
- Jz     i oo 4 sinß i o 

(98) 

In order to effect a simplification of the derivation,  it will be helpful to define 

cos ß  i 
A =   J  Z e 

1     oe sinö  I 

-i 
cos ß  I 

Joo  sinö 1 ^o 

c-i oe sin/3 1 

D = I Z 2     oo  sinö  i *o 
(99) 

The relation between the terminal currents and terminal voltages may be expressed in ma- 

trix form as 

[Z] (100) 

For the case of a single meander line,   the boundary conditions require that I, 

V    = V v4     v3 
This matrix equation reduces to two equations of the form 

Vl  = [-A-B+^]Il + [-A + B-^]I2 

—I.  and 4 

(101) 
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and 

V2 = [-A + B-^]Il + [-A-B+^]I2      • (102> 
These terms may be compared with those of a general network described by the open-circuit 

driving point and transfer impedances z. .,  z-2,  and z_, where 

and 

vi = *ah + zizh (103) 

V
2 = ^l1! + ^2*2      • (104) 

If a boundary condition is now applied to this circuit such that it is terminated at port 2 by its 

image impedance,  V    = —\JL,,  Eq. (104) may be solved for I   as 

With this result substituted,  Eq. (103) becomes 

Vl - -ll1! + -z\Z-\\2  h      ■ (106) 

With the circuit so terminated in its image impedance Z., the ratio of V./l. is also Z..   Thus, 

zi-*u + -z\-l22    ■ (107) 

If z. . is identical to z2~,  and symmetry has been preserved to guarantee this condition,  then 

Z 
-N/

Z
11

Z
22-

Z
12

Z
21       • (108) 

The terms of Eqs. (101) and (102) may be identified with z. .,  z2_,  z._,  and z,. and substituted 

into Eq. (108) to give 

ZI=(4AB-^-) . (109) 

Upon substituting from the defining equation of Eq. (100) and simplifying,  the final image imped- 

ance is given as 

tans i K0 
I = ^P0e^oN/tan-^7      • (110> 

This result may be compared with the Johns and Bolljahn result of Eq. (92). 

The image transfer constant for any two-port network is defined in impedance terms as 

(Z11Z22>1/2 

coshy =      "  *■*■      . (Ill) 
z12 

Substituting for z. .,  z.,, and z,,,  and making use of the fact that z.    = z,_, 
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cosh cp -A - B + (DVB) 

-A + B - (D2/B) 
(112) 

If the Z      and Z      are assumed to be real,  i.e.,  lossless lines,  Eq. (112) may be reduced to 

(Z    /Z    )-tanß i  tanß i oe     oo re 'o 
COS * ~  (Z    /Z     ) + tanß I  tanß i (113) 

Equations (110) and (113) show the alterations necessary in the Jones and Bolljahn all-pass 
equations to properly take into account the different normal-mode velocities. 

17 Theoretical Impedance Curves:— An examination of the Weiss and Bryant data 
reveals that ß   < ß   for coupled strips.    Equation (110) then will no longer predict an image im- 
pedance which is constant at all frequencies,  for when ß i < TT/2 < ß I,  the image impedance 
is imaginary or the filter is in cutoff.    Coupling in microstrip makes the meander line then a 
band-pass filter. 

Figure 23 shows both the image impedance Z. and the insertion phase   <p calculated for a 
magnesium titanate (K = 16) dielectric at frequencies in L-,  S-, and C-bands.    The length I 
was chosen so that ßgi would be ir/2 at 4 GHz, the end of S-band.    The W/H ratio,  i.e.,  width of 

the conducting strip to the thickness of the substrate,  was chosen to provide a 50-ohm image 
impedance at 3.0 GHz.    The dashed curves were intended to show the character of Z   and of <p 
if the effect of the even- and odd-mode velocities was not taken into account. 

FREQUENCY   (GHz) 

Fig. 23.    Theoretical image impedance and insertion phase 
of microstrip meander line on dielectric (K = 16) substrate. 

Assumption of Coupled Meanders:— Although accurate information is available 
concerning the effect of coupling one strip to a second strip, no information is available on the 
effect of a second or third coupling offered when more than one meander is included.    In order 
to proceed,  it is assumed that there is no additional effect on the image impedance presented 
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by a second coupling meander.   Although this is certainly erroneous,  only a few meanders are 

necessary in this case,  and such an assumption serves as a starting point. 

Experimental Meander-Line Impedance:—   Before attempting to determine accurate 
image impedance measurements on either a single or coupled meander line, the reflections in- 

troduced by various connectors must be known.    In this case,  reflections were minimized by 

using special OSM   connectors with the projecting center pin flattened and its extension beyond 

the plane of the shell limited to 15 mils.    A special plexiglass hold-down gives rigidity to the 

center pin.    These OSM connectors,  as redesigned by D. H. Temme,  may be seen in place in the 
photograph of Fig. 36.    With the best 50-ohm line available,   the measured reflection coefficient 
of line plus connectors was 0.05 or less over the 2.0- to 4.0-GHz S-band. 

A single meander line was cut from indium to the dimensions indicated in Fig. 23,  the width 
W = 12 mils,  separation S = 8 mils,  and length of 257 mils for a 40-mil-thick dielectric.    Sheet 
indium 2 mils thick was used for temporary circuits because it has low resistivity,  can be readily 
cut,  is very pliable,  and will stay in place with good electrical contact without the use of adhe- 
sives.    The meander line was then just pressed in place over an 8-mil gap cut in a gold-deposited 
22-mil line on a substrate of magnesium titanate (K = 16).    The result of the input scattering 
measurement showed a reflection coefficient of 0.08 or less below a frequency of 3.0 GHz and 

showed a tendency to cutoff by having a reflection value of 0.5 at 4.0 GHz. 

Two indium meander lines were made and tightly coupled with a spacing of 8 mils.    Although 

the second line was supposed to be identical to the first,  the line was actually slightly shorter 
and was not exactly uniform in separation.    The input scattering parameter S. . for this two- 
meander line was<0.16 over the entire S-band range.    The point for an indication of cutoff 
(S. . = 0.5) occurred at a slightly higher frequency of 5.0GHz.    The coefficient becomes 0.93 at 
6 GHz,  indicating definite cutoff. 

2.     Influence of Ferrite 

The previous results were sufficiently encouraging to proceed with the design of meander 
lines on 40-mil-thick ferrite substrates.    Ferrite material maintains good dielectric properties 

while at the same time exhibiting the desired ferrimagnetism necessary for the generation of 
differential phase shift.    The ferrite chosen for these experiments was a gadolinium and aluminum- 
doped yttrium-iron garnet (YIG) having a magnetic saturation moment 4TTM    of 550G. 

Demagnetized Permeability:—  In such a ferrite medium of infinite and unbounded 
extent,  the application of a weak high-frequency magnetic field along with a static magnetic 
field produces a permeability that has the properties of a tensor.    The tensor nature of the per- 
meability relating the harmonic induction of the ferrite to the microwave field intensity was 

19 first given by Polder.       One diagonal term from the Polder tensor is 

(1 = 1__4^i (114) 

tu   — y H 

where y is the gyromagnetic ratio for electron spin,  e/mc = 17.6 x 10   rad/sec/Oe, or y/Zic = 

2.8 MHz/sec/Oe,   M is the magnetic moment,  and H is the static magnetic field intensity.    It 

is evident not only that ji can be frequency-dependent,  but also that its magnitude can be <1   in 

an infinite medium. 

t Trade name of Omni Spectra, Inc. 
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The most elementary ferrite geometry is that of the ellipsoid whose dimensions are small 

with respect to wavelength.    If a small sample of such an ellipsoidal-shaped ferrite is immersed 

in a static uniform magnetic field H    ,  the main field induces "magnetic charges" on the ellip- 

soidal surface.    The presence of these surface charges creates a field intensity component within 

the ferrite in opposition to that of the main field,  thus to alter the internal field intensity.    Inter- 

nally,   H. is uniform and is given by 

Hi = Hgx - NM (115) 

where —NM is the demagnetizing field caused by the presence of the surface charges,   N   is the 

demagnetization tensor,  and M is the magnetic moment of the ferrite.    Even with the application 

of an external field H     , which is directed only along the z-direction,  it is possible that the uni- 

form internal field H. has x and y as well as  z  components.    If the direction of the external 

magnetic field is aligned with one of the principal axes of the ellipsoid,   N   becomes a diagonal 

tensor whose elements are demagnetization factors N ,  N ,   N  . x      y      z 
In a lossless ferrite medium,  with the alignment of ellipsoid coordinates such that one co- 

ordinate is coincident with the direction of the applied static field,  the magnetic moment  M pre- 

cesses about the static magnetic field vector.    The natural frequency of such a precession is 
20 

given in terms of the demagnetization factors by Kittel      as 

u    = y {[H      + (N   - N ) M] [H      + (N   -NJM]}1'2 (116) o "ex x        z ex y        z'     " 

where y is the gyromagnetic ratio for electron spin. 

Normally,  such a sample of ferrite would be subjected to a weak high-frequency magnetic 

field together with the steady field component.    The presence of high-frequency field components 

in directions other than along the static field direction generates magnetic moments in these di- 

rections.    The precessing magnetic moment influenced by the high-frequency field may be de- 

scribed by a tensor permeability "jT.    One of the diagonal terms of this tensor is given by 

where OJ    is given by the Kittel resonance of Eq. (116).    By making this substitution, the single 

permeability term considered becomes 

47rMy2-[H      + (N   - N  ) M] 
fi = l + -, SE v 5        . (118) 

V    {[Hex + (Nx - Nz) M] [Hex + (Ny - Nz) M]> - <o£ 

Aside from the fact that the expression indicates a resonance in the second term,   it is evident 

that,  even in the demagnetized state with H      =0, the permeability is frequency-dependent due 

to the presence of the demagnetizing fields. 

For a geometry different than the fundamental ellipsoid,  e.g., the substrate with its mag- 

netizing yoke,  the view may be taken that the ferrite is composed of many macroscopic crystal- 

lites,  each with a saturation magnetization 4JTM ,  but each arbitrarily directed.    Now,  even with 

a zero applied field H     ,  many demagnetizing field components are present and the permeability 

cannot easily be described without resorting to artificial schemes to make a solution tractable. 

Owing to the fact that the resultant permeability obtained for the infinite medium and for the 
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elementary geometry demonstrated a dependence on frequency,  it is recognized that ji for any 
geometry would have this property.    It is also evident that u. can be < 1  even in the demagnetized 
state. 

The effect of frequency on the demagnetized  y. for the particular G500 ferrite material used 
in these experiments is illustrated in Fig. 24.    These data* were obtained from measurements 

on straight-line and circular resonators. 

0 2 0.4 0.6 0.8 

NORMALIZED   SATURATION   MAGNETIZATION   M, 

Fig.24.    Curve of effective permeability vs normalized saturation magnetization 
for a microstrip line on demagnetized ferrite substrate. 

Expected SWR:—  Because of this low-frequency effect in the demagnetized ferrite, 
standing-wave ratio measurements made over S-band with this material would be expected to 
vary from 1 to 1.1.    This is assuming,  of course,  that everything else is perfectly matched. 

Theoretical Impedance Curves:—  Utilizing such a frequency-dependent  \x,* as shown 
17 in Fig. 24,  and the data on even- and odd-mode velocities from the Weiss and Bryant      analysis, 

calculations may now be made with Eqs. (110) and (113) for the image impedance and insertion 
phase of a meander line deposited on a ferrite substrate. 

Figure 25 shows the theoretical results computed for frequencies in L-,   S-,  and C-bands 
sufficient to show the bandpass characteristic of the meander line.    Evident in the figure is a 

severe drop in image impedance caused by the changing permeability of the ferrite.    The width- 
to-height ratio W/H is selected to provide an impedance of approximately 50ohms near the 

3.0 GHz point.    The dashed curves are intended to illustrate the effect of not taking the changing 

velocity into account.    In this case,  as in the previous calculations,  the length I  is chosen so 

that ß I   is ir/2 at 4.0 GHz. 

Permeability in Latched State:—  In practice, the ferrite wiU not be demagnetized, 
but rather will be latched in one of its two remanent states with a zero applied magnetic field. 
This extra complexity arises both by the mechanism of creating the necessary differential phase 
and by the requirement that the test model have two switchable states.    The effect of such a 

\ The data are reproduced with permission from E. J. Denlinger of the Lincoln Laboratory staff. 
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Fig. 25. Theoretical image impedance and insertion 
phase of a microstrip meander line on demagnetized 
ferrite (G500) substrate. 
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Fig. 26. Spatial configuration used in deriving 
requirements for magnetic field circular polari- 
zation. 
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latching state on the permeability is unknown,  so it was decided on further calculations to utilize 

the arithmetic mean between the projected completely demagnetized permeability and unity. 

Field Interaction for Differential Phase:—  Figure 26 shows the spatial configuration 

of two magnetic field vectors h   and h,  under a single meander line.    Point A represents a loca- 

tion where h   and h,   are in space quadrature.    The quadrature directions are identified by unit 

vectors i   and i, .    The effective propagating magnetic field at point A is given in complex expo- 

nential form by 

HA = (Iaha+Tbhb)e~;i • (119> 

If now h,   can be related to h   in time quadrature such that h,   = — jh ,  then 

.ßx 
HA =<iA-iHA,>«*3 <120> 

and the resulting instantaneous magnetic field is 

h = Re H.e^ =T h   cos(wt-/3x) + T, h   sin (cot-fix)      . (121) ij- a a Da 

The indicated space and time quadratures provide for circular polarization of the magnetic field. 

It should be observed that the needed time quadrature may easily be obtained by making the 

meander path length I  a quarter-wavelength.    In the ferrite-filled space under a meander line, 

the actual polarization will vary from linear at the ends through elliptical to circular at the mid- 

plane. 

If a steady internal magnetic field H. is present in a direction indicated along the meander 

line,  the magnetic moments in the ferrite will precess in a circular orbit about the vector H., 

that is to say,  in coincidence with or opposite the signal circular polarization just established. 

Such coincidence produces strong coupling for signals propagating,  say,  from left to right, but 

very weak coupling for propagation in the opposite sense.    This is an aid to phase delay for prop- 

agation in one direction,  and an opposition to phase delay for propagation in reverse.    This kind 

of coupling produces the desired differential phase.    Such an interaction has not yet been analyzed; 

thus,  there is no known direct way with which to calculate the differential phase factor ö — it must 

be determined experimentally. 

Two Meander Lines on G500 Ferrite:—   Since interest was in utilizing a small 

amount of differential phase shift,  it was decided to determine experimentally just how much 

differential phase would be possible using only two coupled meander lines deposited on ferrite. 

In order to have a 50-ohm single microstrip line feeding the meander line at 3 GHz, the 

width of the strip must be selected with due regard for the permeability of the ferrite while in 

the latched state.    By using the approximation of 1/2(1 + jx , ), the permeability becomes 

1/2(1 + 0.84) = 0.92.    The impedance will be degraded by \T\L;  so, the dimension W should be 

selected from the Weiss-Bryant data for ferrite (K = 14.4) to produce a 52.1-ohm line.    For 

this condition,  W/H is 0.5975,  or, on a 40-mil substrate, the line width should be 23.9mils. 

For the meander line itself, the spacing was selected as 8 mils to provide close coupling 

with a ratio S/H = 0.2.    Selecting a W/H of 0.3 resulted in a calculated image impedance of 

51.4ohms at 3GHz.   The length of the meander legs (250mils) was selected to give ß t = */2 

at the band limit of 4 GHz.    With the order of the approximations involved,  it was felt that 

51.4 ohms was close enough for a first attempt. 
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Fig. 27.    Polar display of complex reflection coefficients and transmission coefficients for two-meander, 
chrome-gold line on G500 ferrite.    Graphs are swept from 2 to 4 GHz. 
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Fig. 28. Curve of differential phase shift vs 
frequency for two-meander, chrome-gold line 
on G500 ferrite. 
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Measurements:-  Experience with indium lines on ferrite indicated the optimum 

width to be 22 rather than 23.9 mils for straight lines.    A part of this discrepancy may be attrib- 

uted to the fact that the thickness of the conducting strip was not considered.    Caulton,  et al.,21 

developed an approximate relation for such a thickness correction.    With a deposited strip thick- 
ness of 0.3 mil,  the width correction amounts to slightly less than 0.7 mil. 

Because of inaccuracies in the involved printing process and in the etching process,  the de- 
posited meander line had dimensions quite different from the expected 12-mil lines with 8-mil 

spacings.     The meander leg widths varied from 10.50 to 9.63 mils,   the average being only 

10.13mils.     On the other hand,   spacing was increased to an average 9.36mils with a variation 

about this average value of ±0.44 mil.     The width of the straight feed line was reduced to 
20.67 mils.    All deposited conducting strips had a thickness of 0.354 mil. 

The set of measured scattering parameters for this experimental meander line is shown 

in Fig. 27, where frequency intervals of 0.1 GHz are marked with dots along the graphs; these 

data show the largest reflection coefficient of S. . to be 0.087 and that of S      to be 0.071.    In 
both of these views, the scale has been expanded to a reflection of 0.1 full scale.    It is doubtful 
that further adjustment of line width or meander-line width would show a startling improvement 
with the order of reflections from the connectors involved.    The line did show cutoff at 5.25 GHz. 
Also shown in Fig. 27 is the transmission coefficient S,. for the two latched directions of mag- 
netization,  thus to illustrate and be able to measure the differential phase.    Although the S.? 

measurements are not shown,  they were within experimental error of 1° from the measurements 
of S2.,  but,  of course, with the latching reversed. 

A very careful measurement of the differential phase possible at the various frequencies of 
S-band was made on this same experimental meander line.   The data are shown in Fig. 28.    By 
taking measurements on a straight 22-mil-wide line, deposited on the same substrate, the inser- 
tion phase of the meander alone was obtained.   Figure 29 shows the result of these measurements 
from lines on the G500 substrate. 

Fig. 29. Curves of insertion phase vs frequency 
for line with two meanders and straight line both 
on 2-inch ferrite G500 substrate. O -6*0 - 

MEANDER  LINE 

FREQUENCY   (6Hz) 
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Fig. 30. Polar display of phase correction to be 
added to all transmission coefficient measurements. 
Curve is shown swept from 2 to 4 GHz. 
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Fig. 31.    Resistance values for T networks with 

22 MILS 

SILVER 
—|     |^*5- MIL SOLDER 

1 \ FH~F 20 MILS  

[1I-4-1HMI 

GOLD  LINE 

-13/32 INCH- 

Fig. 32.    Enlarged diagram of experimental bilateral attenuator. 
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In measuring the transmission parameters with the Network Analyzer,  great care was taken 

to balance out the insertion phase of adapters,  OSM connectors,  and line extenders,  to give meas- 
urements on the substrate circuit alone.    Figure 30 shows the only remaining phase correction 
that must be added to all insertion measurements,  that of a Hewlett-Packard 10-cm length of 

air line. 

B. Bilateral Microstrip Attenuator 

A bilateral matched attenuator must be realizable in microstrip form prior to initiating the 
final design of the differential attenuator model.   It would be desirable to have some simple struc- 
ture like a T or  n  network with as few elements as possible.    Unfortunately,  no commercial 

units are available yet for the microstrip transmission system.    Thin-film resistors are avail- 
able,  but,  for this application,  they must be made to order with deposited silver-strip contacts 

to be useful.    Even these elements are not available in dimensions suitable for microstrip work. 

1. Range of Attenuation Needed 

A survey of Fig. 4 shows the range of |G| needed for the differential attenuator model to be 

from 0.27 to 0.92,   inclusive.    The values of series and shunt resistances required to realize a 

simple T network are shown in Fig. 31 as a function of the attenuation factor  |G|.    Since resistors 
of these values are not available in small size,  it was decided to make them. 

2. Technique of Silver-Sprayed Resistors 

An experimental procedure being investigated in the laboratory consists of spraying silver 
paint on substrates to achieve the microstrip transmission line.    Such a sprayed line is suscep- 
tible to variations caused by the thickness of the deposition,  and at present is considered lossy. 
It was decided to attempt to realize the necessary resistances by spraying a short section of line 
and then scraping off a sufficient amount of silver,  increasing the resistance to the value desired. 

Figure 32 shows an enlarged view of the experimental attenuator.    The ground post was a 
piece of 25-mil solder pushed into a 25-mil hole and soldered to the substrate (magnesium titan- 
ate) ground plane.    The choice of resistance values was R.  = 15.5 and R? = 72 ohms.    The actual 
values scraped were 13 and 72 ohms.    An ohmmeter was simply connected across the appropriate 
terminals and the scraping performed until the proper value was acquired. 

3. Experimental Results 

Figure 33 shows the scattering parameters of this experimental bilateral attenuator.    The 

reflection coefficients are less than 0.2 over the entire S-band.    It is felt that if the resistors 
could be closer together, using shorter sprayed sections, the reflection might be reduced still 
further.    The transmission parameter shows an attenuation of exactly 6 dB over the lower part 
of S-band and an increase of about 1 dB at the top near 4 GHz.    Certainly,  the presence of the 
ground post so near the line plus the layer of silver adds some inductance into the circuit which 
could cause such a variation. 

C. Differential Attenuator Model 

The design of the model may now be undertaken knowing that a meander line giving the de- 

sired differential phase is possible,  and a bilateral attenuator with reasonable resistance values 
is realizable.    Inasmuch as the preference in this case is to show a realization based on small 

differential phase, the choices of e,  G magnitude, and the argument of G are to be made with 
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S,.:   scale 0.2 at outer circle. S»_:   scale 0.2 at outer circle. 

S.„ calibrated to 6.0-dB attenuation at outer circle. 

Fig. 33.    Polar display of complex reflection and transmission coefficients of bilateral 
attenuator on dielectric substrate.    Graphs are swept from 2 to 4 GHz. 
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this in mind.    Actually,  the choice of <5  and e  fixes the complex value of G required for a 

match since 

G(I) = f(e, 6)      . (122) 

1.     Proper Phase Lengths 

Figure 28 showed the amount of differential phase possible with the meander line operating 
near 3 GHz to be approximately 10°.    Thus,  the frequency of operation was chosen as 3.25 GHz 
where the differential phase shift is exactly 10°.    The selection of frequency allowed all phase 

lengths to be determined. 
The value of the insertion phase e  for the differential phase unit was chosen as 45°.    This 

selection was made in keeping with a reasonably large ratio of S-./S.. at ö = 10°, as may be 

seen in Fig. 10.    It is also in keeping with a required attenuation " |G|" that would be practical 

to make with the scraped-down silver-line technique. 
Reference to Fig. 29 shows that the meander line alone at 3.25 GHz presents 754.75 — 573.23 

or 181.52° of phase delay;  consequently,  e  must be raised to 45 + 360 = 405°.    The total elec- 
trical length of lines feeding the meander from the two symmetrical scattering junctions must 
be restricted to 405 — 181.52 or 223.48°.    Since the single-line phase of 573.23° was obtained 
at 3.25 GHz on an exact 2.0-inch length of substrate,  a simple ratio suffices to show the length 
of the feed line to be 

2000   _  573.23 ,.,,. 
Y      "   223.48 l1"' 

Y = 779.7mils      . (124) 

With the selection of 6 =10° and e =45°,  the complex G required of the bilateral attenuator 

is fixed.    Reference to Fig. 5 shows the required insertion phase of the attenuator to be +26.57°. 

Thus,  the phase delay through the attenuator path must be —333.43°.    A simple ratio will again 

suffice to show the required total length of the attenuator legs from scattering junction to scat- 
tering junction to be 

2000   _   573.23 ,.--, 
X      "   333.43 ,1"' 

or 

X = 1163.3 mils      . (126) 

Figure 34 summarizes the design so far by showing schematically the layout of the final 

matched differential attenuator model with all dimensions. 

2. Attenuator Resistances 

The magnitude of G required for the chosen ö and  e  is 0.5.    It may be determined from 
Fig. 31 that the series resistances of the silver-painted line must each be 16.7 ohms,  and the 
shunt resistance to the ground pin must be 66.7 ohms to provide the proper bilateral loss. 

3. Construction Details 

Following is a brief description of just how the integrated microwave circuit was formed 

on the ferrite substrate. 
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Fig. 34.    Layout of differential attenuator model as cut from a Rubylith; 
all dimensions are in mils magnified by 25. 
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Fig. 36.   Microstrip differential attenuator shown 
with microstrip latching yoke. 
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The layout of Fig. 34 was cut from a Rubylith with a 25-to-l magnification of dimensions in 
order to make such a hand-cutting process tractable.    The diagram was then photoreduced to a 
glass plate,  which served as the final contact negative.    A contact print of this plate is shown 
in Fig. 35. 

A 2-inch hexagonal substrate of gadolinium and aluminum-doped YIG 40 mils thick was pre- 

pared for photo-etching.    First,  a layer a few angstroms thick of chromium and then gold was 

evaporated on the two flat surfaces,  the chromium to form a good bond between the ferrite and 

gold.    Each surface was then plated with gold to a 0.3-mil thickness which is several skin depths 

at S-band.    A photo resist was then spun on one of the gold surfaces and baked ready for exposure. 

After the contact negative exposure (two minutes) and development,  the excess gold was chemi- 

cally etched away and then the chromium, leaving the desired circuit with a gold ground plane 

beneath. 
A 25-mil hole was drilled through the brittle ferrite and filled with silver epoxy,  thus form- 

ing a conducting post to the ground plane.    Finally,  after masking off the rest of the circuit,  a 
layer of silver paint was sprayed over the area of the attenuator resistors. 

It was necessary to use indium straps on the sides rather than print the entire circuit, due 
to the fact that there might be reason to test each branch of the circuit separately.    Also,  it was 
necessary to open the circuit at some point so that conductivity through the attenuator section 

alone existed for the scraping of resistors. 
The finished product may be seen in the photograph of Fig. 36,  where also shown is the latch- 

ing yoke which was actually placed beneath the substrate when operating in order not to interfere 
with either the meander line or the silver resistors. 

4.     Measured Scattering Parameters 

A microscopic examination of the final circuit shows all dimensions to be approximately 
i.5-percent low.    This uniform change in dimension is undoubtedly due to undercutting in the 
etching process.    Such small changes probably affect only the phase lengths of the various cir- 
cuit arms and probably would not seriously affect the overall scattering parameters.    Measure- 

ment with the microscope also revealed the thickness of the gold-deposited lines to be 0.354mil. 

Meander-Line Branch:—  Inaccuracies in the final dimensions of the meander line 

are attributed to the cutting of the Rubylith.    The several meander leg widths vary from 11.6 to 

12.15 mils, with an average of 11.83 mils.    Spacing between the legs varies from 7.28 to 7.88 mils, 

the average being 7.52mils.    The fact that these dimensions are close to the desired 12-mil legs 
with an 8-mil spacing is due to the 25:1 magnification used in preparing the Rubylith.    The first 
experimental meander line referred to on p. 51 was obtained from a Rubylith with only a 10:1 

magnification. 
It was experimentally determined that this second meander line produced 10° of differential 

phase at a frequency slightly below 3.2 GHz with the ferrite magnetization latched in its two rem- 
anence states.    Based on the first meander line,  the 10° differential phase shift was predicted 
to occur at 3.25 GHz.    Such a difference was probably due to the different spacing and the differ- 

ent leg widths of the two experimental meander lines which affected the generation of the differ- 
ential phase. 

Two methods were used to control the differential phase shift at 3.2 GHz.   First, a 5-A cur- 
rent pulse flowing through the 26-turn coil wound on the ferrite yoke was more than sufficient 

to latch the ferrite magnetization in one of its two remanence states,   thus producing 10° of 
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Fig. 37.    Polar display of complex reflection and transmission coefficients of meander-line section 
of differential attenuator.    Graphs are shown swept from 2 to 4 GHz. 

58 



differential phase.    Second,  a continuous current flow of limited amperage was employed to pro- 

duce smaller amounts of differential phase shift.    It was determined that a 0.2-A current,  when 

switched,  could generate 6° of differential phase shift.    A 0.26-A current was required to pro- 

duce 8° of differential phase. 
Since the physical dimensions of this meander line were quite different from those of the 

first experimental line described on p. 51,  it would be expected that the impedance also would 

be subject to change.    Actually,  the impedance match with this line was not nearly as good.    An 
attempt was made to improve the match by attaching two stubs,  each 20 mils in length,  to the 
meander-line branch.    The match further improved by using 17-mil-wide indium side straps to 

connect the meander line to the 21.7-mil feed lines.    Approximately 3 mils of the indicated re- 
duction in dimension from the 21.7-mil size are needed to correct for the 2.2-mil thickness of 

the indium.    The remaining decrease in width means the characteristic impedance of the indium 

straps is 51 or 52 ohms.    Thus,  the side straps are providing some transforming action between 

the mismatched meander line and the 50-ohm feed lines. 
Figure 37 shows the complete set of meander-line scattering parameters measured with a 

Hewlett-Packard Network Analyzer which offers a very convenient way to measure such scatter- 
ing parameters directly and continuously over an octave band of frequencies.    This particular 

unit measures the phase angle and magnitude ratio of two signals:   a test signal and a reference 
signal.    By converting these test and reference signals to deflection signals,  a dynamic polar 
display of both phase and amplitude information of a reflection or transmission coefficient is 
presented.    For reflection measurements, the incident and reflected signals of the device being 
tested are,   respectively, the reference and test signals.    For transmission measurements,  the 
analyzer splits an input signal,  allowing the test signal alone to pass through the device being 
tested.    Referring to Fig. 37,   it should be noted both the reflection coefficients S      and S-, are 

shown with an expanded scale of 0.2 maximum.    It is further noted that the final matching is 

fairly good,  for the clustered points defining the reflection coefficients S, . or S_, are each equal 

to or less than a value of 0.08 in the frequency range of 3 to 4GHz.    On the other hand, the trans- 
mission coefficients S. _ and S_. are nearly of unit magnitude.    By the fact that these coefficients 
are not equal to 1,   some small transmission loss is indicated.    This measured loss is less than 
a decibel and shows a slight increase at the high end of the band. 

Bilateral Attenuator Branch:—   In contrast to the predicted resistance values shown 
in Fig. 31 for a bilateral attenuator to present a "gain" of 0.5,  the experimentally determined 
best values were as follows:   R = 11.1 ohms,  R .      . = 71.15 ohms.    These values were series shunt 
obtained by adjusting DC resistances to give the best impedance match while keeping the gain at 
0.5.    The discrepancy between the best value of series resistance and the theoretical value of 

16 ohms was probably caused by a combination of skin effect and the fact that the relatively thick 
layer of silver paint would introduce inductance into the circuit.    The shunt resistance DC value 

is higher than the theoretical 66ohms,  for this element is subject not only to skin effect but also 
to a bypass capacitance to the ground plane which effectively lowers the resistance. 

Shortening the physical dimension of the series resistance from 15/64 inch on the first model 
to l/8 inch produced a noticeable improvement in matching to begin with over most of the fre- 
quency band.    It was determined by experiment that connecting side straps of indium only 14 mils 
wide reduced the reflection coefficient still further.    Such narrow side straps connecting the 

attenuator to the feed lines act as quarter-wave transformers over that portion of the frequency 
band near 3.5 GHz,  where the 300-mil strap length is a quarter-wavelength.    The set of measured 
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Fig. 38.    Polar display of complex reflection and transmission coefficients of bilateral attenuator section 
from differential attenuator.    Graphs are shown swept from 2 to 4 GHz. 
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scattering parameters for the attenuator section is shown in Fig. 38,  where both S. . and S?? 

are recorded on a scale expanded to 0.2 maximum.    The final match shown is superior to that 

obtained with the first bilateral attenuator described on p. 53,  having the characteristics shown 
in Fig. 33. 

The measured transmission parameters S._ and S-.,  also illustrated in Fig. 38,  show a 

value of transmission gain of 0.51 over the frequency range of interest.    This is to be compared 

with the needed theoretical value of 0.50. 

Complete Differential Attenuator:—  Figure 39 shows the overall scattering param- 

eters for the complete differential attenuator.    The overall reflection coefficient parameter S.. 

indicates that an excellent match exists at a frequency of 3.275 GHz.    A value of 0.02 was actu- 
ally measured at this frequency, which demonstrates the fact that the differential attenuator can 
be designed to have a matched input at the operating frequency.    The overall match at this fre- 
quency is not quite as good for transmission in the reverse direction indicated by the S__ reflec- 
tion coefficient data.    Presumably,  this is caused by the poorer match provided by the bilateral 
attenuator branch in this transmission direction.    The Smith Chart graticule overlay is used in 
displaying S?? merely to show what standing-wave ratio might be expected on a 50-ohm line 
feeding the differential attenuator.    It is estimated that sucha standing-wave ratio would be 1.3 
at 3.275 GHz.   Other than the difference in reflection coefficients noted near the  3.2-GHz  fre- 
quency, the data display similar reflection characteristics at the two ports of the differential 
attenuator. 

Both the transmission coefficients S. - and S_,,  shown in Fig. 39,  display the desired nonrec- 

iprocity.    Each parameter is shown with the ferrite magnetization latched in both of its two rem- 
anent states.   Observe from the pair of curves defining S.? that the curve with the pronounced 

dent was obtained as a result of an applied magnetic field directed along the meander line point- 
ing away from the bilateral attenuator.    The smoother curve without the severe dent shown in 
S-. was obtained with exactly the same direction of magnetization.    The maximum nonreciprocity 
seems to occur at a frequency slightly below 3.2 GHz,  where the differential phase shift was ex- 
actly 10".    The fact that such a peak does not occur closer to the design frequency is due collec- 
tively to the slight uniform changes in dimensions,  the nonperfect match of elements which re- 
quired the use of reactive stubs on the critical phase-shift branch,  and especially the fact that 
the meander line itself is quite different from the first experimental model on which the design 

was based. 
The measured differential loss given in decibels as a function of frequency is shown in Fig. 40. 

Data for these curves were read from the curves of the scattering parameters S.~ and S_ . of 

Fig. 39,  and from similar curves taken when limiting the differential phase shift to 6° and 8", 
respectively.    These data were then converted to the desired decibel transmission loss.    The 
theoretical differential loss maximum was predicted to be 3.0 dB at 3.25 GHz,  while the actual 
loss obtained would be nearer 2.5 dB at 3.175 GHz.    No account was taken of small losses either 
in the ferrite or along the deposited lines.    Losses along the deposited lines are expected to be 
negligible;  however,  losses in the ferrite medium are different for the two directions of trans- 
mission through the device,  and could contribute to a change in the differential loss expected. 

The difference between similar shaped curves defining the transmission parameters S.? and 

S,.,  as indicated in Fig. 39,   is to be observed.    Although there seems to be approximately a 5° 
difference in phase of one parameter compared with the other,   the difference in magnitude of 
the two parameters is negligible at a given frequency.    This demonstrates that the amplitude 
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Fig. 39.    Polar display of complex scattering coefficients for differential attenuator.    Graphs are shown 
swept from 2 to 4 GHz. 
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Fig. 40.   Curves of differential loss in decibels vs frequency for differential 
attenuator with 6°, 8°, and 10° of differential phase shift. 
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Fig. 41.    Differential attenuator insertion loss vs frequency with ferrite 
magnetization latched in both remanent states. 

nonreciprocity is symmetrical; however,  there is a small amount of residual differential phase 
shift present.    Data from the curves of S., alone were used to illustrate the insertion loss of 
the differential attenuator model at various frequencies in S-band.    This loss is shown for the 
two latched states in Fig. 41.    The two encircled points at the 3.25-GHz design frequency are 
included to represent the theoretical loss predicted by the computer solution.    A comparison 
shows the loss in one latched state to be the value expected,  while the loss in the other latched 
state is approximately 0.5 dB high.    Thus, the measured performance of the model agrees within 
reasonable error with the predicted performance. 

IV.   CONCLUSIONS 

This final section is devoted to the conclusions drawn from both the theoretical development 
and the experimental work of this investigation.    Also discussed here are areas for further in- 

vestigation which seem to be promising in light of the work thus far accomplished. 
The theoretical development of active nonreciprocal two-port networks of potentially peri- 

odic structure, which was presented in Sec. II, has shown conclusively that forward-to-backward 
amplitude nonreciprocity is possible. Furthermore, such nonreciprocity may be achieved with 
a relatively simple configuration. At least some degree of nonreciprocal gain may be achieved 

by the proper interconnection of an active negative resistance device and a passive element ex- 
hibiting but a small amount of differential phase shift. 

The desired amplitude nonreciprocity cannot be attained with a tandem connection of the ac- 

tive device,  the differential phase-shift element,  and various lossless scattering obstacles.    Ac- 
cordingly,  to have amplitude nonreciprocity at all with the cascade connection,  one or more of 
the individual devices cascaded must possess the nonreciprocity.    On the other hand,  the parallel- 

parallel connection,  utilizing two scattering junctions with which to interconnect the active device 
and the differential phase-shift element,  does provide for nonreciprocal amplitudes.    Although 
the basic analysis of the parallel-parallel connection utilized symmetrical scattering junctions, 
the conclusion is that any scattering junction will work with but one exception — that of a pair of 
perfectly balanced junctions matched to both the active device and to the differential phase-shift 
device.    With the use of such balanced junctions matched,  no amplitude nonreciprocity is ever 
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possible.   It is further concluded that the active negative resistance device need not have an input 

impedance to match the impedance of that branch of the circuit in which it is used.    Moreover,  it 

is possible to select the characteristics of such an active device,  together with the characteristics 

of the phase-shift device, so that the parallel-parallel connected differential gain configuration 

presents a matched input and output at the chosen operating frequency. 

In order to realize the differential amplifier,  projected by the theory,  a two-port amplifying 
device is required giving the same amplification in both conductive directions.    Additional re- 
search is needed to determine how an active element such as a tunnel or an avalanche diode may 
be simply integrated with other microstrip components to achieve such an amplifying device.    If 
a reflection-type tunnel-diode amplifier is desired,  some form of scattering junction must be 
specified which, when connected to the tunnel diode, forms a physically symmetrical two-port 

device.    Because of the fact that the active negative resistance is unstable,  some simple stabi- 
lizing network must also be specified which would be much easier to realize as a series type in 
the microstrip system,  minimizing the need for shunting through the substrate material to the 

ground plane.    Finally,  a circuit must be designed with which to terminate the tunnel diode at 
all frequencies outside the desired operating band. 

As far as the differential phase-shift element alone is concerned,  it is concluded that a single 
meander line can be designed quite easily to present a desired impedance by using the bandpass 
characteristic equations derived,  and the even- and odd-mode velocities from the theory of cou- 
pled microstrips.    The experimental results of Sec. Ill clearly verify these designs.    It is dem- 
onstrated that the minimum practical amount of differential phase shift required is such that a 
line with two meanders is needed.    Therefore,  a need does exist for additional information on 

the exact effect that more than one coupling has on the impedance of a conducting strip.    Only 

when this information on multi-coupled strips is available will it be possible to design meander 

lines of several meanders without resorting to some trial and error. 

Having once determined the impedance characteristic,  it then would be desirable to be able 
to predict accurately the number of meanders necessary for a required differential phase shift 

at a given frequency.    This requires information not presently available.    Precise design infor- 
mation on differential phase per meander would probably depend upon such factors as substrate 
thickness,  ferrite material characteristics,  meander-line separation,  and meander-leg length. 

The theory of Sec. II showed that nonreciprocal loss could be achieved very simply by inter- 
connecting a bilateral attenuator with a device exhibiting differential phase.    It was possible to 
construct such a differential attenuator,  described in Sec. Ill,  that realized both the desired 
matched input impedance and the desired nonreciprocity while still utilizing a minimum amount 
of differential phase shift from a meander line.    It is concluded that the very close agreement 

between measured results and theoretical results serves to fully substantiate the theory. 
In the construction of the bilateral attenuator device,  it was concluded that small resistance 

values such as those required for series arms of a T configuration could easily be made by scrap- 
ing a silver-deposited line.    It is recommended that,   in the future,  these silver-deposit resistors 
be even smaller in physical dimension than those utilized in the first model.    Great difficulty was 
encountered in realizing the relatively high resistance for the shunt arm of the T network by 
scraping the silver paint.    It is therefore recommended that such resistances of values much 
greater than 10 ohms be made by some other technique. 

An important extension of the differential attenuator concept is that of the isolator.    Theory 
predicts such an isolator to be possible,  giving upwards of 40dB of differential loss with an 
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insertion loss in the direction of least attenuation of only 3 dB.    To achieve this operation re- 

quires a differential phase shift of approximately 35°.     It is estimated that a line of at least 

six meanders could produce this amount of phase shift at a frequency near 3GHz.    Of course, 

no theoretical estimate of bandwidth has been calculated for this device. 

It was demonstrated that the transmission characteristics of the simple parallel configu- 

ration,  including the forward-to-backward gain or loss,  could be interchanged by the simple ex- 

pedient of latching the magnetic state of the ferrite in the reverse direction.    This switching of 

nonreciprocity is clearly illustrated in the transmission characteristic measurements made on 

the differential attenuator model. 

Questions that have not been considered in the present initial investigation,  but which are 

certainly important to microwave transmission,   include those of power-handling capacity,  band- 

width,  and especially noise figure.    Moreover,  the incidental losses,  characteristic of these pro- 

jected differential devices,  will only be really known when each device has been realized and 

tested. 

In conclusion, then,  it should be observed that this report describes a way of achieving am- 

plitude nonreciprocity at microwave frequencies which is both simpler than existing methods and 

alternate to presently employed techniques.    This simple straightforward design, derived from 

active network theory,  can exhibit a degree of unidirectional and switchable gain or loss using 

relatively small amounts of differential phase.    The realized microstrip differential attenuator 

model demonstrated the practicality of nonreciprocal devices based on such a design.    Thus, the 

objectives of this research endeavor have been achieved. 
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APPENDIX A 
IMPERFECT CIRCULATORS 

Here,  circuits are treated that can be considered as modified forms of the basic parallel- 

parallel connected circuit of Pig. 2.    They are modified forms in that they do not conform to the 
required minimum number of elements.   The analysis is carried out as a three-port device rather 

than the two-port type considered in the main text.   The devices discussed here are capable of 

providing perfect circulation if circuit conditions are properly chosen; that is, full simultaneous 

scattering can be achieved into,  say,  port 2 from port 1,  into port 3 from port 2,  and into port 1 

from port 3,  no other coupling being possible.    However, these devices can also exhibit non- 
reciprocity without requiring perfect circulation.    With an active element terminating one of the 

three ports,  nonreciprocity can be produced while the input and output ports remain perfectly 
matched.    Since these devices are under control of one or more differential phase elements,  the 

name Diphalator has been coined to describe them. 
Two theoretical developments are treated:   one utilizing two differential phase elements, 

and the other utilizing only a single differential element. 

I.      GENERAL THEORETICAL CONSIDERATIONS 

A circuit configuration shown in Fig. A-l is very similar to that shown in Fig. 2,  with the 
exception that a third port has been brought out to be externally available.    That portion of the 

Fig. A-l.    Basic configuration of lossless 
three-port network. 
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network contained within the dashed boundary (designated by N) is characterized as being loss- 
less, physically symmetrical with respect to ports 1 and 3, but electrically nonreciprocal.    Al- 
though nonreciprocal since it is lossless,  unitarity of the matrix may be relied upon. 

A.    Desired Matrix Constraints 

The condition of unitarity given by Eq. (6) when applied symbolically to the three-port net- 

work of Fig. A-l becomes 

"11 

3* '12 

3* '13 

'21     °31 

'22 

23 

'32 

'33 

Sll     S12     S13 

s21     S22     S23 

S31     S32     S33 

1 0 0 

0 1 0 

0 0 -1 

(A-l) 
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There are nine condition equations resulting from the indicated product.    Similarly, by starting 

with Eq. (7),  there are nine more related condition equations. 

The desirability of having a matched input and output of a network to facilitate iterations 

prompts the setting of both s. . and s,, in Eq. (A-l) to zero.    Further,  if an active element such 
as a tunnel diode is to be attached to terminal 2 to provide reflection-type amplification,   it would 

be desirable to isolate terminal 1 from 2.    This isolation is achieved by setting s._ = 0,  i.e., the 
waves scattered into terminal 1 from 2 are zero.    Now,  with both s. . and s., chosen as zero, 

1112 
one of the nine indicated constraining equations demands that s._ be 1.0.    Although this allows 
any wave entering terminal 3 to be scattered into terminal 1,  it must be remembered that a per- 
fectly matched load on terminal 3 will prevent such feedback.    Thus far, the general scattering 

matrix for the three-port network is 

[S] 

0     0     1 

0 (A-2) 

The fact that s._ is 1.0 implies that all other terms in column 3 including s_, are zero. 

The remaining condition equations specify that 

Is      I2 +  Is      I2 - 1 ls2l! |S3l!    ' * 

|s22|
2
+|s32|

2=l 

ls2l|2+  ls22|2= * 
and 

|s31|
2
+|s32|

2=l (A-3) 

Such an interrelationship of scattering terms may be represented by 

[S] 

0 

-jo j sinye  J cos ye 

cos ye  ■'~     j sin ye 

0 1 

-ja     0 (A-4) 

where y   and a   are unknown linking coefficients.   It is noted if y  were zero, there would result 
the scattering matrix of a straight line.    If,  on the other hand, y were ir/Z, there would result 

another degeneracy, the matrix of a perfect circulator. 
An alternate solution exists,  also satisfying the same condition equations, and is given by 

[S]   = 

0    j siny«  J cosyc  J 

r, -I« -lot 0      cos ye  J j sin ye   J (A-5) 
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It is interesting to see if now, with the inclusion of a simple active device, either of these ma- 

trices may be molded in such a way as to show two-port nonreciprocity. 

B.    Reduction to Two-Port Active Network 

The application of a simple negative resistance to terminal 2 of the lossless network is 

shown in Fig. A-2.    Let it be assumed that a wave incident on the lossless network from the 

Fig. A-2. Two-port active network obtained 
from negative resistance and basic lossless 
three-port circuit. 

NEGATIVE 
RESISTANCE 

>:t H 

ACTIVE NETWORK 

amplifier is nE   , where n is the reflection coefficient of the tunnel-diode amplifier and is >1. 
2 E    is the input to the amplifier,  i.e.,  the scattered wave coming out of port 2. s 

This overall active network may be adequately described by the matrix equation 

E r s 

2 
s = 

3 
s 

—1 Ö —1 0/ j sinye   J cosye   J 0 

—i cv — l oi cos ye  J        j sinye  J        0 

E. 

x  nE' s 

E? 
i 

(A-6) 

One of the variables is no longer independent.    If these equations are written out,  factored,  and 
reassembled in matrix form,  then there results 

cos ye 

0 

-ia 
■>     — i 

-j2o 

1 — n cos ye -ja E.J 

(A-7) 

The possibility of selecting y,   a,  and n to produce nonreciprocity in the overall scattering ma- 
trix of such an active network is obvious. 

If the alternate network whose scattering matrix is given by Eq. (A-5) had been used, the 
terms in the matrix of Eq. (A-7) merely change places across the main diagonal.    Nonreciprocity 
and the matching are preserved. 

IL    DIPHALATOR WITH TWO DIFFERENTIAL PHASE -SHIFT ELEMENTS 

Having determined that the circuit arrangement of Fig. A-l is capable of exhibiting non- 

reciprocity, we now must determine under what internal circuit constraints these conditions 

can be realized. 
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1       C 
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The schematic diagram of one possible in- 

ternal circuit is shown in Fig. A-3 which depicts 

a Diphalator using two differential phase-shift 

elements in a tandem orientation,  i.e.,  the <p 

delays are both in a left-to-right sense,  and a 

single transmission line of phase length ß  de- 

grees.    The possible individual waves are indi- 

cated by C and D in the figure and their direc- 

tion of travel is designated by double subscripts. 

Fig. A-3.   Schematic diagram of Diphalator 
with two differential phase-shift elements. 

A.    Derivation of the Scattering Matrix 

With an input of unit amplitude incident on 

terminal 1,  and with the assumption that all junctions are symmetrical such that their scattering 

matrices are given by Eq. (32),  the relations between the internal waves become 

C23 = ~J D32e 

-w. 
+ TC12e 

-JV. 

2 -W.      i -3<P+ 
D21=3D32£ -JC12€ 

C12 "   3  X1 +   3  C31e 3  U21€ 

■w. 

2 2 ~W-      1 -iß 
D13=f Xl + !D21e -TC31e  lß 

c    = -i D   riP + - C   £ ^31 3      13 3  C23e 
-w. 

D    -1D   £-J0-±c 32       3  U13e 3  ^23e 

In matrix form,   Eq. (A-8) is 

-wx (A-8) 

3   £ 

-l f-iß 
-f« 

o i e-iP 

2     -W+ f < 0 

4     '^+ 

-J*. 
3 3  e 

1     -J*+ 2     -jß 0 36 -3  e 1 

1     -3<P. 0 ie 

2 
3   € 

-J<P. 

1     "J^- 
3 e 

-3<P. 

r   -1 

C42 
2 
3 

C31 
2 
3 

c 
23 = 

0 

D13 
0 

D32 
0 

_D21_ 
0 

(A-9) 
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The scattering parameters associated with terminal 1 are defined in terms of these internal 

waves by 

and 

'11       3   \   21 + C31 /       3 

!21=!(C12< +D326 ) 

'31 -   3   V   13e        +C23C )       ■ 

X 1 (A-10) 

(A-ll) 

(A-12) 

The various  C and D parameters must be obtained from solutions of Eq. (A-9) and then substi- 

tuted into the appropriate defining equation.    These terms require considerable algebraic manip- 

ulation;  consequently, only a typical term will be shown here.    Such a term representing one of 

the internal waves needed is 

I) 

_8_ 
27 

j(ß+cp_)       6       -i(2cp++2ß+cp_)       2       -j{2<p++<p_) 
+  81   € + tf e 

21 1       -j2(<p++ß+<pj       z       -j(<p++2/3+<p_)        i       -j2{<p++<p_) 

27   e +  27   £ +  27   e 

2       -3(<P++2/3)       2     "^+ 
27 + fj 

2     -3(<P++<P_)       8       -J(2<P++/J)   _   _g_   _-j<0+2*_) + ± £.j2/3_1 

(A-13) 

+ 9  e + ?7   e + t7 e 

It should be recognized that Eqs. (A-10) through (A-12) can also define parameters s,_,  s?,, 
-i<p+     -if. 

and s._,  respectively,  provided e — £ and vice-versa.    The possibility of such a simpli- 

fication is due to the physical symmetry of the configuration and the fact that the phase-shift ele- 

ments are oriented in tandem. 

The final defining equations necessary to complete the overall scattering matrix are those 

resulting from the application of a unit amplitude signal on terminal 2: 

2   / ~w- ~JM      1 
22 =   3   \°32e + C12£ ) ~ 3 

12=!(D2/]<""+C31£"J/3) 

32=!h/Jn + D13^)      • 

x 1 (A-14) 

(A-15) 

(A-16) 

These particular C and D parameters may be obtained from a modified form of Eq. (A-9).    Due 

to the fact that the excitation is now on terminal 2,  the right-hand column matrix of Eq. (A-9) 

must be changed to [0   0   0   0   2/3   2/3]t. 

Figure A-4 displays the final overall 3X3 scattering matrix for this Diphalator.    It is espe- 

cially important to recognize the fundamental dissymmetry about the matrix principal diagonal 

indicating the nonreciprocity present.    Equally important is the recognition that interchanging <p 

and <p   everywhere folds the matrix about the main diagonal,  indicating the switchable states 
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whereby the transmission characteristics are exchanged.    The rows and columns of terms sat- 

isfy the conditions of unitarity since the Diphalator is,   of course,  lossless. 

B.    Computer Solutions 

A computer program was written to determine relationships between the variables <p ,  <p , 

and ß that would allow the s., term to be of unit magnitude; this program appears in Appendix B 

as Fig. B-9.    Since unitarity still prevails,  the limiting of s., to unit magnitude automatically 

guarantees zero values for s. .,  s._,  s?-,  and s,_. 

The results of the computer analysis are shown in Fig. A-5.    For a given line length ß,  two 

solutions are possible:    one consists of paired values of (p   and ip   that represent a cross-type 

1IS-4-lütT 1 
SOLUTIONS FOR IS ■1             \ 

1 *- 
200 /<*>                                                         '  '3 \ 

/       + 
0      0      1 

0 xX)_ *"*v.                           s ■ 
160 -       X         ""O-                   X 0 ^( 

\        %0v   \ _,^o' 

♦-\    1 
J&* 

120 \                   \    *"<X 0333                 ^o" 

\                  ^^    X o _J^°0.589 

BO \                                              0.589^,^1 """-^   ^X 
\ /i-0^9«     »    0.333 

Y-c,0.996                     \|S    1 

/^X 
40 0.996^,*                                         l=Ell 

,^°0.96<          \ \X>* 
.-*"                               \ N.    ^> 

jy                  \ 
■s' i 1            1            1            1  \      1            1            1           1 >   i   i   i i      i^^~ 

120 160 200 

$ (deg) 

280 320 

Fig. A-5.    Relations among variables required for  ISigl = 1.0 in scattering 
matrix of two phase-shift Diphalator. 

linear relationship,  shown by the dashed curves; for the other solution, paired values of <p   and 

<p_ define a more elaborate function,  as shown by the solid curves.    Of special interest are two 

areas represented by small values of ß for which nonreciprocity is possible with small  ö,  and 

a more practical area near ß = 180°,  for which nonreciprocity is also possible with small differ- 

ential phase shift.    The solution indicated for ß = 90° or 270° is that for perfect circulation where 
s13 = s21 = s32 = *"    Anotner degeneracy is apparent with ß - 180° and <p   = <p_ - 90°.    This so- 

lution is for a straight line where s., = s__ = s   . = 1.    It is evident that nonreciprocity in this 

device does not depend entirely on the existence of circulation. 

A second computer program was written to determine the entire complex scattering matrix 

for discrete data points; this program is listed as Fig. B-10 in Appendix B.    The variations of 

|s_. | are indicated along the dashed curve of Fig. A-5. 

C.    Invariant Identities 

Care must be exercised in altering the curves of Fig. A-5 by adding or subtracting incre- 

ments such as 180° or 360°,   for the periodicity of these curves is peculiar.    For the linear 

relationship 

<P_=jß 
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when 

9. i' (A-17) 

and no special precautions are needed.    However,  for the solution involving the solid curves 

with a constant value of ß 

<p   — cp   ± 180° 

and 

cp   — <p    ± 180e (A-18) 

More important is the pairing of curves with the recycling of ß,  for if 

ß — ß + 180° 

then 

(f   -^ cp    + 90° 

and 

cp 
-t V. 90' (A-19) 

Two incidental sets of invariances are obtained by holding either cp    or cp    constant:   (a) for 

a constant cp 

ß — ß + 360" 

when cp   —- cp    + 360°,   and (b) for a constant cp 

ß — ß + 360" 

(A-20) 

(A-21) 

which requires cp_ = cp . 

Thus,  it has been demonstrated that this lossless circuit arrangement is capable of exhibit- 

ing the desired property of nonreciprocity without requiring circulation.    Such nonreciprocity 

can be achieved with a small amount of differential phase shift and can be achieved while pre- 

serving the desired matching. 

in.   DIPHALATOR WITH ONE DIFFERENTIAL  PHASE-SHIFT ELEMENT 

An alteration of the basic configuration is shown in Fig. A-6,   with two dissimilar line lengths 

a  and  ß  and a single phase-shift element.    The only elements preserved in juxtaposition from 

| II-<-I;JT7] 

°« + ^    23 

-ja 
c 

-iß 
sM + U" 

1 
-   1 

1 
1     0 

-   1 
1 

1     ° 
1 u K, 

' + . 

Fig. A-6.   Schematic diagram of Diphalator 
with single differential phase-shift element. 

74 



the previous analysis are the symmetrical scattering junctions.    The following shows that this 
lossless circuit can also demonstrate nonreciprocity without requiring complete circulation. 

A.    Derivation of the Scattering Matrix 

Although basically the solution parallels that of the previous section, there are sufficient 

algebraic differences that should at least be indicated. In matrix form, the relations between 

the internal waves of Fig. A-6 are given by 

2    -i« 
3  £ 

1     -ia 
3  € 

2       JY+ 
"3  £ 0 0 0 

i   -i*+ 
3   € 0 ■1 0 

1 2      -j/3 i   -iv. 
3   £ 0 

0 1     -j/3 
3   € 

2      "*- 
"3   £ 1 

0 1 n 1 
3 riß 

0 0 0 
2 
3 

riß 

1 ,-]a 

2 -ia 
3 £ 

C12 
2 
3 

C31 
2 
3 

C23 = 
0 

D13 
0 

D32 0 

D21 0 

(A-22) 

~     +        ~JT_        -ia -iß Each of the C and D coefficients must be determined in terms of e ,  c ,   e  J   ,  and e  J^ 
for substitution into the defining equations for the scattering parameters.    For a unit amplitude 
applied to terminal 1,  these defining equations are 

5H=!   (D21e"Ja+C3/3*+)-5Xl 

21       3   \U32£        + ^12€        / 

and 

>i = I (Di: 
-J<P. 

C23£_JfJ) 
-j/Jl 

(A-23) 

(A-24) 

(A-25) 

Because of physical symmetry about terminal 2, these same equations define s,,,  s?_, and s.,, 
respectively,  when (p   and <p   are interchanged along with an interchange of  a  and  ß. 

With the excitation on terminal 2, the right-hand matrix in Eq. (A-22) must be changed to 
[0000   2/3   2/3]t to be applicable.    The remaining defining equations for the scattering pa- 
rameters are 

22=1  (D3/J^vi-IXl 

12=1  (D21<-Ja+C
3/

J>+) 

(A-26) 

(A-27) 

75 



'* 

^ + 

\s i 
'    w  & Ä+ T» 

a'      A 

£     ? 
t   + 

S-    —i+S- N          &      IS, 

M         (M 

>jf 
++   ++    d 
s   -S  2, 

& 

:t 

oo d 
„ + N 
9'    S5 

J_7 
~+«a- 
a'   ok 

s 1 
4 Si 
0 + 1   W 
+ . 0 Cl 

J_.' tfr ^ + 
j? CO, 

'?<i '<£ t 
?»'' ^ + s? 
£ + 

1 kl 

fM 0 . .+ 

j 
1     la 

d + a 
£ 
t 

m u 
w 55 

7/ CO. 

£ 
rg 

t 

'oS 

S 

u 
en f( «»■ 1* 

rg iM M 

> 
rg > 

+ 

1     <i 
CO w ■   (,. '    <i> 

+ + i + 

»'   'S    jr" 

o 
a. 

1 ^ b+ i 

!»' 
-    a+ 
ia.    -S 

a 
t 'S     T* „ 

++ s1"  =■ + a ..     ex 
"-»     rg 
'   u + 

'* oo d 

<-^+ a'   * 

5.    "T* 

f    * S   £ 
■&• s '?    'S & +1. '     W ^ 

*!    a1" -^+  "V 

£+    f £    a-+S 
3   £ ■S   £   ■ 

a' &' 
++ ++ —     a ^T ta-   « c3_ 

'S         '    w t T* u 

oo ro 

+i en 
—.+ 

□0 
+ a 

,   i ^; ~ + cs 
a'    < u a ■-> 

t        "7 t 
1   u 

fM           *^i rg 

+             & + . &■' 

& £ ^ CO. 

i         ü d 1    w-^ 
,~+ "T1 _ + ""• 
a"      o¥    °~ !>' ' oS 
£   -,' •°- £ Ä + 
N     a'   rs. ■N &' 
t   i   ?_» t + «a 

5 5 

a1 

£ 

^ + 
a'   , 
£    ■ 

' £ % 

^1 

a    — 
*»     ' wl 1   u      ■* 

•£     _- 

8 
£ 

a  n 

OJ 

I 
OJ 

p 
B 
o 

Q. 

b 
a 
OJ 

a 

3 s > 
£ + 55 
+ d '   w 
d +^ rO 

Y &* —.+ 

£      * 

a+  i 

— ■ tf 
a'   v 

o- 

»  d 
-.+d 
81     —• 

rj      -~.+ 

i" £ +^ ■    u + 
# (O » 1 <*£ 
1     fc 

^- + 

£ 

a"' 
£ 

t 

*i 

d    ' 

Li £ 

t 
l~0 

Vog 

a   51 
£    • 

++ tr e+ X 
8 

■■"-■ j •   w ■ . >   u 

ö & 

' # 

uKi       —, 

Sr !>' 
£ 
+ 

•  »£ 
_ -t . ■—> 

a' ' £ 
£ Ä + 
r\] a' 
t £ 

'?    ö 

00 £ 
_ + :=, 
a'    ■ , 
£ _° 

a+  5   ^+  I Ä 

O) 
c 

;>' L. 

++ 
s -*- ^* ■•- 

d o 
+ T* <J 
d w CO 

^ ex 
K 

■•-» Tdf i < 'cS ^_ + IV! 

"S1 &' & i   u O) 
a   "*^ + 
£        'r? 

a u_ 
(M                   —■ •f-1- i' 

*     a'' 
# £ 

+ 
-   t ■   w 0 

' *£; —. +■ 
1      U) 

a'      •* 
+    « + 
2-    a' 

1    £ 

£ 
CM 

£ 

CO. 
rg 

l 

Id 
rg rg in 

t? 1 d 
fNJ 

+ 

■■~»          1     « 
*; 

1 

Ä    t 
1   w 

1 

1   (.) 
+ + . 

76 



and 

S32=!  (C23e*iP + D13' 
-J«P. 

(A-28) 

where the C and D coefficients are to be obtained from the modified matrix Eq. (A-22). 

The final matrix for this Diphalator is shown in Pig. A-7.    Dissymmetry is in evidence about 
the principal diagonal.    If a = ß,  symmetry is recognized about the minor diagonal,  indicating 
the physical symmetry of the device about port 2.    An interchange of <p   and <p   effects a folding 
of terms across the principal diagonal.    These indications are in agreement with the desired 
nonreciprocal but switchable states of the lossless network. 

B.    Computer Solutions 

Two computer programs were written for this case:   one to determine the values of ß,  <p , 

and <p_ to satisfy the unitarity condition with | s ^ _ | = 1,  and the other to evaluate the entire mag- 
nitude scattering matrix for discrete values of the variables.    These programs may be found in 
Appendix B as Figs. B-ll and B-12. 

Two ranges of solutions are evident for this circuit,  as may be seen by referring to Fig. A-8. 
For one solution type, both <p   and ß are required to be invariant,  <p   at 180° and ß at 90°; thus, 

, (20 - 

Fig. A-8.   Relations among variables required for I Sio | = 1.0 in scattering 
matrix of single phase-shift Diphalator. 

</>_ is the only active variable.    The condition required on the second type solution is that <p   re- 

main fixed at 0°.    For this case,  two variables are effective,  i.e.,  <p   and ß.    Numerical values 
indicated along the curves of the figure represent the magnitudes of s   ..    These data are included 
merely to indicate how the parameter magnitudes are subdivided within the overall scattering 
matrix.    It is evident that perfect circulation can occur only by restricting <p   to 0° or 360°,  by 
requiring ß = 90°,  and by limiting <p   to 180°. 

A typical computer calculation of the magnitude scattering matrix for <p   = 180°,  ß - 90°,  and 
<p   = 90° is 

77 



0.0000        0.0000 1.0000 

0.8944        0.4472        0.0000 

0.4472        0.8944        0.0000 

C.    Invariant Identities 

It may be determined that holding both <p   and <p   constant allows  ß to be increased by 180°, 

leaving the same solution.    Thus, 

<P+=<P+ 

<p    = q> 

ß -~ ß + 180° 

Alternately,   if ß be held constant,   invariance in the solution requires 

ß= ß 

f+^
<P+ 

+ 360° 

cp   — q>   + 360° 

(A-29) 

(A-30) 

Thus,   the single phase-shift Diphalator also exhibits the desirable properties set forth for this 

lossless device. 
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APPENDIX B 

This appendix comprises a listing of programs written specifically for the IBM-360 computer 

installation at Lincoln Laboratory,  together with graphical data used in some of the computations. 

All programs are written in Fortran H language.    Several of the figures show only substitutions 

or modifications needed in other programs for a given application.    Each program listed and 

each graph is referred to in either the main body of the report or in Appendix A. 

1-4-12320 | 

//E38848 JOB 
II 
//START   EXEC 
//COM   EXEC 
//SYSIN   DD 
C THIS PROGRAM 

S360, 
•8LAKE/LIBBEY,UI05«,MSGLEVEL=1 
PROC=DUMMY 

PROC=FORTRANH 
* 
DESIGNATES VALUES OF G COMPLEX, S12, AND S21 

FEBRUARY 9, 1968 
GROUP 44 

FOR MINIMUM 
C DIFFERENTIAL GAIN CIRCUIT 
C h.   M. LIBBEY 
C 
C        1 2 3 4 5 6 7 
C23456789012345678901234567890123456789012345678901234567890123456789012 
C 

COMPLEX PHA,PHK,EPSLN,OELTA,ATLED,X,XX,Y,YY,G,GG,Z,ZZ,GFO,GBA,GGFO 
1,GGBA,DEN,0DEN,R 
0IMENSI0N GI648),GF0(648).GGFCRI648),GBA(648).GGBAM648).GG(648), 

1 V1648) ,H(648),PHI(648),GGG(648),PHI Ml 648),VV(648),HHI6481,ZU(648) 
2,ZUM(64 8),VVV(64 8),HHH(648),AMCA(648),AMDAM<648),GGF0(648),GGBA(64 
38) ,LBL( 180),CEM64 8),DDEN<648),DDDEN(648),RATIC(648) 

116 READ (5, 117,END = 45) R 
117 FORMAT (F1C.CF10.0) 

I » 0 
1 DO 28 J = 5,180,5 

JSUM = -185 
JSUM = JSUM + J 
A = JSUM 
LBL(J) = -JSUM 

2 CO 27 K=5,90,5 
1 = 1 + 1 
KSUM = 0 
KSUM = KSUM ♦ K 
B = -KSUM 
PHA = CMPLX(O.CA) 
PHA = (2.*3.1415927*PHA)/360. 
EPSLN = CEXP(PHA) 
PHN = CMPLX(C.C.B) 
PHN = (2.*3.1415927*PHN)/360. 
CELTA = CEXP(PHN) 
ATLED = CONJG(OELTA) 

3 X * (16.*(EPSLN**2)*REAL(DELTA)*RE*LIDELTA)-I3.*IEPSLN»*2)*1.)*U( 
1 -3.*(R**2)+2.*R*l.)*<EPSLN**2))*<-(R**2)-2.*R*3.)>) 

4 XX = CSQRT(X) 
5 Y = (4.*EPSLN*REAL(DELTA)+XX)/(3.*(EPSLN**2)*1.) 
6 Z = I4.*EPSLN*REAL(DELTA)-XX)/(3.*tEPSLN*«2)*l.) 
7 YY = CABS(Y) 
9  YYY = REALIYY) 
*      11   =   CABS(Z) 

10 ZZZ = REAL(ZZ) 
11 IF!YYY-ZZZ)12,12,14 
12 G(I) *   I 
13 GO TO 15 
14 GII» = Y 

Fig.B-1.    Fortran list of program for evaluation of  |G |, arg G,   |S]2l 
and ratio S-j2/^21  f°r Das'c nonreciprocal gain network. 

»2)1 
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|-4-12324 I 

15 

16 
17 
18 

115 

19 
20 

103 
21 
22 
23 
24 
25 
26 
54 
55 
86 
87 
56 
57 
58 
59 
88 
89 
60 
61 
27 
28 

29 

74 
30 
31 

32 
46 
47 

80 

33 

6F0 (I) * (4.*(G(l)**2l*EPSLN*DELTA+4.*G(I>* 
1 <<R**2>+2.*R+l.)*EPSLN*DELTA)/(-(Gm**2>*( 
2 *G(l)*EPSLN*DELTA+4.*G(I)*EPSLN*(ATLED)*((R 
3 2)-((R**2)+6.*R+9.)> 
GGFO (!) » CABS (GFO(I)) 
GGFOR (1)^ REAL (GGFO(I>) 
GBA (I) ■ (4.*<G<I)**2)*EPSLN*(ATLED)*4.*G<I 

1 .*UR**2)*2.*R+l.)*EPSLN*(ATLED))/(-(G(l>** 
2 •♦4.*G(I)*EPSLN*DELTA*4.*G(I)*EPSLN*(ATLED) 
3 LN**2)-((R**2)*6.*R+9.)) 
DEN (I) = (-(G(I)**2)*(EPSLN**2)*(G(I)**2)*4 

1 G(I)*EPSLN*(ATLED)*((R*»2)-2.*R*1.)*(EPSLN* 
CDEN(I) * CABS(DEN([)) 
CDDEN(I) = KEAL1DDEMI)) 
GGBA (I) = CABS (GBA(II) 
GGBAK (II * REAL (GGBAII)) 
RATIO(I) = (GGBAK(I))/(GGFOR(I)) 
GG(I) ■ CABS <G<I)) 
GGG(I) = REAL (GG(I)) 
V( I ) = AIMAG (G(I)> 
H(I) = REAL (G(I)) 
PHI (I) = ATAN2 (V(I),H(I)) 
PHIM(I) - (360-*PHI(I))/(2.*3.1415927) 
VV(I) • AIMAG (GFO(I)) 
HH(I) = REAL (GFO(I)) 
IF(HH(I))56,87,56 
HH(I) = HH(I) ♦ 999. 
ZU(I) = ATAN2 (VV(I)tHH(I)) 
ZUM(I) = (360.*ZU(I)>/(2.*3.1415927) 
VVV( I ) - AIMAG (GBAU ) ) 
HHH(I) = REAL (GBA(D) 
IF(HHH(I ) 160,89,60 
HHH(I) = HHH(I) ♦ 999. 
AMOA(I) = ATAN2 (VVV(I),HHH(I)) 
AMDAM(I) = (360.*AMOA(I))/(2.*3.1415927) 
CONTINUE 
CONTINUE 
WRITE (6,29) 
FORMAT <«1',39X,«AMPLIFIER GAIN AS FUNCTION 
1PHASE'/) 
ISTART = 1 
IEND = 18 
CO 32 J = 5, 18C5 
WRITE (6,31) LBL(J),(GGG(I),I = 1 START,I END) 
FORMAT (14,(• «.18F7.2)) 
ISTART = ISTART ♦ 18 
IEND = IEND ♦ 18 
CONTINUE 
WRITE (6,47) 
FORMAT (130H0 5 

1 40     45     50     55 
2 85     90) 
CONTINUE 
WRITE (6,33) 
FORMAT («l«,29X,«AMPLIFIER ANGLE 

IE AND DIFFERENTIAL PHASE«/) 

(EPSLN**2)-4.* 
EPSLN**2)*(G(I 
**2)-2.*R+l.)* 

G(I)-4.* 
>**2)*4. 
(EPSLN** 

)*(EPSLN»*2)-4 
2)*<EPSLN**2)* 
♦((R**2)-2.*R* 

•*G(I)*EPSLN*D 
*2>-((R**2)*6. 

• *G( D-4 
(G(I )**2 
l.)*(EPS 

ELTA+4.* 
♦R+9.)) 

OF AVE PHASE AND DIFF 

10 15 20 
60 65 

25     30 
70     75 

35 
80 

AS FUNCTION OF AVE INSERTION PHAS 

Fig. B-l.    Continued. 
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T5 

It 
36 
48 
49 

81 

98 
|.*..j*sg;."«; 

99 

100 

101 

102 

37 

76 
38 
39 

40 
50 
51 

82 

41 

77 
42 
43 

44 
52 

ISTART * 1 
1END = 18 
00 36 J=5,180,5 
WRITE (6,35) LBL1 
FORMAT (14,(• »,1 
ISTART * ISTART ♦ 
IENO = IENO. ♦ 18 
CONTINUE 
WRITE «6,49) 
FORMAT (130H0 

1 40     45 
2 85     90) 
CONTINUE 
WRITE (6,98) 
FORMAT (*l't4SX,* 
ISTART =   1 
IEND = 18 
CO 100 J=5,180,5 
WRITE (6,99) LBLl 
FORMAT (14,(• *,1 
ISTART * ISTART ♦ 
IENO - IEND ♦ 18 
CONTINUE 
WRITE (6,101) 
FORMAT (130H0 

1 40     45 
2 85     90) 
CONTINUE 
WRITE (6,37) 
FORMAT (•la,39X,< 

1HASE»/) 
ISTART * 1 
IENO =» 18 
00 40 J*5,180,5 
WRITE (6,39) LBL( 
FORMAT (I4.C ',1 
ISTART = ISTART ♦ 
IENO - IENO ♦ 18 
CONTINUE 
WRITE (6,51) 
FORMAT (130H0 

1 40     45 
2 85     90) 
CONTINUE 
WRITE (6,41) 
FORMAT (•l»,39X.« 
1HASEV) 
ISTART = 1 
IEND = 18 
DO 44 J»5,180,5 
WRITE (6,43) LBL( 
FORMAT (14,(• SI 
ISTART = ISTART ♦ 
IEND = IEND ♦ 18 
CONTINUE 
WRITE (6,53) 

J),(PHIM(I),1 = 1 START,IENO) 
8F7.2)) 
18 

5     10     15     20     25     30     35 
50     55     60     65     70     75     80 

COMMON DENOMINATOR MAGNITUDE FOR S12 AND S21'/) 

J),(DDDEN(I),I=ISTART,IEND) 
8F7.2)) 
18 

5     10     15     20     25     30     35 
50     55     60     65     70     75     80 

S12 MAGNITUDE AS FUNCTION OF AVE PHASE ANO DIFF P 

J ) ,(GGF CR(I),I = I START,IEND) 
8F7.2)) 
18 

5     10     15     20     25     30     35 
50     55     60     65     70     75     80 

S21 MAGNITUDE AS FUNCTION OF AVE PHASE ANO DIFF P 

J),(GGBAK(I),I*ISTART,IENO) 
8F7.2)) 
18 

Fig. B-l. Continued. 
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53 

83 

62 

78 
63 
64 

67 
65 
66 

84 

68 

7 9 
69 
70 

73 
n 
12 

85 
104 
105 

106 
107 
108 

109 
110 
111 

FORMAT ( 
1 40 
2 85 
CONTINUE 
WRITE (6 
FORMAT ( 
1AL PHASE 
ISTART * 
IEND « 1 
CO 67 J» 
WRITE (6 
FORMAT « 
ISTART = 
IEND = I 
CONTINUE 
WRITE (6 
FORMAT ( 

1 40 
2 85 
CONTINUE 
WRITE 16 
FORMAT ( 

1AL PHASE 
ISTART = 
IENC = 1 
CO 73 J= 
WRITE (6 
FORMAT ( 
ISTART = 
IEND = I 
CONTINUE 
WRITE (6 
FORMAT ( 

1 40 
2 85 
CONTINUE 
WRITE (6 
FORMAT ( 
1ERAGE IN 
ISTART = 
IEND = 1 
CO 109 J 
WRITE (6 
FORMAT ( 
ISTART = 
IEND = I 
CONTINUE 
WRITE (6 
FORMAT ( 

1 40 
2 85 

130H0 
45 

90) 
50 

5     10     15     20 
55     60     65 

25     30     35 
70     75     80 

.62) 
■1,.35X,,S12 ANGLE AS FUNCTION CF AVE PHASE AND DIFFERENTI 
•/) 
1 

8 
5,180,5 
,64) LBL(J),(. 
14,(• «,18F7.; 
ISTART «• 18 

END «• 18 

1ZUMII),I=ISTART,IEND) 
,2)) 

,66) 
130H0 

45 
90) 

50 
5     10     15     20 

55     60     65 
25     30     35 

70     75     80 

,68) 
•1,,35X,«S21 ANGLE AS FUNCTION OF AVE PHASE AND DIFFERENTI 
•/) 
1 

8 
5,18C,5 
,70) L8L(J),(i 
14,(' «,18F7. 
ISTART + 18 

END ♦ 18 

lAMDAM(I),1 = 1 START,I END) 
.2)) 

,72) 
13CH0 

45 
90) 

5     10     15     20 
50     55     60     65 

25     30     35 
70     75     80 

,105) 
•1',15X,«RATI 
SERTION PHASE 
1 

8 
=5,180,5 
,108) LBL(J), 
14,(• «,18F7. 
ISTART ♦ 18 

END + 18 

0 OF S21 TO S12 MAGNITUDE 
AND AVERAGE DIFFERENTIAL 

(RATIO!I),1 = 1 START,IEND) 
2)) 

AS A FUNCTION OF AV 
PHASE»/) 

,111) 
130H0 

45 
90) 

5     10     15     20 
5C     55     60     65 

25     30     35 
70     75     80 

C 
C 
C2345 
112 
118 
45 

/* 
//LIN 
//GO 
//FTO 

0 
/* 

12 3 4 5 
6789012 3456789012345678901234567890123456789012 
CONTINUE 
GO TO 116 
STOP 
END 

K   EXEC   PRCC=LINKSRCN 
EXEC   PRCC=EXECUTE 

5F001   DD   * 
.0 0.0 

6 7 
34567890123456789012 

Fig. B-l .    Continued. 
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THIS PROGRAM OESIGNATES VALUES OF GCCHPLEX, S12, AND S21 FOR MINIMUM 
DIFFERENTIAL GAIN CIRCUIT  -  FEBRUARY 9, 1968 

*****  USING NEGATIVE ROOT OFG******** 

11  IFUZZ-YYYU2.12.14 
************************ 

Fig. B-2.   Modification necessary in Fortran program of Fig. B-1 to evaluate |G| 

arg G, |S121 »   I $211 / ar|d ratio S-j2/^21 ^or bas'c nonreciprocal loss network. 

1-4-12325 1 

c THIS   PROGRAM   D 
c DIF 
c 
c R 
c 
c 
c 
c 

0.2 0.0 
0.4 0.0 
0.6 0.0 
0.8 0.0 

1.0 0.0 
-0.2 0.0 
-0.4 0.0 
-0.6 0.0 
-0.8 0.0 
-1.0 0.0 

GNATES VALUES OF G COMPLEX, S12, AND S21 FOR MINIMUM 
DIFFERENTIAL GAIN CIRCUIT AND DEPENDS ON 

THE AMPLIFIER REFLECTION COEFFICIENT 
■ 0.0 TO R = ♦ ANO - 1*0 IN 0.2 INCREMENTS 

************************ 

Fig. B-3. Additions required for Fortran program of Fig. B-1 to evaluate |G|, 
arg G, |S]2 1/ |S21 I < and ratio S]2/^21 f°r basic nonreciprocal gain' network 
with amplifier reflections R. 
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C THIS PROGRAM DESIGNATES VALUES OF G COMPLEX, S12, AND S21 FOR MINIMUM 
C DIFFERENTIAL GAIN CIRCUIT AND DEPENDS ON 
C THE AMPLIFIER REFLECTION COEFFICIENT R » 0.2 
C        WITH ANGLES FROM -120 TO +120 IN 15 DEGREE INCREMENTS 
C 

C 
c 

♦0.2000 
♦0.0517 
♦0.0517 
♦0.1732 
♦0.1732 
♦0.1414 
♦0.1414 
♦0.1000 
♦0.1000 
♦0.1931 
♦0.1931 
♦0.0000 
♦0.0000 
-0.1000 
-0.1000 
-0.1732 
-0.1732 

♦0.0000 
♦0.1931 
-0.1931 
♦0.1000 
-0.1000 
♦0.1414 
-0.1414 
♦0.1732 
-0.1732 
♦0.0517 
-0.0517 
♦0.2000 
-0.2000 
♦0.1732 
-0.1732 
♦0.1000 
-0.1000 

************************ 

Fig. B-4. Additions required for Fortran program of Fig. B-l to evaluate |G|, 
arg G, IS-^I , |S211 / anQl ratio S]2/^21 f°r basic nonreciprocal gain network 
with amplifier reflection coefficient R = 0.2 with angles from —120° to +120°. 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

5 
t 

15 

lfi 

115 

********************** 

THIS PROGRAM 
DETERMINES COMPLEX VALUES IN POLAR FORM 

FOR G, S12, S21, CCMMCN DENOMINATOR 
AND THE S RATIO 

FOR 
THE BASIC 

DIFFERENTIAL GAIN CIRCUIT MATRIX 
USING BALANCEO JUNCTIONS 

DEPENDING ON THE AMPLIFIER REFLECTION 
COEFFICIENT R VARYING FROM 0 TO «-AND- 

1 BY 0.2 INCREMENTS 

********************** 

X = ((EPSLN**2)*REAL(DELTA)*REAL(0ELTAJ*(R**2)-2.*RMEPSLN**2)*2.* 
I R-(EPSLN**2)J 
Y = (EPSLN*REAL(DELTA)+XX) 
Z = (EPSLN»REAL(DELTA)-XX) 
GFO (I) = (2.*!(G<I)**2)*EPSLN*DELTA+G(I)*(EPSLN**2)-G(I)-((R**2)* 

1 2.*R*l.)*EPSLN*DELTA))/<(G(I)**2)*G(I)*EPSLN*DELTA*G(I)*EPSLN*(AT 
2 LED)*(EPSLN**2)-<(R**2)+4.*R*4. ) > 
GBA (I) = (2.*((G<l)**2)*EPSLN*(ATLED)+G(I)*(EPSLN**2)-G(I)-((R**2 

1 )*2.*R*1.)*EPSLN*(ATLED) ))/((G(I)**2I+G(I)*EPSLN*DELTA*G(I)*EPSLN 
2 *(ATLED)*(EPSLN**2)-<(R**2)♦*.*R*4.)) 
DEN (I) = ((G(I)**2)*GU)*EPSLN*DELTA+G(I)*EPSLN*(ATLED)*(EPSLN**2 

1 )-((R**2)*A.*R*4.)) 
************************ 

Fig. B-5.    Substitutions for Fortran program of Fig. B-l to evaluate   IG!, arg G, 

| S12 I»   l^2ll ' anc' rat'° S12 /^21 wnen using balanced scattering junctions. 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

5 
6 

15 

18 

115 

* 
* 
* 
» 

* 
* 
♦ 

* 
♦ 

* 
* 
* 

* 

********************** 

THIS PROGRAM 
DETERMINES COMPLEX VALUES IN POLAR FORM 

FOR G, S12, S21. COMMCN DENOMINATOR 
ANO THE S RATIO 

FOR 
THE BASIC 

DIFFERENTIAL GAIN CIRCUIT MATRIX 
USING COMPLETELY NON-SYMMETRICAL JUNCTIONS 

DEPENDING ON THE AMPLIFIER REFLECTION 
COEFFICIENT R VARYING FROM 0 TO +AND- 

1 BY 0.2 INCREMENTS 

********************** 

C 
C 
c 
C 
C 
C 
c 
c 
c 
C 
c 
C 
C 
c 
c 
c 
c 
c 

X ■ (256.*( 
1 -CR*»2)*<2 
2 21.11 
Y » (U.*EP 
Z = I16.*EP 
GFO (I) = ( 

1 *DELTA*UR 
2 EPSLN*REAL 
3 )*(25.*(EP 
GBA (I) = ( 

1 LN*(ATLED) 
2 32.*EPSLN* 
3 -14.)*<25 
DEN (I) = ( 

1 ♦<R**2)*I9 
2 -49.»I 

EPSLN**2)*REALCDELTA)*REALI DELTA)-<21.*«EPSLN**2)-5.)*I 
l.*(EPSLN**2l-5.)*R*I38.*(EPSLN**2)-l.)-5.*IEPSLN**2)* 

SLN*REAL(DELTA)* 
SLN*REAL(DELTA)- 
8.*<<G(I)**2)*EP 
**2)*2.*R+1.)))/ 
<DELTA)+(R**2)*I 
SLN**2)-49.I) 
8.*HG<I)**2)*EP 
*((R**2)*2.*R*1. 
REAL(DELTA)+(R** 
*<EPSLN**2)-49.) 
(G(I)**2)*(l.-9. 
.*<EPSLN**2)-1.) 

XX)/I21.*IEPSLN**2)-5.) 
XX)/(21.*(EPSLN**2)-5.) 
SLN*DELTA*4.*G(I)*H EPSLN**2 )-l.)-EPSLN 
UGU)**2)*(1.-9.*(EPSLN*»2) )*G( I)*32.* 
9.*<EPSLN*»2)-1.)-R*«30.*(EPSLN**2)-1A. 

SLN*(ATLE0)*4.*G<I)*<(EPSLN**2)-1.)-EPS 
)))/((G(I)**2)*(l.-9.*(EPSLN**2))*G(I)* 
2J*(9.*1EPSLN**2)-1.)-R*(30.*IEPSLN**2) 
I 
*(EPSLN**2))+G(I ) »32.*EPSLN*REAL<DELTA) 
-R*I30.*IEPSLN**2)-14.)*I25.*IEPSLN**2) 

************************ 

Fig. B-6.    Substitutions for Fortran program of Fig. B-l to evaluate |G|, arg G, 
| S12 i ^   1^211 i ar,d ratio S-|2/^21 wrien using nonsymmetrical scattering junctions. 
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ODD MODE 

EVEN MODE 

J I I L 
0.4 0.6 

W/H 

J L TUT 4.0 12 

Fig. B-7(a). Even- and odd-mode impedances 
for coupled microstrips with parameter S/H: 
substrate K =  16 (dielectric). 

Fig. B-7(b). Even- and odd-mode velocities 
for coupled microstrips with parameter S/H: 
substrate K =  16 (dielectric). 

-83==^-^ ] U-4-1U3! 1 

M^&^r-^ 
" \^^5^: -      S/H                              ^-^J"*- 

-     CD v 

  ODD MODE 
>V    EVEN MODE 

-°2 \             \v 
-8^\     \. 

VW                     \. 
Vv\ 
V\\ 

^•N\ V*X v^X v^X v^, v»x v-x vc vv\ 
VV V 

V*N^ 

■ *>*>. 
i    i    i    i    i    i 1                    1                   1                   1^^^ 

Fig. B-8(a). Even- and odd-mode impedances 
for coupled microstrips with parameter S/H: 
substrate K =  14. 4 (dielectric). 

Fig. B-8(b). Even- and odd-mode velocities 
for coupled microstrips with parameter S/H: 
substrate K =  14.4 (dielectric). 
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//E32283 JOB 
II 
//START   EXEC 
//COM   EXEC 
//SYSIN   DD 

S360, 
•BLAKt/LIBBtY,UIOV,MSGLEVEL=l 
PROC=DUMMY 

PROC=FORTRANH 

C 
C 
c 

THIS PROGRAM DESIGNATES VALUES OF S13 FOR IMPER IRCULATOR 

'tSSSfi: 

BETA » ////I 

COMPLEX PHP, BTA, PHM, R 
DIMENSION R(600),RR(600) 

20  DO 21 M = 10,270,130 
1 DO 14 J = 10,360,10 

JSUM = -10 
JSUM = JSUM + 4 
B = JSUM 

17  WRITE (6,15) 
15  F0RMATI51H1 

1*0 
2 DO 11 K = 10,360,10 

KSUM * -360 
KSUM = KSUM + K 
A = -KSUM 

3 DO 10 L * 10,140,10 
1 = 1*1 
LSUM = M - 20 
LSUM ■ LSUM ♦ L 
C = LSUM 
PHP = CMPL*(0.0,-A) 

CMPLX(O.O.-B) 
CMPLXIO.O.-C) 
(2.*jl.l415927*PHP)/360. 
<2.*ä.l4l5927*BTA)/360. 
(2.^5.14l5927*PHM)/360. 
<4.*(CEXP(2.*PHP*BTA*2.*PHM)*2.«CEXP(PHP*8TA*PHM)*2.*CEXP 

1 <2.*BTA+2.*PHM»-2.*CEXP(2.*PHM)-3.*CEXP(BTA>)/27.)/{(-CEXPI2.* 
2 PHP*2.*BTA*2.*PHM)*2.*CEXPIPHP*2.*BTA*PHM)*CEXPI2.*PHP*2.*PHM) 
3 *6.*CEXP(PHP+PHM)*8.*CEXP(2.*PHP*BTA)*8.*CEXP(BTA*2.*PHM)*3.* 
4 CEXP«2.*BTA)-27.)/27.) 
R( I ) = CABS (R( I ) ) 

BTA 
PHM 

4 PHP 
■5 BTA 
6 PHM 
7 R(I) 

8 
9 RR(I) = REAL 

10 CONTINUE 
11 CONTINUE 
12 WRITE 16,13) 
13 FORMAT (14F9. 
14 CONTINUE 
21 CONTINUE 
16 STOP 

ENO 

(R(D) 

(RR(I),1=1,504) 
4) 

//LINK        EXEC        PROC = HNKSRCN 
//GO        EXEC        PROC=EXECUTE 

************************ 

Fig. B-9.    Fortran list of program for evaluation of IS|oI for Diphalator 

with two differential phase-shift elements. 
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//E31827 JOB   S360, C 
// •BLAKE/LIBBEY,U105«,MSGLEVEL=1 
//START   EXEC   PROC-OUMMY 
//COM   EXEC   PROC*FORTRANH 
//SYSIN   00   * 
C THIS PROGRAM CALCULATES THE COMPLEX SCATTERING MATRIX FOR THE 
C IMPERFECT CIRCULATOR — OCTOBER 25, 1967 
C 

COMPLEX PHP,BTA,PHM,R,Z,Y,X,Q,W 
CALL MSGDP 

1 READ (5,2.END=L1) A,B,C 
2 FORMAT (FIO.O.FIO.O.FIC.O) 

PHP * CMPLX «0.0,-A) 
BTA ■ CMPLX (0-0,-B) 
PHM * CMPLX IO.O,-C» 

3 PHP = !2.*3.U15927*PHP)/360. 
4 BTA * <2.*3.1415927*BTA)/360. 
5 PHM = (2.*3.1415927*PHM)/360. 
6 R * U.*(CEXP{2.*PHP*2.*BTA*PHM)*2.*CEXPtPHP*BTA*2.*PHM)*CEXP(2.* 

1 PHP-t-PHM)*CEXPCPHP*2.*BTA)-2.*CEXP«BTA+PHH)-3.*CEXPIPHP))/27. )/ 
2 H-CEXPf2.*PHP*2.*BTA*2.*PHM)*2.*CEXP(PHP«-2.*BTA*PHM)*CEXP<2.* 
3 PHP+2.*PHM)+6.*CEXP(PHP*PHH)*8.*CEXP(2.*PHP*BTA)*8.*CEXP(BTA+ 
A 2.*PHM)+3.*CEXP(2.*BTA>-27.)/27.) 

16  M * (4.*«CEXP(2.*PHP*BTA*2.*PHM)*2.*CEXP(PHP*BTA*PHM)+2.*CEXP 
1 <2.*BTA*2.*PHM)-2.*CEXP<2.*PHM)-3.*CEXPIBTA)l/27.>/U-CEXP(2.* 
2 PHP*2.*BTA+2.*PHM)*2.*CEXP(PHP*2.*BTA+PHM)*CEXPI2.*PHP*2.*PHM) 
3 ♦ 6.*CEXP(PHP*PHM>+8.*'CEXP«2.*PHP*BTA)*8.*CEXP(BTA-»-2.*PHM)*3.* 
4 CEXP(2.*BTA)-27.)/27.) 

19  Z * U3.*CEXPI2.*PHP*2.*BTA»2.*PHM»-2.*CEXP(PHP+2.*BTA*PHM)+CEXP( 
1 2.*PHP*2.*PHM)+2.*CEXP<PHP*PHM)-8.*CEXP(2.«PHP*BTA>-8.*CEXPCBTA*2 
2 .*PHM)*3.*CEXP<2.*BTA>+9.)/27.)/<(-CEXP(2.*PHP*2.*BTA*2.*PHM)+2.* 
3 CEXPIPHP*2.*BTA*PHM)+CEXP<2.*PHP+2.*PHM)*6.*CEXPtPHP+PHM)*8.*CEXP 
A <2.*PHP*BTA)+8.*CEXP(BTA+2.*PHM>*3.*CEXP(2.*BTA)-27.)/27.) 

22  Y = (4.*<CEXP(PHP*2.*BTA*2.*PHM)«-2.*CEXP<2.*PHP*BTA*PHM)+CEXP<2.* 
1 BTA+PHM)-2.*CEXP<PHP+BTA)4-CEXP(PHP*2.*PHM»-3.*CEXP(PHM))/27.)/(( 
2 -CEXP(2.*PHP+2.*BTA+2.*PHM)+2.*CEXP(PHP*2.*BTA+PHM)-fCEXP<2.*PHP+ 
3 2.*PHM)*6.*CEXP<PHP+PHM)«-8.*CEXP(2.*PHP+BTA)-*8.*CEXPIBTA*2.*PHM) 
4 *3.*CEXP(2.*BTA)-27.)/27.) 

25  X< U3.*CEXP(2.*PHP*2.*BTA*2.«'PHM)+2.*CEXPtPHP+2.*BTA*PHM)-3.*CEX 
1 P(2.*PHP«-2.*PHM)*6.*CEXP(PHP*PHM)-8.*CEXP(2.*PHP*BTA>-8.*CEXP(BTA 
2 ♦2.*PHM)-CEXP(2.*BTA»+9.)/27.)/«(-CEXP(2.*PHP*2.*BTA+2.*PHM)*2.* 
3 CEXP(PHP*2.*BTA*PHM)*CEXP(2.*PHP+2.*PHM)*6.*CEXP(PHP+PHM)*8.*CEXP 
4 <2.*PHP+BTA)*8.*CEXP(BTA*2.*PHM)*3.*CEXP(2.*BTA)-27.l/27.) 

13  C< (A.*(CEXPC2.*PHP+BTA*2.*PHMH-2.*CEXP(PHP*BTA+PHM)*2.*CEXP<2.* 
1 PHP+2.*BTA)-2.*CEXP(2.*PHP)-3.*CEXP(BTA))/27.)/<(-CEXP(2.*PHP*2.* 
2 BTA«-2.*PHM)+2.*CEXP<PHP*-2.*BTA*PHM)+CEXP(2.*PHP+2.*PHM)+6.*CEXP 
3 (PHP+PHM)+8.*CEXP(2.*PHP*BTA)+8.*CEXP<BTA«-2.*PHM)*3.*CEXP(2.*BTA) 
4 -27.1/27.) 

8 WRITE (6,91 A,B,C,Z,Y,K,R,X,Y,C,R,Z 
9 FORMAT (3F9.4//6F9.4/6F9.4/6F9.<»////) 

10 GO TO 1 
11 STOP 

END 
/* 
//LINK   EXEC   PROC=LINKSRCN 
//GO   EXEC   PROC=EXECUTE 
//FT05F001   DO   * 

150.0      60.0      30.0 
/* 

Fig. B-10. Fortran lisf of program for evaluation of entire complex scattering 
matrix for Diphalator with two differential phase-shift elements using discrete 
data points. 
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-4-12335 

THIS PROGRAM DESIGNATES VALUES OF S13 FCR IMPERFECT CIRCULATOR WITH 
BUT ONE DIFFERENTIAL PHASE SHIFT ELEMENT 

R( I ) = (4.*<2.*CEXPt'PHP*2.*BTA+PHM)*CEXP(PHP**.*BTA>-2.*CEXP(2.*B 
1 TA>*2.*CEXP(PHP + 2.*BTA)-3.*CEXP(PHP))/27.)/<<-CEXP(PHP-»-4.*BTA*PHM 
2 )+2.*CEXP(PHP*2.*BTA+PHMJ*8.*CEXP(PHP+2.*BTA)+8.*CEXP(2.*BTA+PHM) 
3 +CEXP(4.*BTA)0.*CEXP(PHP+PHM)+6.*CEXP(2.*BTA)-27.1/27.) 

************************ 

Fig. B-l 1.    Substitution for Fortran program of Fig. B-9 to evaluate | Si o | for 
Diphalator with only one differential phase-shift element. 

-4-12336 | 

//E35640 JOB 
II 
//START   EXEC 
//COM   EXEC 
//SYSIN   00 
C THIS PROGRAM 
C 
C 
C 

360, C 
BLAKE/LIBBEY,UI05»,MSGLEVEL=i 
PROC=DUMMY 

R0C=F0RTRANH 

ALCULATES THE MAGNITUDE SCATTERING MATRIX FOR THE SECOND 
MPERFECT CIRCULATOR WITH BUT ONLY ONE DIFFERENTIAL 

PHASE SHIFT ELEMENT - CCTCBER 31, 1967 

7 
12 
16 

17 
18 
19 

20 
21 
22 

BTA 
PHM 

COMPLEX PH 
CALL MSGDP 
READ (5,2, 
FORMAT (Fl 
PHP = CMPL 

CMPL 
CMPL 

PHP = (2.* 
BTA = (2.* 
PHM = (2.* 
R = (4.*(C 

1 »+CEXPI3. 
2 *BTA+PHM) 
3 BTA+PHM)* 
R = CABS ( 
RR = REAL 
V. = (4.*(2 

1 TA)+2.*CE 
2 )+2.*C£XP 
3 +CEXPI4.* 

V. = CABS ( 
ViW = REAL 
Z = ((CEXP 

1 *CEXP(PHP 
2 «XEXP(4.* 
3 .*BTA*PHM 
4 *BTA+PHM) 
Z = CABS ( 
ZZ = REAL 
Y = (4.*(2 

1 1+CEXP13. 
2 *BTA+PHM) 
3 BTA+PHM1+ 

P,BTA,PHM,R,Z,Y,X,Q,W 

END 
CO 
X ( 
X ( 
X I 
3.1 
3.1 
3.1 
EXP 
*BT 
+ 2. 
CEX 
RI 
(R) 
.*C 
XP{ 
(PH 
BTA 
V.) 
(W) 
(PH 
♦ 4. 
BTA 
)*2 
+ CE 
Z) 
(Z) 
.*C 
*BT 
+ 2. 
CEX 

= 11) 
,F10 
0.0, 
0.0, 
0.0, 
41592 
41592 
41592 
(PHP* 
AI-2. 
*CEXP 
P(4.* 

A,B,C 
0.F10 
A) 
rl> 

C) 
7*PHP 
7*BTA 
7*PHM 
3.*BT 
♦ CEXP 
(PHP* 
BTAJ + 

.0) 

)/360. 
J/360. 
1/360. 
A*PHM)*2.*CEXP(3.*BTA+PHM)+CEXP(PHP*BTA*PHM 
(BTA*PHM)-3.*CEXP(BTA)I/27.)/U-CEXP(PHP*4. 
2.*BTA+PHM)+8.*CEXP(PHP+2.*BTA)*8.*CEXP(2.* 
3.*CEXP(PHP+PHM)+6.*CEXP(2.*BTA)-27.)/27.) 

EXP(PHP+2.*BTA+PHM)+CEXP(PHP*4.*BTA)-2.*CEXP(2.*B 
PHP+2.*BTA)-3.*CEXP(PHP))/27.)/I(-CEXPIPHP*4.*BTA*PHM 
P*2.*8TA4-PHM)+8.*CEXP(PHP + 2.*BTA)*8.*CEXP(2.*BTA+PHM) 
)+3.*CEXP(PHP+PHM)+6.*CEXP(2.*BTA)-27.)/27.) 

P+2.*BTA+PHM)+3.*CEXP(PHP*PHM)-8.*CEXP(PHP*2.*BTA)*3. 
*BTA+PHM)-3.*CEXP(PHP»2.*eTA+PHM)-8.*CEXPI2.*BTA*PHM) 
)+3.*CEXP(2.*BTA)-CEXP(2.*BTA)*9.J/27.)/(C-CEXP«PHP + 4 
. *CEXP(PHP + 2.*BTA + PHM)+8.*CEXP(PHP*2.*BTA) + 8.*CEXP(2. 
XP(4.*BTA)*3.*CEXP(PHP+PHM)+6.*CEXP(2.*BTA)-27.)/27.) 

EXP(PHP+3.*BTA)+CEXP(PHP+3.*BTA+PHM)*CEXP(PHP*BTA+PHM 
A)-2.*CEXP(PHP+BTA)-3.*CEXP(BTA))/27.)/<<-CEXP<PHP+4. 
*CEXP(PHP+2.*BTA*PHM)+8.*CEXP(PHP*2.*BTA)+8.*CEXP(2.* 
P(4.*BTA)+3.*CEXP(PHP+PHM)+6.*CEXP(2.*BTA)-27.)/27.) 

Fig. B-12. Fortran list of program for evaluation of magnitude scattering 
matrix of Diphalator with only one differential phase-shift element using 
discrete data points. 
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1-4-12337 I 

23 Y   »  CABS   (Y! 
24 YY   =   REAL   «Yl 
25 X   -   U3.*CEXP(PHP+4.*BTA*PHMl»CEXP(PHP*2.*BTA*PHH)-8.*CEXP«PHP+2.* 

1 BTA)*CEXP(PHP+2.*BTA*PHM)-8.*CEXP<2.*BTA*PHM)-3.*CEXP(4.*BTA)-CEX 
2 P«PHP+PHM)*6.*CEXP(2.*BTA)+9.)/27.l/(l-CEXP(PHP*4.*BTA+PHM)+2.* 
3 CEXP<PHP«-2.*BTA+PHM)+8.*CEXP{PHP*2.*BTA)+8.*CEXP(2.*BTA*PHM)*CEXP 
4 (4.*BTAJ*3.*CEXP«PHP+PHM)*6.*CEXP<2.*BTAJ-27.)/27.1 

26 X   =   CABS   (X) 
27 XX   =   REAL   (X) 
13 Q   =   <4.*<2.*CEXP<PHP*2.*BTA*PHM)+CEXP(4.*BTA*PHM)-2.*CEXP<2.*BTA)+ 

1 CEXP(2.*BTA+PHM)*CEXP(2.*BTA«-PHM)-3.*CEXP<PHM))/27.)/(«-CEXP(PHP» 
2 4.*BTA+PHM)+2.*CEXP<PHP*2.*BTA*PHM)+8.*CEXP(PHP+2.*BTA)*8.*CEXP<2 
3 .*BTA*PHM)+CEXP<4.*BTA)*3.*CEXP<PHP+PHK)*6.*CEXP(2.*BTA)-27.1/27. 
4 ) 

14 C   =  CABS   (C) 
15 CQ   ■   REAL   (C) 

8 WRITE   (6,9)   A,B,C,ZZ,YY,WW,RR,XX,YY,QQ,RR,ZZ 
9 FORMAT   (3F9.4//3F9.4/3F9.4/3F9.4////J 

10 GO   TO   1 
11 STOP 

END 
/* 
//LINK        EXEC        PROC=LINKSRCN 
//GO        EXEC        PROC=EXECUTE 
//FT05F001        DO        * 

18C.0 90.0 90.0 
/♦ 

Fig. B-12.    Continued. 
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